IRG4BC10SDPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRG4BC10SDPBF
型号: IRG4BC10SDPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 功率控制 瞄准线 双极性晶体管 栅 局域网 超快软恢复二极管
文件: 总10页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -94904  
IRG4BC10SDPbF  
Standard Speed CoPack  
IGBT  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
C
• Extremely low voltage drop 1.1Vtyp. @ 2A  
• S-Series: Minimizes power dissipation at up to 3  
KHz PWM frequency in inverter drives, up to 4  
KHz in brushless DC drives.  
VCES = 600V  
VCE(on) typ. = 1.10V  
@VGE = 15V, IC = 2.0A  
G
• Very Tight Vce(on) distribution  
• IGBT co-packaged with HEXFREDTM ultrafast,  
ultra-soft-recovery anti-parallel diodes for use  
in bridge configurations  
E
n-channel  
• Industry standard TO-220AB package  
• Lead-Free  
Benefits  
• Generation 4 IGBTs offer highest efficiencies  
available  
• IGBTs optimized for specific application conditions  
• HEXFRED diodes optimized for performance with  
IGBTs . Minimized recovery characteristics require  
less/no snubbing  
• Lower losses than MOSFET's conduction and  
Diode losses  
TO-220AB  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
Continuous Collector Current  
Continuous Collector Current  
600  
V
IC @ TC = 25°C  
14  
IC @ TC = 100°C  
8.0  
ICM  
Pulsed Collector Current  

18  
A
ILM  
Clamped Inductive Load Current ‚  
Diode Continuous Forward Current  
Diode Maximum Forward Current  
Gate-to-Emitter Voltage  
18  
IF @ TC = 100°C  
4.0  
IFM  
18  
± 20  
VGE  
V
PD @ TC = 25°C  
Maximum Power Dissipation  
38  
W
°C  
PD @ TC = 100°C Maximum Power Dissipation  
15  
TJ  
Operating Junction and  
-55 to +150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw.  
300 (0.063 in. (1.6mm) from case)  
10 lbf•in (1.1 N•m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
Max.  
3.3  
7.0  
Units  
RθJC  
Junction-to-Case - IGBT  
Junction-to-Case - Diode  
Case-to-Sink, flat, greased surface  
Junction-to-Ambient, typical socket mount  
Weight  
RθJC  
°C/W  
RθCS  
0.50  
–––  
80  
RθJA  
–––  
Wt  
2.0(0.07)  
–––  
g (oz)  
www.irf.com  
1
12/23/03  
IRG4BC10SDPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)CES  
V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Breakdown Voltageƒ 600  
V
VGE = 0V, IC = 250µA  
3.0  
0.64  
V/°C VGE = 0V, IC = 1.0mA  
IC = 8.0A  
VCE(on)  
Collector-to-Emitter Saturation Voltage  
1.58 1.7  
VGE = 15V  
2.05  
1.68  
V
IC = 14.0A  
See Fig. 2, 5  
IC = 8.0A, TJ = 150°C  
VCE = VGE, IC = 250µA  
VGE(th)  
Gate Threshold Voltage  
6.0  
VGE(th)/TJ Temperature Coeff. of Threshold Voltage  
-9.5  
mV/°C VCE = VGE, IC = 250µA  
gfe  
Forward Transconductance„  
Zero Gate Voltage Collector Current  
3.65 5.48  
S
VCE = 100V, IC =8.0A  
VGE = 0V, VCE = 600V  
ICES  
250  
1000  
µA  
V
GE = 0V, VCE = 600V, TJ = 150°C  
VFM  
Diode Forward Voltage Drop  
1.5 1.8  
1.4 1.7  
V
IC =4.0A  
See Fig. 13  
IC =4.0A, TJ = 150°C  
VGE = ±20V  
IGES  
Gate-to-Emitter Leakage Current  
±100 nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
Qg  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
Rise Time  
15 22  
IC = 8.0A  
Qge  
Qgc  
td(on)  
tr  
2.42 3.6  
6.53 9.8  
nC VCC = 400V  
VGE = 15V  
See Fig. 8  
76  
32  
TJ = 25°C  
ns  
IC = 8.0A, VCC = 480V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
815 1200  
720 1080  
VGE = 15V, RG = 100Ω  
Energy losses include "tail" and  
diode reverse recovery.  
Eon  
Eoff  
Ets  
Ets  
td(on)  
tr  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Total Switching Loss  
Turn-On Delay Time  
Rise Time  
0.31  
3.28  
mJ See Fig. 9, 10, 18  
3.60 10.9  
1.46 2.6  
mJ IC = 5.0A  
70  
36  
42  
57  
TJ = 150°C, See Fig. 10,11, 18  
IC = 8.0A, VCC = 480V  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
890  
890  
3.83  
7.5  
280  
30  
VGE = 15V, RG = 100Ω  
Energy losses include "tail" and  
Ets  
LE  
Total Switching Loss  
Internal Emitter Inductance  
Input Capacitance  
mJ diode reverse recovery.  
nH Measured 5mm from package  
VGE = 0V  
Cies  
Coes  
Cres  
trr  
Output Capacitance  
Reverse Transfer Capacitance  
Diode Reverse Recovery Time  
pF  
ns  
A
VCC = 30V  
See Fig. 7  
4.0  
28  
ƒ = 1.0MHz  
TJ = 25°C See Fig.  
38  
TJ = 125°C  
TJ = 25°C See Fig.  
TJ = 125°C 15  
nC TJ = 25°C See Fig.  
TJ = 125°C 16  
A/µs TJ = 25°C See Fig.  
TJ = 125°C 17  
14  
IF =4.0A  
Irr  
Diode Peak Reverse Recovery Current  
Diode Reverse Recovery Charge  
2.9 5.2  
3.7 6.7  
VR = 200V  
Qrr  
40  
60  
70 105  
di/dt = 200A/µs  
di(rec)M/dt  
Diode Peak Rate of Fall of Recovery  
During tb  
280  
235  
Details of note  through „ are on the last page  
2
www.irf.com  
IRG4BC10SDPBF  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
For both:  
Duty cycle: 50%  
T
= 125°C  
= 90°C  
J
T
sink  
Gate drive as specified  
Power Dissipation =9.2  
W
Square wave:  
60% of rated  
voltage  
I
Ideal diodes  
0.1  
1
10  
100  
f, Frequency (KHz)  
Fig. 1 - Typical Load Current vs. Frequency  
(Load Current = IRMS of fundamental)  
100  
10  
1
100  
°
T = 25 C  
J
°
°
T = 150 C  
T = 150 C  
J
J
10  
°
T = 25 C  
J
V
= 15V  
V
= 50V  
GE  
CC  
80µs PULSE WIDTH  
5µsPULSEWIDTH
1
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
6
8
10 12  
V
, Collector-to-Emitter Voltage (V)  
V
, Gate-to-Emitter Voltage (V)  
CE  
GE  
Fig. 2 - Typical Output Characteristics  
Fig. 3 - Typical Transfer Characteristics  
www.irf.com  
3
IRG4BC10SDPbF  
16  
3.00  
2.50  
2.00  
1.50  
1.00  
V
= 15V  
GE  
80 us PULSE WIDTH  
I
= 16A  
C
12  
8
I
I
=
=
8A  
4A  
C
C
4
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
25  
50  
75  
100  
125  
150  
°
T , Junction Temperature ( C)  
J
°
T , Case Temperature ( C)  
C
Fig. 4 - Maximum Collector Current vs. Case  
Fig. 5 - Typical Collector-to-Emitter Voltage  
Temperature  
vs. Junction Temperature  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
0.02  
P
DM  
SINGLE PULSE  
(THERMAL RESPONSE)  
0.01  
0.1  
t
1
t
2
Notes:  
1. Duty factor D = t / t  
1
2
2. Peak T =P  
DM  
x Z  
+ T  
C
J
thJC  
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case  
4
www.irf.com  
IRG4BC10SDPBF  
20  
15  
10  
5
500  
400  
300  
200  
100  
0
V
CC  
I
C
= 400V  
= 8A  
V
= 0V,  
f = 1MHz  
C SHORTED  
ce  
GE  
C
= C + C  
ies  
ge  
gc ,  
C
= C  
res  
gc  
C
= C + C  
oes  
ce  
gc  
C
ies  
C
C
oes  
res  
0
1
10  
100  
0
5
10  
15  
20  
V
, Collector-to-Emitter Voltage (V)  
Q , Total Gate Charge (nC)  
CE  
G
Fig. 8 - Typical Gate Charge vs.  
Fig. 7 - Typical Capacitance vs.  
Gate-to-Emitter Voltage  
Collector-to-Emitter Voltage  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
100  
10  
1
100  
V
= 480V  
R
= O
= 15V  
CC  
GE  
G
V
T
= 15V  
V
GE  
°
= 25  
= 8A  
C
V
= 480V  
J
C
CC  
I
I =  
C
A
16  
I =  
C
A
A
8
4
I =  
C
0.1  
0
20  
40  
60  
80  
100  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
°
T , Junction Temperature ( C )  
RG , Gate Resistance (Ω)  
J
Fig. 9 - Typical Switching Losses vs. Gate  
Fig. 10 - Typical Switching Losses vs.  
