IRFS4410TRR [INFINEON]

Power Field-Effect Transistor, 96A I(D), 100V, 0.01ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, D2PAK-3;
IRFS4410TRR
型号: IRFS4410TRR
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 96A I(D), 100V, 0.01ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, D2PAK-3

开关 脉冲 晶体管
文件: 总12页 (文件大小:799K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95707E  
IRFB4410PbF  
IRFS4410PbF  
IRFSL4410PbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
max.  
100V  
8.0m  
10m  
88A  
G
ID  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
S
S
D
D
D
G
G
G
D2Pak  
IRFS4410PbF  
TO-262  
IRFSL4410PbF  
TO-220AB  
IRFB4410PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V  
88  
A
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
63  
380  
Pulsed Drain Current  
PD @TC = 25°C  
200  
W
Maximum Power Dissipation  
Linear Derating Factor  
1.3  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
19  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
220  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 16a, 16b  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.61  
–––  
62  
Units  
Rθ  
Junction-to-Case  
JC  
CS  
JA  
JA  
Rθ  
Rθ  
Rθ  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220  
Junction-to-Ambient (PCB Mount) , D2Pak  
–––  
40  
www.irf.com  
1
05/02/07  
IRFB/S/SL4410PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.094 ––– V/°C Reference to 25°C, ID = 1mA  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
V
/ T  
J
(BR)DSS  
RDS(on)  
VGS(th)  
IDSS  
–––  
2.0  
8.0  
10  
4.0  
20  
VGS = 10V, ID = 58A  
m
–––  
V
VDS = VGS, ID = 150µA  
Drain-to-Source Leakage Current  
––– –––  
µA  
VDS = 100V, VGS = 0V  
––– ––– 250  
––– ––– 200  
––– ––– -200  
V
DS = 100V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Input Resistance  
nA VGS = 20V  
GS = -20V  
f = 1MHz, open drain  
V
RG  
–––  
1.5  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 58A  
nC ID = 58A  
DS = 80V  
120 ––– –––  
S
Qg  
––– 120 180  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
–––  
–––  
–––  
31  
44  
24  
80  
55  
50  
–––  
–––  
–––  
–––  
–––  
–––  
V
VGS = 10V  
ns VDD = 65V  
ID = 58A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 4.1Ω  
VGS = 10V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 5150 –––  
––– 360 –––  
––– 190 –––  
––– 420 –––  
––– 500 –––  
pF VGS = 0V  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 50V  
ƒ = 1.0MHz  
Coss eff. (ER)  
V
GS = 0V, VDS = 0V to 80V , See Fig.11  
GS = 0V, VDS = 0V to 80V , See Fig. 5  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Coss eff. (TR)  
V
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
––– –––  
A
88  
D
S
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
G
ISM  
––– ––– 380  
A
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
56  
77  
92  
V
TJ = 25°C, IS = 58A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
–––  
–––  
–––  
38  
51  
61  
ns  
IF = 58A  
di/dt = 100A/µs  
Qrr  
Reverse Recovery Charge  
nC  
A
––– 110 170  
––– 2.8 –––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.14mH  
RG = 25, IAS = 58A, VGS =10V. Part not recommended for use  
above this value.  
„ ISD 58A, di/dt 650A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended  
footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
Š RθJC (end of life) for D2Pak and TO-262 = 0.75°C/W. Note: This is the maximum  
measured value after 1000 temperature cycles from -55 to 150°C and is  
accounted for by the physical wearout of the die attach medium.  
2
www.irf.com  
IRFB/S/SL4410PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
1
4.5V  
1
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
1
0.1  
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 58A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
9
10  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
12.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 58A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
V
V
V
= 80V  
= 50V  
= 20V  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
oss  
gd  
DS  
DS  
DS  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
20  
40  
60  
80  
100  
120  
V
Q
Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB/S/SL4410PbF  
1000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
1msec  
100  
T
= 175°C  
J
10msec  
DC  
T
= 25°C  
J
10  
1
Tc = 25°C  
Tj = 175°C  
V
= 0V  
GS  
Single Pulse  
1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, Source-to-Drain Voltage (V)  
0
1
10  
100  
1000  
V
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
130  
125  
120  
115  
110  
105  
100  
100  
Limited By Package  
75  
50  
25  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T , Temperature ( °C )  
T
, Case Temperature (°C)  
J
C
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
2.0  
900  
I
D
800  
700  
600  
500  
400  
300  
200  
100  
0
TOP  
6.7A  
9.7A  
BOTTOM 58A  
1.5  
1.0  
0.5  
0.0  
0
20  
V
40  
60  
80  
100  
120  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Drain-to-Source Voltage (V)  
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFB/S/SL4410PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.2736 0.000376  
0.02  
0.01  
0.01  
τ
J τJ  
τ
τ
Cτ  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
0.3376 0.004143  
SINGLE PULSE  
0.001  
0.0001  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max)  
is exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1% Duty Cycle  
= 58A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
25  
50  
75  
100  
125  
150  
175  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Starting T , Junction Temperature (°C)  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB/S/SL4410PbF  
20  
15  
10  
5
5.0  
4.5  
4.0  
3.5  
3.0  
I
I
I
I
= 150µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
2.5  
2.0  
1.5  
1.0  
I
= 19A  
= 85V  
F
V
R
T
= 25°C _____  
= 125°C ----------  
J
T
J
0
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
100 200 300 400 500 600 700 800 900 1000  
T
di /dt (A/µs)  
f
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
400  
20  
350  
300  
250  
200  
150  
100  
50  
15  
10  
5
I
= 19A  
= 85V  
I
= 38A  
= 85V  
F
F
V
V
T
R
R
T
= 25°C _____  
= 125°C ----------  
= 25°C _____  
= 125°C ----------  
J
J
T
T
J
J
0
0
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di /dt (A/µs)  
f
di /dt (A/µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
400  
350  
300  
250  
200  
150  
100  
50  
I
= 38A  
= 85V  
F
V
R
T
= 25°C _____  
= 125°C ----------  
J
T
J
0
100 200 300 400 500 600 700 800 900 1000  
di /dt (A/µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB/S/SL4410PbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFB/S/SL4410PbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
TO-220AB packages are not recommended for Surface Mount Application.  
8
www.irf.com  
IRFB/S/SL4410PbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
www.irf.com  
9
IRFB/S/SL4410PbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
10  
www.irf.com  
IRFB/S/SL4410PbF  
D2Pak (TO-263AB) Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/07  
www.irf.com  
11  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRFS4410TRRPBF

Power Field-Effect Transistor, 75A I(D), 100V, 0.01ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS4410Z

Power Field-Effect Transistor, 97A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRFS4410ZPBF

HEXFET Power MOSFET
INFINEON

IRFS4410ZTRL

Power Field-Effect Transistor, 97A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRFS4410ZTRLPBF

Power Field-Effect Transistor, 97A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS4410ZTRRPBF

Power Field-Effect Transistor, 97A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS442

Power Field-Effect Transistor, 4.8A I(D), 500V, 1.1ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-3PF, 3 PIN
SAMSUNG

IRFS443

Power Field-Effect Transistor, 4.8A I(D), 450V, 1.1ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-3PF, 3 PIN
SAMSUNG

IRFS450

500V N-Channel MOSFET
FAIRCHILD

IRFS450A

Advanced Power MOSFET (500V, 0.4ohm, 9.6A)
FAIRCHILD

IRFS450B

500V N-Channel MOSFET
FAIRCHILD

IRFS450B

分立式 MOSFET
ONSEMI