IRFS3607 [INFINEON]

75V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装;
IRFS3607
型号: IRFS3607
厂家: Infineon    Infineon
描述:

75V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装

文件: 总12页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97308C  
IRFB3607PbF  
IRFS3607PbF  
Applications  
l High Efficiency Synchronous Rectification in  
IRFSL3607PbF  
HEXFET® Power MOSFET  
SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
max.  
75V  
7.34m  
9.0m  
80A  
G
Benefits  
ID  
l Improved Gate, Avalanche and Dynamic  
dv/dt Ruggedness  
l Fully Characterized Capacitance and  
Avalanche SOA  
D
D
D
l Enhanced body diode dV/dt and dI/dt  
Capability  
S
S
S
D
D
G
G
G
D2Pak  
TO-262  
TO-220AB  
IRFB3607PbF  
IRFS3607PbF  
IRFSL3607PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
80  
Units  
56  
A
310  
140  
0.96  
± 20  
PD @TC = 25°C  
Maximum Power Dissipation  
Linear Derating Factor  
W
W/°C  
V
VGS  
TJ  
Gate-to-Source Voltage  
-55 to + 175  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
120  
46  
mJ  
A
Avalanche Current  
IAR  
Repetitive Avalanche Energy  
14  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
Max.  
1.045  
–––  
62  
Units  
R  
R  
R  
R  
Junction-to-Case  
–––  
0.50  
–––  
–––  
JC  
CS  
JA  
JA  
Case-to-Sink, Flat Greased Surface, TO-220  
°C/W  
Junction-to-Ambient, TO-220  
Junction-to-Ambient (PCB Mount) , D2Pak  
40  
www.irf.com  
1
01/20/12  
IRFB/S/SL3607PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.096 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V
(BR)DSS/ TJ Breakdown Voltage Temp. Coefficient  
V
V
μA  
RDS(on)  
VGS(th)  
IDSS  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Drain-to-Source Leakage Current  
––– 7.34 9.0  
m
VGS = 10V, ID = 46A  
2.0  
––– –––  
–––  
4.0  
20  
VDS = VGS, ID = 100μA  
V
DS = 75V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 125°C  
GS = 20V  
VGS = -20V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA  
V
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Internal Gate Resistance  
Turn-On Delay Time  
Min. Typ. Max. Units  
115 ––– –––  
Conditions  
VDS = 50V, ID = 46A  
S
Qg  
–––  
–––  
–––  
–––  
56  
13  
16  
40  
84  
nC ID = 46A  
VDS = 38V  
Qgs  
Qgd  
Qsync  
–––  
–––  
–––  
V
GS = 10V  
ID = 46A, VDS =0V, VGS = 10V  
––– 0.55 –––  
––– 16 –––  
––– 110 –––  
RG(int)  
td(on)  
tr  
ns VDD = 49V  
ID = 46A  
Rise Time  
RG = 6.8  
td(off)  
tf  
Turn-Off Delay Time  
–––  
–––  
43  
96  
–––  
–––  
Fall Time  
VGS = 10V  
pF VGS = 0V  
VDS = 50V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 3070 –––  
––– 280 –––  
––– 130 –––  
––– 380 –––  
––– 610 –––  
Output Capacitance  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 60V  
C
oss eff. (ER) Effective Output Capacitance (Energy Related)  
Coss eff. (TR) Effective Output Capacitance (Time Related)  
VGS = 0V, VDS = 0V to 60V  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
––– ––– 80  
A
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 310  
(Body Diode)  
p-n junction diode.  
VSD  
dv/dt  
trr  
Diode Forward Voltage  
Peak Diode Recovery  
Reverse Recovery Time  
––– –––  
1.3  
V
TJ = 25°C, IS = 46A, VGS = 0V  
–––  
–––  
–––  
–––  
–––  
–––  
27  
33  
39  
32  
47  
1.9  
––– V/ns TJ = 175°C, IS = 46A, VDS = 75V  
50  
59  
ns TJ = 25°C  
TJ = 125°C  
VR = 64V,  
IF = 46A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
48  
nC TJ = 25°C  
TJ = 125°C  
A
71  
–––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
TJ = 25°C  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
„ ISD 46A, di/dt 1920A/μs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Calculated continuous current based on maximum allowable junction  
temperature. Note that current limitations arising from heating of the  
device leads may occur with some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.12mH  
RG = 25, IAS = 46A, VGS =10V. Part not recommended for use  
above this value.  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom-  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Ris measured at TJ approximately 90°C.  
2
www.irf.com  
IRFB/S/SL3607PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60μs PULSE WIDTH  
60μs PULSE WIDTH  
Tj = 25°C  
Tj = 175°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 80A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60μs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12.0  
100000  
10000  
1000  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 46A  
D
= C + C , C SHORTED  
iss  
gs gd ds  
C
= C  
10.0  
rss  
gd  
V
V
= 24V  
= 15V  
DS  
DS  
C
= C + C  
ds gd  
oss  
8.0  
6.0  
4.0  
2.0  
0.0  
C
C
iss  
oss  
C
rss  
100  
0
10  
20  
30  
40  
50  
60  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
, Total Gate Charge (nC)  
V
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB/S/SL3607PbF  
1000  
100  
10  
1000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100  
100μsec  
T
= 175°C  
J
1msec  
10  
1
T
= 25°C  
J
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
DC  
GS  
1
0.1  
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
100  
95  
90  
85  
80  
75  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
Id = 5mA  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
1.20  
500  
I
D
450  
400  
350  
300  
250  
200  
150  
100  
50  
TOP  
5.6A  
11A  
BOTTOM 46A  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0
-10  
0
10 20 30 40 50 60 70 80  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFB/S/SL3607PbF  
10.00  
1.00  
0.10  
0.01  
0.00  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) i (sec)  
0.01109 0.000003  
J J  
C  
0.26925 0.000130  
0.49731 0.001301  
0.26766 0.008693  
11  
Ci= iRi  
0.02  
0.01  
2 2  
33  
44  
Notes:  
SINGLE PULSE  
( THERMAL RESPONSE )  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
150  
125  
100  
75  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1.0% Duty Cycle  
= 46A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
50  
tav = Average time in avalanche.  
25  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB/S/SL3607PbF  
4.5  
4.0  
3.5  
3.0  
20  
15  
10  
5
I = 31A  
F
V
= 64V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
I
= 100μA  
= 250μA  
= 1.0mA  
= 1.0A  
2.5  
2.0  
1.5  
1.0  
D
D
D
D
0
-75 -50 -25  
0
25 50 75 100125 150175 200  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
di /dt (A/μs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
560  
20  
I = 46A  
I = 31A  
F
F
480  
400  
320  
240  
160  
80  
V
= 64V  
V
= 64V  
R
R
T = 25°C  
T = 25°C  
J
J
15  
10  
5
T = 125°C  
J
T = 125°C  
J
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
560  
I = 46A  
F
V
480  
400  
320  
240  
160  
80  
= 64V  
R
T = 25°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB/S/SL3607PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
 Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1μs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFB/S/SL3607PbF  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
Note: "P" in assembly line  
position indicates "Lead-Free"  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRFB/S/SL3607PbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRFB/S/SL3607PbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
IRFB/S/SL3607PbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 01/12  
www.irf.com  
11  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRFS3607PBF

HEXFET Power MOSFET
INFINEON

IRFS3607TRLPBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFS3607TRRPBF

Power Field-Effect Transistor, 80A I(D), 75V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS3806

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRFS3806PBF

HEXFETPower MOSFET
INFINEON

IRFS3806TRLPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRFS3806TRRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRFS38N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.054ohm, Id=44A)
INFINEON

IRFS38N20DPBF

HEXFET Power MOSFET
INFINEON

IRFS38N20DTRL

TRANSISTOR | MOSFET | N-CHANNEL | 200V V(BR)DSS | 44A I(D) | TO-263AB
INFINEON

IRFS38N20DTRLP

HEXFETPower MOSFET
INFINEON

IRFS38N20DTRLPBF

Power Field-Effect Transistor, 43A I(D), 200V, 0.054ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, D2PAK-3/2
INFINEON