IRFI7536GPBF [INFINEON]

Power Field-Effect Transistor;
IRFI7536GPBF
型号: IRFI7536GPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor

文件: 总9页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRFI7536GPbF  
HEXFET® Power MOSFET  
D
S
VDSS  
RDS(on) typ.  
max.  
60V  
2.7m  
3.4m  
86A  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
G
ID (Silicon Limited)  
l Hard Switched and High Frequency Circuits  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
D
G
TO-220  
Full-Pak  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Max.  
86  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Pulsed Drain Current  
73  
820  
A
75  
PD @TC = 25°C  
Maximum Power Dissipation  
W
0.5  
Linear Derating Factor  
W/°C  
V
± 20  
VGS  
TJ  
Gate-to-Source Voltage  
-55 to + 175  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
300 (1.6mm from case)  
10lbf in (1.1N m)  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
EAS  
Single Pulse Avalanche Energy (Thermally Limited)  
738  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
2.87  
65  
Units  
°C/W  
Rθ  
JC  
Junction-to-Case  
Rθ  
Junction-to-Ambient (PCB Mount)  
–––  
JA  
www.irf.com © 2013 International Rectifier  
Submit Datasheet Feedback  
Ocotber 16, 2013  
1
IRFI7536GPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
60  
–––  
–––  
2.0  
88  
––– –––  
V
V
/ T Breakdown Voltage Temp. Coefficient  
29  
2.7  
–––  
––– mV/°C Reference to 25°C, ID = 1.0mA  
(BR)DSS  
J
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
3.4  
4.0  
m
VGS = 10V, ID = 75A  
VDS = VGS, ID = 150µA  
VDS = 25V, ID = 75A  
Gate Threshold Voltage  
V
Forward Transconductance  
Internal Gate Resistance  
––– –––  
S
RG  
––– 0.79 –––  
––– ––– 20  
IDSS  
Drain-to-Source Leakage Current  
µA VDS = 60V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
V
DS = 60V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA VGS = 20V  
VGS = -20V  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter  
Total Gate Charge  
Min. Typ. Max. Units  
––– 130 195 nC ID = 75A  
VDS = 30V  
GS = 10V  
ID = 75A, VDS =0V, VGS = 10V  
ns VDD = 39V  
Conditions  
Qg  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
31  
42  
88  
22  
77  
55  
64  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
ID = 75A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
R = 2.7  
G
VGS = 10V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 6600 –––  
––– 720 –––  
––– 400 –––  
––– 1080 –––  
––– 1400 –––  
pF VGS = 0V  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 48V  
ƒ = 1.0 MHz, See Fig. 5  
Coss eff. (ER) Effective Output Capacitance (Energy Related)  
oss eff. (TR) Effective Output Capacitance (Time Related)  
VGS = 0V, VDS = 0V to 48V , See Fig. 11  
C
V
GS = 0V, VDS = 0V to 48V  
Diode Characteristics  
Symbol Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
S
IS  
Continuous Source Current  
––– –––  
––– ––– 820  
––– ––– 1.3  
86  
A
A
V
(Body Diode)  
showing the  
G
ISM  
Pulsed Source Current  
integral reverse  
(Body Diode)  
p-n junction diode.  
TJ = 25°C, IS = 75A, VGS = 0V  
VSD  
dv/dt  
trr  
Diode Forward Voltage  
Peak Diode Recovery  
–––  
–––  
–––  
–––  
–––  
–––  
3.3  
43  
53  
58  
65  
2.4  
––– V/ns TJ = 25°C, IS = 75A, VDS = 60V  
Reverse Recovery Time  
Reverse Recovery Charge  
Reverse Recovery Current  
–––  
–––  
–––  
–––  
–––  
ns TJ = 25°C  
TJ = 125°C  
VR = 51V,  
IF = 75A  
di/dt = 100A/µs  
Qrr  
nC TJ = 25°C  
TJ = 125°C  
IRRM  
A
TJ = 25°C  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.26mH,  
RG = 50, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
‡ Rθ is measured at TJ approximately 90°C.  
ˆ RθJC value shown is at time zero.  
.
ƒ ISD 75A, di/dt 890A/µs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging  
time as Coss while VDS is rising from 0 to 80% VDSS  
.
www.irf.com © 2013 International Rectifier  
Submit Datasheet Feedback  
October 16, 2013  
2
IRFI7536GPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
12V  
VGS  
15V  
12V  
TOP  
TOP  
10V  
10V  
6.0V  
5.0V  
4.75V  
4.50V  
4.25V  
6.0V  
5.0V  
4.75V  
4.50V  
4.25V  
BOTTOM  
BOTTOM  
4.25V  
4.25V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
1
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 25V  
J
V
DS  
60µs PULSE WIDTH  
1.0  
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
14.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 75A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
V
= 48V  
= 30V  
= 12V  
DS  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
C
iss  
oss  
rss  
C
100  
0
20 40 60 80 100 120 140 160 180  
, Total Gate Charge (nC)  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
V
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
www.irf.com © 2013 International Rectifier  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
Submit Datasheet Feedback October 16, 2013  
3
IRFI7536GPbF  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
T
= 175°C  
J
1msec  
10msec  
DC  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
2.5  
GS  
1.0  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
3.0  
175  
70  
0.1  
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
100  
80  
60  
40  
20  
0
72  
70  
68  
66  
64  
62  
60  
I
= 1.0mA  
D
25  
50  
75  
100  
125  
150  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Temperature ( °C )  
T
, Case Temperature (°C)  
T
J
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3000  
I
D
TOP  
8.6A  
12A  
2500  
2000  
1500  
1000  
500  
BOTTOM 75A  
0
0
10  
V
20  
30  
40  
50  
60  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Submit Datasheet Feedback October 16, 2013  
www.irf.com © 2013 International Rectifier  
4
IRFI7536GPbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
0.01  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
tav (sec)  
1.0E-02  
1.0E-01  
1.0E+00  
Fig 14. Single Avalanche Event: Pulse Current vs. Pulse Width  
800  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
TOP  
BOTTOM 1.0% Duty Cycle  
= 75A  
Single Pulse  
700  
600  
500  
400  
300  
200  
100  
0
I
D
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com © 2013 International Rectifier  
5
Submit Datasheet Feedback  
October 16, 2013  
IRFI7536GPbF  
16  
14  
12  
10  
8
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I = 30A  
F
V
= 51V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 150µA  
= 1.0mA  
= 1.0A  
D
D
D
6
4
2
-75  
-25  
25  
75  
125  
175  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
T
J
, Temperature ( °C )  
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
16  
500  
I = 30A  
I = 45A  
F
F
14  
12  
10  
8
V
= 51V  
V
= 51V  
R
R
400  
300  
200  
100  
0
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
500  
I = 45A  
F
V
= 51V  
R
400  
300  
200  
100  
0
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback  
October 16, 2013  
6
IRFI7536GPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
www.irf.com © 2013 International Rectifier  
Fig 24b. Gate Charge Waveform  
Submit Datasheet Feedback October 16, 2013  
7
IRFI7536GPbF  
TO-220 Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220 Full-Pak Part Marking Information  
TO-220AB Full-Pak packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
www.irf.com © 2013 International Rectifier  
Submit Datasheet Feedback  
October 16, 2013  
8
IRFI7536GPbF  
Qualification information†  
Cons umer††  
(per JEDEC JESD47F ††† guidelines )  
Qualification level  
MS L 1  
Moisture Sensitivity Level  
RoHS compliant  
TSOP-6  
(per IP C/JE DE C J-S T D-020D†††  
)
Yes  
Qualification standards can be found at International Rectifier’s web site  
http://www.irf.com/product-info/reliability  
††  
Higher qualification ratings may be available should the user have such requirements.  
Please contact your International Rectifier sales representative for further information:  
http://www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
9
www.irf.com © 2013 International Rectifier  
Submit Datasheet Feedback  
October 16, 2013  

相关型号:

IRFI820

HEXFET POWER MOSFET
INFINEON

IRFI820-002

Power Field-Effect Transistor, 2.1A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRFI820-002PBF

Power Field-Effect Transistor, 2.1A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRFI820-003

Power Field-Effect Transistor, 2.1A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRFI820-004

Power Field-Effect Transistor, 2.1A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI820-004PBF

2.1A, 500V, 3ohm, N-CHANNEL, Si, POWER, MOSFET
INFINEON

IRFI820-005PBF

Power Field-Effect Transistor, 2.1A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRFI820-006

Power Field-Effect Transistor, 2.1A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI820-010

Power Field-Effect Transistor, 2.1A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRFI820-010PBF

2.1A, 500V, 3ohm, N-CHANNEL, Si, POWER, MOSFET
INFINEON

IRFI820-012

Power Field-Effect Transistor, 2.1A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRFI820-013

Power Field-Effect Transistor, 2.1A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON