IRS2130303DTRPBF [INFINEON]

Interface Circuit,;
IRS2130303DTRPBF
型号: IRS2130303DTRPBF
厂家: Infineon    Infineon
描述:

Interface Circuit,

文件: 总23页 (文件大小:637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
Data Sheet No. PD60256  
IRS2130D/ IRS21303D /IRS2132D  
3-PHASE BRIDGE DRIVER  
Product Summary  
Features  
Floating channel designed for bootstrap operation  
Fully operational to +600 V  
VOFFSET  
600 V max.  
Tolerant to negative transient voltage – dV/dt immune  
Gate drive supply range from 10 V to 20 V  
Undervoltage lockout for all channels  
Over-current shutdown turns off all six drivers  
Three Independent half-bridge drivers  
Matched propagation delay for all channels  
2.5 V logic compatible  
IO+/-  
200 mA / 420 mA  
VOUT  
10 V – 20 V (IRS213(0,2)D)  
13 V – 20 V (IRS21303D)  
500 ns  
ton/off (typ.)  
Deadtime (typ.)  
2.5 µs (IRS2130D)  
0.8 µs (IRS213(2,03)D)  
Outputs out of phase with inputs  
Cross-conduction prevention logic  
All parts are LEAD-FREE  
Integrated bootstrap diode function  
Applications:  
*Motor Control  
*Air Conditioners/ Washing Machines  
*General Purpose Inverters  
*Micro/Mini Inverter Drives  
Description  
Packages  
The IRS213(0, 03, 2)D are high voltage, high speed  
power MOSFET and IGBT drivers with three independent  
high and low side referenced output channels. Proprietary  
HVIC technology enables ruggedized monolithic  
construction. Logic inputs are compatible with CMOS or  
LSTTL outputs, down to 2.5 V logic. A ground-referenced  
operational amplifier provides analog feedback of bridge  
current via an external current sense resistor. A current trip  
function which terminates all six outputs is also derived from  
this resistor. An open drain FAULT signal indicates if an  
over-current or undervoltage shutdown has occurred. The  
output drivers feature a high pulse current buffer stage  
designed for minimum driver cross-conduction. Propagation  
delays are matched to simplify use at high frequencies. The  
floating channels can be used to drive N-channel power  
28-Lead SOIC  
28-Lead PDIP  
44-Lead PLCC w/o 12 Leads  
MOSFETs or IGBTs in the high side configuration which operates up to 600 volts.  
Up to 600V  
Typical Connection  
Vcc  
VB1,2,3  
Vcc  
HIN1,2,3  
LIN1,2,3  
HO1,2,3  
VS1,2,3  
HIN1,2,3  
LIN1,2,3  
FAULT  
FAULT  
ITRIP  
CAO  
CA-  
TO  
LOAD  
CAO  
LO1,2,3  
VSS  
VS0  
GND  
(Refer to Lead Assignments for correct pin configuration ). This diagram shows electrical connections only.  
Please refer to our Application Notes and Design Tips for proper circuit board layout.  
www.irf.com  
1
IRS213(0, 03, 2)D(S & J)PbF  
Absolute Maximum Ratings  
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to VSO. The thermal resistance and power dissipation ratings are  
measured under board mounted and still air conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
VB1,2,3  
High Side Floating Supply Voltage  
-0.3  
620  
VS1,2,3  
VHO1,2,3  
VCC  
VSS  
VLO1,2,3  
High Side Floating Offset Voltage  
High Side Floating Output Voltage  
Low Side and Logic Fixed Supply Voltage  
Logic Ground  
VB1,2,3 - 20  
VS1,2,3 - 0.3  
-0.3  
VCC - 20  
-0.3  
VB1,2,3 + 0.3  
VB1,2,3 + 0.3  
20  
VCC + 0.3  
VCC + 0.3  
Low Side Output Voltage  
V
(VSS + 15) or  
(VCC + 0.3),  
whichever is  
lower  
Logic Input Voltage ( HIN1,2,3, LIN1,2,3 & ITRIP)  
VIN  
VSS -0.3  
VFLT  
VCAO  
VCA-  
FAULT Output Voltage  
VSS -0.3  
VCC +0.3  
VCC +0.3  
VCC +0.3  
50  
Operational Amplifier Output Voltage  
Operational Amplifier Inverting Input Voltage  
Allowable Offset Supply Voltage Transient  
VSS -0.3  
VSS -0.3  
dVS/dt  
V/ns  
W
(28 lead PDIP)  
-55  
1.5  
1.6  
2.0  
83  
78  
63  
150  
150  
PD  
Package Power Dissipation @ TA +25 °C  
(28 lead SOIC)  
(44 lead PLCC)  
(28 lead PDIP)  
(28 lead SOIC)  
(44 lead PLCC)  
Rth,JA  
Thermal Resistance, Junction to Ambient  
°C/W  
°C  
TJ  
TS  
TL  
Junction Temperature  
Storage Temperature  
Lead Temperature (soldering, 10 seconds)  
300  
www.irf.com  
2
IRS213(0, 03, 2)D(S & J)PbF  
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in Fig. 1. For proper operation, the device should be used within the  
recommended conditions. All voltage parameters are absolute voltage referenced to VSO. The VS offset rating is  
tested with all supplies biased at a 15 V differential.  
Symbol  
Definition  
High Side Floating Supply Voltage IRS213(0,2)D  
High Side Floating Supply Voltage IRS21303D  
High Side Floating Offset Voltage  
Min.  
Max.  
Units  
VS1,2,3 +10  
VB1,2,3  
VS1,2,3 +20  
V
S1,2,3 +13  
Note 1  
VS1,2,3  
600  
VHO1,2,3  
High Side Floating Output Voltage  
VS1,2,3  
10  
VB1,2,3  
Low Side and Logic Fixed Supply Voltage IRS213(0,2)D  
Low Side and Logic Fixed Supply Voltage IRS21303D  
Logic Ground  
Low Side Output Voltage  
Logic Input Voltage (HIN1,2,3, LIN1,2,3 & ITRIP)  
VCC  
20  
13  
V
VSS  
VLO1,2,3  
VIN  
VFLT  
VCAO  
VCA-  
TA  
-5  
0
5
VCC  
VSS  
VSS  
VSS  
VSS  
-40  
VSS + 5  
VCC  
VSS + 5  
VSS + 5  
125  
FAULT Output Voltage  
Operational Amplifier Output Voltage  
Operational Amplifier Inverting Input Voltage  
Ambient Temperature  
°C  
Note 1: Logic operational for VS of (VSO -5 V) to (VSO +600 V). Logic state held for VS of (VSO -5 V) to (VSO – VBS .  
)
(Please refer to the Design Tip DT97-3 for more details).  
Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2 V zener diode.  
www.irf.com  
3
IRS213(0, 03, 2)D(S & J)PbF  
Static Electrical Characteristics  
VBIAS (VCC, VBS1,2,3) = 15 V, VSO1,2,3 = VSS and TA = 25 °C unless otherwise specified. The VIN, VTH and IIN parameters  
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The VO and IO parameters  
are referenced to VSO1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
Symbol  
Definition  
Min Typ Max Units Test Conditions  
VIH  
VIL  
VIT,TH+  
Logic “0” Input Voltage (OUT = LO)  
Logic “1” Input Voltage (OUT = HI)  
ITRIP Input Positive Going Threshold  
2.2  
0.8  
V
400 490 580  
mV  
VOH  
VOL  
ILK  
IQBS  
IQCC  
High Level Output Voltage, VBIAS - VO  
Low Level Output Voltage, VO  
Offset Supply Leakage Current  
Quiescent VBS Supply Current  
Quiescent VCC Supply Current  
Logic “1” Input Bias Current (OUT = HI)  
Logic “0” Input Bias Current (OUT = LO)  
“High” ITRIP Bias Current  
30  
4
100  
100  
50  
50  
VIN = 0 V, IO = 0 A  
VIN = 5 V, IO = 0 A  
VB = VS = 600 V  
µA  
mA  
µA  
nA  
VIN = 0 V  
6
IIN+  
IIN-  
300 400  
220 300  
VIN = 5 V  
ITRIP = 5 V  
ITRIP = 0 V  
IITRIP+  
5
10  
10  
IITRIP-  
“Low” ITRIP Bias Current  
IRS213(0,2)D  
IRS21303D  
IRS213(0,2)D  
IRS21303D  
IRS213(0,2)D  
IRS21303D  
IRS213(0,2)D  
IRS21303D  
IRS213(0,2)D  
IRS21303D  
IRS213(0,2)D  
IRS21303D  
VBS Supply Undervoltage  
7.5 8.35 9.2  
VBSUV+  
VBSUV-  
VCCUV+  
VCCUV-  
VCCUVH  
Positive Going Threshold  
VBS Supply Undervoltage  
Negative Going Threshold  
11  
13  
7.1 7.95 8.8  
9
8.3  
11  
8
9
8.7  
0.3  
2
0.4  
2
55  
11  
9.7  
13  
9.4  
11  
VCC Supply Undervoltage  
Positive going Threshold  
V
VCC Supply Undervoltage  
Negative Going Threshold  
9
Hysteresis  
VBSUVH  
Ron, FLT  
IO+  
Hysteresis  
FAULT Low On-Resistance  
75  
VO = 0 V, VIN = 0 V  
PW 10 µs  
VO = 15 V, VIN = 5 V  
PW 10 µs  
Output High Short Circuit Pulsed Current  
200 250  
mA  
IO-  
Output Low Short Circuit Pulsed Current  
420 500  
RBS  
VOS  
ICA-  
Integrated Bootstrap Diode resistance  
Operational Amplifier Input Offset Voltage  
CA- Input Bias Current  
200  
10  
4
mV  
nA  
VSO = VCA- = 0.2 V  
VCA- = 2.5 V  
Operational Amplifier Common Mode  
Rejection Ratio  
VSO = VCA- = 0.1 V &  
1.1 V  
CMRR  
60  
55  
4.9  
80  
75  
5.2  
dB  
Operational Amplifier Power Supply  
Rejection Ratio  
VSO = VCA- = 0.2 V  
VCC = 10 V & 20 V  
PSRR  
Operational Amplifier High Level Output  
Voltage  
VOH,AMP  
VOL,AMP  
5.4  
30  
V
VCA- = 0 V, VSO =1 V  
Operational Amplifier Low Level Output  
Voltage  
mV  
VCA- = 1 V, VSO =0 V  
Note: Please refer to integrated bootstrap functionality information on pg. 11 for application recommendations.  
www.irf.com  
4
IRS213(0, 03, 2)D(S & J)PbF  
Static Electrical Characteristics - (Continued)  
VBIAS (VCC, VBS1,2,3) = 15 V, VSO1,2,3 = VSS and TA = 25 °C unless otherwise specified. The VIN, VTH and IIN parameters  
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The VO and IO parameters  
are referenced to VSO1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
Symbol  
Definition  
Min Typ Max Units Test Conditions  
VCA- = 0 V, VSO =1 V  
ISRC,AMP  
Operational Amplifier Output Source Current  
4
7
2.1  
10  
4
VCAO = 4 V  
VCA- = 1 V, VSO =0 V  
VCAO = 2 V  
ISNK,AMP  
IO+,AMP  
IO-,AMP  
Operational Amplifier Output Sink Current  
1
mA  
Operational Amplifier Output High Short Circuit  
VCA- = 0 V, VSO =5 V  
VCAO = 0 V  
Current  
Operational Amplifier Output Low Short Circuit  
Current  
VCA- = 5 V, VSO =0 V  
VCAO = 5 V  
Dynamic Electrical Characteristics  
VBIAS (VCC, VBS1,2,3) = 15 V, VSO1,2,3 = VSS , CL = 1000 pF, TA = 25 °C unless otherwise specified.  
Symbol  
Definition  
Turn-on propagation delay  
Turn-off propagation delay  
Turn-on rise time  
Min Typ Max Units Test Conditions  
400 500 700  
400 500 700  
ton  
toff  
t r  
80  
35  
125  
55  
VS1,2,3 = 0 V to 600 V  
tf  
Turn-off fall time  
titrip  
tbl  
tflt  
ITRIP to Output Shutdown Propagation Delay  
ITRIP Blanking Time  
ITRIP to FAULT Indication Delay  
400 660 920  
400  
350 550 870  
325  
ns  
tflt, in  
Input Filter Time (All Six Inputs)  
LIN1,2,3 to FAULT Clear Time IRS213(0,2)D  
LIN1,2,3 & HIN1,2,3 to FAULT Clear Time  
IRS21303D  
tfltclr  
5300 8500 13700  
1300 2000 3100  
500 700 1100  
Deadtime: (IRS2130D  
DT  
(IRS213(2,03)D  
SR+  
SR-  
Operational Amplifier Slew Rate (+)  
Operational Amplifier Slew Rate (-)  
5
2.4  
10  
3.2  
V/µs  
1 V input step  
NOTE: For high side PWM, HIN pulse width must be > 1.5 µs  
www.irf.com  
5
IRS213(0, 03, 2)D(S & J)PbF  
Functional Block Diagram  
IRS2130D/IRS2132D  
VB1  
H1  
SET  
PULSE  
GENERATOR  
LEVEL  
LATCH  
INPUT  
HIN1  
SIGNAL  
DRIVER  
HO1  
L1  
UV  
DETECTOR  
GENERATOR  
HIN2  
HIN3  
SHIFTER  
RESET  
VS1  
Integrated BS  
Diode  
LIN1  
LIN2  
LIN3  
VB2  
HO2  
VS2  
H2  
L2  
PULSE  
GENERATOR  
LEVEL  
SET  
LATCH  
INPUT  
SIGNAL  
DRIVER  
UV  
DETECTOR  
GENERATOR  
SHIFTER  
RESET  
Integrated BS  
Diode  
FAULT  
LATCH  
VB3  
PULSE  
GENERATOR  
LEVEL  
H3  
SET  
FAULT  
LOGIC  
INPUT  
SIGNAL  
GENERATOR  
CLEAR  
LOGIC  
HO3  
DRIVER  
UV  
DETECTOR  
L3  
SHIFTER  
C
S
RESET  
VS3  
Integrated BS  
Diode  
VCC  
LO1  
DRIVER  
ITRIP  
UNDER  
VOLTAGE  
0.5V  
DETECTOR  
CURRENT  
COMPARATOR  
LO2  
DRIVER  
CAO  
CURRENT  
AMP  
LO3  
DRIVER  
CA-  
VSO  
VSS  
www.irf.com  
6
IRS213(0, 03, 2)D(S & J)PbF  
Functional Block Diagram  
IRS21303D  
VB1  
H1  
SET  
PULSE  
GENERATOR  
LEVEL  
LATCH  
INPUT  
HIN1  
HO1  
SIGNAL  
DRIVER  
L1  
UV  
DETECTOR  
GENERATOR  
HIN2  
HIN3  
SHIFTER  
RESET  
VS1  
Integrated BS  
Diode  
LIN1  
LIN2  
LIN3  
VB2  
H2  
L2  
PULSE  
GENERATOR  
LEVEL  
SET  
LATCH  
INPUT  
SIGNAL  
HO2  
DRIVER  
UV  
DETECTOR  
GENERATOR  
SHIFTER  
RESET  
VS2  
Integrated BS  
Diode  
FAULT  
LATCH  
VB3  
PULSE  
GENERATOR  
LEVEL  
H3  
SET  
FAULT  
LOGIC  
INPUT  
SIGNAL  
GENERATOR  
CLEAR  
LOGIC  
HO3  
DRIVER  
UV  
DETECTOR  
L3  
SHIFTER  
C
S
RESET  
VS3  
Integrated BS  
Diode  
VCC  
LO1  
DRIVER  
ITRIP  
UNDER  
VOLTAGE  
0.5V  
DETECTOR  
CURRENT  
COMPARATOR  
LO2  
DRIVER  
CAO  
CURRENT  
AMP  
LO3  
DRIVER  
CA-  
VSO  
VSS  
www.irf.com  
7
IRS213(0, 03, 2)D(S & J)PbF  
Lead Definitions  
Symbol  
Description  
HIN1,2,3  
LIN1,2,3  
FAULT  
VCC  
ITRIP  
CAO  
Logic input for high side gate driver outputs (HO1,2,3), out of phase  
Logic input for low side gate driver output (LO1,2,3), out of phase  
Indicates over-current or undervoltage lockout (low side) has occurred, negative logic  
Low side and logic fixed supply  
Input for over-current shutdown  
Output of current amplifier  
CA-  
Negative input of current amplifier  
VSS  
Logic Ground  
VB1,2,3  
HO1,2,3  
VS1,2,3  
LO1,2,3  
VSO  
High side floating supply  
High side gate drive output  
High side floating supply return  
Low side gate drive output  
Low side return and positive input of current amplifier  
Lead Assignments  
1
VCC  
28  
HO1 27  
1
VCC  
28  
HO1 27  
VB1  
VB1  
2
3
4
2
3
4
HIN1  
HIN2  
HIN3  
HIN1  
HIN2  
HIN3  
6
5
4
3
43  
41  
26  
25  
42  
26  
25  
VS1  
VS1  
7
VB2 24  
VB2 24  
HO2 23  
8
5
6
LIN1  
LIN2  
5
6
LIN1  
LIN2  
LIN1  
LIN2  
37 VB2  
9
HO2 23  
36  
35  
HO2  
VS2  
10  
11  
12  
13  
14  
15  
16  
17  
LIN3  
VS2 22  
VS2 22  
7
8
9
LIN3  
7
8
9
LIN3  
FAULT  
ITRIP  
21  
21  
FAULT  
FAULT  
VB3  
VB3  
20  
19  
18  
17  
16  
20  
19  
18  
17  
16  
ITRIP  
CAO  
CA-  
ITRIP  
CAO  
CA-  
31  
30  
29  
VB3  
10  
11  
12  
13  
HO3  
VS3  
10  
11  
12  
13  
HO3  
VS3  
CAO  
HO3  
VS3  
VSS  
VSO  
LO3  
VSS  
VSO  
LO3  
18 19  
20 21 22 23 24 25  
LO1  
LO1  
LO2 15  
LO2 15  
14  
14  
44 Lead PLCC w /o 12 Leads  
28 Lead PDIP  
28 Lead SOIC (Wide Body)  
IRS213(0,03,2)D  
IRS213(0,03,2)DJ  
Part Number  
IRS213(0,03,2)DS  
www.irf.com  
8
IRS213(0, 03, 2)D(S & J)PbF  
HIN1,2,3  
LIN1,2,3  
ITRIP  
FAULT  
HO1,2,3  
LO1,2,3  
Fig. 1. Input/Output Timing Diagram  
HIN1,2,3  
LIN1,2,3  
50%  
50%  
LO1,2,3  
HO1,2,3  
50%  
DT  
50%  
DT  
Fig. 2. Deadtime Waveform Definitions  
HIN1,2,3  
LIN1,2,3  
50%  
50%  
ton  
toff  
tr  
tf  
90%  
90%  
HO1,2,3  
LO1,2,3  
10%  
10%  
Fig. 3. Input/Output Switching Time Waveform Definitions  
www.irf.com  
9
IRS213(0, 03, 2)D(S & J)PbF  
50%  
LIN1,2,3  
50%  
ITRIP  
FAULT  
50%  
50%  
LO1,2,3  
50%  
tflt  
tfltclr  
titrip  
Fig. 4. Overcurrent Shutdown Switching Time Waveform Definitions  
tin,fil  
tin,fil  
n
Off  
Off  
On  
On  
On  
Off  
HIN/LIN  
HO/LO  
High  
Low  
Fig. 5. Input Filter Function  
VCC  
VSO  
CA-  
CAO  
VSS  
VSS  
Fig. 6. Diagnostic Feedback Operational Amplifier Circuit  
www.irf.com  
10  
IRS213(0, 03, 2)D(S & J)PbF  
-
at very high PWM duty cycle due to  
bootstrap FET equivalent resistance (RBS  
see page 4).  
,
1 Features Description  
1.1 Integrated Bootstrap Functionality  
In these cases better performances can be achieved  
using IRS213(0,03,2)x non D version with external  
bootstrap network.  
IRS213(0,03,2)D family embeds an integrated  
bootstrap FET that allows an alternative drive of the  
bootstrap supply for a wide range of applications.  
2 PCB Layout Tips  
There is one Bootstrap FET for each channel and it is  
connected between each of the floating supply (VB1,  
VB2, VB3) and VCC (see Fig. 7).  
2.1 Distance From H to L Voltage  
The IRS213(0,03,2)D family pin out lack some pins  
(only applies to PLCC package) (see page 8) in order  
to maximizing the distance between the high voltage  
and low voltage pins. It’s strongly recommended to  
place the components tied to the floating voltage in  
the respective high voltage portions of the device  
(VB1,2,3, VS1,2,3) side.  
The bootstrap FET of each channel follows the state  
of the respective low side output stage (i.e., bootFet  
is ON when LO is high, it is OFF when LO is low),  
unless the VB voltage is higher than approximately 17  
V. In that case the bootstrap FET keeps being off until  
VB voltage returns below that threshold (see Fig. 8).  
2.2 Ground Plane  
BootFet1  
VB1  
To minimize noise coupling ground plane must not be  
placed under or near the high voltage floating side.  
VCC  
2.3 Gate Drive Loops  
Current loops behave like an antenna able to receive  
and transmit EM noise (see Fig. 9). In order to reduce  
EM coupling and improve the power switch turn on/off  
performances, gate drive loops must be reduced as  
much as possible. Moreover, current can be injected  
inside the gate drive loop via the IGBT collector-to-  
gate parasitic capacitance. The parasitic auto-  
inductance of the gate loop contributes to develop a  
voltage across the gate-emitter increasing the  
possibility of self turn-on effect.  
BootFet2  
VB2  
BootFet3  
VB3  
Fig. 7. Simplified BootFet Connection  
IGC  
VBX (VCC  
)
Vth~17V  
Vcc=15V  
gate  
CGC  
resistance  
Phase voltage  
LO  
HOX (LOX)  
Gate Drive  
Loop  
VGE  
BootFet  
OFF  
Bootstrap FET  
state  
BootFet  
ON  
BootFet  
ON  
(COM)  
VSX  
Fig. 8. State Diagram  
Fig. 9. Antenna Loops  
Bootstrap FET is suitable for most of the PWM  
modulation schemes and can be used either in  
parallel with the external bootstrap network  
(diode+resistor) or as a replacement of it.  
2.4 Supply Capacitors  
Supply capacitors must be placed as close as  
possible to the device pins (VCC and VSS for the  
ground tied supply, VB and VS for the floating  
The use of the integrated bootstrap as a replacement  
of the external bootstrap network may have some  
limitations in the following situations:  
supply)  
in  
order  
to  
minimize  
parasitic  
-
when used in non-complementary PWM  
schemes (typically 6-step modulations)  
inductance/resistance.  
www.irf.com  
11  
IRS213(0, 03, 2)D(S & J)PbF  
In order to avoid such undervoltage it is highly  
recommended to minimize high side emitter to low  
side collector distance and low side emitter to  
negative bus rail stray inductance. See DT04-4 at  
www.irf.com for more detailed information.  
2.5 Routing and Placement  
Power stage PCB parasitic may generate dangerous  
voltage transients for the gate driver and the control  
logic. In particular it’s recommended to limit phase  
voltage negative transients.  
www.irf.com  
12  
IRS213(0, 03, 2)D(S & J)PbF  
Figures 10-40 provide information on the experimental performance of the IRS2132D HVIC. The line plotted in each  
figure is generated from actual lab data. A large number of individual samples from multiple wafer lots were tested at  
three temperatures (-40 ºC, 25 ºC, and 125 ºC) in order to generate the experimental (Exp.) curve. The line labeled  
Exp. consist of three data points (one data point at each of the tested temperatures) that have been connected  
together to illustrate the understood trend. The individual data points on the curve were determined by calculating the  
averaged experimental value of the parameter (for a given temperature).  
1000  
800  
600  
400  
200  
0
1500  
1200  
900  
600  
300  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 11. Turn-Off Propagation Delay vs. Temperature  
Fig. 10. Turn-On Propagation Delay vs. Temperature  
125  
100  
75  
250  
200  
150  
50  
100  
Exp.  
Exp.  
50  
0
25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 12. Turn-On Rise Time vs. Temperature  
Fig. 13. Turn-Off Fall Time vs. Temperature  
www.irf.com  
13  
IRS213(0, 03, 2)D(S & J)PbF  
1500  
1200  
900  
600  
300  
0
1500  
1200  
900  
600  
300  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 15. TITRIP Propagation Delay vs. Temperature  
Fig. 14. DL TON1 Propagation Delay vs. Temperature  
1500  
1200  
250  
200  
150  
100  
900  
Exp.  
600  
300  
0
50  
Exp.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 16. ITRIP to FAULT Propagation Delay vs.  
Temperature  
Fig.17. FAULT Low On Resistance vs. Temperature  
10  
100  
8
6
4
2
0
80  
60  
40  
20  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 18. VCC Quiescent Current vs. Temperature  
Fig. 19. VBS Quiescent Current vs. Temperature  
www.irf.com  
14  
IRS213(0, 03, 2)D(S & J)PbF  
11  
10  
9
11  
10  
9
Exp.  
Exp.  
8
8
7
7
6
6
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 20. VCCUV+ Threshold vs. Temperature  
Fig. 21. VCCUV- Threshold vs. Temperature  
11  
10  
9
11  
10  
9
Exp.  
Exp.  
8
8
7
7
6
6
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 22. VBSUV+ Threshold vs. Temperature  
Fig. 23. VBSUV- Threshold vs. Temperature  
750  
500  
250  
0
750  
500  
250  
0
EXP.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 24. ITRIP Positive Going Threshold vs. Temperature  
Fig. 25. ITRIP Negative Going Threshold vs.  
Temperature  
www.irf.com  
15  
IRS213(0, 03, 2)D(S & J)PbF  
750  
600  
450  
300  
150  
0
500  
400  
300  
200  
100  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 27. Output Low Short Circuit Current vs.  
Temperature  
Fig. 26. Output High Short Circuit Pulsed Current vs.  
Temperature  
25  
20  
15  
10  
25  
20  
15  
10  
5
Exp.  
5
Exp.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 29. "Low" ITRIP Bias Current vs. Temperature  
Fig. 28. "High" ITRIP Bias Current vs. Temperature  
8
25  
20  
15  
10  
5
Exp.  
6
Exp.  
4
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 30. VOH,AMP vs. Temperature  
Fig. 31. VOL,AMP vs. Temperature  
www.irf.com  
16  
IRS213(0, 03, 2)D(S & J)PbF  
20  
15  
10  
5
5
4
3
2
1
0
Exp.  
Exp.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 32. SR+,AMP vs. Temperature  
Fig. 33. SR-,AMP vs. Temperature  
12  
5
4
3
2
1
0
10  
8
Exp.  
Exp.  
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 34. ISNK,AMP vs. Temperature  
Fig. 35. ISRC,AMP vs. Temperature  
15  
20  
16  
12  
8
12  
9
Exp.  
6
Exp.  
3
4
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 37. IO+,AMP vs. Temperature  
Fig. 36. IO-,AMP vs. Temperature  
www.irf.com  
17  
IRS213(0, 03, 2)D(S & J)PbF  
90  
70  
50  
30  
10  
-10  
125  
100  
75  
50  
25  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 39. PSRR vs. Temperature  
Fig. 38. VOS,AMP vs. Temperature  
150  
125  
100  
75  
Exp.  
50  
25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Fig. 40. CMRR vs. Temperature  
www.irf.com  
18  
IRS213(0, 03, 2)D(S & J)PbF  
Case Outlines  
www.irf.com  
19  
IRS213(0, 03, 2)D(S & J)PbF  
Case Outlines  
www.irf.com  
20  
IRS213(0, 03, 2)D(S & J)PbF  
LOADED TAPE FEED DIRECTION  
B
A
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 28SOICW  
Metric  
Imperial  
Code  
A
Min  
Max  
12.10  
4.10  
Min  
Max  
0.476  
0.161  
0.956  
0.456  
0.433  
0.724  
n/a  
11.90  
3.90  
0.468  
0.153  
0.933  
0.448  
0.425  
0.716  
0.059  
0.059  
B
C
23.70  
11.40  
10.80  
18.20  
1.50  
24.30  
11.60  
11.00  
18.40  
n/a  
D
E
F
G
H
1.50  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 28SOICW  
Metric  
Imperial  
Min  
Code  
A
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
102.00  
30.40  
29.10  
26.40  
Max  
13.001  
0.844  
0.519  
0.096  
4.015  
1.196  
1.145  
1.039  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
B
C
D
E
98.00  
n/a  
26.50  
24.40  
F
G
1.04  
0.96  
H
www.irf.com  
21  
IRS213(0, 03, 2)D(S & J)PbF  
LOADED TAPE FEED DIRECTION  
B
A
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 44PLCC  
Metric  
Imperial  
Code  
A
Min  
Max  
24.10  
4.10  
Min  
Max  
0.948  
0.161  
1.271  
0.562  
0.712  
0.712  
n/a  
23.90  
3.90  
0.94  
B
0.153  
1.248  
0.555  
0.704  
0.704  
0.078  
0.059  
C
31.70  
14.10  
17.90  
17.90  
2.00  
32.30  
14.30  
18.10  
18.10  
n/a  
D
E
F
G
H
1.50  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 44PLCC  
Metric  
Imperial  
Code  
A
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
Min  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
Max  
13.001  
0.844  
0.519  
0.096  
4.015  
1.511  
1.409  
1.303  
B
C
D
E
98.00  
n/a  
102.00  
38.4  
F
G
34.7  
35.8  
1.366  
1.283  
H
32.6  
33.1  
www.irf.com  
22  
IRS213(0, 03, 2)D(S & J)PbF  
LEAD-FREE PART MARKING INFORMATION  
Part number  
IRSxxxxx  
YWW?  
Date code  
IR logo  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode – 4 digit SPN code)  
?
P
MARKING CODE  
Lead Free Released  
Non-Lead Free  
Relased  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
28-Lead PDIP IRS2130DPbF  
28-Lead PDIP IRS21303DPbF  
28-Lead PDIP IRS2132DPbF  
28-Lead SOIC IRS2130DSPbF  
28-Lead SOIC IRS21303DSPbF  
28-Lead SOIC IRS2132DSPbF  
44-Lead PLCC IRS2132DJPbF  
44-Lead PLCC IRS21303DJPbF  
44-Lead PLCC IRS2132DJPbF  
28-Lead PDIP Tape & Reel IRS2130DTRPbF  
28-Lead PDIP Tape & Reel IRS2130303DTRPbF  
28-Lead PDIP Tape & Reel IRS2132DTRPbF  
28-Lead SOIC Tape & Reel IRS2130DSTRPbF  
28-Lead SOIC Tape & Reel IRS21303DSTRPbF  
28-Lead SOIC Tape & Reel IRS2132DSTRPbF  
44-Lead PLCC Tape & Reel IRS2130DJTRPbF  
44-Lead PLCC Tape & Reel IRS21303DJTRPbF  
44-Lead PLCC Tape & Reel IRS2132DJTRPbF  
WORLDWIDE HEADQUARTERS: 233 Kansas Street, El Segundo, CA 90245 Tel: (310) 252-7105  
This part has been qualified per industrial level  
http://www.irf.com Data and specifications subject to change without notice.4/10/2006  
www.irf.com  
23  

相关型号:

IRS21303D

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303DJPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303DJTRPBF

Half Bridge Based Peripheral Driver, PQCC44, LEAD FREE, MS-018AC, PLASTIC, LCC-44
INFINEON

IRS21303DPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303DSPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303DSTRPBF

Half Bridge Based Peripheral Driver, PDSO28, LEAD FREE, MS-013AE, PLASTIC, SOIC-28
INFINEON

IRS21303JPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303JTRPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303PBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303SPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303STRPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS2130D

3-PHASE BRIDGE DRIVER
INFINEON