Resistance  
Junction Temperature  
www.irf.com  
5
IRG4BC10SDPbF  
100  
10  
1
15  
V
T
= 20V  
R
T
= 100  
= 150 C  
100 Ω  
GE  
J
G
J
= 125 oC  
°
V = 480V  
= 15V  
GE  
CC  
V
12  
9
6
3
SAFE OPERATING AREA  
10  
0
0
4
8
12  
16  
20  
1
100  
1000  
I
, Collector Current (A)  
V
, Collector-to-Emitter Voltage (V)  
C
CE  
Fig. 11 - Typical Switching Losses vs.  
Fig. 12 - Turn-Off SOA  
Collector Current  
100  
T = 150°C  
J
10  
T = 125°C  
J
T = 25°C  
J
1
0.1  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Forward Voltage Drop - VFM ( V )  
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current  
6
www.irf.com  
IRG4BC10SDPBF  
50  
45  
40  
35  
30  
25  
20  
14  
12  
10  
8
VR = 200V  
TJ = 125°C  
TJ = 25°C  
I
= 8.0A  
= 4.0A  
F
I
F
I
I
= 8.0A  
= 4.0A  
F
F
6
4
2
VR = 200V  
TJ = 125°C  
TJ = 25°C  
0
100  
100  
1000  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 15 - Typical Recovery Current vs. dif/dt  
Fig. 14 - Typical Reverse Recovery vs. dif/dt  
200  
1000  
VR= 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
160  
I
I
= 8.0A  
= 4.0A  
I
I
= 8.0A  
= 4.0A  
F
F
F
F
120  
80  
40  
0
A
100  
100  
100  
1000  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 16 - Typical Stored Charge vs. dif/dt  
Fig. 17 - Typical di(rec)M/dt vs. dif/dt,  
www.irf.com  
7
IRG4BC10SDPbF  
Same type  
device as  
D.U.T.  
430µF  
80%  
90%  
of Vce  
D.U.T.  
10%  
V
ge  
V
C
90%  
t
d(off)  
10%  
5%  
I
C
Fig. 18a - Test Circuit for Measurement of  
LM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf  
t
f
t
r
I
t
d(on)  
t=5µs  
E
on  
E
off  
E =(E +E  
ts on off  
)
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining  
Eoff, td(off), tf  
trr  
trr  
GATE VOLTAGE D.U.T.  
Qrr =  
Ic dt  
Ic  
tx  
10% +Vg  
+Vg  
tx  
10% Irr  
10% Vcc  
Vcc  
DUT VOLTAGE  
AND CURRENT  
Vce  
Vpk  
Irr  
10% Ic  
Vcc  
Ipk  
90% Ic  
Ic  
DIODE RECOVERY  
WAVEFORMS  
5% Vce  
tr  
td(on)  
t2  
Eon = Vce Ic dt  
t4  
Erec = 
t1  
Vd Ic dt  
t3  
DIODE REVERSE  
RECOVERY ENERGY  
t1  
t2  
t3  
t4  
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,  
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,  
Defining Erec, trr, Qrr, Irr  
Defining Eon, td(on), tr  
8
www.irf.com  
IRG4BC10SDPBF  
Vg  
GATE SIGNAL  
DEVICE UNDER TEST  
CURRENT D.U.T.  
VOLTAGE IN D.U.T.  
CURRENT IN D1  
t0  
t1  
t2  
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit  
480V  
4 X IC @25°C  
D.U.T.  
L
RL=  
1000V  
V *  
c
0 - 480V  
50V  
6000µF  
100V  
Figure 20. Pulsed Collector Current  
Test Circuit  
Figure 19. Clamped Inductive Load Test Circuit  
www.irf.com  
9
IRG4BC10SDPbF  
Notes:  
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)  
‚VCC=80%(VCES), VGE=20V, L=10µH, RG = 100W (figure 19)  
ƒPulse width 80µs; duty factor 0.1%.  
„Pulse width 5.0µs, single shot.  
TO-220AB Package Outline  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
LEAD ASSIGNMENTS  
1.15 (.045)  
MIN  
HEXFET  
IGBTs, CoPACK  
2- DRAIN  
3- SOURCE  
1
2
3
1- GATE  
1- GATE  
2- COLLECTOR  
3- EMITTER  
4- COLLECTOR  
4- DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1
2
DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
CONTROLLING DIMENSION : INCH  
3
4
OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
EXAMPLE : THIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
ASS EMBLED ON WW 19, 1997  
IN T HE AS S EMBLY LINE "C"  
INTERNATIONAL  
RECTIFIER  
LOGO  
Note: "P" in assembly line  
position indicates "Lead-Free"  
DAT E CODE  
YEAR 7 = 1997  
WEEK 19  
AS S E MBLY  
LOT CODE  
LINE C  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.12/03  
10  
www.irf.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY