IRGIB7B60KDPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRGIB7B60KDPBF
型号: IRGIB7B60KDPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 栅 超快软恢复二极管 快速软恢复二极管
文件: 总12页 (文件大小:903K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95195  
IRGIB7B60KDPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
C
VCES = 600V  
Features  
• Low VCE (on) Non Punch Through IGBT Technology.  
• 10µs Short Circuit Capability.  
• Square RBSOA.  
IC = 8.0A, TC=100°C  
tsc > 10µs, TJ=150°C  
VCE(on) typ. = 1.8V  
G
• Positive VCE (on) Temperature Coefficient.  
• Maximum Junction Temperature rated at 175°C.  
• Lead-Free  
E
n-channel  
Benefits  
• Benchmark Efficiency for Motor Control.  
• Rugged Transient Performance.  
• Low EMI.  
• Excellent Current Sharing in Parallel Operation.  
TO-220AB  
FullPak  
Absolute Maximum Ratings  
Parameter  
Max.  
600  
12  
Units  
V
Collector-to-Emitter Voltage  
VCES  
Continuous Collector Current  
Continuous Collector Current  
Pulse Collector Current (Ref.Fig.C.T.5)  
IC @ TC = 25°C  
8.0  
A
IC @ TC = 100°C  
24  
ICM  

Clamped Inductive Load current  
24  
ILM  
Diode Continuous Forward Current  
Diode Continuous Forward Current  
Diode Maximum Forward Current  
9.0  
IF @ TC = 25°C  
6.0  
IF @ TC = 100°C  
18  
IFM  
RMS Isolation Voltage, Terminal to Case, t=1 min.  
Gate-to-Emitter Voltage  
2500  
±20  
39  
V
VISOL  
VGE  
Maximum Power Dissipation  
W
PD @ TC = 25°C  
Maximum Power Dissipation  
20  
PD @ TC = 100°C  
Operating Junction and  
-55 to +175  
TJ  
Storage Temperature Range  
°C  
TSTG  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal / Mechanical Characteristics  
Parameter  
Min.  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
0.50  
–––  
2.0  
Max.  
3.8  
Units  
Junction-to-Case- IGBT  
Rθ  
Rθ  
Rθ  
Rθ  
JC  
JC  
CS  
JA  
Junction-to-Case- Diode  
Case-to-Sink, flat, greased surface  
Junction-to-Ambient, typical socket mount  
Weight  
6.0  
°C/W  
–––  
62  
–––  
g
Wt  
www.irf.com  
1
04/27/04  
IRGIB7B60KDPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
Ref.Fig.  
V(BR)CES  
VGE = 0V, IC = 500µA  
Collector-to-Emitter Breakdown Voltage  
600  
3.5  
0.57  
1.8  
2.2  
2.3  
4.5  
-9.5  
3.7  
1.0  
200  
V
V
(BR)CES/ TJ  
VCE(on)  
VGE(th)  
VGE = 0V, IC = 1mA (25°C-150°C)  
IC = 8.0A, VGE = 15V, TJ = 25°C  
IC = 8.0A, VGE = 15V, TJ = 150°C  
IC = 8.0A, VGE = 15V, TJ = 175°C  
VCE = VGE, IC = 250µA  
Temperature Coeff. of Breakdown Voltage  
V/°C  
2.2  
2.5  
2.5  
5.5  
5,6,7  
Collector-to-Emitter Voltage  
V
9,10,11  
Gate Threshold Voltage  
V
mV/°C  
S
9,10,11  
12  
VGE(th)/ TJ  
VCE = VGE, IC = 1mA (25°C-150°C)  
Threshold Voltage temp. coefficient  
Forward Transconductance  
VCE = 50V, IC = 8.0A, PW = 80µs  
VGE = 0V, VCE = 600V  
gfe  
150  
500  
ICES  
VFM  
VGE = 0V, VCE = 600V, TJ = 150°C  
VGE = 0V, VCE = 600V, TJ = 175°C  
IF = 5.0A, VGE = 0V  
Zero Gate Voltage Collector Current  
Diode Forward Voltage Drop  
µA  
V
720 1100  
1.25 1.45  
1.20 1.40  
1.20 1.30  
8
IF = 5.0A, TJ = 150°C, VGE = 0V  
IF = 5.0A, TJ = 175°C, VGE = 0V  
VGE = ±20V, VCE = 0V  
IGES  
Gate-to-Emitter Leakage Current  
±100 nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig.  
23  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 8.0A  
29  
3.7  
14  
44  
5.6  
21  
Qge  
Qgc  
Eon  
Eoff  
Etot  
td(on)  
tr  
VCC = 400V  
VGE = 15V  
CT1  
nC  
µJ  
ns  
IC = 8.0A, VCC = 400V  
CT4  
CT4  
160  
160  
320  
23  
268  
268  
433  
27  
VGE = 15V, RG = 50, L = 1.1mH  
‚
TJ = 25°C  
IC = 8.0A, VCC = 400V  
VGE = 15V, RG = 50 , L = 1.1mH  
Rise time  
22  
26  
td(off)  
tf  
TJ = 25°C  
Turn-Off delay time  
140  
32  
150  
42  
Fall time  
Eon  
Eoff  
Etot  
td(on)  
tr  
IC = 8.0A, VCC = 400V  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
220  
270  
490  
22  
330  
381  
711  
27  
CT4  
13,15  
WF1,WF2  
14,16  
CT4  
VGE = 15V, RG = 50 , L = 1.1mH  
µJ  
ns  
TJ = 150°C ‚  
IC = 8.0A, VCC = 400V  
VGE = 15V, RG = 50, L = 1.1mH  
TJ = 150°C  
Rise time  
21  
25  
td(off)  
tf  
WF1  
Turn-Off delay time  
180  
40  
198  
56  
Fall time  
WF2  
LE  
Internal Emitter Inductance  
Input Capacitance  
7.5  
440  
38  
nH Measured 5mm from package  
VGE = 0V  
Cies  
Coes  
Cres  
RBSOA  
660  
57  
VCC = 30V  
22  
Output Capacitance  
Reverse Transfer Capacitance  
Reverse Bias Safe Operating Area  
pF  
16  
24  
f = 1.0MHz  
TJ = 150°C, IC = 54A, Vp = 600V  
VCC=500V,VGE = +15V to 0V,RG = 50Ω  
4
CT2  
FULL SQUARE  
TJ = 150°C, Vp = 600V, RG = 100  
VCC=360V,VGE = +15V to 0V  
CT3  
SCSOA  
Short Circuit Safe Operating Area  
10  
µs  
WF4  
ISC (Peak)  
WF4  
Peak Short Circuit Collector Current  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
70  
100  
95  
A
µJ  
ns  
A
Erec  
TJ = 150°C  
133  
120  
17  
17,18,19  
20,21  
CT4,WF3  
trr  
VCC = 400V, IF = 8.0A, L = 1.07mH  
Irr  
VGE = 15V, RG = 50Ω  
Peak Reverse Recovery Current  
Diode Reverse Recovery Charge  
13  
Qrr  
620  
800  
nC di/dt = 500A/µS  
Note  to  
‚
are on page 12  
2
www.irf.com  
IRGIB7B60KDPbF  
14  
12  
10  
8
50  
40  
30  
20  
10  
0
6
4
2
0
0
20 40 60 80 100 120 140 160 180  
(°C)  
C
0
20 40 60 80 100 120 140 160 180  
(°C)  
C
T
T
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
100  
10  
1
100  
100 µs  
10  
1ms  
1
10ms  
0.1  
DC  
0
0.01  
10  
100  
1000  
1
10  
100  
(V)  
CE  
1000  
10000  
V
V
(V)  
CE  
Fig. 4 - Reverse Bias SOA  
Fig. 3 - Forward SOA  
TC = 25°C; TJ 150°C  
TJ = 150°C; VGE =15V  
www.irf.com  
3
IRGIB7B60KDPbF  
40  
40  
35  
30  
25  
20  
15  
10  
5
V
= 18V  
GE  
35  
30  
25  
20  
15  
10  
5
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
V
GE  
= 18V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
V
CE  
(V)  
V
CE  
(V)  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
30  
40  
35  
30  
-40°C  
25  
20  
15  
10  
5
25°C  
150°C  
V
= 18V  
GE  
25  
20  
15  
10  
5
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
0
0.0  
0.5  
1.0  
(V)  
F
1.5  
2.0  
0
1
2
3
4
5
6
V
V
(V)  
CE  
Fig. 8 - Typ. Diode Forward Characteristics  
Fig. 7 - Typ. IGBT Output Characteristics  
tp = 80µs  
TJ = 150°C; tp = 80µs  
4
www.irf.com  
IRGIB7B60KDPbF  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
I
I
I
= 4.0A  
= 8.0A  
= 16A  
CE  
CE  
CE  
I
I
I
= 4.0A  
= 8.0A  
= 16A  
CE  
CE  
CE  
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
GE  
(V)  
V
GE  
(V)  
Fig. 9 - Typical VCE vs. VGE  
Fig. 10 - Typical VCE vs. VGE  
TJ = -40°C  
TJ = 25°C  
20  
18  
16  
14  
12  
10  
8
100  
80  
60  
40  
20  
0
T
= 25°C  
J
I
I
I
= 4.0A  
= 8.0A  
= 16A  
CE  
CE  
CE  
T
= 150°C  
J
6
T
= 150°C  
J
4
T
J
= 25°C  
2
0
5
10  
15  
20  
0
5
10  
15  
20  
V
(V)  
V
GE  
(V)  
GE  
Fig. 11 - Typical VCE vs. VGE  
Fig. 12 - Typ. Transfer Characteristics  
TJ = 150°C  
VCE = 360V; tp = 10µs  
www.irf.com  
5
IRGIB7B60KDPbF  
600  
500  
1000  
100  
10  
td  
OFF  
400  
E
OFF  
300  
200  
100  
0
t
F
E
ON  
td  
ON  
t
R
0
5
10  
(A)  
15  
20  
0
5
10  
(A)  
15  
20  
I
C
I
C
Fig. 13 - Typ. Energy Loss vs. IC  
TJ = 150°C; L=1.1mH; VCE= 400V,  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 150°C; L=1.1mH; VCE= 400V  
RG= 50; VGE= 15V  
RG= 50; VGE= 15V  
700  
600  
500  
400  
300  
200  
100  
0
10000  
E
ON  
E
OFF  
1000  
100  
10  
td  
OFF  
td  
ON  
t
F
t
R
0
100  
200  
300  
)
400  
500  
0
100  
200  
300  
)
400  
500  
R
(
R
(
G
G
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 150°C; L=1.1mH; VCE= 400V  
ICE= 8.0A; VGE= 15V  
Fig. 16 - Typ. Switching Time vs. RG  
TJ = 150°C; L=1.1mH; VCE= 400V  
ICE= 8.0A; VGE= 15V  
6
www.irf.com  
IRGIB7B60KDPbF  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
R
50 Ω  
G =  
R
150  
G =  
R
270  
G =  
6
6
R
470  
4
G =  
4
2
2
0
0
0
5
10  
(A)  
15  
20  
0
100  
200  
300  
400  
500  
I
R
(
Ω)  
F
G
Fig. 18 - Typical Diode IRR vs. RG  
Fig. 17 - Typical Diode IRR vs. IF  
TJ = 150°C; IF = 8.0A  
TJ = 150°C  
16  
14  
12  
10  
8
1500  
50Ω  
16A  
150Ω  
1000  
500  
0
270Ω  
470  
8.0A  
6
4.0A  
4
2
0
0
100 200 300 400 500 600 700  
0
100  
200  
300  
400  
500  
600  
di /dt (A/µs)  
F
di /dt (A/µs)  
F
Fig. 20 - Typical Diode QRR  
VCC= 400V; VGE= 15V;TJ = 150°C  
Fig. 19- Typical Diode IRR vs. diF/dt  
VCC= 400V; VGE= 15V;  
IF= 8.0A; TJ = 150°C  
www.irf.com  
7
IRGIB7B60KDPbF  
250  
200  
150  
100  
50  
470Ω  
270Ω  
150 Ω  
50  
0
0
5
10  
(A)  
15  
20  
I
F
Fig. 21 - Typical Diode ERR vs. IF  
TJ = 150°C  
1000  
100  
10  
16  
14  
12  
10  
8
Cies  
300V  
Coes  
Cres  
400V  
6
4
2
1
0
0
20  
40  
60  
(V)  
80  
100  
0
5
10  
15  
20  
25  
30  
V
Q
, Total Gate Charge (nC)  
CE  
G
Fig. 23 - Typical Gate Charge vs. VGE  
Fig. 22- Typ. Capacitance vs. VCE  
ICE = 8.0A; L = 600µH  
VGE= 0V; f = 1MHz  
8
www.irf.com  
IRGIB7B60KDPbF  
10  
D = 0.50  
1
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.05  
0.367  
0.425  
1.070  
1.928  
0.000164  
0.000652  
0.081521  
2.124500  
τJ  
τ
0.1  
0.01  
0.02  
Cτ  
τJ  
τ
τ
1τ1  
Ci= τi/Ri  
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-6  
1E-5  
1E-4  
1E-3  
1E-2  
1E-1  
1E+0  
1E+1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
D = 0.50  
0.20  
0.10  
0.05  
1
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
τ
J τJ  
τ
τ
0.02  
0.01  
2.530  
1.354  
2.114  
0.001  
Cτ  
0.1  
τ
1τ1  
τ3  
2 τ2  
0.068689  
2.758  
τ3  
τ /  
Ci= i Ri  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
1
, Rectangular Pulse Duration (sec)  
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
9
IRGIB7B60KDPbF  
10  
www.irf.com  
IRGIB7B60KDPbF  
600  
500  
400  
300  
200  
100  
0
12  
10  
8
600  
500  
400  
300  
200  
100  
0
24  
20  
16  
12  
8
tf  
Vce  
tr  
Vce  
Ic e  
90% Ice  
5% Vce  
90% Ice  
10% Ice  
6
4
5% Ice  
Ice  
2
4
5% Vce  
0
Eoff Loss  
0
-100  
-200  
-2  
-4  
Eon  
Loss  
-100  
-4  
0.3  
0.5  
0.7  
Time (uS)  
0.9  
0
0.2  
0.4  
0.6  
0.8  
1
Time (uS)  
Fig. WF1- Typ. Turn-off Loss Waveform  
@ TJ = 150°C using Fig. CT.4  
Fig. WF2- Typ. Turn-on Loss Waveform  
@ TJ = 150°C using Fig. CT.4  
100  
0
15  
400  
350  
300  
250  
200  
150  
100  
50  
80  
60  
40  
20  
0
QRR  
10  
5
tRR  
-100  
-200  
-300  
-400  
-500  
-600  
0
10%  
Peak  
IRR  
-5  
Peak  
IRR  
-10  
-15  
-20  
0
0.00  
10.00  
20.00  
30.00  
40.00  
50.00  
-0.15  
-0.05  
0.05  
0.15  
0.25  
Time (uS)  
time (µS)  
Fig. WF4- Typ. S.C Waveform  
@ TC = 150°C using Fig. CT.3  
Fig. WF3- Typ. Diode Recovery Waveform  
@ TJ = 150°C using Fig. CT.4  
www.irf.com  
11  
IRGIB7B60KDPbF  
TO-220 Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220 Full-Pak Part Marking Information  
EXAMPLE: THIS IS AN IRFI840G  
WITH ASSEMBLY  
PART NUMBER  
LOT CODE 3432  
AS SEMBLED ON WW 24 1999  
IN THE ASSEMBLY LINE "K"  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFI840G  
924K  
34  
32  
DATE CODE  
YEAR 9 = 1999  
WEE K 24  
Note: "P" in assembly line  
position indicates "Lead-Free"  
AS S E MB L Y  
LOT CODE  
LINE K  
Notes:  
VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω.  
‚Energy losses include "tail" and diode reverse recovery.  
TO-220AB FullPak package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.04/04  
12  
www.irf.com  

相关型号:

IRGIH50F

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGIH50FD

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 45A I(C) | TO-259VAR
ETC

IRGIH50FDPBF

Insulated Gate Bipolar Transistor, 45A I(C), 1200V V(BR)CES, N-Channel, TO-259AA
INFINEON

IRGIH50FU

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 45A I(C) | TO-259VAR
ETC

IRGIH50FUPBF

Insulated Gate Bipolar Transistor, 45A I(C), 1200V V(BR)CES, N-Channel, TO-259AA
INFINEON

IRGKA035U06

Insulated Gate Bipolar Transistor, 35A I(C), 600V V(BR)CES, N-Channel, ADD-A-PAK-7
INFINEON

IRGKA050F06

Insulated Gate Bipolar Transistor, 50A I(C), 600V V(BR)CES, N-Channel, ADD-A-PAK-7
INFINEON

IRGKA090U06

Insulated Gate Bipolar Transistor, 90A I(C), 600V V(BR)CES, N-Channel, ADD-A-PAK-7
INFINEON

IRGKA120F06

Insulated Gate Bipolar Transistor, 120A I(C), 600V V(BR)CES, N-Channel, ADD-A-PAK-7
INFINEON

IRGKI0025M12

Insulated Gate Bipolar Transistor, 25A I(C), 1200V V(BR)CES, N-Channel, INT-A-PAK-7
INFINEON

IRGKI0050M12

Insulated Gate Bipolar Transistor, 50A I(C), 1200V V(BR)CES, N-Channel, INT-A-PAK-7
INFINEON

IRGKI0050M12PBF

Insulated Gate Bipolar Transistor, 50A I(C), 1200V V(BR)CES, N-Channel, INT-A-PAK-7
INFINEON