IRS2552D [INFINEON]

CCFL/EEFL BALLAST CONTROLLER IC; CCFL / EEFL镇流器控制器IC
IRS2552D
型号: IRS2552D
厂家: Infineon    Infineon
描述:

CCFL/EEFL BALLAST CONTROLLER IC
CCFL / EEFL镇流器控制器IC

控制器
文件: 总32页 (文件大小:770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 7, 2009  
IRS2552D  
CCFL/EEFL BALLAST CONTROLLER IC  
Features  
Product Summary  
Drives up to two IGBT/MOSFET power devices  
Topology  
Half-Bridge  
600 V  
Integrated programmable oscillator  
Soft start function  
VOFFSET  
15.6 V voltage clamp on  
Micro-power startup  
0 V to 5 V input analog dimming  
Programmable ignition frequency  
Programmable ignition time  
VCC  
VOUT  
VCC  
IO+ & IO- (typical)  
300 mA & 450 mA  
500ns ~ 2µs  
Deadtime  
(programmable)  
Lamp current control  
Programmable deadtime  
Supports multi-lamp operation  
Burst dimming with soft start at every burst  
Latched open circuit protection  
Integrated bootstrap functionality  
Excellent latch immunity on all inputs & outputs  
Integrated ESD protection on all pins  
Package Options  
Typical Application  
CCFL/EEFL inverter  
16-Lead PDIP  
16-Lead SOIC (Narrow Body)  
Typical Application Diagram  
www.irf.com  
© 2009 International Rectifier  
23  
IRS2552D  
Table of Contents  
Page  
Typical Application Diagram  
1
Qualification Information  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Electrical Characteristics  
Functional Block Diagram  
Lead Definitions  
4
5
6
7
10  
12  
13  
14  
15  
29  
30  
32  
Lead Assignments  
State Diagram  
Application Information and Additional Details  
Package Details  
Part Marking Information  
Ordering Information  
www.irf.com  
© 2009 International Rectifier  
2
IRS2552D  
Description  
The IRS2552D incorporates a high voltage half-bridge gate driver with a front end that incorporates full control  
functionality for CCFL/EEFL ballasts. Includes a programmable ignition and supports dimming via analog or PWM  
control voltage. HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The  
output driver features a high pulse current buffer stage designed for minimum driver cross-conduction. Noise  
immunity is achieved with low di/dt peak of the gate drivers, and with an undervoltage lockout hysteresis of  
approximately 1 V. The IRS2552D also includes protection features for over-current and over-voltage of the lamps.  
www.irf.com  
© 2009 International Rectifier  
3
IRS2552D  
Qualification Information†  
Industrial††  
(per JEDEC JESD 47E)  
Qualification Level  
Comments: This family of ICs has passed JEDEC’s  
Industrial qualification. IR’s Consumer qualification level is  
granted by extension of the higher Industrial level.  
MSL3†††  
SOIC16  
(per IPC/JEDEC J-STD-020C)  
Moisture Sensitivity Level  
Not applicable  
(non-surface mount package style)  
PDIP16  
Class C  
Machine Model  
Human Body Model  
(per JEDEC standard EIA/JESD22-A115-A)  
ESD  
Class 3A  
(per EIA/JEDEC standard JESD22-A114-B)  
Class I, Level A  
IC Latch-Up Test  
RoHS Compliant  
(per JESD78A)  
Yes  
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/  
†† Higher qualification ratings may be available should the user have such requirements. Please contact your  
International Rectifier sales representative for further information.  
††† Higher MSL ratings may be available for the specific package types listed here. Please contact your  
International Rectifier sales representative for further information.  
www.irf.com  
© 2009 International Rectifier  
4
IRS2552D  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal  
resistance and power dissipation ratings are measured under board mounted and still air conditions.  
Symbol  
VB  
Definition  
High-side floating supply voltage  
High-side floating supply offset voltage  
High-side floating output voltage  
Low-side output voltage  
Min.  
-0.3  
VB - 25  
VS – 0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
---  
Max.  
625  
Units  
VS  
VB + 0.3  
VB + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VH  
VL  
VCO  
VCT  
VDT  
MIN  
DIM  
CR  
CD  
SD  
VCO pin voltage  
C pin voltage  
T
V
DT pin voltage  
MIN pin voltage  
DIM pin voltage  
CR pin voltage  
CD pin voltage  
SD pin voltage  
CS pin voltage  
V
CC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
VCC + 0.3  
CS  
ICC  
Supply current†  
Allowable offset voltage slew rate  
25  
50  
mA  
V/ns  
dVS/dt  
-50  
16L-PDIP  
16L-SOIC  
16L-PDIP  
16L-SOIC  
---  
---  
---  
---  
1.3  
1.4  
70  
Package power dissipation @ TA +25  
PD  
W
ºC  
RΘJA  
Thermal resistance, junction to ambient  
ºC/W  
82  
TJ  
TS  
TL  
Junction temperature  
Storage temperature  
Lead temperature (soldering, 10 seconds)  
-55  
-55  
---  
150  
150  
300  
ºC  
This IC contains a voltage clamp structure between the chip VCC and COM which has a nominal breakdown  
voltage of 15.6 V. Please note that this supply pin should not be driven by a DC, low impedance power source  
greater than the VCLAMP specified in the Electrical Characteristics section.  
www.irf.com  
© 2009 International Rectifier  
5
IRS2552D  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions.  
Symbol  
Definition  
High-side floating supply voltage  
Steady-state high-side floating supply offset voltage  
Supply voltage  
Supply current  
Junction temperature  
Min.  
VCC – 0.7  
Max.  
VCLAMP  
Units  
VBS  
-3.0†  
VCCUV+ +0.1V  
††  
VS  
VCC  
ICC  
TJ  
V
600  
VCLAMP  
10  
mA  
ºC  
-40  
125  
Care should be taken to avoid output switching conditions where the V node flies inductively below ground  
S
by more than 5 V.  
†† Enough current should be supplied to the  
pin of the IC to keep the internal 15.6 V zener diode clamping  
VCC  
the voltage at this pin.  
Recommended Component Values  
Symbol  
RMIN  
RMAX  
RDT  
CT  
CDT  
Component  
Min.  
5
5
22  
330  
47  
1
Max.  
Units  
MIN pin resistor value  
MAX pin resistor value  
DT pin resistor value  
CT pin capacitor value  
DT pin capacitor value  
CR pin capacitor value  
CD pin capacitor value  
---  
kΩ  
---  
---  
pF  
nF  
CR  
CD  
1
www.irf.com  
© 2009 International Rectifier  
6
IRS2552D  
Electrical Characteristics  
VBIAS (VCC, VBS) = 14 V, CT = 1 nF and TA = 25 °C unless otherwise specified. The input parameters are referenced to  
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or  
LO.  
Symbol  
Low Voltage Supply Characteristics  
VCCUV Rising VCC undervoltage lockout threshold  
Falling VCC undervoltage lockout threshold  
VCCUVHYS VCC undervoltage lockout hysteresis  
Definition  
Min  
Typ  
Max Units  
Test Conditions  
9.5  
8.5  
0.5  
10.5  
9.5  
1
11.5  
+
VCCUV  
V
N/A  
10.5  
1.5  
-
VCC = VCCUV+  
-100 mV rising  
IQCCUV  
Micropower startup VCC supply current  
Quiescent supply current  
---  
300  
350  
µA  
RMIN  
MODE CT = 0 V  
=
RUN  
12 kΩ,  
IQCC  
VCC  
VCC supply current  
current @ fosc = fMIN  
---  
---  
4.0  
0.9  
4.5  
1.3  
IQCCFLT  
ICC,FMIN  
VCLAMP  
mA  
V
Fault mode  
RMIN = 12 kΩ, RUN  
VCC  
VCC clamp voltage  
---  
4.7  
5.3  
MODE  
ICC = 19 mA  
14.6  
15.6  
16.6  
Floating Supply Characteristics  
VCC VCCUV-  
CC = VBS  
,
IQBSUV  
Micropower startup VBS supply current  
---  
6
20  
µA  
V
IBS  
VBS supply current  
BS supply undervoltage positive going  
---  
1000 1200  
HO oscillating  
V
VBSUV+  
6.5  
7.5  
8.5  
threshold  
V
N/A  
VBS supply undervoltage negative going  
threshold  
VBSUV-  
ILK  
6.0  
---  
7.0  
---  
8.0  
50  
Offset supply leakage current  
VB = VS = 600 V  
μA  
Oscillator I/O Characteristics  
RMIN = 12 kΩ, RUN  
fMIN  
Minimum oscillator frequency  
Maximum oscillator frequency  
36.5  
67  
39  
69  
42.5  
71  
MODE  
kHz  
RMAX = 6.8 kΩ,  
IGNITION MODE  
fMAX  
VCT+  
VCT-  
Upper CT ramp voltage threshold  
Lower CT ramp voltage threshold  
4.8  
---  
5.0  
0
5.2  
---  
V
N/A  
R
MIN =12 kΩ, RUN  
ICT  
CT pin source current  
350  
410  
470  
μA  
MODE  
VMIN  
VMAX  
VMIN pin voltage  
4.8  
4.8  
---  
5.0  
5.0  
0
5.2  
5.2  
---  
VMAX pin voltage  
V
N/A  
VMIN,FLT  
VMAX,FLT  
VMIN voltage in fault mode  
VMAX voltage in fault mode  
---  
0
---  
www.irf.com  
© 2009 International Rectifier  
7
IRS2552D  
Electrical Characteristics  
VBIAS (VCC, VBS) = 14 V, CT = 1 nF and TA = 25 °C unless otherwise specified. The input parameters are referenced to  
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or  
LO.  
Symbol  
Ignition  
Definition  
Min  
Typ  
Max  
Units  
Test Conditions  
R
MIN = 12 kΩ,  
ICR,IGN  
Source current at CR pin in IGN mode  
Ignition detection threshold  
3.7  
4.5  
0.6  
5.3  
μA  
IGNITION MODE  
VCS,IGN  
0.57  
0.63  
V
N/A  
Gate Driver Output Characteristics  
VOH  
VOL  
High-level output voltage, VBIAS – VO  
---  
---  
VCC  
---  
---  
V
I
O = 0 A  
Low-level output voltage, V  
COM  
O
mV  
I
O = 0 A,  
VOL,UV  
UV-mode output voltage, V  
---  
COM  
---  
O
VCC VCCUV-  
tR  
tF  
Output rise time  
Output fall time  
---  
---  
80  
45  
150  
100  
ns  
N/A  
RDT = 2.2 kΩ,  
CDT = 1 nF  
tD  
Output deadtime (HO or LO)  
1.0  
1.1  
1.2  
μs  
IO+  
IO-  
Output source current  
Output sink current  
---  
---  
300  
450  
---  
---  
mA  
N/A  
Bootstrap FET Characteristics  
VB,ON VB when the bootstrap FET is on  
IB,CAP  
13.2  
40  
9
13.5  
55  
---  
---  
---  
V
N/A  
VB source current when FET is on  
VB source current when FET is on  
mA  
mA  
CBS = 0.1 μF  
VB = 10 V  
IB,10V  
12  
Shutdown  
VSD,TH  
Shutdown threshold at SD pin  
CD pin source current  
1.9  
3.7  
4.8  
2.0  
4.5  
5.0  
2.1  
5.3  
5.2  
V
μA  
V
N/A  
VSD>VSD,TH  
,
ICD,source  
VCD,TH  
RMIN = 12 kΩ  
Threshold at which CD triggers shutdown  
VCC = 14 V  
www.irf.com  
© 2009 International Rectifier  
8
IRS2552D  
Electrical Characteristics  
VBIAS (VCC, VBS) = 14 V, CT = 1 nF and TA = 25 °C unless otherwise specified. The input parameters are  
referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective  
output leads: HO or LO.  
Symbol  
Definition  
Min  
Typ  
Max  
Units  
Test Conditions  
Over-Current Compensation  
VCS,TH  
Current compensation threshold at CS pin  
1.15  
3.7  
1.21  
4.5  
1.27  
5.3  
V
N/A  
VCS>VCS,TH  
,
Source current at CD pin when the IC is in  
current compensation mode  
ICD,OC  
μA  
RMIN = 12 kΩ  
Voltage on CD where duty cycle reaches  
minimum  
VCD,oc  
DCMIN  
4.8  
---  
5.0  
5.2  
---  
V
N/A  
V
CD = 4.7 V,  
Minimum HO duty cycle  
10%  
---  
RUN MODE  
Dimming  
VCR+  
CR pin upper threshold voltage  
CR pin lower threshold voltage  
Source current at CR pin in RUN mode  
4.8  
---  
5.0  
0.2  
5.2  
---  
V
N/A  
VCR-  
ICR,RUN  
125  
150  
175  
μA  
RMIN = 12 kΩ  
CR = 100 nF,  
RUN MODE,  
RMIN = 12 kΩ  
fCR  
Frequency at CR pin  
240  
310  
370  
Hz  
Soft Start  
V
CR = 0 V,  
DCMIN  
Minimum HO duty cycle  
---  
10%  
---  
---  
V
V
DIM < VDIM,SS  
VCR,SS  
VDIM,SS  
End of soft start voltage  
0.88  
---  
0.96  
4.8  
1.04  
---  
VDIM < VDIM,SS  
N/A  
Soft start disable threshold  
Enable  
VENATH  
Enable threshold  
Enable hysteresis  
1.9  
---  
2.2  
2.5  
---  
V
N/A  
VENAHYS  
200  
mV  
www.irf.com  
© 2009 International Rectifier  
9
IRS2552D  
Functional Block Diagram  
12  
CS  
IMIN  
ICD  
ICR_IGN  
ICR_RUN  
0.6V  
5V  
1.21V  
5
MIN  
IGNITION  
LOGIC  
OVER  
CURRENT  
CONTROL  
BAND  
GAP  
REF  
IMAX  
5V  
5V  
6
MAX  
SOFT  
START  
CONTROL  
3
VBG  
CT  
S
Q
Q
5V  
0V  
DUTY  
CYCLE  
CONTROL  
R1  
R2  
DEAD TIME  
CONTROL  
EN  
DT  
4
16  
15  
14  
VB  
HO  
VS  
10  
11  
CD  
SD  
PULSE  
FILTER &  
LATCH  
LEVEL  
SHIFT  
5V  
2V  
9
7
CR  
BOOT  
STRAP  
DRIVE  
Q
Q
S
R
UV  
DIM  
1
VCC  
LO  
OUTPUT  
LOGIC  
13  
5V  
UV  
UVLO  
EN  
15.6V  
2
8
COM  
ENA  
0.2V  
2.2V  
www.irf.com  
© 2009 International Rectifier  
10  
IRS2552D  
Input/Output Pin Equivalent Circuit Diagrams: IRS2552D  
VB  
ESD  
Diode  
25V  
HO  
VCC  
CT  
ESD  
Diode  
ESD  
Diode  
VS  
600V  
RESD  
RESD  
ESD  
Diode  
VCC  
ESD  
Diode  
COM  
LO  
25V  
ESD  
Diode  
COM  
VCC  
ESD  
Diode  
MIN,  
MAX  
RESD  
ESD  
Diode  
COM  
www.irf.com  
© 2009 International Rectifier  
11  
IRS2552D  
Lead Definitions  
Symbol  
Description  
Logic and internal gate drive supply voltage  
VCC  
COM  
CT  
IC power and signal ground  
Oscillator timing capacitor  
DT  
Independent dead time R and C  
RFMIN sets running frequency  
RFMAX sets ignition mode frequency  
MIN  
MAX  
DIM  
ENA  
CR  
0 to 5 V DC burst mode dimming control input  
Chip Enable (2 V logic threshold)  
Burst dimming ramp  
CD  
Shutdown delay timing  
SD  
Open load detection  
CS  
Ignition detection (0.6 V threshold), over-current (1.2 V threshold)  
Low side output  
LO  
VS  
Half bridge  
HO  
VB  
High side output  
High side floating supply  
www.irf.com  
© 2009 International Rectifier  
12  
IRS2552D  
Lead Assignments  
VCC  
COM  
CT  
VB  
HO  
VS  
LO  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DT  
MIN  
MAX  
CS  
SD  
CD  
DIM  
ENA  
CR  
www.irf.com  
© 2009 International Rectifier  
13  
IRS2552D  
State Diagram†  
All values are typical. Applies to application circuit on page 1.  
www.irf.com  
© 2009 International Rectifier  
14  
IRS2552D  
Application Information and Additional Details  
Information regarding the following topics is included as subsections within this section of the datasheet.  
IGBT/MOSFET Gate Drive  
Undervoltage Lockout Protection  
Oscillator  
Deadtime  
Ignition  
Run Mode  
Lamp Current Control  
Frequency, Current and Deadtime Calculation  
Dimming Function  
Soft Start  
PCB Layout Tips  
Additional Documentation  
IGBT/MOSFET Gate Drive  
The IRS2552D HVICs are designed to drive up to two MOSFET or IGBT power devices. Figures 1 and 2 illustrate  
several parameters associated with the gate drive functionality of the HVIC. The output current of the HVIC, used to  
drive the gate of the power switch, is defined as IO. The voltage that drives the gate of the external power switch is  
defined as VHO for the high-side power switch and VLO for the low-side power switch; this parameter is sometimes  
generically called VOUT and in this case does not differentiate between the high-side or low-side output voltage.  
VB  
(or VCC  
)
IO+  
HO  
(or LO)  
+
VHO (or VLO)  
-
VS  
(or COM)  
Figure 1: HVIC sourcing current  
Figure 2: HVIC sinking current  
Undervoltage Lock-Out  
The IRS2552D includes an under voltage lockout circuit such that it remains in micro-power mode until the  
voltage at VCC pin exceeds the VCCUV+ threshold. When VCC exceeds the VCCUV+ threshold the IRS2552D  
oscillator starts up and gate drive signals appear at the LO and HO outputs, provided the ENABLE pin is  
connected to a voltage source above VENATH. The LO output will always go high first in order to pre-charge the  
bootstrap capacitor before the IRS2552D begins normal operation.  
www.irf.com  
© 2009 International Rectifier  
15  
IRS2552D  
Oscillator  
During UVLO and shutdown and the voltage at the MIN and MAX pins remain at 0 V. When VCC is raised above  
VCCUV+ the oscillator will start and LO and HO will produce output drive waveforms at frequency FMAX. The MAX  
pin sources 5 V and the resistance connected from this point to COM determines the CT charging current and  
consequently the frequency. RMIN is always connected from the MIN pin to COM, which sets the RUN mode  
frequency. In IGNITION mode the MAX pin supplies 5 V to RMAX, which is connected to COM setting a higher CT  
charging current and consequently a higher ignition frequency, as RMAX is smaller than RMIN. In RUN mode the  
MAX pin is no longer active and the voltage will drop to 0V. CT charges until the voltage reaches the 5 V  
threshold and then it is discharged rapidly to VCT-. It then begins to charge again, repeating this sequence and  
producing a saw tooth waveform. The MIN pin sources 5 V during IGNITION and RUN modes. The current  
flowing through FMIN to COM determines the charging current of CT during RUN mode and also serves as a  
current reference for the currents supplied from the CD and CR pins.  
VCC  
VCCUV+  
CT  
VCT+  
VCT-  
DT  
1/3*VCC  
LO  
HO  
Figure 3: Oscillator waveforms  
Deadtime  
In the IRS2552D the dead time is determined by an independent external timing circuit comprising of RDT and  
CDT and is not affected by the values of CT, RMIN or RMAX. The DT pin voltage is held at COM when LO or HO is  
high. CDT is charged through RDT, which is connected to VCC, when DT is internally disconnected from COM at  
the start of the dead time. The dead time ends when CDT has charged to 1/3 VCC. This allows the dead time to  
remain consistent over the working range of VCC, i.e. from UVLO+ to the clamp voltage of 15.6 V.  
Ignition  
During the IGNITION phase the CR capacitor is charged through an internal current source ICR_IGN. When CR  
reaches VCR+ then if the voltage at CS is greater than VCSIGN, the IRS2552D will enter RUN mode. If the voltage  
at the CS pin is less than VCSIGN the IRS2552D will enter FAULT mode whereby LO and HO will both go low and  
the IRS2552D will shut down until VCC is reduced below VCCUV- and then increased above VCCU+. The ignition  
function is achieved by applying a frequency somewhat above resonance to the output step up transformer and  
resonant load. This should develop sufficient voltage across the lamps to allow partial ignition and some arc  
current to flow. The combined lamp current is fed back to the CS pin through a suitable isolating network to  
determine whether the lamps have ignited successfully. If a successful ignition is detected after the voltage at CR  
has reached VCR+ then RMAX is disconnected inside the IRS2552D and the frequency will switch immediately to  
www.irf.com  
© 2009 International Rectifier  
16  
IRS2552D  
to FMIN, therefore applying maximum power to the lamps. At this point the burst mode dimming function will be  
enabled.  
Run Mode  
In RUN mode an additional current source ICR_RUN is also switched into the circuit. This causes CR to ramp up  
to VCR+ much more rapidly than before. The CR pin is used to provide ignition timing as well as the burst mode  
dimming low frequency ramp.  
If the output is open circuit a very large voltage develops at the output. This is fed back to the SD pin through  
some suitable isolated sensing network such that the voltage at the SD pin will exceed VSDTH during an over-  
voltage condition. At this stage the capacitor CD begins to charge through a current source. When VSD >  
VSDTH the burst mode dimming function is disabled and the output will be continuous.  
If the voltage at SD drops below VSDTH the capacitor CD will be discharged to 0V again. If SD remains above  
VSDTH long enough for the CD capacitor voltage to reach VCDMAX or about 5 V then the IRS2552D will shut  
down and go into fault mode.  
Lamp Current Control  
Additionally the half bridge current is monitored at the CS pin so that during running if too much power is  
supplied to the lamps the IRS2552D is able to compensate by reducing the oscillator duty cycle while  
maintaining the same run frequency. This prevents the lamps from being over driven preventing premature end  
of life. When VCS > VCSTH the CD capacitor will begin to charge and the CD pin voltage will rise. As this occurs  
the duty cycle will begin to adjust, i.e. the HO on time will become gradually shorter and the LO on time will  
become gradually longer. The dead time will remain constant at all times. In this way the power to the output will  
be reduced while the frequency remains at fMIN. As the CD voltage rises, the duty cycle will be further reduced. If  
VCS then drops below VCSTH then the duty cycle will be regulated at that point and thus the current will be  
maintained at this limit. If VCS remains above VCSTH then the voltage will continue to rise on CD until it reaches  
VCDMAX, at which point the duty cycle reaches its minimum limit DCMIN and the IRS2552D will enter FAULT  
mode, requiring VCC to fall below UVLO- and then rise above UVLO+ in order to re-start.  
Frequency, Current, and Dead Time Calculation  
The running frequency of the IRS2552D is given by the following formula:  
1
fMIN  
=
2.09CT RMIN  
where VMIN = 5 V, i.e. When the ignition ramp is complete and RMAX has no further effect on the oscillator.  
The ignition frequency given by:  
1
fMAX  
=
2.09CT RMAX  
and the dead time is calculated by:  
tDT = RDT CDT ln(1.5)  
tDT = 0.405RDT CDT  
www.irf.com  
© 2009 International Rectifier  
17  
IRS2552D  
Maximum duty cycle  
DCMAX = 0.5(tDT * f )  
The ICR charging current during ignition mode and the ICD charging current are given by:  
0.06  
ICRIGN  
=
RMIN  
0.06  
ICD =  
RMIN  
The ICR charging current and frequency during run mode are given by:  
1.8  
ICRRUN  
=
RMIN  
0.36  
RMIN CCR  
fCR  
=
Dimming Function  
The IRS2552D supports burst mode dimming, meaning that the output drive to the lamps is pulsed on and off at  
a low frequency and the burst duty cycle is adjusted to control the average current and therefore the light output  
of the lamps. The IRS2552D contains a low frequency oscillator that generates a ramp waveform at the CR pin  
from 0 V to 5 V. The ramp frequency is dependent on the value of the external CR capacitor. A DC dimming  
control voltage is fed into the DIM pin which is compared with the dimming ramp by means of an internal  
comparator, which generates the PWM signal that is used internally to switch the outputs on and off. Thus when  
the DIM voltage is at 5 V the outputs will be on all of the time and when it is at 0 V the outputs will be off all of the  
time. Alternatively a PWM dimming control signal from 0 V to 5 V can be fed directly into the DIM pin to allow  
external PWM control independent of the dimming ramp. During the off period the LO and HO outputs are both  
low.  
www.irf.com  
© 2009 International Rectifier  
18  
IRS2552D  
5V  
DIM  
CR  
1V  
0.2V  
Soft Start  
Soft Start  
Soft Start  
LO  
HO  
Duty cycle  
increases from 10%  
to 50%  
Figure 4: Dimming waveform  
RUN MODE  
ICCRUN charges CR up to VCR+. CR oscillates at fCR (sawtooth)  
Half-bridge oscillates at FMIN. VDC reset to 0V  
SOFT START  
ON  
OFF  
DC increases from DC  
min to DC max  
DC=DCmax  
DC=0  
VDIM <VCRSS  
VCR<VCRSS  
VCR<VCRSS  
VCR>VDIM  
VCR>VDIM  
VCR>VDIM  
VCRSS <VDIM<VDIMSS  
VDIM>VDIMSS  
VCR<VDIM  
VCR<VDIM  
Soft start  
In addition the IRS2552D includes a soft start function that operates at the start of each burst, during dimming  
operation when VDIM < VDIMSS. The soft start will operate during the portion of the dimming ramp CR at the  
start of each burst from CR = 0 V to CR = VCRSS. When VCR = 0 the duty cycle will be at minimum (DCMIN) and  
will linearly increase to 50% (minus the dead time) when VCR reaches VCRSS. This function is enabled only in  
RUN mode and allows inrush currents to be eliminated during burst mode dimming, while always maintaining the  
frequency at FMIN  
.
www.irf.com  
© 2009 International Rectifier  
19  
IRS2552D  
PCB Layout Tips  
Distance between high and low voltage components: It’s strongly recommended to place the components tied to the  
floating voltage pins (VB and VS) near the respective high voltage portions of the device.  
Ground Plane: In order to minimize noise coupling, the ground plane should not be placed under or near the high  
voltage floating side.  
Gate Drive Loops: Current loops behave like antennas and are able to receive and transmit EM noise (see Figure 5).  
In order to reduce the EM coupling and improve the power switch turn on/off performance, the gate drive loops must  
be reduced as much as possible. Moreover, current can be injected inside the gate drive loop via the IGBT collector-  
to-gate parasitic capacitance. The parasitic auto-inductance of the gate loop contributes to developing a voltage  
across the gate-emitter, thus increasing the possibility of a self turn-on effect.  
Figure 5: Antenna Loops  
Supply Capacitor: It is recommended to place a bypass capacitor (CIN) between the VCC and VSS pins. A ceramic  
1 μF ceramic capacitor is suitable for most applications. This component should be placed as close as possible to  
the pins in order to reduce parasitic elements.  
Routing and Placement: Power stage PCB parasitic elements can contribute to large negative voltage transients as  
the switch node; it is recommended to limit the phase voltage negative transients. In order to avoid such conditions,  
it is recommended to 1) minimize the high-side emitter to low-side collector distance, and 2) minimize the low-side  
emitter to negative bus rail stray inductance. However, where negative VS spikes remain excessive, further steps  
may be taken to reduce the spike. This includes placing a resistor (5 or less) between the VS pin and the switch  
node (see Figure 6), and in some cases using a clamping diode between VSS and VS (see Figure 7). See DT04-4 at  
www.irf.com for more detailed information.  
www.irf.com  
© 2009 International Rectifier  
20  
IRS2552D  
Figure 6: VS resistor  
Figure 7: VS clamping diode  
Additional Documentation  
Several technical documents related to the use of HVICs are available at www.irf.com; use the Site Search  
function and the document number to quickly locate them. Below is a short list of some of these documents.  
DT97-3: Managing Transients in Control IC Driven Power Stages  
AN-1123: Bootstrap Network Analysis: Focusing on the Integrated Bootstrap Functionality  
DT04-4: Using Monolithic High Voltage Gate Drivers  
AN-978: HV Floating MOS-Gate Driver ICs  
www.irf.com  
© 2009 International Rectifier  
21  
IRS2552D  
Programmable parameter characteristics  
Figure 7 to 12 provide the characteristics of the programmable parameters as a function of the value of the  
programming components.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10 15 20 25 30 35 40 45 50  
RMIN(k  
0
300  
600  
900  
1200  
1500  
)
Ω
CT(pF)  
RMIN, RMAX=12.1K  
Figure 7: FMIN, FMAX vs. CT  
Figure 8: FMIN vs. RMIN  
2000  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1600  
1200  
800  
400  
0
0
5
10 15 20 25 30 35 40 45 50  
RMAX(k  
0
400  
800  
1200  
1600  
2000  
)
Ω
CDT(pF)  
RDT=2.21K  
Figure 9: FMAX vs. RMAX  
Figure 10: DT vs. CDT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3000  
2500  
2000  
1500  
1000  
500  
0
0
1
2
3
4
5
6
7
0
500 1000 1500 2000 2500 3000 3500  
CR(pF)  
RDT(K  
)
Ω
Figure 11: DT vs. RDT  
Figure 12: FCR vs. CR  
www.irf.com  
© 2009 International Rectifier  
22  
Parameter characteristics  
Figure 13 to 18 provide the characteristics of the main parameters as a function of VCC or the oscillator  
frequency  
6
5
4
3
2
1
0
20  
16  
12  
8
4
0
0
2
4
6
8
10 12 14 16  
9
9.2  
9.4  
9.6  
9.8  
10  
10.2  
VCC(V)  
VCC(V)  
Figure 13: ICC vs. VCC  
Figure 14: IQCC vs. VCC (VCC raising and falling  
2
1.75  
1.5  
80  
70  
60  
50  
40  
30  
20  
10  
0
FMAX  
FMIN  
1.25  
1
0.75  
0.5  
0.25  
0
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
VCC(V)  
VCC(V)  
RMIN=12.1K, RNAX=6.81K  
Figure15: FMIN, FMAX vs. VCC  
Figure 16: td vs. VCC  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
30  
34  
38  
42  
46  
50  
30  
34  
38  
42  
46  
50  
FMIN(kHz)  
FMAX(kHz)  
Figure 17: ICC RUN vs. FMIN  
Figure 18: ICC FMAX vs. FMAX  
www.irf.com  
© 2009 International Rectifier  
23  
IRS2552D  
Parameter Temperature Trends  
Figures 38-58 provide the characteristics of the main parameters over temperature based on three temperatures (-  
40 ºC, 25 ºC, and 125 ºC) average testing.  
350  
300  
250  
200  
150  
100  
50  
11.5  
11  
10.5  
10  
VCCUV+  
9.5  
9
VCCUV-  
8.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
Figure 19: VCCUV vs. temperature  
Figure 20: IQCCUV vs. temperature  
5.5  
5
4
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
4.5  
4
3.5  
3
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
Figure 21: IQCC vs. temperature  
Figure 22: ICC,FMIN vs. temperature  
www.irf.com  
© 2009 International Rectifier  
24  
IRS2552D  
8.5  
8
16.6  
16.1  
15.6  
15.1  
14.6  
VBSUV+  
VBSUV-  
7.5  
7
6.5  
6
-50  
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
Temperature (C)  
Temperature (C)  
Figure 23: VCLAMP vs. temperature  
Figure 24: VBSUV vs. temperature  
71  
42.5  
41.5  
40.5  
39.5  
38.5  
37.5  
36.5  
70.5  
70  
69.5  
69  
68.5  
68  
67.5  
67  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (C)  
Temperature (C)  
Figure 25: fMIN vs. temperature  
Figure 26: fMAX vs. temperature  
5.2  
5.15  
5.1  
5.2  
5.15  
5.1  
5.05  
5
5.05  
5
4.95  
4.9  
4.95  
4.9  
4.85  
4.8  
4.85  
4.8  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (C)  
Temperature (C)  
Figure 27: VMINvs. temperature  
Figure 28: VMAX vs. temperature  
www.irf.com  
© 2009 International Rectifier  
25  
IRS2552D  
630  
620  
610  
600  
590  
580  
570  
5.3  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
-50  
-25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
-50  
-25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
Temperature (C)  
Temperature (C)  
Figure 29: ICR,IGN vs. temperature  
Figure 30: Vcs,ign vs. temperature  
14  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13  
1.2  
1.18  
1.16  
1.14  
1.12  
1.1  
1.08  
1.06  
1.04  
1.02  
1
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
50  
75  
Temperature (C)  
Temperature (C)  
Figure 31: tD vs. temperature  
Figure 32: VB,ON vs. temperature  
20  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
4
2
0
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
50  
75  
Temperature (C)  
Temperature (C)  
Figure 33: IB,CAP vs. temperature  
Figure 34: IB,10V vs. temperature  
www.irf.com  
© 2009 International Rectifier  
26  
IRS2552D  
2.1  
2.05  
2
5.3  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
1.95  
1.9  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
Figure 35: VSD,TH vs. temperature  
Figure 36: VCD,SOURCEvs. temperature  
1.27  
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
5.2  
5.15  
5.1  
5.05  
5
4.95  
4.9  
4.85  
4.8  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
Figure 37: VCD,TH vs. temperature  
Figure 38: VCDSTH vs. temperature  
5.2  
5.15  
5.1  
5.3  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
5.05  
5
4.95  
4.9  
4.85  
4.8  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
Figure 39: ICD,OC vs. temperature  
Figure 40: VCD,OC vs. temperature  
www.irf.com  
© 2009 International Rectifier  
27  
IRS2552D  
14  
12  
10  
8
360  
340  
320  
300  
280  
260  
240  
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
-50  
-25  
0
25  
50  
75  
100  
100  
100  
125  
125  
125  
Temperature (C)  
Temperature (C)  
Figure 41: DCMIN vs. temperature  
Figure 42: fCR vs. temperature  
5
1040  
1020  
1000  
980  
4.95  
4.9  
4.85  
4.8  
960  
4.75  
4.7  
940  
4.65  
4.6  
920  
900  
4.55  
4.5  
880  
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
50  
75  
Temperature (C)  
Temperature (C)  
Figure 43: VCR,SS vs. temperature  
Figure 44: VDIM,SS vs. temperature  
1.2  
1.1  
1
2.5  
2.4  
2.3  
2.2  
2.1  
2
ENATH+  
ENATH-  
0.9  
0.8  
0.7  
0.6  
0.5  
1.9  
1.8  
1.7  
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
50  
75  
Temperature (C)  
Temperature (C)  
Figure 45: VENA vs. temperature  
Figure 46: IBS vs. temperature  
www.irf.com  
© 2009 International Rectifier  
28  
IRS2552D  
Package Details: PDIP16 and S016N  
www.irf.com  
© 2009 International Rectifier  
29  
IRS2552D  
Package Details: SOIC16N, Tape and Reel  
LOADED TAPE FEED DIRECTION  
A
B
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 16SOICN  
Metric  
Imperial  
Min  
Code  
A
B
C
D
E
F
G
H
Min  
7.90  
3.90  
15.70  
7.40  
6.40  
10.20  
1.50  
1.50  
Max  
8.10  
4.10  
16.30  
7.60  
6.60  
10.40  
n/a  
Max  
0.318  
0.161  
0.641  
0.299  
0.260  
0.409  
n/a  
0.311  
0.153  
0.618  
0.291  
0.252  
0.402  
0.059  
0.059  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 16SOICN  
Metric  
Imperial  
Code  
A
B
C
D
E
F
G
H
Min  
329.60  
20.95  
12.80  
1.95  
98.00  
n/a  
18.50  
16.40  
Max  
330.25  
21.45  
13.20  
2.45  
102.00  
22.40  
21.10  
18.40  
Min  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
Max  
13.001  
0.844  
0.519  
0.096  
4.015  
0.881  
0.830  
0.724  
0.728  
0.645  
www.irf.com  
© 2009 International Rectifier  
30  
IRS2552D  
Part Marking Information  
www.irf.com  
© 2009 International Rectifier  
31  
IRS2552D  
Ordering Information  
Base Part Number  
IRS2552D  
Standard Pack  
Package Type  
Complete Part Number  
Form  
Quantity  
PDIP16  
Tube/Bulk  
25  
45  
IRS2552DPBF  
IRS2552DSPBF  
IRS2552DSTRPBF  
Tube/Bulk  
SOIC16N  
Tape and Reel  
2500  
The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for  
the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other  
rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or  
patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document  
supersedes and replaces all information previously supplied.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
© 2009 International Rectifier  
32  

相关型号:

IRS2552DPBF

Switching Controller, 71kHz Switching Freq-Max, CMOS, PDIP16, ROHS COMPLIANT, PLASTIC, MS-001AA, DIP-16
INFINEON

IRS2552DSPBF

CCFL/EEFL BALLAST CONTROLLER IC
INFINEON

IRS2552DSTRPBF

Switching Controller, 71kHz Switching Freq-Max, CMOS, PDSO16, ROHS COMPLIANT, MS-012AC, SOIC-16
INFINEON

IRS2573

HID BALLAST CONTROL IC
ETC

IRS2573D

HID BALLAST CONTROL IC
INFINEON

IRS2573DSPBF

Switching Controller, 240kHz Switching Freq-Max, PDSO28, ROHS COMPLIANT, MS-013AE, SOIC-28
INFINEON

IRS2573DSTRPBF

Switching Controller, 240kHz Switching Freq-Max, PDSO28, ROHS COMPLIANT, MS-013AE, SOIC-28
INFINEON

IRS25751L

EiceDRIVER™ 480 V 启动驱动器 IC,具有典型的 0 A 拉电流和 0 A 灌电流,采用 5 引脚 SOT23 封装,适用于 IGBT 和 MOSFET。
INFINEON

IRS25751LPBF

Analog Circuit
INFINEON

IRS25751LTRPBF

Analog Circuit
INFINEON

IRS25752L

600 V single high-side gate driver IC with single input
INFINEON

IRS25752LPBF

Buffer/Inverter Based Peripheral Driver, PDSO6, ROHS COMPLIANT, MO-178, SOT-23, 6 PIN
INFINEON