IRGP4085DPBF [INFINEON]

PDP TRENCH IGBT; PDP TRENCH IGBT
IRGP4085DPBF
型号: IRGP4085DPBF
厂家: Infineon    Infineon
描述:

PDP TRENCH IGBT
PDP TRENCH IGBT

光电二极管 双极性晶体管
文件: 总7页 (文件大小:667K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97286  
IRGP4085DPbF  
PDP TRENCH IGBT  
Key Parameters  
Features  
VCE min  
330  
1.69  
250  
150  
V
V
l
Advanced Trench IGBT Technology  
l
Optimized for Sustain and Energy Recovery  
Circuits in PDP Applications  
VCE(ON) typ. @ IC = 70A  
IRP max @ TC= 25°C c  
TJ max  
A
TM  
l
Low VCE(on) and Energy per Pulse (EPULSE  
for Improved Panel Efficiency  
)
°C  
l
l
High Repetitive Peak Current Capability  
Lead Free Package  
C
C
E
G
C
G
E
TO-247AC  
n-channel  
G
C
E
Gate  
Collector  
Emitter  
Description  
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced  
trenchIGBTtechnologytoachievelowVCE(on) andlowEPULSETM ratingpersiliconareawhichimprovepanel  
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current  
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP  
applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGE  
±30  
Gate-to-Emitter Voltage  
V
A
IC @ TC = 25°C  
IC @ TC = 100°C  
IRP @ TC = 25°C  
PD @TC = 25°C  
PD @TC = 100°C  
Continuous Collector Current, VGE @ 15V  
Continuous Collector, VGE @ 15V  
Repetitive Peak Current c  
Power Dissipation  
70  
40  
250  
160  
W
63  
Power Dissipation  
1.3  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lbxin (1.1Nxm)  
N
Thermal Resistance  
Parameter  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
Case-to-Sink (flat, greased surface)  
Junction-to-Ambient (typical socket mount) d  
Weight  
Typ.  
–––  
Max.  
0.80  
Units  
RθJC (IGBT)  
RθJC (Diode)  
RθCS  
d
d
1.6  
2.4  
0.24  
–––  
40  
°C/W  
g (oz)  
RθJA  
–––  
6.0 (0.21)  
–––  
www.irf.com  
1
06/05/07  
IRGP4085DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGE = 0V, ICE = 1 mA  
Reference to 25°C, ICE = 1mA  
VGE = 15V, ICE = 25A  
VGE = 15V, ICE = 40A  
VGE = 15V, ICE = 70A  
GE = 15V, ICE = 120A  
VGE = 15V, ICE = 70A, TJ = 150°C  
CE = VGE, ICE = 500µA  
CE = 330V, VGE = 0V  
VCE = 330V, VGE = 0V, TJ = 100°C  
CE = 330V, VGE = 0V, TJ = 150°C  
VGE = 30V  
Parameter  
Collector-to-Emitter Breakdown Voltage  
∆ΒVCES/TJ Breakdown Voltage Temp. Coefficient  
Min. Typ. Max. Units  
BVCES  
330  
–––  
–––  
–––  
–––  
–––  
–––  
2.6  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
0.34  
1.18  
1.36  
1.69  
2.26  
1.93  
–––  
-11  
2.0  
–––  
–––  
1.48  
1.68  
2.09  
2.76  
–––  
5.0  
–––  
25  
–––  
–––  
100  
-100  
–––  
–––  
–––  
V
V/°C  
VCE(on)  
Static Collector-to-Emitter Voltage  
V
V
V
V
VGE(th)  
VGE(th)/TJ  
ICES  
Gate Threshold Voltage  
Gate Threshold Voltage Coefficient  
Collector-to-Emitter Leakage Current  
V
mV/°C  
µA  
5.0  
V
100  
–––  
–––  
50  
85  
31  
IGES  
Gate-to-Emitter Forward Leakage  
Gate-to-Emitter Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
Gate-to-Collector Charge  
Turn-On delay time  
Rise time  
Turn-Off delay time  
Fall time  
Turn-On delay time  
Rise time  
nA  
V
V
V
GE = -30V  
CE = 25V, ICE = 25A  
CE = 200V, IC = 25A, VGE = 15V  
gfe  
Qg  
Qgc  
td(on)  
tr  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
S
nC  
47  
IC = 25A, VCC = 196V  
RG = 10, L=200µH, LS= 200nH  
TJ = 25°C  
37  
176  
99  
45  
38  
ns  
ns  
IC = 25A, VCC = 196V  
RG = 10, L=200µH, LS= 200nH  
TJ = 150°C  
Turn-Off delay time  
Fall time  
228  
183  
–––  
tst  
VCC = 240V, VGE = 15V, RG= 5.1Ω  
L = 220nH, C= 0.40µF, VGE = 15V  
VCC = 240V, RG= 5.1Ω, TJ = 25°C  
L = 220nH, C= 0.40µF, VGE = 15V  
VCC = 240V, RG= 5.1Ω, TJ = 100°C  
VGE = 0V  
Shoot Through Blocking Time  
100  
–––  
ns  
µJ  
–––  
–––  
834  
985  
–––  
–––  
EPULSE  
Energy per Pulse  
Ciss  
Coss  
Crss  
LC  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Internal Collector Inductance  
–––  
–––  
–––  
–––  
2297  
141  
74  
–––  
–––  
–––  
–––  
V
CE = 30V  
pF  
ƒ = 1.0MHz,  
See Fig.13  
5.0  
Between lead,  
nH 6mm (0.25in.)  
from package  
LE  
Internal Emitter Inductance  
–––  
13  
–––  
and center of die contact  
Diode Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
Parameter  
Average Forward Current at  
TC=155°C  
Min. Typ. Max. Units  
IF(AV)  
–––  
–––  
8.0  
A
IFSM  
VF  
TJ = 155°C, PW = 6.0ms half sine wave  
IF = 8A  
IF = 8A, TJ = 150°C  
IF = 1A, di/dt = -50A/µs, VR =30V  
TJ = 25°C  
Non Repetitive Peak Surge Current  
Forward Voltage  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
1.19  
0.94  
35  
43  
67  
100  
1.3  
1.0  
A
V
trr  
Reverse Recovery Time  
60  
ns  
–––  
–––  
–––  
–––  
–––  
–––  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
IF = 8A  
Qrr  
Irr  
Reverse Recovery Charge  
Peak Recovery Current  
60  
nC  
A
di/dt = 200A/µs  
VR = 200V  
210  
2.8  
6.3  
Notes:  
ƒ Pulse width 400µs; duty cycle 2%.  
 Half sine wave with duty cycle = 0.1, ton=2µsec.  
‚ R is measured at TJ of approximately 90°C.  
θ
2
www.irf.com  
IRGP4085DPbF  
200  
160  
120  
80  
200  
160  
120  
80  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
GE  
GE  
GE  
GE  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
GE  
GE  
GE  
GE  
40  
40  
0
0
0
4
8
12  
16  
0
4
8
12  
16  
V
(V)  
V
(V)  
CE  
CE  
Fig 2. Typical Output Characteristics @ 75°C  
Fig 1. Typical Output Characteristics @ 25°C  
200  
200  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
GE  
GE  
GE  
GE  
V
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
GE  
GE  
GE  
GE  
160  
120  
80  
40  
0
160  
120  
80  
40  
0
0
4
8
12  
16  
0
4
8
12  
16  
V
(V)  
V
(V)  
CE  
CE  
Fig 3. Typical Output Characteristics @ 125°C  
Fig 4. Typical Output Characteristics @ 150°C  
300  
250  
200  
150  
14  
I
= 25A  
C
12  
10  
8
T
T
= 25°C  
J
J
= 150°C  
6
100  
50  
0
T
T
= 25°C  
J
J
4
= 150°C  
2
0
2
4
6
8
10  
12  
14  
16  
0
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig 5. Typical Transfer Characteristics  
Fig 6. VCE(ON) vs. Gate Voltage  
www.irf.com  
3
IRGP4085DPbF  
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
200  
100  
0
ton= 2µs  
Duty cycle = 0.1  
Half Sine Wave  
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Case Temperature (°C)  
T
, Case Temperature (°C)  
C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature  
Fig 7. Maximum Collector Current vs. Case Temperature  
1000  
1000  
V
= 240V  
L = 220nH  
C = 0.4µF  
CC  
L = 220nH  
C = variable  
900  
800  
700  
600  
500  
400  
900  
100°C  
100°C  
800  
700  
600  
500  
400  
25°C  
25°C  
170 180 190 200 210 220 230 240  
180  
190  
CE,  
200  
210  
220  
230  
240  
I , Peak Collector Current (A)  
C
V
Collector-to-Emitter Voltage (V)  
Fig 9. Typical EPULSE vs. Collector Current  
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage  
1400  
1000  
V
= 240V  
CC  
L = 220nH  
t = 1µs half sine  
1200  
1000  
800  
C= 0.4µF  
C= 0.3µF  
C= 0.2µF  
10 µs  
100 µs  
100  
1ms  
10  
600  
400  
1
200  
1
10  
100  
1000  
25  
50  
75  
100  
125  
150  
V
(V)  
CE  
T , Temperature (ºC)  
J
Fig 11. EPULSE vs. Temperature  
Fig 12. Forward Bias Safe Operating Area  
4
www.irf.com  
IRGP4085DPbF  
10000  
1000  
100  
25  
20  
15  
10  
5
I = 25A  
D
V
= 240V  
DS  
VDS= 200V  
VDS= 150V  
Cies  
Coes  
Cres  
0
10  
0
20  
40  
60  
80  
100  
120  
0
100  
200  
300  
Q
Total Gate Charge (nC)  
G
V
(V)  
CE  
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage  
1
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage  
D = 0.50  
0.20  
0.1  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
0.05  
Ri (°C/W) τi (sec)  
τ
JτJ  
τ
τ
Cτ  
0.146  
0.382  
0.271  
0.000131  
0.001707  
0.014532  
0.02  
τ
1τ1  
τ
2 τ2  
3τ3  
0.01  
0.01  
Ci= τi/Ri  
τ /  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τι (sec)  
0.07854 0.000637  
0.829201 0.000532  
1.002895 0.003412  
0.490875 0.055432  
0.05  
0.02  
0.01  
0.1  
τJ  
τC  
τJ  
τ1  
τ
τ
τ
3τ3  
τ4  
2 τ2  
τ1  
τ4  
Ci= τi/Ri  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
5
IRGP4085DPbF  
90  
80  
70  
60  
50  
40  
30  
20  
100  
10  
1
I
= 8.0A, T =125°C  
F
J
Tj = 150°C  
Tj = 25°C  
I
= 8.0A, T =25°C  
F
J
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
100  
1000  
V
, Forward Voltage Drop (V)  
FM  
di / dt - (A / µs)  
f
Fig.18-TypicalReverseRecovery vs.di F /dt  
Fig.17-Typical Forward Voltage Drop Characteristics  
400  
300  
200  
100  
0
I = 8.0A, T =125°C  
F J  
Fig.20 - Switching Loss Circuit  
A
I
= 8.0A, T =25°C  
J
RG  
C
F
DRIVER  
L
100  
1000  
VCC  
di / dt - (A / µs)  
f
B
Ipulse  
Fig.19-TypicalStoredCharge vs.diF /dt  
RG  
DUT  
VCE  
Energy  
IC Current  
Fig 21a. tst and EPULSE Test Circuit  
Fig 21b. tst Test Waveforms  
PULSE A  
L
VCC  
DUT  
0
PULSE B  
1K  
tST  
Fig. 22 - Gate Charge Circuit (turn-off)  
Fig 21c. EPULSE Test Waveforms  
6
www.irf.com  
IRGP4085DPbF  
TO-247AC Package Outline Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
(;$03/(ꢈ 7+,6ꢀ,6ꢀ$1ꢀ,5)3(ꢅꢃꢀ  
:,7+ꢀ$66(0%/<ꢀ  
3$57ꢀ180%(5  
,17(51$7,21$/  
5(&7,),(5  
/2*2  
/27ꢀ&2'(ꢀꢆꢉꢆꢊ  
$66(0%/('ꢀ21ꢀ::ꢀꢅꢆꢇꢀꢂꢃꢃꢁ  
,1ꢀ7+(ꢀ$66(0%/<ꢀ/,1(ꢀ!+!  
'$7(ꢀ&2'(  
<($5ꢀꢁꢀ ꢀꢂꢃꢃꢁ  
:((.ꢀꢅꢆ  
$66(0%/<  
/27ꢀ&2'(  
1RWHꢈꢀ!3!ꢀLQꢀDVVHPEO\ꢀOLQHꢀSRVLWLRQ  
LQGLFDWHVꢀ!/HDGꢄ)UHH!  
/,1(ꢀ+  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkigbt.html  
The specifications set forth in this data sheet are the sole and  
exclusive specifications applicable to the identified product,  
and no specifications or features are implied whether by  
industry custom, sampling or otherwise. We qualify our  
products in accordance with our internal practices and  
procedures, which by their nature do not include qualification to  
all possible or even all widely used applications. Without  
limitation, we have not qualified our product for medical use or  
applications involving hi-reliability applications. Customers are  
encouraged to and responsible for qualifying product to their  
own use and their own application environments, especially  
where particular features are critical to operational  
performance or safety. Please contact your IR representative if  
you have specific design or use requirements or for further  
information.  
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.06/07  
www.irf.com  
7

相关型号:

IRGP4086PBF

PDP TRENCH IGBT
INFINEON

IRGP420U

INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=7.5A)
INFINEON

IRGP420U-E

暂无描述
INFINEON

IRGP4262D-EPBF

Insulated Gate Bipolar Transistor
INFINEON

IRGP4262DPBF

Insulated Gate Bipolar Transistor
INFINEON

IRGP4263-EPBF

Insulated Gate Bipolar Transistor, 90A I(C), 650V V(BR)CES, N-Channel,
INFINEON

IRGP4263D-EPBF

Insulated Gate Bipolar Transistor, 90A I(C), 650V V(BR)CES, N-Channel,
INFINEON

IRGP4263DPBF

Insulated Gate Bipolar Transistor, 90A I(C), 650V V(BR)CES, N-Channel,
INFINEON

IRGP4263PBF

Insulated Gate Bipolar Transistor, 90A I(C), 650V V(BR)CES, N-Channel,
INFINEON

IRGP4266-EPBF

Insulated Gate Bipolar Transistor, 140A I(C), 650V V(BR)CES, N-Channel
INFINEON

IRGP4266D-EPBF

Insulated Gate Bipolar Transistor, 140A I(C), 650V V(BR)CES, N-Channel,
INFINEON

IRGP4266DPBF

Insulated Gate Bipolar Transistor, 140A I(C), 650V V(BR)CES, N-Channel,
INFINEON