IRFS3306TRLPBF [INFINEON]

High Efficiency Synchronous Rectification in SMPS; 高效率同步整流开关电源
IRFS3306TRLPBF
型号: IRFS3306TRLPBF
厂家: Infineon    Infineon
描述:

High Efficiency Synchronous Rectification in SMPS
高效率同步整流开关电源

晶体 开关 晶体管 功率场效应晶体管 脉冲
文件: 总11页 (文件大小:446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97098B  
IRFB3306PbF  
IRFS3306PbF  
IRFSL3306PbF  
HEXFET® Power MOSFET  
Applications  
D
VDSS  
RDS(on) typ.  
max.  
60V  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
3.3m  
4.2m  
:
:
G
ID  
160A  
c
(Silicon Limited)  
ID  
120A  
(Package Limited)  
S
S
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
D
D
l Fully Characterized Capacitance and Avalanche  
SOA  
S
D
S
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
D
D
G
G
G
D2Pak  
IRFS3306PbF  
TO-262  
IRFSL3306PbF  
TO-220AB  
IRFB3306PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
160c  
110c  
120  
Units  
A
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current d  
620  
PD @TC = 25°C  
230  
Maximum Power Dissipation  
W
1.5  
Linear Derating Factor  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
14  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
°C  
300  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
184  
mJ  
A
Avalanche Currentꢀd  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy g  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.65  
–––  
62  
Units  
RθJC  
RθCS  
RθJA  
RθJA  
Junction-to-Case k  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220 k  
Junction-to-Ambient (PCB Mount) , D2Pak jk  
0.50  
–––  
°C/W  
–––  
40  
www.irf.com  
1
4/7/08  
IRFB/S/SL3306PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.07 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250μA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
ΔV(BR)DSS/ΔTJ  
RDS(on)  
–––  
2.0  
3.3  
4.2  
4.0  
20  
mΩ VGS = 10V, ID = 75A g  
VDS = VGS, ID = 150μA  
VGS(th)  
–––  
V
IDSS  
Drain-to-Source Leakage Current  
––– –––  
μA VDS = 60V, VGS = 0V  
VDS = 48V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = -20V  
–––  
0.7  
–––  
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 75A  
nC ID = 75A  
230 ––– –––  
S
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
85  
20  
26  
59  
15  
76  
40  
77  
120  
–––  
Qgs  
Gate-to-Source Charge  
VDS =30V  
Qgd  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
VGS = 10V g  
Qsync  
–––  
–––  
–––  
–––  
–––  
ID = 75A, VDS =0V, VGS = 10V  
VDD = 30V  
td(on)  
ns  
tr  
Rise Time  
ID = 75A  
td(off)  
Turn-Off Delay Time  
RG = 2.7Ω  
VGS = 10V g  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 4520 –––  
––– 500 –––  
––– 250 –––  
––– 720 –––  
––– 880 –––  
pF VGS = 0V  
VDS = 50V  
Coss  
Output Capacitance  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)h  
ƒ = 1.0MHz, See Fig. 5  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 48V i, See Fig. 11  
VGS = 0V, VDS = 0V to 48V h  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
160c  
D
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 620  
A
S
(Body Diode)ꢀd  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
––– –––  
1.3  
V
TJ = 25°C, IS = 75A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
–––  
31  
35  
34  
45  
1.9  
ns  
IF = 75A  
di/dt = 100A/μs g  
Qrr  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
„ ISD 75A, di/dt 1400A/μs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
temperature. Bond wire current limit is 120A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements.  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.04mH  
RG = 25Ω, IAS = 96A, VGS =10V. Part not recommended for use  
above this value.  
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C  
2
www.irf.com  
IRFB/S/SL3306PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60μs PULSE WIDTH  
Tj = 175°C  
60μs PULSE WIDTH  
Tj = 25°C  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60μs PULSE WIDTH  
0.1  
2.0  
3.0  
V
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
8000  
6000  
4000  
2000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
I
= 75A  
GS  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 48V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 30V  
VDS= 12V  
C
= C + C  
ds  
oss  
gd  
Ciss  
4
Coss  
Crss  
0
0
20  
40  
60  
80  
100 120 140  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB/S/SL3306PbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100  
T
= 175°C  
J
1msec  
100μsec  
T
= 25°C  
J
10  
1
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
0.1  
1
10  
100  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
180  
160  
140  
120  
100  
80  
80  
70  
60  
50  
I
= 5mA  
D
Limited By Package  
60  
40  
20  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T
, Junction Temperature (°C)  
T
, Case Temperature (°C)  
J
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
1.5  
1.0  
0.5  
0.0  
800  
I
D
TOP  
13A  
18A  
96A  
600  
400  
200  
0
BOTTOM  
0
10  
V
20  
30  
40  
50  
60  
25  
50  
75  
100  
125  
150  
175  
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFB/S/SL3306PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
R1  
R1  
R2  
R2  
0.01  
0.01  
(sec)  
Ri (°C/W) τι  
τJ  
τC  
τJ  
τ1  
0.249761 0.00028  
τ
2τ2  
τ1  
0.400239 0.005548  
Ci= τi/Ri  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
200  
160  
120  
80  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1% Duty Cycle  
= 96A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
40  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB/S/SL3306PbF  
16  
12  
8
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250μA  
ID = 150μA  
I
= 30A  
F
4
V
T
= 51V  
R
= 125°C  
= 25°C  
J
J
T
0
100 200 300 400 500 600 700 800 900 1000  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
di / dt - (A / μs)  
T
f
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
16  
350  
300  
250  
200  
150  
12  
8
I
= 45A  
= 51V  
I
= 30A  
= 51V  
100  
50  
0
F
F
4
0
V
T
V
R
R
= 125°C  
= 25°C  
T
= 125°C  
J
J
T
T
= 25°C  
J
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / μs)  
di / dt - (A / μs)  
f
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
350  
300  
250  
200  
150  
100  
50  
I
= 45A  
= 51V  
F
V
R
T
= 125°C  
J
T
= 25°C  
J
0
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / μs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB/S/SL3306PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1μs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFB/S/SL3306PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 0 = 2000  
WEEK 19  
Note: "P" in assembly line position  
indicates "Lead - F ree"  
ASSEMBLY  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
8
www.irf.com  
IRFB/S/SL3306PbF  
TO-262 Package Outline (Dimensions are shown in millimeters (inches))  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
ASSEMBLED ON WW 19, 1997  
RECTIFIER  
IN THE ASSEMBLY LINE "C"  
LOGO  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
AS S E MB L Y  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WEE K 19  
A= ASSEMBLY SITE CODE  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
www.irf.com  
9
IRFB/S/SL3306PbF  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DATE CODE  
YEAR 0 = 2000  
WEEK 02  
ASSEMBLY  
LOT CODE  
LINE L  
THIS IS AN IRF530S WITH  
LOT CODE 8024  
PART NUMBER  
DATE CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
For GB Production  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
LOT CODE  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
10  
www.irf.com  
IRFB/S/SL3306PbF  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 04/2008  
www.irf.com  
11  

相关型号:

IRFS3307

HEXFET Power MOSFET
INFINEON

IRFS3307PBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFS3307TRL

Power Field-Effect Transistor, 75A I(D), 75V, 0.0063ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRFS3307TRLPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0063ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3307TRR

暂无描述
INFINEON

IRFS3307TRRPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0063ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3307ZPBF

HEXFET Power MOSFET
INFINEON

IRFS3307ZPBFTRL

Power Field-Effect Transistor, 75A I(D), 75V, 0.0058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3307ZTRLPBF

Power Field-Effect Transistor, 120A I(D), 75V, 0.0058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3307ZTRRPBF

Power Field-Effect Transistor, 120A I(D), 75V, 0.0058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS3307_06

High Efficiency Synchronous Rectification in SMPS, Uninterruptible Power Supply
INFINEON

IRFS33N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.056ohm, Id=33A)
INFINEON