PEB2081P [INFINEON]

Digital SLIC, Basic, 1-Func, CMOS, PDIP28, PLASTIC, DIP-28;
PEB2081P
型号: PEB2081P
厂家: Infineon    Infineon
描述:

Digital SLIC, Basic, 1-Func, CMOS, PDIP28, PLASTIC, DIP-28

电信 综合业务数字网 光电二极管 电信集成电路
文件: 总194页 (文件大小:947K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Communications  
S/T Bus Interface Circuit Extended  
SBCX  
PEB 2081 Version 3.4  
User’s Manual 11.96  
T2081-XV34-M2-7600  
Edition 11.96  
This edition was realized using the  
software system FrameMaker .  
Published by Siemens AG,  
Bereich Halbleiter, Marketing-  
Kommunikation, Balanstraße 73,  
81541 München  
© Siemens AG 1996.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of  
third parties are concerned, liability is  
only assumed for components, not  
for applications, processes and cir-  
cuits implemented within compo-  
nents or assemblies.  
The information describes the type of  
component and shall not be consid-  
ered as assured characteristics.  
Terms of delivery and rights to  
change design reserved.  
For questions on technology, deliv-  
ery and prices please contact the  
Semiconductor Group Offices in Ger-  
many or the Siemens Companies  
and Representatives worldwide (see  
address list).  
Due to technical requirements com-  
ponents may contain dangerous sub-  
stances. For information on the types  
in question please contact your near-  
est Siemens Office, Semiconductor  
Group.  
Siemens AG is an approved CECC  
manufacturer.  
Packing  
Please use the recycling operators  
known to you. We can also help you  
– get in touch with your nearest sales  
office. By agreement we will take  
packing material back, if it is sorted.  
You must bear the costs of transport.  
For packing material that is returned  
to us unsorted or which we are not  
obliged to accept, we shall have to in-  
voice you for any costs incurred.  
Components used in life-support  
devices or systems must be ex-  
pressly authorized for such pur-  
pose!  
1
Critical components of the Semi-  
conductor Group of Siemens AG,  
may only be used in life-support de-  
2
vices or systems with the express  
written approval of the Semiconduc-  
tor Group of Siemens AG.  
1 A critical component is a compo-  
nent used in a life-support device  
or system whose failure can rea-  
sonably be expected to cause the  
failure of that life-support device or  
system, or to affect its safety or ef-  
fectiveness of that device or sys-  
tem.  
2 Life support devices or systems  
are intended (a) to be implanted in  
the human body, or (b) to support  
and/or maintain and sustain hu-  
ICs for Communications  
S/T Bus Interface Circuit Extended  
SBCX  
PEB 2081 Version 3.4  
User’s Manual 11.96  
PEB 2081  
Revision History:  
Current Version: 11.96  
Previous Version:  
Page  
(in previous (in new  
Version) Version)  
Page  
Subjects (major changes since last revision)  
General Information  
Contents  
Page  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
1.1  
1.2  
1.3  
1.4  
2
2.1  
System Integration and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Operational Modes and System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
TE Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
ISDN Network Termination (NT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
ISDN Network Terminator (NT1) in Star Configuration . . . . . . . . . . . . . . . . . . . . . . . 20  
ISDN Network Terminator Using IOM®-2 Architecture (Intelligent NT) . . . . . . . . . . . 24  
Line Card Application (one D-channel controller per line) . . . . . . . . . . . . . . . . . . . . . 27  
Line Card Application (one D-channel controller for eight lines) . . . . . . . . . . . . . . . . 29  
Private-Branch-Exchange Application (one D-channel controller per line) . . . . . . . . 31  
Setting Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
TE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
S/T-Interface Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
2.2  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.4  
3
3.1  
3.2  
3.2.1  
3.2.1.1  
Application Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
SBCX Device Architecture and General Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
IOM®-2 Frame Structure/Timing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.2.1.1.1 IOM®-2 Interface Line Card Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.2.1.1.2 IOM®-2 Interface Terminal Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.2.1.2  
3.2.1.3  
IOM®-2 Interface Command / Indicate Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
IOM®-2 Interface Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3.2.1.3.1 Handshake Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3.2.1.3.2 Monitor Procedure “Timeout” (TOD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
3.2.1.3.3 MON-1, MON-2 Commands (S/Q Channel Access) . . . . . . . . . . . . . . . . . . . . . . . . . 58  
3.2.1.3.4 MON-8 Commands (Internal Register Access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
3.2.1.3.5 MON-8 Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
3.2.1.3.6 MON-8 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
3.2.1.3.7 MON-8 Loop-Back Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
3.2.1.3.8 MON-8 IOM®-2 Channel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
3.2.1.3.9 MON-8 SM/CI Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
3.2.1.4  
3.2.2  
3.2.3  
MAI Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
S/T-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Maintenance Auxiliary Interface (MAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
I/O Specific Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
3.2.3.1  
Semiconductor Group  
3
General Information  
Contents (cont’d)  
Page  
3.2.3.2  
3.2.3.3  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.5.1  
3.3.5.2  
3.3.5.3  
3.3.5.4  
3.3.5.5  
3.3.6  
3.4  
3.4.1  
3.4.1.1  
3.4.1.2  
3.4.2  
Standard I/O Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
µP MAI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Control Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Activation Initiated by Exchange (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Activation Initiated by Exchange (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Activation Initiated by Terminal (TE/LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
TIC Bus D-Channel Control in TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
S-Bus Priority Mechanism for D-Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
S-Bus D-Channel Control in TEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
S-Bus D-Channel Control in LT-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
D-Channel Control in the Intelligent NT (TIC-and S-Bus) . . . . . . . . . . . . . . . . . . . . . 78  
IOM®-2 Interface Channel Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Maintenance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Test Loop-Backs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Complete Loop-Backs (No. 2, No. 3, and No. A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Single Channel Loop-Backs (No. 4, No. B1/2, No. C) . . . . . . . . . . . . . . . . . . . . . . . . 87  
Monitoring of Illegal Code Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Test Modes and System Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Test Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Test Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Pulse Mask Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
NT Transmitter Output/Receiver Input Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
TE Transmitter Output/Receiver Input Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
NT/TE Timing Extraction Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
TE Total Phase Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
TE and NT Longitudinal Conversion Loss (LCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
TE and NT Output Signal Balance (OSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
3.4.3  
3.4.3.1  
3.4.3.2  
3.4.3.3  
3.4.3.4  
3.4.3.5  
3.4.3.6  
3.4.3.7  
3.4.3.8  
3.4.3.9  
3.4.3.10 TE Frame Rate Info1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
3.4.3.11 Loss and Regain of Frame Alignment (TE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
4
4.1  
Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
IOM®-2 Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Timing Characteristics CEB (NT / LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Command/Indicate Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
4.1.1  
4.1.1.1  
4.1.1.2  
4.1.1.3  
4.1.1.4  
4.1.1.4.1 Handshake Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
4.1.1.4.2 Monitor Procedure Timeout (TOD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
4.1.1.4.3 MON-1, MON-2 Commands (S/Q Channel Access) . . . . . . . . . . . . . . . . . . . . . . . . 106  
4.1.1.4.4 MON-8 Commands (Register Access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
4.1.2  
4.1.2.1  
4.1.3  
S/T-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
S/T-Interface Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
S/T-Interface Multiframing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Semiconductor Group  
4
General Information  
Contents (cont’d)  
Page  
4.1.4  
4.1.4.1  
4.1.4.2  
4.1.4.3  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.3  
Maintenance Auxiliary Interface (MAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
I/O Specific Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Standard I/O Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
µP MAI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Control Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Complete Activation Initiated by Exchange (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Complete Activation Initiated by Exchange (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Complete Activation Initiated by Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Complete Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
State Machine TE/LT-T Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
TE/LT-T Modes State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
TE/LT-T Modes Transition Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
4.3.1  
4.3.1.1  
4.3.1.2  
4.3.1.2.1 C/I Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
4.3.1.2.2 Pin States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
4.3.1.2.3 S/T-Interface Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
4.3.1.3  
Transmitted Signals and Indications in TE/LT-T Modes . . . . . . . . . . . . . . . . . . . . . 133  
4.3.1.3.1 C/I Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
4.3.1.3.2 S/T-Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
4.3.1.4  
4.3.2  
4.3.2.1  
4.3.2.2  
States TE/LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
State Machine LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
LT-S Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
LT-S Mode Transition Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
4.3.2.2.1 C/I Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
4.3.2.2.2 Pin States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
4.3.2.2.3 S/T-Interface Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
4.3.2.3  
Transmitted Signals and Indications in LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . 139  
4.3.2.3.1 C/I Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
4.3.2.3.2 S/T-Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
4.3.2.4  
4.3.3  
4.3.3.1  
4.3.3.2  
States LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
State Machine NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
NT Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
NT Mode Transition Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
4.3.3.2.1 C/I Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
4.3.3.2.2 Pin States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
4.3.3.2.3 S/T-Interface Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
4.3.3.3  
Transmitted Signals and Indications in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
4.3.3.3.1 C/I Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
4.3.3.3.2 S/T-Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
4.3.3.4  
4.4  
4.4.1  
4.4.2  
4.4.3  
4.4.4  
States NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
C/I Command RES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Hardware Reset RST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Push/Pull Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Initializing LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Semiconductor Group  
5
General Information  
Contents (cont’d)  
Page  
4.5  
Maintenance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Test Loop-Backs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Complete Loop-Backs (No. 2, No. 3, and No. A) . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Single Channel Loop-Backs (No. 4, No. B2, No. C) . . . . . . . . . . . . . . . . . . . . . . . . 148  
Monitoring of Illegal Code Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Clock Generation and Clock Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
NT and LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Transmit and Receive PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Jitter Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
LT-T and TE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Receive PLL in TE and LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Elastic Buffers in LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Elastic Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Jitter Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Output Clock Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Recommended Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Analog Line Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Receiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Transmitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
S/T-Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
S/T-Interface Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Line Overload Protection (Transmitter, Receiver) . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Transmitter Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Receiver Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
4.5.1  
4.5.1.1  
4.5.1.2  
4.5.2  
4.6  
4.6.1  
4.6.1.1  
4.6.1.2  
4.6.2  
4.6.2.1  
4.7  
4.7.1  
4.7.1.1  
4.7.1.2  
4.7.2  
4.8  
4.8.1  
4.8.2  
4.8.3  
4.8.3.1  
4.8.3.2  
4.8.4  
4.8.5  
5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
5.1  
5.2  
5.3  
5.4  
5.5  
6
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
7
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Delta and Errata Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
External Components Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Quick Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
7.1  
7.2  
7.3  
SICOFI®, SICOFI®-2, SLICOFI®, ARCOFI®, EPIC®-1, EPIC®-2, IPAT®, IOM®, IOM®-1, IOM®-2, ISAC®-S, ISAC®-P,  
IDEC® are registered trademarks of Siemens AG.  
ELIC, MUSAC, MUSAC-A, OCTAT-P are trademarks of Siemens AG.  
Semiconductor Group  
6
General Information  
Table of Figures  
Page  
Figure 1: PEB 2081 SBCX in P-DIP-28 and P-LCC-28-R Packages . . . . . . . . . . . . . . . . . . . . 12  
Figure 2: Logic Symbol of the SBCX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 3: Block Diagram of the SBCX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 4: Operating Modes of the SBCX in the ISDN Basic Access Architecture . . . . . . . . . . . 16  
Figure 5: ISDN Voice/Data Terminal using the IOM®-2 Terminal Architecture (TE) . . . . . . . . . 17  
Figure 6: SBCX in TE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 7: Basic Network Terminator (NT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 8: SBCX in NT-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 9: NT-Star Configuration with 8 TEs Connected Point-to-Point . . . . . . . . . . . . . . . . . . . 21  
Figure 10: NT-Star Configuration with 2 TEs Connected Point-to-Point  
and 6 TEs Connected via an Extended Passive Bus . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 11: NT-Star Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12: SBCX in NT-Star Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13: Micro Controlled NT Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 14: Intelligent NT Providing both Terminal (voice/data)  
and Network Terminating Functions (S/T-interface) . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 15: SBCX in LT-S Mode for Intelligent NT Configurations . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 16: IOM®-2 Line Card Architecture (LT-S) with One D-Channel Controller per Line . . . . 27  
Figure 17: SBCX in LT-S Mode for Basic Line Card Configuration . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 18: IOM®-2 Line Card Architecture (LT-S only) with One D-Channel Controller  
per up to Eight Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 19: SBCX in LT-S Mode for Star Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 20: PBX Architecture (LT-T) with One D-Channel Controller per Line . . . . . . . . . . . . . . . 31  
Figure 21: PBX-Configuration Requiring S/G Bit Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 22: SBCX in LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 23: Clock Generation for TE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 24: Clocks Generation in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 25: Clock Generation in LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 26: Clock Generation in LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 27: S/T-Interface Point-to-Point Configuration  
(“TR” stands for the 100 Terminating Resistor). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 28: S/T-Interface Extended Passive Bus Configuration  
(“TR” stands for the 100 Terminating Resistor). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 29: S/T-Interface Short Passive Bus Configuration  
(“TR” stands for the 100 Terminating Resistor) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 30: SBCX Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 31: IOM®-2 Interface Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 32: Basic Channel Structure of IOM®-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 33: Multiplexed Frame Structure of the IOM®-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . 47  
Semiconductor Group  
7
General Information  
Table of Figures (cont’d)  
Page  
Figure 34: Definition of the IOM®-2 Channels in a Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 35: C/I-Channel Use with the ICC (all data values hexadecimal) . . . . . . . . . . . . . . . . . . 52  
Figure 36: C/I-Channel Use with the EPIC® (all data values hexadecimal) . . . . . . . . . . . . . . . . 53  
Figure 37: Monitor Channel Handling with ICC (all data values hexadecimal) . . . . . . . . . . . . . . 55  
Figure 38: Monitor Channel Handling with EPIC® (all data values hexadecimal) . . . . . . . . . . . . 57  
Figure 39: S Multiframe Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65  
Figure 40: S-Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65  
Figure 41: D-Channel Access Control on TIC Bus and S Bus . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 42: Data Flow for Collision Resolution Procedure in Intelligent NT . . . . . . . . . . . . . . . . . 80  
Figure 43: Intelligent NT-Configuration for IOM®-2 Channel Switching . . . . . . . . . . . . . . . . . . . 81  
Figure 44: Test Loop-Backs Supported by PEB 2081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 45: External Loop at the S/T-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 46: Single Loops of the SBCX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 47: IOM®-2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 48: S/T-Interface Multi-Frame Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 49: Timing of the IOM®-2 Interface in TE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 50: Timing of the IOM®-2 Interface in NT / LT-S and LT-T Mode . . . . . . . . . . . . . . . . . . 96  
Figure 51: Timing of the CEB Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 52: Timing of the CEB Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 53: Functional Timing of the CEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 54: Handshake Protocol with a 2-Byte Monitor Message/Response . . . . . . . . . . . . . . . 103  
Figure 55: Abortion of Monitor Channel Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 56: S/T -Interface Line Code (without code violation) . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Figure 57: Frame Structure at Reference Points S and T (ITU I.430) . . . . . . . . . . . . . . . . . . . . 115  
Figure 58: Dynamic Characteristics of µP Interface Write Access . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 59: Dynamic Characteristics of µP Interface Read Access . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 60: Complete Activation Initiated by Exchange (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 61: Complete Activation Initiated by Exchange (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 62: Complete Activation Initiated by TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 63: Deactivation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Figure 64: Deactivation of the IOM®-2 Interface in the NT (DCL = 512 kHz) . . . . . . . . . . . . . . 127  
Figure 65: State Diagram Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 66: State Transition Diagram in TE/LT-T Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 67: State Diagram of the TE/LT-T Modes, Unconditional Transitions . . . . . . . . . . . . . . 131  
Figure 68: State Transition Diagram in LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 69: NT Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Figure 70: Dynamic Characteristics of Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 71: Clock System of the SBCX in NT and LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Semiconductor Group  
8
General Information  
Table of Figures (cont’d)  
Page  
Figure 72: Receive PLL of the SBCX in TE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Figure 73: Receive PLL of the SBCX in LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Figure 74: Phase Relationships of TE Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 75: Recommended Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Figure 76: Receiver Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 156  
Figure 77: Receiver Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Figure 78: Transmitter Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 79: Dynamic Transmitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 80: External Circuitry Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Figure 81: External Circuitry Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 82: Transformer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 83: Test Condition for Maximum Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 84: Destruction Limits Transmitter Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Figure 85: Destruction Limits Receiver Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 86: Power Supply Rejection SBCX Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 87: State Transition Diagram in TE/LT-T Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Figure 88: State Diagram of the LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Figure 89: NT Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Semiconductor Group  
9
General Information  
Introduction  
The PEB 2081 S/T Bus Interface Circuit Extended (SBCX) implements the four-wire S/T-interface  
used to link voice/data ISDN terminals, network terminators and PABX trunk lines to a Central  
Office.  
The SBCX provides the electrical and functional link between the analog S/T-interface according to  
ITU recommendation I.430, ETS 300 012 and T1.605 Basic User Network Interface Specification  
respectively, and the ISDN Oriented Modular interface Rev. 2 (IOM-2).  
This manual is divided into 6 major sections. Compared to previous data sheets for the S  
transceiver, the organization of the data sheet for version 3.4 has been modified in order to make  
information more readily available to the user.  
Section 1 gives the user an introduction to the PEB 2081 Vers. 3.4. It contains information about  
the functional blocks, features and pinning of the SBCX.  
Section 2 provides an overview of typical ISDN applications and demonstrates how these  
applications can be realized with the PEB 2081 Vers. 3.4.  
Sections 3 and 4 are identical in structure. Both cover the major S transceiver topics “Interfaces”,  
“Control Procedures” and “Maintenance Functions”. Section 3 gives the user an overview on the  
discussed topics without going into technical details. It is intended as an application guide where the  
user can quickly look up how the registers of ICC, EPIC and SBCX Vers. 3.4 need to be  
programmed in order to initiate the desired action.  
Section 4 is dedicated to detailed technical information. Status diagrams, state descriptions,  
algorithms, dynamic characteristics are to be found here. Section 4 thus is intended for the user  
who seeks specific technical information.  
Section 5 summarizes all electrical, section 6 all environmental characteristics.  
Semiconductor Group  
10  
 
S/T Bus Interface Circuit Extended  
PEB 2081  
1
Features  
Full duplex 2B+D S/T-interface transceiver according to  
the following specifications:  
– ITU Recommendation I.430  
– ETS 300 012  
– ANSI T1.605  
192 kbit/s transmission rate  
Pseudo-ternary coding with 100 % pulse width  
Activation and deactivation procedures  
Extended loop-length up to 2 km  
P-LCC-28-1  
IOM -2 Interface  
Optimized for operation in conjunction with IEC-Q, IBC,  
ICC, EPIC and IDEC telecom ICs  
Handling of commands and indications contained in the  
IOM-2 C/I channel for activation, deactivation and testing  
Switching of test-loops  
Modes  
TE  
: Terminal Mode  
P-DIP-28-3  
NT : Network termination connected to IEC-Q  
LT-T : Trunk mode in private exchange  
LT-S : Line termination in public or private exchanges  
Special Features  
Fully compliant NT2 trunk mode including multipoint operation  
Frame alignment with absorption of phase wander in NT2 network side applications  
D channel access control, also in trunk application  
Access to S and Q bits of S/T-interface (S1, S2 and Q channel)  
Software controlled maintenance interface (I/O ports)  
Switching of test loops  
Advanced CMOS technology with low power consumption:  
power down max. 4 mW  
operational max. 60 mW  
Type  
Ordering Code  
Q67100-H6581  
Q67100-H6580  
Package  
PEB 2081P  
PEB 2081N  
P-DIP-28-3  
P-LCC-28-1  
Semiconductor Group  
11  
11.96  
1.1  
Pin Configuration  
(top view)  
1 P-DIP-28-3  
VDD  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
MAI7  
VSS  
SX 1  
SX 2  
VSS  
2
3
SR 2  
SR 1  
VDD  
4
MAI 3  
X 3  
5
6
MAI6  
X 1  
RST  
7
PEB 2081  
SBCX  
MAI 2  
FSC  
8
MAI5  
X 2  
9
MAI1  
DCL  
10  
11  
12  
13  
14  
MAI4  
X0  
IDP1  
IDP 0  
MAI 0  
XTAL 2  
XTAL1  
MODE  
15  
ITP03973  
Figure 1  
PEB 2081 SBCX in P-DIP-28-3 and P-LCC-28-1 Packages  
Semiconductor Group  
12  
 
Features  
1.2  
Pin Definition and Functions  
Pin No.  
Symbol  
Input (I)  
Function  
Output (O)  
11  
9
DCL  
I/O  
Data Clock  
The frequency is equal to twice the data rate on the  
IOM-2 interface.  
LT-S, LT-T, NT: clock input 512 kHz to 8192 kHz  
TE: clock output 1536 kHz  
FSC  
I/O  
Frame Synchronization Clock  
LT-S, LT-T, NT: clock input 8 kHz  
TE: clock output 8 kHz  
13  
12  
IDP0  
IDP1  
I/O  
I/O  
IOM-2 data port 0; open drain with an external pull up  
resistor, otherwise push/pull  
IOM-2 data port 1; open drain (if external pull up  
resistor at IDP0), otherwise push/pull  
25  
26  
2
SR1  
SR2  
SX1  
I
Differential S/T-interface receiver signal input  
Differential S/T-interface receiver signal input  
Differential S/T-interface positive transmitter output  
Differential S/T-interface negative transmitter output  
Setting of either LT modes or NT and TE mode  
I
O
O
I
3
SX2  
15  
MODE  
6
X3  
X2  
X1  
X0  
I/O  
I
I
Specific function pins dependent from the selected  
operating mode  
20  
22  
18  
I/O  
28, 23, 21, 19 MAI (7:4)  
O
Maintenance Auxiliary Interface; output pins  
Maintenance Auxiliary Interface; input pin  
Maintenance Auxiliary Interface; input/output pins  
Power supply + 5 V ± 5 %  
Power supply + 5 V ± 5 %  
Ground  
5
MAI 3  
MAI (2:0)  
VDD  
I
8, 10, 14  
I/O  
24  
1
I
I
I
I
I
I
VDD  
4
VSS  
27  
7
VSS  
Ground  
RST  
Reset, low active  
16  
XTAL1  
Connection for external crystal,  
or input for external clock generator  
17  
XTAL2  
O
Connection for external crystal,  
not connected, when an external clock generator is  
used  
Semiconductor Group  
13  
 
Features  
1.3  
Logic Symbol  
2 : 1  
DCL  
FSC  
IDP0  
IDP1  
SX1  
IOM R -2  
Interface  
SX 2  
Maintenance  
Auxiliary  
Interface  
2 : 1  
MAI (7:0)  
MODE  
SR1  
2081  
(SBCX)  
PEB  
SR 2  
Mode  
XTAL1  
XTAL 2  
ITL03972  
X3  
X2  
X1  
X0  
Mode  
Specific  
Functions  
7.68 MHz  
VDD  
VSS  
RST  
+ 5 V GND  
Figure 2  
Logic Symbol of the SBCX  
Semiconductor Group  
14  
 
Features  
1.4  
Functional Block Diagram  
FSC  
DCL  
SX 1  
IPD 1  
IPD 0  
Transmit  
Buffer  
IOM R Interface Logic  
SX 2  
D-Channel  
Control  
Activation  
Control  
SR 1  
SR 2  
Receive  
Buffer  
S/Q Bit  
Handler  
DPLL  
ITA03958  
Figure 3  
Block Diagram of the SBCX  
Semiconductor Group  
15  
 
System Integration  
2
System Integration and Applications  
The SBCX implements the four-wire S- and T-interfaces used in the ISDN basic access. By  
programming the corresponding operating mode it may be used at both ends of these interfaces.  
The operating modes are:  
ISDN terminals (TE)  
ISDN network termination (NT) for a link between the four-wire S/T-interface and the two-wire  
U-interface  
ISDN subscriber line termination (LT-S)  
ISDN trunk line termination (LT-T); (PBX connection to Central Office).  
The basic use of these modes is shown in the following figure, where the usual nomenclature as  
defined by the ITU for the basic access functional blocks and reference points, is used.  
S
TE(1)  
TE(8)  
TE(1)  
TE(8)  
LT-S  
Network Terminator (NT)  
NT1  
S
U
NT  
T
NT2  
NT1  
LT-S  
LT-T  
NT  
ITS04492  
Figure 4  
Operating Modes of the SBCX in the ISDN Basic Access Architecture  
The NT equipment serves as a converter between the U-interface at the exchange and the  
S-interface at the user premises. The NT may consist of either an NT1 or an NT1 together with an  
NT2 connected via the T-interface which is physically identical to the S-interface. The NT1 is a direct  
transformation between layer 1 of S and layer 1 of U. NT2 may include higher level functions like  
multiplexing and switching as in a PBX.  
Semiconductor Group  
16  
System Integration  
2.1  
Operational Modes and System Integration  
TE Application  
2.1.1  
In the terminal several IOM-2 compatible devices can be connected to the IOM-2 bus structure (e.g.  
PEB 2070 ISDN Communications Controller (ICC), PSB 2161 Audio Ringing Codec Filter  
(ARCOFI®), PSB 2163 Audio Ringing Codec Filter (ARCOFI®SP) and PSB 2110 ISDN Terminal  
Adapter Circuit (ITAC®)). The ICC allows access to IOM-2 bus by the microcontroller. The SBCX is  
controlled via MON0 channel, the other devices via MON1 channel of the IOM-2 bus.  
IOM R -2 Terminal Interface  
PEB 2081  
SBCX  
PSB 2161  
ARCOFI R -BA  
PSB 2110  
ITAC  
PEB 2070  
ICC  
or  
2163  
PSB  
R
ARCOFI -SP  
µC  
ITS08392  
Figure 5  
ISDN Voice/Data Terminal using the IOM®-2 Terminal Architecture (TE)  
Semiconductor Group  
17  
 
System Integration  
20...40 2 :1  
20...40 Ω  
1.536 MHz 11  
2
3
DCL  
FSC  
IDP0  
IDP1  
SX1  
SX2  
8 kHz  
9
13  
12  
Transmit  
Pair  
TR  
33 pF  
33 pF  
16  
17  
XTAL1  
XTAL 2  
S/T Interface  
7.68 MHz  
768 kHz  
10 kΩ  
10 kΩ  
2 :1  
25  
SR1  
SR 2  
6
20  
22  
18  
15  
Receive  
Pair  
X3  
X2  
X1  
X0  
PEB 2081  
TR  
0 V  
0 V  
26  
14  
PCK  
0 V  
Mode  
MAI0  
MAI1  
MAI2  
MAI3  
MAI4  
MAI5  
MAI6  
MAI7  
10 CON  
0/5 V  
1
24  
8
5
19  
+ 5 V  
VDD  
VDD  
Maintenance  
Auxiliary  
Interface  
10 µF  
4
27  
7
21 S/G  
VSS  
VSS  
23  
28  
GND  
0/5 V  
RST  
ITS05101  
Figure 6  
SBCX in TE Mode  
Semiconductor Group  
18  
System Integration  
2.1.2  
ISDN Network Termination (NT1)  
The S-interface is a four-wire interface for connecting ISDN Terminal Equipment (TE) and Terminal  
Adapter (TA) to the Network Termination (NT). From here a twisted pair interfaces to the exchange.  
The Network Terminator interfaces the four-wire to the two-wire interface.  
A basic Network Terminator (NT1) can be built using the SBCX together with the PEB 2091 ISDN  
Echo-Cancellation Circuit (IEC-Q1) or in case of a private exchange the PEB 2095 ISDN Burst  
Transceiver Circuit (IBC). All information between S- and U-interface is handled automatically  
between the layer-1 devices IEC-Q (or IBC) and the SBCX.  
IOM R -2 Terminal Interface  
PEB 2081  
SBCX  
PEB 2091  
IEC-Q1  
ITS03977  
Figure 7  
Basic Network Terminator (NT1)  
Semiconductor Group  
19  
 
System Integration  
20...40 2 :1  
512 kHz  
8 kHz  
11  
9
13  
12  
2
3
DCL  
FSC  
IDP0  
IDP1  
SX1  
SX2  
Transmit  
Pair  
TR  
TR  
20...40 Ω  
System Clock  
from  
U-Interface  
7.68 MHz  
CEB  
16  
17  
XTAL 1  
XTAL 2  
S/T Interface  
10 kΩ  
10 kΩ  
2 :1  
25  
26  
SR1  
SR2  
6
20  
22  
18  
15  
Receive  
Pair  
5 V  
5 V  
0 V  
0/5 V  
0 V  
X3  
X2  
X1  
X0  
PEB 2081  
14 NT-STAR  
10 MFD  
Mode  
MAI0  
MAI1  
MAI2  
MAI3  
MAI4  
MAI5  
MAI6  
MAI7  
5 V  
0/5 V  
0/5 V  
0/5 V  
1
24  
8
5
TM1  
TM2  
+ 5 V  
VDD  
VDD  
Maintenance  
Auxiliary  
Interface  
19 MPR4  
21 MPR5  
23 MPR6  
28 MPR7  
10 µF  
4
27  
7
VSS  
VSS  
GND  
0/5 V  
RST  
ITS05102  
Figure 8  
SBCX in NT-Mode  
2.1.3  
ISDN Network Terminator (NT1) in Star Configuration  
A NT-star configuration is used when it is not possible to connect all terminals with a short or  
extended passive bus configuration. This may be the case if the terminal locations are too far apart  
to comply to the restrictions specified for short or extended passive bus systems. In this application  
the IOM-2 interface operates with a DCL frequency of 512 kHz. Downstream data will be  
transmitted to all connected TEs. The upstream data from all TE’s will be wired-ANDed on the  
IOM-2 interface.  
The NT-star mode ensures under these circumstances, the correct D-channel collision detection as  
well as the correct activation behavior (see also section 3.3).  
Both point-to-point or passive bus configurations are allowed. A combination of these  
two configurations is also possible, see figure 9 and 10.  
Semiconductor Group  
20  
 
 
System Integration  
TE  
2 km  
TE  
2 km  
TE  
2 km  
TE  
TE  
SBCX  
SBCX  
SBCX  
SBCX  
SBCX  
2 km  
2 km  
IOM R -2  
IEC-Q  
U-Interface  
SBCX  
SBCX  
SBCX  
NT  
2 km  
TE  
2 km  
TE  
2 km  
TE  
ITC05103  
Figure 9  
NT-Star Configuration with 8 TEs Connected Point-to-Point  
TE  
2 km  
SBCX  
TE  
TE  
TE  
1.5 km  
IOM R -2  
IEC-Q  
SBCX  
SBCX  
U-Interface  
TE  
TE  
TE  
NT  
2 km  
TE  
ITC05104  
Figure 10  
NT-Star Configuration with 2 TEs Connected Point-to-Point and 6 TEs Connected via an  
Extended Passive Bus  
Semiconductor Group  
21  
System Integration  
IOM R -2 Terminal Interface  
CEB  
PEB 2081  
SBCX  
PEB 2091  
IEC-Q1  
NT/LT-S  
PEB 2081  
SBCX  
NT/LT-S  
ITS03976  
Figure 11  
NT-Star Configuration  
Semiconductor Group  
22  
System Integration  
20...40 2 :1  
512 kHz  
8 kHz  
11  
9
13  
12  
2
3
DCL  
FSC  
IDP0  
IDP1  
SX1  
SX 2  
Transmit  
Pair  
TR  
TR  
20...40 Ω  
System 7.68 MHz  
Clock  
16  
17  
XTAL 1  
XTAL 2  
S/T Interface  
10 kΩ  
10 kΩ  
2 :1  
25  
26  
SR1  
SR 2  
5 V  
CEB  
6
20  
22  
18  
15  
Receive  
Pair  
X3  
X2  
X1  
X0  
PEB 2081  
5 V  
0 V  
0/5 V  
0 V  
14 NT-STAR  
10 MFD  
Mode  
MAI0  
MAI1  
MAI2  
MAI3  
MAI4  
MAI5  
MAI6  
MAI7  
0 V  
0/5 V  
5 V  
1
24  
8
5
19  
21  
23  
28  
TM1  
TM2  
+ 5 V  
VDD  
VDD  
Maintenance  
Auxiliary  
Interface  
5 V  
10 µF  
4
27  
7
VSS  
VSS  
GND  
0/5 V  
RST  
ITS05105  
Figure 12  
SBCX in NT-Star Mode  
Semiconductor Group  
23  
System Integration  
2.1.4  
ISDN Network Terminator Using IOM®-2 Architecture (Intelligent NT)  
The IOM-2 architecture allows to build a micro controlled NT using additionally the ICC and  
operating the IEC-Q (or IBC) in the IOM-2 terminal mode. The ICC provides software controlled  
layer-1 maintenance function such as programming the SBCX via the monitor channel.  
The SBCX is set to LT-S mode and is operated in the IOM-2 channel 1 of the IOM-2 terminal  
architecture. For that purpose the SBCX offers the possibility of changing the state machine from  
LT-S mode to NT mode (refer to FSMM-bit of the configuration register) in order to behave like a  
Network Termination with only two devices (NT1).  
The SBCX provides the required IOM-2 channel switching functions (B1, B2, D and C/I) for this  
application. To ensure a proper wake up procedure of a micro controlled NT being in power down  
(case of a deactivated line) the asynchronous timing bit (AST-bit of the loop-back register) should  
be set.  
The U- and S/T-interface maintenance data is conveyed via the IOM-2 interface’s monitor channel  
to the ICC.  
IOM R -2 Terminal Interface  
PEB 2081  
SBCX  
PEB 2091  
IEC-Q1  
1.536 MHz  
PEB 2070  
ICC  
µC  
ITS03978  
Figure 13  
Micro Controlled NT Configuration  
Semiconductor Group  
24  
 
System Integration  
The S-interface is the standard ISDN subscriber interface, but in a PBX environment also an  
U-interface (e.g. IBC or IEC-Q) may be used for the connection of a subscriber resulting in an  
U-interface terminal with an S/T-extension (Intelligent NT). The Intelligent NT can be seen as an  
enhancement of the micro controlled NT.  
In this case the SBCX is treated as an additional IOM-2 device. The ICC accesses the IBC or IEC-Q  
via MON0 channel, the other devices via MON1 channel.  
The functionality of such a configuration includes D-channel collision resolution in upstream  
direction (TIC bus) and IOM-2 channel switching functions for internal communication.  
IOM R -2 Terminal Interface  
PEB 2081  
SBCX  
PEB 2091  
IEC-Q1  
PSB 2110  
ITAC  
PSB 2163  
PEB 2070  
ICC  
ARCOFI R -SP  
µC  
ITS03979  
Figure 14  
Intelligent NT Providing both Terminal (voice/data) and Network Terminating Functions  
(S/T-interface)  
Semiconductor Group  
25  
System Integration  
20...40 2 :1  
20...40 Ω  
1536 kHz 11  
2
3
DCL  
FSC  
IDP0  
IDP1  
SX1  
SX2  
8 kHz  
9
13  
12  
Transmit  
Pair  
TR  
System  
Clock  
7.68 MHz 16  
17  
XTAL 1  
XTAL 2  
S/T Interface  
10 kΩ  
10 kΩ  
2 :1  
25  
26  
SR1  
SR2  
CEB  
TS2  
TS1  
TS0  
6
20  
22  
18  
15  
Receive  
Pair  
5 V  
0 V  
0 V  
5 V  
5 V  
X3  
X2  
X1  
X0  
PEB 2081  
TR  
14 NT-STAR  
Mode  
MAI0  
MAI1  
MAI2  
MAI3  
MAI4  
MAI5  
MAI6  
MAI7  
5 V  
10  
8
5
19  
21  
23  
28  
1
24  
+ 5 V  
VDD  
VDD  
Maintenance  
Auxiliary  
Interface  
10 µF  
4
27  
7
VSS  
VSS  
GND  
0/5 V  
RST  
ITS05106  
Figure 15  
SBCX in LT-S Mode for Intelligent NT Configurations  
Semiconductor Group  
26  
System Integration  
2.1.5  
Line Card Application (one D-channel controller per line)  
The SBCX supports a line card implementation both in an ISDN Subscriber Line Termination LT-S)  
and in an ISDN Trunk Line Termination (LT-T) using e.g. the PEB 2055 Extended PCM Interface  
Controller (EPIC®-1). Up to eight devices can be connected to the IOM-2 interface. This application  
requires a data clock of 4.096 MHz. The standard implementation of a S/T-interface line card  
includes one D-channel controller, e.g. PEB 2075 ISDN D-Channel Exchange Controller (IDEC®),  
per line for decentralized D-channel handling. Figure 16 illustrates this configuration for line cards  
on the exchange side.  
IOM R -2 Interface  
4096 kHz  
PCM  
HWs  
PEB 2081  
1.SBCX  
PEB 2055  
EPIC  
R
PEB 2081  
2.SBCX  
PEB 2075  
IDEC  
PEB 2075  
IDEC  
R
R
PEB 2081  
8.SBCX  
SAB  
HSCX  
µP  
Signaling  
Highway  
ITS05107  
Figure 16  
IOM®-2 Line Card Architecture (LT-S) with One D-Channel Controller per Line  
Semiconductor Group  
27  
 
 
System Integration  
20...40 2 :1  
4096 kHz 11  
2
3
DCL  
FSC  
IDP0  
IDP1  
SX1  
SX2  
8 kHz  
9
13  
12  
Transmit  
Pair  
TR  
TR  
20...40 Ω  
33 pF  
33 pF  
16  
17  
XTAL1  
XTAL2  
S/T Interface  
7.68 MHz  
10 kΩ  
10 kΩ  
2 :1  
25  
26  
SR1  
SR2  
CEB  
TS2  
TS1  
TS0  
6
20  
22  
18  
15  
Receive  
Pair  
5 V  
X3  
X2  
X1  
X0  
PEB 2081  
0/5 V  
0/5 V  
0/5 V  
+ 5 V  
14 NT-STAR  
Mode  
MAI0  
MAI1  
MAI2  
MAI3  
MAI4  
MAI5  
MAI6  
MAI7  
5 V  
10  
8
5
19  
21  
23  
28  
1
24  
+ 5 V  
VDD  
VDD  
Maintenance  
Auxiliary  
Interface  
10 µF  
4
27  
7
VSS  
VSS  
GND  
0/5 V  
RST  
ITS05108  
Figure 17  
SBCX in LT-S Mode for Basic Line Card Configuration  
Semiconductor Group  
28  
System Integration  
2.1.6  
Line Card Application (one D-channel controller for eight lines)  
This configuration is used under the same circumstances as described in section 2.1.3 “NT1 Star  
Configuration”. Refer to this section for additional information.  
Figure 18 and figure 19 illustrate the principle and its realization in line card applications.  
IOM R -2 Interface 512 kHz  
4
PEB 2081  
1.SBCX  
PEB 2055  
EPIC  
R
PEB 2070  
ICC  
PEB 2081  
2.SBCX  
X3:  
CEB  
PEB 2081  
8. SBCX  
µP  
ITS03981  
5 V 5 V  
Figure 18  
IOM®-2 Line Card Architecture (LT-S only) with One D-Channel Controller per up to Eight  
Lines  
Semiconductor Group  
29  
 
 
 
System Integration  
5 V  
20...40 2 :1  
512 kHz  
8 kHz  
11  
9
13  
12  
16  
2
3
DCL  
FSC  
IDP0  
IDP1  
XTAL1  
SX1  
SX2  
Transmit  
Pair  
TR  
TR  
20...40 Ω  
33 pF  
S/T Interface  
7.68 MHz  
17  
1)  
XTAL 2  
10 kΩ  
10 kΩ  
2 :1  
33 pF  
25  
26  
SR1  
SR2  
5 V  
CEB  
TS2  
TS1  
TS0  
6
20  
22  
18  
15  
Receive  
Pair  
X3  
X2  
X1  
X0  
PEB 2081  
0 V  
0 V  
0 V  
5 V  
14 NT-STAR  
Mode  
MAI0  
MAI1  
MAI2  
MAI3  
MAI4  
MAI5  
MAI6  
MAI7  
0 V  
10  
8
5
19  
21  
23  
28  
1
24  
+ 5 V  
VDD  
VDD  
Maintenance  
Auxiliary  
Interface  
10 µF  
4
27  
7
VSS  
VSS  
GND  
0/5 V  
RST  
ITS05109  
1) Optionally system clock may be used  
Figure 19  
SBCX in LT-S Mode for Star Configuration  
Semiconductor Group  
30  
System Integration  
2.1.7  
Private-Branch-Exchange Application (one D-channel controller per line)  
The SBCX also supports ISDN-PBX configurations in its LT-T (Line Termination-Trunk) mode. By  
providing internal buffers in this mode, the device is able to compensate phase deviations between  
the two clock systems on the S-interface and the IOM-2 interface (in PBX system the PEB 2081 is  
slave with respect to these two clock systems). Specific requirements regarding the clock  
generation in a PBX system are described in section 2.3 “Clock Generation”.  
4096 kHz  
IOM R -2 Interface  
PCM  
HWs  
PEB 2055  
EPIC  
PEB 2081  
1. SBCX  
R
PEB 2075  
IDEC  
PEB 2075  
IDEC  
PEB 2081  
2.SBCX  
R
R
MAI 5 : S/G  
Bit  
Signaling  
Highway  
SAB 82525  
HSCX  
PEB 2081  
8. SBCX  
µP  
ITS03980  
Figure 20  
PBX Architecture (LT-T) with One D-Channel Controller per Line  
Semiconductor Group  
31  
 
 
System Integration  
D-channel processing is handled by a separate controller for each line as was the case for line card  
applications. In order to guarantee correct D-channel access on the S-interface when additional  
terminals are connected to the same S-bus, an external “D-channel access monitor bit” ( S/G bit)  
^
=
is provided in this mode. A system where this bit must be evaluated for correct D-channel access is  
shown in the following figure. In this configuration the D-channel controller of PBX No. 1 is informed  
via the S/G bit when the terminal occupies the D-channel on the S-interface. In case a point-to-point  
configuration is used to connect a single PBX to an exchange the S/G line is not required. Please  
refer to section 3.2.3.1 for additional information regarding the use of the S/G bit.  
PBX No.1  
5 V  
NT1  
SBCX  
LT-T  
SBCX  
NT  
R
IDEC  
R
IDEC  
S/G  
SBCX  
LT-T  
SBCX  
NT  
ISAC R -S  
TE  
IOM R -2  
Terminal  
R
ARCOFI  
ITS05110  
Figure 21  
PBX-Configuration Requiring S/G Bit Evaluation  
Semiconductor Group  
32  
System Integration  
20...40 2 :1  
4096 kHz 11  
2
3
DCL  
FSC  
IDP0  
IDP1  
XTAL1  
SX1  
SX2  
8 kHz  
9
13  
12  
16  
Transmit  
Pair  
TR  
TR  
20...40 Ω  
33 pF  
33 pF  
IOM R -2  
Clock  
Generator  
7.68  
MHz  
S/T  
Interface  
17  
XTAL 2  
10 kΩ  
10 kΩ  
2 :1  
25  
SR1  
SR2  
1536 kHz  
TS2  
TS1  
6
20  
22  
18  
15  
Receive  
Pair  
X3  
X2  
X1  
X0  
PEB 2081  
0/5 V  
0/5 V  
0/5 V  
5 V  
26  
14  
System  
Clock  
TS0  
Mode  
MAI0  
MAI1  
MAI2  
MAI3  
MAI4  
MAI5  
MAI6  
MAI7  
10 CON  
0/5 V  
1
24  
8
5
19  
+ 5 V  
VDD  
VDD  
Maintenance  
Auxiliary  
Interface  
10 µF  
4
27  
7
21 S/G  
VSS  
VSS  
23  
28  
GND  
0/5 V  
RST  
ITS05111  
Figure 22  
SBCX in LT-T Mode  
Semiconductor Group  
33  
System Integration  
2.2  
Setting Operating Modes  
Tables 1-2 illustrate which modes are supported by the PEP 2081 version 3.4 and how they can be  
configured by the user. Table 1 gives an overview of pin signals and the register configuration. For  
the description of MAI pins it was assumed, that for the initial mode, the “I/O specific” mode was  
selected. Refer to chapter 4.1.4 for details on the MAI interface options.  
It is possible to change the mode of a device during operation by pin strapping (e.g. for test  
purposes) if the mode change is followed by a hardware reset. A hardware reset sets all registers  
to their initial value.  
Table 1  
Modes of Operation  
Configuration  
LT-S  
NT  
LT-T  
TE  
Point-Point/Bus  
Point-Point/Bus  
Pin  
Mode  
X0  
1
0
1
0
i:TS0  
i:TS1  
i:TS2  
i/o:CEB  
i:0/i:1 1)  
i:TS0  
i:TS1  
i:TS2  
o:32/16 kHz (1:1)  
X1  
i:0  
i:0  
i:0  
X2  
i:1  
X3  
i/o:CEB  
o:1536 kHz (3:2) o:768 kHz (1:1)  
MAI0  
MAI1  
MAI2  
MAI3  
MAI4  
MAI5  
i:NT-STAR  
i:MPR1  
i:NT-STAR  
i:MFD  
i:MPR0  
i:CON2)  
i:MPR2  
i:MPR3  
o:MPR4  
o:S/G  
i:MPR0  
i:CON3)  
i:MPR2  
i:MPR3  
o:MPR4  
i:MPR2  
i:TM1  
i:MPR3  
i:TM2  
o:MPR4  
o:MPR5  
o:MPR4  
o:MPR5  
o:S/G if  
SGE = “1”  
MAI6  
MAI7  
o:MPR6  
o:MPR7  
o:MPR6  
o:MPR7  
o:MPR6  
o:MPR7  
o:MPR6  
o:MPR7  
FSC  
DCL  
i:8 kHz  
i:8 kHz  
i:8 kHz  
o:8 kHz (1:2)  
o:1536 kHz (1:1)  
(cont’d)  
i:512-8192 kHz  
i:512-8192 kHz  
i:512-8192 kHz  
Note:  
1) Choice for bus configuration (1 = bus). In LT-S mode only programmable. In NT mode programmable or pin  
strapping. Pin strapping has the higher priority.  
2) CON-pin functionality is enabled if DH = “1” in the IOM-2 Channel register in LT-T mode.  
3) CON-pin functionality is enabled if DH = “0” in the IOM-2 Channel register in TE mode.  
Semiconductor Group  
34  
 
 
System Integration  
Table 1  
Modes of Operation (cont’d)  
Configuration  
Register  
LT-S  
Point-Point/Bus  
NT  
LT-T  
TE  
Point-Point/Bus  
Configuration  
Bit 0 (Mode) [0]  
0
0/17)  
0/11)  
0/1  
0
1
0/17)  
0/13)  
0
Configuration  
Bit 1 (C/W/P) [0]  
0/11)  
0/1  
0
0/12)  
0
Configuration  
Bit 5 (FSMM) [0]  
Configuration  
0
0
Bit 6 (MAIM) [0]  
SM/CI  
0
0
0
0
Bit 0 (MIO) [0]  
SM/CI  
Bit 2 (SGE) [0]  
0
0
0
0/18)  
0/16)  
IOM-2 Channel  
Bit 2 (DH) [0]  
0/14)  
0/14)  
0/15)  
Notes:  
1) Choice for bus configuration (1 = bus). In LT-S Mode only programmable. In NT mode programmable or pin  
strapping. Pin strapping has the higher priority.  
2) Slip warning control. C/W/P = 0 will issue C/I “Slip” code warning after 50 µs wander. C/W/P = 1 will issue  
the “Slip” code warning after 25 µs.  
3) PCK (pin X0) frequency select. C/W/P = 0 will issue a power converter clock frequency of 32 kHz, C/W/P = 1  
will issue 16 kHz.  
4) Select “1” for intelligent NT applications to ensure partial TIC Bus evaluation (see section 3.3.5.5).  
5) Select “1” for point-to-multipoint configurations to ensure D-channel collision resolution according to  
ITU I.430 (see section 2.1.7 and 3.3.5.4).  
6) For normal D-channel collision procedure program DH = “0”.  
7) 0: MAI pins I/O specific; 1: MAI pins only I/O.  
8) In TE Mode pin MAI5 outputs a D-channel enable signal, which may be used by a general purpose HDLC  
controller for LAP D handling. The signal contiuously monitors the D-E channel status and provides a stop/  
go information.  
[0] Initial register bit value after hard- or software reset.  
Semiconductor Group  
35  
System Integration  
Table 2  
IOM -2 Channel Assignment *)  
IOM -2  
TS2  
TS1  
TS0  
Bit No.  
Min. Freq. of DCL (kHz)  
Channel No.  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0 … 31  
512  
32 … 63  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
64 … 95  
96 … 127  
128 … 159  
160 … 191  
192 … 223  
224 … 255  
Note:  
*) TS pins are read continuously (non-latching) after the supply voltage has reached its nominal value.  
Semiconductor Group  
36  
System Integration  
2.3  
Clock Generation  
Clock generation varies with the application. The following diagrams show what timing signals need  
to be generated for each SBCX mode and how system synchronization is obtained.  
2.3.1  
TE Mode  
XIN = 7.68 MHz  
X3 = 768 kHz  
FSC = 8 kHz  
TE  
DCL = 1536 kHz  
Synchr.  
ITS04198  
Figure 23  
Clock Generation for TE Mode  
In TE mode the PEB 2081 recovers the timing directly from the S-interface. A free running crystal  
or other clock source provides a 7.68 MHz base clock. The device synchronizes in TE Mode with a  
Receive PLL (RPLL) onto the S-interface by including 65 ns correction steps. Thus the issued IOM  
clocks and the clock signal on pin X3 are synchronous to the PTT master clock.  
Semiconductor Group  
37  
 
System Integration  
2.3.2  
NT Mode  
XTAL1 = 7.68 MHz  
FSC = 8 kHz  
NT  
DCL = 512 kHz  
Synchr.  
ITS05112  
Figure 24  
Clocks Generation in NT Mode  
In NT Mode the SBCX is supplied with synchronous IOM clocks and a synchronous base clock  
signal. These signals typically are generated by the upstream U-interface device (PEB 2091 or  
PEB 2095).  
In case no 7.68 MHz base clock signal is available, a 7.68 MHz crystal may be connected to XTAL1  
and XTAL2. In this configuration the internal Transmit PLL (XPLL) synchronizes the freerunning  
crystal clock onto the FSC signal.  
If required DCL clock rates up to 8192 kHz may be used. However the PEB 2081 will operate in IOM  
channel 0 independently of the DCL frequency applied.  
Semiconductor Group  
38  
 
System Integration  
2.3.3  
LT-T Mode  
Ref.  
Clock  
XIN = 7.68 MHz  
FSC = 8 kHz  
XIN = 7.68 MHz  
PLL  
%
DCL = 512  
...4096 kHz  
X3 =  
1.536 MHz  
XTAL1  
FSC  
DCL  
FSC  
DCL  
LT-S  
LT-T  
1
1
Synchr.  
Synchr.  
XIN = 7.68 MHz  
X3 =  
1.536 MHz  
XTAL1  
FSC  
DCL  
FSC  
DCL  
LT-S  
LT-T  
2
2
Synchr.  
Synchr.  
XIN = 7.68 MHz  
X3 =  
1.536 MHz  
XTAL1  
FSC  
DCL  
FSC  
DCL  
LT-S  
LT-T  
8
8
Synchr.  
Synchr.  
ITS08391  
Figure 25  
Clock Generation in LT-T Mode  
Semiconductor Group  
39  
System Integration  
In LT-T mode IOM-clock signals are not issued by the device but need to be generated externally.  
In order to ensure synchronous timing to the PTT-master clock, a PLL is used for generation of FSC  
and DCL (supplied to LT-T and LT-S devices) as well as of the 7.68-MHz system clock (LT-S only).  
Reference clock for the PLL is the PTT synchronous 1536-kHz signal from pin X3.  
Note:  
It may be necessary to use a multiplexer for the PLL reference clock because the X3 clock signal is  
synchronous to the PTT clock only if the corresponding line is activated. Otherwise the PLL  
reference must be supplied by the X3 clock from a different activated line.  
Semiconductor Group  
40  
System Integration  
2.3.4  
LT-S Mode  
7.68 MHz  
LT-S  
FSC  
DCL  
1
7.68 MHz  
LT-S  
FSC  
DCL  
FSC = 8 kHz  
PTT  
Reference Clock  
DCL = 512  
...4096 kHz  
PLL  
2
7.68 MHz  
FSC  
DCL  
LT-S  
8
Synchr.  
ITS05201  
Figure 26  
Clock Generation in LT-S Mode  
In LT-S mode the device synchronizes with the internal Transmit PLL (XPLL) the freerunning crystal  
clock onto the FSC signal. This ensures that transmission on the S-interface will be synchronous to  
the PTT clock.  
Semiconductor Group  
41  
 
System Integration  
2.4  
S/T-Interface Configurations  
The receiver of the SBCX exceeds the electrical requirements of the S/T-interface. An overview of  
the different wiring configurations is given in the following figures.  
The maximum length of a point-to-point configuration depends on the kind of cable installed. The  
maximum allowable line attenuation is 13 dB. However, the following figures give an idea of the  
performance of the SBCX.  
_
<
2 km  
R
R
IOM  
IOM  
SBCX  
TR  
TR  
SBCX  
Ι A1  
TE/LT-T  
NT/LT-S  
ITS03988  
Figure 27  
S/T-Interface Point-to-Point Configuration (“TR” stands for the 100 Terminating Resistor)  
_
<
1.5 km  
_
<
50 m  
R
IOM  
TR  
TR  
SBCX  
Ι A1  
Ι An  
_
<
10 m  
NT/LT-S  
SBCX  
SBCX  
TE1  
TE8  
ITS03989  
Figure 28  
S/T-Interface Extended Passive Bus Configuration (“TR” stands for the 100 Terminating  
Resistor)  
_
<
150 m ... 250 m  
R
IOM  
TR  
TR  
SBCX  
Ι A1  
Ι An  
_
<
10 m  
NT  
SBCX  
SBCX  
TE1  
TE8  
ITS03990  
Figure 29  
S/T-Interface Short Passive Bus Configuration (“TR” stands for the 100 Terminating  
Resistor)  
Semiconductor Group  
42  
 
Application Guide  
3
Application Guide  
3.1  
SBCX Device Architecture and General Functions  
The SBCX performs the layer-1 functions of the S/T-interface according to ITU recommendation  
I.430, ETS 300 012 and T1.605 Basic User Network Interface Specification, respectively. It can be  
used at all ends of the S/T-interface. The following figure depicts the device architecture.  
FSC  
DCL  
IOM R -2  
Interface  
Logic  
SX1  
SX 2  
IDP1  
IDP 0  
Transmitter  
Buffer  
Test  
Transmitter  
D-Channel  
Access  
Activation  
Control  
Buffer  
Comparators  
Oscil.  
Amplifier  
and  
Filter  
Peak  
Detector  
S/Q Bits  
Buffer  
SR1  
SR 2  
Level Detect  
Receive PLL  
Transmit PLL  
ITS03991  
Figure 30  
SBCX Device Architecture  
Semiconductor Group  
43  
 
 
Application Guide  
The Common Functions for all Operating Modes are:  
line transceiver functions for the S/T-interface according to the electrical specifications of  
ITU I.430  
The pseudo-ternary pulse shaping which meets the I.430 pulse templates, is achieved with the  
integrated transmitter.  
The integrated receiver is designed to cope with all wiring configurations of the S/T-interface  
(point-to-point, passive bus, and extended passive bus). The maximum allowable line  
attenuation is 13 dB.  
conversion of the frame structure between the IOM-2 interface and S/T-interface  
conversion from/to binary to/from pseudo-ternary code  
access to S and Q bits  
The level detect block monitors the receive line and therefore initiates switching into power down  
or power up state.  
Mode Specific Functions are:  
receive timing recovery for point-to-point, passive bus and extended passive bus configuration  
S/T timing generation using IOM-2 timing synchronous to system, or vice versa  
D-channel access control and priority handling  
D-channel echo bit generation by handling of the common echo bit  
activation/deactivation procedures, triggered by primitives received over the IOM-2 interface or  
by INFOs received from the line  
frame alignment in trunk application with maximum wander of ± 50 µs  
execution of test loops  
Semiconductor Group  
44  
Application Guide  
3.2  
Interfaces  
Section 3.2 describes the interfaces supplied by the SBCX. Three interfaces are implemented:  
– IOM-2 Interface  
– S-Interface  
– Maintenance Auxiliary Interface  
3.2.1  
IOM®-2 Interface  
The IOM-2 interface is primarily used to interconnect telecommunication ICs. It provides a  
symmetrical full-duplex communication link, containing user data, control/programming and status  
channels. The SBCX communicates with other ISDN devices to realize OSI layer-1 functions (such  
as a U Transceiver) or upper layer functions (such as ICC, EPIC, ARCOFI and ITAC).  
The structure used follows the 2B + 1D-channel structure of ISDN. The ISDN user data rate of  
144 kbit/s (B1 + B2 + D) on the S/T-interface is transmitted transparently in both directions over the  
interface. The D-channel switching may also be subject to the D-channel access procedure and  
collision detection and therefore is not fully transparent.  
The IOM-2 interface is a generalization and enhancement of the IOM®-1 interface.  
3.2.1.1  
IOM®-2 Frame Structure/Timing Modes  
The IOM-2 interface comprises two clock lines for synchronization and two data lines.  
Data is carried over Data Upstream (DU) and Data Downstream (DD) signals. The downstream and  
upstream direction are always defined with respect to the exchange. Downstream refers to  
information flow from the exchange to the subscriber and upstream vice versa respectively. The  
IOM-2 Interface Specification describes open drain data lines with external pull-up resistors.  
However, if operation is logically point-to-point, tristate operation is possible as well.  
The data is clocked by a Data Clock (DCL) that operates at twice the data rate. Frames are delimited  
by an 8-kHz Frame Synchronization Clock (FSC).  
FSC  
DCL  
IOM R -2  
Slave  
IOM R -2  
Master  
DU  
DD  
ITS03992  
Figure 31  
IOM®-2 Interface Structure  
Semiconductor Group  
45  
 
 
Application Guide  
Within one FSC period 32 bit to 512 bit are transmitted, corresponding to DCL frequencies from  
512 kHz to 8.192 MHz. The SBCX needs no pin strapping to indicate the actual bit rate, because  
each rising edge of FSC resets the internal bit counter.  
Two optimized IOM-2 timing modes exist for:  
– Line card Applications  
– Terminal Applications  
Both the line card and terminal applications utilize the same basic frame and clocking structure, but  
differ in the number and usage of the individual channels.  
frame  
bits  
B1  
8
B2  
8
Monitor  
8
D
2
Command/Indication  
4
MR  
1
MX  
1
Figure 32  
Basic Channel Structure of IOM®-2  
Each frame consists of  
two 64 kbit/s channels B1 and B2  
the monitor channel for transferring maintenance information between the layer-1 functional  
blocks (SBCX, IEC-Q, etc.) and the layer-2 controller (ICC, EPIC)  
two bits for the 16 kbit/s D-channel  
four command/indication (C/I) bits for controlling of layer-1 functions (activation/deactivation and  
additional control functions) by the layer-2 controller (ICC, EPIC). For a list of the C/I codes and  
their use refer to chapter 4.  
two bits MR and MX for handling the monitor channel  
Semiconductor Group  
46  
Application Guide  
3.2.1.1.1 IOM®-2 Interface Line Card Frame Structure  
The SBCX in line card applications (LT-S and LT-T) supports bit rates from 256 kbit/s to 4096 kbit/s  
corresponding to DCL frequencies from 512 kHz to 8.192 MHz.  
The typical IOM-2 line card applications comprises a DCL frequency of 4096 kHz with a nominal bit  
rate of 2048 kbit/s. Therefore eight channels are available, each consisting of the basic frame with  
a nominal data rate of 256 kbit/s. The length of the FSC high phase usually covers IOM-2 channel 0  
(minimum FSC length is 2 DCL) unless synchronization of the S/T-interface multi-frame is desired.  
The SBCX is assigned to an individual channel by pin strapping.  
125 µs  
FSC  
DCL  
DU  
IOM R CH0  
IOM R CH0  
CH1  
CH1  
CH2  
CH2  
CH3  
CH3  
CH4  
CH4  
CH5  
CH5  
CH6  
CH6  
CH7  
CH7  
CH0  
CH0  
DD  
M M  
R X  
B1  
B2  
MONITOR  
D
C/I  
ITD04319  
Figure 33  
Multiplexed Frame Structure of the IOM®-2 Interface  
Semiconductor Group  
47  
 
Application Guide  
3.2.1.1.2 IOM®-2 Interface Terminal Frame Structure  
In TE mode the SBCX provides a data clock DCL with a frequency of 1536 kHz. As a consequence  
the IOM-2 interface provides three channels each with a nominal data rate of 256 kbit/s.  
The SBXC only uses IOM-2 channel 0, and, for D-channel access control, the C/I field of IOM-2  
channel 2. The downstream data (DD) are transferred on pin IDP0, the upstream data (DU) on pin  
IDP1.  
The remaining two IOM-2 channels are for the use of other devices (ARCOFI, ITAC) within the TE.  
125 µs  
FSC  
IOM R Channel 0  
IOM R Channel 1  
IOM R Channel 2  
DD  
DU  
B1  
B1  
B2  
MON0  
C/I0  
C/I0  
IC1  
IC1  
IC2  
MON1  
C/I1  
C/I1  
C/I2  
C/I2  
B1  
B2  
MON0  
IC2  
MON1  
B1  
ITD04320  
Figure 34  
Definition of the IOM®-2 Channels in a Terminal  
Semiconductor Group  
48  
 
Application Guide  
– C/I0 in IOM® Channel 0:  
DU / DD  
D
D
C/I4  
C/I3  
C/I2  
C/I1  
MR  
MX  
D:  
two bits for the 16 kbit/s D-channel  
C/I:  
The four command/indication (C/I) bits are used for controlling of the layer-1  
functions (activation/deactivation and additional control functions) by the  
layer-2 controller (ICC, EPIC).  
MR, MX:  
two bits MR and MX for handling the monitor channel 0  
– C/I1 in IOM® Channel 1:  
DU / DD C/I6 C/I5  
C/I4  
C/I3  
C/I2  
C/I1  
MR  
MX  
C/I1 to C/I6 are used to convey real status information between a layer-2 device (ICC)  
and various non layer-1 devices e.g. ARCOFI.  
MR, MX:  
two bits MR and MX for handling the monitor channel 1  
– C/I2 in IOM® Channel 2:  
DU  
DD  
1
1
BAC  
S/G  
TBA2  
A/B  
TBA1  
1
TBA0  
1
1
1
1
1
E
E
E:  
D-echo bits  
BAC-bit  
S/G-bit  
A/B-bit  
(Bus ACcessed), used by the layer-2 device (e.g. ICC). When the TIC bus is  
occupied the BAC-bit is low.  
(Stop/Go), available to the layer-2 devices (e.g. ICC) to determine if they can  
access the S bus D-channel (S/G = 1: stop, S/G = 0: go).  
(available/blocked), supplementary bit for D-channel control.  
(A/B = 1: D-channel available, A/B = 0: D-channel blocked).  
For more information also refer to the chapters TIC Bus Access and D-channel access  
control.  
Semiconductor Group  
49  
Application Guide  
3.2.1.2  
IOM®-2 Interface Command / Indicate Channel  
The Command/Indicate channel (C/I channel) is used to control the operational status of the SBCX  
and to issue corresponding indications. C/I channel codes serve as the main link between the SBCX  
and other external intelligence (layer-1 or layer-2 devices). In chapter 4.3 status diagrams for all  
selectable modes give information on the commands with which the current operational status may  
be left, and on indications issued in all states.  
The codes originating from the control devices are called “commands”, those originating from the  
SBCX are referred to as “indications”. Commands have to be applied continuously by the controller  
until the command is validated by the SBCX and the desired action has been initiated. Afterwards  
the command may be changed.  
An indication is issued permanently by the SBCX until a new indication needs to be forwarded.  
Because a number of states issue identical indications it is not possible to identify each state  
individually.  
The interpretation of C/I codes depends on the mode selected. Table 3 shows the abbreviations  
used for C/I commands and indications.  
The C/I channel can be disabled (Intelligent NT) by setting the CIH-bit in the IOM channel register.  
The C/I channel would then be accessible via the monitor channel (SM/CI register).  
In TE mode a second C/I channel can be used to convey real status information between by a  
layer 2 device (ICC) and various non layer-1 devices e.g. ARCOFI. The channel consists of six bits  
in each direction.  
For a list of the C/I codes and their use, refer to chapter 4.  
Semiconductor Group  
50  
 
 
Application Guide  
Table 3  
C/I Abbreviations  
Code  
AI  
Description  
Activation Indication  
AI8  
Activation Indication with priority 8  
Activation Indication with priority 10  
Activation Indication Loop  
Activation Request  
AI10  
AIL  
AR  
AR8  
AR10  
ARL  
CVR  
DC  
Activation Request with priority 8  
Activation Request with priority 10  
Activation Request Loop  
Code Violation Received (far end)  
Deactivation Confirmation  
Deactivation Indication  
DI  
DR  
Deactivation Request  
MAIC  
PU  
Maintenance Auxiliary Interface Change  
Power Up  
RES  
RSY  
SLIP  
TIM  
TM1  
TM2  
Reset  
Resynchronizing  
Slip of Frame (frame jump)  
Timing Request  
Test Mode 1 (2-kHz test signal)  
Test Mode 2 (96-kHz test signal)  
The following examples illustrate the use of the C/I channel in combination with the PEB 2070 and  
the PEB 2055. Both examples assume that the device has been correctly initialized prior to starting  
the C/I code transfer.  
Semiconductor Group  
51  
Application Guide  
PEB 2070 and C/I-Channel Programming  
µ
P
C/I Channel Handler  
U-Transceiver  
Select TIC-Bus  
Addr. No.7  
STCR = 70  
CIX0 = 47  
Transmit C/I-  
Command "RESET"  
Transfer to "RESET"  
State  
C/I = 0001b  
C/I = 0000b  
New C/I-Code  
received in  
Send C/I-Indication  
"RES"  
CISQ  
ISTA = 04  
Channels 0 or 1  
Read New C/I-Code.  
The Code received  
was in Channel 0  
CICO = 1  
CICO = 0  
CIR0 = 06  
CIR0 = 04  
No change of  
C/I-Code  
ITD05305  
Figure 35  
C/I-Channel Use with the ICC (all data values hexadecimal)  
The STCR-register is programmed to allocate TIC-bus address 7 to the ICC. The C/I-command is  
transmitted with the CIX0-register (structure: 0 1 C/I C/I C/I C/I 1 1, bus access bit enabled). After  
the new C/I-command is loaded it is transmitted immediately.  
A change in the C/I-channel is indicated by an ISTA-interrupt (CISQ-bit). The new C/I-message can  
be read from register CIR0 (structure: 0 0 C/I C/I C/I CIC0 0 1). Bit CIC0 indicates that the new  
C/I-message was received in channel 0 for at least two consecutive frames. It is reset after the read  
operation.  
Semiconductor Group  
52  
Application Guide  
PEB 2055 and C/I-Channel Programming  
EPIC R -1  
µP  
SBCX in TE Mode  
C/I-Command  
"RESET"  
MADR = C7  
MAAR = 08  
Select Port 0,  
Channel 0, C/I-Code  
Downstream  
Transfer to "RESET"  
State  
C/I = 0001b  
C/I = 0001b  
MACR = 48  
ISTA = 40  
Start Transmission  
<- New C/I-Code  
was Received  
Send C/I-Indication  
"RES"  
SFI = 1  
Read Port and Time-  
Slot No. where C/I  
was Received  
CIFIFO = 88  
MAAR = 88  
Select this Port/  
Time-Slot for Reading  
(port 0, channel 0,  
C/I-code)  
MACR = C8  
MADR = C7  
Read C/I-Code  
Return C/I-Code in  
MADR-Register  
ITD05304  
Figure 36  
C/I-Channel Use with the EPIC (all data values hexadecimal)  
After the correct initialization of the EPIC, the C/I-code which is to be transmitted to the SBCX is  
written into the MADR-register (structure 1 1 C/I C/I C/I C/I 1 1). With the MAAR-register the EPIC  
is informed where to send this C/I-code (transmission direction, port number and time-slot number).  
For a description of this register please refer to the EPIC-manual, the example above sends the  
C/I-command to port 0, IOM-2 channel 0. MACR = 48H starts the transmission of the command.  
If a change in one of the C/I-channels was observed, and ISTA-interrupt (bit SFI) is generated.  
Because the user does not know in which channel the change occurred, the location needs to be  
read from the CIFIFO-register. This address is copied via software into address register MAAR.  
After having started the read operation with MACR = C8H the C/I-message can be read from MADR  
(structure as described earlier).  
Semiconductor Group  
53  
Application Guide  
3.2.1.3  
IOM -2 Interface Monitor Channel  
The monitor channel represents a second method to access SBCX specific features. Features of  
the monitor channel are supplementary to the C/I-channel. The SBCX uses the monitor channel for  
both, local programming and local functions (register access, e.g. MAI status) and S/Q maintenance  
bit information transfer. Monitor commands supported by the PEB 2081 divide into three categories.  
Each category derives its name from the first nibble (4 bits) of the one or two byte long message. All  
monitor messages representing similar functions are grouped together.  
Monitor functions of the SBCX can only be accessed by a control device (ICC, EPIC) in IOM-2  
mode. The following chapters describe the principle of monitor handshake in IOM-2, internal  
safeguards against a blocking of the monitor channel as well as features supported.  
In case the IOM-2 Terminal structure is used, monitor channel 1 may be used by a codec device  
(e.g. ARCOFI).  
3.2.1.3.1 Handshake Procedure  
IOM-2 provides a sophisticated handshake procedure for the transfer of monitor messages. For  
handshake control two bits are assigned to each IOM-frame (on IDP0 and IDP1).  
The monitor transmit bit (MX) indicates when a new byte has been issued in the monitor channel  
(active low). The transmitter postpones the next information until the correct reception has been  
confirmed. A correct reception will be confirmed by setting the monitor read bit (MR) to low.  
In order to send a monitor message from the control unit to the SBCX, the MX-bit on IDP1 and the  
MR-bit on IDP0 are used. In the opposite direction the SBCX handles the MX-bit of the IDP0-pin and  
watches the MR-bit of the IDP1-signal.  
Figure 37 illustrates monitor channel handling with the PEB 2070 (ICC), figure 38 demonstrates it  
with the PEB 2055 (EPIC-1). A two-byte message is sent from the control unit to the SBCX who  
acknowledges the receipt by returning a two-byte long message in the monitor channel.  
Semiconductor Group  
54  
 
Application Guide  
ICC and Monitor Channel Programming  
µP  
ICC  
MX  
MR  
MX  
MR  
SBCX  
0
1
0
1
0
1
0 1  
Transmission  
inactive  
MOCR = 00  
STAR  
MOSR = 00  
Transmitter inactive  
confirmation  
Store 1. Byte in  
Tx Register  
MOX0 = 1. Byte  
Transmit 1. Byte &  
Enable monitor  
interrupts  
Read 1. Byte  
Transmit ack.  
MOCR = 03  
Acknowledge  
received  
Store & Transmit  
2. Byte  
Acknowledge  
received  
MOCR = 02  
MOX0 = 2. Byte  
MOSR = 02  
MOCR = 0A  
Read 2. Byte  
Transmit ack.  
Set MX = 1(EOM)  
Enable monitor  
Enable receive  
interrupts  
Transmit EOM ack.  
Monitor data  
received  
Read 1. Byte of  
response  
Transmit 1. Byte  
of confirmation  
MOSR = 08  
MOR0 = 1. Byte  
Ack. 1. Byte of  
response, enable  
interrupts  
MOCR = 0E  
Transmit 2. Byte  
of confirmation  
Monitor data  
received  
MOSR = 08  
Read 2. Byte of  
response  
& Ack. receipt  
Transmit EOM  
MOX0 = 2. Byte  
EOM received  
Set MR = 1  
MOSR = 04  
MOCR = 0A  
Enable interrupts  
STAR  
MOSR = 00  
ITD04528  
IDP 1  
(SBCX)  
IDP 0  
(SBCX)  
Figure 37  
Monitor Channel Handling with ICC (all data values hexadecimal)  
Semiconductor Group  
55  
 
Application Guide  
The µP starts the transfer procedure after having confirmed the monitor channel being inactive. The  
first byte of monitor data is loaded into the transmit register. Via the Monitor Control Register  
MOCR-monitor interrupts are enabled and control of the MX-bit is handed over to the ICC. Then  
transmission of the first byte begins. The SBCX reacts to a low level of the MX-bit on IDP1 by  
reading and acknowledging the monitor channel byte automatically. On detection of the  
confirmation, the ICC issues a monitor interrupt to inform the µP that the next byte may be sent.  
Loading the second byte into the transmit register results in an immediate transmission (timing is  
controlled by ICC). The SBCX receives the second byte in the same manner as before. When  
transmission is completed, the ICC sends “End of Message” (MX-bit high).  
It is assumed that a monitor command was sent that needs to be confirmed by the SBCX (e.g. EOC  
commands). Therefore the PEB 2081 commences to issue a two-byte confirmation after an End-of-  
Message indication from the ICC has been detected. The handshake protocol is identical to that of  
the ICC. The ICC notifies the µP via interrupt when new monitor data has been received. The  
processor may then read and acknowledge the byte at a convenient instant. When confirmation has  
been completed, the SBCX sends “EOM”. This generates a corresponding interrupt in the ICC. By  
setting the MR-bit to high, the monitor channel is inactive, the transmission is finished.  
PEB 2055 and Monitor Channel Programming:  
The EPIC-1 supports monitor transfers on a higher level than the ICC. Several modes are offered  
to support different types of monitor transfer. For communication with the SBCX, three are of special  
interest.  
– Transmit Only. This mode is required when the EPIC sends monitor messages but no  
confirmation is returned by the SBCX (e.g. MON8 “Configuration Register”).  
– Transmit and Receive. The EPIC transmits first and receives afterwards. Confirmations sent  
by the SBCX can be read (e.g. MON8 “Identification Register”).  
– Searching for Active Monitor Channels. Listens to the IOM-monitor channel and reads  
information issued by the SBCX autonomously (e.g. MON1 S/Q-messages). Nothing is  
transmitted by the EPIC.  
Unlike the ICC which had to respond to each change of the MR- and MX-bits individually (interrupt  
driven), the EPIC uses a FIFO for transmission and reception. The user therefore does not have to  
provide routines for the handshake protocol.  
The example of figure 37 demonstrates the use of EPIC-1 in the transmit-and-receive mode. As for  
the ICC it is assumed that the transferred monitor message will be followed by a two byte  
confirmation issued by the SBCX.  
Before programming the FIFO, it is verified that the FIFO is empty and write access is possible. All  
monitor data is loaded into the FIFO (two bytes), the transmission channel and mode are selected.  
Writing “CMDR = 08” starts transmission of the FIFO contents and enables monitor data reception.  
After both bytes have been transmitted, the confirmation from the SBCX is read into the FIFO. After  
completion of the transfer an interrupt is generated. If the operation was successful, “STAR = 26”  
will indicate that data is loaded and the read access is enabled (in addition it is indicated that the  
PCM-synchronization status is correct). Following the readout of the confirmation bytes, the FIFO is  
cleared and the write access is selected again with the CMDR-register (“CMDR = 01”).  
The handshake timing for byte transfer is identical to that described for the ICC. Both devices (EPIC  
and SBCX) handle it automatically.  
Semiconductor Group  
56  
Application Guide  
EPIC® and Monitor Channel Programming  
R
µP  
SBCX  
EPIC  
FIFO empty, write  
access enabled  
STAR = 05  
Load 1. Byte in FIFO  
Load 2. Byte in FIFO  
MFFIFO = 1. Byte  
MFFIFO = 2. Byte  
FIFO not empty,  
write access  
enabled  
STAR = 04  
Transmit to particular  
MFTC 1.0 = 00  
subscriber IOM R tran-  
smit-channel address  
MFSAR = XX  
CMDR = 08  
Transmit & receive  
mode  
Trans. of 1. Byte  
Ack. 1. Byte  
Send 1. FIFO-Byte  
Wait for ack.  
Read 1. Byte  
Transmit ack.  
Read 2. Byte  
Trans. of 2. Byte  
Ack. 2. Byte  
Send 2. FIFO-Byte  
Wait for ack.  
Transmit ack.  
Transmit EOM ack.  
Send "EOM"  
Transfer operating  
STAR = 12  
Send 1. Byte of  
confirmation  
Write 1. Byte to FIFO  
Transmit ack.  
Wait for ack.  
Send 2. Byte of  
confirmation  
Write 2. Byte to FIFO  
Transmit ack.  
Wait for ack.  
Send "EOM"  
Set monitor channel  
inactive  
MFFI  
ISTA = 70  
Transfer completed  
FIFO not empty,  
Read access  
enabled  
STAR = 06  
Read 1. Byte of  
confirmation  
MFFIFO = 1. Byte  
MFFIFO = 2. Byte  
STAR = 07  
Read 2. Byte of  
confirmation  
FIFO empty, read  
access enabled  
Enable FIFO write  
access  
CMDR = 01  
FIFO empty, write  
access enabled  
STAR = 05  
ITD04529  
Figure 38  
Monitor Channel Handling with EPIC® (all data values hexadecimal)  
Semiconductor Group  
57  
Application Guide  
3.2.1.3.2 Monitor Procedure “Timeout” (TOD)  
The SBCX offers an internal reset (monitor procedure “Timeout”) for the monitor routine. This reset  
function transfers the monitor channel into the idle state (MR and MX set to high) by issuing “EOM”  
(End of Message). Thereby possible lock-up situations will be resolved. It therefore is  
recommended to enable the internal timeout feature in all systems when no µP is capable of  
detecting and resolving hang-up situations in the monitor procedure (e.g. in a standard NT1).  
The device checks for lock-up situation every 5 ms. In case a hang-up has been detected “EOM” will  
be issued on IDP0. Afterwards the original monitor message will be sent in the monitor channel  
again. The information thus is not lost after a monitor procedure timeout occurred.  
In applications where a µP controls the system this internal reset function may be disabled by  
programming the TOD bit (timeout disable) in the SM/CI Register to ONE. In this mode no  
restrictions regarding the time for completing a monitor transfer exists.  
3.2.1.3.3 MON-1, MON-2 Commands (S/Q Channel Access)  
Monitor commands supported by the PEB 2081 divide into three categories. Each category derives  
its name from the first nibble (4 bits). The first two categories (MON-1 and MON-2) serve a similar  
function. They are therefore grouped together and will be described in more detail in this section.  
MON-8 commands are described in the next section.  
Both MON-1 and MON-2 messages are also referred to as S/Q messages because they are used  
to read and write the registers containing the information of the S channel (direction NT TE) or  
the Q channel (direction TE NT) on the S-interface. Via the S-interface S/Q channel it is possible  
to exchange service or signalling information between the terminal and the network  
termination/exchange side. The S/Q channel is only available if multiframing was selected in the  
MFD bit of the MON-8 Configuration register. It is important to note that MON1/2 message provide  
only access to the device internal S/Q registers. Insertion and extraction of a message on the  
S-interface is handled automatically by the PEB 2081.  
Currently no MON-1 and MON-2 commands are defined. The S/Q channel thus operates as a  
transparent channel only. In the direction NT TE two channels are available. They are named S1  
and S2 channel, each of them containing 4 bits of information. In the opposite direction one channel  
is provided (Q channel, also 4 bit wide).  
The structure of a MON-1 message is shown below.  
Table 4  
MON-1 Structure  
1 Byte  
0
0
0
1
S1/Q S1/Q S1/Q S1/Q  
S1 or Q data  
MON-1  
Semiconductor Group  
58  
 
Application Guide  
The structure of a MON-2 message is similar:  
Table 5  
MON-2 Structure  
1 Byte  
0
0
1
0
S2  
S2  
S2  
S2  
MON-2  
S2 data  
The following table gives an overview of the S/Q messages available:  
Table 6  
MON-1, MON-2 Functions  
TE  
LT  
Function  
DD  
DU  
DD  
DU  
S1-MON-1  
S1-MON-1  
Transmit and Receive in the S1 channel  
via MON-1 commands  
S2-MON-2  
S2-MON-2  
Transmit and Receive in the S2 channel  
via MON-2 command  
Q-MON-1  
Q-MON-1 Transmit and receive in the Q channel via  
MON-1 command  
Non-Auto Mode / Transparent Mode  
The use of the S/Q channel depends on the S/Q processing mode. The user can choose between  
the non-auto mode and the transparent mode. These two alternatives are independent of the  
operational mode the SBCX works in.  
The non-auto mode is restricted to transfers in the S1 and Q channel. Channel S2 is not available  
in non-auto mode operation.  
In non-auto mode a message in the IOM-2 monitor channel is generated only if the Q or S1 data has  
changed on the S-interface.  
In transparent mode all three channels, Q, S1, and S2 can be accessed. IOM-2 monitor messages  
are generated everytime a complete S-interface multiframe has been received (i.e. every 5 ms).  
The generation of monitor messages thus is completely independent of the received S/Q data.  
Semiconductor Group  
59  
Application Guide  
3.2.1.3.4 MON-8 Commands (Internal Register Access)  
The PEB 2081 V 3.4 contains six internal registers. Access to these registers is only possible via  
the IOM-2 monitor channel. The following registers are implemented in the SBCX V 3.4:  
Identification Register  
Configuration Register  
Loop-back Register  
IOM-2 Channel Register  
SM/CI Register  
MAI Pin Register  
The identification register is a read only register, all remaining registers are read/write registers.  
The structure of MON-8 write and read request/response commands are shown in the three tables  
below:  
Table 7  
MON-8 “Write to Register” Structure  
1. Byte  
2. Byte  
1
0
0
0
r
r
r
r
D7 D6 D5 D4 D3 D2 D1 D0  
Register Data Write  
MON-8  
Reg. Address  
In case this function is used in conjunction with multiple µP read command (see MAI pin register) a  
5 byte long response message will result.  
Table 8  
MON-8 “Read Register Request” Structure  
1. Byte  
2. Byte  
1
0
0
0
0
0
0
0
0
0
0
0
r
r
r
r
MON-8  
Reg. Address  
The response issued by the SBCX after having received a “Read Register Request” has the  
following structure.  
Table 9  
MON-8 “Read Response” Structure  
1. Byte  
2. Byte  
1
0
0
0
r
r
r
r
D7 D6 D5 D4 D3 D2 D1 D0  
Register Data Read  
MON-8  
Reg. Adr.  
Confirmation  
The following sections describe the register features. For bit locations within a register, its initial  
value after reset and its address please refer to chapter 4.  
Semiconductor Group  
60  
 
Application Guide  
3.2.1.3.5 MON-8 Identification Register  
The contents of the identification register differs with the SBCX version. PEB 2081 V3.3 and 3.4 is  
identified with the code 42Hex  
Former PEB 2081 versions identify themselves with the following codes:  
.
PEB 2081  
Identification  
40HEX  
Version A1 … A3  
Version B1, 2.2  
41HEX  
3.2.1.3.6 MON-8 Configuration Register  
In the configuration register the user programs the SBCX for different operational modes, selects  
required S-bus features and controls the function of the MAI interface.  
The following paragraphs describe the application relevance of all individual configuration register  
bits.  
MODE With this bit the user chooses between LT-S and LT-T operational mode. Default  
selection is LT-S mode. The setting of the MODE bit is only evaluated when pin MODE  
(No. 15 DIP) is set to ONE.  
C/W/P This bit has three different meanings depending on the operational mode of the SBCX:  
In LT-S and NT modes the S/T bus configuration is programmed. For point-to-point or  
extended passive bus configurations an adaptive timing recovery must be chosen. This  
allows the SBCX to adapt to cable length dependent round trip delays.  
In LT-T mode the user selects the amount of permissible wander before a C/I code  
warning will be issued by the SBCX. The warning may be sent after 25 µs or 50 µs.  
Note:  
The C/I indication SLIP which will be issued if the specified wander has been exceeded,  
is only a warning. Data has not been lost at this stage.  
In TE mode the frequency of the power converter clock at pin X0 (No. 18 DIP) is selected.  
The user has the choice between a 32 kHz (default) and a 16-kHz signal.  
SQM  
Selects the SQ channel handling mode. In non-auto mode operation, the SBCX issues S1  
and Q messages in the IOM-2 monitor channel only after a change has been detected.  
The S2 channel is not available in non-auto mode.  
In transparent mode monitor messages containing the S1, S2 and Q data are forwarded  
to IOM-2 once per multiframe (5 ms), regardless of the data content. Programming the  
SQM bit is only relevant if multiframing on S/T is selected (bit MFD configuration register).  
See also MON-1 and MON-2 monitor messages.  
RCVE  
Receive Code Violation Errors. The user has the option to issue a C/I error code (CVR)  
everytime an illegal code violation has been detected. The implementation is realized  
according to ANSI T1.605.  
Semiconductor Group  
61  
 
Application Guide  
LP  
Loop Transparency. In case analog loop-backs are closed with C/I = ARL or bit SC in the  
loop-back register, the user may determine with this bit, whether the data is forwarded to  
the S/T-interface outputs (transparent) or not. The default setting depends on the  
operational mode. In LT-S and NT by default transparency is selected, for LT-T and TE  
non-transparency is standard.  
FSMM Finite State Machine Mode. By programming this bit the user has the possibility to  
exchange the state machines of LT-S and NT, i.e. a SBCX pin strapped for LT-S operates  
with a NT state machine and vice versa. All other operation mode specific characteristics  
are retained (MAI interface, etc.).  
This function is used in intelligent NT configurations where the SBCX needs to be pin-  
strapped to LT-S mode but the state machine of a NT is desirable.  
MAIM  
MFD  
MAI interface Mode. Selects between µP interface and I/O mode. The operation of the I/O  
mode is determined with the MIO bit in the SM/CI register (see MAI interface).  
Multi-Frame-Disable. Selects whether multiframe generation (LT-S, NT) or  
synchronization (TE, LT-T) is prohibited or allowed. Enable multiframing if S/Q channel  
data transfer is desired.  
When reading this register the bit indicates whether multiframe synchronization has been  
established or not.  
3.2.1.3.7 MON-8 Loop-Back Register  
The loop-back register controls all analog (S/T-interface) and digital (IOM-2 interface) loop-backs.  
Additionally the wake-up mode can be programmed.  
AST  
Asynchronous Timing.  
Defines the length of the Timing signal (IDP0 = 0) on IOM-2. If synchronous timing is  
selected the SBCX in NT or LT-S mode will issue the timing request only in the C/I  
channel of the selected timeslot (C/I = 0000b). This mode is useful for applications where  
IOM-2 clock signals are not switched off. Here the SBCX can pass the TE initiated  
activation via C/I = 0000b in IOM-2 cannel 0 upstream to the U-interface device. In case  
IOM-2 clocks can be turned off during power-down or the LT-S SBCX is pin-strapped to  
a different timeslot than the U-interface device, synchronous timing signals will not  
succeed in waking the U-interface device. Under these circumstances asynchronous  
timing needs to be programmed. Here the line IDP0 is set to ZERO for a period long  
enough to wake any U-interface device, independent of timeslot or clocks. Typically  
asynchronous timing is programmed for intelligent NT applications (SBCX pin-strapped to  
LT-S with NT state machine).  
Note:  
The asynchronous timing option is restricted to configurations with the SBCX operating  
with NT state machine (i.e., LT-S pin-strap & FSMM bit programmed, or NT pin-strap &  
FSMM bit not programmed).  
SB1  
SB2  
Closes the loop-back for B1 channel data close to the activated S/T-interface (i.e., loop-  
back IOM-2 data) in LT-S and NT mode.  
Closes the loop-back for B2 channel data close to the activated S/T-interface (i.e., loop-  
back IOM-2 data) in LT-S and NT mode.  
Semiconductor Group  
62  
 
Application Guide  
SC  
Close complete analog loop-back (2B+D) close to the S/T-interface. Corresponds to  
C/I = ARL. Transparency is optional. Operational in LT-S and NT mode.  
IB1  
IB2  
IB12  
Close the loop-back for B1 channel close to the IOM-2 interface (i.e. loop-back S/T data).  
Transparent. IB1 and IB2 may be closed simultaneously.  
Close the loop-back for B2 channel close to the IOM-2 interface (i.e. loop-back S/T data).  
Transparent. IB1 and IB2 may be closed simultaneously.  
Exchange B1 and B2 channels. IB1 and IB2 need to be programmed. Loops back data  
received from S/T and interchanges it, i.e. B1 input (S/T) B2 output (S/T) and vice  
versa.  
3.2.1.3.8 MON-8 IOM -2 Channel Register  
The features accessible via the IOM-2 Channel register allow to implement simple switching  
functions. These make the SBCX the ideal device for intelligent NT applications. Please refer also  
to the section “IOM-2 channel switching” later in this application guide. Two types of manipulation  
are possible: the transfer from the pin-strapped IOM-2 channel (0 … 7) into IOM-2 channel 0 and a  
change of the B1, B2 and D data source.  
B1L  
B2L  
DL  
Transfers the B1 channel from its pin-strapped location into IOM-2 channel 0.  
Transfers the B2 channel from its pin-strapped location into IOM-2 channel 0.  
Transfers the D-channel from its pin-strapped location into IOM-2 channel 0.  
B1D  
Direction of the B1 channel. Normally pin IDP1 is the data source (input) for all data  
channels and IDP0 the output. By programming this bit, input and output are interchanged  
for the B1 data channel, i.e. B1 (IDP0) is input and IDP1 is output.  
B2D  
CIH  
DH  
Direction of the B2 channel. Normally pin IDP1 is the data source (input) for all data  
channels and IDP0 the output. By programming this bit input and output are interchanged  
for the B2 data channel, i.e. B2 (IDP0) is input and IDP1 is output.  
C/I Channel handling: Normally the C/I commands are read from the pin-strapped IOM-2  
channel. With this bit programmed C/I channel access is only possible via the SM/CI  
register.  
D-Channel handling. Selects the protocol for D-channel access. Three alternatives exist:  
– Transparent D data transmission  
– D-channel collision resolution according to ITU I.430  
– D-channel bus access procedure for intelligent NT applications or configurations  
involving the “new line card” concept.  
An entire chapter is dedicated to D-channel access procedures later in this application  
guide. Details on all three methods including typical applications are described there.  
Semiconductor Group  
63  
 
Application Guide  
3.2.1.3.9 MON-8 SM/CI Register  
This multifeature register allows access to the C/I channel, sets the MAI interface mode and controls  
the monitor time-out and S/G bit function.  
C/I  
Allows the user to access the C/I channel if the CIH bit is the IOM-2 register has been  
previously set. If the CIH bit was not programmed the content of the CI bits will be  
ignored and the SBCX will access the IOM-2 C/I channel. When reading the SM/CI  
register these bits will always return the current C/I indication (independent of CIH bit).  
TOD  
Time Out Disable. Allows the user to disable the monitor time-out function. Refer to  
section “Monitor Timeout” earlier in this chapter for details.  
SGE  
S/G Enable. This bit is only relevant in TE mode. By programming it, the stop/go bit  
issued in the IOM-2 channel 2 will also be available at MAI pin No. 5 (pin No. 21, DIP).  
If this function is required the MAI interface must be programmed for “I/O specific”  
operation.  
MIO  
Maintenance Input Output. Provided bit MAIM was programmed for I/O operation of  
the MAI interface, bit MIO allows the choice between a standard I/O and I/O specific  
usage of the MAI interface. Refer to section “Maintenance Auxiliary Interface (MAI)” for  
details.  
3.2.1.4  
MAI Pin Register  
In both I/O specific and standard I/O mode pin levels can be set and read with the MAI pin register.  
In case the I/O specific mode is implemented, only pins not used for I/O specific purposes may be  
read or written.  
In case the µP mode is selected (MAIM bit) the MAI pins are redefined as follows to provide a  
complete µP interface.  
WR  
Write bit. The user sets the WR bit to low if data needs to be written to a specified  
address of the µP interface. The desired address and data must be written  
simultaneously with the WR bit into the MAI pin register.  
RD  
Read bit. Allows the user to read data from the specified address of the µP interface.  
Note that a read request must be sent to the SBCX with the “MON-8 Write to Register”  
structure. The distinction between write and read operation on the µP interface is only  
performed with the WR and RD bits.  
With bit INT set to ONE an address needs to be specified. With INT set to ZERO all  
four µP addresses are read and returned in a single 5 byte long monitor message.  
INT  
Interrupt. Any change of the level on the INT pin of the µP interface will result in the C/I  
code MAIC to be issued on IOM-2 (for four frames). Additionally the INT bit is used to  
distinguish between a single address and multiple address reading (see RD bit or MAI  
interface).  
A0, A1  
Address bits for µP interface.  
D0, D1, D2 Data bits for µP interface.  
Semiconductor Group  
64  
 
Application Guide  
3.2.2  
S/T-Interface  
The S-interface establishes a direct link between terminals and the exchange or NT. It consists of  
two pairs of copper wires: one for the transmit and one for the receive direction.  
The PEB 2081 inputs and outputs are coupled via matching resistors and transformers to the  
S-interface.  
Direct access to the S-interface is not possible. 2B+D user data as well as S/Q channel information  
can be inserted and extracted via IOM-2 interface.  
Framing and balancing bits are generated and transmitted automatically by the SBCX.  
Because chapter 3 is application oriented and the user has no direct access possibility to the  
S-interface, the following sections give only an overview. For details please refer to the technical  
description in chapter 4.  
S/T Frame Structure  
Transmission over the S-interface is performed at a rate of 192 kbaud. For both directions of  
transmission a pseudo-ternary code is used.  
Data is grouped together into S-frames containing 48 bits each, 36 bits contain 2B+D user data (i.e.  
user data from two IOM-2 frames packed into one S-frame). The remaining 12 bits are reserved for  
framing, S/Q and service bits.  
In case multiframing is selected (optional) 20 S-frames are combined to one S-interface multiframe.  
The start of a new multiframe is marked by a special framing bit (see chapter 4 for details).  
Figures 39 and 40 illustrate the S-bus framing structure.  
1. S-Frame  
2. S-Frame  
20. S-Frame  
5 ms  
Figure 39  
S Multiframe Structure  
2 Bit  
F
8 Bit  
B1  
5 Bit  
F+S+D  
8 Bit  
B2  
3 Bit  
F+D  
8 Bit  
B1  
3 Bit  
F+D  
8 Bit  
B2  
3 Bit  
F+D  
250 µs  
Figure 40  
S-Frame Structure  
Semiconductor Group  
65  
 
 
 
Application Guide  
3.2.3  
Maintenance Auxiliary Interface (MAI)  
The SBCX provides eight pins, MAI (7:0), for maintenance aids and general interface purposes.  
Two major operational modes are supported:  
MAI Interface:  
I/O Mode  
µP Mode  
The I/O mode offers two additional alternatives:  
I/O Specific Mode  
Standard I/O Mode.  
To select between these three alternatives the “Configuration” and “SM/CI” registers are  
programmed. The following table illustrates the register settings:  
Table 10  
Configuration Reg.  
MAIM  
SM/CI Register  
MIO  
MAI Interface Mode  
0
0
1
1
0
1
0
1
I/O Specific Mode  
Standard I/O Mode  
µP Mode  
not applicable  
The following sections describe the features of the different MAI modes and gives application  
examples.  
3.2.3.1  
I/O Specific Mode  
The I/O specific function mode is selected automatically after a reset. Four pins (MAI 3:0) operate  
as inputs, four as outputs (MAI 4:7). Depending on the operational mode some of these MAI pins  
are used to transfer mode specific signals. Pins not required to convey these special signals are  
used as standard input or output pins.  
All MAI pins are tristate during RST = ‘0’ or when the SBCX is in the state ‘reset’ unless MAIM is  
programmed to ‘1’. After reset all MAI pins are logically ‘0’ and work push/pull. The MAI pins are  
accessed via the MAI pin register MPR (address 5H) using the monitor channel.  
All input pins not allocated to I/O specific functions are monitored continuously. After a change was  
detected the input values are latched and the C/I indication MAIC will be issued. The input values  
remain latched until the MAI pin register was read via MON-8 command.  
I/O specific input pin changes cause no C/I MAIC indication. The pin levels are nevertheless latched  
correctly everytime a MAIC indication was generated.  
The following table illustrates the I/O specific pin allocation for all operating modes.  
Semiconductor Group  
66  
 
 
Application Guide  
Table 11  
I/O Specific MAI Interface  
LT-S  
NT  
LT-T  
TE  
MAI 0  
MAI 1  
MAI 2  
MAI 3  
MAI 4  
MAI 5  
MAI 6  
MAI 7  
i:NT-STAR  
i:NT-STAR  
i:MFD  
i:MPR0  
i:CON  
i:MPR0  
i:CON  
i:MPR1  
i:MPR2  
i:MPR3  
o:MPR4  
o:MPR5  
o:MPR6  
o:MPR7  
i:TM1  
i:MPR2  
i:MPR3  
o:MPR4  
o:S/G  
i:MPR2  
i:MPR3  
o:MPR4  
o:S/G  
i:TM2  
o:MPR4  
o:MPR5  
o:MPR6  
o:MPR7  
o:MPR6  
o:MPR7  
o:MPR6  
o:MPR7  
NT-STAR: In NT or LT-S configurations optionally the NT-STAR mode may be used (see sections  
2.1.3 and 2.1.6). In these configurations the IOM-2 bus is operated at a DCL rate of  
512 kHz. All SBCX thus write onto the same IOM-2 channel. Because their outputs are  
logically ANDed “0”s win on the bus.  
In the opposite direction all SBCXs receive identical information from the controller.  
If an activation attempt is initiated from the upstream controller, the activation normally  
(i.e. without NT-STAR mode) can only be completed successfully when all terminals are  
connected. In case a single terminal was not connected the corresponding NT/LT-S  
SBCX would stop the activation process in the state “G2 pend. act.” because no INFO3  
is received. In this state the C/I indication AR, binary code 1000b, is issued. The 3rd  
ZERO would overwrite the AI indications, binary code 1100b, from the remaining,  
correctly activated, SBCXs.  
Programming the NT-STAR mode by setting this pin to ZERO avoids this conflict. A NT-  
STAR configuration can therefore be correctly activated even if not all terminals are  
connected.  
Furthermore, transitions from the states “wait for AID” or “G3 activated” to  
“lost framing on S” under the condition of not receiving INFO3 is disabled.  
MFD:  
CON:  
Multi Frame Disable  
In NT mode the transmission of the 5 ms multiframe signalling bits is disabled (M and S  
bits high) with a HIGH at this pin.  
A LOW level enables the multiframe generation provided the MFD bit in the  
configuration register was not programmed to disable it.  
The pin strapping has higher priority than the register setting.  
This input pin can be used to prevent a TE/LT-T from initiating an activation under  
emergency conditions. For this purpose it must be connected to a signal indicating the  
reverse polarity of a phantom power supply (e.g. pin EME of the PSB 2120).  
Semiconductor Group  
67  
Application Guide  
A LOW level at this input (D-channel collision must be programmed via DH bit in IOM  
channel register) prevents transmission of INFO1 after AR (activation-request) has been  
received on the C/I channel.  
An activation initiated by the network side (reception of INFO2/INFO4) is possible  
independently of the CON pin level.  
In LT-T mode bit DH in the IOM-2-Channel register must be set to “1” to enable the CON  
pin functionality.  
TM1:  
TM2:  
S/G:  
Test Mode 1  
A LOW at this input transfers the NT SBCX into test mode 1. In this test mode pseudo-  
ternary pulses are transmitted at a rate of 2 kHz.  
Test Mode 2  
A LOW at this input transfers the NT SBCX into test mode 2. In this test mode pseudo-  
ternary pulses are transmitted at a rate of 96 kHz.  
Stop/Go  
This pin can be used to inform the D-channel controller in TEs and LT-Ts when the  
S-bus D-channel is occupied by another S-interface device (see section 2.1.7).  
LT-T mode:  
In LT-T mode this feature is only available after setting the DH bit in the IOM-2 register  
to ONE.  
In case the S-interface D-channel is busy, the S/G pin is set to ZERO. This must be  
interpreted by the D-channel controller (e.g. IDEC) as a “stop D-channel transmission”  
indication.  
In LT-T mode the S/G bit is set synchronously to the D-channel, i.e. the stop/go  
information is transmitted in the same time-slot as the corresponding SBCX is pin-  
strapped to. This mechanism allows the D-channel controller to distinguish between up  
to eight SBCX S/G pins (S/G = ‘0’ means ‘stop’, S/G = ‘1’ means ‘go’).  
In mixed configurations with LT-T and LT-S mode devices connected together at pin  
MAI5, these MAI5 outputs have to be decoupled by using diodes. Otherwise the  
asynchronous push/pull outputs of the LT-S mode devices could disturb the  
synchronous (D-channel oriented) outputs of the LT-T mode devices.  
TE mode:  
In TE mode this feature is only available after setting the SGE bit in the SM/CI register  
to HIGH. In both operational modes the D and E bits on the S-interface are monitored  
continuously to issue always the correct S/G status. Requires the same pull-up resistor  
as IDP0.  
In TE mode the S/G pin has the same polarity as the S/G-bit on IOM-2. S/G = ‘1’ stands  
for ‘stop’ and S/G = ‘0’ means ‘go’. As opposed to the LT-T mode pin S/G keeps its value  
between the D-channel time-slots on IOM-2.  
Applications  
I/O specific MAI pins are under control of the SBCX. The user therefore can only influence the  
standard I/O pins. Examples demonstrating the use of standard I/O pins are presented in the  
following section.  
Semiconductor Group  
68  
Application Guide  
3.2.3.2  
Standard I/O Mode  
In standard I/O mode no pins are reserved for special signals. Thus four input and four output lines  
are available to the user for general purpose interface applications. Do not use this mode however  
when in need of special features like STAR operation, collision detection in LT-T/TE point-multipoint  
configurations etc. MAI0 and MAI3 are used for inputs. A change at any input pin will cause a MAIC  
C/I indication to be issued and the data to be latched. Data will remain latched until read out from  
the MAI pin register with a MON-8 command.  
MAI4 and MAI7 serve as outputs. The pin level is determined by the corresponding bit level in the  
MAI pin register. The value specified for the lower four bits (inputs) does not matter.  
Application  
The following example illustrates the use of the standard I/O MAI interface. The same procedures  
apply to the I/O specific MAI mode for all pins not reserved for special signals.  
IOM -2  
SBCX  
MON-8 Config: MAIM = 0 (8100H)  
; Select standard I/O  
MON-8 SM/CI: MIO = 1  
MON-8 MAI:  
(8301H)  
(85F0H)  
MAI4 = (1)  
MAI5 = (1)  
MAI6 = (1)  
MAI7 = (1)  
; Set all outputs to HIGH  
C/I MAIC:  
(0101)  
(1) = MAI0  
(0) = MAI1  
(1) = MAI2  
(0) = MAI3  
; Change input levels  
MON-8 MAI:  
MON-8 MAI:  
(8005H)  
(85X5H)  
; Read MAI register request  
; Return value MAI inputs  
Semiconductor Group  
69  
Application Guide  
3.2.3.3  
µP MAI Mode  
The interface structure is adapted to the register structure of the IEPC. It consists of three data bits  
MAI0 … 2, two address bits MAI4,5, read and write signals MAI6 and MAI7 respectively as well as  
an interrupt facility MAI3.  
The address bits are latched, they may therefore in general interface applications be used as output  
lines. For general interface inputs each of the three data bits is suitable. Read and write operations  
are performed via MON-8 commands. Three inputs and two outputs are thus available to connect  
external circuitry.  
The interrupt pin is edge sensitive. Each change of level at the pin MAI3 will initiate a C/I code  
“MAIC” (0101) lasting for four IOM frames. Interpretation of the interrupt cause and resultant actions  
need to be performed by the control unit.  
Usage of the µP interface differs from the standard I/O or I/O specific interface. As for these two  
interface types the µP interface makes use of the MAI pin register. However only MON-8 commands  
with the “write to register” structure may be used. The “read register request” structure is not  
interpreted if the MAI pin register is accessed in combination with the µP mode. The differentiation  
between a µP interface write operation and a µP interface read operation is performed only by  
activating either the RD or the WR bits within the MAI pin register. In both cases the “write to  
register” structure is used.  
Depending on the INT bit specified together with a read µP interface request either the data from a  
single, specified address is read (INT = ONE) or all addresses are read (INT = ZERO).  
In case only a single address is to be read, the SBCX returns the value in a 2-byte MON-8 message  
(structure: 85H, MAI pin register). If all four addresses were read the response is a single 5 byte long  
(85H, MAI Reg. (Adr0), … , MAI Reg. (Adr. 3)) MON-8 monitor message.  
In this function the data from the following address will be read from the µP interface as soon as the  
previous MON-8 byte has been acknowledged on the IOM-2 bus by the controller.  
Application  
The following three examples illustrate a write operation as well as a single address and full address  
read operation. It is assumed that no power controller is connected. The data lines are clamped to  
the values specified in the examples, the address lines are unconnected.  
1. Write to µP Interface:  
IOM -2  
SBCX  
MON-8 Config: MAIM  
MON-8 MAI:  
(8140H)  
(855EH)  
; Program µP interface  
MAI4 pin = (1)  
MAI5 pin = (0)  
; Activate WR signal, set  
; address 1 (latched)  
MAI2 pin = (1)  
MAI1 pin = (1)  
MAI0 pin = (0)  
; Set data to value 6  
; (non-latched)  
Semiconductor Group  
70  
 
Application Guide  
2. Read from µP Interface (single address):  
IOM -2  
SBCX  
MAI2 pin = (1)  
MAI1 pin = (0)  
MAI0 pin = (1)  
; Constant values on  
; data lines  
MON-8 Config: MAIM  
(8140H)  
; Program µP interface  
MON-8 MAI:  
(85B8H)  
; Activate RD, INT = (1)  
; read from address 3  
MAI5 pin = (1)  
MAI4 pin = (1)  
MON-8 MAI:  
(85BDH)  
; 2 byte response incl.  
; data lines from adr. 3  
3. Read from µP Interface (complete address scan):  
The following example assumes that a device capable of decoding addresses is connected to the  
µP interface. The data values to be returned from the addresses are:  
Adr. 0: Data = 7  
Adr. 1: Data = 6  
Adr. 2: Data = 5  
Adr. 3: Data = 4  
IOM -2  
SBCX  
MON-8 Config: MAIM  
MON-8 MAI:  
(8140H)  
(8580H)  
; Program µP interface  
; Set INT = (0), activate RD  
; read all addresses  
MON-8 MAI:  
(85 87 96 A5 B4H)  
; 5 byte response incl.  
; data from adr. 0 … 3  
Semiconductor Group  
71  
Application Guide  
3.3  
Control Procedures  
Control procedures describe the commands and messages required to control the PEB 2081 in  
different modes and situations. This chapter shows the user how to activate and deactivate the  
device under various circumstances. In order to keep this chapter as application oriented as  
possible only actions and reactions the user needs to initiate or may observe are mentioned.  
Technical details on transmitted status bits and signals are described in chapter 4 of this manual.  
For transfer of the C/I commands to and from the ICC or EPIC proceed as described in  
section 3.2.1.2.  
3.3.1  
Activation Initiated by Exchange (LT-S)  
TE/LT-T IOM -2  
LT-S IOM -2  
C/I DC  
C/I DI  
(1111b)  
(1111b)  
C/I DC (1111b) ; Initial state is G1 deactivated  
C/I DI (1111b) ; and F3 Power Down  
C/I RSY  
C/I AR  
C/I AI  
(0100b)  
(1000b)  
(1100b)  
C/I AR (1000b)  
C/I AR (1000)  
C/I AI (1100)  
; Start activation  
; Activation completed  
C/I AR8/AR10 (1000b/1001b)  
3.3.2  
Activation Initiated by Exchange (NT)  
In case the counter station of the TE of LT-T is in NT mode the C/I “AI” command needs to be issued  
at the end. The first section of the activation procedure is identical to the activation with SBCX in  
LT-S mode.  
TE/LT-T IOM -2  
C/I DC  
NT IOM -2  
C/I DC  
C/I DI  
(1111b)  
(1111b)  
(1111b) ; Initial state is G1  
(1111b) ; Deactivated and F3  
C/I DI  
; Power Down  
C/I RSY  
C/I AR  
C/I AI  
(0100b)  
(1000b)  
(1100b)  
C/I AR  
C/I AR  
C/I AI  
C/I AI  
(1000b)  
(1000)  
(1100)  
(1100)  
; Activation starts  
; Transfer to G3 Activated  
C/I AR8/AR10 (1000b/1001b)  
Semiconductor Group  
72  
 
Application Guide  
3.3.3  
Activation Initiated by Terminal (TE/LT-T)  
The following scheme illustrates how a terminal initiates an activation. As described in the previous  
section the command C/I “AI” needs to be sent at the end if the device is operating in NT mode.  
TE/LT-T IOM -2  
LT-S (NT) IOM -2  
C/I DC  
C/I DI  
(1111b)  
C/I DC  
C/I DI  
(1111b)  
; Initial state is G1 Deactivated  
; and F3 Power Down  
(1111b)  
(0000b)  
(0111b)  
(1111b)  
C/I TIM  
1)  
; Request timing (IOM clocks)  
C/I PU  
C/I AR8 (1000b)  
TIM  
Release 2)  
; Start Activation  
C/I RSY (0100b)  
; Transfer to G3 Activated  
C/I AR  
C/I AI  
(1000b)  
(1100b)  
C/I AR  
C/I AI  
(C/I AI  
(1000b)  
(1100b)  
(1100b)  
;
;
; Transfer to G3 Activated  
; in NT mode)  
Notes:  
1) For PEB 2070 TIM is requested with register SPCR = 80H  
2) For PEB 2070 TIM is released with register SPCR = 00H  
3.3.4  
Deactivation  
A deactivation of the S-interface can only be initiated by the exchange side (SBCX in NT or LT-S  
mode). It is possible to begin a deactivation process from all interim activation states, i.e. not only  
from the fully activated state. The following example nevertheless assumes that the line is fully  
activated when the deactivation is initialized.  
TE/LT-T IOM -2  
NT/LT-S IOM -2  
C/I AI8  
C/I DR  
C/I DI  
C/I DC  
(1100b)  
C/I AI  
(1100b)  
; Initial state  
(0000b)  
(1111b)  
(1111b)  
C/I DR  
C/I TIM  
C/I DI  
C/I DC  
(0000b)  
(0000b)  
(1111b)  
(1111b)  
; start deactivation  
;
; “G1 Deactivated”  
; Transfer to “F3 Power Down”  
Semiconductor Group  
73  
 
Application Guide  
3.3.5  
D-Channel Access Control  
D-channel access control was defined to guarantee all connected TEs and HDLC controllers a fair  
chance to transmit data in the D-channel. Figure 41 illustrates that collisions are possible on the  
TIC- and the S-bus.  
ICC  
ICC  
ICC  
U
SBCX  
SBCX  
IEC-Q  
TE1  
NT  
NT  
SBCX  
TE2  
ICC  
ICC  
SBCX  
TE8  
ITS05113  
TIC Bus  
S Bus  
Figure 41  
D-Channel Access Control on TIC Bus and S Bus  
The TIC bus is used to control D-channel access on the IOM interface when more than one HDLC  
controller is connected. This configuration is illustrated in the above figure for TE1 where three ICCs  
are connected to one IOM-2 bus.  
On the S bus the D-channel control is handled according to the ITU recommendation I.430. This  
control mechanism is required everytime a point to multipoint configuration is implemented  
(NT TE1 … TE8).  
While the S-bus collision detection is handled by the SBCX itself, TIC bus access is mainly  
controlled by the HDLC controller (e.g. ICC).  
The following sections describe both control mechanisms because the TIC bus, although largely  
handled by the HDLC controller, represents an important part of D-channel access.  
Semiconductor Group  
74  
 
 
Application Guide  
3.3.5.1  
TIC Bus D-Channel Control in TE  
The TIC bus was defined to organize D- and C/I channel access when two or more D- and C/I  
channel controllers can access the same IOM-2 timeslot. Bus access is controlled by five bits in  
IOM-2 channel No. 2 (see section 3.2.1.1):  
Upstream:  
BAC  
Bus access control bit  
TIC bus address bits 0 … 2  
Stop/Go bit  
TBA0 … 2  
S/G  
Downstream:  
When a controller wants to write to the D or C/I channel the following procedure is executed:  
1. Controller checks whether BAC bit is set to ONE. If this is not the case access currently is not  
allowed: the controller has to postpone transmission. Only if BAC = 1 the controller may continue  
with the access procedure.  
2. The controller transmits its TIC bus address (TBA0…2). This is done in the same frame in which  
BAC = “1” was recognized. On the TIC bus binary “ZERO”s overwrite binary “ONE”s. Thus low  
TIC bus addresses have higher priority.  
3. After transmitting a TIC bus address bit, the value is read back (with the falling edge) to check  
whether its own address has been overwritten by a controller with higher priority. This procedure  
will continue until all three address bits are sent and confirmed.  
In case a bit is overwritten by an external controller with higher priority, the controller asking for  
bus access has to withdraw immediately from the bus by setting all TIC bus address bits to ONE.  
4. If access was granted, the controller will put the D-channel data onto the IOM-2 bus in the  
following frame provided by the S/G bit is set to ZERO (i.e. S-bus free to transmit). The BAC bit  
will be set to ZERO by the controller to block all remaining controllers.  
In case the S/G bit is ONE this prevents only the D-channel data to be switched through to the  
IOM-2 bus. The TIC bus request remains unaffected (i.e. if access was granted the TIC address  
and BAC bit are activated). As soon as the S-bus D-channel is clear and the S/G bit was set back  
to “GO” the controller will commence with data transmission.  
The S/G Bit generation in IOM-2 channel 2 is handled automatically by the SBCX operating in TE  
mode. Additionally the Stop/Go information may be issued at the MAI5 pin by setting the SGE bit  
in the SM/CI register to ONE.  
5. After the transmission of an HDLC frame has been completed the ICC controller withdraws from  
the TIC bus for one IOM-2 frame. This also applies when a new HDLC frame is to be transmitted  
in immediate succession. With this mechanism it is ensured that all connected controls receive  
an equally fair chance to access the TIC bus.  
Semiconductor Group  
75  
 
Application Guide  
3.3.5.2  
S-Bus Priority Mechanism for D-Channel  
The S-bus access procedure specified in ITU I.430 was defined to organize D-channel access with  
multiple TEs connected to a single S-bus.  
To implement collision detection the D (channel) and E (echo) bits are used. The D-channel S-bus  
condition is indicated towards the IOM-2 interface with the S/G bit (see previous section).  
The access to the D-channel is controlled by a priority mechanism which ensures that to all  
competing TEs is given a fair access chance. This priority mechanism discriminates among the kind  
of information exchanged and information exchange history: Layer-2 frames are transmitted in such  
a way that signalling information is given priority (priority class 1) over all other types of information  
exchange (priority class 2). Furthermore, once a TE having successfully completed the  
transmission of a frame, it is assigned a lower level of priority of that class. The TE is given back its  
normal level within a priority class when all TEs have had an opportunity to transmit information at  
the normal level of that priority class.  
The priority mechanism is based on a rather simple method: A TE not transmitting layer-2 frames  
sends binary 1s on the D-channel. As layer-2 frames are delimited by flags consisting of the binary  
pattern “01111110” and zero bit insertion is used to prevent flag imitation, the D-channel may be  
considered idle if more than seven consecutive 1s are detected on the D-channel. Hence by  
monitoring the D echo channel, the TE may determine if the D-channel is currently used by another  
TE or not.  
A TE may start transmission of a layer-2 frame first when a certain number of consecutive 1s has  
been received on the echo channel. This number is fixed to 8 in priority class 1 and to 10 in priority  
class 2 for the normal level of priority; for the lower level of priority the number is increased by 1 in  
each priority class, i.e. 9 for class 1 and 11 for class 2.  
A TE, when in the active condition, is monitoring the D echo channel, counting the number of  
consecutive binary 1s. If a 0 bit is detected, the TE restarts counting the number of consecutive  
binary 1s. If the required number of 1s according to the actual level of priority has been detected, the  
TE may start transmission of an HDLC frame. If a collision occurs, the TE immediately shall cease  
transmission, return to the D-channel monitoring state, and send 1s over the D-channel.  
3.3.5.3  
S-Bus D-Channel Control in TEs  
The SBCX in TE mode continuously compares the D data bits with the received E-echo bits.  
Depending on the priority class selected, 8 or 10 consecutive ONEs need to be detected before  
setting the S/G bit to ZERO. With bit SGE in the SM/CI register the S/G bit may optionally be issued  
on pin MAI5.  
The priority class (priority 8 or priority 10) is selected by transferring the appropriate activation  
command via the Command/Indication (C/I) channel of the IOM-2 interface to the SBCX. If the  
activation is initiated by a TE, the priority class is selected implicitly by the choice of the activation  
command. If the S-interface is activated from the NT, an activation command selecting the desired  
priority class should be programmed at the TE on reception of the activation indication (AI8). In the  
activated state the priority class may be changed whenever required by simply programming the  
desired activation request command (AR8 or AR10).  
Semiconductor Group  
76  
 
Application Guide  
Application  
1. Priority Class 8/10 Selection with NT Initiated Activation  
TE IOM -2  
C/I DC  
C/I DI  
LT-S (NT) IOM -2  
(1111b)  
(1111b)  
C/I DC  
C/I DI  
(1111b)  
(1111b)  
C/I RSY (0100b)  
C/I AR  
C/I AR  
C/I AI  
C/I AI  
(1000b)  
(1000b)  
(1100b)  
(1100b)  
; Start activation from  
C/I AR  
C/I AI  
(1000b)  
(1100b)  
(1000b)  
; NT side  
;
C/I AR8  
; Allocate highest priority  
; (e.g. for signaling data)  
; Allocate lower priority  
; for packet data  
D: transfer HDLC frame  
C/I AR10 (1001b)  
D: transfer packet data  
C/I AI10 (1101b)  
2. Priority Class 8/10 Selection with TE Initiated Activation  
TE IOM -2  
C/I DC  
C/I DI  
NT IOM -2  
C/I DC  
C/I DI  
(1111b)  
(1111b)  
(1111b)  
(1111b)  
C/I TIM1) (0000b)  
C/I PU (0111b)  
; Request timing (IOM clocks)  
C/I AR10 (1001b)  
C/I TIM Release2)  
C/I RSY (0100b)  
; Activation with second  
C/I AR  
C/I AR  
C/I AI  
C/I AI  
(1000b)  
(1000b)  
(1100b)  
(1100b)  
; priority (e.g. for packet data)  
C/I AR  
(1000b)  
C/I AI10 (1101b)  
D: transfer packet data  
;
C/I AR8  
D: transfer HDLC frame  
C/I AI8 (1100b)  
(1000b)  
; Allocate highest priority  
Note:  
1) For PEB 2070 TIM is requested with register SPCR = 80  
H
2) For PEB 2070 TIM is released with register SPCR = 00  
H
Semiconductor Group  
77  
Application Guide  
3.3.5.4  
S-Bus D-Channel Control in LT-T  
In LT-T mode the SBCX is primarily considered to be in a point-to-point configuration. In these  
configurations no S-bus D-channel collision can occur, therefore the default setting after resetting  
the SBCX is transparent (IOM-2 S-bus) D-channel transmission.  
In case a point to multipoint configuration is implemented D-channel collision resolution according  
to ITU I.430 needs to be programmed in the “IOM channel register” [bit DH set to ONE]. In this mode  
the SBCX will issue a strobe signal at pin MAI5 (S/G bit) to control the LAPD controller IDEC.  
This strobe signal is issued synchronously to the D-channel, i.e. in case more SBCXs operate in  
different IOM-2 channels (selection with pin strapping) each SBCX sends its S/G signal in its own  
IOM-2 channel. This allows the IDEC to distinguish between multiple S/G signals on a single S/G  
control line (see section 2.1.7).  
Priority allocation is identical to that described for the TE mode. For application example refer also  
to the last section [DH bit must be set in addition].  
3.3.5.5  
D-Channel Control in the Intelligent NT (TIC-and S-Bus)  
In intelligent NT applications both the SBCX and one or more D-channel controllers have to share  
a single upstream D-channel. For this purpose the SBCX must be programmed in the IOM channel  
register to perform a partial TIC bus evaluation [DH = “1”].  
The intelligent NT configuration involves a layer-1 device (IBC, ISAC-P TE, IEC-Q) operating in TE  
mode (1.536 MHz DCL rate), one or more D-channel controllers and a SBCX in LT-S mode (D-  
channel transmitting in IOM-2 channel 0).  
With the DH bit set to ONE, the SBCX V 3.4 in LT-S mode interprets the A/B, BAC bit and monitors  
the S-bus D-channel activity. Both S/G and BAC bit, the S-bus echo channel and the upstream  
IOM-2 D-channel data are controlled by these inputs according to the following procedure:  
1. NT D-Channel Controller Transmits Upstream  
In the initial state neither the intelligent NT D-channel controller nor any of the terminals connected  
to the S-bus transmit in the D-channel. The exchange indicates via the A/B bit (controlled by layer 1)  
that D-channel transmission on this line currently is permitted (A/B = “1”). Data transmission could  
temporarily be prohibited by the exchange when only a single D-channel controller handles more  
lines (A/B = “0”, ELIC-concept).  
The SBCX thus receives A/B = “1”, BAC = “1” and transmits S/G = “0”. The access will then be  
established according to the following procedure:  
D-channel controller verifies that BAC bit is set to ONE.  
D-channel controller issues TIC bus address and verifies that no controller with higher priority  
requests transmission.  
D-channel controller issues BAC = “0”.  
SBCX reacts to BAC=”0” by transmitting the S/G bit with inverse polarity of the  
A/B bit  
S/G = “0”= A/B.  
SBCX transmits inverted echo channel (E bits) on the S-bus to block all connected S-bus  
terminals (E = D).  
D-channel controller commences with D data transmission on IOM-2 as soon as it receives  
S/G = “0”.  
Semiconductor Group  
78  
 
 
 
Application Guide  
After D-channel data transmission is completed the controller sets the BAC bit to ONE. 1)  
SBCX pulls S/G bit to ZERO.  
SBCX transmits non-inverted echo (E = D).  
Note:  
1. Although the D-channel controller releases the TIC bus for one IOM-2 frame even if a new HDLC  
frame needs to be transmitted in immediate succession, this one frame period is not sufficient to  
allow a S-bus terminal to request the D-channel successfully. The reason is that at least 8 ONEs  
need to be recognized by a terminal in the echo-channel before it can start with D-channel  
transmission (in the meantime the intelligent NT D-channel controller would have aquired  
D-channel transmit permission again).  
To ensure equal access chances for the S-bus terminals, the intelligent NT controller software  
must delay any new TIC bus access request for at least 5 IOM-2 frames.  
Figure 42 illustrates the signal flow in an intelligent NT and the algorithm implemented in the SBCX.  
2. Terminal Transmits D-Channel Data Upstream  
The initial state is identical to that described in the last paragraph. When one of the connected S-bus  
terminals needs to transmit in the D-channel, access is established according to the following  
procedure:  
SBCX (in intelligent NT) recognizes that the D-channel on the S-bus is active.  
SBCX sets S/G = 1 to block NT D-channel controller  
SBCX transfers S-bus D-channel data transparently through to the upstream IOM-2 bus (IOM-2  
channel 0).  
After D-channel transmission has been completed by the terminal and the SBCX in the intelligent  
NT recognizes the idle condition on the S-bus D-channel, the S/G bit is set to ZERO.  
In case the exchange prohibits D data transmission on this line the A/B bit is set to ZERO (block).  
This forces the intelligent NT SBCX to transmit an inverted echo channel on the S-bus, thus  
disabling all terminal requests, and switches S/G to A/B, which blocks the HDLC controller in the  
intelligent NT.  
Note:  
1. Although the SBCX operates in LT-S mode and is pinstrapped to IOM-2 channel 0 or 1 it will write  
into IOM-2 channel 2 at the S/G bit position.  
Semiconductor Group  
79  
Application Guide  
A/B  
S/G  
D
IOM R -2  
Master  
Device  
D Channel  
A/B  
DD  
DU  
SBCX  
(LT-S)  
Exchange  
D
E Channel  
(TE Mode  
1.536 MHz)  
BAC  
S/G  
D
D
BAC  
ICC  
ACT & BAC  
D-Idle  
D-Idle  
Reset  
A/B = 0  
External Access  
Idle  
SBCX Access  
E = D  
S/G = A/B  
E = D  
S/G = 0  
E = D  
S/G = 1  
BAC & D-Idle  
ITS05115  
Figure 42  
Data Flow for Collision Resolution Procedure in Intelligent NT  
The SBCX uses the Echo-bit of the S-interface to control the transfer of D-channel information from  
the terminals at the S-interface. It also controls the state of the Stop/Go bit (S/G) and evaluates the  
A/B bit.  
The state machine for D-channel access uses three states:  
External access  
The D-channel is occupied by another source indicated by the BAC-bit  
(BAC=0).  
The S/G bit corresponds to the invers of the A/B bit. The Echo-bits are  
set to ‘D’.  
Idle  
The D-channel is transparent and no other device occupies the  
D-channel (BAC=1). The S/G bit is set to ‘0’. The Echo-bits correspond  
to the received D-bits of the S-interface.  
SBCX Access  
The D-channel is transparent and occupied by the SBCX. The S/G bit  
is set to ‘1’.  
‘D-Idle’ is ‘1’ if the received D-channel information from the S/T interface is idle (8 x ‘1’).  
‘D-Idle’ changes to ‘0’ after a ‘0’ bit has been received from the S-interface D-channel.  
‘ACT’ is set to ‘1’ if the S-interface is in the activated state.  
Semiconductor Group  
80  
Application Guide  
3.3.6  
IOM -2 Interface Channel Switching  
In order to realize intelligent NT configurations the SBCX provides basic switching functions. These  
include:  
Individual channel transfer from IOM-2 channel 1 to IOM-2 channel 0.  
Individual channel reversion on input and output lines.  
All switching functions are controlled via the MON-8 “IOM-2 channel” register (see MON-8  
description). The following sections illustrate a variety of possible switching combinations typical for  
the intelligent NT. To facilitate the description of the switching function figure 43 illustrates a typical  
intelligent NT with the speech CODEC ARCOFI combined with several terminals. Monitor  
programming for both ARCOFI and SBCX can only be performed in monitor channel 1.  
ICC  
LT-S Mode  
Channel 1  
TE Mode  
Channel 0  
TE1  
IOM R -2  
IDP0  
SBCX  
IDP1  
DIN  
(1.536 MHz)  
Exchange  
R
R
ARCOFI  
ISAC -S  
IEC-Q  
DOUT  
DU  
DD  
TE8  
R
ARCOFI  
R
R
Channel 1  
UTE  
ARCOFI  
ISAC -S  
ITS05114  
Figure 43  
Intelligent NT-Configuration for IOM -2 Channel Switching  
Semiconductor Group  
81  
 
 
Application Guide  
The following four examples illustrate typical switching operations. Three of them are programmed  
in the “IOM-2 Channel” register, example No. 4 makes use of the “Loop-back” register. All register  
bits related to the B1 or B2 channel are set to ZERO unless otherwise stated.  
1. Connection B1 (e.g. TE1) Exchange, B2 (e.g. TE8) Exchange  
SBCX  
B1  
B2  
IDP0  
IDP1  
DIN  
B1L = 1  
B2L = 1  
DOUT  
B1  
B2  
IOM R -2 Reg.  
DU  
DD  
R
ARCOFI  
Power-Down  
ITS05116  
2. Connection B1 (e.g. TE1) Exchange, B2 (e.g. TE8) U-TE  
SBCX  
B1  
IDP0  
IDP1  
DIN  
B1L = 1  
IC2  
B2D = 1  
DOUT  
B1  
IOM R -2 Reg.  
IC2  
DU  
DD  
R
ARCOFI  
Voice Data to IC2  
ITS05117  
Semiconductor Group  
82  
Application Guide  
3. Connection U-TE (B1) Exchange, B2 (e.g. TE1) Exchange  
SBCX  
B2  
IDP0  
IDP1  
DIN  
B2L = 1  
B1  
DOUT  
B2  
B1  
IOM R -2 Reg.  
DU  
DD  
R
ARCOFI  
Voice Data to B1  
ITS05118  
4. Connection TE1 (B1) TE8 (B2), U-TE (B1 or B2) Exchange  
SBCX  
IDP 0  
DIN  
IB1= 1  
IB2 = 1  
IB12 = 1  
B1 B2  
B2 B1  
B2 or B1  
IDP1  
DOUT  
B2 or B1  
Loopback Reg.  
DU  
DD  
R
ARCOFI  
Voice Data to B1 or B2  
ITS05119  
Semiconductor Group  
83  
Application Guide  
3.4  
Maintenance Functions  
This chapter summarizes all features provided by the SBCX V 3.4 to support system maintenance  
and system measurements. Two main groups may be distinguished:  
– maintenance function to close and open test loop-backs.  
– test modes required for system measurements.  
The next sections describe these maintenance functions and their applications.  
3.4.1  
Test Loop-Backs  
Test loop-backs are specified by national PTTs in order to facilitate the location of defect systems.  
Each position of defined (ITU I.430 Appendix I) loop-backs is illustrated in figure 44.  
SBCX  
S
SBCX  
IEC-Q  
U
IEC-Q  
R
IOM  
1)  
A
4
B1 2,32) B2,C3)  
SBCX  
TE or LT-T  
NT1/NT2  
S
Exchange  
ITS05120  
Figure 44  
Test Loop-Backs Supported by PEB 2081  
Notes:  
1. In previous data sheets for the PEB 2081 ITU loop-back A was referred to as loop-back 3.  
2. Loop-back 2 is closed in a NT1, loop-back 3 is closed in a NT2.  
3. Loop-back C is closed in a NT1, loop-back B2 is closed in a NT2.  
Loop-back 2 is controlled by the exchange. Loop-back 4 may be under exchange or local control.  
Loop-backs A, B1, B2, C are initiated by the terminal or the NT2. Loop-back 3 is started by the NT2.  
All loop-backs may be either transparent or non-transparent. Loops are closed in the SBCX with C/I  
commands or MON-8 register access [loop-back register]. The following sections describe the  
implementation of these loops in detail.  
Semiconductor Group  
84  
 
 
Application Guide  
3.4.1.1  
Complete Loop-Backs (No. 2, No. 3, and No. A)  
Internal Loop-Backs  
In a complete loop, all three channels (B1, B2 and D) are looped back at the S/T-interface. In a  
“transparent loop” the data are also sent forward (in addition to being looped back), whereas in a  
“non-transparent loop” the forward data path is blocked (ITU I.430).  
Loop A is activated with C/I channel command Activate Request Loop (ARL). An S/T-interface is  
not required since INFO3 is looped back to the receiver internally. When the receiver has  
synchronized itself to this signal, the message “Activate Indication Loop” (AIL) is delivered in the C/I  
channel. No signal (INFO0) is transmitted over the S/T-interface. If, during loop A, an incoming  
signal is detected on the line, this is indicated by the message “Resynchronization” (RSY), although  
the loop is maintained. It is in the responsibility of layer-2 control to release loop A.  
Loop 2 and Loop 3 is similarly activated over the IOM-2 interface with Activate Request Loop  
(ARL). No S/T line is required. INFO4 is looped back to the receiver and also sent to the  
S/T-interface. When the receiver is synchronized, the message “AI” is sent in the C/I channel.  
Setting the LP-bit in the configuration register to ONE will make loop 2,3 non-transparent.  
While loop-back A is closed unconditionally (i.e. loop-back A may be started from any state in TE or  
LT-T mode), loop-backs 2 and 3 may be initiated from three (LT-S) resp. four (NT) states (see state  
machine NT and LT-S mode in chapter 4).  
The following examples demonstrate the use of loop-backs A, 2 and 3.  
1. Loop-Back A (TE or LT-T)  
TE/LT-T IOM-2  
C/I Any state XX  
C/I ARL  
(XXXXb)  
(1010b)  
(1010b)  
(1110b)  
(0100b)  
; Unconditional command  
; Close loop-back A  
C/I ARL  
C/I AIL  
; Loop-back closed successfully  
; Incoming signal detected)  
(→ C/I RSY  
2. Loop-Back 2, 3 Transparent (NT1 or NT2)  
LT-S/NT IOM -2  
C/I DC  
C/I DI  
C/I ARL  
C/I AR  
C/I AI  
(1111b)  
(1111b)  
(1010b)  
(1000b)  
(1100b)  
; Initial state is “G1 deactivated”  
; Close loop-back 2, 3  
; Loop-back closed successfully  
Semiconductor Group  
85  
 
Application Guide  
External Loop-Backs  
In order to enable complete systems diagnostics (including transformers etc.) it is possible to close  
an external loop at the four wire S/T-interface. In that case the signal transmitted onto the line is fed  
to the receiver.  
33 Ω  
33 Ω  
2 :1  
SX1  
SX2  
100 Ω  
PEB 2081  
SBCX  
10 kΩ  
10 kΩ  
2 :1  
SR1  
100 Ω  
SR2  
ITS04016  
Figure 45  
External Loop at the S/T-Interface  
In NT/LT-S mode the SBCX is ready to run in this configuration by performing a normal activation.  
In TE/LT-T mode the LP-bit (configuration register) has to be set to one and then the loop has to be  
activated using the “ARL” command. The C/I sequence occurring at the IOM-2 interface will  
correspond to that of the activation of loop A. The SBCX is in the state ‘loop A activated’ and  
transmits the indication RSY instead of AIL.  
Semiconductor Group  
86  
Application Guide  
3.4.1.2  
Single Channel Loop-Backs (No. 4, No. B1/2, No. C)  
With the S/T-interface being in the activated state single channel loops are possible for the  
B channels in all directions, i.e. from the S/T-interface to the IOM-2 interface and back or vice versa.  
They are involved by setting the according bit in the Loop-back Register. Please note, that setting  
the SC-bit has the same effect as closing loops No. 2 or 3 respectively with the equivalent C/I  
command.  
IOM R -2  
Interface  
S/T  
Interface  
IOM R -2  
Interface  
TE/LT-T  
NT/LT-S  
INFO4  
INFO3  
Set Bit:  
IB1  
IB2  
Set Bit:  
SB1  
SB2  
SC  
Set Bit:  
IB1  
IB2  
B1, B2  
B1, B2  
B1, B2  
IB12  
IB12  
ITS04015  
Figure 46  
Single Loops of the SBCX  
Semiconductor Group  
87  
Application Guide  
3.4.2  
Monitoring of Illegal Code Violations  
The SBCX V 3.4 offers the option of monitoring the S-bus for illegal code violations. If bit RCVE in  
the configuration register is set to ONE a Far End Code Violation (FECV) function according to  
ANSI T1.605 is implemented. This feature is available independently of multiframing on the S/T-  
interface.  
3.4.3  
Test Modes and System Measurements  
The SBCX V 3.4 supports system measurements with two special test modes. In the next section  
these modes are described in detail. The sections following the test mode description present an  
overview over the most important system measurements.  
3.4.3.1  
Test Mode 1  
In test mode 1 the SBCX issues alternating pulses at a frequency of 2 kHz. In other S-interface  
devices this mode is also referred to as “Send Single Zeros”. Test mode 1 (TM1) may be used in all  
operational modes supported by the SBCX.  
This mode is selected with a C/I command:  
– software selection: C/I = TM1 (0010b)  
In case the SBCX is operated in TE or LT-T mode the device will return the same binary C/I code  
after the test mode has been started successfully.  
In NT or LT-S mode the C/I indication “TIM” is issued from the “Test Mode” state.  
3.4.3.2  
Test Mode 2  
In Test Mode 2 (TM2) the SBCX issues alternating pseudo-ternary pulses at a frequency of 96 kHz.  
In other S-interface devices this mode is also referred to as “Send Continuous Zeros”. Test mode 2  
may be used in all operational modes supported by the SBCX.  
This mode is selected with a C/I command:  
– software selection: C/I = TM1 (0011b)  
In case the SBCX is operated in TE or LT-T mode the device will return the same binary C/I code  
after the test mode has been started successfully.  
In NT or LT-S mode the C/I indication “TIM” is issued from the “Test Mode” state.  
Semiconductor Group  
88  
 
Application Guide  
3.4.3.3  
Pulse Mask Measurement  
Pulse Mask defined in ITU I.430 section 8.5.3  
S-interface is terminated with:  
– 50 Ω  
– 400 (TE equipment only)  
– 5.6 (TE equipment only)  
(TE and NT equipment)  
B-channel loop is neccessary  
IB1, IB2 in Loopback Register  
or  
Loop in switching unit  
Measurement performed with oscilloscope or Siemens K1403  
Possible problems:  
– 50 test not successful  
modify transmitter resistors on S/T-interface circuitry  
– 400 test shows undershoot minimize capacitances in the external circuitry  
3.4.3.4  
NT Transmitter Output/Receiver Input Impedance  
Impedance Templates defined in ITU I.430 sections 8.5.1.1 and 8.6.1.2  
Output impedance measurement:  
– inactive or transmission of binary ONEs. Applies sinusoidal voltage of 100 mVrms.  
Requirement: template  
– transmission of binary ZEROs. Requirement: 20 Ω  
– 50 S-interface termination  
– 400 S-interface termination  
Input impedance measurement:  
– Applied sinusoidal voltage of 100 mVrms.  
Requirement: template  
– Applied 96 kHz frequency with 1.2 V peak value.  
Requirement: current 0.6 mA  
SBCX is in “deactive” state when transmission of binary ONEs is required and in TM1 when  
transmission of binary ZEROs is required.  
Measurement performed with impedance analyzer or Siemens K1403  
Possible problems: Not known.  
3.4.3.5  
TE Transmitter Output/Receiver Input Impedance  
Impedance templates defined in ITU I.430 sections 8.5.1.2 and 8.6.1.1.  
Input and output measurements are identical:  
– inactive and power-down or transmission of binary ONEs. Applied sinusoidal voltage of  
100 mVrms.  
Requirement: template.  
– inactive and power-down or transmission of binary ONEs. Applied 96-kHz frequency with  
1.2 V peak value.  
Requirement: Current 0.6 mA  
Terminal and SBCX not powered.  
Measurement performed with impedance analyzer or Siemens K1403.  
Semiconductor Group  
89  
 
Application Guide  
Possible problems:  
– Impedance measurement with 96 kHz exceeds current limit transfer 10 kresistors in S/T-  
interface circuitry between transformer and protection circuit (see also S/T-interface  
recommendation in chapter 4).  
3.4.3.6  
NT/TE Timing Extraction Jitter  
Requirement defined by ITU I.430 sections 8.2.2 and 8.3.  
TE timing extraction jitter input data sequences:  
– Binary ONEs in 2B+D+E  
– 40 frames “10” pattern in B1 and B2 and continuous ONEs in D and E channels followed by  
40 frames continuous binary ZEROs in 2B+D+E.  
– Pseudo random pattern with length 2–19 – 1 in 2B+D+E channels  
The output sequence in all cases consists of binary ZEROs in B1 and B2.  
Requirement: 14 % of a bit period ( 729 ns) may not be exceeded.  
=
NT jitter requirements input data sequences:  
– Pseudo random pattern with length 2–19 – 1 in 2B+D channels.  
The output data sequence consists of binary ONEs in 2B+D channels.  
Requirement: jitter 5 % of a bit period.  
The SBCX is in state ”F7/G3 Activated” transmitting continuous ZEROs in B1 and B2.  
For a first jitter evaluation the envelope function of an oscilloscope may be used. Detailed  
analysis with Siemens K1403.  
Possible problems:  
– Technically no problems exist, confusion may be caused by interpretation of results in TE jitter  
measurements. The specification requires ± 7 %, due to lack of a fixed reference point this  
results in 14 % peak to peak tolerance.  
3.4.3.7  
TE Total Phase Deviation  
Requirement defined by ITU I.430 in section 8.2.3.  
TE phase deviation input patterns:  
– Continuous binary ONEs in 2B+D+E  
– Continuous binary “10” pattern in B1 and B2 combined with continuous binary ONEs in D+E  
channels.  
– Continuous binary ZEROs in 2B+D+E  
– Pseudo random pattern with length 2–19 – 1 in 2B+D+E.  
Requirement: in addition to the 2 bit default offset the output phase must be within  
– 7% – + 15 % of a bit period.  
The SBCX is in the state “F3 Activated” transmitting continuous ZEROs in B1 and B2.  
For a first evaluation an oscilloscope may be used. Detailed analysis with Siemens K1403.  
Possible problems: Not known.  
Semiconductor Group  
90  
 
Application Guide  
3.4.3.8  
TE and NT Longitudinal Conversion Loss (LCL)  
Requirement defined by ITU I.430 in section 8.5.6.1.  
Measurement conditions:  
– all possible power feeding conditions.  
– all possible connections set to ground.  
– 100 termination across transmit and receive ports.  
Requirements: template  
For LCL tests the SBCX is put into power-off, deactivated and activated condition. The test setup  
is described in ITU.  
Spectrum analyzer and signal generator in combination with S-interface measurement bridge or  
Siemens K1403.  
Possible problems: Not known.  
3.4.3.9  
TE and NT Output Signal Balance (OSB)  
Requirements defined by ITU I.430 in section 8.5.6.2.  
Measurement conditions:  
– all possible power feeding conditions.  
– all possible connections of the equipment to ground.  
– 100 termination across transmit and receive ports.  
Requirements: template.  
SBCX is in active state and transmits continuous ZEROs in B1 and B2 channels. For test setup  
refer to ITU.  
Spectrum analyzer and signal generator in combination with S-interface measurement bridge or  
Siemens K1403.  
Possible problems: Not known.  
3.4.3.10 TE Frame Rate Info1  
Requirements defined by ITU I.430 in section 8.1  
The nominal frame rate of Info1 should be 24 kHz ± 100 ppm  
Frequency counter or Siemens K1403  
Possible problems: frame rate exceeds limit  
– adjust oscillator frequency, take crystal with less tolerance  
3.4.3.11 Loss and Regain of Frame Alignment (TE)  
Values have to be stated in PICS/PIXIT list  
SBCX V3.4: m = 3 or 4, n = 2  
Semiconductor Group  
91  
 
Technical Description  
4
Technical Description  
Chapter 4, “Technical Description”, is structured similar to chapter 3 in order to facilitate cross-  
referencing. Chapter 4 is dedicated to technical information only. It describes the interfaces, control  
procedures, maintenance functions and the analog line port. The user is intended to refer to  
chapter 4 when in need of specific technical details. For information on a particular application  
please refer to chapter 3.  
4.1  
Interfaces  
This section describes the interfaces IOM-2, S, and MAI. In addition, a section with technical  
information on the analog line port (analog receiver and transmitter for the S-interface) was  
included. All dynamic characteristics are treated in these sections.  
4.1.1  
IOM -2 Interface  
General  
Via the IOM-2 interface data is transmitted in both directions (DU and DD) at half the data clock rate.  
The data clock (DCL) is a square wave signal with a duty cycle ratio of typically 1:1. Incoming data  
is sampled on the falling edge of the DCL clock. The frequency is variable and can be set for values  
ranging from 512 kHz to 4.096 MHz.  
"a"  
DCL  
FSC  
DU  
Bit 32  
Bit 0  
Bit 1  
Bit 2  
DD  
ITD04228  
Figure 47  
IOM -2 Interface Timing  
The frame clock (FSC) is an 8-kHz signal for synchronizing data transmission on DU and DD. The  
rising edge of this signal gives the time reference for the first bit transmitted in the first IOM-2  
channel.  
The IOM-2 interface specification describes open drain data lines with external pull-ups. However  
if operation is logically point-to-point, tristate operation is possible as well. After reset, the  
SBCX V3.4 senses whether an external pull-up resistor is connected to pin IDP0. If not the SBCX  
switches automatically to tristate operation (refer to chapter 4.4.3).  
Semiconductor Group  
92  
 
 
Technical Description  
Multiframe Marker  
In NT and LT-S mode the signaling of the multiframe identification on the S-interface is performed  
automatically by the SBCX. The multiframe generation can be disabled by pin strap (NT pin MAI1  
tied to high) or by programming (MFD-bit configuration register).  
In NT and LT-S mode the S/T-interface superframe with 5 ms period can be synchronized to a  
master device by modulation of the pulse width of FSC.  
The SBCX samples the FSC input with the second falling edge of DCL in the very first bit of the  
frame and resets the S/T-interface transmit frame, including multiframe, if the sample bit is zero.  
The remaining FSC clocks must be of at least two DCL periods duration.  
The relationship between the IOM-2 multiframe marker of the slave, the S-interface, and the IOM-2  
superframe marker of the master is fixed after activation of the S-interface. I.e. data inserted on LT  
side in the first B1-channel after the IOM-2 slave superframe marker will always appear on NT side  
with a fixed offset.  
The following figure shows the frame relationship between IOM-2 interface and S/T-Interface.  
FSC  
S/T Frames  
No. 19  
No. 20  
No. 1  
No. 2  
No. 3  
No. 4  
ITD04531  
Figure 48  
S/T-Interface Multi-Frame Synchronization  
Please note, that in a NT application the superframe marker of IEC-Q must be disabled due to  
different multiframe periods of U- and S-interface.  
Power-Down  
For power saving reasons, the IOM-2 interface can be switched into a “power-down” state (i.e. state  
“DEACTIVATED” in the status diagram). In this case, the idle state of the data lines are HIGH, while  
those of the clock lines are LOW.  
Semiconductor Group  
93  
Technical Description  
4.1.1.1  
IOM -2 Dynamic Characteristics  
In case the period of signals is stated the time reference will be at 1.4 V; in all other cases 0.8 V  
(LOW) and 2.0 V (HIGH) thresholds are used as reference.  
The following two diagrams illustrate the timing requirements for TE mode and NT, LT-S or LT-T  
mode.  
Timing Characteristics IOM -2 Interface in TE Mode  
IOM R Frame n  
Channel 2  
IOM R Frame n + 1  
Channel 0  
(...B*-channel)  
(B1-channel...)  
FSC (0)  
BCL (0)  
t BCD  
t WL  
t FSD  
t DS  
t WH  
DCL (0)  
t P  
t DH  
IDP1(Ι)  
t DD  
IDP0 (O)  
ITD04534  
Figure 49  
Timing of the IOM -2 Interface in TE Mode  
Semiconductor Group  
94  
 
Technical Description  
Table 12  
Timing Characteristics of the IOM -2 Interface TE Mode  
Parameter  
Symbol  
Limit Values  
Unit  
Condition  
min.  
65  
typ.  
max.  
Frame sync delay  
Bit clock delay  
Data delay  
tFSD  
tBCD  
tDD  
tDS  
tDH  
tWH  
tWL  
tP  
195  
195  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 150 pF  
CL = 150 pF  
CL = 150 pF  
65  
Data setup  
20  
Data hold  
50  
Data clock high  
Data clock low  
Data clock period  
175  
300  
520  
325  
325  
651  
475  
350  
782  
osc ± 100 ppm  
osc ± 100 ppm  
osc ± 100 ppm  
Semiconductor Group  
95  
Technical Description  
Timing Characteristics IOM -2 Interface in NT / LT-S and LT-T Mode  
IOM R Frame n  
lost Channels  
(...B*-Channel)  
IOM R Frame n+1  
first Channel  
(B1 Channel...)  
t FWH  
FSC ( Ι )  
t FWL  
t FS  
t WH  
t FH  
t WL  
DCL ( Ι )  
IPD1 ( Ι )  
t DS  
t DH  
t DDF  
t DDC  
IPD 0 (O)  
ITD04018  
Figure 50  
Timing of the IOM®-2 Interface in NT / LT-S and LT-T Mode  
Semiconductor Group  
96  
Technical Description  
Table 13  
Timing Characteristics of the IOM -2 Interface NT / LT-S and LT-T Mode  
Parameter  
Symbol  
Limit Values  
typ. max.  
Unit  
Condition  
min.  
90  
Data clock high  
Data clock low  
Frame sync hold  
Frame sync setup  
Frame sync high 1)  
Frame sync low  
Data delay to clock  
Data delay to frame  
Data setup  
tWH  
tWL  
ns  
ns  
ns  
ns  
ns  
90  
tFH  
30  
tFS  
70  
tFWH  
tFWL  
tDDC  
tDDF  
tDS  
130  
tDCL  
100  
150  
ns  
ns  
ns  
ns  
20  
50  
Data hold  
tDH  
Note:  
1) This is in accordance with the IOM-2 specification. For correct functional operation the high period must be  
1 * DCL for multiframe markers and at least 2 DCL periods for non-multiframe markers.  
Semiconductor Group  
97  
Technical Description  
4.1.1.2  
Timing Characteristics CEB (NT / LT-S)  
The form and the AC characteristics of the CEB input/output (pin X3 in NT and LT-S mode) are  
given in the following figures for the case of two S/T-interfaces having a minimum loop delay and a  
maximum loop delay respectively.  
S/T-Frame  
L
D
L
TE  
NT  
CEB Output  
t CEBD  
ITD05204  
Figure 51  
Timing of the CEB Output  
S/T-Frame  
Bn 7  
Bn 8  
E
NT  
TE  
CEB Input  
t CEBH  
t CEBS  
ITD05205  
Figure 52  
Timing of the CEB Input  
Table 14  
Timing Characteristics of the CEB Input / Output  
Parameter  
Symbol  
Limit Values  
typ. max.  
Unit  
Condition  
min.  
CEB delay  
CEB setup  
CEB hold  
tCEBD  
tCEBS  
tCEBH  
3
5
0
5
µs  
CL = 100 pF  
µs  
µs  
Semiconductor Group  
98  
 
Technical Description  
The influence of more SBCXs connected to the CEB line is illustrated in the following figure. Two  
stations one with minimal frame delay (station A), the second with maximum frame delay (station B)  
determine the echo bit to be sent downstream by evaluating the common echo bit (CEB) line.  
Figure 53 indicates at what point the CEB value is updated (after reception of D bit on S/T) and  
when the CEB line is sampled to determine the value of the transmitted echo bit.  
F L.  
E D  
1
E D  
0
E D  
1
E D F L.  
0
Binary  
Values:  
NT  
TE  
F L.  
D
0
D
1
D
1
D
1
F L.  
Binary  
Values:  
1
TE  
NT  
F L.  
E D  
1
E D  
0
E D  
1
E D F L.  
0
Binary  
Values:  
NT  
TE  
D
1
F L.  
D
1
D
1
D
0
D
1
F L.  
Binary  
Values:  
TE  
NT  
Common  
Echo Bit  
1
0
Condition: All transmit frames NT  
TE are in phase.  
ITD04535  
Figure 53  
Functional Timing of the CEB  
Semiconductor Group  
99  
 
Technical Description  
4.1.1.3  
Command/Indicate Channel  
Structure  
4 bit wide, located at bit positions 27-30 in each time-slot.  
Verification  
Double last-look criterion. A new command or indication will be recognized as valid after it has been  
detected in two successive IOM frames.  
Codes  
Both commands and indications depend on the SBCX mode and the data direction. Table 15  
presents all defined C/I codes. A command needs to be applied continuously until the desired action  
has been initiated. Indications are strictly state orientated. Refer to the state diagrams in  
section 4.3 for commands and indications applicable in various states. C/I commands issued by  
the control device in IOM-1 mode (512 kHz) will be interpreted correctly by the SBCX. Indications  
sent by the PEB 2081 in 512-kHz modes will also be recognized correctly by a control device  
operating in IOM-1 mode.  
Semiconductor Group  
100  
 
Technical Description  
Table 15  
C/I Codes  
Code  
LT-S  
OUT  
NT  
OUT  
TE/LT-T  
IN  
IN  
IN  
OUT  
DR  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
DR  
TIM  
DR  
TIM  
TIM  
RES  
TM1  
TM2  
RES  
TM1  
TM2  
RES  
TM1  
TM2  
RES  
TM1  
TM2  
SLIP 1)  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
RSY  
MAIC  
RSY  
RSY  
MAIC  
RSY  
MAIC  
PU  
AR  
AR  
AR  
AR  
AR8  
AR10  
ARL  
AR  
ARL  
ARL  
ARL  
CVR  
AI8  
AI10  
AIL  
DC  
CVR  
AI  
CVR  
AI  
AI  
AIL  
DC  
DC  
DI  
DI  
DI  
1) In LT-T mode only  
AI  
AI8  
Activation Indication  
Activation Indication with high priority  
DI  
DR  
Deactivation Indication  
Deactivation Request  
AI10 Activation Indication with low priority  
MAIC MAI Change  
PU Power-Up  
RES Reset  
AIL  
AR  
Activation Indication Loop  
Activation Request  
AR8 Activation Request with high priority  
AR10 Activation Request with low priority  
ARL Activation Request Loop  
RSY Resynchronizing  
SLIP IOM Frame Slip  
TIM  
Timer  
CVR Code Violation Received  
TIM1 Test Mode 1 (2-kHz signal)  
TM2 Test Mode 2 (96-kHz signal)  
DC  
Deactivation Confirmation  
Semiconductor Group  
101  
Technical Description  
4.1.1.4  
Modes  
Monitor Channel  
Automode and non-auto mode are available. These affect MON-1 and MON-2 messages only and  
will be described in the sections dealing with these monitor categories.  
Structure  
The structure of the monitor channel is 8 bit wide, located at bit position 17-24 in every time slot.  
Monitor messages sent to the SBCX are 1 or 2 bytes long, monitor messages returned by the SBCX  
are 0, 1, 2, or 5 bytes long depending on the command. Transmission of multiple monitor bytes is  
specified by IOM-2 (see next “Handshake Procedure” for details). For handshake control in multiple  
byte transfers, bit 31, monitor read “MR”, and bit 32 monitor transmit “MX”, of every time slot are  
used.  
Verification  
A double last-look criterion is implemented for both bytes of the monitor message.  
Codes  
3 categories of monitor messages are supported by the SBCX V3.4:  
– MON-1  
– MON-2  
– MON-8  
S1/Q channel  
S2 channel  
Register access  
The order of listing corresponds to the priority attributed to each category. MON-1 messages will be  
transmitted first, MON-8 messages last in case several messages are initiated simultaneously.  
Semiconductor Group  
102  
 
Technical Description  
4.1.1.4.1 Handshake Procedure  
The monitor channel is full duplex and operates on a pseudo-asynchronous basis, i.e. while data  
transfer on the bus takes place synchronized to frame synchronization, the flow of monitor data is  
controlled by the MR and MX bits. Monitor data will be transmitted repeatedly until its reception is  
acknowledged.  
Figure 55 illustrates a monitor transfer at maximum speed. The transmission of a 2-byte monitor  
command followed by a 2-byte SBCX response requires a minimum of 12 IOM-2 frames. In case the  
controller is able to confirm the receipt of first SBCX response byte in the frame immediately  
following the MX transition on DOUT from HIGH to LOW (i.e. in frame No. 6), 1 IOM frame may be  
saved.  
Note:  
Transmission and reception of monitor messages can be performed simultaneously by the SBCX.  
This feature is used by the SBCX to send back the response before the transmission from the  
controller is completed (SBCX does not wait for EOM from controller).  
M1/2: Monitor message 1. and 2. byte  
R1/2: Monitor response 1. and 2. byte  
IOM R -2 Frame  
No.  
1
2
3
4
5
6
7
8
9
10  
11 12  
Tx 1.Byte  
Tx 2.Byte  
1
0
MX  
EOM  
IDP1  
Ack.1.Byte  
Ack. 2.Byte  
1
0
MR  
EOM  
M1 M1 M2 M2 FF FF FF FF FF FF FF FF  
Mon. Data IDP1  
Tx 1.Byte  
Tx 2.Byte  
1
0
MX  
EOM  
IDP0  
Ack.1.Byte  
Ack. 2.Byte  
1
0
MR  
EOM  
Mon. Data IDP0  
FF FF FF FF R1 R1 R1 R2 R2 FF FF FF  
ITD05302  
Figure 54  
Handshake Protocol with a 2-Byte Monitor Message/Response  
Idle State  
After the bits MR and MX have been held inactive (i.e. HIGH) for two or more successive IOM  
frames, the channel is considered idle in this direction.  
Semiconductor Group  
103  
 
Technical Description  
Standard Transmission Procedure  
1. The first byte of monitor data is placed by the external controller (e.g. ICC, EPIC) on the IDP1 line  
of the SBCX and MX is activated (LOW; frame No 1).  
2. The SBCX reads the data of the monitor channel and acknowledges by setting the MR bit of IDP0  
active if the transmitted bytes are identical in two received frames (frame No. 2 because the  
PEB 2081 reads and compares data already while the MX bit is not activated).  
3. The second byte of monitor data is placed by the controller on IDP1 and the MX bit is set inactive  
for one single IOM frame. This is performed at a time convenient to the controller.  
4. The SBCX reads the new data byte in the monitor channel after the rising edge of MX has been  
detected. In the frame immediately following the MX transition active-to-inactive, the MR bit of  
IDP0 is set inactive. The MR transition inactive-to-active exactly one IOM frame later is regarded  
as acknowledgment by the external controller (frame No. 4-5).  
The response of the SBCX will always be sent immediately after the 2. byte has been received  
and acknowledged.  
5. After both monitor data bytes have been transferred to the SBCX, the controller transmits “End  
of Message” (EOM) by setting the MX bit inactive for two or more IOM frames (frame No. 5-6).  
6. In the frame following the transition of the MX bit from active to inactive, the SBCX sets the MR  
bit inactive (as was the case in step 4). As it detects EOM, it keeps the MR bit inactive (frame  
No. 6). The transmission of the monitor command by the controller is complete.  
7. If the SBCX is requested to return an answer it will commence with the response as soon as the  
second controller byte was acknowledged (i.e. response starts in frame 5).  
The procedure for the response is similar to that described in points 1-6 except for the  
transmission direction. It is assumed that the controller does not latch monitor data. For this  
reason one additional frame will be required for acknowledgment.  
Transmission of the 2. monitor byte will be started by the SBCX in the frame immediately  
following the acknowledgment of the first byte. The PEB 2081 does not delay the monitor  
transfer.  
Semiconductor Group  
104  
Technical Description  
Error Treatment and Transmission Abortion  
In case the SBCX does not detect identical monitor messages in two successive frames,  
transmission is not aborted. Instead the SBCX will wait until two identical bytes are received in  
succession.  
Transmission is aborted only if errors in the MR/MX handshake protocol occur. An abort is indicated  
by setting the MR bit inactive for two or more IOM-2 frames. The controller must react with EOM.  
This situation is illustrated in the following figure.  
IOM R -2 Frame  
No.  
1
2
3
4
5
6
7
1
0
MX  
EOM  
IDP1  
MR  
1
0
1
0
MX  
IDP0  
MR  
1
0
Abort Request from Receiver  
ITD05306  
Figure 55  
Abortion of Monitor Channel Transmission  
4.1.1.4.2 Monitor Procedure Timeout (TOD)  
The PEB 2081 V3.4 can operate with or without the “Monitor Timeout Procedure”. The TOD bit in  
the SM/CI (Timeout Disable) controls the timeout function. TOD = ZERO enables the function,  
TOD = ONE disables it.  
With the timeout procedure enabled, the SBCX checks the monitor status once per multi-frame.  
This check is performed at the same time the 20th (i.e. last) S-frame is transmitted within the  
S-interface multi-frame structure.  
In case the monitor is active the current status of the monitor channel is saved. This condition will  
be compared with the status at the next check (i.e. 5 ms later). If the condition of the monitor channel  
has not changed within this period the SBCX assumes a lock-up situation.  
The SBCX will resolve this lock-up situation by transmitting on IDP0 a EOM (End of Message)  
command (MX bit set to ONE for 2 IOM frames). After the transmission of EOM the SBCX will  
retransmit the previous monitor channel data. No monitor channel data will therefore be lost.  
Semiconductor Group  
105  
 
Technical Description  
4.1.1.4.3 MON-1, MON-2 Commands (S/Q Channel Access)  
Function: MON-1 and MON-2 commands provide access to the SBCX internal S/Q registers.  
MON1 controls the S1 and Q channel, MON-2 controls the S2 channel on the S-interface.  
In order to synchronize onto multiframing pulses (TE, LT-T modes) and issue monitor-  
messages (NT, LT-S modes) the MFD (Multi-frame disable) bit in the configuration  
register must be set to ZERO.  
MON-1 and MON-2 commands may be passed at any instant provided the S-interface  
is activated. They are always one byte long.  
Direction S IOM:  
In the direction S-interface to IOM interface a 1 byte buffer is implemented. Every time  
a S/Q message has been received on the S-interface which needs to be forwarded to  
the IOM interface this message will be saved in a latch. This latch allows retransmission  
of the old S/Q data on IOM in case the message has not been read by the controller  
before a monitor timeout occurred.  
While the latched data has not been read correctly from the monitor channel the S/Q  
receiver will not reload the latch. Thus the IOM controller must read out the S/Q  
messages from IOM once per 5 ms (multi-frame period). If this is not guaranteed S/Q  
channel data may be lost.  
Direction IOM S:  
No buffering is available in the direction IOM-interface to S-interface.  
The SBCX will acknowledge a S/Q command correctly and transfer the command into  
an internal S/Q transmit buffer if this command is received during frame numbers 1-17.  
Once a command has been transferred into the internal transmit register new S/Q  
commands received during frames 1-17 will not be accepted by the SBCX (i.e. no  
acknowledgment issued with MR bit). During frame numbers 18-20 however the monitor  
channel data is transferred directly into the transmit register. During this period  
previously accepted S/Q data could therefore be overwritten. To avoid this situation the  
controller must be programmed to send no more than one S/Q command per multi-  
frame (5 ms).  
Note that for both S1 and S2 channel a separate transmit register is reserved. The above  
stated restriction thus applies only to S/Q commands referring to the same channel.  
Transmission of the stored data will commence with the new multi-frame.  
Priority:  
Modes:  
MON-1 commands have the highest priority, MON-2 command are treated with second  
priority.  
Non-auto mode and transparent mode are available in all operational modes. The SQM  
(SQ Mode) bit selects transparent mode (ONE) and non-auto mode (ZERO).  
Semiconductor Group  
106  
Technical Description  
Non-Auto Mode  
In non-auto mode only MON-1 functions to access the S1 and Q channel are available. MON-2  
messages (for S2 channel access) are ignored.  
In non-auto mode monitor messages are only released after new data has been received. In this  
mode traffic on the IOM monitor channel is reduced. The controller only receives changes in the S1  
or Q channel reducing its processing demands as well.  
Transparent Mode  
In transparent mode all S/Q channels are available to the user. MON-1 commands/messages  
service the S1 and Q channel, MON-2 commands/messages related exclusively to the S2 channel.  
In this mode the data received on S1, S2 or Q will be forwarded directly to the IOM-interface. No  
comparison with previously sent data is performed so that one MON-1 and one MON-2 monitor  
message will be issued every 5 ms (once per multi-frame) in TE or LT-T modes. In NT and LT-S  
modes one MON-1 message will indicate every multi-frame the current Q channel data received.  
Codes:  
MON-1 Command/Message (S1/Q channel)  
1 Byte  
0
0
0
1
S1/Q  
S1/Q  
S1/Q  
Data  
S1/Q  
MON-1  
S1: Data in S1 channel (NT, LT-S input; TE, LT-T output)  
Q: Data in Q channel (TE, LT-T input; NT, LT-S output)  
MON-2 Command/Message (S2 channel)  
1 Byte  
0
0
1
0
S2  
S2  
S2  
Data  
S2  
MON-2  
S2: Data in S2 channel (NT, LT-S input; TE, LT-T output)  
Currently neither S1, S2 nor Q channel commands have been standardized.  
Semiconductor Group  
107  
Technical Description  
4.1.1.4.4 MON-8 Commands (Register Access)  
Function: MON-8 commands provide access to the SBCX internal registers. MON-8 commands  
allow to configure the SBCX. With the exception of the identification register (read only)  
all registers have read/write capability. In case a write operation is selected the  
command is two bytes long. For a read operation the two byte long read request  
command will be followed by a two byte long response message. Only exception is a  
read request from the µP MAI interface. Here a single 5 byte response monitor message  
is optional.  
Buffering: After hard- or software reset, the register values specified in “Initial State” overwrite all  
customer settings.  
Modifications in the internal registers will be latched until they are overwritten with a new  
MON-8 command.  
Modes:  
MON-8 commands are independent of the operational SBCX mode or other mode  
selections. Depending on the operational mode the meaning of single register bits may  
change.  
Codes  
Write to Register Structure  
1. Byte  
2. Byte  
1
0
0
0
r
r
r
r
D7 D6 D5 D4 D3 D2 D1 D0  
Register Data Write  
MON-8  
Reg. Address  
r:  
D0-D7:  
Register Address  
Write Data  
– 1 … 5 (Configuration Reg. – MAI Pin Reg.)  
– Depending on Register  
Read Register Request Structure  
1. Byte  
2. Byte  
1
0
0
0
0
0
0
0
0
0
0
0
r
r
r
r
MON-8  
Reg. Address  
r:  
Register Address  
– 0 … 5 (Identification Reg. – MAI Pin Reg.)  
Read Response Structure  
1. Byte  
2. Byte  
1
0
0
0
r
r
r
r
D7 D6 D5 D4 D3 D2 D1 D0  
Register Data Read  
MON-8  
Reg. Adr.  
r:  
Register Address Confirmation – 0 … 5 (Identification Reg. – MAI Pin Reg.)  
D7 … D0: Receive Data  
– Depending on Register  
Semiconductor Group  
108  
 
Technical Description  
MON-8 Identification Register – (Read, Address: 0H)  
Format:  
0
1
0
0
0
0
1
0
Initial Value: 42H  
Older SBCX Versions identify themself with the following IDs:  
Versions: A1 to A3  
ID = 40H  
ID = 41H  
Versions: B1 and 2.2  
MON-8 Configuration Register – (Read/Write, Address: 1H)  
Format:  
MFD  
MAIM  
FSMM  
LP  
SQM  
RCVE  
C/W/P  
MODE  
Initial Value: 00H  
Table 16  
Bit-name Description  
MODE  
Pin MODE = VDD (LT-S, LT-T):  
0: LT-S mode selected  
1: LT-T mode selected  
C/W/P  
LT-S and NT mode: Configuration  
0: point-to-point or extended passive bus configuration (adaptive  
timing recovery). In NT mode the pin X0 (= BUS) must be low.  
1: short passive bus configuration (fixed timing recovery)  
in LT-T mode: Wander detection (warning in C/I, data may be lost!)  
0: “SLIP” after 50 µs wander  
1: “SLIP” after 25 µs wander  
in TE mode: Power converter clock frequency supplied at pin 40  
0: 32 kHz  
1: 16 kHz  
SQM  
SQ channel handling mode selection  
0: non automode  
1: transparent mode  
only S1 and Q channels  
S1, S2 and Q channels  
RCVE  
0:  
1:  
normal operation  
Far-end-code-violation (FECV) function according to ANSI T1.605 implemen-  
ted. After each multiframe the receipt of at least one illegal code violation is  
indicated by the occurance of six times the C/I code 1011(CVR).  
NT/LT-S mode:  
0: transparent analog loop  
1: non-transparent analog loop  
TE / LT-T mode:  
LP  
0: non-transparent analog loop  
1: external transparent loop  
Semiconductor Group  
109  
Technical Description  
Table 16 (cont’d)  
FSMM  
MAIM  
MFD  
NT/LT-S mode:  
0:  
1:  
normal operation  
Finite state machine interchanged (LT-S N)  
MAI pins mode:  
0: I/O-specific or standard I/O MAI interface  
1: µP interface mode for MAI interface  
Multi-frame disable (write):  
0: All multi-frame functions active. In NT mode the pin MAI1 (= MFD)  
must be low.  
1: Multi-frame generation (NT, LT-S) or synchronization (TE, LT-T)  
prohibited. No SQ monitor messages released.  
Multi-frame detected (read):  
0: No multi-frame synchronization achieved.  
1: Multi-frame synchronization achieved.  
MON-8 Loop-Back Register – (Read/Write, Address: 2H)  
Format:  
AST  
SB1  
SB2  
SC  
IB1  
IB2  
1
IB12  
Initial value: 02H  
Table 17  
Bit-name Description  
AST  
ASynchronous Timing  
NT and LT-S mode; only NT state machine  
0:  
LT-S: command TIM in C/I  
NT: asynchronous wake up  
1:  
LT-S: asynchronous wake up (useful for the Intelligent NT)  
NT: command TIM in C/I  
SB1  
SB2  
SC  
Loop-back B1 channel at S/T-interface in LT-S/NT-mode  
Loop-back B2 channel at S/T-interface in LT-S/NT-mode  
Loop-back complete (2B+D) at S/T-interface in LT-S/NT-mode  
Loop-back B1 channel at IOM-2 interface  
IB1  
IB2  
Loop-back B2 channel at IOM-2 interface  
IB12  
Loop-back B1 into B2 channel and vice versa at IOM-2 interface. Additionally IB1  
and/or IB2 must be set.  
Semiconductor Group  
110  
Technical Description  
MON-8 IOM-2 Channel Register - (Read/Write, Address: 3H)  
Format:  
B1L  
B1D  
B2L  
B2D  
DL  
DH  
CIL  
CIH  
Initial value: 00H  
Table 18  
Bit-name Description  
B1L  
B2L  
DL  
B1 channel location  
0: normal 1)  
1: B1 channel in IOM-2 channel 0  
B2 channel location  
0: normal 1)  
1: B2 channel in IOM-2 channel 0  
D-channel location  
0: normal 1)  
1: D-channel in IOM-2 channel 0  
CIL  
B1D  
B2D  
DH  
CI channel location  
0: normal 1)  
1: in IOM-2 channel 0  
B1 channel direction  
0: normal (IDP0 is data output, IDP1 is data input)  
1: IDP0 and IDP1 interchanged for B1 channel  
B2 channel direction  
0: normal (IDP0 is data output, IDP1 is data input)  
1: IDP0 and IDP1 interchanged for B2 channel  
D-channel handling  
0: LT-S, LT-T and NT mode: transparent  
TE mode: collision detection according to ITU I.430  
(BAC and A/B bit evaluation)  
1: NT and LT-S mode: D-channel access control  
TE mode: transparent D-channel  
LT-T mode: D-channel collision resolution according to ITU I.430  
CIH  
CI channel handling  
0: normal C/I access in the pin strapped IOM-2 channel  
1: disabled, access to C/I is only possible via the SM/CI register  
Notes:  
1) In LT-S and LT-T mode: pin strapped IOM-2 channel  
In NT and TE mode: IOM-2 channel 0  
Semiconductor Group  
111  
Technical Description  
MON-8 SM/CI Register – (Read/Write, Address: 4H)  
Format:  
CI3  
CI2  
CI1  
CI0  
TOD  
SGE  
0
MIO  
Initial value: CI, 0H  
Table 19  
Bit-name Description  
CI (3:0)  
TOD  
CI channel  
When CIH-bit is set to one the commands are input in the monitor channel CI (3:0)  
The indication can always be read via monitor channel CI (3:0)  
Time-Out Disable  
0:  
1:  
monitor timeout (minimum 5 ms) enabled  
monitor timeout disabled  
SGE  
Stop / Go Enable  
0:  
1:  
normal  
In TE mode pin MAI5 outputs S/G signal  
MIO  
Maintenance Input Output (MAIM = 0)  
0:  
1:  
I/O-specific functions on MAI interface  
Standard I/O function on MAI interface  
Semiconductor Group  
112  
Technical Description  
MON-8 MAI Pin Register - (Read/Write, Address: 5H)  
Format:  
MPR7  
MPR6  
MPR5  
MPR4  
MPR3  
MPR2  
MPR1  
MPR0  
Initial value: 00H  
Bit-name Description  
MPR (7:0) access to MAI(7:0) pins if MAI interface is set to standard I/O or I/O specific function  
mode.  
In case the µP interface was selected for the MAI interface mode (MAIM = 1) the MAI pin register  
are defined as follows (only “write to register” operation will be accepted).  
Format:  
WR  
RD  
A1  
A0  
INT  
D2  
D1  
D0  
(write only)  
Table 20  
Bit-name Description  
D0…D2  
MAI0:2  
Data pin (input/output)  
INT  
(MAI3)  
Interrupt (input), Read request control:  
0: Single Address read operation  
1: Complete address (0…3) read operation.  
A0 … A1 Address pins (output)  
(MAI4:5)  
RD  
Read signal (output)  
(MAI6)  
0: Read operation  
1: Write operation (if WR = 0)  
WR  
(MAI7)  
Write Signal (output).  
0: Write operation  
1: Read operation (if RD = 0)  
Semiconductor Group  
113  
Technical Description  
4.1.2  
S/T-Interface  
Transmission over the S/T-interface is performed at a rate of 192 kbit/s. Pseudo-ternary coding with  
100 % pulse width is used (see following section). 144 kbit/s are used for user data (B1+B2+D),  
48 kbit/s are used for framing and maintenance information. The SBCX uses two symmetrical,  
differential outputs (SX1, SX2) and two symmetrical, differential inputs (SR1, SR2). These signals  
are coupled via external circuitry and two transformers onto the 4 wire S-interface. The nominal  
pulse amplitude on the S-interface is 750 mV (zero-peak).  
4.1.2.1  
S/T-Interface Coding  
The following figure illustrates the code used. A binary ONE is represented by no line signal. Binary  
ZEROs are coded with alternating positive and negative pulses with a single exception: the first  
binary ZERO following the framing balance bit is of the same polarity as the framing-balancing bit  
(required code violation).  
Semiconductor Group  
114  
 
Technical Description  
0
1
0
0
1
1
0
0
0
1
1
+ V  
0 V  
- V  
ITD00322  
Figure 56  
S/T -Interface Line Code (without code violation)  
A standard S/T frame consists of 48 bits. In the direction TE NT the frame is transmitted with a  
two bit offset. For details on the framing rules please refer to ITU I.430 section 6.3. The following  
figure illustrates the standard frame structure for both directions (NT TE and TE NT) with all  
framing and maintenance bits.  
48 Bits in 250 µ s  
D L. F L.  
B1  
E D A F N  
B2  
E D M  
B1  
E D S  
B2  
E D L. F L.  
A
0
1
0
NT  
TE  
2 Bits Offset  
D L. F L.  
B1  
L.D L.F L.  
B2  
L.D L.  
B1  
L.D L.  
B2  
L.D L. F L.  
A
0
1
0
TE  
NT  
t
ITD03993  
Figure 57  
Frame Structure at Reference Points S and T (ITU I.430)  
Semiconductor Group  
115  
Technical Description  
– F  
Framing Bit  
F = (0b) identifies new frame (always positive  
pulse)  
– L.  
D.C. Balancing Bit  
L. = (0b) number of binary ZEROs sent after the  
last L. bit was odd  
– D  
– E  
D-Channel Data Bit  
D-Channel Echo Bit  
Signaling data specified by user  
E = D no D-channel collision. ZEROs overwrite  
ONEs  
– FA  
– N  
Auxiliary Framing Bit  
See section 6.3 in ITU I.430  
N = FA  
– B1  
– B2  
– A  
B1-Channel Data Bit  
B2-Channel Data Bit  
Activation Bit  
User data  
User data  
A = (0b) INFO 2 transmitted  
A = (1b) INFO 4 transmitted  
– S  
– M  
S-Channel Data Bit  
Multiframing Bit  
S1 or S2 channel data  
M = (1b) Start of new multi-frame  
Semiconductor Group  
116  
Technical Description  
4.1.3  
S/T-Interface Multiframing  
According to ITU recommendation I.430 a multi-frame provides extra layer 1 capacity in the  
TE-to-NT direction through the use of an extra channel between the TE and NT (Q-channel). The Q  
bits are defined to be the bits in the FA bit position.  
In the NT-to-TE direction the S channel bits are used for information transmission. Two S channels  
(S1 and S2) out of five possible S channels can be accessed by the SBCX.  
The S and Q channels are accessed via the IOM-2 interfaces monitor channel.  
The following table shows the S and Q bit positions within the multi-frame.  
Table 21  
Frame Number  
NT-to-TE  
FA Bit Position  
NT-to-TE  
M Bit  
NT-to-TE  
S Bit  
TE-to-NT  
FA Bit Position  
1
2
3
4
5
ONE  
ONE  
S11  
S21  
ZERO  
ZERO  
ZERO  
Q1  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
6
7
8
9
ONE  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
S12  
S22  
ZERO  
ZERO  
ZERO  
Q2  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
10  
11  
12  
13  
14  
15  
ONE  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
S13  
S23  
ZERO  
ZERO  
ZERO  
Q3  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
16  
17  
18  
19  
20  
ONE  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
S14  
S24  
ZERO  
ZERO  
ZERO  
Q4  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
ZERO  
1
2
ONE  
ZERO  
ONE  
ZERO  
S11  
S21  
Q1  
ZERO  
Semiconductor Group  
117  
 
Technical Description  
In TE and LT-T mode the SBCX identifies the Q-bit position (after multi-frame synchronization has  
been established) by waiting for the FA bit inversion in the received S/T-interface data stream  
(FA [NT TE] = binary ONE). After successful identification, the Q data will be inserted at the  
upstream (TE NT) FA bit position. When synchronization is not achieved or lost, it mirrors the  
received FA bits.  
Multi-frame synchronization is achieved after two complete multi-frames have been detected with  
reference to FA/N bit and M bit positions. Multi-frame synchronization is lost after two or more bit  
errors in FA/N bit and M bit positions have been detected in consequence, i.e. without a complete  
valid multi-frame between.  
The multi-frame synchronization can be disabled by programming (MFD-bit configuration register).  
4.1.4  
Maintenance Auxiliary Interface (MAI)  
Selection of MAI interface configuration:  
Table 22  
Configuration Reg. SM/CI Reg  
MAI Interface Mode  
MAIM  
MIO  
0
0
1
1
0
I/O specific  
1
Standard I/O  
µP interface mode  
not applicable  
0
1
After a hard- or software reset the default setting is “I/O specific” interface.  
4.1.4.1 I/O Specific Mode  
Please refer to section 3.2.3.1 in the application chapter for details on the I/O specific signals.  
Register access is performed as described for standard I/O mode.  
Semiconductor Group  
118  
 
Technical Description  
4.1.4.2  
Standard I/O Mode  
Provides four input and four output lines. Interface access via MON-8 MAI pin register.  
The MAI pins may be written by the following 2-byte sequence via the IOM-2 monitor channel:  
Write message (to SBCX)  
write command (access to  
MAI Pin Register MPR)  
data D(7:4) to be written to  
MAI pin (7:4)  
85H  
D7 D6 D5 D4 ****  
*** means don’t care  
The MAI pins may be read by the following 2-byte sequence via the IOM-2 monitor channel:  
Read message (to SBCX)  
read command  
80H  
MAI pin Register MPR  
05H  
response (from SBCX)  
8 + internal address (i.e. MPR)  
85H  
data  
D7 D6 D5 D4 D3 D2 D1 D0  
where D(7:4) are the previously written MAI (7:4) bits and D(3:0) are the MAI (3:0) inputs.  
Semiconductor Group  
119  
 
Technical Description  
4.1.4.3  
µP MAI Mode  
In case the µP mode is selected (MIO, MAIM bits) the following timing applies for read and write  
operations.  
Write Access  
RD  
t wRL  
WR  
t sAD  
A 0 ... A1  
t dDWS  
t dDWE  
D0 ... D2  
ITD05202  
Figure 58  
Dynamic Characteristics of µP Interface Write Access  
Read Access  
t rDL  
RD  
WR  
t sAD  
A 0 ... A1  
t sDR  
t hDR  
D0 ... D2  
ITD05203  
Figure 59  
Dynamic Characteristics of µP Interface Read Access  
Semiconductor Group  
120  
 
Technical Description  
Table 23  
Dynamic Characteristics of Data Port  
Parameter  
Signal Abbreviation Min.  
Typ. Max.  
Units  
Write Width Low  
twRL  
2 x DCL – 200  
2 x DCL – 200  
ns  
Address Delay  
Read/Write  
A0 … 1 tsAD  
2 x DCL + 200 ns  
Data Delay Write Start  
Data Delay Write End  
Setup Data Read  
Hold Data Read  
D0 … 2 tdDWS  
– 200  
+ 200  
ns  
tdDWE  
tsDR  
thDR  
trDL  
1 x DCL – 200  
100  
1 x DCL + 200 ns  
ns  
ns  
ns  
50  
Read Width Low  
2 x DCL – 200  
Interrupt  
For every change at the input pin “INT”, the SBCX V 3.4 will transmit a C/I channel code (0101b),  
MAIC, in 4 successive IOM-2 frames. The INT pin is sampled continuously.  
Monitor Message Sequences  
MAI “write” message (from SBCX to e.g. IEPC)  
1
0
0
0
0
1
0
1
0
1
0
address  
*
data  
MAI “single read” message (from SBCX to e.g. IEPC)  
1
0
0
0
0
1
0
1
1
address  
address  
1
1
*
*
*
MAI “single read” response (response from e.g. IEPC to SBCX)  
1
0
0
0
0
1
0
1
1
0
data  
MAI “multiple read” message MAI (from SBCX to e.g. IEPC)  
1
0
0
0
0
1
0
1
1
0
0
0
0
*
*
*
MAI “single read” response (response from e.g. IEPC to SBCX)  
1
0
0
0
0
1
0
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
0
data  
data  
data  
data  
***  
data  
means don’t care  
Data(2:0)  
address Address(1:0)  
Semiconductor Group  
121  
Technical Description  
4.2  
Control Procedures  
Chapter 4.2 illustrates the interactions between two SBCX stations during activation and  
deactivation. The behaviour of a single SBCX station is described in the state diagrams of  
chapter 4.3. With a knowledge of the state machine and the interactions involved, it is possible to  
predict the behaviour of the device under all conditions.  
The activation and deactivation procedures implemented by the SBCX in its different operating  
modes were designed according to ITU I.430.  
The following table explains all S/T-interface signals used in the following sections (definition in  
ITU I.430).  
Table 24  
S/T-Interface Signals  
Signals from NT to TE  
Signals from TE to NT  
INFO 0  
No signal.  
INFO 0  
INFO 1  
No signal.  
A continuous signal with the  
following pattern:  
Positive ZERO, negative ZERO,  
six ONEs.  
INFO 2  
Frame with all bits of B, D, and  
D-echo channels set to binary  
ZERO. Bit A set to binary ZERO. N  
and L bits set according to the  
normal coding rules.  
INFO 3  
Synchronized frames with  
operational data on B and  
D-channels.  
INFO 4  
Frames with operational data on B,  
D, and D-echo channels. Bit A set  
to binary ONE.  
Semiconductor Group  
122  
 
 
Technical Description  
4.2.1  
Complete Activation Initiated by Exchange (LT-S)  
The following figure depicts the procedure if activation has been initiated by the exchange side and  
the exchange SBCX is set to LT-S mode.  
IOM R -2 TE/LT-T  
S/T Interface  
LT-S  
IOM R -2  
DC  
DI  
INFO0  
INFO0  
DC  
DI  
AR  
AR  
INFO2  
INFO0  
INFO3  
INFO4  
RSY  
AR  
AI  
AI  
AR8 / AR10  
SBCX  
SBCX  
ITD05122  
Figure 60  
Complete Activation Initiated by Exchange (LT-S)  
Semiconductor Group  
123  
 
Technical Description  
4.2.2  
Complete Activation Initiated by Exchange (NT)  
Figure 61 illustrates the activation procedure when the exchange starts the activation.  
IOM R -2 TE/LT-T  
S/T Interface  
NT  
IOM R -2  
DC  
DI  
INFO0  
INFO0  
DC  
DI  
AR  
AR  
INFO2  
INFO0  
INFO3  
RSY  
AR  
AI  
AI  
INFO4  
AI  
AR8 / 10  
SBCX  
SBCX  
U-Interface  
Device  
ITD05123  
Figure 61  
Complete Activation Initiated by Exchange (NT)  
Semiconductor Group  
124  
 
 
Technical Description  
4.2.3  
Complete Activation Initiated by Terminal  
The following figure illustrates the activation process if started from the terminal side (or LT-T). This  
illustration only shows the part of the activation which differs from the previously described  
exchange initiated activation.  
IOM R -2  
TE/LT-T  
S/T Interface  
LT-S/NT IOM R -2  
DC  
DI  
INFO0  
INFO0  
DC  
DI  
TIM  
PU  
INFO0  
AR8 / AR10  
INFO1  
INFO0  
INFO2  
AR  
RSY  
SBCX  
SBCX  
U-Interface  
Device  
ITD05124  
Figure 62  
Complete Activation Initiated by TE  
In the case where activation is requested from a terminal, the NT SBCX first requests timing on the  
IOM-2 interface by pulling DU (Data upstream line) to a static low level. The length of the low level  
is programmable (AST-bit of the Loop-Back Register). The SBCX enters the power-up state  
immediately after timing has been applied.  
Semiconductor Group  
125  
 
Technical Description  
4.2.4  
Complete Deactivation  
A deactivation will always be initiated by the exchange side.  
IOM R -2  
IOM R -2 TE/LT-T  
S/T Interface  
LT-S/NT  
AR (AI)  
AI  
AI  
DI (AR)  
INFO4  
INFO3  
DR  
INFO0  
INFO0  
TIM  
32 ms  
DR  
DI  
DI  
DC  
DC  
SBCX  
SBCX  
ITD05125  
Figure 63  
Deactivation Procedure  
For the NT case (DCL = 512 kHz) the deactivation procedure is shown in the following figure. After  
detecting the code DI (Deactivation Indication) from the downstream unit SBCX, the upstream unit  
responds by transmitting DC (Deactivate Confirmation) during subsequent frames and stops the  
timing signals synchronously with the end of the last C/I channel bit of the fourth frame.  
Please note, in the deactivated state the oscillator is switched off.  
Semiconductor Group  
126  
 
Technical Description  
a)  
IOM R -2 Interface  
deactivated  
FSC  
DI  
DI  
DI  
DI  
DI  
DI  
DU  
DD  
DR  
DR  
DC  
DC  
DC  
DC  
Detail see Fig.b  
b)  
IOM R -2 Interface  
deactivated  
DCL  
DU  
D
C / Ι  
C / Ι  
C / Ι  
C / Ι  
ITD04530  
Figure 64  
Deactivation of the IOM -2 Interface in the NT (DCL = 512 kHz)  
Semiconductor Group  
127  
Technical Description  
4.3  
State Machine  
State machines are the key to understanding the SBCX in different operational modes. They include  
all information relevant to the user and enable him to understand and predict the behaviour of the  
SBCX. The informations contained in the state diagrams are:  
– state name (based on ITU I.430)  
– S/T signal transmitted  
– C/I code received  
– C/I code transmitted  
– transition criteria  
It is essential to be able to interpret the state diagrams.  
SBCX SBCX  
OUT  
IN  
Unconditional  
Transition  
Ind.  
Cmd.  
i r  
C / Ι  
State  
S / T Interface  
INFO  
i x  
ITD04009  
Figure 65  
State Diagram Notation  
The following example illustrates the use of a state diagram with an extract of the TE state diagram.  
The state explained is “F3 power down”.  
The state may be entered by either of two methods:  
– from state “test mode i” after the C/I command “DI” has been received.  
– from state “F3 pending deactivation” after the C/I command “DI” been received.  
The following informations are transmitted:  
– INFO 0 (no signal, see chapter 4.2) is sent on the S/T-interface.  
– C/I message “DC” is issued on the IOM-2 interface.  
Semiconductor Group  
128  
 
Technical Description  
The state may be left by either of the following methods:  
– Leave for the state “F3 power up” after synchronous or asynchronous “TIM” code has been  
received on IOM.  
– Leave for state “F5/8 unsynchron” after any kind of signal (not INFO 0) has been recognized  
on the S/T-interface.  
– Leave for state “F4 pending activation” in case C/I = AR8 or AR10 is received and the MAI pin  
CON is set to high (i.e. INFO 1 transmission not disabled).  
As can be seen from the last transition criteria described combinations of multiple conditions are  
possible as well. A “&” stands for a logical AND combination. An “or” indicates a logical OR  
combination.  
The sections following the state diagram contain detailed information on all states and signals used.  
These details are mode dependent and may differ for identically named signals/states. They are  
therefore listed for each mode.  
4.3.1  
State Machine TE/LT-T Modes  
Section 4.3.1 is applicable for both TE and LT-T operational modes.  
Semiconductor Group  
129  
 
Technical Description  
4.3.1.1  
TE/LT-T Modes State Diagram  
DC  
DI  
TMI TMI 5)  
DI  
F3 Power Down  
Test Mode i  
TIM  
TIM  
i0  
i0  
it  
*
ARp & CON i0  
3)  
PU  
DIS  
TMI  
DI  
DI  
PU ARp  
TIM  
TIM  
Any  
State  
F4 Pend. Act.  
F3 Power Up  
i0 i0  
ARp & CON  
i1  
i0  
i0  
i0  
2)  
RSY  
X
i4  
F5/8 Unsynchron  
i0  
i1  
i0  
2)  
X
i2  
DI  
TIM  
1)  
Reset/Loop  
2)  
i2 & i4  
AR  
X
F6 Synchronized  
i3 i2  
RST  
RES + ARL  
Any  
State  
i4  
i2  
DI  
4)  
2)  
i2 & i4  
i0  
AIp  
F7 Activated  
i3 i4  
X
DR  
AR  
TIM  
F3 Pend. Deact.  
i0 i0  
TIM  
Ind.  
IN  
Slip  
0.5 ms  
2)  
i2 & i4  
R
SLIP  
F7 Slip Detected  
i3 i4  
X
Cmd.  
i r  
IOM  
i2  
State  
S/T  
i x  
ITD04010  
Notes:  
1. See state diagram for unconditional transitions for details  
2. x = TM1 or TM 2 or RES or ARL  
x = TM1 & TM2 & RES & ARL  
3. ARP = AR8 or AR10  
4. AIP = AI8 or AI10  
5. TMI = TM1 or TM2  
Figure 66  
State Transition Diagram in TE/LT-T Modes  
Semiconductor Group  
130  
 
Technical Description  
Any  
F3  
State Power Up  
Pin-RES  
ARL  
DI  
ARL  
TIM  
ARL  
Loop A Closed  
i3  
ARL  
RES RES  
Reset  
TIM  
DI  
RES  
i0  
*
*
i3  
i31)  
RSY  
AIL  
RES  
TIM  
ARL  
Loop A Activated  
i3  
DI  
OUT  
Ind.  
IN  
*
RES  
R
Cmd.  
IOM  
Any  
State  
State  
S/T  
i x  
i r  
ITD04011  
Note:  
1. In state “loop A activated” I3 is the internal signal, the  
external signal is I0.  
Figure 67  
State Diagram of the TE/LT-T Modes, Unconditional Transitions  
Semiconductor Group  
131  
Technical Description  
4.3.1.2  
TE/LT-T Modes Transition Criteria  
The transition criteria used by the SBCX are described in the following sections. They are grouped  
into:  
– C/I commands  
– Pin states  
– Events related to the S/T-interface  
4.3.1.2.1 C/I Commands  
AR8  
Activation Request with priority 8 for D-channel transmission. This command is used to  
start a TE initiated activation. D-channel priority 8 is the highest priority. It should be  
used to request signaling information transfer.  
AR10  
Activation request with priority 10 for D-channel transmission. This command is used to  
start a TE initiated activation. D-channel priority 10 is the lower priority. It should be used  
to request packet data transfer.  
ARL  
DI  
Activation request loop. The SBCX is requested to operate an analog loop-back close to  
the S/T-interface. ARL is an unconditional command.  
Deactivation indication. This command transfers the SBCX into “F3 power down” mode  
and disables the IOM-2 clocks.  
RES  
Reset of state machine. Transmission of Info 0. No reaction to incoming infos. RES is an  
unconditional command.  
All MAI pins are tristate during RST = 0 or when the SBCX is in the state “reset”, unless  
MAIM is programmed to 1. After reset four pins, MAI (3:0), are operated as input pins  
and four pins, MAI (7:4), as output pins (push/pull). The value after reset is 0.  
TIM  
Timing Request. Requests the SBCX to change into power-up state and provide timing  
signals on IOM-2.  
TM1  
Test Mode 1. Transmission of single pulses on the S/T-interface. The pulses are  
transmitted with alternating polarity at a frequency of 2 kHz. TM1 is an unconditional  
command.  
TM2  
Test Mode 2. Transmission of continuous pulses on the S/T-interface. The pulses are  
sent with alternating polarity at a rate of 96 kHz. TM2 is an unconditional command.  
Semiconductor Group  
132  
 
 
Technical Description  
4.3.1.2.2 Pin States  
Pin-RES Pin-Reset. Corresponds to a low level at pin RST. At power up, a reset pulse (RST low  
active) of minimum 1 µs should be applied to bring the SBCX to the state “reset”. After  
that the SBCX may be operated according to the state diagrams. In NT mode the DCL  
is needed during the hardware reset (RES = 0) for initialization. The devices working  
together with the SBCX in NT mode (i.e. IECs and IBC) automatically deliver the  
necessary clocks. The function of this pin is identical to the C/I code RES concerning the  
state machine.  
Pin-CON A low at this input disables the TE/LT-T activation capability by preventing INFO 1 to be  
sent. This pin is used in conjunction with power-controllers to control activation  
capability under emergency power conditions.  
4.3.1.2.3 S/T-Interface Events  
I0  
INFO 0 detected  
I0  
A signal different to INFO 0 was detected  
INFO 2 detected  
I2  
I4  
INFO 4 detected  
SLIP  
SLIP detected (applicable in LT-T mode only) IOM-2 interface framing and S/T-interface  
framing differences have exceeded the specified limit. It is likely that data will be lost to  
enable a resynchronization.  
4.3.1.3  
Transmitted Signals and Indications in TE/LT-T Modes  
The following signals and indications are issued on the IOM-2 and S/T-interface.  
Semiconductor Group  
133  
 
 
Technical Description  
4.3.1.3.1 C/I Indications  
Abbreviation Indication  
Remark  
DR  
Deactivate Request  
Deactivation request via S/T-interface  
Reset acknowledge  
RES  
TM1  
TM2  
SLIP  
Reset  
Test mode 1  
Test mode 2  
TM1 acknowledge  
TM2 acknowledge  
Slip detected  
(LT-T only)  
Wander is larger than 50 µs peak-to-peak (or 25 µs  
peak-to-peak if programmed, refer to the C/W/P-bit  
of the Configuration Register)  
RSY  
Resynchronization during Signal received, receiver not synchronous  
level detect  
MAIC  
MAI change  
Pin MAIn has changed  
DIS  
PU  
Disconnected  
Pin CON (pin MAI1) connected to GND  
IOM-2 interface clocking is provided  
Info 2 received  
Power up  
AR  
Activate request  
Activate request loop  
Far-end-code-violation  
ARL  
CVR  
Loop A closed  
After each multi-frame the receipt of at least one  
illegal code violation is indicated six times. This  
function must be enabled by setting the RCVE-bit in  
the configuration register.  
AIL  
AI8  
Activate indication loop  
Loop A activated  
Activate indication with  
priority class 8  
Info 4 received,  
D-channel priority is 8 or 9  
AI10  
DC  
Activate indication with  
priority class 10  
Info 4 received,  
D-channel priority is 10 or 11  
Deactivate confirmation  
Clocks will be disabled, (in TE),  
quiescent state  
4.3.1.3.2 S/T-Interface Signals  
I0  
I1  
I3  
It  
INFO 0  
INFO 1  
INFO 3  
Pseudo-ternary pulses at 2 kHz frequency (alternating, TM1)  
Pseudo-ternary pulses at 96 kHz frequency (alternating, TM2)  
Semiconductor Group  
134  
 
Technical Description  
4.3.1.4  
States TE/LT-T Mode  
F3 power down  
This is the deactivated state of the physical protocol. The received line awake unit is active. In TE  
mode, clocks are disabled.  
F3 power up  
This state is dependent of the logical level of CON (pin MAI1)  
CON = 1: This state is similar to “F3 power down”. The state is invoked by a C/I command  
TIM = “0000” (or DI static low). After the subsequent activation of the clocks the “Power  
Up” message is output.  
CON = 0: This state is similar to “F3 power down”. The state is invoked by a C/I command  
TIM = “0000” (or DI static low). After the subsequent activation of the clocks the  
“Disconnected” message is output.  
F3 pending deactivation  
The SBCX reaches this state after receiving INFO0 (from states F5 to F8) from F6 and F7 via F5/8.  
From this state an activation is only possible from the line (transition “F3 pend. deact.” to “F5  
unsynchronized”). The power down state may be reached only after receiving DI.  
F4 pending activation  
Activation has been requested from the terminal, INFO 1 is transmitted, INFO 0 is still received,  
“Power Up” is transmitted in the C/I channel. This state is stable: timer T3 (I.430) is to be  
implemented in software.  
F5/8 unsynchronized  
At the reception of any signal from the NT, the SBCX ceases to transmit INFO 1, adapts its receiver  
circuit, and awaits identification of INFO 2 or INFO 4. This state is also reached after the SBCX has  
lost synchronism in the states F6 or F7 respectively.  
F6 synchronized  
When the SBCX receives an activation signal (INFO 2), it responds with INFO 3 and waits for  
normal frames (INFO 4).  
F7 activated  
This is the normal active state with the layer 1 protocol activated in both directions. From state “F6  
synchronized”, state F7 is reached almost 0.5 ms after reception of INFO 4.  
Semiconductor Group  
135  
 
