IRFSL4321PBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFSL4321PBF
型号: IRFSL4321PBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总10页 (文件大小:358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97105  
IRFS4321PbF  
IRFSL4321PbF  
HEXFET® Power MOSFET  
Applications  
l Motion Control Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l Hard Switched and High Frequency Circuits  
VDSS  
RDS(on) typ.  
150V  
12m:  
15m:  
83A c  
max.  
Benefits  
ID  
l Low RDSON Reduces Losses  
l Low Gate Charge Improves the Switching  
Performance  
l Improved Diode Recovery Improves Switching &  
EMI Performance  
D
D
D
l 30V Gate Voltage Rating Improves Robustness  
l Fully Characterized Avalanche SOA  
S
S
D
D
G
G
G
D2Pak  
IRFS4321PbF  
TO-262  
IRFSL4321PbF  
S
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Max.  
83 c  
59  
Units  
A
Continuous Drain Current, VGS @ 10V  
330  
Pulsed Drain Current d  
Maximum Power Dissipation  
Linear Derating Factor  
PD @TC = 25°C  
330  
W
2.2  
W/°C  
V
VGS  
±30  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
120  
mJ  
°C  
TJ  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
Thermal Resistance  
Parameter  
Junction-to-Case g  
Junction-to-Ambient g  
Typ.  
Max.  
0.45*  
40  
Units  
RθJC  
RθJA  
–––  
–––  
°C/W  
* RθJC (end of life) for D2Pak and TO-262 = 0.65°C/W. This is the maximum measured value after 1000 temperature  
cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium.  
Notes  through are on page 2  
www.irf.com  
1
6/23/06  
IRFS_SL4321PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
150 ––– –––  
––– 150 ––– mV/°C Reference to 25°C, ID = 1mAd  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
3.0  
12  
15  
5.0  
20  
V
V
V
V
GS = 10V, ID = 33A f  
mΩ  
V
VGS(th)  
–––  
DS = VGS, ID = 250µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
––– –––  
µA  
mA  
DS = 150V, VGS = 0V  
1.0  
DS = 150V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
––– ––– 100  
––– ––– -100  
nA VGS = 20V  
GS = -20V  
V
RG(int)  
–––  
0.8  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 25V, ID = 50A  
nC ID = 50A  
DS = 75V  
VGS = 10V f  
DD = 75V  
130 ––– –––  
S
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
71  
24  
110  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
V
21  
18  
ns  
V
60  
ID = 50A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
25  
RG = 2.5Ω  
VGS = 10V f  
35  
Ciss  
Coss  
Crss  
Input Capacitance  
pF  
VGS = 0V  
4460  
390  
82  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 25V  
ƒ = 1.0MHz  
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
83c  
D
S
IS  
––– –––  
A
(Body Diode)  
Pulsed Source Current  
showing the  
G
ISM  
––– ––– 330  
A
integral reverse  
(Body Diode)ꢁd  
Diode Forward Voltage  
p-n junction diode.  
TJ = 25°C, IS = 50A, VGS = 0V f  
ID = 50A  
VSD  
trr  
––– –––  
––– 89  
1.3  
V
ns  
nC  
A
Reverse Recovery Time  
Reverse Recovery Charge  
Reverse Recovery Current  
Forward Turn-On Time  
130  
Qrr  
IRRM  
ton  
VR = 128V,  
––– 300 450  
––– 6.5 –––  
di/dt = 100A/µs f  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
„ Pulse width 400µs; duty cycle 2%.  
Rθ is measured at TJ approximately 90°C  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.096mH  
RG = 25, IAS = 50A, VGS =10V. Part not recommended for use  
above this value.  
2
www.irf.com  
IRFS_SL4321PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
5.0V  
1
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
5.0V  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 50A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 25V  
J
1
V
DS  
60µs PULSE WIDTH  
0.1  
3.0  
4.0  
V
5.0  
6.0  
7.0  
8.0  
9.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
GS  
I
= 50A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 120V  
C
= C  
DS  
rss  
gd  
16  
12  
8
VDS= 75V  
VDS= 30V  
C
= C + C  
ds  
oss  
gd  
Ciss  
Coss  
4
Crss  
V
0
0
20  
40  
60  
80  
100  
120  
1
10  
100  
Q
Total Gate Charge (nC)  
G
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFS_SL4321PbF  
1000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
1msec  
100  
T
= 175°C  
J
10  
1
10msec  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
190  
180  
170  
160  
150  
140  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LIMITED BY PACKAGE  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
500  
I
D
TOP  
13A  
20A  
50A  
400  
300  
200  
100  
0
BOTTOM  
0
20  
40  
60  
80  
100 120 140 160  
25  
50  
75  
100  
125  
150  
175  
V
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFS_SL4321PbF  
1
D = 0.50  
0.20  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
τι (sec)  
0.10  
Ri (°C/W)  
τ
J τJ  
τ
τ
Cτ  
0.085239 0.000052  
0.18817 0.00098  
0.176912 0.008365  
0.05  
0.02  
0.01  
τ
1τ1  
τ
2τ2  
3τ3  
Ci= τi/Ri  
Ci= τi/Ri  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
Duty Cycle = Single Pulse  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
120  
100  
80  
60  
40  
20  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 50A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFS_SL4321PbF  
6.0  
40  
30  
20  
10  
0
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
5.0  
4.0  
3.0  
2.0  
1.0  
I
= 33A  
F
V
= 128V  
R
T
= 125°C  
= 25°C  
J
T
J
100 200 300 400 500 600 700 800 900 1000  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
di / dt - (A / µs)  
f
T
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
40  
3200  
2800  
2400  
2000  
1600  
1200  
800  
30  
20  
I
= 50A  
I
= 33A  
F
F
10  
0
V
= 128V  
V
= 128V  
R
R
T
= 125°C  
= 25°C  
T
= 125°C  
= 25°C  
J
400  
J
T
T
J
J
0
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
3200  
2800  
2400  
2000  
1600  
1200  
800  
I
= 50A  
F
V
= 128V  
= 125°C  
= 25°C  
R
T
400  
J
J
T
0
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFS_SL4321PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFS_SL4321PbF  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DATE CODE  
YEAR 0 = 2000  
WEE K 02  
AS S E MB LY  
LOT CODE  
LINE L  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
DATE CODE  
P = DE S IGNAT E S L E AD - F RE E  
PRODUCT (OPTIONAL)  
YEAR 0 = 2000  
AS S E MB L Y  
LOT CODE  
WE E K 02  
A = AS S E MB L Y S IT E CODE  
8
www.irf.com  
IRFS_SL4321PbF  
TO-262 Package Outline (Dimensions are shown in millimeters (inches))  
TO-262 Part Marking Infor  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
ASSEMBLED ON WW 19, 1997  
RECTIFIER  
IN THE ASSEMBLY LINE "C"  
LOGO  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
AS S E MB L Y  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
AS S E MB L Y  
LOT CODE  
WEE K 19  
A = AS S E MB L Y S IT E CODE  
www.irf.com  
9
IRFS_SL4321PbF  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 6/06  
10  
www.irf.com  

相关型号:

IRFSL4410

HEXFET Power MOSFET
INFINEON

IRFSL4410PBF

HEXFET Power MOSFET
INFINEON

IRFSL4410Z

暂无描述
INFINEON

IRFSL4410ZPBF

HEXFET Power MOSFET
INFINEON

IRFSL4410ZTRRPBF

Power Field-Effect Transistor, 75A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, LEAD FREE, PLASTIC, TO-262, 3 PIN
INFINEON

IRFSL4510PBF

HEXFETPower MOSFET
INFINEON

IRFSL4610

IRFB4610 IRFS4610 IRFSL4610
INFINEON

IRFSL4610PBF

HEXFET Power MOSFET
INFINEON

IRFSL4610TRL

Power Field-Effect Transistor, 73A I(D), 100V, 0.014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN
INFINEON

IRFSL4610TRR

Power Field-Effect Transistor, 73A I(D), 100V, 0.014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262, 3 PIN
INFINEON

IRFSL4615PBF

HEXFET Power MOSFET
INFINEON

IRFSL4620PBF

HEXFET Power MOSFET
INFINEON