IRL60B216_15 [INFINEON]

Brushed Motor drive applications;
IRL60B216_15
型号: IRL60B216_15
厂家: Infineon    Infineon
描述:

Brushed Motor drive applications

文件: 总10页 (文件大小:725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFET™  
IRL60B216  
HEXFET® Power MOSFET  
Application  
Brushed Motor drive applications  
BLDC Motor drive applications  
Battery powered circuits  
Half-bridge and full-bridge topologies  
Synchronous rectifier applications  
Resonant mode power supplies  
OR-ing and redundant power switches  
DC/DC and AC/DC converters  
DC/AC Inverters  
VDSS  
RDS(on) typ.  
max  
60V  
1.5m  
1.9m  
305A  
ID (Silicon Limited)  
ID (Package Limited)  
195A  
Benefits  
S
D
Optimized for Logic Level Drive  
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness  
Fully Characterized Capacitance and Avalanche SOA  
Enhanced body diode dV/dt and dI/dt Capability  
Lead-Free*  
G
RoHS Compliant, Halogen-Free  
G
D
S
Gate  
Drain  
Source  
Standard Pack  
Form  
Base part number  
Package Type  
Orderable Part Number  
Quantity  
IRL60B216  
TO-220  
Tube  
50  
IRL60B216  
6
5
4
3
2
1
0
315  
270  
225  
180  
135  
90  
I
= 100A  
Limited By Package  
D
T
T
= 125°C  
= 25°C  
J
J
45  
0
2
4
6
8
10 12 14 16 18 20  
25  
50  
75  
100  
125  
150  
175  
T
, Case Temperature (°C)  
V
Gate -to -Source Voltage (V)  
C
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
1
www.irf.com  
© 2015 International Rectifier  
Submit Datasheet Feedback  
April 29, 2015  
IRL60B216  
Absolute Maximum Rating  
Symbol  
Parameter  
Max.  
305  
215  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)  
A
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current   
195  
780  
375  
PD @TC = 25°C  
Maximum Power Dissipation  
Linear Derating Factor  
W
W/°C  
V
2.5  
VGS  
TJ  
Gate-to-Source Voltage  
± 20  
Operating Junction and  
-55 to + 175  
°C  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds (1.6mm from case)  
300  
Mounting Torque, 6-32 or M3 Screw  
10 lbf·in (1.1 N·m)  
Avalanche Characteristics  
EAS (Thermally limited)  
EAS (Thermally limited)  
530  
Single Pulse Avalanche Energy   
mJ  
1045  
Single Pulse Avalanche Energy   
Avalanche Current   
Repetitive Avalanche Energy   
IAR  
EAR  
A
mJ  
See Fig 15, 16, 23a, 23b  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
0.50  
–––  
Max.  
0.4  
Units  
Junction-to-Case   
RJC  
RCS  
RJA  
Case-to-Sink, Flat Greased Surface  
°C/W  
–––  
62  
Junction-to-Ambient   
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.041 –––  
Conditions  
VGS = 0V, ID = 250µA  
V
V/°C Reference to 25°C, ID = 2mA   
V(BR)DSS/TJ  
–––  
–––  
1.0 –––  
––– –––  
––– ––– 150  
––– ––– 100  
––– ––– -100  
1.5  
1.7  
1.9  
2.2  
2.4  
1.0  
V
V
GS = 10V, ID = 100A   
GS = 4.5V, ID = 50A   
RDS(on)  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
m  
V
VGS(th)  
VDS = VGS, ID = 250µA  
DS = 60 V, VGS = 0V  
VDS = 60V,VGS = 0V,TJ =125°C  
V
IDSS  
Drain-to-Source Leakage Current  
µA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Resistance  
V
V
GS = 20V  
GS = -20V  
IGSS  
RG  
nA  
–––  
2.0  
–––  
  
Notes:  
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that  
Current imitations arising from heating of the device leads may occur with some lead mounting arrangements.  
(Refer to AN-1140)  
Repetitive rating; pulse width limited by max. junction temperature.  
Limited by TJmax, starting TJ = 25°C, L = 0.107mH, RG = 50, IAS = 100A, VGS =10V.  
ISD 100A, di/dt 1420A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS  
.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS  
.
Ris measured at TJ approximately 90°C.  
Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 46A, VGS =10V.  
Pulse drain current is limited to 780A by source bonding technology.  
2
www.irf.com  
© 2015 International Rectifier  
Submit Datasheet Feedback  
April 29, 2015  
IRL60B216  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min.  
264  
–––  
–––  
–––  
–––  
–––  
–––  
Typ. Max. Units  
Conditions  
VDS = 10V, ID = 100A  
ID = 100A  
–––  
172  
53  
–––  
258  
–––  
–––  
–––  
–––  
–––  
S
Qg  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain Charge  
Total Gate Charge Sync. (Qg– Qgd)  
Turn-On Delay Time  
VDS = 30V  
nC  
Qgd  
80  
VGS = 4.5V  
Qsync  
td(on)  
tr  
92  
70  
VDD = 30V  
ID = 30A  
Rise Time  
185  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
190  
120  
–––  
–––  
RG= 2.7  
VGS = 4.5V  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 15570 –––  
VGS = 0V  
–––  
–––  
1260  
880  
–––  
–––  
VDS = 25V  
ƒ = 1.0MHz, See Fig.7  
pF  
Coss eff.(ER) Effective Output Capacitance (Energy Related) –––  
1260  
1645  
–––  
–––  
VGS = 0V, VDS = 0V to 48V  
VGS = 0V, VDS = 0V to 48V  
Coss eff.(TR) Output Capacitance (Time Related)  
–––  
Diode Characteristics  
Symbol  
IS  
Parameter  
Continuous Source Current  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
Min.  
Typ. Max. Units  
Conditions  
MOSFET symbol  
D
–––  
––– 305  
A
––– 780  
showing the  
G
integral reverse  
p-n junction diode.  
ISM  
–––  
S
VSD  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
11  
1.2  
V
TJ = 25°C,IS =100A,VGS = 0V   
dv/dt  
Peak Diode Recovery dv/dt   
––– V/ns TJ = 175°C,IS = 100A,VDS = 60V  
52  
–––  
TJ = 25°C  
VDD = 51V  
IF = 100A,  
trr  
Reverse Recovery Time  
ns  
–––  
–––  
–––  
–––  
57  
91  
–––  
–––  
–––  
–––  
TJ = 125°C  
TJ = 25°C di/dt = 100A/µs   
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
nC  
A
116  
3.0  
TJ = 125°C  
IRRM  
TJ = 25°C  
3
www.irf.com  
© 2015 International Rectifier  
Submit Datasheet Feedback  
April 29, 2015  
IRL60B216  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
TOP  
TOP  
3.5V  
3.5V  
BOTTOM  
BOTTOM  
60µs  
Tj = 25°C  
PULSE WIDTH  
60µs  
Tj = 175°C  
PULSE WIDTH  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 4. Typical Output Characteristics  
Fig 3. Typical Output Characteristics  
1000  
100  
10  
2.2  
1.8  
1.4  
1.0  
0.6  
I
= 100A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 10V  
DS  
60µs PULSE WIDTH  
0.1  
0
2
4
6
-60  
-20  
T
20  
60  
100  
140  
180  
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
14  
1000000  
100000  
10000  
1000  
V
C
= 0V,  
f = 1 MHZ  
GS  
I
= 100A  
V
= C + C , C SHORTED  
D
iss  
gs  
gd ds  
12  
10  
8
C
= C  
rss  
gd  
= 48V  
= 30V  
DS  
C
= C + C  
oss  
ds  
gd  
V
DS  
VDS= 12V  
C
iss  
C
6
oss  
C
rss  
4
2
0
100  
0
50 100 150 200 250 300 350 400 450  
, Total Gate Charge (nC)  
0.1  
1
10  
100  
Q
V
, Drain-to-Source Voltage (V)  
G
DS  
Fig 8. Typical Gate Charge vs.  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
www.irf.com © 2015 International Rectifier  
Gate-to-Source Voltage  
4
Submit Datasheet Feedback  
April 29, 2015  
IRL60B216  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
1000  
100  
10  
T
= 175°C  
J
100µsec  
Limited by Package  
1msec  
T
= 25°C  
J
1
10msec  
1
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
0.01  
V
= 0V  
GS  
0.1  
0.1  
1
10  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode Forward Voltage  
74  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Id = 2.0mA  
72  
70  
68  
66  
64  
62  
60  
-60  
-20  
20  
60  
100  
140  
180  
-10  
0
10  
20  
30  
40  
50  
60  
T
, Temperature ( °C )  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical Coss Stored Energy  
4.0  
VGS = 3.5V  
VGS = 4.0V  
VGS = 4.5V  
VGS = 8.0V  
3.5  
VGS = 10V  
3.0  
2.5  
2.0  
1.5  
1.0  
0
50  
100  
150  
200  
I
, Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
© 2015 International Rectifier Submit Datasheet Feedback  
5
www.irf.com  
April 29, 2015  
IRL60B216  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.01  
0.02  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart = 25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Avalanche Current vs. Pulse Width  
600  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1.Avalanche failures assumption:  
TOP  
BOTTOM 1.0% Duty Cycle  
= 100A  
Single Pulse  
500  
400  
300  
200  
100  
0
I
D
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for every  
part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not  
exceeded.  
3. Equation below based on circuit and waveforms shown in Figures  
23a, 23b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage  
increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax  
(assumed as 25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 14)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
I
av = 2T/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)· av  
t
Fig 16. Maximum Avalanche Energy vs. Temperature  
www.irf.com © 2015 International Rectifier  
6
Submit Datasheet Feedback  
April 29, 2015  
IRL60B216  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
16  
12  
8
I
= 60A  
= 51V  
F
V
R
T = 25°C  
J
T = 125°C  
J
ID = 250µA  
ID = 1.0mA  
ID = 1.0A  
4
0
-75  
-25  
T
25  
75  
125  
175  
0
200  
400  
600  
800  
1000  
, Temperature ( °C )  
di /dt (A/µs)  
J
F
Fig 17. Threshold Voltage vs. Temperature  
Fig 18. Typical Recovery Current vs. dif/dt  
400  
20  
I
= 60A  
= 51V  
I
= 100A  
= 51V  
F
F
350  
300  
250  
200  
150  
100  
50  
V
V
R
R
16  
12  
8
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
4
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig 19. Typical Recovery Current vs. dif/dt  
Fig 20. Typical Stored Charge vs. dif/dt  
400  
I
= 100A  
= 51V  
F
350  
300  
250  
200  
150  
100  
50  
V
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig 21. Typical Stored Charge vs. dif/dt  
© 2015 International Rectifier Submit Datasheet Feedback  
7
www.irf.com  
April 29, 2015  
IRL60B216  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
V
(BR)DSS  
t
p
15V  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
I
0.01  
t
p
AS  
Fig 23a. Unclamped Inductive Test Circuit  
Fig 23b. Unclamped Inductive Waveforms  
Fig 24a. Switching Time Test Circuit  
Fig 24b. Switching Time Waveforms  
Id  
Vds  
Vgs  
VDD  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 25b. Gate Charge Waveform  
Fig 25a. Gate Charge Test Circuit  
8
www.irf.com  
© 2015 International Rectifier  
Submit Datasheet Feedback  
April 29, 2015  
IRL60B216  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
E X A M P L E :  
T H IS IS A N IR F 1 0 1 0  
L O C O D E 1 7 8 9  
A S S E M B L E D  
IN T H E A S S E M B L Y L IN E "C "  
P A R T N U M B E R  
D A T E C O D E  
T
IN T E R N A T IO N A L  
R E C T IF IE R  
L O G O  
O
N
W
W
1 9 , 2 0 0 0  
Y E A R  
E E K 1 9  
L IN E  
0
=
2 0 0 0  
N o t e : "P " in a s s e m b ly lin e p o s it io n  
in d ic a t e s "L e a d F r e e "  
A S S E M B L Y  
W
-
L O  
T C O D E  
C
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
9
www.irf.com  
© 2015 International Rectifier  
Submit Datasheet Feedback  
April 29, 2015  
IRL60B216  
Qualification Information†  
Qualification Level  
Industrial  
(per JEDEC JESD47F) ††  
TO-220  
N/A  
Yes  
Moisture Sensitivity Level  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Applicable version of JEDEC standard at the time of product release.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
10 www.irf.com  
© 2015 International Rectifier Submit Datasheet Feedback April 29, 2015  

相关型号:

IRL60S216

Half-bridge and full-bridge topologies
INFINEON

IRL60SC216

Infineon’s latest logic level 60 V StrongIRFET™ power MOSFET devices are optimized for both high current and low RDS(on) making them the ideal solution for high current battery powered applications.
INFINEON

IRL60SL216

Half-bridge and full-bridge topologies
INFINEON

IRL610

Advanced Power MOSFET
FAIRCHILD

IRL610

Power Field-Effect Transistor, 2.6A I(D), 200V, 2.4ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG

IRL610A

Advanced Power MOSFET
FAIRCHILD

IRL610AJ69Z

Power Field-Effect Transistor, 3.3A I(D), 200V, 1.5ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220, 3 PIN
FAIRCHILD

IRL610J69Z

Power Field-Effect Transistor, 3.3A I(D), 200V, 1.5ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220, 3 PIN
FAIRCHILD

IRL610S

TRANSISTOR | MOSFET | N-CHANNEL | 200V V(BR)DSS | 3.3A I(D) | TO-263AB
ETC

IRL610SR

Power Field-Effect Transistor, 3.3A I(D), 200V, 1.5ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, D2PAK-3
FAIRCHILD

IRL610SU

Power Field-Effect Transistor, 3.3A I(D), 200V, 1.5ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, I2PAK-3
FAIRCHILD

IRL611

Power Field-Effect Transistor, 2.6A I(D), 150V, 2.4ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG