IRFL024ZTRPBF [INFINEON]

Advanced Process Technology; 先进的工艺技术
IRFL024ZTRPBF
型号: IRFL024ZTRPBF
厂家: Infineon    Infineon
描述:

Advanced Process Technology
先进的工艺技术

文件: 总10页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95312A  
IRFL024ZPbF  
HEXFET® Power MOSFET  
Features  
D
l
l
l
l
l
l
Advanced Process Technology  
VDSS = 55V  
UltraLowOn-Resistance  
150°COperatingTemperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free  
RDS(on) = 57.5mΩ  
G
ID = 5.1A  
S
Description  
This HEXFET® Power MOSFET utilizes the latest  
processingtechniquestoachieveextremelylowon-  
resistance per silicon area. Additional features of  
thisdesign area150°Cjunctionoperatingtemperature,  
fast switching speed and improved repetitive  
avalanche rating . These features combine to make  
thisdesignanextremelyefficientandreliabledevice  
for use in a wide variety of applications.  
SOT-223  
Absolute Maximum Ratings  
Parameter  
Max.  
5.1  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TA = 25°C  
@ TA = 70°C  
D
4.1  
A
D
41  
DM  
2.8  
Power Dissipation  
P
@TA = 25°C  
@TA = 25°C  
D
D
1.0  
Power Dissipation  
W
W/°C  
V
P
0.02  
± 20  
Linear Derating Factor  
Gate-to-Source Voltage  
V
GS  
EAS (Thermally limited)  
13  
32  
Single Pulse Avalanche Energy  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
mJ  
EAS (Tested )  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
Repetitive Avalanche Energy  
Operating Junction and  
mJ  
-55 to + 150  
T
T
J
Storage Temperature Range  
°C  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
45  
Units  
Rθ  
Rθ  
Junction-to-Ambient (PCB mount, steady state)  
JA  
°C/W  
Junction-to-Ambient (PCB mount, steady state)  
–––  
120  
JA  
www.irf.com  
1
09/16/10  
IRFL024ZPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
55  
–––  
–––  
V
VGS = 0V, ID = 250µA  
––– 0.053 –––  
––– 46.2 57.5  
V/°C Reference to 25°C, ID = 1mA  
mΩ  
VGS = 10V, ID = 3.1A  
VGS(th)  
2.0  
6.2  
–––  
–––  
–––  
–––  
–––  
4.0  
–––  
20  
V
S
VDS = VGS, ID = 250µA  
gfs  
Forward Transconductance  
V
DS = 25V, ID = 3.1A  
DS = 55V, VGS = 0V  
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
V
250  
200  
VDS = 55V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA VGS = 20V  
VGS = -20V  
––– -200  
Qg  
9.1  
1.9  
3.9  
7.8  
21  
14  
ID = 3.1A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
nC VDS = 44V  
VGS = 10V  
VDD = 28V  
Rise Time  
ns  
ID = 3.1A  
RG = 53 Ω  
VGS = 10V  
VGS = 0V  
VDS = 25V  
td(off)  
tf  
Turn-Off Delay Time  
30  
Fall Time  
23  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
340  
68  
Output Capacitance  
Reverse Transfer Capacitance  
Output Capacitance  
39  
pF ƒ = 1.0MHz  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
210  
55  
Output Capacitance  
VGS = 0V, VDS = 44V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 44V  
C
oss eff.  
Effective Output Capacitance  
93  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
I
Continuous Source Current  
(Body Diode)  
–––  
–––  
5.1  
S
A
showing the  
G
I
Pulsed Source Current  
(Body Diode)  
–––  
–––  
41  
integral reverse  
SM  
S
p-n junction diode.  
V
t
Diode Forward Voltage  
–––  
–––  
–––  
–––  
15  
1.3  
23  
15  
V
T = 25°C, I = 3.1A, V  
= 0V  
GS  
SD  
J
S
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns  
nC  
T = 25°C, I = 3.1A, VDD = 28V  
J F  
rr  
di/dt = 100A/µs  
Q
t
9.8  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
Notes:  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical  
repetitive avalanche performance.  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 2.8mH  
†This value determined from sample failure population.  
100% tested to this value in production.  
RG = 25, IAS = 3.1A, VGS =10V.  
Part not recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the same  
charging time as Coss while VDS is rising from 0 to 80%  
‡When mounted on 1 inch square copper board.  
ˆWhen mounted on FR-4 board using minimum  
recommended footprint.  
VDSS  
.
2
www.irf.com  
IRFL024ZPbF  
100  
10  
1
100  
10  
1
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
30µs PULSE WIDTH  
Tj = 150°C  
30µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
100  
12  
T
T
= 25°C  
J
J
10  
8
T
= 150°C  
J
= 150°C  
10  
6
4
T = 25°C  
J
2
V
= 25V  
DS  
30µs PULSE WIDTH  
V
= 10V  
10  
DS  
1.0  
0
4
5
6
7
8
9
10  
0
2
4
6
8
12  
I ,Drain-to-Source Current (A)  
D
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRFL024ZPbF  
10000  
12.0  
10.0  
8.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 3.1A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
V
V
V
= 44V  
= 28V  
= 11V  
= C  
DS  
DS  
DS  
rss  
oss  
gd  
= C + C  
ds  
gd  
1000  
100  
10  
C
C
iss  
6.0  
oss  
4.0  
C
rss  
2.0  
0.0  
1
10  
100  
0
2
4
6
8
10  
V
, Drain-to-Source Voltage (V)  
Q
Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-SourceVoltage  
Drain-to-SourceVoltage  
1000  
100  
10  
100  
10  
1
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 150°C  
J
100µsec  
T
= 25°C  
J
1
T
= 25°C  
A
1msec  
Tj = 150°C  
Single Pulse  
V
= 0V  
10msec  
GS  
0.1  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
, Source-to-Drain Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRFL024ZPbF  
2.0  
1.5  
1.0  
0.5  
6
5
4
3
2
1
0
I
= 3.1A  
D
V
= 10V  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
25  
50  
T
75  
100  
125  
150  
,Ambient Temperature (°C)  
T
J
, Junction Temperature (°C)  
A
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs.Temperature  
AmbientTemperature  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.02  
0.01  
1
τ
J τJ  
τ
τ
Cτ  
5.0477  
0.000463  
τ
1τ1  
τ
2 τ2  
3τ3  
19.9479 0.636160  
20.0169 21.10000  
Ci= τi/Ri  
0.1  
/
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.01  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRFL024ZPbF  
60  
50  
40  
30  
20  
10  
0
15V  
I
D
TOP  
0.77A  
0.89A  
BOTTOM 3.1A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
V0GVS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
4.0  
3.5  
3.0  
2.5  
2.0  
V
G
Charge  
Fig 13a. Basic Gate Charge Waveform  
I
= 250µA  
D
L
VCC  
DUT  
0
-75 -50 -25  
0
25  
50  
75 100 125 150  
1K  
T , Temperature ( °C )  
J
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRFL024ZPbF  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
1
0.01  
assuming  
Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
0.1  
0.01  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
1.0E+00  
1.0E+01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
14  
12  
10  
8
TOP  
BOTTOM 1% Duty Cycle  
= 3.1A  
Single Pulse  
I
D
6
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
4
6. Iav = Allowable avalanche current.  
2
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
0
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
vs.Temperature  
www.irf.com  
7
IRFL024ZPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRFL024ZPbF  
SOT-223 (TO-261AA) Package Outline  
Dimensions are shown in milimeters (inches)  
SOT-223 (TO-261AA) Part Marking Information  
HEXFET PRODUCT MARKING  
THIS IS AN IRFL014  
LOT CODE  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
FL014  
314P  
AXXXX  
A= ASSEMBLY SITE  
CODE  
DAT E CODE  
(YYWW)  
YY = YEAR  
WW = WEEK  
BOTTOM  
TOP  
P = DE S IGNAT ES LEAD-F REE  
PRODUCT (OPTIONAL)  
Notes:  
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/  
2. For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRFL024ZPbF  
SOT-223 (TO-261AA) Tape & Reel Information  
Dimensions are shown in milimeters (inches)  
4.10 (.161)  
3.90 (.154)  
0.35 (.013)  
0.25 (.010)  
1.85 (.072)  
1.65 (.065)  
2.05 (.080)  
1.95 (.077)  
TR  
7.55 (.297)  
7.45 (.294)  
16.30 (.641)  
15.70 (.619)  
7.60 (.299)  
7.40 (.292)  
1.60 (.062)  
1.50 (.059)  
TYP.  
FEED DIRECTION  
2.30 (.090)  
2.10 (.083)  
7.10 (.279)  
6.90 (.272)  
12.10 (.475)  
11.90 (.469)  
NOTES :  
1. CONTROLLING DIMENSION: MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
3. EACH O330.00 (13.00) REEL CONTAINS 2,500 DEVICES.  
13.20 (.519)  
12.80 (.504)  
15.40 (.607)  
11.90 (.469)  
4
330.00  
(13.000)  
MAX.  
50.00 (1.969)  
MIN.  
18.40 (.724)  
MAX.  
NOTES :  
1. OUTLINE COMFORMS TO EIA-418-1.  
2. CONTROLLING DIMENSION: MILLIMETER..  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
14.40 (.566)  
12.40 (.488)  
4
3
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 09/2010  
10  
www.irf.com  

相关型号:

IRFL1006

Power MOSFET(Vdss=60V, Rds(on)=0.22ohm, Id=1.6A)
INFINEON

IRFL1006PBF

HEXFET Power MOSFET
INFINEON

IRFL1006TR

Small Signal Field-Effect Transistor, 1.6A I(D), 60V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-261AA, TO-261AA, 4 PIN
INFINEON

IRFL1006TRPBF

Small Signal Field-Effect Transistor, 1.6A I(D), 60V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-261AA, LEAD FREE, TO-261AA, 4 PIN
INFINEON

IRFL110

Power MOSFET(Vdss=100V, Rds(on)=0.54ohm, Id=1.5A)
INFINEON

IRFL110

Power MOSFET
VISHAY

IRFL110PBF

HEXFET Power MOSFET
INFINEON

IRFL110PBF

Power MOSFET
VISHAY

IRFL110TR

Power MOSFET
VISHAY

IRFL110TRPBF

Power MOSFET
VISHAY

IRFL210

Power MOSFET(Vdss=200V, Rds(on)=1.5ohm, Id=0.96A)
INFINEON

IRFL210

Power MOSFET
VISHAY