IRS2573D [INFINEON]

HID BALLAST CONTROL IC; HID镇流器控制IC
IRS2573D
型号: IRS2573D
厂家: Infineon    Infineon
描述:

HID BALLAST CONTROL IC
HID镇流器控制IC

文件: 总28页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
March 29, 2010  
Datasheet No – PD97477  
IRS2573D  
HID BALLAST CONTROL IC  
Datasehet  
Features  
Product Summary  
Buck, full-bridge and lamp control in one IC  
Topology  
Full-Bridge & Buck  
Continuous/critical-conduction mode buck control  
600V high and low-side full-bridge driver  
600V high-side buck Driver  
VOFFSET  
VOUT  
600 V  
VCC  
Low-side ignition FET gate driver  
IO+, IO-, IO-Buck  
(typical)  
180mA, 260mA,  
400mA  
Integrated bootstrap FETs for full-bridge high-side drivers  
Constant lamp power control  
Deadtime (typical)  
Duty Cycle  
1.2 µs  
Programmable buck cycle-by-cycle over-current protection  
Programmable buck output voltage limitation  
Programmable lamp current limitation  
Programmable full-bridge frequency  
50% ±1%  
Package Options  
Fault latch reset input  
Programmable ignition counter (21sec/64sec typical)  
Programmable lamp under-voltage fault counter  
(197sec typical) for short-circuit or lamp does not warm-up  
Fast transient lamp under-voltage event counter  
(16384 typical) for arc instability or end-of-life  
Programmable lamp over-voltage fault counter  
(787sec typical) for open-circuit or lamp extinguishes  
Programmable good fault reset counter (2730sec typical)  
Micro-controller compatible timing thresholds  
Internal 15.6V zener clamp diode on VCC  
Micropower startup (150µA)  
SOIC28W  
Latch immunity and ESD protection on all pins  
Typical Application Diagram  
LBUCK  
MBUCK  
RCS  
400VDC  
BUS (+)  
CBUCK  
DBUCK  
RVSENSE1  
RVSENSE2  
RB  
RBB1  
CS  
VB1  
R1  
DHO1  
DHO2  
1
28  
RDHO1  
RDHO2  
RBB2  
RBB3  
CBS1  
CBUS  
CCS  
BUCK  
HO1  
RVSENSE3  
MHS2  
MLS2  
2
27  
MHS1  
MLS1  
RHO1  
RLO1  
RHO2  
RLO2  
TIGN  
VSB  
VS1  
LAMP  
3
26  
CBB  
VBB  
DBS  
LO1  
4
25  
RDB DBB  
VCC  
LO2  
RDLO1  
CBS2  
DLO1  
(+)  
14VDC  
(-)  
5
24  
DLO2 RDLO2  
CVCC1  
COM  
CVCC2  
VB2  
6
23  
RZX  
ZX  
HO2  
7
22  
CTOFF  
CICOMP  
CPCOMP  
TOFF  
VS2  
8
21  
ICOMP  
IGN  
DIGN  
20  
9
COV  
ROV  
COV  
ROC  
PCOMP  
OV  
19  
10  
IREF  
OC  
RIREF  
CT  
18  
11  
CT  
ISENSE  
RIGN  
RISENSE  
CISENSE  
12  
17  
CTIGN  
CTCLK  
TIGN  
VSENSE  
MIGN  
16  
CVSENSE  
RST  
15  
13  
RVSENSE  
CIGN  
TCLK  
14  
RS  
BUS (-)  
www.irf.com  
© 2010 International Rectifier  
IRS2573D  
Table of Contents  
Page  
Typical Application Diagram  
1
Qualification Information  
4
Absolute Maximum Ratings  
Recommended Operating Conditions  
Electrical Characteristics  
Functional Block Diagram  
Input / output Pin Equivalent Circuit Diagram  
Lead Definitions  
5
6
7
10  
11  
12  
13  
14  
15  
23  
25  
26  
27  
28  
Lead Assignments  
State Diagram  
Application Information and Additional Details  
Parameter Temperature Trends  
Package Details  
Package Details, Tape and Reel  
Part Marking Information  
Ordering Information  
www.irf.com  
© 2009 International Rectifier  
2
IRS2573D  
Description  
The IRS2573D is a fully-integrated, fully-protected 600V HID control IC designed to drive all types of HID lamps.  
Internal circuitry provides control for ignition, warm-up, running and fault operating modes. The IRS2573D  
features include ignition timing control, constant lamp power control, programmable full-bridge running frequency,  
programmable over and under-voltage protection and programmable over-current protection.  
Advanced  
protection features such as failure of a lamp to ignite, open load, short-circuit and a programmable fault counter  
have also been included in the design.  
www.irf.com  
© 2009 International Rectifier  
3
IRS2573D  
Qualification Information†  
Industrial††  
Comments: This family of ICs has passed JEDEC’s Industrial  
qualification. IR’s Consumer qualification level is granted by  
extension of the higher Industrial level.  
Qualification Level  
MSL3††† 260°C  
SOIC28W  
Moisture Sensitivity Level  
(per IPC/JEDEC J-STD-020)  
Class B  
Machine Model  
Human Body Model  
(per JEDEC standard JESD22-A115)  
ESD  
Class 2  
(per EIA/JEDEC standard EIA/JESD22-A114)  
Class I, Level A  
(per JESD78)  
Yes  
IC Latch-Up Test  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/  
†† Higher qualification ratings may be available should the user have such requirements. Please contact  
your International Rectifier sales representative for further information.  
††† Higher MSL ratings may be available for the specific package types listed here. Please contact your  
International Rectifier sales representative for further information.  
www.irf.com  
© 2009 International Rectifier  
4
IRS2573D  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The  
thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.  
Symbol  
Definition  
High-Side Floating Supply Voltage  
High-Side Floating Supply Voltage  
High-Side Floating Supply Voltage  
High-Side Floating Supply Offset Voltage  
High-Side Floating Supply Offset Voltage  
High-Side Floating Supply Offset Voltage  
High-Side Floating Output Voltage  
High-Side Floating Output Voltage  
High-Side Floating Output Voltage  
Low-Side Output Voltage  
Low-Side Output Voltage  
Low-Side Output Voltage  
Buck Current Sense Pin Voltage  
Full-Bridge Oscillator Timing Pin Voltage  
Ignition Timer Pin Voltage  
Min.  
-0.3  
-0.3  
-0.3  
Max.  
625  
625  
625  
Units  
V
B1  
V
B2  
V
BB  
V
S1  
V
V
V
V
V
V
– 25  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
+ 0.3  
B1  
B1  
B2  
V
S2  
– 25  
– 20  
- 0.3  
- 0.3  
- 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
B2  
V
SB  
BB  
S1  
S2  
BB  
V
HO1  
B1  
B2  
V
HO2  
V
BUCK  
SB  
BB  
CC  
CC  
CC  
V
LO1  
-0.3  
-0.3  
-0.3  
V
LO2  
V
V
IGN  
V
CS  
V
- 0.3  
SB  
BB  
V
CT  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
TIGN  
V
TCLK  
Fault Timer Pin Voltage  
Reset Pin Voltage  
Lamp Voltage Sense Pin Voltage  
Lamp Current Sense Pin Voltage  
Current Limitation Pin Voltage  
V
RST  
V
VSENSE  
V
ISENSE  
V
OC  
V
OV  
Voltage Limitation Pin Voltage  
Maximum allowable output current (HO1, HO2, BUCK,  
LO1, LO2, IGN) due to external power transistor miller  
effect  
I
-500  
500  
OMAX  
I
Buck High-side Supply Current  
-20  
-5  
-5  
-5  
-5  
20  
5
5
5
5
BB  
I
Buck Current Sense Pin Current  
Buck Compensation Pin Current  
Buck Compensation Pin Current  
Buck Zero-crossing Detection Pin Current  
Buck Off-time Pin Current  
CS  
I
I
ICOMP  
PCOMP  
I
mA  
ZX  
I
-5  
5
TOFF  
Supply current†  
Current Reference Pin Current  
Allowable offset voltage slew rate  
I
-20  
-5  
-50  
20  
5
50  
CC  
I
IREF  
dVS/dt  
V/ns  
W
Package power dissipation @ TA +25  
ºC  
PD  
SOIC28W  
---  
1.6  
RΘJA  
TJ  
TS  
Thermal resistance, junction to ambient SOIC28W  
Junction temperature  
Storage temperature  
---  
-55  
-55  
---  
78  
ºC/W  
150  
150  
300  
ºC  
TL  
Lead temperature (soldering, 10 seconds)  
This IC contains a voltage clamp structure between the chip VCC and COM which has a nominal breakdown  
voltage of 15.6 V. Please note that this supply pin should not be driven by a DC, low impedance power  
source greater than the VCLAMP specified in the Electrical Characteristics section.  
www.irf.com  
© 2009 International Rectifier  
5
IRS2573D  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions.  
Symbol  
VB1-VS1  
VB2-VS2  
VBB-VSB  
VS1,VS2,VS  
B
Definition  
Min.  
Max.  
Units  
High Side Floating Supply Voltage  
High Side Floating Supply Voltage  
High Side Floating Supply Voltage  
VB1UV+  
VB2UV+  
VBBUV+  
VCLAMP1  
VCLAMP1  
VCLAMP1  
V
-1†  
Steady State High-side Floating Supply Offset Voltage  
600  
VCC  
ICC  
Supply Voltage  
VCC Supply Current  
VCCUV+  
VCLAMP1  
10  
††  
†††  
-1  
I
V
BB  
Supply Current  
10  
1
1
---  
---  
---  
---  
---  
VCC  
VCC  
VCC  
VCC  
VCC  
125  
BB  
mA  
ICS  
IZX  
CTOFF  
CT  
CTIGN  
CTCLK  
RIREF  
VRST  
VVSENSE  
VISENSE  
VOC  
Buck Current Sensing Pin Current  
Buck Zero-crossing Sensing Pin Current  
Buck Off-time Pin Capacitor  
Full-bridge Oscillator Timing Pin Capacitor  
Ignition Timer Pin Capacitor  
Fault Counter Pin Capacitor  
Current Reference Pin Resistor  
Reset Pin Voltage  
Voltage Sense Pin Voltage  
Current Sense Pin Voltage  
Current Limitation Pin Voltage  
Voltage Limitation Pin Voltage  
Junction Temperature  
-1  
470  
10  
10  
10  
10  
0
0
0
0
0
pF  
nF  
kOhm  
V
VOV  
TJ  
-40  
ºC  
Care should be taken to avoid output switching conditions where the V node flies inductively below  
S
ground by more than 5 V.  
†† Enough current should be supplied to the  
pin to keep the internal 15.6 V zener diode clamping the  
VCC  
voltage at this pin.  
††† Enough current should be supplied to the  
pin to maintain a VBBSB voltage magnitude of VCLAMP1.  
VBB  
www.irf.com  
© 2009 International Rectifier  
6
IRS2573D  
Electrical Characteristics  
V
= V  
B1S1  
= V  
B2S2  
= V  
BBSB  
= V  
BIAS  
= 14V +/- 0.25V, C  
= C  
= C  
= C  
= C  
=
=
CC  
1000pF, R  
LO1  
LO2  
IGN  
HO1  
HO2 BUCK  
= 20kOhm, R = 10kOhm, R  
= 50kOhm, V  
= COM, CS = VSB, CT = TIGN = TCLK =  
IREF  
OC  
OV  
RST  
VSENSE = ISENSE = PCOMP = ICOMP = ZX = TOFF = COM, T = 25C unless otherwise specified.  
A
Symbol  
Supply Characteristics  
Definition  
Min  
9.5  
Typ  
Max Units Test Conditions  
V
Supply Undervoltage Positive Going  
CC  
Threshold  
Supply Undervoltage Negative  
V
+
V
V
rising from 0V  
falling from 14V  
10.5  
11.5  
CCUV  
CCUV  
CC  
V
CC  
Going Threshold  
V
V
-
8.5  
0.5  
9.5  
1.0  
10.5  
1.5  
CC  
V
CC  
Supply Undervoltage Lockout Hysteresis  
V
I
UVHYS  
UVLO Mode V  
Fault Mode V  
Quiescent Current  
Quiescent Current  
Supply Current  
CC  
V = 9V  
CC  
---  
---  
150  
420  
QCCUV  
CC  
CC  
µA  
I
QCCFLT  
I
Quiescent V  
---  
3.5  
---  
---  
QCC  
VICOMP = VPCOMP = 4V,  
CTOFF=1nF, CT=47nF,  
CTIGN=1uF, CTCLK=0.12uF,  
VSENSE=0.8V  
mA  
V
I
General Mode V  
Supply Current  
CC  
---  
5.0  
CCGM  
Zener Clamp Voltage  
V
I
= 10mA  
V
CC  
14.6  
15.6  
16.6  
CLAMP1  
CC  
Full-Bridge Floating Supply Characteristics  
I
I
Quiescent V  
Quiescent V  
Supply Current  
Supply Current  
V
V
= V  
---  
---  
50  
80  
---  
---  
QB1S1_0  
BS  
BS  
HO1  
S1  
B1  
µA  
= V  
QB1S1_1  
HO1  
V
Supply Undervoltage Positive  
B1S1  
Going Threshold  
Supply Undervoltage Negative  
V
rising from 0V  
falling from 14V  
V
V
8.0  
7.0  
9.0  
8.0  
10.0  
9.0  
B1S1  
B1S1UV+  
V
V
B1S1  
Going Threshold  
Offset Supply Leakage Current  
V
B1S1  
B1S1UV-  
I
I
I
V
S1  
V
V
V
= V = 600V  
---  
---  
---  
---  
50  
80  
50  
---  
---  
LKVS1  
QB2S2_0  
QB2S2_1  
B1 S1  
Quiescent V  
Quiescent V  
Supply Current  
Supply Current  
µA  
= V  
BS  
BS  
HO2  
HO2  
S2  
= V  
B2  
V
Supply Undervoltage Positive  
B2S2  
Going Threshold  
Supply Undervoltage Negative  
V
rising from 0V  
V
8.0  
9.0  
10.0  
B2S2  
B2S2UV+  
V
V
B2S2  
Going Threshold  
Offset Supply Leakage Current  
V
falling from 14V  
V
I
7.0  
---  
8.0  
---  
9.0  
50  
B2S2  
B2S2UV-  
V
S2  
V
= V = 600V  
B2 S2  
µA  
LKVS2  
Buck Floating Supply Characteristics  
Zener Clamp Voltage  
V
I
I
= 10mA  
= V  
SB  
V
19.8  
---  
20.8  
360  
21.8  
V
CLAMP2  
BB  
BB  
Quiescent V  
Supply Current  
V
BUCK  
VICOMP = VPCOMP = 4V,  
CTOFF = 1nF  
µA  
QBBSB_0  
BBSB  
BBSB  
I
V
Supply Current  
---  
1
---  
mA  
V
BBSB  
BBSB  
V
Supply Undervoltage Positive  
V
rising from 0V  
BBSB  
VICOMP = VPCOMP = 0.5V  
V
8.0  
9.0  
10.0  
BBSBUV+  
Going Threshold  
V
Supply Undervoltage Negative  
V
falling from 14V  
BBSB  
Going Threshold  
Offset Supply Leakage Current  
BBSB  
VICOMP = VPCOMP = 0.5V  
V
I
7.0  
8.0  
9.0  
BBSBUV-  
V
SB  
V
BB  
= V = 600V  
SB  
---  
1.03  
50  
---  
1.18  
120  
50  
1.33  
190  
µA  
V
ns  
LKVSB  
V
CS  
CS pin over-current threshold  
CS pin current-sensing blank time  
VICOMP = VPCOMP = 4V  
t
BLANK  
www.irf.com  
© 2009 International Rectifier  
7
IRS2573D  
Electrical Characteristics  
V
= V  
B1S1  
= V  
B2S2  
= V  
BBSB  
= V  
BIAS  
= 14V +/- 0.25V, C  
= C  
= C  
= C  
= C  
=
=
CC  
1000pF, R  
LO1  
LO2  
IGN  
HO1  
HO2 BUCK  
= 20kOhm, R = 10kOhm, R  
= 50kOhm, V  
= COM, CS = VSB, CT = TIGN = TCLK =  
IREF  
OC  
OV  
RST  
VSENSE = ISENSE = PCOMP = ICOMP = ZX = TOFF = COM, T = 25C unless otherwise specified.  
A
Symbol  
Definition  
Min  
Typ Max  
Units Test Conditions  
Buck Control Characteristics  
VPCOMP=7V  
I
I
I
I
OTA1 Error Amplifier Output Current  
Sourcing  
PCOMP  
SOURCE  
V
V
= V  
VSENSE  
VSENSE PCOMP=0uA 0.3V  
ISENSE =  
28  
40  
40  
40  
40  
52  
52  
52  
52  
VPCOMP=7V  
PCOMP  
SINK  
V
= V  
VSENSE  
ISENSE =  
OTA1 Error Amplifier Output Current Sinking 28  
V
VSENSEPCOMP=0uA + 0.3V  
VICOMP=7V  
uA  
OTA2 Error Amplifier Output Current  
Sourcing  
ICOMP  
SOURCE  
V
V
=
ISENSE  
ISENSEICOMP=0uA – 0.5V  
28  
VICOMP=7V  
ICOMP  
SINK  
V
V
=
ISENSE  
ISENSEICOMP=0uA + 0.5V  
OTA2 Error Amplifier Output Current Sinking 28  
I
I
=
PCOMP  
PCOMP_SOURCE  
– 10uA,  
OTA1,2 Error Amplifier Output Voltage  
Swing (high state)  
V
COMPOH  
---  
12.5  
2.0  
---  
---  
V
or I  
I
ICOMP =  
ICOMP_SOURCE – 10uA  
V
V
V
V
V
=
VSENSE  
VSENSE(PCOMP = 0uA)  
ISENSE  
VSENSE  
ISENSE  
Internal Multiplier Gain  
---  
,
K
MULT  
KMULT = VIREF/ ( 2x V  
x V  
)
VSENSE  
ISENSE  
= 500mV  
= 1V  
= 500mV  
V
x V  
ISENSE  
PSENSE  
0.465 0.50 0.535  
VSENSE  
V
VICOMP = 2V  
VPCOMP = 2V  
VPCOMP = 2V  
PCOMP pin buck on/off threshold voltage  
---  
---  
---  
---  
---  
---  
91  
0.2  
0.2  
0.5  
2.0  
400  
6.5  
110  
---  
---  
---  
---  
---  
PCOMPTH  
V
ICOMPTH- ICOMP pin buck off threshold voltage  
ICOMPTH+ ICOMP pin buck on threshold voltage  
V
V
VPCOMP = VICOMP = 7V  
VPCOMP = VICOMP = 7V  
V
V
V
I
ZX pin Comparator Threshold Voltage  
ZX pin Comparator Hysteresis  
ZX pin Clamp Voltage (high state)  
TOFF pin Output Current  
ZX  
ZXhys  
ZXclamp  
mV  
V
uA  
I
= 5mA  
---  
129  
ZX  
VBUCK = VSB  
VPCOMP = VICOMP = 7V  
CTOFF = 1nF  
TOFF  
V
TOFF pin Comparator Threshold Voltage  
1.93  
2.05  
2.17  
V
TOFF  
Full-Bridge Oscillator Characteristics  
f
d
Full-Bridge oscillator frequency  
Oscillator duty cycle  
160  
49  
200  
50  
240  
51  
Hz  
%
OSC  
C
= 47nF  
CT  
td  
td  
V
LO1, LO2 output deadtime  
HO1, HO2 output deadtime  
CT pin upper threshold voltage  
CT pin lower threshold voltage  
0.8  
0.8  
---  
1.2  
1.2  
4.0  
2.0  
1.5  
1.5  
---  
LO1,2  
HO1,2  
CT+  
CT-  
us  
V
V
---  
---  
I
CT  
SOURCE  
V
= 1.5V  
= 4.5V  
CT pin sourcing current  
CT pin sinking current  
---  
---  
80  
80  
---  
---  
CT  
CT  
uA  
I
CT  
SINK  
V
Ignition Timer Characteristics  
T
T
V
IGN pin on-time  
IGN pin off-time  
TIGN pin upper threshold voltage  
TIGN pin lower threshold voltage  
18  
57  
---  
---  
21  
64  
4.0  
2.0  
24  
71  
---  
---  
C
= 1uF  
IGNON  
IGNOFF  
TIGN  
sec  
V
MODE = IGN  
TIGN+  
TIGN-  
TIGN  
V
I
V
V
= 1.5V  
= 4.5V  
TIGN pin sourcing current  
TIGN pin sinking current  
---  
---  
6
6
---  
---  
TIGN  
SOURCE  
uA  
I
TIGN  
TIGN  
SINK  
www.irf.com  
© 2009 International Rectifier  
8
IRS2573D  
Electrical Characteristics  
V
= V  
B1S1  
= V  
B2S2  
= V  
BBSB  
= V  
BIAS  
= 14V +/- 0.25V, C  
= C  
= C  
= C  
= C  
=
=
CC  
1000pF, R  
LO1  
LO2  
IGN  
HO1  
HO2 BUCK  
= 20kOhm, R = 10kOhm, R  
= 50kOhm, V  
= COM, CS = VSB, CT = TIGN = TCLK =  
IREF  
OC  
OV  
RST  
VSENSE = ISENSE = PCOMP = ICOMP = ZX = TOFF = COM, T = 25C unless otherwise specified.  
A
Symbol  
Definition  
Min  
Typ Max  
Units Test Conditions  
Fault Counter Characteristics  
T
C
= 0.12uF  
CLK pin oscillation period  
TCLK pin upper threshold voltage  
TCLK pin lower threshold voltage  
---  
---  
---  
12.0  
4.0  
2.0  
---  
---  
---  
ms  
V
CLK  
TCLK  
V
V
TCLK+  
TCLK-  
TCLK  
I
V
= 1.5V  
TCLK pin sourcing current  
TCLK pin sinking current  
GOOD COUNTER time  
---  
---  
40  
40  
---  
---  
TCLK  
TCLK  
SOURCE  
uA  
I
TCLK  
V
= 4.5V  
= 1uF,  
= 0.8V  
= 0.12uF,  
SINK  
C
TIGN  
t
---  
2850  
197  
787  
---  
GOOD  
V
VSENSE  
VSENSE pin under-voltage fault counter  
time  
VSENSE pin over-voltage fault counter  
time  
C
TCLK  
sec  
t
187  
737  
207  
837  
UVFAULT  
V
< VOV(1/7.5)  
VSENSE  
C
V
= 0.12uF,  
> VOV(2/5)  
TCLK  
t
OVFAULT  
VSENSE  
V
= pulses  
VSENSE  
VSENSE pin fast transient under-voltage  
fault events  
n
16384  
---  
---  
(ton=10us, toff=5us,  
ampl.= 0.8V to COM)  
EVENTS  
V
RST pin rising threshold voltage  
RST pin falling threshold voltage  
---  
1.5  
---  
---  
2.5  
---  
MODE = FAULT  
MODE = UVLO  
RST+  
V
V
V
RST-  
Reference Current Characteristics  
V
IREF  
R
= 20kOhm  
IREF  
IREF pin reference voltage  
1.95  
2.00  
2.05  
Voltage Sensing Characteristics  
VSENSE pin buck voltage limitation  
threshold  
VSENSE pin over-voltage threshold  
VSENSE pin under-voltage threshold  
V
2.3  
2.55  
1.05  
2.8  
OV  
R
= 50kOhm  
V
OV  
OC  
V
V
0.92  
1.18  
OV(2/5)  
OV(1/7.5)  
0.298 0.35 0.403  
Current Limitation Characteristics  
V
R
I
= 10kOhm  
ISENSE pin current limitation threshold  
460  
520  
580  
mV  
ISENSE  
Gate Driver Output Characteristics (HO1, HO2, LO1, LO2, BUCK, IGN pins)  
V
V
T
Low-Level output voltage  
High-Level output voltage  
Turn-On rise time  
---  
---  
---  
---  
COM  
VCC  
120  
50  
---  
---  
OL  
OH  
= 0  
V
O
220  
100  
r
f
ns  
T
Turn-Off fall time  
HO1, HO2, LO1, LO2, IGN Source  
Current  
IO+  
---  
180  
---  
IO-  
IO+  
IO-  
HO1, HO2, LO1, LO2, IGN Sink Current  
BUCK Source Current  
BUCK Sink Current  
---  
---  
---  
260  
180  
400  
---  
---  
---  
mA  
VICOMP = VPCOMP = 10V  
Bootstrap MOSFET Characteristics (VB1, VB2 pins)  
V
VB voltage when BS FET is on  
VB source current when BS FET is on  
13.0  
---  
13.7  
55  
---  
---  
V
B_ON  
I
VBS=0V  
B_CAP  
V
= 10V  
mA  
VB  
I
VB source current when BS FET is on  
---  
12  
---  
B_10V  
CT = 0V, CT = 6V  
www.irf.com  
© 2009 International Rectifier  
9
IRS2573D  
Functional Block Diagram  
www.irf.com  
© 2009 International Rectifier  
10  
IRS2573D  
Input/Output Pin Equivalent Circuit Diagrams: IRS2573D  
VB1,  
VB2  
ESD  
Diode  
VBB  
HO1,  
HO2  
25V  
ESD  
Diode  
ESD  
Diode  
25V  
BUCK  
ESD  
Diode  
VS1,  
VS2  
600V  
VSB  
VCC  
600V  
25V  
ESD  
Diode  
VCC  
LO1,  
LO2,  
IGN  
25V  
COM  
ESD  
Diode  
COM  
VCC  
VCC  
IREF  
ESD  
Diode  
ESD  
Diode  
RESD  
OC,  
OV  
RESD  
ESD  
Diode  
RESD  
ESD  
Diode  
COM  
COM  
VCC  
ESD  
Diode  
TOFF  
RESD  
RESD  
ESD  
Diode  
COM  
www.irf.com  
© 2009 International Rectifier  
11  
IRS2573D  
Lead Definitions  
Symbol  
Description  
CS  
BUCK  
VSB  
Buck Current-sensing Input  
Buck High-side Floating Gate Driver Output  
Buck High-side Floating Return  
VBB  
Buck High-side Floating Gate Driver Supply Voltage  
IC Supply Voltage  
VCC  
COM  
ZX  
IC Power and Signal Ground  
Buck Zero-Crossing Detection Input  
TOFF  
ICOMP  
PCOMP  
IREF  
CT  
Buck Off-time Programming Capacitor  
Buck On-time Current Limit Compensation Capacitor  
Buck On-time Constant Power Compensation Capacitor  
Current Reference Programming Resistor  
Full-Bridge Oscillator Timing Capacitor  
Ignition Timer Programming Capacitor  
Fault Timer Programming Capacitor  
TIGN  
TCLK  
RST  
Fault Reset Input  
VSENSE  
ISENSE  
OV  
Lamp Voltage Sensing Input  
Lamp Current Sensing Input  
ISENSE Over-current Threshold Programming Resistor  
VSENSE Over-voltage Threshold Programming Resistor  
Igniter Low-side Gate Driver Output  
OV  
IGN  
VS2  
Full-Bridge High-side Floating Return  
Full-Bridge High-side Floating Gate Driver Output  
Full-Bridge High-side Floating Gate Driver Supply Voltage  
Full-Bridge Low-side Gate Driver Output  
Full-Bridge Low-side Gate Driver Output  
Full-Bridge High-side Floating Return  
Full-Bridge High-side Floating Gate Driver Output  
Full-Bridge High-side Floating Gate Driver Supply Voltage  
HO2  
VB2  
LO2  
LO1  
VS1  
HO1  
VB1  
www.irf.com  
© 2009 International Rectifier  
12  
IRS2573D  
Lead Assignments  
www.irf.com  
© 2009 International Rectifier  
13  
IRS2573D  
State Diagram†  
Power Turned On  
FAULT Mode  
UVLO Mode  
Full-Bridge Off (CT=0V)  
Buck Off (ICOMP, PCOMP,  
TOFF=0V)  
IGN Timer Off (TIGN=0V)  
CLK Off (TCLK=0V)  
IQCC 150 A  
VCC < UVLO-  
(VCC Fault or Power Down)  
Fault Latch Set  
Full-Bridge Off (CT=0V)  
Buck Off  
VCC < UVLO-  
(Power Off)  
or  
RST > VRST+  
(Fault Reset)  
IGN Timer Off (TIGN=0V)  
CLK Off (TCLK=0V)  
IQCC 350 A  
VCC = 15.6V  
All Counters Reset  
Fault and Good Counters Reset  
Fault Latch Reset  
VCC > UVLO+  
and  
VOV(2/5) < VSENSE < VOV  
VSENSE > VOV  
and  
RST < VRST-  
and  
PCOMP > 0.2V  
and  
ICOMP > 0.5V  
IGN Mode  
IGN (21s 'HIGH'/64s 'LOW')  
Ignition Counter Enabled  
Buck and Full-Bridge Enabled  
CLK and Fault Counters Enabled  
Good Counter Reset  
VSENSE > VOV(2/5) for 787sec  
(open circuit)  
VSENSE OVP Enabled  
VSENSE > VOV(2/5)  
VSENSE < VOV(2/5)  
VSENSE < VOV(1/7.5) for 197sec  
(short circuit or does not warm up)  
or  
GENERAL Mode  
Full-Bridge Oscillating @ fBRIDGE  
Buck Enabled  
VSENSE < VOV(1/7.5) for 16384 Events  
IGN 'LOW'  
CLK and Fault Counters Enabled  
VSENSE OVP Enabled  
ISENSE Over-current Limitation Enabled  
Constant Power Control Enabled  
Good Counter = 2730sec  
(No faults detected)  
VSENSE > VOV  
or  
PCOMP < 0.2V  
or  
ICOMP < 0.2V  
VSENSE < VOV(1/7.5)  
Reset  
Fault and Good  
Counters  
Reset  
Good  
Counter  
BUCK OFF Mode  
VSENSE < VOV(2/5)  
Buck Off  
and  
PCOMP > 0.2V  
Full-Bridge Oscillating  
Fault Counters Enabled  
and  
ICOMP > 0.5V  
All values are typical. Applies to application circuit on page 1.  
www.irf.com  
© 2009 International Rectifier  
14  
IRS2573D  
Application Information and Additional Details  
Information regarding the following topics is included as subsections within this section of the datasheet.  
IGBT/MOSFET Gate Drive  
Undervoltage Lockout Protection  
General Mode  
Ignition Timer  
Full-Bridge Control  
Buck Control  
Constant Power Control  
Current Limitation Control  
Over Voltage Fault Counter  
Under Voltage Fault Counter  
Fast Transient Under-Voltage Fault Counter  
Good Counter  
Fault Reset  
PCB Layout Tips  
Additional Documentation  
IGBT/MOSFET Gate Drive  
The IRS2573D HVICs are designed to drive up to six MOSFET or IGBT power devices. Figures 1 and 2 illustrate  
several parameters associated with the gate drive functionality of the HVIC. The output current of the HVIC, used  
to drive the gate of the power switch, is defined as IO. The voltage that drives the gate of the external power  
switch is defined as VHO for the high-side power switch and VLO for the low-side power switch; this parameter is  
sometimes generically called VOUT and in this case does not differentiate between the high-side or low-side output  
voltage.  
VB  
VB  
(or VCC  
)
(or VCC)  
IO+  
HO  
HO  
(or LO)  
(or LO)  
+
IO-  
VHO (or VLO)  
-
VS  
VS  
(or COM)  
(or COM)  
Figure 1: HVIC sourcing current  
Figure 2: HVIC sinking current  
Undervoltage Lock-Out  
The under-voltage lockout mode (UVLO) is defined as the state the IC is in when VCC is below the turn-on  
threshold of the IC. The IC is designed to maintain an ultra-low supply current during UVLO mode of 150uA for  
reducing power losses across the external start-up resistor, and, to guarantee the IC is fully functional before the  
buck high-side and full-bridge high and low-side output drivers are activated. The external capacitor from VCC  
to COM is charged by a current flowing from the rectified AC line or DC bus through an external supply resistor  
minus the micro-power start-up current drawn by the IC. The external start-up resistor is chosen so that VCC  
exceeds the IC turn-on threshold at the desired AC line turn-on voltage for the ballast. Once the capacitor voltage  
www.irf.com  
© 2009 International Rectifier  
15  
IRS2573D  
on VCC reaches the start-up threshold (UVLO+), and, the voltage on RST pin is less than 1.5V, the IC turns on  
and the full-bridge oscillator (CT) and gate driver outputs (HO1, LO1, HO2 and LO2) begin to oscillate. The  
capacitor from VCC to COM begins to discharge due to the increase in IC operating current. An auxiliary supply  
(secondary winding, charge pump, etc.) should then take over as the main supply voltage before VCC discharges  
to the IC turn-off threshold (Figure 3) and charge VCC up to the internal zener clamp diode voltage (15.6V  
typical). During UVLO mode, the full-bridge and buck are off, the ignition timer and clock are off, the fault and  
good counters are reset, and the fault latch is reset.  
VCC  
IC 'OFF'  
IC 'ON'  
INTERNAL VCC  
ZENER CLAMP VOLTAGE  
CVCC  
DISCHARGE  
VUVLO+  
VHYST  
VUVLO-  
DISCHARGE  
TIME  
AUXILIARY SUPPLY  
OUTPUT  
RSUPPLY & CVCC  
TIME CONSTANT  
t
Figure 3, IC supply voltage during turn-on  
General Mode  
During General Mode, the IC reacts to the different load conditions (open-circuit, short-circuit, lamp warm-up,  
constant power running, under-voltage lamp faults, transient under-voltage lamp faults, over-voltage lamp faults,  
lamp non-strike, etc.) by turning the buck circuit on or off, adjusting the buck circuit on-time, or counting the  
occurrence of the different fault conditions and turning the complete IC off. The IC senses the different load  
conditions at the VSENSE and ISENSE pins, compares the voltages at these pins against the programmed  
thresholds at the OV and OC pins, and determines the correct operating mode of the IC (see State Diagram).  
Ignition Timer  
The ignition timer is enabled when the IC first enters IGN Mode. The ignition timer frequency is programmed with  
the external capacitor at the TIGN pin. CTIGN charges up and down linearly through internal sink and source  
currents between a fixed voltage window of 2V and 4V (Figure 4). This sets up an internal clock (666ms typical)  
that is divided out 128 times and then used to turn the ignition gate driver output (IGN pin) on and off for a given  
on and off-time (21sec ‘high’/64sec ‘low’ typical). A logic ‘high’ at the IGN pin will turn the external ignition  
MOSFET on and enable the external sidac-controlled pulse ignition circuit (see Figure 5, and Typical Application  
Diagram). The ignition circuit will continuously try to ignite the HID lamp for 21sec ‘on’ and 64sec ‘off’ until the  
lamp ignites. If the lamp does not ignite after 787sec then the IC will enter Fault Mode and latch off. If the lamp  
ignites successfully, the voltage at the VSENSE pin will fall below VOV(2/5) due to the low impedance of the lamp  
and the ignition timer will be disabled (logic ‘low’ at the IGN pin).  
www.irf.com  
© 2009 International Rectifier  
16  
IRS2573D  
666ms  
typ.  
4V  
TIGN  
2V  
IGN  
VLAMP  
0V  
IGN ENABLED  
(21s typ.)  
IGN DISABLED  
(64s typ.)  
IGN ENABLED  
(21s typ.)  
FAULT  
MODE  
787sec typ.  
Figure 4, Ignition timer timing diagram  
VGATE:MIGN  
VCIGN  
VCBUCK  
VDIAC  
t
4KV  
VLAMP  
t
Figure 5, Ignition circuit timing diagram.  
www.irf.com  
© 2009 International Rectifier  
17  
IRS2573D  
Full-Bridge Control  
The IC includes a complete high and low-side full-bridge driver necessary for driving the HID lamp with an AC  
square-wave voltage. The full-bridge begins oscillating at the programmed frequency immediately when the IC  
comes out of UVLO Mode and turns on. The full-bridge is typically driven at a low frequency to prevent acoustic  
resonances from damaging the lamp. The full-bridge frequency is programmed with the external capacitor at the  
CT pin. CT charges up and down linearly through internal sink and source currents between a fixed voltage  
window of 2V and 4V. CT reaching 4V initiates the toggling of LO1/HO1, and LO2/HO2 respectively (see Figure 6).  
The dead-time is fixed internally at 1.0us typical. During the dead-time, all full-bridge MOSFETs are off and the  
mid-points of each half-bridge are floating or unbiased. Should an external transient occur during the dead-time  
due to an ignition voltage pulse, each half-bridge mid-point (VS1 and VS2 pins) can slew high or low very quickly  
and exceed the dv/dt rating of the IC. To prevent this, internal logic guarantees that the IGN pin is set to a logic  
‘low’ during the dead-time. No ignition pulses can occur until the dead-time has ended and the appropriate full-  
bridge MOSFETs are turned on. This will guarantee that the mid-points are biased to the output voltage of the  
buck or COM before an ignition pulse occurs. The full-bridge stops oscillating only when the IC enters Fault  
Mode or UVLO Mode.  
4V  
CT  
2V  
LO1, HO2  
LO2, HO1  
Dead-time  
Dead-time  
VS1  
VS2  
VLAMP  
0V  
Figure 6, Full-bridge Timing Diagram  
Buck Control  
The buck control circuit operates in critical-conduction mode or continuous-conduction mode depending on the  
off-time of the buck output or the peak current flowing through the buck MOSFET. During normal lamp running  
conditions, the voltage across the buck current sensing resistor, as measured by the CS pin, is below the internal  
over-current threshold (1.2V typical). The buck on-time is defined by the time it takes for the internal on-time  
capacitor to charge up to the voltage level on the PCOMP pin or ICOMP pin, whichever is lower. During the on-  
www.irf.com  
© 2009 International Rectifier  
18  
IRS2573D  
time, the current in the buck inductor charges up to a peak level, depending on the inductance value, and the  
secondary winding output of the buck inductor is at some negative voltage level, depending on the ratio between  
the primary and secondary windings. The secondary winding output is measured by the ZX pin, which clamps the  
negative voltage to a diode drop below COM using the internal ESD diode, and limits the resulting negative  
current flowing out of the pin with an external resistor, RZX. When the voltage on the internal on-time capacitor  
exceeds the voltage on the PCOMP pin or ICOMP pin, the on-time has ended and the buck output turns off. The  
secondary winding output of the buck inductor transitions to some positive voltage level, depending on the ratio  
between the primary and secondary windings, and causes the ZX pin to exceed the internal 2V threshold. The  
current in the buck inductor begins to discharge into the lamp full-bridge output stage. When the inductor current  
reaches zero, the ZX pin decreases back below the 2V threshold. This causes the internal logic of the buck  
control to start the on-time cycle again. This mode of operation is known as critical-conduction mode because  
the buck MOSFET is turned on each cycle when the inductor current discharges to zero. The on-time is  
programmed by the voltage level on the PCOMP pin, and the off-time is determined by the time it takes for the  
inductor current to discharge to zero, as measured by a negative-going edge on the ZX pin (Figure 7). The  
resulting shape of the current in the inductor is triangular with a peak value determined by the inductance value  
and on-time setting.  
During lamp warm-up or a short-circuit condition at the output, the inductor current will charge up to an excessive  
level that can saturate the inductor or damage the buck MOSFET. To prevent this condition, the buck current  
sensing resistor is set such that the voltage at the CS pin exceeds the internal over-current threshold (1.2V  
typical) before the inductor saturates. Should the CS pin exceed 1.2V before the internal on-time capacitor  
reaches the voltage level on the PCOMP pin or ICOMP pin, the on-time will end and the buck output will turn off.  
The off-time is determined by a negative-going edge on the ZX pin, or, if the maximum off time is reached as  
programmed by the time it takes for the external capacitor on the TOFF pin to charge up to an internal threshold  
of 2V. If the maximum off-time is reached before the inductor current discharges to zero, then the inductor will  
begin charging again from some value above zero. This mode of operation is known as continuous-conduction  
mode and results in a continuous DC current in the inductor with a ripple bounded above by the over-current  
threshold and below by the maximum off time setting. Continuous-conduction mode also allows for a higher  
average current to flow through the buck inductor before saturation occurs than with critical-conduction mode.  
UVLO+  
VCC  
VPCOMP  
0.2V  
CTON  
BUCK  
1.2V  
ILBUCK  
Critical Conduction Mode  
Continuous Conduction Mode  
ZX  
2V  
TOFF  
Figure 7, Buck circuit timing diagram  
www.irf.com  
© 2009 International Rectifier  
19  
IRS2573D  
Constant Power Control  
During the general mode of operation and after the lamp has ignited, the IC regulates the lamp output power to a  
constant level. To achieve this, the IC measures the lamp voltage and lamp current at the VSENSE and  
ISENSE pins, multiplies the voltage and current together using an internal multiplier circuit to calculate power, and  
regulates the output of the multiplier circuit to a constant reference voltage by increasing or decreasing the buck  
on-time. If the lamp power is too low then the output of the multiplier will be below the internal reference voltage.  
The operational trans-conductance amplifier (OTA) will output a sourcing current to the PCOMP pin that will  
charge up the external capacitor to a higher voltage. This will increase the on-time of buck and increase the  
output current to the lamp for increasing the output power. If the lamp power is too high, then the opposite will  
occur. The OTA will output a sinking current to the PCOMP pin that will discharge the external capacitor to a  
lower voltage. This will decrease the buck on-time and decrease the output current to the lamp for decreasing  
the output power. The speed of the constant power control loop is set by the value of the external capacitor at  
the PCOMP pin that determines how fast the loop will react and adjust the buck on-time over the changing load  
conditions.  
Current Limitation Control  
The constant power control loop will increase or decrease the buck current for maintaining constant power in the  
lamp load. During lamp warm-up, the lamp voltage can be very low (20V typical) and the constant power loop  
will attempt to increase the buck current to several amps of current to maintain constant power. This high  
current can exceed the manufacturer’s maximum current rating for the HID lamp. To prevent this condition, an  
additional current limitation control loop has been included in the IC. Should the voltage at the ISENSE pin  
exceed the voltage level at the OC pin, another OTA will sink current from the ICOMP pin. When the ICOMP pin  
voltage decreases below the PCOMP pin voltage, then the current limitation loop will override the constant power  
loop and the ICOMP pin will decrease the buck on-time. The lower of the PCOMP or ICOMP pins will override  
the other and control the buck on-time. When the lamp eventually warms up and the lamp voltage increases to a  
level where the lamp current is below the maximum allowable limit (Figure 8), then the ICOMP pin voltage will  
increase above the PCOMP pin voltage, and the PCOMP pin will control the buck on-time again for maintaining  
constant power.  
V, I  
Lamp Warm-up  
Running  
VSENSE  
POWER  
ISENSE  
t
Current  
Limitation  
Ignition  
Constant Power  
Figure 8, VSENSE and ISENSE pins during ignition, warm-up and running modes.  
Over-Voltage Fault Counter  
The IC includes an over-voltage fault counter at the VSENSE pin. The over-voltage fault counter will count the  
time during which an over-voltage condition at the output of the buck exists due to an open-circuit condition,  
lamp extinguishes, lamp removal or end-of-life. If the voltage at the VSENSE pin remains above VOV(2/5) and  
the over-voltage fault counter times out (787sec typical), then the IC will enter Fault Mode and shutdown. If the  
voltage at the VSENSE pin decreases below VOV(2/5) before the over-voltage fault counter times out, then the  
www.irf.com  
© 2009 International Rectifier  
20  
IRS2573D  
lamp has successfully ignited and the IC will enter General Mode. The IGN pin (ignition gate driver output) will  
remain ‘high’ until the ignition timer has timed out.  
Under-Voltage Fault Counter  
The IC also includes an under-voltage fault counter at the VSENSE pin. Once the lamp has ignited, the lamp  
voltage will decrease sharply to a very low voltage (20V typical). As the lamp warms up, the lamp voltage will  
slowly increase until the nominal running voltage is reached (100V typical). If the lamp voltage remains too low  
for too long, then this is a lamp fault condition and the ballast must shutdown. To detect this, the VSENSE pin  
includes an under-voltage threshold of VOV(1/7.5). If the voltage at the VSENSE pin remains below VOV(1/7.5)  
and the under-voltage fault counter times out (197sec typical), then the lamp is not warming up properly due to a  
lamp fault condition (end of life, etc.) and the IC will enter fault mode and shutdown. If the voltage at the  
VSENSE pin increases above VOV(1/7.5) before the under-voltage counter times out, then the lamp has  
successfully warmed up and the IC will remain in general mode. A fast transient under-voltage detection is also  
included at the VSENSE pin of the IC.  
Fast Transient Under-Voltage Fault Counter  
During normal running conditions, fast transient under-voltage spikes can occur on the lamp voltage due to  
instabilities in the lamp arc. The resulting transients on the VSENSE pin will cycle below and above the  
VOV(1/7.5) threshold quickly (<50us). If the number of events of these transients exceeds the maximum number  
of events of the fault counter (16384 events typical), then the IC will enter fault mode and shutdown.  
Good Counter  
If no faults are detected for a long period of time (2730sec typical), as measured by the good counter, then the  
fault counter and good counter will both be reset to zero. Also, each time a fault is counted, the good counter is  
reset to zero.  
Fault Reset  
To exit Fault Mode and return to UVLO Mode, VCC can be decreased below UVLO- and back above UVLO+, or,  
the RST pin can be increased above 2.5V.  
PCB Layout Tips  
Distance between high and low voltage components: It’s strongly recommended to place the components tied to  
the floating voltage pins (VB and VS) near the respective high voltage portions of the device.  
Ground Plane: In order to minimize noise coupling, the ground plane should not be placed under or near the high  
voltage floating side.  
Gate Drive Loops: Current loops behave like antennas and are able to receive and transmit EM noise (see Figure  
9). In order to reduce the EM coupling and improve the power switch turn on/off performance, the gate drive loops  
must be reduced as much as possible. Moreover, current can be injected inside the gate drive loop via the IGBT  
collector-to-gate parasitic capacitance. The parasitic auto-inductance of the gate loop contributes to developing a  
voltage across the gate-emitter, thus increasing the possibility of a self turn-on effect.  
www.irf.com  
© 2009 International Rectifier  
21  
IRS2573D  
Figure 9: Antenna Loops  
Supply Capacitor: It is recommended to place a bypass capacitor (CIN) between the VCC and VSS pins.  
A
ceramic 1 μF ceramic capacitor is suitable for most applications. This component should be placed as close as  
possible to the pins in order to reduce parasitic elements.  
Routing and Placement: Power stage PCB parasitic elements can contribute to large negative voltage transients  
as the switch node; it is recommended to limit the phase voltage negative transients. In order to avoid such  
conditions, it is recommended to 1) minimize the high-side emitter to low-side collector distance, and 2) minimize  
the low-side emitter to negative bus rail stray inductance. However, where negative VS spikes remain excessive,  
further steps may be taken to reduce the spike. This includes placing a resistor (5 or less) between the VS pin  
and the switch node (see Figure 10), and in some cases using a clamping diode between VSS and VS (see Figure  
11). See DT04-4 at www.irf.com for more detailed information.  
Figure 10: VS resistor  
Figure 11: VS clamping diode  
Additional Documentation  
Several technical documents related to the use of HVICs are available at www.irf.com; use the Site Search  
function and the document number to quickly locate them. Below is a short list of some of these documents.  
DT97-3: Managing Transients in Control IC Driven Power Stages  
AN-1123: Bootstrap Network Analysis: Focusing on the Integrated Bootstrap Functionality  
DT04-4: Using Monolithic High Voltage Gate Drivers  
AN-978: HV Floating MOS-Gate Driver ICs  
www.irf.com  
© 2009 International Rectifier  
22  
IRS2573D  
Parameter Temperature Trends  
2.500  
1
0.75  
0.5  
2.250  
2.000  
1.750  
1.500  
0.25  
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature ºC  
Temperature ºC  
Fig. 11 VIREF vs. Temperature  
Fig. 12 VISENSE vs. Temperature  
0.60  
0.55  
0.50  
0.45  
0.40  
3.000  
2.750  
2.500  
2.250  
2.000  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature ºC  
Temperature ºC  
Fig. 14 VOV vs. Temperature  
Fig. 13 PSENSE vs. Temperature  
www.irf.com  
© 2009 International Rectifier  
23  
IRS2573D  
1.500  
1.250  
1.000  
0.750  
0.500  
1.000  
0.750  
0.500  
0.250  
0.000  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature ºC  
Temperature ºC  
Fig. 15 OV(2/5) vs. Temperature  
Fig. 16 OV(1/7.5) vs. Temperature  
200  
150  
100  
50  
2.500  
2.250  
2.000  
1.750  
1.500  
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature ºC  
Temperature ºC  
Fig. 17 ITOFF vs. Temperature  
Fig. 18 VTOFF vs. Temperature  
www.irf.com  
© 2009 International Rectifier  
24  
IRS2573D  
Package Details: SOIC28W  
www.irf.com  
© 2009 International Rectifier  
25  
IRS2573D  
Package Details: SOIC28W, Tape and Reel  
LOADED TAPE FEED DIRECTION  
A
B
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 28SOICW  
Metric  
Imperial  
Code  
A
B
C
D
E
F
G
H
Min  
11.90  
3.90  
23.70  
11.40  
10.80  
18.20  
1.50  
Max  
12.10  
4.10  
24.30  
11.60  
11.00  
18.40  
n/a  
Min  
Max  
0.476  
0.161  
0.956  
0.456  
0.433  
0.724  
n/a  
0.468  
0.153  
0.933  
0.448  
0.425  
0.716  
0.059  
0.059  
1.50  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 28SOICW  
Metric  
Imperial  
Min  
Code  
A
B
C
D
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
102.00  
30.40  
29.10  
26.40  
Max  
13.001  
0.844  
0.519  
0.096  
4.015  
1.196  
1.145  
1.039  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
E
F
98.00  
n/a  
G
H
26.50  
24.40  
1.04  
0.96  
www.irf.com  
© 2009 International Rectifier  
26  
IRS2573D  
Part Marking Information  
www.irf.com  
© 2009 International Rectifier  
27  
IRS2573D  
Ordering Information  
Standard Pack  
Base Part Number  
Package Type  
Complete Part Number  
Form  
Quantity  
Tube/Bulk  
25  
IRS2573DSPBF  
SOIC28W  
IRS2573D  
Tape and Reel  
1000  
IRS2573DSTRPBF  
The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility  
for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of  
other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any  
patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This  
document supersedes and replaces all information previously supplied.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
© 2009 International Rectifier  
28  

相关型号:

IRS2573DSPBF

Switching Controller, 240kHz Switching Freq-Max, PDSO28, ROHS COMPLIANT, MS-013AE, SOIC-28
INFINEON

IRS2573DSTRPBF

Switching Controller, 240kHz Switching Freq-Max, PDSO28, ROHS COMPLIANT, MS-013AE, SOIC-28
INFINEON

IRS25751L

EiceDRIVER™ 480 V 启动驱动器 IC,具有典型的 0 A 拉电流和 0 A 灌电流,采用 5 引脚 SOT23 封装,适用于 IGBT 和 MOSFET。
INFINEON

IRS25751LPBF

Analog Circuit
INFINEON

IRS25751LTRPBF

Analog Circuit
INFINEON

IRS25752L

600 V single high-side gate driver IC with single input
INFINEON

IRS25752LPBF

Buffer/Inverter Based Peripheral Driver, PDSO6, ROHS COMPLIANT, MO-178, SOT-23, 6 PIN
INFINEON

IRS25752LTRPBF

Buffer/Inverter Based Peripheral Driver
INFINEON

IRS25803DSPBF

Critical-conduction mode boost-type PFC
INFINEON

IRS25803DSPBF_15

Critical-conduction mode boost-type PFC
INFINEON

IRS2580DSPBF

“COMBO8” PFC HALF-BRIDGE BALLAST IC
INFINEON

IRS26072D

HIGH AND LOW SIDE DRIVER
INFINEON