IRFP1405 [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRFP1405
型号: IRFP1405
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总9页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95810  
AUTOMOTIVE MOSFET  
IRFP1405  
HEXFET® Power MOSFET  
Features  
D
Advanced Process Technology  
VDSS = 55V  
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
RDS(on) = 5.3mΩ  
G
Repetitive Avalanche Allowed up to Tjmax  
ID = 95A  
S
Description  
Specifically designed for Automotive applications, this HEXFET®  
Power MOSFET utilizes the latest processing techniques to  
achieve extremely low on-resistance per silicon area. Additional  
features of this design are a 175°C junction operating tempera-  
ture, fast switching speed and improved repetitive avalanche  
rating . These features combine to make this design an extremely  
efficientandreliabledeviceforuseinAutomotiveapplicationsand  
a wide variety of other applications.  
S
D
G
TO-247AC  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
I
I
I
I
@ T = 25°C  
C
160  
110  
95  
D
D
D
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
@ T = 100°C  
C
A
@ T = 25°C  
C
640  
310  
DM  
P
@T = 25°C  
Power Dissipation  
C
W
D
Linear Derating Factor  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy  
2.0  
± 20  
W/°C  
V
V
GS  
EAS (Thermally limited)  
530  
mJ  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
EAS (Tested )  
1060  
IAR  
See Fig.12a, 12b, 15, 16  
-55 to + 175  
A
Repetitive Avalanche Energy  
EAR  
mJ  
T
J
Operating Junction and  
T
Storage Temperature Range  
°C  
STG  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.49  
–––  
40  
Units  
RθJC  
Rθcs  
RθJA  
Junction-to-Case *  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient *  
0.24  
–––  
°C/W  
HEXFET® is a registered trademark of International Rectifier.  
* Rθ is measured at TJ approximately 90°C  
www.irf.com  
1
12/22/03  
IRFP1405  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
55 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
V
Breakdown Voltage Temp. Coefficient ––– 0.058 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
4.2  
–––  
–––  
–––  
–––  
–––  
–––  
120  
30  
5.3  
4.0  
VGS = 10V, ID = 95A  
VGS(th)  
V
S
VDS = VGS, ID = 250µA  
gfs  
Forward Transconductance  
77  
–––  
20  
V
DS = 25V, ID = 95A  
DS = 55V, VGS = 0V  
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
V
250  
200  
-200  
180  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 55V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA VGS = 20V  
VGS = -20V  
ID = 95A  
Qg  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
nC VDS = 44V  
VGS = 10V  
53  
12  
VDD = 28V  
Rise Time  
160  
140  
150  
5.0  
ID = 95A  
td(off)  
tf  
Turn-Off Delay Time  
ns RG = 2.6 Ω  
VGS = 10V  
Fall Time  
LD  
D
Internal Drain Inductance  
Between lead,  
nH 6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
13  
–––  
S
and center of die contact  
Ciss  
Input Capacitance  
––– 5600 –––  
––– 1310 –––  
VGS = 0V  
Coss  
Output Capacitance  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
––– 6550 –––  
––– 920 –––  
350  
–––  
pF ƒ = 1.0MHz  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 44V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 44V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance  
––– 1750 –––  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
I
Continuous Source Current  
–––  
–––  
95  
MOSFET symbol  
S
(Body Diode)  
A
showing the  
I
Pulsed Source Current  
–––  
–––  
640  
integral reverse  
SM  
(Body Diode)  
p-n junction diode.  
V
t
Diode Forward Voltage  
–––  
–––  
–––  
–––  
70  
1.3  
110  
260  
V
T = 25°C, I = 95A, V = 0V  
SD  
J
S
GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 95A, VDD = 28V  
J F  
rr  
di/dt = 100A/µs  
Q
t
170  
nC  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
Notes:  
„ Coss eff. is a fixed capacitance that gives the same charging time  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.12mH  
RG = 25, IAS = 95A, VGS =10V. Part not  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
recommended for use above this value.  
This value determined from sample failure population. 100%  
tested to this value in production.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
2
www.irf.com  
IRFP1405  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
1
0.1  
1
10  
100  
0.1  
1
1
10  
1
100  
1
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
140  
1000  
T
= 25°C  
T
= 25°C  
J
J
120  
100  
80  
60  
40  
20  
0
T
= 175°C  
J
100  
T
= 175°C  
J
V
= 25V  
DS  
V
= 10V  
DS  
60µs PULSE WIDTH  
380µs PULSE WIDTH  
10  
4.0  
5.0  
V
6.0  
7.0  
8.0  
9.0  
10.0  
0
20  
40  
60  
80  
100  
, Gate-to-Source Voltage (V)  
GS  
I
Drain-to-Source Current (A)  
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. Drain Current  
www.irf.com  
3
IRFP1405  
10000  
20  
16  
12  
8
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 95A  
D
V
= 44V  
C
C
C
+ C , C  
SHORTED  
DS  
VDS= 28V  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
8000  
6000  
4000  
2000  
0
= C + C  
ds  
gd  
Ciss  
Coss  
Crss  
4
FOR TEST CIRCUIT  
SEE FIGURE 13  
0
0
40  
Q
80  
120  
160  
200  
1
10  
, Drain-to-Source Voltage (V)  
100  
Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
10000  
1000.0  
100.0  
10.0  
1.0  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
1000  
100  
10  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
DC  
V
= 0V  
GS  
0.1  
0.1  
1
10  
100  
1000  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
V
, Drain-toSource Voltage (V)  
DS  
V
, Source-toDrain Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRFP1405  
200  
150  
100  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
LIMITED BY PACKAGE  
I
= 95A  
D
V
= 10V  
GS  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs. Temperature  
Case Temperature  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.2529 0.00080  
0.2368 0.014283  
0.02  
0.01  
0.01  
0.001  
τJ  
τ
Cτ  
τJ  
τ
τ
1 τ1  
Ci= τi/Ri  
2τ2  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRFP1405  
2000  
1500  
1000  
500  
0
15V  
I
D
TOP  
16A  
20A  
95A  
DRIVER  
+
L
V
BOTTOM  
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
V0GVS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
V
G
Charge  
I
= 250µA  
D
Fig 13a. Basic Gate Charge Waveform  
L
VCC  
DUT  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
1K  
T
J
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRFP1405  
10000  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.01  
0.05  
0.10  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
600  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
TOP  
BOTTOM 1% Duty Cycle  
= 95A  
Single Pulse  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
500  
400  
300  
200  
100  
0
I
D
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRFP1405  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRFP1405  
TO-247AC Package Outline  
Dimensions are shown in millimeters  
TO-247AC Part Marking Information  
Notes: T his part marking information applies to devices produced before02/26/2001 or for  
parts manufactured in GB.  
E XAMPL E: T HIS IS AN IR F PE 30  
WIT H ASS EMBLY  
LOT CODE 3A1Q  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFPE30  
3A1Q  
9302  
DATE CODE  
(YYWW)  
ASSEMBLY  
LOT CODE  
YY = YEAR  
WW = WE EK  
Notes: This part marking information applies to devices produced after 02/26/2001  
EXAMPLE: THIS IS AN IRFPE30  
WIT H ASS EMBLY  
LOT CODE 5657  
ASSEMBLED ON WW 35, 2000  
IN THE ASSEMBLY LINE "H"  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFPE30  
035H  
57  
56  
DATE CODE  
YEAR 0 = 2000  
WE EK 35  
AS S E MB LY  
LOT CODE  
LINE H  
TO-247AC packages are not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.12/03  
www.irf.com  
9

相关型号:

IRFP1405PBF

HEXFET㈢ Power MOSFET
INFINEON

IRFP140A

Advanced Power MOSFET
FAIRCHILD

IRFP140N

33A, 100V, 0.040 Ohm, N-Channel Power MOSFET
INTERSIL

IRFP140N

Power MOSFET(Vdss=100V, Rds(on)=0,052ohm, Id=33A)
INFINEON

IRFP140N-R4942

Transistor
FAIRCHILD

IRFP140NPBF

HEXFET Power MOSFET
INFINEON

IRFP140PBF

Power MOSFET
VISHAY

IRFP140PBF

Preferred for commercail-industrial applications where higher power levels preclude the use of TO-220 devices.
INFINEON

IRFP140R

TRANSISTOR | MOSFET | N-CHANNEL | 100V V(BR)DSS | 31A I(D) | TO-247
ETC

IRFP141

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 29A I(D) | TO-247AC
ETC

IRFP141CF

IRFP141CF
NSC

IRFP141R

TRANSISTOR | MOSFET | N-CHANNEL | 80V V(BR)DSS | 31A I(D) | TO-247
ETC