Technical Description  
F7 slip detected  
When a slip is detected between the S/T-interface clocking system and the IOM-2 interface clocks  
(phase wander greater than 50 µs, data may be disturbed, or 25 µs if programmed in the  
configuration register) the SBCX enters this state, synchronizing again the internal buffer. After  
0.5 ms this state is left again (only possible in LT-T mode).  
Unconditional States TE/LT-T Mode  
Loop A closed  
On Activate Request Loop command, INFO 3 is sent by the line transmitter internally to the line  
receiver (INFO0 is transmitted to the line). The receiver is not yet synchronized.  
Loop A activated  
The receiver is synchronized on INFO 3 which is looped back internally from the transmitter. Data  
may be sent. The indication “AIL” is output to indicate the activated state. When the S/T line awake  
detector, which is switched to the line, detects an incoming signal, this is indicated by “RSY”.  
Test mode 1  
Single alternating pulses are sent on the S/T-interface (2 kHz repetition rate)  
Test mode 2  
Continuous alternating pulses are sent on the S/T-interface (96 kHz)  
Reset state  
A hardware or software reset (RES) forces the SBCX to an idle state where the analog components  
are disabled (transmission of INFO0) and the S/T line awake detector is inactive. Thus activation  
from the NT is not possible. Clocks are still supplied and the outputs are in a low impedance state.  
4.3.2  
State Machine LT-S Mode  
Section 4.3.2 is applicable for LT-S mode.  
Semiconductor Group  
136  
 
Technical Description  
4.3.2.1  
LT-S Mode State Diagram  
RST  
TIM  
RES  
*
TIM  
DR  
TIM TMI4)  
DR  
DR  
Reset  
G4 Pend. Deact.  
Test Mode i  
it  
i0  
i0  
i0  
ARD1)  
ARD1)  
*
i0 or 32 ms  
RES  
DC  
DC  
TMI  
DI  
DR  
Any  
State  
Any  
State  
Wait for DR  
i0  
*
DC  
DR  
DI  
DC  
G1 Deactivated  
ARD1)  
i0  
i0  
i0  
DC  
ARD  
AR  
DR  
G2 Pend. Act.  
i2  
i3  
2)  
i3 or NT-STAR  
DC  
ARD  
AI  
DR  
G3 Activated  
i4  
i3  
OUT  
Ind.  
IN  
i3  
i3  
DC  
RSY3)  
Cmd.  
R
ARD  
IOM  
DR  
G2 Lost Framing  
State  
S/T  
i2 i3  
i x  
i r  
ITD04012  
Notes:  
1. ARD stands for AR or ARL  
2. NT star: transition from ‘G2 pend. act.’ to ‘G3 activated’ takes  
place when the first branch of the star is synchronized  
3. NT star: Transition from state ‘G3 activated’ to ‘G2 Lost  
Framing’ is disabled.  
4. TMI = TM1 or TM2  
Figure 68  
State Transition Diagram in LT-S Mode  
Semiconductor Group  
137  
 
Technical Description  
4.3.2.2  
LT-S Mode Transition Criteria  
The transition criteria used by the SBCX are described in the following sections. They are grouped  
into:  
– C/I commands  
– Pin states  
– Events on the S/T-interface.  
4.3.2.2.1 C/I Commands  
AR  
Activation Request. This command is used to start an exchange initiated activation.  
ARL  
Activation request loop. The SBCX is requested to operate an analog loop-back  
close to the S/T-interface.  
DC  
DR  
Deactivation Confirmation. Transfers the LT-S into a deactivated state in which it can  
be activated from a terminal (detection of INFO 0 enabled).  
Deactivation Request. Initiates a complete deactivation from the exchange side by  
transmitting INFO 0. Unconditional command.  
RES  
TM1  
Please refer to section 4.3.1.2.1 for details.  
Test Mode 1. Transmission of single pulses on the S/T-interface. The pulses are  
transmitted with alternating polarity at a frequency of 2 kHz. TM1 is a unconditional  
command.  
TM2  
Test Mode 2. Transmission of continuous pulses on the S/T-interface. The pulses  
are sent with alternating polarity at a rate of 96 kHz. TM2 is a unconditional  
command.  
4.3.2.2.2 Pin States  
Pin-RES  
Pin Reset. Please refer to section 4.3.1.2.2  
Pin-NT-STAR Device operates in NT-STAR mode. In this mode detection of INFO 3 is not essential  
in the state”G2 pend. act.” for a transfer to “G3 activated”. The transfer will be  
accomplished as soon as any one branch of the star is synchronized.  
NT-STAR set to LOW will disable the transition from “G3 activated” to  
“G2 Lost framing”. Therefore, C/I indication “AI” will stay even when i3 is lost.  
4.3.2.2.3 S/T-Interface Events  
I0  
I0  
I3  
I3  
INFO 0 detected  
Level detected (signal different to I0)  
INFO 3 detected  
Any INFO other than INFO 3  
Semiconductor Group  
138  
 
Technical Description  
4.3.2.3  
Transmitted Signals and Indications in LT-S Mode  
The following signals and indications are issued on the IOM-2 and S/T-interface.  
4.3.2.3.1 C/I Indications  
Abbreviation Indication (upstream)  
LT-S mode  
Remark  
TIM  
Timing  
Interim indication during deactivation procedure  
Receiver is not synchronous  
RSY  
MAIC  
Resynchronizing  
MAI change  
Pin MAIn has changed. MAI (3:0) pins summarized  
and monitored in one indication.  
AR  
Activate request  
INFO 0 received from terminal. Activation proceeds.  
CVR  
Far-end-code-violation  
After the receipt of at least one illegal code violation  
CVR is indicated six times. This function must be  
enabled by setting the RCVE-bit in the configuration  
register.  
AI  
DI  
Activate indication  
Synchronous receiver, i.e. activation completed.  
Deactivate indication  
Timer (32 ms) expired or INFO 0 received after  
deactivation request  
4.3.2.3.2 S/T-Interface Signals  
I0  
I2  
I4  
It  
INFO 0  
INFO 2  
INFO 4  
Pseudo ternary pulses at 2-kHz frequency (TM1).  
Pseudo ternary pulses at 96-kHz frequency (TM2).  
Semiconductor Group  
139  
 
Technical Description  
4.3.2.4  
States LT-S Mode  
G1 deactivated  
The SBCX is not transmitting. There is no signal detected on the S/T-interface, and no activation  
command is received in the C/I channel.  
G2 pending activation  
As a result of an INFO 0 detected on the S/T line or an ARD command, the SBCX begins  
transmitting INFO 2 and waits for reception of INFO 3. The timer to supervise reception of INFO 3  
is to be implemented in software. In case of an ARL command, loop 2 is closed.  
G3 activated  
Normal state where INFO 4 is transmitted to the S/T-interface. The SBCX remains in this state as  
long as neither a deactivation nor a test mode is requested, nor the receiver loses synchronism.  
When receiver synchronism is lost, INFO 2 is sent automatically. After reception of INFO 3, the  
transmitter keeps on sending INFO 4.  
G2 lost framing  
This state is reached when the SBCX has lost synchronism in the state G3 activated.  
G4 pending deactivation  
This state is triggered by a deactivation request DR. It is an unstable state: indication DI (state “G4  
wait for DR.”) is issued by the SBCX when:  
either INFO0 is received,  
or an internal timer of 32 ms expires.  
G4 wait for DR  
Final state after a deactivation request. The SBCX remains in this state until a response to DI (in  
other words DC) is issued.  
Test mode 1  
Single alternating pulses are sent on the S/T-interface (2-kHz repetition rate).  
Test mode 2  
Continuous alternating pulses are sent on the S/T-interface (96 kHz).  
4.3.3  
State Machine NT Mode  
Section 4.3.3 is applicable for NT mode.  
Semiconductor Group  
140  
 
 
Technical Description  
4.3.3.1  
NT Mode State Diagram  
RST  
TIM  
RES  
*
TIM  
DR  
TIM  
Test Mode i  
it  
TMI  
DR  
DR  
Reset  
G4 Pend. Deact.  
i0  
i0  
i0  
ARD1)  
ARD1)  
*
i0 or 32 ms  
RES  
DC  
DC  
TMI  
DI  
DR  
Any  
State  
Any  
State  
G4 Wait for DR  
i0  
*
DC  
DR  
DI  
DC  
G1 Deactivated  
ARD1)  
i0  
i0  
i0  
AR  
DC  
DR  
DR  
G1 i0 Detected  
i0  
*
ARD1)  
AR  
ARD  
G2 Pend. Act.  
i2  
i3  
OUT  
Ind.  
IN  
i3 or NT_STAR 3)  
AID  
ARD  
G2 Lost Framing  
i3 & ARD1)  
RSY  
IOM R  
S / T  
RSY  
AI  
ARD  
Cmd.  
DR  
4)  
G2 Wait for AID  
State  
S/T  
i3  
i2  
i3  
i2  
i3  
i x  
i r  
AID2)  
RSY  
DR  
AID2)  
1)  
ARD ,  
ARD1)  
RSY RSY  
AI  
AID  
i3 & AID2)  
RSY  
G3 Lost Framing  
U
G3 Activated 4)  
DR  
i2  
i4  
i3  
*
ITD04013  
Notes:  
1. ARD = AR or ARL  
2. AID = AI or AIL  
3. Transition takes place as soon as one branch of the star has detected INFO 3.  
4. With NT-STAR selected transfer to “G2 lost framing” state is not possible.  
Figure 69  
NT Mode State Diagram  
Semiconductor Group  
141  
Technical Description  
4.3.3.2  
NT Mode Transition Criteria  
The transition criteria used by the SBCX are described in the following sections. They are grouped  
into:  
– C/I commands  
– Pin states  
– Events or the S/T-interface.  
4.3.3.2.1 C/I Commands  
AR  
Activation Request. This command is used to start an exchange initiated activation.  
ARL  
Activation request loop. The SBCX is requested to operate an analog loop-back close to  
the S/T-interface.  
AI  
Activation Indication. Confirms that the U-interface is fully transparent, on D-channel  
data transfer is allowed.  
AIL  
DC  
Activation Indication loop.  
Deactivation Confirmation. Transfers the NT into a deactivated state in which it can be  
activated from a terminal (detection of INFO 0 enabled).  
DR  
Deactivation Request. Initiates a complete deactivation from the exchange side by  
transmitting INFO 0. Unconditional command.  
RES  
RSY  
Please refer to section 4.3.1.2.1 for details.  
Resynchronizing. The U-interface has not obtained or lost synchronization. INFO 2 is  
transmitted consequently by the SBCX.  
TM1  
TM2  
Test Mode 1. Transmission of single pulses on the S/T-interface. The pulses are  
transmitted with alternating polarity at a frequency of 2 kHz. TM1 is an unconditional  
command.  
Test Mode 2. Transmission of continuous pulses on the S/T-interface. The pulses are  
sent with alternating polarity at a rate of 96 kHz. TM2 is an unconditional command.  
Semiconductor Group  
142  
 
Technical Description  
4.3.3.2.2 Pin States  
Pin-RES Pin Reset. Please refer to section 4.3.1.2.2 for details.  
Pin-NT-STAR Device operates in NT-STAR mode. In this mode detection of INFO 3 is not essential  
for a transfer to “G2 wait for AI”. The transfer will be accomplished as soon as any  
one branch of the star is synchronized.  
A transfer from states “G2 wait for AI” and “G3 activated” to state “G2 lost framing” is  
not possible with NT-STAR pin set to low.  
Pin-TM1  
Pin-TM2  
Transfers the SBCX into the “Test mode i” state. Here a 2-kHz signal of alternating  
pulses is transmitted on the S/T-interface.  
Transfers the SBCX into “Test Mode i” state. Here a signal consisting of continuous  
binary ZEROs is sent at the rate of 96 kHz.  
4.3.3.2.3 S/T-Interface Events  
I0  
I0  
I3  
I3  
INFO 0 detected  
Level detected (any signal different to I0)  
INFO 3 detected  
Any INFO other than INFO 3.  
4.3.3.3  
Transmitted Signals and Indications in NT Mode  
The following signals and indications are issued on the IOM-2 and S/T-interface.  
4.3.3.3.1 C/I Indications  
Abbreviation Indication (upstream)  
NT Mode  
Remark  
TIM  
Timing  
S transceiver requires clock pulses  
Receiver is not synchronous  
Pin MAIn has changed  
RSY  
MAIC  
AR  
Resynchronizing  
MAI change  
Activate request  
Far-end-code-violation  
INFO 0 received  
CVR  
After each multi-frame the receipt of at least one  
illegal code violation is indicated six times. This  
function must be enabled by setting the RCVE-bit in  
the configuration register.  
AI  
DI  
Activate indication  
Synchronous receiver  
Deactivate indication  
Timer (32 ms) expired or INFO 0 received after  
deactivation request  
Semiconductor Group  
143  
 
Technical Description  
4.3.3.3.2 S/T-Interface Signals  
I0  
I2  
I4  
It  
INFO 0  
INFO 2  
INFO 4  
Pseudo ternary pulses at 2-kHz frequency (TM1).  
Pseudo ternary pulses at 96-kHz frequency (TM2).  
4.3.3.4  
States NT Mode  
G1 Deactivated  
The SBCX is not transmitting. No signal is detected on the S/T-interface, and no activation  
command is received in C/I channel. DI is output in the normal deactivated state, and TIM is output  
as a first step when an activation is requested from the S/T-interface.  
G1 I0 Detected  
An INFO 0 is detected on the S/T-interface, translated to an “Activation Request” indication in the  
C/I channel. The SBCX is waiting for an AR command, which normally indicates that the  
transmission line upstream (usually a two-wire U interface) is synchronized.  
G2 Pending Activation  
As a result of the ARD command, and INFO 2 is sent on the S/T-interface. INFO 3 is not yet  
received. In case of ARL command, loop 2 is closed.  
G2 wait for AID  
INFO 3 was received, INFO 2 continues to be transmitted while the SBCX waits for a “switch-  
through” command AID from the device upstream.  
G3 Activated  
INFO 4 is sent on the S/T-interface as a result of the “switch through” command AID: the B and  
D-channels are transparent. On the command AIL, loop 2 is closed.  
G2 Lost Framing S/T  
This state is reached when the SBCX has lost synchronism in the state G3 activated.  
G3 Lost Framing U  
On receiving an RSY command which usually indicates that synchronization has been lost on the  
two-wire U interface, the SBCX transmits INFO 2.  
Semiconductor Group  
144  
 
Technical Description  
G4 Pend. Deact.  
This state is triggered by a deactivation request DR, and is an unstable state. Indication DI (state  
“G4 wait for DR”) is issued by the SBCX when:  
either INFO0 is received  
or an internal timer of 32 ms expires.  
G4 wait for DR  
Final state after a deactivation request. The SBCX remains in this state until an “acknowledgment”  
to DI (DC) is issued.  
Test Mode 1  
Single alternating pulses are sent on the S/T-interface (2-kHz repetition rate).  
Test Mode 2  
Continuous alternating pulses are sent on the S/T-interface (96 kHz).  
Semiconductor Group  
145  
Technical Description  
4.4  
Reset  
4.4.1  
C/I Command RES  
Reset of the layer-1 state machine. SBCX is transmitting info 0 and does not react on received infos.  
RES is an unconditional command.  
4.4.2  
Hardware Reset RST  
All SBCX registers are set back to their initial values. At power up a reset pulse (RST = low active)  
of minimum 1 µs should be applied to bring SBCX to the state “reset” in the L1 state machine. After  
that the SBCX may be operated according to the state diagrams.  
In NT mode the DCL is needed during the hardware reset for initialization. The devices fitting to the  
SBCX in NT mode (i.e. IECs and IBC) deliver the necessary clocks automatically.  
All MAI pins are tristate during RST = 0 or when the SBCX is in the state ‘reset’, unless MAIM is  
programmed to 1. After reset MAI (3:0) are operated as input pins and MAI (7:4) as output pins  
(push/pull). The value after reset is 0.  
IDP0 and IDPI are tristate during RST = ‘0’.  
4.4.3  
Push/Pull Sensing  
After the hardware reset the SBCX senses in the monitor channel timeslot during the first two IOM  
frames, whether an external pull-up resistor is connected or not to pin IDP0. During this time of  
sensing it is necessary, that no other device connected to IDP0 sends informations in the monitor  
channel. As a result of the sensing procedure the pins IDP0, IDP1, X3 (if CEB) and MAI5 (if S/G) are  
either open drain outputs and therefore require the same pull-up resistor as pin IDP0 or push/pull  
outputs. Please note that the IOM-2 Interface Specification describes open drain data lines (IDP0  
and IDP1) with external pull-up resistors. However, if operation is logical point-to-point, tristate  
operation is possible as well for the data lines.  
4.4.4  
Initializing LT-T Mode  
If the ‘Mode’ pin is pin strapped to 1, after Hw-Reset the SBCX will start in LT-S mode. Until the  
SBCX is switched to LT-T mode by register setting, it may react to incoming signals on S0.  
Therefore the following sequence should be used:  
Hw-Reset  
Sw-Reset (write command ‘RES’ to C/I)  
release Hw-Reset  
program Configuration Register: MODE to 1 for LT-T Mode  
write command ‘TIM’ to C/I  
Semiconductor Group  
146  
 
Technical Description  
4.5  
Maintenance Functions  
The technical description of maintenance functions follows in the next sections. The sections “Test  
Modes” and “System Measurement” of chapter 3 have not been included as they contain primarily  
application information.  
4.5.1  
Test Loop-Backs  
4.5.1.1  
Complete Loop-Backs (No. 2, No. 3, and No. A)  
Function  
The analog loop may be closed in three different locations: in the NT1 (No. 2), the NT2 (No. 3) and  
the terminal or PBX (No. A). The loop is closed close to the S/T-interface. No external S/T-interface  
circuitry is required to close these loop-backs.  
Initialization  
Two alternatives are provided to close the complete loop-back.  
The first method makes use of the C/I command ARL. In TE and LT-T modes “ARL” is regarded as  
an unconditional command. It may therefore be issued independently of the current operational  
state. In NT and LT-S modes the “ARL” command is recognized in the states:  
– G4 pending deactivation  
– G4 wait for DR  
– G1 deactivated  
– G1 I0 detected (NT only)  
The command “ARL” has to be applied continuously while the loop-back is required.  
The second alternative to close the analog loop-back is to set the “SC” bit in the loop-back register.  
This option is only available in LT-S and NT mode when the device is fully activated (C/I = AI).  
Transparency  
The user may choose whether the complete loop-back data is to be put transparently onto the  
S/T-interface or not. The selection is performed with the “LP” bit in the configuration register.  
Semiconductor Group  
147  
 
Technical Description  
4.5.1.2  
Single Channel Loop-Backs (No. 4, No. B2, No. C)  
Function  
Partial loop-backs may be closed on the IOM-2 or the S/T-interface. Loop-backs No. B2 (NT2),  
No. C (NT1) and No. 4 (terminal and PBX) are closed on IOM-2 and loop-back the data from the  
S/T-interface.  
Initialization  
Partial loop-backs are entirely controlled by the loop-back register. Loop-backs are available for  
both B channels on the S/T and IOM-2 interface.  
By setting the corresponding bit in the loop-back register to ONE a loop-back is closed. IOM-2 loop-  
backs (IB1, IB2) may be closed in combination, i.e. IB1 = ONE and IB2 = ONE will close loop-backs  
for both B channels. Additionally the command IB12 allows to interchange the B1 and B2 channel.  
IB12 only works in conjunction with IB1 and IB2. S/T loop backs (SB1, SB2) can be closed in LT-S  
and NT mode.  
Single channel loop-backs can only be closed in the fully activated state.  
Transparency  
All single channel loop-backs are transparent.  
4.5.2  
Monitoring of Illegal Code Violations  
Function  
Any illegal code violations on the S/T bus result in the C/I Code “CVR” to be issued in 6 successive  
IOM-2 frames. This function is implemented according to ANSI T1.605. It is independent of  
multiframing.  
Initialization  
The detection of illegal code violations is enabled by setting bit “RCVE” in the configuration register  
to ONE.  
Semiconductor Group  
148  
 
Technical Description  
4.6  
Clock Generation and Clock Characteristics  
This section deals with clock generation requirements for slave and master modes and the  
characteristics of clock signals produced by the SBCX.  
The following requirements apply to all operational SBCX modes:  
Clock Requirements  
Master clock nominal frequency:  
Master clock overall tolerance:  
Master clock duty cycle:  
7.68 MHz  
± 100 ppm  
see figure 70  
The inputs are driven at 2.4 V for a logic “1” and 0.45 V for a logic “0”.  
The timing measurements are made at 3.5 V for a logic “1” and 0.8 V for a logic “0”.  
3.5 V  
0.8 V  
t WH  
t WL  
ITT00723  
t P  
Figure 70  
Dynamic Characteristics of Duty Cycle  
Table 25  
Duty Ratio  
Pin  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
XTAL1,  
XTAL2  
High phase of tWH  
crystal/clock  
35  
ns  
ns  
ns  
Low phase of tWL  
crystal/clock  
35  
Period of  
tP  
130.08  
130.34  
crystal/clock  
Crystal specification and recommendations regarding the oscillator circuit are presented in  
section 4.7.2.  
Semiconductor Group  
149  
 
 
Technical Description  
Propagation Delay  
The delay from the IOM-2 to the S/T-interface and vice versa is independent of the direction.  
Table 26  
Parameter  
Limit Values  
Unit  
Condition  
min.  
45  
typ.  
65  
max.  
90  
Signal delay S IOM  
Signal delay IOM S  
µs  
µs  
CL = 150 pF  
CL = 150 pF  
45  
65  
90  
The requirements for input jitter and the operation of the implemented transmit and receive PLLs are  
dependent on the operational SBCX modes. Details on these themes are described in the following  
sections.  
4.6.1  
NT and LT-S Mode  
4.6.1.1  
Transmit and Receive PLL  
The transmit PLL (XPLL) synchronizes a 192 kHz transmit bit clock to the IOM-2 clock FSC (8 kHz)  
derived from the oscillator clock.  
When the oscillator clock is synchronous to FSC (fixed divider ratio of 960) the XPLL will not perform  
any tracking after having locked the phase, i.e. the input jitter on clocks XTAL and FSC will not be  
increased.  
Alternatively, when a free running oscillator is used, XPLL tracking increases FSC jitter by 130 ns.  
This reduces the allowable input jitter of FSC to less than 130 ns peak-to-peak (see also following  
section “jitter”).  
– In a point-to-point or extended bus configuration the Receive PLL (RPLL) recovers bit timing  
from the detector´s output signal and provides a synchronous 1536-kHz clock (adaptive timing  
recovery from the receive data stream on the S-interface). Divided by eight this clock is used  
as 192-kHz receive data clock (PP).  
– In a passive bus configuration, a 192-kHz receive clock (MP) generated by the transmit PLL  
(XPLL) is used to sample the input data (fixed timing recovery).  
Semiconductor Group  
150  
 
Technical Description  
FSC  
DCL  
XPLL  
RPLL  
MP  
PP  
ITS03999  
Figure 71  
Clock System of the SBCX in NT and LT-S Mode  
4.6.1.2  
Jitter Requirements  
According to ITU I.430 the maximum jitter in an NT output sequence is 5 % of a bit period (260 ns).  
Two cases need to be distinguished for SBCX input jitter requirements:  
Crystal as clock source  
With a crystal as clock source the PLL works permanently to synchronize the master clock on to  
the FSC reference signal. Each tracking step produces 65 ns jitter so that a total of 130 ns “self-  
initiated” jitter results under ideal circumstances.  
To be below the specified limit the FSC input jitter should not exceed 100 ns (30 ns margin) in  
this configuration.  
Synchronized, external clock source  
In case an externally synchronized master clock is provided at pin XTAL1, the XPLL stops  
regulating once it has locked successfully. Therefore no “self-initiated” jitter is produced. All input  
jitter (FSC and master clock) is passed on transparently to the S/T-interface. The super imposed  
jitter of FSC and master clock may therefore not exceed 260 ns.  
Semiconductor Group  
151  
 
Technical Description  
4.6.2  
LT-T and TE Mode  
4.6.2.1  
Receive PLL in TE and LT-T Mode  
The Receive PLL (RPLL) recovers bit timing from the detector’s output signal and provides a  
synchronous 1536-kHz clock (adaptive timing recovery). Divided by eight this clock is used as  
192-kHz receive data clock and as transmit data clock (PP).  
The receive PLL performs PLL tracking each 250 µs after detecting the phase between the F/L  
transition of the receive signal and the covered clock. A phase adjustment is done by adding or  
subtracting 65 ns to or from a 1536-kHz clock cycle. The 1536-kHz clock is then used to generate  
any other clock synchronized to the line.  
PP  
RPLL  
DCL  
BCL  
FSC  
ITS04000  
Figure 72  
Receive PLL of the SBCX in TE Mode  
Slip  
Detector  
FSC  
DCL  
RPLL  
PP  
ITS04001  
CREF  
Figure 73  
Receive PLL of the SBCX in LT-T Mode  
Semiconductor Group  
152  
 
Technical Description  
4.7  
Elastic Buffers in LT-T Mode  
Elastic Buffer  
4.7.1  
In LT-T mode the SBCX provides a buffer designed as a wander-tolerant system. This is required  
because the SBCX is a slave to both interfaces and the data clocks of the two interfaces have a time  
dependent phase relationship. The SBCX enables intermediate storage of 3 x B1 octets,  
3 x B2 octets and 6 D-bits for phase difference and wander absorption. The elastic buffer of the  
SBCX compensates a maximum phase wander of 50 µs peak-to-peak and a slip detector indicates  
when this limit is exceeded. Setting the C/W/P-bit in the configuration register gives a warning when  
a slip of 25 µs is exceeded. An indication (Slip detected) is released in the C/I channel. Note that the  
C/I is only a warning, data has not been lost at this stage.  
4.7.1.1  
Jitter Requirements  
In TE and LT-T mode ITU I.430 specifies a maximum jitter in transmit direction of – 7 % to + 7 %.  
Because the zero reference is difficult to determine 14 % of bit period (peak to peak) are accepted  
(i.e. 730 ns).  
This specification will be met by the SBCX provided that the master clock source is accurate within  
100 ppm (dependent of crystal or external source).  
4.7.1.2  
Output Clock Characteristics  
In TE and LT-T mode various clock signals are supplied by the SBCX to facilitate system design.  
The following two tables specify these clock signals for TE and LT-T Mode.  
Table 27  
Clock Characteristics TE Mode  
Pin  
Parameter  
Symbol  
Limit Values  
Unit Condition  
min.  
520  
typ.  
651  
325  
325  
1302  
651  
651  
max.  
DCL  
Output: 1536 kHz  
Output: 1536 kHz  
Output: 1536 kHz  
Output: 768 kHz  
Output: 768 kHz  
Output: 768 kHz  
Output: 32 kHz  
Output: 32 kHz  
Output: 32 kHz  
tP  
782  
475  
350  
1450  
782  
782  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
osc ± 100 ppm  
tWH  
tWL  
tP  
175  
osc ± 100 ppm  
osc ± 100 ppm  
osc ± 100 ppm  
osc ± 100 ppm  
osc ± 100 ppm  
osc ± 100 ppm  
osc ± 100 ppm  
osc ± 100 ppm  
300  
X3  
1150  
520  
tWH  
tWL  
tP  
520  
X0 and  
C/W/P-  
bit = 0  
31.1  
15.4  
15.4  
31.25 31.4  
tWH  
tWL  
15.6  
15.6  
15.8  
15.8  
Semiconductor Group  
153  
 
Technical Description  
Table 27  
Clock Characteristics TE Mode (cont’d)  
Pin  
Parameter  
Symbol  
Limit Values  
Unit Condition  
min.  
62.3  
31.1  
31.1  
typ.  
max.  
62.7  
X0 and  
C/W/P-  
bit = ‘1’  
Output: 16 kHz  
Output: 16 kHz  
Output: 16 kHz  
tP  
62.5  
µs  
µs  
µs  
osc ± 100 ppm  
osc ± 100 ppm  
osc ± 100 ppm  
tWH  
tWL  
31.25 31.4  
31.25 31.4  
Duty Ratios  
Table 28  
TE Clock Signals (IOM -2 mode)  
Application  
DCL  
FSC  
X3  
TE  
o:1536 kHz1)  
1:1  
o:8 kHz1)  
1:2  
o:768 kHz1)  
1:1  
The 1536-kHz clock is phase-locked to the receive S signal and derived using the internal DPLL  
and the 7.68 MHz ± 100 ppm crystal.  
A phase tracking with respect to “S” is performed once in 250 µs. As a consequence of this  
DPLL tracking, the “high” state of the 1536-kHz clock may be either reduced or extended by one half  
7.68-MHz period once every 250 µs. Since the other signals are derived from this clock, the “high”  
or “low” states may likewise be reduced or extended by the same amount once every 250 µs.  
7.68 MHz  
*
1536 kHz  
768 kHz  
*
Synchronous to receive S/T. Duty Ratio 3 : 2 Normally  
ITD05427  
Figure 74  
Phase Relationships of TE Clock Signals  
Note: 1.536 and 768 kHz may also start with falling edge of 7.68 MHz clock due to the phase  
tracking mentioned above.  
1) Synchronous to receive “S” line  
Semiconductor Group  
154  
Technical Description  
Table 29  
Clock Characteristics LT-T Mode  
Pin  
Parameter  
Symbol  
Limit Values  
Unit Condition  
min.  
586  
306  
240  
typ.  
651  
391  
260  
max.  
X3  
Output: 1536 kHz  
Output: 1536 kHz  
Output: 1536 kHz  
tP  
716  
476  
281  
ns  
ns  
ns  
osc ± 100 ppm  
osc ± 100 ppm  
osc ± 100 ppm  
tWH  
tWL  
4.7.2  
Recommended Oscillator Circuit  
In all applications the user has the choice to supply the master clock by crystal or by an external  
source.  
In case a crystal (serial resonance) is connected it should meet the following requirements:  
Nominal frequency  
7.68 MHz  
Overall tolerance (crystal, capacitance…) 100 ppm  
Load capacitance  
20 pF ± 0.5 pF  
Resonance resistance  
Shunt capacitance  
60 Ω  
7 pF  
External load capacitance CL  
50 pF  
33 pF  
CL  
External  
Oscillator  
Signal  
19  
19  
18  
XTAL1  
XTAL2  
XTAL1  
XTAL 2  
7.68 MHz  
33 pF  
CL  
18  
N.C.  
Crystal Oscillator Mode  
Driving from External Source  
ITS00764  
Figure 75  
Recommended Oscillator Circuits  
Semiconductor Group  
155  
 
Technical Description  
4.8  
Analog Line Port  
The analog part of the SBCX consists of two major building blocks:  
– Receiver  
– Transmitter  
In addition external circuitry is required to connect both transmitter and receiver to the S/T-interface.  
The following three sections describe these functional blocks in detail.  
4.8.1  
Receiver Characteristics  
The receiver consists of a differential to single ended input stage, a peak detector and a set of  
comparators. Additional noise immunity is achieved by digital oversampling after the comparators.  
The following figure describes the functional blocks of the receiver.  
50 kΩ  
40 kΩ  
-
SR1  
SR2  
Level  
+
Detect  
40 kΩ  
Data High  
VREF1  
50 kΩ  
Peak  
Detector  
2.5 V  
Data Low  
VREF2  
ITS03994  
Figure 76  
Receiver Circuit  
The input stage works together with external 10 kresistors to match the input voltage to the  
internal thresholds. The data detection thresholds are chosen to 35 % of the peak voltage to  
increase the performance in extended passive bus configurations. However they never go below  
85 mV with respect to the line signal level. This guarantees a maximum line attenuation of at least  
13 dB in point-to-point configurations with a margin of more than 70 mVpp with respect to the  
specified 100 mVpp noise.  
Semiconductor Group  
156  
 
Technical Description  
Figure 77  
Receiver Thresholds  
The peak detector requires maximum 2 µs to reach the peak value while storing the peak level for  
at least 250 µs (RC > 1 ms).  
The additional level detector for power up/down control works with fixed thresholds at 100 mV. The  
level detector monitors the line input signals to detect whether an INFO is present. In TE and LT-T  
mode, when closing an analog loop, it is therefore possible to indicate an incoming signal during  
activated loop. In NT and LT-S analog loop-back mode the level detector monitors its own loop  
signal and an incoming signal is not recognized.  
Semiconductor Group  
157  
Technical Description  
4.8.2  
Transmitter Characteristics  
The transmitter stage consists of two identical current limited voltage sources, one for each polarity  
of output pulses. The voltage source guarantees the required output voltages on 50 and 400 Ω  
loads whereas the 5.6 load is current limited to maximum 13.4 mA. The opposite pin is always  
switched to ground. The rising and falling edges of the pulses on the 50 load is typically 300 ns.  
The following figure illustrates the transmitter stage.  
-
-
VREF  
VREF  
+
+
SX1  
SX2  
VSEN1  
SON2  
VSEN2  
SON1  
ITS03997  
Figure 78  
Transmitter Output Stage  
The dynamic transmitter characteristics are given by the control signals VSEN1,2 and SON1,2  
delivered to the output stage. Both the switch and the voltage source enable signals are simple  
binary signals with slightly different timing according to the following figure.  
Active  
Active  
VSEN1(2)  
260 ns  
5.2 µs  
Active  
Active  
SON1(2)  
ITD03998  
Figure 79  
Dynamic Transmitter Characteristics  
Semiconductor Group  
158  
 
Technical Description  
4.8.3  
S/T-Interface Circuitry  
In order to comply to the physical requirements of ITU recommendation I.430 and considering the  
national requirements concerning overvoltage protection and electromagnetic compatibility (EMC),  
the SBCX needs some additional circuitry.  
The transmitter of the SBCX is identical to that of both PEB 2080 S-Bus Interface Circuit (SBC) and  
PEB 2086 ISDN Subscriber Access Controller (ISAC -S), hence the line interface circuitry should  
be the same. The external resistors (20 … 40 ) are required in order to adjust the output voltage  
to the pulse mask (nominal 750 mV according to ITU I.430, to be tested with the command “TM1”)  
on the one hand and in order to meet the output impedance of minimum 20 (transmission of a  
binary zero according to ITU I.430, to be tested with the command “TM2”) on the other hand.  
:
20...40 Ω  
2 1  
SX1  
2,0...2,4  
V
S-Bus  
Connector  
Overvoltage  
Protection  
VDD  
GND  
SBCX  
20...40 Ω  
SX2  
DC Point  
ITS03732  
Figure 80  
External Circuitry Transmitter  
Semiconductor Group  
159  
 
Technical Description  
The receiver of the SBCX is symmetrical. 10 koverall resistance are recommended in each  
receive path. Although it is possible to place two single 10 kresistors either between transformer  
and diode circuit or between chip and diode circuit it is preferable to split the resistance into two  
resistors for each line. This allows to place a high resistance between the transformer and the diode  
protection circuit (required to pass 96 kHz input impedance test of ITU I.430). The remaining  
resistance (2 k) protects the SBCX itself from input current peaks. The following figure illustrates  
this recommendation.  
:
2 kΩ  
8 kΩ  
2 1  
SX1  
S-Interface  
Connector  
Overvoltage  
Protection  
VDD  
GND  
SBCX  
2 kΩ  
8 kΩ  
SX2  
DC Point  
ITS03733  
Figure 81  
External Circuitry Receiver  
Semiconductor Group  
160  
Technical Description  
4.8.3.1  
S/T-Interface Transformer  
The SBCX is connected to the S/T-interface by the use of a 2:1 transformer for the receiver and the  
transmitter respectively. The line side of the transformer should be centre tapped for the phantom  
power supply.  
The model parameters of the transformer are defined below (all measurements at 10 kHz):  
primary to secondary transformer ratio:  
primary total DC resistance:  
1:2 ± 1 %  
R 10 Ω  
primary inductance:  
primary inductance with secondary short circuited:  
primary capacitance with secondary open:  
LM > 20 mH  
LP < 20 µH  
C < 40 pF  
LP  
R
2 : 1  
C
LM  
Linie Side  
Ideal  
ITS04021  
Transformer  
Figure 82  
Transformer Model  
Semiconductor Group  
161  
 
Technical Description  
4.8.3.2  
Line Overload Protection (Transmitter, Receiver)  
In order to protect the SBCX from over-current pins SX1, SX2 and SR1, SR2 are equipped with  
internal protection circuits. The following figures indicate what limits may not be exceeded to avoid  
permanent damage to the analog port.  
These figures may be used to deduct requirements for external over voltage protection.  
The maximum input current (under overvoltage conditions) is given as a function of the width of a  
rectangular input current pulse as outlined in the following figure.  
Device under test  
Ι
Condition: All other pins grounded  
t
tWI  
ITS04532  
Figure 83  
Test Condition for Maximum Input Current  
Semiconductor Group  
162  
 
Technical Description  
4.8.4  
Transmitter Input Current  
The destruction limits for negative input signals (Ri 2 ) and for positive input signals (Ri 200 )  
are given in the following figure.  
Ι
A
50  
5
0.5  
0.05  
t
w1  
10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1  
1 s  
ITD02340  
Figure 84  
Destruction Limits Transmitter Input Current  
Semiconductor Group  
163  
 
Technical Description  
4.8.5  
Receiver Input Current  
The destruction limits (Ri 300 ) are given in the following figure.  
Ι
A
5
1
0.1  
0.01  
0.005  
t
w1  
10-10  
10-4  
10-1  
1
s
ITD02338  
Figure 85  
Destruction Limits Receiver Input Current  
Semiconductor Group  
164  
 
Electrical Characteristics  
5
Electrical Characteristics  
All characteristics given are valid under the following conditions unless otherwise indicated:  
TA = – 20 to 70 °C; VDD = 5 V ± 5 %; VSS = 0 V  
5.1  
Absolute Maximum Ratings  
Ambient temperature under bias  
Storage temperature  
Voltage on any pin with respect to ground  
Power dissipation  
– 20 to 70 °C  
– 65 to 125 °C  
– 0.4 to VDD + 0.4 V  
1 W  
Note:  
Stresses above those listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Thermal Contact Resistance  
Silicon-Case RTHK  
29.6 K/W  
Silicon-Environment RTHU  
P-DIP-28  
49 K/W  
60 K/W  
P-LCC-28-R  
11.5 K/W  
Semiconductor Group  
165  
 
Electrical Characteristics  
5.2  
Power Supply  
V
DD = 5 V ± 0.25 V  
The analog receiver part has a power supply rejection of better than – 40 dB up to 100 kHz as  
shown in the following figure. However, due to the digital oversampling technique the overall  
receiver characteristics exceed the given value beyond 200 kHz.  
ITD03996  
0 dB  
-10 dB  
-20 dB  
-30 dB  
-40 dB  
-50 dB  
1kHz  
10 kHz  
100 kHz  
1MHz  
10 MHz  
100 MHz  
Figure 86  
Power Supply Rejection SBCX Receiver  
5.3  
Capacitances  
TA = 25 °C; VDD = 5 V ± 5 %; VSS = 0 V; fC = 1 MHz  
Pin  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
max.  
All pins  
except SX1, 2  
Pin capacitance  
CIO  
COUT  
CL  
7
pF  
pF  
pF  
SX1, 2  
Output capacitance  
against VSS  
10  
50  
XTAL1, 2  
External load  
capacitance  
Semiconductor Group  
166  
 
Electrical Characteristics  
5.4  
DC Characteristics  
Parameter  
Pin  
Symbol Limit Values Unit Test Condition  
min.  
– 0.4  
2.0  
max.  
All pins  
except  
SX1, 2;  
SR1, 2;  
XTAL1, 2  
Input low voltage  
VIL  
VIH  
0.8  
V
V
Input high voltage  
VDD  
+ 0.4  
Output low voltage  
VOL  
0.45  
0.45  
V
IOL = 2 mA  
IOL = 7 mA  
IDP1, 0  
Output low voltage  
Output high voltage  
VOL1  
VOH  
V
V
V
All pins  
except  
SX1, 2;  
SR1, 2;  
XTAL1, 2  
2.4  
I
I
OH = – 400 µA  
OH = – 100 µA  
VDD  
– 0.5  
Input leakage current  
Output leakage current  
ILI  
1
1
µA 0 V VIN VDD  
µA 0 V VOUT VDD  
ILO  
VX  
SX1, SX2 Absolute value of  
output pulse amplitude  
(VSX2 VSX1)  
2.03  
2.10  
2.31  
2.39  
V
V
RL = 50 1)  
RL = 400 1)  
SX1, SX2 Transmitter output current  
IX  
7.5  
10  
13.4  
mA RL = 5.6 1)  
SX1, SX2 Transmitter output impedance ZX  
kinactive or during  
binary one  
(VDD = 0 … 5 V)  
0
during binary zero  
RL = 50 Ω  
SR1, SR2 Receiver input  
impedance  
ZR  
10  
100  
kΩ  
V
V
DD = 5 V  
DD = 0 V  
XTAL1  
Input high voltage  
VIH  
3.5  
VDD  
V
+ 0.4  
XTAL1  
XTAL2  
Input low voltage  
VIL  
– 0.4  
4.5  
1.5  
V
V
Output high voltage  
VOH  
I
OH = 5 µA,  
C 50 pF  
XTAL2  
Output low voltage  
VOL  
0.4  
V
I
OH = 5 µA,  
C 50 pF  
Note:  
1) Due to the transformers, the load resistance as seen by the circuit is four times RL  
Semiconductor Group  
167  
 
Electrical Characteristics  
5.5  
Power Consumption  
Parameter  
Limit Values  
typ.  
Comment  
min.  
max.  
50 chip load,  
60 mW  
Power-up  
inputs at VSS/VDD,  
50 % bin. ZEROs in B1 and B2 channel  
No output loads  
4 mW  
Power-down  
Worst-case  
0 chip load and INFO2 transmitted  
108 mW  
Note: For power consumption under emergency conditions please refer to corresponding  
application note.  
Semiconductor Group  
168  
 
Package Outlines  
6
Package Outlines  
P-DIP-28-3  
(Plastic Dual In-Line Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”  
Dimensions in mm  
Semiconductor Group  
169  
 
Package Outlines  
P-LCC-28-1  
(Plastic Leaded Chip Carrier Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
170  
7 Appendix  
Appendix  
The appendix comprises three sections:  
Appendix A contains a collection of Delta- and Errata Sheets published for the SBCX, PEB 2081.  
These allow the user to identify technical differences between the latest SBCX versions.  
Appendix B summarizes the requirements of external components and gives addresses of  
recommended suppliers.  
Appendix C is a Quick Reference Guide containing the most important information regarding the  
SBCX.  
Semiconductor Group  
172  
Appendix A  
7.1 Delta and Errata Sheets  
S/T Bus Interface Circuit Extended  
(SBCX)  
PEB 2081  
Delta Sheet  
CMOS  
Differences between PEB 2081 Version 3.4 and Version 3.3  
1. Programming the IOM®-2 channel register (address: 3H) with the value xxxx x1xx (DH = 1) in  
the LT-T mode has no influence on the indication.  
The indication in the state “activated” is always 1100 (AI).  
2. Enabling the far-end-code violation function (FECV) according to ANSI T1.605 (RCVE = 1 in  
configuration register; address = 1H) the detection of at least one code violation within  
multiframe is indicated by the occurrence of six times the CI code 1011 (CVR).  
Semiconductor Group  
174  
S/T Bus Interface Circuit Extended  
(SBCX)  
PEB 2081  
Errata Sheet for the Version 3.3  
1. Activation Indication  
CMOS  
After programming the IOM-2 Channel Register (address: 3H) with the value xxxx x1xx (DH = 1)  
in the LT-T Mode, the indication of the state “activated” may be 0100 (RSY) instead of 1100 (AI).  
Although the indication is wrong the device works correctly.  
2. Illegal Code Violation Indication  
After enabling the far-end code violation function (FECV) according to ANSI T1.605 (RCVE = 1  
in configuration register; address: 1H) the device indicates illegal code violation in the CI channel:  
1011 (CVR). The indication, once occurred, will only disappear when leaving the activated state.  
This function should not be programmed if using the versions 3.2 and 3.3.  
Semiconductor Group  
175  
S/T Bus Interface Circuit Extended  
(SBCX)  
PEB 2081  
Errata Sheet for the Version 3.4  
1. Statemachine Toggling  
CMOS  
Receiving INFOX in TE or LT-T mode the statemachine may toggle betweenstateF5/F8 and  
state F6 or between state F5/F8 and state F7. While toggling the device stays in F6 or F7 for one  
IOM frame only.  
2. NT Star Operation  
D-Channel handling in a star configuration (several SBCX in NT/LT-S mode, tied together at  
CEB and IOM) doesn’t work properly. Corrupted D-channel data may be sent in DU direction on  
IOM.  
Semiconductor Group  
176  
05.96  
Appendix B  
7.2 External Components Information  
Appendix  
Transformers and Crystals Vendor List  
Crystals:  
Transformers:  
Advanced Power Components (APC)  
47 Riverside  
Medway City Estate Strood  
County of Kent, GB  
Tel.: (044) 634-290 588  
Frischer Electronic  
Schleifmühlstraße 2  
D-91054 Erlangen, Germany  
Pulse Engineering  
P.O. Box 12235  
San Diego, CA 92112, USA  
Tel.: (619) 268-2454  
or  
KVG  
Waibstadter Straße 2-4  
D-74924 Neckarbischofsheim 2, Germany  
Tel.: (…7263) 648-0  
4, avenue du Quebéc  
F-91940 Les Ulis, France  
or  
Dunmore Road  
Tuam County Galway, Ireland  
Tel.: (093) 24107  
NDK  
2-21-1 Chome Nishihara Shibuya-Ku  
Tokyo 151, Japan  
Tel.: (03)-460-2111  
or  
Cupertino, CA, USA  
Tel.: (408) 255-0831  
S+M Components  
Balanstraße 73  
P.O. Box 801709  
Saronix  
D-81617 Munich, Germany  
Tel.: (…89) 4144-8041  
Fax.: (…89) 4144-8483  
4010 Transport at San Antonio  
Palo Alto, CA 94303, USA  
Tel.: (415) 856-6900  
or  
via Arthur Behrens KG  
Schrammelweg 3  
D-82544 Egling-Neufahrn, Germany  
Siemens Oostcamp  
Belgium  
Schott Corporation  
Suite 108  
1838 Elm Hill Pike, Nashville, TN 37210, USA  
Tel.: (615) 889-8800  
Tele Quarz  
Landstraße 13  
D-74924 Neckarbischofsheim 2, Germany  
TDK  
Christinenstraße 25  
D-40880 Ratingen 1, Germany  
Tel.: (…2192) 487-0  
Semiconductor Group  
178  
Appendix  
Universal Microelectronics  
Vacuumschmelze (VAC)  
Grüner Weg 37  
Postfach 2253  
D-63412 Hanau 1, Germany  
Tel.: (…6181) 380  
or  
186 Wood Avenue South  
Iselin, NJ OB830, USA  
Tel.: (908) 603 5905  
Valor  
Steinstraße 68  
D-81667 München, Germany  
Tel.: (…89) 480 2823  
Fax.: (…89) 484 743  
Vogt electronic AG  
Postfach 1001  
D-94128 Obernzell, Germany  
Tel.: (…8591) 17-0  
Fax.: (…8591) 17-240  
Semiconductor Group  
179  
Appendix  
List of Transformer Manufacturers and S0 Transformers  
The following list contains transformers recommended by different manufacturers for use  
with Siemens S0 transceivers.  
1)  
Transformers marked with have been tested in Siemens S evaluation boards and have  
shown positive test results concerning pulse shape and impedance requirements of  
ETS 300 012.  
This list is not completed, there may be other manufacturers as well as more types fitting  
to the SBCX.  
Manufacturers  
Transformers  
APC  
APC 2040 S  
APC 1020 S  
APC 3060 S  
APC 9018 D  
APC 3366 D  
Pulse Engineering  
1)  
PE-68975  
PE-64995  
PE-65495  
PE-65795  
PE-68995  
S + M Components  
1)  
B78384-A1060-A2  
B78384-P1111-A2  
Vacuumschmelze VAC  
1)  
1)  
1)  
T60403-L4025-X021  
T60403-L4097-X011  
T60403-L5051-X006  
T60403-L4021-X066  
T60403-L4025-X095  
T60403-L4097-X029  
T60403-L5032-X002  
VALOR  
VOGT  
PT 5001  
PT 5069  
ST 5069  
1)  
543 21 002 00  
543 21 004 00  
1)  
Semiconductor Group  
180  
Appendix C  
7.3 Quick Reference Guide  
Quick Reference Guide  
Modes of Operation  
Configuration  
LT-S  
NT  
LT-T  
TE  
Point-Point/Bus Point-Point/Bus  
Pin  
Mode  
X0  
1
0
1
0
i:TS0  
i:TS1  
i:TS2  
i/o:CEB  
i:0/i:1 1)  
i:TS0  
i:TS1  
i:TS2  
o:32/16kHz (1:1)  
X1  
i:0  
i:0  
i:0  
X2  
i:1  
X3  
i/o:CEB  
o:1536kHz (3:2)  
o:768kHz (1:1)  
MAI0  
MAI1  
MAI2  
MAI3  
MAI4  
MAI5  
MAI6  
MAI7  
i:NT-STAR  
i:MPR1  
i:NT-STAR  
i:MFD  
i:MPR0  
i:CON2)  
i:MPR2  
i:MPR3  
o:MPR4  
o:S/G  
i:MPR0  
i:CON3)  
i:MPR2  
i:TM1  
i:MPR2  
i:MPR3  
i:TM2  
i:MPR3  
o:MPR4  
o:MPR5  
o:MPR6  
o:MPR7  
o:MPR4  
o:MPR5  
o:MPR6  
o:MPR7  
o:MPR4  
o:S/G if SGE = 1  
o:MPR6  
o:MPR7  
o:MPR6  
o:MPR7  
FSC  
DCL  
i:8kHz  
i:8kHz  
i:8kHz  
o:8kHz (1:2)  
i:1536kHz (1:1)  
(cont’d)  
i:512-8192kHz  
i:512-8192kHz  
i:512-8192kHz  
i: input  
o: output  
i: 0 input fixed to VSS  
i: 1 input fixed to VDD  
Note:  
1) Choice for bus configuration (1 = bus). In LT-S mode only programmable. In NT mode programmable or pin strapping. Pin  
strapping has the higher priority.  
2) CON-pin functionality is enabled if DH = “1” in the IOM-2 Channel register in LT-T mode.  
3) CON-pin functionality is enabled if DH = “0” in the IOM-2 Channel register in TE mode.  
Semiconductor Group  
182  
Quick Reference Guide  
Modes of Operation (cont’d)  
Configuration  
Register  
LT-S  
NT  
LT-T  
TE  
Point-Point/Bus Point-Point/Bus  
Configuration  
Bit 0 (Mode) [0]  
0
0/17)  
0/11)  
0/1  
0
1
0/17)  
0/13)  
0
Configuration  
Bit 1 (C/W/P) [0]  
0/11)  
0/1  
0
0/12)  
0
Configuration  
Bit 5 (FSMM) [0]  
Configuration  
0
0
Bit 6 (MAIM) [0]  
SM/CI  
0
0
0
0
Bit 0 (MIO) [0]  
SM/CI  
Bit 2 (SGE) [0]  
0
0
0
0/18)  
0/17)  
IOM-2 Channel  
Bit 2 (DH) [0]  
0/15)  
0/15)  
0/16)  
Notes:  
1) Choice for bus configuration (1 = bus). In LT-S Mode only programmable. In NT mode programmable or pin  
strapping. Pin strapping has the higher priority.  
2) Slip warning control. C/W/P = 0 will issue C/I “Slip” code warning after 50 µs wander. C/W/P = 1 will issue  
the “Slip” code warning after 25 µs.  
3) PCK (pin X0) frequency select. C/W/P = 0 will issue a power converter clock frequency of 32 kHz, C/W/P = 1  
will issue 16 kHz.  
4) Select “1” for intelligent NT applications to ensure partial TIC Bus evaluation (see section 3.3.5.5).  
5) Select “1” for point-to-multipoint configurations to ensure D-channel collision resolution according to  
ITU I.430 (see section 2.1.7 and 3.3.5.4).  
6) For normal D-channel collision procedure program DH = “0”.  
7) 0: MAI pins I/O specific; 1: MAI pins only I/O.  
8) In TE Mode pin MAI5 outputs a D-channel enable signal, which may be used by a general purpose HDLC  
controller for LAP D handling. The signal contiuously monitors the D-E channel status and provides a stop/go  
information.  
[0] Initial register bit value after hard- or software reset.  
Semiconductor Group  
183  
Quick Reference Guide  
MON-8 Configuration Register – (Read/Write, Address: 1H)  
Format:  
MFD  
MAIM  
FSMM  
LP  
SQM  
RCVE  
C/W/P  
MODE  
Initial Value: 00H  
Bit-name Description  
MODE  
Pin MODE = VDD (LT-S, LT-T):  
0: LT-S mode selected  
1: LT-T mode selected  
C/W/P  
LT-S and NT mode: Configuration  
0: point-to-point or extended passive bus configuration (adaptive  
timing recovery). In NT mode the pin X0 (= BUS) must be low.  
1: short passive bus configuration (fixed timing recovery)  
in LT-T mode: Wander detection (warning in C/I, data may be lost!)  
0: “SLIP” after 50 µs wander  
1: “SLIP” after 25 µs wander  
in TE mode: Power converter clock frequency supplied at pin X0  
0: 32 kHz  
1: 16 kHz  
SQM  
RCVE  
LP  
SQ channel handling mode selection  
0: non-auto mode  
1: transparent mode  
only S1 and Q channels  
S1, S2 and Q channels  
0:  
1:  
normal operation  
Far-end-code-violation (FECV) function according to ANSI T1.605  
implemented.  
NT/LT-S mode:  
0: transparent analog loop  
1: non-transparent analog loop  
TE / LT-T mode:  
0: non-transparent analog loop  
1: external transparent loop  
FSMM  
MAIM  
MFD  
NT/LT-S mode:  
0:  
1:  
normal operation  
Finite state machine interchanged (LT-S NT)  
MAI pins mode:  
0: I/O-specific or standard I/O MAI interface  
1: µP interface mode for MAI interface  
Multi-frame disable (write):  
0: All multi-frame functions active. In NT mode the pin MAI1 (= MFD)  
must be low.  
1: Multi-frame generation (NT, LT-S) or synchronization (TE, LT-T)  
prohibited. No SQ monitor messages released.  
Multi-frame detected (read):  
0: No multi-frame synchronization achieved.  
1: Multi-frame synchronization achieved.  
Semiconductor Group  
184  
Quick Reference Guide  
MON-8 Loop-Back Register – (Read/Write, Address: 2H)  
Format:  
AST  
SB1  
SB2  
SC  
IB1  
IB2  
1
IB12  
Initial value: 02H  
Bit-name Description  
AST  
ASynchronous Timing  
In NT and LT-S mode; only NT state machine  
0:  
LT-S: command TIM in C/I  
NT: asynchronous wake up  
1:  
LT-S: asynchronous wake up (useful for the Intelligent NT)  
NT: command TIM in C/I  
SB1  
SB2  
SC  
Loop-back B1 channel at S/T-interface in NT/LT-S mode  
Loop-back B2 channel at S/T-interface in NT/LT-S mode  
Loop-back complete (2B + D) at S/T-interface in NT/LT-S mode  
Loop-back B1 channel at IOM-2 interface  
IB1  
IB2  
Loop-back B2 channel at IOM-2 interface  
IB12  
Loop-back B1 into B2 channel and vice versa at IOM-2 interface. Additionally IB1  
and/or IB2 must be set.  
Semiconductor Group  
185  
Quick Reference Guide  
MON-8 IOM -2-Channel Register - (Read/Write, Address: 3H)  
Format:  
B1L  
B1D  
B2L  
B2D  
DL  
DH  
CIL  
CIH  
Initial value: 00H  
Bit-name Description  
B1L  
B2L  
DL  
B1 channel location  
0: normal 1)  
1: B1 channel in IOM-2 channel 0  
B2 channel location  
0: normal 1)  
1: B2 channel in IOM-2 channel 0  
D-channel location  
0: normal 1)  
1: D-channel in IOM-2 channel 0  
CIL  
B1D  
B2D  
DH  
CI channel location  
0: normal 1)  
1: in IOM-2 channel 0  
B1 channel direction  
0: normal (IDP0 is data output, IDP1 is data input)  
1: IDP0 and IDP1 interchanged for B1 channel  
B2 channel direction  
0: normal (IDP0 is data output, IDP1 is data input)  
1: IDP0 and IDP1 interchanged for B2 channel  
D-channel handling  
0: LT-S, LT-T and NT mode: transparent  
TE mode: Collision detection according to ITU I.430  
1: NT and LT-S mode: D-channel access control  
TE mode: transparent D-channel  
LT-T mode: D-channel collision resolution according to ITU I.430  
CIH  
CI channel handling  
0: normal C/I access in the pin strapped IOM-2 channel  
1: disabled, access to C/I is only possible via the SM/CI register  
Notes:  
1)  
In LT-S and LT-T mode: pin strapped IOM-2 channel  
In NT and TE mode: IOM-2 channel 0  
Semiconductor Group  
186  
Quick Reference Guide  
MON-8 SM/CI Register – (Read/Write, Address: 4H)  
Format:  
CI3  
CI2  
CI1  
CI0  
TOD  
SGE  
0
MIO  
Initial value: CI, 0H  
Bit-name  
Description  
CI (3:0)  
CI channel  
When CIH-bit is set to one the commands are input in the monitor channel CI (3:0).  
The indication can always be read via monitor channel CI (3:0).  
TOD  
SGE  
MIO  
Time-Out Disable  
0:  
1:  
monitor timeout (minimum 5 ms) enabled  
monitor timeout disabled  
Stop / Go Enable  
0:  
1:  
normal  
In TE mode pin MAI5 outputs S/G  
Maintenance Input Output (MAIM = 0)  
0:  
1:  
I/O-specific functions on MAI interface  
Standard I/O functions on MAI interface  
Semiconductor Group  
187  
Quick Reference Guide  
MON-8 MAI Pin Register - (Read/Write, Address: 5H)  
Format:  
MPR7  
MPR6  
MPR5  
MPR4  
MPR3  
MPR2  
MPR1  
MPR0  
Initial value: 00H  
Bit-name  
Description  
MPR (7:0)  
access to MAI(7:0) pins if MAI interface in standard I/O or I/O specific function  
mode  
In case the µP interface was selected as the MAI interface mode (MAIM = 1) the MAI pin register is  
defined as follows (only “write to register” operation will be accepted).  
Format:  
WR  
RD  
A1  
A0  
INT  
D2  
D1  
D0  
(write only)  
Bit-name  
Description  
D0 … D2  
(MAI0:2)  
Data pin (input/output)  
INT  
(MAI3)  
Interrupt (input), Read request control:  
0: Single Address read operation  
1: Complete Address (0 … 3) read operation  
A0 … A1  
(MAI4:5)  
Address pins (output)  
RD  
Read signal (output)  
(MAI6)  
0: Read operation  
1: Write operation (if WR = 0)  
WR  
(MAI7)  
Write Signal (output)  
0: Write operation  
1: Read operation (if RD = 0)  
Semiconductor Group  
188  
Quick Reference Guide  
TE/LT-T Modes State Diagram  
DC  
DI  
TMI TMI 5)  
DI  
F3 Power Down  
Test Mode i  
TIM  
TIM  
i0  
i0  
it  
*
ARp & CON i0  
3)  
PU  
DIS  
TMI  
DI  
DI  
PU ARp  
TIM  
TIM  
Any  
State  
F4 Pend. Act.  
F3 Power Up  
i0 i0  
ARp & CON  
i1  
i0  
i0  
i0  
2)  
RSY  
X
i4  
F5/8 Unsynchron  
i0  
i1  
i0  
2)  
X
i2  
DI  
TIM  
1)  
Reset/Loop  
2)  
i2 & i4  
AR  
X
F6 Synchronized  
i3 i2  
RST  
RES + ARL  
Any  
State  
i4  
i2  
DI  
4)  
2)  
i2 & i4  
i0  
AIp  
F7 Activated  
i3 i4  
X
DR  
AR  
TIM  
F3 Pend. Deact.  
i0 i0  
TIM  
Ind.  
IN  
Slip  
0.5 ms  
2)  
i2 & i4  
R
SLIP  
F7 Slip Detected  
i3 i4  
X
Cmd.  
i r  
IOM  
i2  
State  
S/T  
i x  
ITD04010  
Notes:  
1. See state diagram for unconditional transitions for details  
2. x = TM1 or TM 2 or RES or ARL  
x = TM1 & TM2 & RES & ARL  
3. ARP = AR8 or AR10  
4. AIP = AI8 or AI10  
5. TMI = TM1 or TM2  
Figure 87  
State Transition Diagram in TE/LT-T Modes  
Semiconductor Group  
189  
Quick Reference Guide  
LT-S Mode State Diagram  
RST  
TIM  
RES  
TIM  
DR  
TIM TMI4)  
DR  
DR  
Reset  
G4 Pend. Deact.  
Test Mode i  
i0  
i0  
i0  
it  
*
*
ARD1)  
ARD1)  
i0 or 32 ms  
RES  
DC  
DC  
TMI  
DI  
DR  
Any  
State  
Any  
State  
Wait for DR  
i0  
*
DC  
DR  
DI  
DC  
G1 Deactivated  
ARD1)  
i0  
i0  
i0  
DC  
ARD  
AR  
DR  
G2 Pend. Act.  
i2  
i3  
2)  
i3 or NT-STAR  
DC  
ARD  
AI  
DR  
G3 Activated  
i4  
i3  
OUT  
Ind.  
IN  
i3  
i3  
DC  
RSY3)  
Cmd.  
R
ARD  
IOM  
DR  
G2 Lost Framing  
i2 i3  
State  
S/T  
i x  
i r  
ITD04012  
Notes:  
1. ARD stands for AR or ARL  
2. NT star: transition from ‘G2 pend. act.’ to ‘G3 activated’  
takes place when the first branch of the star is  
synchronized  
3. NT star: transition from state ‘G3 activated’ to ‘G2 Lost  
framing’ is disabled.  
4. TMI = TM1 or TM2  
Figure 88  
State Diagram of the LT-S Mode  
Semiconductor Group  
190  
Quick Reference Guide  
NT Mode State Diagram  
RST  
TIM  
RES  
*
TIM  
DR  
TIM  
Test Mode i  
it  
TMI  
DR  
DR  
Reset  
G4 Pend. Deact.  
i0  
i0  
i0  
ARD1)  
ARD1)  
*
i0 or 32 ms  
RES  
DC  
DC  
TMI  
DI  
DR  
Any  
State  
Any  
State  
G4 Wait for DR  
i0  
*
DC  
DR  
DI  
DC  
G1 Deactivated  
ARD1)  
i0  
i0  
i0  
AR  
DC  
DR  
DR  
G1 i0 Detected  
i0  
*
ARD1)  
AR  
ARD  
G2 Pend. Act.  
i2  
i3  
OUT  
Ind.  
IN  
i3 or NT_STAR 3)  
AID  
ARD  
G2 Lost Framing  
i3 & ARD1)  
RSY  
IOM R  
S / T  
RSY  
AI  
ARD  
Cmd.  
DR  
4)  
G2 Wait for AID  
State  
S/T  
i3  
i2  
i3  
i2  
i3  
i x  
i r  
AID2)  
RSY  
DR  
AID2)  
1)  
ARD ,  
ARD1)  
RSY RSY  
AI  
AID  
i3 & AID2)  
RSY  
G3 Lost Framing  
U
G3 Activated 4)  
DR  
i2  
i4  
i3  
*
ITD04013  
Notes:  
1. ARD = AR or ARL  
2. AID = AI or AIL  
3. Transition takes place as soon as one branch of the star has detected INFO  
4. With NT-STAR selected transfer to “G2 lost framing” state is not possible  
Figure 89  
NT Mode State Diagram  
Semiconductor Group  
191  
Quick Reference Guide  
C/I Codes  
Code  
LT-S  
OUT  
NT  
OUT  
TE/LT-T  
IN  
IN  
IN  
OUT  
DR  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
DR  
TIM  
DR  
TIM  
TIM  
RES  
TM1  
TM2  
RES  
TM1  
TM2  
RES  
TM1  
TM2  
RES  
TM1  
TM2  
SLIP1)  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
RSY  
MAIC  
RSY  
RSY  
MAIC  
RSY  
MAIC/DIS  
PU  
AR  
AR  
AR  
AR  
AR8  
AR10  
ARL  
AR  
ARL  
ARL  
ARL  
CVR  
AI8  
CVR  
AI  
CVR  
AI  
AI  
AI10  
AIL  
AIL  
DC  
DC  
DI  
DI  
DI  
DC  
1) In LT-T mode only  
Semiconductor Group  
192  

相关型号:

PEB2081PV3.4

Digital SLIC, 1-Func, PDIP28,
INFINEON

PEB2084

Quadruple Transceiver for S/T Interface QUAT-S
INFINEON

PEB2084H

Quadruple Transceiver for S/T Interface QUAT-S
INFINEON

PEB2085

ISDN SubscribernAccess Controller
INFINEON

PEB2085-N

ISDN Line Interface
ETC

PEB2085-P

ISDN Line Interface
ETC

PEB2085A-2N

Digital Transmission Interface, Basic, CMOS, PQCC44,
INFINEON

PEB2085B1N

Digital Transmission Interface, Basic, CMOS, PQCC44,
INFINEON

PEB2085B1P

Digital Transmission Interface, Basic, CMOS, PDIP40
INFINEON

PEB2085C

ISDN Line Interface
ETC

PEB2085N

ISDN Controller, Basic, 1-Func, CMOS, PQCC44, PLASTIC, LCC-44
INFINEON

PEB2085P

ISDN Controller, Basic, 1-Func, CMOS, PDIP40, PLASTIC, DIP-40
INFINEON