IRGI4085PBF [INFINEON]

PDP TRENCH IGBT; PDP TRENCH IGBT
IRGI4085PBF
型号: IRGI4085PBF
厂家: Infineon    Infineon
描述:

PDP TRENCH IGBT
PDP TRENCH IGBT

晶体 晶体管 光电二极管 双极性晶体管 栅 局域网
文件: 总7页 (文件大小:769K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97285  
IRGI4085PbF  
PDP TRENCH IGBT  
Key Parameters  
Features  
VCE min  
V
I
330  
V
V
A
l
Advanced Trench IGBT Technology  
Optimized for Sustain and Energy Recovery  
circuits in PDP applications  
CE(ON) typ. @ IC = 28A  
RP max @ TC= 25°C  
1.21  
210  
150  
l
TM  
l
Low VCE(on) and Energy per Pulse (EPULSE  
for improved panel efficiency  
)
TJ max  
°C  
l
l
High repetitive peak current capability  
Lead Free package  
C
E
C
G
G
TO-220AB  
Full-Pak  
E
n-channel  
G
C
E
Gate  
Collector  
Emitter  
Description  
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced  
trenchIGBTtechnologytoachievelowVCE(on) andlowEPULSETM ratingpersiliconareawhichimprovepanel  
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current  
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP  
applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGE  
±30  
Gate-to-Emitter Voltage  
V
IC @ TC = 25°C  
IC @ TC = 100°C  
IRP @ TC = 25°C  
PD @TC = 25°C  
PD @TC = 100°C  
Continuous Collector Current, VGE @ 15V  
Continuous Collector, VGE @ 15V  
Repetitive Peak Current c  
Power Dissipation  
28  
A
15  
210  
38  
W
15  
Power Dissipation  
0.30  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lbxin (1.1Nxm)  
N
Thermal Resistance  
Parameter  
d
Typ.  
–––  
Max.  
3.29  
Units  
°C/W  
RθJC  
Junction-to-Case  
www.irf.com  
1
05/30/07  
IRGI4085PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGE = 0V, ICE = 1 mA  
Parameter  
Min. Typ. Max. Units  
BVCES  
Collector-to-Emitter Breakdown Voltage  
Emitter-to-Collector Breakdown Voltagee  
Breakdown Voltage Temp. Coefficient  
330  
–––  
–––  
–––  
–––  
–––  
V
VGE = 0V, ICE = 1 A  
V(BR)ECS  
30  
–––  
V
Reference to 25°C, ICE = 1mA  
VGE = 15V, ICE = 15A e  
VGE = 15V, ICE = 28A e  
VGE = 15V, ICE = 40A e  
VGE = 15V, ICE = 70A e  
VGE = 15V, ICE = 120A e  
VGE = 15V, ICE = 70A, TJ = 150°C e  
VCE = VGE, ICE = 500µA  
∆ΒVCES/TJ  
–––  
–––  
–––  
0.31  
1.05  
V/°C  
1.21 1.50  
1.35  
1.68  
2.23  
1.90  
–––  
-10  
2.0  
5.0  
100  
–––  
–––  
51  
–––  
–––  
–––  
–––  
5.0  
V
VCE(on)  
Static Collector-to-Emitter Voltage  
–––  
–––  
–––  
2.6  
VGE(th)  
Gate Threshold Voltage  
V
VGE(th)/TJ  
ICES  
Gate Threshold Voltage Coefficient  
Collector-to-Emitter Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
100  
––– mV/°C  
V
CE = 330V, VGE = 0V  
VCE = 330V, VGE = 0V, TJ = 100°C  
CE = 330V, VGE = 0V, TJ = 150°C  
25  
–––  
–––  
100  
-100  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
V
VGE = 30V  
IGES  
Gate-to-Emitter Forward Leakage  
Gate-to-Emitter Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
Gate-to-Collector Charge  
Turn-On delay time  
Rise time  
nA  
VGE = -30V  
VCE = 25V, ICE = 25A  
VCE = 200V, IC = 25A, VGE = 15Ve  
gfe  
Qg  
Qgc  
td(on)  
tr  
S
84  
nC  
30  
IC = 25A, VCC = 196V  
RG = 10, L=200µH, LS= 150nH  
TJ = 25°C  
48  
37  
ns  
ns  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
Turn-Off delay time  
Fall time  
180  
102  
45  
IC = 25A, VCC = 196V  
RG = 10, L=200µH, LS= 150nH  
TJ = 150°C  
Turn-On delay time  
Rise time  
38  
Turn-Off delay time  
Fall time  
234  
185  
–––  
tst  
VCC = 240V, VGE = 15V, RG= 5.1Ω  
Shoot Through Blocking Time  
ns  
µJ  
L = 220nH, C= 0.40µF, VGE = 15V  
VCC = 240V, RG= 5.1Ω, TJ = 25°C  
L = 220nH, C= 0.40µF, VGE = 15V  
VCC = 240V, RG= 5.1Ω, TJ = 100°C  
–––  
–––  
854  
977  
–––  
–––  
EPULSE  
Energy per Pulse  
V
GE = 0V  
Cies  
Coes  
Cres  
LC  
Input Capacitance  
––– 2287 –––  
VCE = 30V  
Output Capacitance  
–––  
–––  
–––  
141  
73  
–––  
–––  
–––  
pF  
ƒ = 1.0MHz,  
See Fig.13  
Reverse Transfer Capacitance  
Internal Collector Inductance  
5.0  
Between lead,  
nH 6mm (0.25in.)  
from package  
LE  
Internal Emitter Inductance  
–––  
13  
–––  
and center of die contact  
Notes:  
 Half sine wave with duty cycle = 0.10, ton=2µsec.  
‚ R is measured at TJ of approximately 90°C.  
θ
ƒ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRGI4085PbF  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
Top  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
Top  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
Bottom  
V
Bottom  
V
GE  
GE  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
V
(V)  
V
(V)  
CE  
CE  
Fig 2. Typical Output Characteristics @ 75°C  
Fig 1. Typical Output Characteristics @ 25°C  
400  
400  
Top  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
Top  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
300  
200  
100  
0
300  
200  
100  
0
V
V
GE  
GE  
Bottom  
V
Bottom  
V
GE  
GE  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
V
(V)  
V
(V)  
CE  
CE  
Fig 3. Typical Output Characteristics @ 125°C  
Fig 4. Typical Output Characteristics @ 150°C  
15  
500  
I
= 25A  
C
400  
10  
5
300  
200  
100  
0
T
= 25°C  
J
T
T
= 25°C  
J
J
T
= 150°C  
J
= 150°C  
0
4
6
8
10  
12  
14  
16  
5
10  
15  
20  
V
Gate-to-Emitter Voltage (V)  
V
(V)  
GE,  
GE  
Fig 5. Typical Transfer Characteristics  
Fig 6. VCE(ON) vs. Gate Voltage  
www.irf.com  
3
IRGI4085PbF  
30  
220  
200  
180  
160  
140  
120  
100  
80  
ton= 2µs  
Duty cycle <= 0.10  
Half Sine Wave  
25  
20  
15  
10  
5
60  
40  
20  
0
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
Case Temperature (°C)  
T
, Case Temperature (°C)  
C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature  
1000  
Fig 7. Maximum Collector Current vs. Case Temperature  
1000  
V
= 240V  
V
= 240V  
CC  
CC  
L = 220nH  
C = variable  
L = 220nH  
C = variable  
900  
800  
700  
600  
500  
400  
900  
800  
700  
600  
500  
400  
100°C  
100°C  
25°C  
25°C  
170 180 190 200 210 220 230 240  
, Peak Collector Current (A)  
170 180 190 200 210 220 230 240  
I
I , Peak Collector Current (A)  
C
C
Fig 9. Typical EPULSE vs. Collector Current  
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage  
1400  
1000  
V
= 240V  
CC  
L = 220nH  
t = 1µs half sine  
1200  
1000  
800  
C= 0.4µF  
100  
10µsec  
1msec  
100µsec  
C= 0.3µF  
C= 0.2µF  
10  
1
600  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
400  
200  
0.1  
25  
50  
75  
100  
125  
150  
1
10  
100  
1000  
T , Temperature (ºC)  
V
(V)  
J
CE  
Fig 11. EPULSE vs. Temperature  
Fig 12. Forrward Bias Safe Operating Area  
4
www.irf.com  
IRGI4085PbF  
16  
14  
12  
10  
8
100000  
10000  
1000  
100  
V
= 0V,  
= C  
f = 1 MHZ  
+ C , C  
GS  
I
= 25A  
V
C
C
C
C
SHORTED  
ies  
res  
oes  
ge  
gd  
ce  
= C  
= 240V  
= 150V  
= 60V  
gc  
CES  
= C + C  
ce  
gc  
V
V
CES  
CES  
Cies  
6
Coes  
Cres  
100  
4
2
0
10  
0
20  
40  
60  
80  
100  
0
50  
150  
200  
Q
, Total Gate Charge (nC)  
G
V
, Collector-toEmitter-Voltage(V)  
CE  
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.01  
0.14521 0.000104  
τ
0.02  
0.01  
τ
J τJ  
τ
Cτ  
0.39603 0.002547  
1.23063 0.171095  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2τ2  
3τ3  
4τ4  
1.51959  
2.615  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRGI4085PbF  
A
RG  
C
PULSEA  
PULSEB  
DRIVER  
L
VCC  
B
Ipulse  
DUT  
RG  
tST  
Fig 16a. tst and EPULSE Test Circuit  
Fig 16b. tst Test Waveforms  
VCE  
Energy  
IC Current  
L
VCC  
DUT  
0
1K  
Fig 16c. EPULSE Test Waveforms  
Fig. 17 - Gate Charge Circuit (turn-off)  
6
www.irf.com  
IRGI4085PbF  
TO-220 Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220 Full-Pak Part Marking Information  
TO-220AB Full-Pak package is not recommended for Surface Mount Application.  
The specifications set forth in this data sheet are the sole and  
exclusive specifications applicable to the identified product,  
and no specifications or features are implied whether by  
industry custom, sampling or otherwise. We qualify our  
products in accordance with our internal practices and  
procedures, which by their nature do not include qualification to  
all possible or even all widely used applications. Without  
limitation, we have not qualified our product for medical use or  
applications involving hi-reliability applications. Customers are  
encouraged to and responsible for qualifying product to their  
own use and their own application environments, especially  
where particular features are critical to operational performance  
or safety. Please contact your IR representative if you have  
specific design or use requirements or for further information.  
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/07  
www.irf.com  
7

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY