IRSM836-084MA [INFINEON]

CIPOS™ Nano 250 V, 0.45 Ω three-phase intelligent power module;
IRSM836-084MA
型号: IRSM836-084MA
厂家: Infineon    Infineon
描述:

CIPOS™ Nano 250 V, 0.45 Ω three-phase intelligent power module

文件: 总20页 (文件大小:731K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRSM836-084MA  
7A, 250V  
Integrated Power Module for  
Small Appliance Motor Drive Applications  
Description  
IRSM836-084MA is a 7A, 250V Integrated Power Module (IPM) designed for advanced appliance motor  
drive applications such as energy efficient fans and pumps. IR's technology offers an extremely compact, high  
performance AC motor-driver in an isolated package. This advanced IPM offers a combination of IR's low RDS(on)  
Trench MOSFET technology and the industry benchmark 3-phase high voltage, rugged driver in a small PQFN  
package. At only 12x12mm and featuring integrated bootstrap functionality, the compact footprint of this surface-  
mount package makes it suitable for applications that are space-constrained. Integrated over-current protection,  
fault reporting and under-voltage lockout functions deliver a high level of protection and fail-safe operation.  
IRSM836-084MA functions without a heat sink.  
Features  
Integrated gate drivers and bootstrap functionality  
Open-source for leg-shunt current sensing  
Protection shutdown pin  
Low RDS(on) Trench MOSFET  
IRSM836-084MA  
Under-voltage lockout for all channels  
Matched propagation delay for all channels  
Optimized dV/dt for loss and EMI trade offs  
3.3V Schmitt-triggered active high input logic  
Cross-conduction prevention logic  
Motor power range up to ~150W, without heat sink  
Isolation 1500VRMS min  
Standard Pack  
Base Part Number  
Package Type  
Orderable Part Number  
Form  
Quantity  
2000  
Tape and Reel  
Tray  
IRSM836-084MATR  
IRSM836-084MA  
36L  
IRSM836-084MA  
PQFN 12 x 12 mm  
800  
All part numbers are PbF  
1
February 9, 2016  
IRSM836-084MA  
Internal Electrical Schematic  
VB1 VB2 VB3  
IRSM836-084MA  
V+  
VCC  
HIN1  
HIN2  
HIN3  
LIN1  
U, VS1  
V, VS2  
W, VS3  
600V  
3-Phase  
Driver  
HVIC  
LIN2  
LIN3  
FAULT  
ITRIP  
EN  
RCIN  
COM  
VRU  
VRV  
VRW  
VSS  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the module may occur. These are not tested at  
manufacturing. All voltage parameters are absolute voltages referenced to VSS unless otherwise stated in the table.  
Symbol  
Description  
Min  
---  
Max  
250  
Unit  
BVDSS  
MOSFET Blocking Voltage  
V
IO @ T=25°C  
DC Output Current per MOSFET  
Pulsed Output Current (Note 1)  
Maximum Power Dissipation per MOSFET  
Isolation Voltage (1min) (Note 2)  
Operating Junction Temperature  
Lead Temperature (Soldering, 30 seconds)  
Storage Temperature  
---  
7
A
IOP  
---  
27  
Pd @ TC=25°C  
---  
40  
W
VRMS  
°C  
°C  
°C  
V
VISO  
TJ  
---  
1500  
150  
-40  
TL  
---  
260  
TS  
-40  
150  
VS1,2,3  
VB1,2,3  
VCC  
VIN  
High Side Floating Supply Offset Voltage  
High Side Floating Supply Voltage  
Low Side and Logic Supply voltage  
Input Voltage of LIN, HIN, ITRIP, EN, RCIN, FLT  
VB1,2,3 - 20  
-0.3  
-0.3  
VSS -0.3  
VB1,2,3 +0.3  
250  
V
20  
V
VCC+0.3  
V
Note 1: Pulse Width = 100µs, TC =25°C, Duty=1%.  
Note 2: Characterized, not tested at manufacturing  
2
February 9, 2016  
IRSM836-084MA  
Recommended Operating Conditions  
Symbol  
Description  
Min  
---  
Max  
200  
200  
VS+20  
18.5  
5
Unit  
V
V+  
Positive DC Bus Input Voltage  
High Side Floating Supply Offset Voltage  
High Side Floating Supply Voltage  
Low Side and Logic Supply Voltage  
Input Voltage of LIN, HIN, ITRIP, EN, FLT  
PWM Carrier Frequency  
VS1,2,3  
VB1,2,3  
VCC  
(Note 3)  
VS+10  
11.5  
0
V
V
V
VIN  
V
Fp  
---  
20  
kHz  
The Input/Output logic diagram is shown in Figure 1. For proper operation the module should be used within the  
recommended conditions. All voltages are absolute referenced to COM. The VS offset is tested with all supplies biased at 15V  
differential.  
Note 3: Logic operational for Vs from COM-5V to COM+250V. Logic state held for Vs from COM-5V to COM-VBS  
.
Static Electrical Characteristics  
(VCC-COM) = (VB-VS) = 15 V. TA = 25oC unless otherwise specified. The VIN and IIN parameters are referenced to VSS and are  
applicable to all six channels. The  
parameters are referenced to VSS. The  
parameters are referenced to VS.  
VCCUV  
VBSUV  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Conditions  
BVDSS  
Drain-to-Source Breakdown Voltage  
250  
---  
---  
V
TJ=25°C, ILK=250µA  
Leakage Current of High Side FET’s in  
Parallel  
ILKH  
0.5  
1.5  
µA  
µA  
TJ=25°C, VDS=250V  
TJ=25°C, VDS=250V  
Leakage Current of Low Side FET’s in  
Parallel Plus Gate Drive IC  
ILKL  
RDS(ON)  
VSD  
TJ=25°C, VCC=15V,  
ID=2A  
TJ=25°C, VCC=15V,  
ID=2A  
Drain to Source ON Resistance  
---  
---  
0.31  
0.8  
0.45  
---  
Ω
Mosfet Body Diode Forward Voltage  
V
VIN,th+  
VIN,th-  
Positive Going Input Threshold  
Negative Going Input Threshold  
2.5  
---  
---  
---  
---  
V
V
0.8  
VCCUV+,  
VBSUV+  
VCC and VBS Supply Under-Voltage,  
Positive Going Threshold  
8
8.9  
8.2  
0.7  
9.8  
9
V
V
V
VCCUV-,  
VBSUV-  
VCC and VBS supply Under-Voltage,  
Negative Going Threshold  
7.4  
---  
VCCUVH,  
VBSUVH  
VCC and VBS Supply Under-Voltage  
Lock-Out Hysteresis  
---  
IQBS  
Quiescent VBS Supply Current VIN=0V  
Quiescent VCC Supply Current VIN=0V  
Input Bias Current VIN=4V  
---  
---  
---  
---  
125  
3.35  
180  
1
µA  
mA  
µA  
µA  
µA  
µA  
V
IQCC  
IIN+  
---  
100  
--  
IIN-  
Input Bias Current VIN=0V  
---  
ITRIP+  
ITRIP-  
VIT, TH+  
ITRIP Bias Current VITRIP=4V  
ITRIP Bias Current VITRIP=0V  
ITRIP Threshold Voltage  
---  
5
40  
---  
--  
1
0.37  
0.46  
0.55  
3
February 9, 2016  
IRSM836-084MA  
VIT, TH-  
VIT, HYS  
ITRIP Threshold Voltage  
ITRIP Input Hysteresis  
---  
---  
0.4  
---  
---  
V
V
0.06  
Internal Bootstrap Equivalent Resistor  
Value  
RBR  
---  
200  
---  
Ω
TJ=25°C  
VRCIN,TH  
RON,FLT  
RCIN Positive Going Threshold  
FLT Open-Drain Resistance  
---  
---  
8
---  
V
50  
100  
Ω
Dynamic Electrical Characteristics  
(VCC-COM) = (VB-VS) = 15 V. TA = 25oC unless otherwise specified.  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Conditions  
Input to Output Propagation Turn-On  
Delay Time  
TON  
---  
0.7  
1.5  
µs  
µs  
ID=1mA, V+=50V  
See Fig.2  
Input to Output Propagation Turn-Off  
Delay Time  
TOFF  
---  
0.7  
1.5  
TFIL,IN  
Input Filter Time (HIN, LIN)  
Input Filter Time (EN)  
200  
100  
100  
---  
330  
200  
330  
600  
700  
---  
---  
ns  
ns  
ns  
ns  
ns  
VIN=0 & VIN=4V  
TFIL,EN  
VIN=0 & VIN=4V  
TBLT-ITRIP ITRIP Blanking Time  
VIN=0 & VIN=4V, VI/Trip=5V  
VIN=0 & VIN=4V  
TFLT  
TEN  
Itrip to Fault  
1000  
1000  
EN Falling to Switch Turn-Off  
VIN=0 & VIN=4V  
ITRIP to Switch Turn-Off Propagation  
Delay  
TITRIP  
---  
950  
1300  
ns  
ID=1A, V+=50V, See Fig. 3  
MOSFET Avalanche Characteristics  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Conditions  
EAS  
Single Pulse Avalanche Energy  
---  
139  
---  
mJ  
Note 4  
Note 4: From characterization of TO-220 packaged devices. Starting TJ=25°C, L=3mH, VDD=75V, IAS=10A  
Thermal and Mechanical Characteristics  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Conditions  
Total Thermal Resistance Junction to  
Case Top  
Rth(J-CT)  
---  
21  
---  
°C/W  
One device  
Total Thermal Resistance Junction to  
Case Bottom  
Rth(J-CB)  
---  
2.9  
---  
°C/W  
One device  
4
February 9, 2016  
IRSM836-084MA  
Qualification Information  
Industrial††  
(per JEDEC JESD 47E)  
Qualification Level  
MSL3†††  
(per IPC/JEDEC J-STD-020C)  
Moisture Sensitivity Level  
Class B  
Machine Model  
ESD  
(per JEDEC standard JESD22-A115)  
Class 2  
Human Body Model  
(per standard ESDA/JEDEC JS-001-2012)  
RoHS Compliant  
Yes  
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/  
††  
Higher qualification ratings may be available should the user have such requirements. Please contact  
your International Rectifier sales representative for further information.  
††† Higher MSL ratings may be available for the specific package types listed here. Please contact your  
International Rectifier sales representative for further information.  
5
February 9, 2016  
IRSM836-084MA  
Input/Output Pin Equivalent Circuit Diagrams  
VB  
ESD  
Diode  
20 V  
Clamp  
HO  
VS  
ESD  
Diode  
VCC  
ESD  
600 V  
Diode  
VCC  
HIN,  
LIN,  
20 V  
Clamp  
or EN  
ESD  
ESD  
Diode  
33k  
Diode  
25 V  
Clamp  
VSS  
LO  
ESD  
Diode  
COM  
VCC  
VCC  
ESD  
ESD  
Diode  
Diode  
RCIN or  
FAULT  
ITRIP  
VSS  
ESD  
Diode  
ESD  
Diode  
1M  
VSS  
6
February 9, 2016  
IRSM836-084MA  
Input-Output Logic Level Table  
V+  
Ho  
Lo  
Hin1,2,3  
Lin1,2,3  
Gate  
Driver  
IC  
U, V, W  
EN  
1
Itrip  
0
Hin1,2,3 Lin1,2,3 U,V,W  
1
0
0
X
X
0
1
0
X
X
V+  
0
1
0
1
0
off  
off  
off  
1
1
0
X
HIN1,2,3  
LIN1,2,3  
ITRIP  
U,V,W  
Figure 1: Input/Output Logic Diagram  
7
February 9, 2016  
IRSM836-084MA  
V
ID  
ID  
V
DS  
DS  
90% ID  
50%  
IN/LIN  
90% ID  
H /L  
H
50%  
50%  
IN/LIN  
IN IN  
V
H
DS  
H /L  
IN IN  
50%  
V
CE  
10% ID  
10% ID  
tf  
tr  
TON  
TOFF  
Figure 2a: Input to Output propagation turn-on  
Figure 2b: Input to Output propagation turn-off  
delay time.  
delay time.  
IF  
VDS  
HIN/LIN  
Irr  
trr  
Figure 2c: Diode Reverse Recovery.  
Figure 2: Switching Parameter Definitions  
8
February 9, 2016  
IRSM836-084MA  
HIN1,2,3  
LIN1,2,3  
50%  
50%  
ITRIP  
U,V,W  
50%  
50%  
TITRIP  
TFLT-CLR  
Figure 3: ITRIP Timing Waveform  
9
February 9, 2016  
IRSM836-084MA  
Module Pin-Out Description  
Pin  
Name  
Description  
1
HIN3  
Logic Input for High Side Gate Driver - Phase 3  
Logic Input for Low Side Gate Driver - Phase 1  
Logic Input for Low Side Gate Driver - Phase 2  
Logic Input for Low Side Gate Driver - Phase 3  
Fault Output Pin  
2
LIN1  
LIN2  
LIN3  
/FLT  
3
4
5
6
Itrip  
Over-Current Protection Pin  
7
EN  
Enable Pin  
8
RCin  
VSS, COM  
Reset Programming Pin  
9, 39  
Ground for Gate Drive IC and Low Side Gate Drive Return  
10, 11,30,  
37  
U, VS1  
Output 1, High Side Floating Supply Offset Voltage  
12, 13  
14, 15  
VR1  
VR2  
Phase 1 Low Side FET Source  
Phase 2 Low Side FET Source  
16, 17, 38 V, VS2  
Output 2, High Side Floating Supply Offset Voltage  
Output 3, High Side Floating Supply Offset Voltage  
Phase 3 Low Side FET Source  
18, 19  
20, 21  
22-29  
31  
W, VS3  
VR3  
V+  
DC Bus Voltage Positive  
VB1  
High Side Floating Supply Voltage 1  
High Side Floating Supply Voltage 2  
High Side Floating Supply Voltage 3  
15V Supply  
32  
VB2  
33  
VB3  
34  
VCC  
HIN1  
HIN2  
35  
Logic Input for High Side Gate Driver - Phase 1  
Logic Input for High Side Gate Driver - Phase 2b  
36  
26  
25  
24  
23  
22  
21  
20  
27  
28  
29  
Note  
Top View  
19  
18  
Pads 37 and 38 can be omitted  
from the PCB footprint and hence  
do not need to be soldered  
38  
All pins with the same name are  
internally connected. For example,  
pins 10, 11, 30 and 37 are  
internally connected.  
30  
31  
37  
17  
16  
32  
33  
39  
15  
14  
13  
34  
35  
36  
12  
1 2 3 4 5 6 7 8 9  
10  
11  
10  
February 9, 2016  
IRSM836-084MA  
Fault Reporting and Programmable Fault Clear Timer  
The IRSM836-084MA provides an integrated fault reporting output and an adjustable fault clear timer.  
There are two situations that would cause the IRSM836-084MA to report a fault via the FLT pin. The first is an  
under-voltage condition of VCC and the second is when the ITRIP pin recognizes a fault.  
The fault clear timer provides a means of automatically re-enabling the module operation a preset amount  
of time after the fault condition has disappeared. When a fault condition occurs, the fault diagnostic output (FLT)  
stays in the low state until the fault condition has been removed and the fault clear timer expires; once the fault  
clear timer expires, the voltage on the FLT pin will return to the logic-high voltage. Figure 4a is a block-level  
diagram that focuses on the fault diagnostic and fault clear timer functionality of the driver chip within the module.  
The fault clear timer is defined with a simple resistor-capacitor (RC) network on the RCin pin, as shown in Figure  
4b.  
Figure 5 is a timing diagram showing the states of the FLT and RCin pins during both normal operation and  
under a fault condition. Under normal operation, both FLT and RCin are in high impedance (open drain) states.  
CRCIN is fully-charged, and FLT is pulled up high. When a fault condition occurs, RCin and FLT are pulled low to  
VSS CRCIN is discharged; once the fault condition has been removed, RCin returns to a high impedance state  
and the fault clear timer begins that is, CRCIN starts charging via RRCIN. tFLTCLR seconds later when the RCin  
voltage crosses a datasheet-defined threshold of VRCIN,TH, FLT returns to a high impedance state and the module  
is operational again. tFLTCLR is determined by a simple RC network, shown in Figure 6 - RRCIN and CRCIN determine  
how long the voltage at the RCin pin takes to reach the VRCIN,TH fixed threshold.  
V
cc  
HIN (x3)  
LIN (x3)  
VB (x3)  
IRSM836-084MA  
EN  
V (x3)  
S
FLT  
R
RCIN  
RCIN  
ITRIP  
C
RCIN  
VRx  
SS  
V
Figure 4a: Block diagram showing internal  
Figure 4b: Programming the fault clear timer  
functioning of fault diagnostic and fault clear timer  
11  
February 9, 2016  
IRSM836-084MA  
ITRIP  
VRCIN  
tFLTCLR  
VCC  
VRCIN,TH  
Time  
Time  
VSS  
VFAULT  
High  
Impedance State  
VSS  
Figure 5: RCIN and FLT pin waveforms  
The design guidelines for this network are shown in Table 1. CRCIN needs to be small enough so that the  
discharge of the capacitor occurs before the fault condition disappears. If the fault condition disappears before the  
CRCIN capacitor is sufficiently discharged, the module will be stuck in fault mode. To achieve sufficiently high fault  
clear time, it is thus recommend RRCIN be increased while CRCIN be kept small.  
≤1 nF  
CRCIN  
Ceramic  
0.5 MΩ to 2 MΩ  
RRCIN  
>> RON,RCIN  
Table 1: Design guidelines  
The length of the fault clear time period can be determined by using the formula below.  
VRCIN ,TH  
tFLTCLR    
RRCINCRCIN  
ln 1  
VCC  
If the fault clear timer functionality is not needed, it is sufficient to pull the RCin pin up to VCC with RRCIN ≥ 10kΩ.  
In this case, CRCIN is not needed.  
12  
February 9, 2016  
IRSM836-084MA  
Typical Application Connection IRSM836-084MA  
VB2  
IRSM836-084MA  
VB1  
VB3  
VBUS  
2M  
VCC  
HVIC  
HIN1  
XTAL0  
PWMUH  
PWMVH  
HIN2  
HIN3  
LIN1  
LIN2  
U, VS1  
PWMWH  
XTAL1  
AIN2  
V, VS2  
W, VS3  
PWMUL  
PWMVL  
SPD-REF  
PWMWL  
GATEKILL  
LIN3  
FAULT  
IRMCK171  
IT RIP  
EN  
AIN1  
IF B+  
IF B-  
6.04k  
6.04k  
Power  
Supply  
VDD  
RCIN  
VSS  
COM  
2M  
VDDCAP  
VSS  
IF BO  
1nF  
7.68k  
4.87k  
0.5  
1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce  
ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins  
will further improve performance.  
2. In order to provide good decoupling between VCC-VSS and VB1,2,3-VS1,2,3 terminals, the capacitors  
shown connected between these terminals should be located very close to the module pins. Additional  
high frequency capacitors, typically 0.1µF, are recommended.  
3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made  
based on IR application note AN-1084.  
4. PWM generator must be disabled within Fault duration to guarantee shutdown of the system. Over-  
current condition must be cleared before resuming operation.  
13  
February 9, 2016  
IRSM836-084MA  
Current Capability in a Typical Application  
Figure 6 shows the current capability for this module at specified conditions. The current capability of the  
module is affected by application conditions including the PCB layout, ambient temperature, maximum PCB  
temperature, modulation scheme, PCB copper thickness and so on. The curves below were obtained from  
measurements carried out on the IRMCS1471_R4 reference design board which includes the IRSM836-084MA  
and IR’s IRMCF171 digital control IC.  
150V, ∆Tca = 70  
1200  
1000  
800  
600  
1oz, 3P  
1oz, 2P  
400  
200  
0
6
8
10  
12  
14  
16  
18  
20  
Carrier Frequency (kHz)  
150V, ∆Tca = 40  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1oz, 3P  
1oz, 2P  
6
8
10  
12  
14  
16  
18  
20  
Carrier Frequency (kHz)  
Figure 6: Maximum Sinusoidal Phase Current vs. PWM Switching Frequency  
Sinusoidal Modulation, V+=150V, PF=0.98  
14  
February 9, 2016  
IRSM836-084MA  
PCB Example  
Figure 7 below shows an example layout for the application PCB. The effective area of the V+ top-layer  
copper plane is ~3cm² in this example. For an FR4 PCB with 1oz copper, Rth(J-A) is about 40°C/W. A lower Rth(J-A)  
can be achieved using thicker copper and/or additional layers.  
Module  
Figure 7: PCB layout example and corresponding thermal image (6kHz, 2P, 2oz, ∆Tca=70°C, V+ = 150V, Iu = 870mArms, Po  
= 148W)  
At the module’s typical operating conditions, dV/dt of the phase node voltage is influenced by the load  
capacitance which includes parasitic capacitance of the PCB, MOSFET output capacitance and motor winding  
capacitance. To turn off the MOSFET, the load capacitance needs to be charged by the phase current. For the  
IRMCS1171 reference design, turn-off dV/dt ranges from 2 to 5 V/ns depending on the phase current magnitude.  
Turn-on dV/dt is influenced by PCB parasitic capacitance and motor winding capacitance and typically ranges  
from 4 to 6 V/ns. The MOSFET turn-on loss combined with the complimentary body diode reverse recovery loss  
comprises the majority of the total switching losses. Two-phase modulation can be used to reduce switching  
losses and run the module at higher phase currents.  
15  
February 9, 2016  
IRSM836-084MA  
36L Package Outline IRSM836-084MA (Bottom View)  
Dimensions in mm  
16  
February 9, 2016  
IRSM836-084MA  
36L Package Outline IRSM836-084MA (Bottom View)  
Dimensions in mm  
17  
February 9, 2016  
IRSM836-084MA  
36L Package Outline IRSM836-084MA (Top and Side View)  
18  
February 9, 2016  
IRSM836-084MA  
Top Marking  
1.1 Site Code (H or C)  
1.2 Last 4 characters of the production order prior to “.n” (n = 1 or 2 digit split indicator)  
1.3 Lead Free Released: P  
Lead Free Samples: W  
Engineering / DOE: Y  
1.4 Date Code: YWW (Y = last digit of the production calendar year. WW is week number in the  
calendar year)  
1.5 Part Number: IRSM836-084MA  
1.6 IR Logo  
19  
February 9, 2016  
IRSM836-084MA  
Revision History  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2015  
All Rights Reserved.  
IMPORTANT NOTICE  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated  
herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims  
any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated  
in this document and any applicable legal requirements, norms and standards concerning customer’s products  
and any use of the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of  
customer’s technical departments to evaluate the suitability of the product for the intended application and the  
completeness of the product information given in this document with respect to such application.  
For further information on the product, technology, delivery terms and conditions and prices please contact your  
nearest Infineon Technologies office (www.infineon.com).  
WARNINGS  
Due to technical requirements products may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies office.  
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized  
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications  
where a failure of the product or any consequences of the use thereof can reasonably be expected to result in  
personal injury.  
20  
February 9, 2016  

相关型号:

IRSM836-084MATR

AC Motor Controller, 27A, Hybrid, PQMA36, QFN-36
INFINEON

IRT1

Infrared Pulse Detector
RFSOLUTIONS

IRTRUES000

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IRU1010

1A LOW DROPOUT POSITIVE ADJUSTABLE REGULATOR
INFINEON

IRU1010-18

1A LOW DROPOUT POSITIVE FIXED 1.8V REGULATOR
INFINEON

IRU1010-18CD

1A LOW DROPOUT POSITIVE FIXED 1.8V REGULATOR
INFINEON

IRU1010-18CDPBF

Fixed Positive LDO Regulator, 1.8V, 1.3V Dropout, PSSO2, PLASTIC, TO-252, DPAK-3
INFINEON

IRU1010-18CDTR

Fixed Positive LDO Regulator, 1.8V, 1.3V Dropout, BIPolar, PSSO2, PLASTIC, TO-252, DPAK-3
INFINEON

IRU1010-18CP

1A LOW DROPOUT POSITIVE FIXED 1.8V REGULATOR
INFINEON

IRU1010-18CPPBF

Fixed Positive LDO Regulator, 1.8V, 1.3V Dropout, PSSO2, PLASTIC, ULTRA THIN PAK-2
INFINEON

IRU1010-18CS

1A LOW DROPOUT POSITIVE FIXED 1.8V REGULATOR
INFINEON

IRU1010-18CSPBF

1A LOW DROPOUT POSITIVE FIXED 1.8V REGULATOR
INFINEON