IRFP4468 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRFP4468
型号: IRFP4468
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总9页 (文件大小:305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -97134  
IRFP4468PbF  
HEXFET® Power MOSFET  
Applications  
D
VDSS  
RDS(on) typ.  
100V  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
2.0m  
2.6m  
:
:
max.  
G
ID  
ID  
290A  
c
(Silicon Limited)  
195A  
S
(Package Limited)  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
D
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
D
G
TO-247AC  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
290c  
200  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
A
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current d  
195  
1120  
520  
PD @TC = 25°C  
Maximum Power Dissipation  
Linear Derating Factor  
W
3.4  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
10  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
740  
mJ  
A
Avalanche Currentꢀd  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy g  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.29  
–––  
40  
Units  
RθJC  
RθCS  
RθJA  
Junction-to-Case k  
Case-to-Sink, Flat Greased Surface  
0.24  
–––  
°C/W  
Junction-to-Ambient jk  
www.irf.com  
1
5/21/08  
IRFP4468PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.09 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250μA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
ΔV(BR)DSS/ΔTJ  
RDS(on)  
–––  
2.0  
2.0  
2.6  
4.0  
20  
VGS = 10V, ID = 180A g  
VDS = VGS, ID = 250μA  
mΩ  
V
VGS(th)  
–––  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
μA VDS = 100V, VGS = 0V  
VDS = 80V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = -20V  
–––  
0.8  
–––  
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 180A  
310 ––– –––  
S
Qg  
––– 360 540  
nC ID = 180A  
VDS =50V  
Qgs  
Gate-to-Source Charge  
–––  
–––  
81  
89  
–––  
Qgd  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
V
GS = 10V g  
ID = 180A, VDS =0V, VGS = 10V  
ns VDD = 65V  
Qsync  
––– 270 –––  
––– 52 –––  
td(on)  
tr  
Rise Time  
––– 230 –––  
––– 160 –––  
––– 260 –––  
––– 19860 –––  
––– 1360 –––  
––– 540 –––  
––– 1550 –––  
––– 900 –––  
ID = 180A  
td(off)  
Turn-Off Delay Time  
RG = 2.7Ω  
VGS = 10V g  
tf  
Fall Time  
Ciss  
Input Capacitance  
pF VGS = 0V  
Coss  
Output Capacitance  
VDS = 50V  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)h  
ƒ = 100 kHz, See Fig. 5  
VGS = 0V, VDS = 0V to 80V i, See Fig. 11  
VGS = 0V, VDS = 0V to 80V h  
Coss eff. (ER)  
Coss eff. (TR)  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
290c  
D
(Body Diode)  
showing the  
ISM  
Pulsed Source Current  
––– ––– 1120  
A
integral reverse  
G
(Body Diode)ꢀd  
p-n junction diode.  
S
VSD  
trr  
Diode Forward Voltage  
––– –––  
––– 100  
––– 110  
––– 370  
––– 420  
1.3  
V
TJ = 25°C, IS = 180A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
Reverse Recovery Time  
Reverse Recovery Charge  
ns  
IF = 180A  
di/dt = 100A/μs g  
Qrr  
nC  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
6.9  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
„ ISD 180A, di/dt 600A/μs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
temperature. Bond wire current limit is 195A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.045mH  
RG = 25Ω, IAS = 180A, VGS =10V. Part not recommended for use  
above this value .  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C  
2
www.irf.com  
IRFP4468PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.0V  
4.0V  
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 175°C  
1
0.01  
0.1  
1
10  
100  
0.1  
1
10  
, Drain-to-Source Voltage (V)  
DS  
100  
V
, Drain-to-Source Voltage (V)  
V
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 180A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
= 25V  
J
V
DS  
60μs PULSE WIDTH  
1
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
16  
35000  
30000  
25000  
20000  
15000  
10000  
5000  
0
V
C
= 0V,  
f = 100 kHz  
GS  
I
= 180A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
V
V
= 80V  
= 50V  
= 20V  
DS  
DS  
DS  
C
= C  
rss  
gd  
C
= C + C  
ds  
12  
8
oss  
gd  
Ciss  
4
Coss  
Crss  
0
0
50 100 150 200 250 300 350 400 450  
Total Gate Charge (nC)  
1
10  
100  
Q
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFP4468PbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100  
10  
1
100μsec  
1msec  
T
= 25°C  
J
LIMITED BY PACKAGE  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
100  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
300  
250  
200  
150  
100  
50  
120  
110  
100  
90  
LIMITED BY PACKAGE  
I
= 5mA  
D
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
3000  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
I
D
TOP  
30A  
2500  
2000  
1500  
1000  
500  
41A  
180A  
BOTTOM  
0
25  
50  
75  
100  
125  
150  
175  
0
20  
40  
60  
80  
100  
Starting T , Junction Temperature (°C)  
V
Drain-to-Source Voltage (V)  
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFP4468PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
0.05  
0.02  
τι (sec)  
Ri (°C/W)  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.063359 0.000278  
0.110878 0.005836  
0.114838 0.053606  
τ
1 τ1  
τ
2 τ2  
3τ3  
0.01  
Ci= τi/Ri  
Ci= τi/Ri  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
800  
600  
400  
200  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 180A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFP4468PbF  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
32  
24  
16  
8
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250μA  
I
= 72A  
= 85V  
F
V
R
T
= 125°C  
J
T
= 25°C  
J
0
1.0  
100 200 300 400 500 600 700 800 900 1000  
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
di / dt - (A / μs)  
T
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
1500  
40  
32  
24  
16  
1000  
500  
0
I
= 72A  
= 85V  
I
= 108A  
= 85V  
F
F
V
V
R
R
8
0
T
= 125°C  
T
= 125°C  
= 25°C  
J
J
T
= 25°C  
T
J
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / μs)  
di / dt - (A / μs)  
f
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
2000  
I
= 108A  
= 85V  
F
V
T
R
= 125°C  
= 25°C  
J
1500  
1000  
500  
0
T
J
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / μs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFP4468PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFP4468PbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
EXAMPLE: THIS IS AN IRFPE30  
WIT H AS S E MB L Y  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE 5657  
ASSEMBLED ON WW 35, 2001  
IN THE ASSEMBLY LINE "H"  
IRFPE30  
135H  
57  
56  
DATE CODE  
YEAR 1 = 2001  
WEEK 35  
AS S E MB L Y  
LOT CODE  
Note: "P" in assembly lineposition  
indicates "Lead-F ree"  
LINE H  
TO-247AC packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 05/08  
www.irf.com  
8
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY