IRLR024Z [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRLR024Z
型号: IRLR024Z
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

文件: 总11页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95825A  
IRLR024Z  
AUTOMOTIVE MOSFET  
IRLU024Z  
HEXFET® Power MOSFET  
Features  
D
n Logic Level  
VDSS = 55V  
n Advanced Process Technology  
n UltraLowOn-Resistance  
n 175°COperatingTemperature  
n Fast Switching  
RDS(on) = 58mΩ  
G
n Repetitive Avalanche Allowed up to Tjmax  
ID = 16A  
S
Description  
Specifically designed for Automotive applications, this HEXFET®  
Power MOSFET utilizes the latest processing techniques to  
achieve extremely low on-resistance per silicon area. Additional  
features of this design are a 175°C junction operating tempera-  
ture, fast switching speed and improved repetitive avalanche  
rating . These features combine to make this design an extremely  
efficientandreliabledeviceforuseinAutomotiveapplicationsand  
a wide variety of other applications.  
D-Pak  
IRLR024Z  
I-Pak  
IRLU024Z  
Absolute Maximum Ratings  
Parameter  
Max.  
16  
Units  
(Silicon Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ T = 25°C  
C
D
D
@ T = 100°C  
C
11  
A
64  
DM  
P
@T = 25°C Power Dissipation  
C
35  
W
W/°C  
V
D
Linear Derating Factor  
0.23  
± 16  
25  
V
Gate-to-Source Voltage  
Single Pulse Avalanche Energy  
GS  
EAS (Thermally limited)  
AS (Tested )  
mJ  
E
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
25  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
Repetitive Avalanche Energy  
Operating Junction and  
mJ  
T
J
-55 to + 175  
T
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
°C  
STG  
300 (1.6mm from case )  
Thermal Resistance  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
4.28  
40  
Units  
Rθ  
Rθ  
Rθ  
Junction-to-Case  
JC  
JA  
JA  
Junction-to-Ambient (PCB mount)  
Junction-to-Ambient  
°C/W  
110  
HEXFET® isaregisteredtrademarkofInternationalRectifier.  
www.irf.com  
1
06/21/04  
IRLR/U024Z  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
55  
–––  
–––  
V
VGS = 0V, ID = 250µA  
V(BR)DSS/TJ  
Breakdown Voltage Temp. Coefficient ––– 0.053 ––– V/°C Reference to 25°C, ID = 1mA  
–––  
Static Drain-to-Source On-Resistance –––  
–––  
46  
58  
80  
VGS = 10V, ID = 9.6A  
mΩ  
RDS(on)  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VGS = 5.0V, ID = 5.0A  
VGS = 4.5V, ID = 3.0A  
VDS = VGS, ID = 250µA  
VDS = 25V, ID = 9.6A  
100  
3.0  
–––  
20  
VGS(th)  
Gate Threshold Voltage  
1.0  
7.4  
V
S
gfs  
Forward Transconductance  
Drain-to-Source Leakage Current  
IDSS  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
VDS = 55V, VGS = 0V  
250  
200  
VDS = 55V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA VGS = 16V  
GS = -16V  
ID = 5.0A  
DS = 44V  
––– -200  
V
Qg  
Qgs  
Qgd  
td(on)  
tr  
6.6  
1.6  
3.9  
8.2  
43  
9.9  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
nC  
V
VGS = 5.0V  
VDD = 28V  
ID = 5.0A  
Rise Time  
td(off)  
tf  
Turn-Off Delay Time  
19  
ns  
RG = 28 Ω  
VGS = 5.0V  
Fall Time  
16  
LD  
Internal Drain Inductance  
4.5  
Between lead,  
D
nH 6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
S
and center of die contact  
VGS = 0V  
DS = 25V  
pF ƒ = 1.0MHz  
Ciss  
Input Capacitance  
–––  
–––  
–––  
–––  
–––  
–––  
380  
62  
–––  
–––  
–––  
–––  
–––  
–––  
Coss  
Output Capacitance  
V
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
39  
Coss  
180  
50  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 44V, ƒ = 1.0MHz  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance  
81  
VGS = 0V, VDS = 0V to 44V  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
I
Continuous Source Current  
–––  
–––  
16  
MOSFET symbol  
S
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
I
–––  
–––  
64  
SM  
S
(Body Diode)  
p-n junction diode.  
V
t
Diode Forward Voltage  
–––  
–––  
–––  
–––  
16  
1.3  
24  
17  
V
T = 25°C, I = 9.6A, V  
= 0V  
GS  
SD  
J
S
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 9.6A, VDD = 28V  
J F  
rr  
di/dt = 100A/µs  
Q
t
11  
nC  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
2
www.irf.com  
IRLR/U024Z  
100  
10  
1
100  
10  
1
VGS  
10V  
VGS  
10V  
TOP  
TOP  
9.0V  
7.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
9.0V  
7.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
BOTTOM  
BOTTOM  
3.0V  
3.0V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
0.1  
1
10  
0.1  
1
10  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
100  
10  
1
15  
T
= 25°C  
J
T
= 175°C  
J
10  
5
T
= 175°C  
J
T
= 25°C  
V
J
V
= 8.0V  
DS  
= 10V  
DS  
300µs PULSE WIDTH  
60µs PULSE WIDTH  
0.1  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10 12 14 16  
I ,Drain-to-Source Current (A)  
D
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRLR/U024Z  
10000  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 5.0A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
V
V
V
= 44V  
= 28V  
= 11V  
DS  
DS  
DS  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
1000  
100  
10  
C
iss  
C
oss  
C
rss  
1
10  
100  
0
1
2
3
4
5
6
7
V
, Drain-to-Source Voltage (V)  
Q
Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-SourceVoltage  
Drain-to-SourceVoltage  
100  
10  
1
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
1
1msec  
Tc = 25°C  
Tj = 175°C  
T
= 25°C  
1.5  
J
V
= 0V  
10msec  
GS  
Single Pulse  
0.1  
0.0  
0.5  
1.0  
2.0  
2.5  
3.0  
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRLR/U024Z  
2.5  
2.0  
1.5  
1.0  
0.5  
16  
14  
12  
10  
8
I
= 5.0A  
D
V
= 5.0V  
GS  
6
4
2
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T , Junction Temperature (°C)  
T
, Case Temperature (°C)  
J
C
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs.Temperature  
CaseTemperature  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
0.1  
0.01  
0.02  
0.01  
Ri (°C/W) τi (sec)  
τ
J τJ  
τ
2.354  
0.000354  
τ
Cτ  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
1.926  
0.001779  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRLR/U024Z  
100  
80  
60  
40  
20  
0
15V  
I
D
TOP  
1.2A  
1.8A  
BOTTOM 9.6A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
V0GVS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
2.5  
2.0  
1.5  
1.0  
V
G
Charge  
I
= 250µA  
D
Fig 13a. Basic Gate Charge Waveform  
L
VCC  
DUT  
0
1K  
-75 -50 -25  
0
25 50 75 100 125 150 175  
T , Temperature ( °C )  
J
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRLR/U024Z  
100  
10  
1
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
Duty Cycle = Single Pulse  
0.01  
assuming  
Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
0.1  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
30  
25  
20  
15  
10  
5
TOP  
BOTTOM 1% Duty Cycle  
= 9.6A  
Single Pulse  
I
D
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
0
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
175  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
vs.Temperature  
www.irf.com  
7
IRLR/U024Z  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRLR/U024Z  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
2.38 (.094)  
2.19 (.086)  
6.73 (.265)  
6.35 (.250)  
1.14 (.045)  
0.89 (.035)  
- A -  
1.27 (.050)  
0.88 (.035)  
5.46 (.215)  
5.21 (.205)  
0.58 (.023)  
0.46 (.018)  
4
6.45 (.245)  
5.68 (.224)  
6.22 (.245)  
5.97 (.235)  
10.42 (.410)  
9.40 (.370)  
1.02 (.040)  
1.64 (.025)  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
0.51 (.020)  
MIN.  
2 - DRAIN  
- B -  
3 - SOURCE  
4 - DRAIN  
1.52 (.060)  
1.15 (.045)  
0.89 (.035)  
0.64 (.025)  
3X  
0.58 (.023)  
0.46 (.018)  
1.14 (.045)  
0.76 (.030)  
2X  
0.25 (.010)  
M A M B  
NOTES:  
2.28 (.090)  
1
2
3
4
DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
CONTROLLING DIMENSION : INCH.  
4.57 (.180)  
CONFORMS TO JEDEC OUTLINE TO-252AA.  
DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,  
SOLDER DIP MAX. +0.16 (.006).  
D-Pak (TO-252AA) Part Marking Information  
EXAMPLE: THIS IS AN IRFR120  
PART NUMBER  
WIT H AS S E MB LY  
LOT CODE 1234  
RECTIFIER  
ASSEMBLED ON WW 16, 1999  
INTERNATIONAL  
DAT E CODE  
YEAR 9 = 1999  
WE E K 16  
IRFR120  
916A  
34  
LOGO  
IN THE ASSEMBLYLINE "A"  
12  
LINE A  
No te : "P" in assembly line  
pos ition indicates "Lead-Free"  
AS S E MB L Y  
LOT CODE  
OR  
PART NUMBER  
DATE CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFR120  
P916A  
34  
P = DE S IGNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
YEAR 9 = 1999  
12  
AS S E MB L Y  
LOT CODE  
WEEK 16  
A = AS S E MB L Y S IT E CODE  
www.irf.com  
9
IRLR/U024Z  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
6.73 (.265)  
6.35 (.250)  
2.38 (.094)  
2.19 (.086)  
- A -  
0.58 (.023)  
0.46 (.018)  
1.27 (.050)  
5.46 (.215)  
0.88 (.035)  
5.21 (.205)  
LEAD ASSIGNMENTS  
1 - GATE  
4
2 - DRAIN  
6.45 (.245)  
5.68 (.224)  
3 - SOURCE  
4 - DRAIN  
6.22 (.245)  
5.97 (.235)  
1.52 (.060)  
1.15 (.045)  
1
2
3
- B -  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH.  
2.28 (.090)  
1.91 (.075)  
9.65 (.380)  
8.89 (.350)  
3 CONFORMS TO JEDEC OUTLINE TO-252AA.  
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,  
SOLDER DIP MAX. +0.16 (.006).  
1.14 (.045)  
0.76 (.030)  
1.14 (.045)  
0.89 (.035)  
3X  
0.89 (.035)  
0.64 (.025)  
3X  
0.25 (.010)  
M A M B  
0.58 (.023)  
0.46 (.018)  
2.28 (.090)  
2X  
I-Pak (TO-251AA) Part Marking Information  
PART NUMBER  
EXAMPLE: THIS IS AN IRFU120  
INTERNATIONAL  
RECTIFIER  
LOGO  
WITH ASSEMBLY  
LOT CODE 5678  
DATE CODE  
YEAR 9 = 1999  
WE E K 19  
IRFU120  
919A  
78  
AS SEMBLED ON WW 19, 1999  
IN THE ASSEMBLY LINE "A"  
56  
LINE A  
AS S E MB L Y  
LOT CODE  
Note: "P" in as sembly line  
pos ition indicates "L ead-F r ee"  
OR  
PART NUMBER  
DATE CODE  
P = DE S I GNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
INTERNATIONAL  
RECTIFIER  
LOGO  
IRFU120  
56 78  
YEAR 9 = 1999  
AS S E MB L Y  
LOT CODE  
WEE K 19  
A = AS S E MB L Y S IT E CODE  
10  
www.irf.com  
IRLR/U024Z  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.54mH  
†
‡
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
This value determined from sample failure population. 100%  
tested to this value in production.  
RG = 25, IAS = 9.6A, VGS =10V. Part not  
recommended for use above this value.  
When mounted on 1" square PCB (FR-4 or G-10 Material) .  
For recommended footprint and soldering techniques refer to  
application note #AN-994.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the same  
charging time as Coss while VDS is rising from 0 to  
ˆ R ismeasuredatTJofapproximately90°C.  
θ
80% VDSS  
.
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/04  
www.irf.com  
11  

相关型号:

IRLR024ZPBF

AUTOMOTIVE MOSFET
INFINEON

IRLR024ZTRPBF

Power Field-Effect Transistor, 16A I(D), 55V, 0.058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRLR024ZTRR

Power Field-Effect Transistor, 16A I(D), 55V, 0.058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, PLASTIC, DPAK-3
INFINEON

IRLR024_09

Power MOSFET
VISHAY

IRLR034A

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 23A I(D) | TO-252AA
ETC

IRLR110

POWER MOSFET
INFINEON

IRLR110

Power MOSFET
VISHAY

IRLR110

Power Field-Effect Transistor, 4A I(D), 100V, 0.75ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, DPAK-3
SAMSUNG

IRLR110A

ADVANCED POWER MOSFET
FAIRCHILD

IRLR110ATF

4.7A, 100V, 0.44ohm, N-CHANNEL, Si, POWER, MOSFET, TO-252, DPAK-3
ROCHESTER

IRLR110ATM

Power Field-Effect Transistor, 4.7A I(D), 100V, 0.44ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252, DPAK-3
FAIRCHILD

IRLR110PBF

HEXFET㈢ Power MOSFET
INFINEON