IRLR3114ZPBF [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRLR3114ZPBF
型号: IRLR3114ZPBF
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

晶体 晶体管 功率场效应晶体管
文件: 总11页 (文件大小:746K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97284  
AUTOMOTIVE MOSFET  
IRLR3114ZPbF  
IRLU3114ZPbF  
Features  
HEXFET® Power MOSFET  
l
l
l
l
l
l
Advanced Process Technology  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Logic Level  
D
VDSS = 40V  
G
R
DS(on) = 4.9mΩ  
Description  
SpecificallydesignedforAutomotiveapplications,  
this HEXFET® Power MOSFET utilizes the latest  
processing techniques to achieve extremely low  
on-resistancepersiliconarea. Additionalfeatures  
of this design are a 175°C junction operating  
temperature, fast switching speed and improved  
repetitive avalanche rating . These features com-  
binetomakethisdesignanextremelyefficientand  
reliable device for use in Automotive applications  
and a wide variety of other applications.  
S
D-Pak  
I-Pak  
IRLR3114ZPbF IRLU3114ZPbF  
Absolute Maximum Ratings  
Parameter  
Max.  
130  
89  
Units  
I
I
I
I
@ T = 25°C  
C
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
D
D
D
@ T = 100°C  
C
A
@ T = 25°C  
C
42  
500  
140  
DM  
P
@T = 25°C  
Power Dissipation  
C
W
D
Linear Derating Factor  
0.95  
±16  
W/°C  
V
V
Gate-to-Source Voltage  
GS  
EAS (Thermally limited)  
130  
260  
mJ  
Single Pulse Avalanche Energy  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
EAS (Tested )  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
mJ  
Repetitive Avalanche Energy  
T
J
-55 to + 175  
Operating Junction and  
T
°C  
Storage Temperature Range  
STG  
Reflow Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
1.05  
40  
Units  
Rθ  
JC  
Junction-to-Case  
Rθ  
JA  
Rθ  
JA  
°C/W  
Junction-to-Ambient (PCB mount)  
Junction-to-Ambient  
110  
HEXFET® isaregisteredtrademarkofInternationalRectifier.  
www.irf.com  
1
5/9/07  
IRLR/U3114ZPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V
V(BR)DSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.032 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.0  
3.9  
5.2  
4.9  
6.5  
2.5  
–––  
20  
VGS = 10V, ID = 42A  
VGS = 4.5V, ID = 42A  
VDS = VGS, ID = 100µA  
VDS = 10V, ID = 42A  
VGS(th)  
Gate Threshold Voltage  
–––  
–––  
–––  
–––  
–––  
V
S
gfs  
IDSS  
Forward Transconductance  
Drain-to-Source Leakage Current  
98  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA VDS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
nA VGS = 16V  
250  
100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
––– -100  
VGS = -16V  
Qg  
Qgs  
Qgd  
td(on)  
tr  
40  
12  
56  
ID = 42A  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
nC VDS = 20V  
18  
VGS = 4.5V  
25  
VDD = 20V  
ID = 42A  
Rise Time  
140  
33  
td(off)  
tf  
Turn-Off Delay Time  
ns RG = 3.7Ω  
VGS = 4.5V  
Fall Time  
50  
D
S
LD  
Internal Drain Inductance  
4.5  
Between lead,  
nH 6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
Ciss  
Input Capacitance  
––– 3810 –––  
VGS = 0V  
Coss  
Output Capacitance  
–––  
–––  
650  
350  
–––  
–––  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
pF ƒ = 1.0MHz  
Coss  
––– 2390 –––  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 32V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 32V  
Coss  
Output Capacitance  
–––  
–––  
580  
820  
–––  
–––  
Coss eff.  
Effective Output Capacitance  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
I
Continuous Source Current  
–––  
–––  
130  
S
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
I
–––  
–––  
500  
SM  
S
(Body Diode)  
p-n junction diode.  
V
t
Diode Forward Voltage  
–––  
–––  
–––  
–––  
30  
1.3  
45  
41  
V
T = 25°C, I = 42A, V = 0V  
SD  
J
S
GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 42A, VDD = 20V  
J F  
rr  
di/dt = 100A/µs  
Q
t
27  
nC  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
2
www.irf.com  
IRLR/U3114ZPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
VGS  
15V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
2.5V  
1
60µs PULSE WIDTH  
Tj = 175°C  
2.5V  
60µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
200  
150  
100  
50  
T
= 25°C  
J
100  
10  
1
T
= 175°C  
J
T
= 25°C  
J
T
= 175°C  
J
V
= 10V  
DS  
380µs PULSE WIDTH  
V
= 15V  
DS  
60µs PULSE WIDTH  
0.1  
0
1
2
3
4
5
6
7
0
20  
40  
60  
80  
100  
I ,Drain-to-Source Current (A)  
D
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRLR/U3114ZPbF  
100000  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 42A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
V
= 32V  
= 20V  
= 8.0V  
DS  
= C + C  
ds  
gd  
V
V
DS  
DS  
10000  
1000  
100  
C
iss  
C
oss  
C
rss  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
10  
20  
30  
40  
50  
V
Q , Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-SourceVoltage  
Drain-to-SourceVoltage  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
DC  
1.0  
1
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
, Source-to-Drain Voltage (V)  
V
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRLR/U3114ZPbF  
2.0  
1.5  
1.0  
0.5  
140  
120  
100  
80  
I
= 42A  
D
V
= 10V  
GS  
Limited By Package  
60  
40  
20  
0
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
25  
50  
75  
100  
125  
150  
175  
T
T
, Case Temperature (°C)  
J
C
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs.Temperature  
CaseTemperature  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.01  
0.0350  
0.2433  
0.4851  
0.2867  
0.000013  
0.000077  
0.001043  
0.004658  
τ
τ
J τJ  
τ
Cτ  
τ
1τ1  
Ci= τi/Ri  
τ
τ
2τ2  
3τ3  
4τ4  
0.02  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRLR/U3114ZPbF  
600  
500  
400  
300  
200  
100  
0
15V  
I
D
TOP  
9.7A  
17A  
BOTTOM 42A  
DRIVER  
L
V
DS  
D.U.T  
AS  
R
G
+
-
V
DD  
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
GS  
GD  
V
G
Charge  
Fig 13a. Basic Gate Charge Waveform  
I
I
I
I
= 150µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
L
VCC  
DUT  
0
1K  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
T
J
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRLR/U3114ZPbF  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long as  
neither Tjmax nor Iav (max) is exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
150  
100  
50  
TOP  
BOTTOM 1.0% Duty Cycle  
= 42A  
Single Pulse  
I
D
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
vs.Temperature  
www.irf.com  
7
IRLR/U3114ZPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRLR/U3114ZPbF  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak (TO-252AA) Part Marking Information  
25  
www.irf.com  
9
IRLR/U3114ZPbF  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
I-Pak (TO-251AA) Part Marking Information  
25  
10  
www.irf.com  
IRLR/U3114ZPbF  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Notes:  
„
†
‡
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.15mH  
RG = 25, IAS = 42A, VGS =10V. Part not  
recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
This value determined from sample failure population. 100%  
tested to this value in production.  
When mounted on 1" square PCB (FR-4 or G-10 Material).  
ˆ Rθ is measured at TJ approximately 90°C.  
Data and specifications subject to change without notice.  
This product has been designed for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/07  
www.irf.com  
11  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY