PSB4595 [INFINEON]

Analog Line Interface Solution ALIS; 模拟用户线接口方案ALIS
PSB4595
型号: PSB4595
厂家: Infineon    Infineon
描述:

Analog Line Interface Solution ALIS
模拟用户线接口方案ALIS

电信集成电路 电信电路 光电二极管 信息通信管理
文件: 总104页 (文件大小:853K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Communications  
Analog Line Interface Solution  
ALIS  
PSB 4595 Version 2.1  
PSB 4596 Version 2.1  
Data Sheet 06.98  
DS 1  
ALIS  
Revision History:  
Current Version: 06.98  
Previous Version:  
Page  
Page  
Subjects (major changes since last revision)  
(in previous (in new  
Version)  
Version)  
Edition 06.98  
This edition was realized using the software system FrameMaker .  
Published by Siemens AG,  
HL AT  
© Siemens AG 1998.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for  
applications, processes and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or  
the Siemens Companies and Representatives worldwide (see address list).  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Siemens Office, Semiconductor Group.  
Siemens AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales  
office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice  
you for any costs incurred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or  
systems2 with the express written approval of the Semiconductor Group of Siemens AG.  
1 A critical component is a component used in a life-support device or system whose failure can reasonably be  
expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that  
device or system.  
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or  
maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endan-  
gered.  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Table of Contents  
Page  
1
1.1  
1.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2
Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Pin Definition of ALIS-A PSB 4595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Pin Definition of ALIS-D PSB 4596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.1  
2.2  
2.3  
3
System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
ALIS with DSP-based Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
ALIS with Software Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Hybrid Modem (ISDN plus Analog) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Modem with Speakerphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Analog Videophone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.1  
3.2  
3.3  
3.4  
3.5  
4
4.1  
4.2  
ALIS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
ALIS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
ALIS AC Signal Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Receive Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
ALIS Ring and Caller ID Signal Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . .23  
Caller ID (CID) Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Ring-Level Metering (RLM) Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.3.1 Test Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.2.3  
Configuration Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Connection to the Telephone Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
The µ-Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
The Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Interface Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5.2.3.1 Demux Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5.2.3.2 Multiplex Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.3  
Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Crystal clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Capacitor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Caller ID Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.3.1  
5.3.2  
5.4  
5.5  
6
Programming ALIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Semiconductor Group  
3
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Table of Contents  
Page  
6.1  
6.1.1  
6.2  
Types of Commands and Data Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Storage of Programming Information: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
SOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
CR0 Configuration Register 0 (Filters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
CR1 Configuration Register 1 (Dialing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
CR2 Configuration Register 2 (Caller ID) . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
CR3 Configuration Register 3 (Test Loops) . . . . . . . . . . . . . . . . . . . . . . . . . .42  
CR4 Configuration Register 4 (Analog Gain) . . . . . . . . . . . . . . . . . . . . . . . . .43  
CR5 Configuration Register 5 (Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
XOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
XR0 Extended Register 0 (Interrupt Register) . . . . . . . . . . . . . . . . . . . . . . . .44  
XR1 Extended Register 1 (Interrupt Enable Register) . . . . . . . . . . . . . . . . . .46  
XR2 Extended Register 2 (Cadence Time Out) . . . . . . . . . . . . . . . . . . . . . . .47  
XR3 Extended Register 3 (DC Characteristic) . . . . . . . . . . . . . . . . . . . . . . . .47  
XR4 Extended Register 4 (Cadence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
XR5 Extended Register 5 (Ring Timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
XR6 Extended Register 6 (Power State) . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
XR7 Extended Register 7 (Vdd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
COP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
CAO Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
CR Registers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
XR Registers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.4  
6.5  
6.6  
6.6.1  
6.6.2  
7
7.1  
ALIS Command Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
SOP Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
SOP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
SOP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
XOP Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
XOP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
XOP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
COP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
COP - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
COP - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
CAO Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
CAO - Write Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
CAO - Read Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Example of a Mixed Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
7.1.1  
7.1.2  
7.2  
7.2.1  
7.2.2  
7.3  
7.3.1  
7.3.2  
7.4  
7.4.1  
7.4.2  
7.5  
8
8.1  
8.1.1  
8.1.2  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Nature and Sources of Interrupts: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Interrupt Indication at Signal Change: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Interrupt Indication at Event: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Semiconductor Group  
4
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Table of Contents  
Page  
8.1.3  
Interrupt Indication at High Level: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
9
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Reset (Basic Settings Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Deep Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Ringing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Conversation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Pulse Dialing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Operating Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Flow of Ring Sequence and Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Successful Ring Sequence, Auto Ring Enabled, no Caller ID . . . . . . . . . . . .67  
Successful Ring Sequence, Auto Ring Enabled, Caller ID . . . . . . . . . . . . . .68  
Unsuccessful Ring Sequence, Auto Ring Enabled, no Caller ID . . . . . . . . . .69  
Unsuccessful Ring Sequence, Auto Ring Enabled, Caller ID . . . . . . . . . . . .70  
Successful Ring Sequence, Auto Ring Disabled, No Caller ID . . . . . . . . . . .71  
Successful Ring Sequence, Auto Ring Disabled, Caller ID . . . . . . . . . . . . . .72  
Unsuccessful Ring Sequence, Auto Ring Disabled, no Caller ID . . . . . . . . .73  
Unsuccessful Ring Sequence, Auto Ring Disabled, Caller ID . . . . . . . . . . . .74  
Unsuccessful Ring Sequence, Auto Ring Enabled . . . . . . . . . . . . . . . . . . . .75  
9.8  
9.8.1  
9.8.2  
9.8.3  
9.8.4  
9.8.5  
9.8.6  
9.8.7  
9.8.8  
9.8.9  
9.8.10 Unsuccessful Ring Sequence, Auto Ring Disabled . . . . . . . . . . . . . . . . . . . .76  
9.8.11 Start from Deep Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
10  
10.1  
10.2  
Modem Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Pulse Dialing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
DTMF Dialing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
10.2.1 Programming the ALIS DTMF Tone Generators . . . . . . . . . . . . . . . . . . . . . .78  
10.3 Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
10.3.1 Characteristics for Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
10.3.2 Storage and Reading of Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
10.3.3 Programming the ALIS Caller ID Coefficients . . . . . . . . . . . . . . . . . . . . . . . .81  
10.4  
10.5  
Billing Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Ring Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
10.5.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
10.5.2 Programming the ALIS Ring Detect Coefficients . . . . . . . . . . . . . . . . . . . . . .82  
10.5.3 Ring Threshold in Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
11  
11.1  
11.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Programmable Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
11.2.1 DC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
11.2.2 Programming Ranges for DC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
11.2.3 Input Current in Puls Dialing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
11.3  
AC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Semiconductor Group  
5
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Table of Contents  
Page  
11.3.1 Ringer Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
11.4 ALIS Caller ID Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
11.4.1 Ring Detect Levels and Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
11.5  
ALIS Cap Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
12  
Electrical Performance Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
12.1  
12.2  
12.3  
12.3.1 ALIS-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
12.3.2 ALIS-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
12.4  
AC Transmission Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
12.4.1 Absolute Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
12.4.2 Gain Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
12.4.3 Harmonic Distortion plus Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
12.4.4 Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
12.4.5 Return Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
12.4.6 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
12.4.6.1 Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
12.4.6.2 Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
12.4.7 Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
12.4.7.1 Group Delay Absolute Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
12.4.7.2 Group Delay Distortion Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
12.4.7.3 Group Delay Distortion Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
12.4.8 Out-of-Band Signals at TIP/RING Receive . . . . . . . . . . . . . . . . . . . . . . . . . .98  
12.4.9 Out-of-Band Signals at TIP/RING Transmit . . . . . . . . . . . . . . . . . . . . . . . . . .99  
12.4.10 Trans-hybrid Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
12.5  
AC Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
12.5.1 Input/ Output Waveform for AC Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
12.5.2 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
12.5.3 Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
12.5.4 Data Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
12.5.5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Semiconductor Group  
6
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Overview  
1
Overview  
The PSB 4595 and PSB 4596 two-chip solution forms the complete front end of a modem  
or fax machine. This Analog Line Interface Solution (ALIS) consists of a DAA, a codec  
and a hybrid circuit, and bridges the gap between the phone line and the data pump. The  
analog PSB 4595 is manufactured in low-power BiCMOS technology and the digital PSB  
4596 in CMOS technology. The ALIS concept is a fully programmable modem front end  
which allows a single design for the worldwide market:  
• Adaptation to specific countries and applications is achieved by downloading  
appropriate coefficient sets.  
• Isolation is achieved by a digital capacitor interface, without a transformer; making the  
ALIS particularly suitable for designing PCMCIA modems.  
• Thanks to an advanced digital-filter concept in combination with the programmable  
electronic DAA, ALIS provides both excellent transmission performance and high  
adaptability. This second-generation digital filter concept also allows maximum  
autonomy between the various filter blocks. This performance makes ALIS suitable for  
V.34+ and V.90 modem applications.  
A minimum number of external components is required to complete the functional range  
of ALIS. Its internal precision is based on a very accurate band-gap reference. The  
frequency behavior is determined largely by digital filters which exhibit no fluctuations.  
As a result of the ADC and DAC concepts, its linearity is limited only by second-order  
parasitic effects.  
The ALIS chip set can be easily adapted and connected to various modem data pumps  
or to host-based modem solutions. The flexible digital interface of ALIS allows easy  
programming via the modem data pump or a controller.  
Siemens offers a range of reference and evaluation tools for the ALIS chip set. For  
appropriate tools, please contact your nearest Siemens representative.  
Semiconductor Group  
7
Data Sheet 06.98  
PSB 4595  
PSB 4596  
Analog Line Interface Solution  
ALIS  
CMOS  
1.1  
Features  
• ALIS substitutes data access arrangement (DAA),  
codec and hybrid  
• Ring detection: level, frequency and cadence  
• Caller ID: detection, decoding and storage  
• Programmable to different country requirements  
• Programmable DC characteristics  
• ALIS supports V.34+ and V.90  
P-TSSOP24  
• ALIS complies with ETS 300 001 and FCC  
requirements  
• Isolation by digital capacitor interface  
• Analog part powered from the tip/ring line by an  
integrated voltage regulator  
• High performance analog-to-digital and digital-to-  
analog conversion  
• DSP-based solution for adapting the transmission  
behavior, especially for  
- AC impedance matching  
- trans-hybrid balancing  
- frequency response  
P-SSOP28  
- gain  
• Advanced test capabilities:  
- digital loops  
- analog loops  
• High-pass filter in receive path to suppress line interference (50/60 Hz)  
• Isolated control pins for general purpose use  
• Advanced low-power 0.8µm analog BICMOS technology for ALIS analog and 0.8µm  
CMOS technology for ALIS digital  
• Two-chip solution: the P-TSSOP24 and P-SSOP28 packages are PCMCIA-compliant  
Type  
Ordering Code  
Package  
PSB 4595 V2.1  
PSB 4596 V2.1  
P-TSSOP24  
P-SSOP28  
Semiconductor Group  
8
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
1.2  
Logic Symbol  
Isolation  
MCLK RESET  
Vdd Vss  
Data  
Interface  
Cap  
Interface  
ALIS-A  
ALIS-D  
µC  
Interface  
SO  
SI  
SO  
Caller ID  
Interface  
TIP/RING  
Figure 1 Logic Symbol of the ALIS Chipset  
Semiconductor Group  
9
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Pin Definition and Functions  
2
Pin Definition and Functions  
Pin Configuration  
2.1  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
CAP1  
CAP2  
VREF  
GNDA  
T1G  
VDDA  
VDD_SENS  
NC  
T2G  
SI_0  
SI_1  
TEST  
2
3
4
TIP  
TIP_AC  
RING  
5
6
7
RING_AC  
SO_0  
SO_1Q  
CAP_B22  
CAP_B21  
CAP_A22  
8
9
10  
11  
12  
CAP_C21  
CAP_C22  
CAP_A21  
Figure 2 Pin Configuration of ALIS-A (Top View)  
CAP_A12  
CAP_B11  
CAP_B12  
ID_Ain  
1
28  
27  
26  
25  
CAP_A11  
CAP_C12  
CAP_C11  
VDDA  
2
3
4
5
GNDA  
Afeedback  
ID_Bin  
Bfeedback  
VDD  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
6
RESET  
SO  
7
8
MCLK1  
MCLK2  
MODE  
9
GND  
10  
11  
12  
13  
14  
CS  
DAT_CLK  
DAT_IN/SEL  
DAT_OUT  
FSC  
DCLK  
DIN  
DOUT  
INT  
Figure 3 Pin Configuration of ALIS-D (Top View)  
Semiconductor Group  
10  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Pin Definition and Functions  
2.2  
Pin Definition of ALIS-A PSB 4595  
Pin No.  
22  
Symbol  
VDDA  
Function  
Power  
Descriptions  
Programmable supply for the circuitry  
24  
GNDA  
Power  
Analog ground: All signals are referred to  
this pin  
4
TIP  
I
TIP AC+DC sense input  
TIP AC sense input  
5
TIP_AC  
RING  
I
6
I
RING AC+DC sense input  
RING AC sense input  
7
RING_AC  
T1G  
I
23  
O
Gate for external transistor T1 (AC/DC  
control)  
19  
T2G  
O
Gate for external transistor T2 (VDDA  
control)  
21  
3
VDD_SENS I  
VDDA sense input  
VREF  
I/O  
Reference voltage: Must be connected to  
GNDA via an external capacitor of more  
than 10 nF (typ. 15 nF)  
1
CAP1  
I/O  
Pin for external capacitor of more than 1  
µF for DC filtering to pin Cap2  
2
CAP2  
SI_0  
I/O  
See Cap1  
18  
17  
8
I
Auxiliary input pin 0  
SI_1  
I
Auxiliary input pin 1  
SO_0  
SO_1Q  
TEST  
CAP_A21  
O
O
I
Auxiliary output pin 0  
Auxiliary output pin 1  
Must be connected permanently to GNDA  
9
16  
13  
I
Must be connected via a capacitor of more  
than 5pF to CAP_A11.  
12  
11  
10  
CAP_A22  
CAP_B21  
CAP_B22  
I
Must be connected via a capacitor of more  
than 5pF to CAP_A12.  
O
O
Must be connected via a capacitor of more  
than 5pF to CAP_B11.  
Must be connected via a capacitor of more  
than 5pF to CAP_B12.  
Semiconductor Group  
11  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Pin Definition and Functions  
Pin No.  
Symbol  
Function  
Descriptions  
15  
CAP_C21  
I
Must be connected via a capacitor of more  
than 5pF to CAP_C11.  
14  
CAP_C22  
I
Must be connected via a capacitor of more  
than 5pF to CAP_C12.  
Table 1: ALIS-A Pin Definition  
Semiconductor Group  
12  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Pin Definition and Functions  
2.3  
Pin Definition of ALIS-D PSB 4596  
Pin No.  
Symbol  
VDD  
Function  
Power  
Description  
8
9
+5 Volt supply for the digital circuitry  
GND  
Power  
Ground digital: All signals are referred to  
this pin  
25  
24  
VDDA  
GNDA  
Power  
Power  
+5 Volt supply for the analog circuitry  
Ground analog: All analog signals are  
referred to this pin  
21  
MCLK1  
I
Master clock1: One pin of a crystal or  
ceramic resonator is connected. This pin  
can also be driven from an external  
clocking source of 16.384 MHz,  
synchronous to FSC (MCLK=FSC*2048)  
20  
MCLK2  
O
Master clock2: The other pin of a crystal or  
ceramic resonator is connected. When  
MCLK1 is driven by an external clock, this  
pin should be left open  
23  
15  
RESET  
FSC  
I
Reset input: Forces the device to default  
mode (low active)  
BI  
As input: Frame synchronisation clock,  
8kHz, identifies the beginning of the  
frame. FSC must be synchronous to  
MCLK (MCLK=FSC*2048)  
As Output: Indicates the beginning of a  
new frame  
17  
DAT_IN /  
SEL  
I
Data interface: Receive data from the  
DSP. The data is received in 16-bit bursts  
every 125 ms.  
Interface selection pin in MUX mode.  
16  
18  
10  
DAT_OUT  
DAT_CLK  
CS  
O
I
Data interface: Transmit data to the DSP.  
The data is transmitted in 16-bit bursts  
every 125 ms  
Data clock 128 to 1024 kHz: Determines  
the rate at which data is shifted into or out  
of the data interface  
I
µ-controller interface: Chip select enable  
to read or write data. Active low  
Semiconductor Group  
13  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Pin Definition and Functions  
Pin No.  
Symbol  
Function  
Description  
11  
DCLK  
I
µ-controller interface: Clock. Maximum  
clock rate 1024 kHz  
12  
13  
DIN  
I
µ-controller interface: Input data  
DOUT  
TRI  
µ-controller interface: DOUT is high ’Z’ if  
no data is transmitted  
14  
19  
INT  
O
I
µ-controller interface: Interrupt output pin  
MODE  
Interface mode pin (parallel or MUX  
mode)  
4
6
ID_Ain  
ID_Bin  
I
I
Input for caller ID comparator (connection  
to TIP)  
Input for caller ID comparator (connection  
to RING)  
5
A feedback  
B feedback  
CAP_A11  
O
O
O
Feedback for caller ID comparator  
Feedback for caller ID comparator  
7
28  
Must be connected via a capacitor of more  
than 5pF to CAP_A21.  
1
CAP_A12  
CAP_B11  
CAP_B12  
CAP_C11  
CAP_C12  
SO  
O
I
Must be connected via a capacitor of more  
than 5pF to CAP_A22.  
2
Must be connected via a capacitor of more  
than 5pF to CAP_B21.  
Must be connected via a capacitor of more  
than 5pF to CAP_B22.  
3
I
26  
27  
22  
O
O
O
Must be connected via a capacitor of more  
than 5pF to CAP_C21.  
Must be connected via a capacitor of more  
than 5pF to CAP_C22.  
Auxiliary output pin  
Table 2: ALIS-D Pin Definition  
Semiconductor Group  
14  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
System Integration  
3
System Integration  
ALIS can be used in different modem applications to connect the data pump to the TIP/  
RING wire.  
3.1  
ALIS with DSP-based Modem  
For a modem data pump, the ALIS provides the front-end to the tip/ring.  
ALIS-D  
ALIS-A  
Data Pump  
V.34  
Tip/Ring  
SI  
PSB 4596  
PSB 4595  
V.90  
Note: SI: Serial Interface  
Figure 4 DSP-based Modem Application  
Isolation is provided by a capacitor interface, without transformer. This allows very flat  
frequency response over the entire voice band, even at low frequencies.  
In V.90 Modem applications, the 50/60 Hz high-pass filter can be turned off.  
Semiconductor Group  
15  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
System Integration  
3.2  
ALIS with Software Modem  
ALIS also supports software modems where V.34 runs on the host computer (e.g. in  
combination with a USB controller).  
ALIS-D  
ALIS-A  
Tip/Ring  
PSB 4596  
PSB 4595  
SI  
Microcontroller with USB or PCI Interface  
USB or PCI  
Figure 5 Software Modem Application  
Semiconductor Group  
16  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
System Integration  
3.3  
Hybrid Modem (ISDN plus Analog)  
In combination with the SIEMENS ISDN chip set, ALIS supports hybrid modems, ,  
allowing connection to either the TIP/RING line or to an S or U-interface for ISDN  
applications.  
ALIS-D  
ALIS-A  
Tip/Ring  
PSB 4596  
PSB 4595  
SI  
Flash  
SRAM  
ISAR34  
ISAC-S TE  
PSB 2186 *  
IOM-2 Interface  
S-Interface *  
PSB 7115  
Microcontroller with USB or V.24 Interface  
USB or V.24  
Figure 6 Hybrid Modem Application, with S-interface: ISAR34 Enhanced Data Ac-  
cess Controller (PSB 7115) and ISDN Access Controller for S-Bus ISAC-S TE (PSB  
2186)  
* Figure 4 shows a hybrid modem with the ISDN S-interface. To meet the ISDN U-  
interface, the ISAC-S TE PSB 2186 is replaced by the IEC-Q TE PSB 21911.  
Semiconductor Group  
17  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
System Integration  
3.4  
Modem with Speakerphone  
ALIS-D  
ALIS-A  
PSB 4595  
TIP/RING  
PSB 4596  
SI  
Flash  
SRAM  
ISAR34  
ARCOFI-SP  
PSB 2163  
IOM-2 Interface  
PSB 7115  
Microcontroller with USB or V.24 Interface  
USB or V.24  
Figure 7 Application with Speakerphone: ARCOFI-SP Audio Ringing Codec (PSB  
2160, PSB 2163, PSB 2165, PSB 2168) and ISAR34 Enhanced Data Access Control-  
ler (PSB 7115)  
Semiconductor Group  
18  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
System Integration  
3.5  
Analog Videophone  
The diagram below shows a system solution for an analog videophone application using  
a SIEMENS chip set.  
ALIS-D  
ALIS-A  
Tip/Ring  
PSB 4596  
PSB 4595  
SI  
Flash  
IOM-2 Interface  
SRAM  
ISAR34  
ARCOFI-SP  
PSB 7115  
PSB 2163  
JADE AN  
PSB 7230  
VIDEO  
CODEC  
Microcontroller with USB or V.24 Interface  
USB or V.24  
Figure 8 ARCOFI-(SP) Audio Ringing Codec (PSB 2160, PSB 2163, PSB 2165, PSB  
2168) ; ISAR34 Enhanced Data Access Controller (PSB 7115); JADE Joint Audio  
Decoder Encoder (PSB 7230, PSB 7238)  
Semiconductor Group  
19  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Implementation  
4
ALIS Implementation  
The ALIS chip set replaces all the major parts of a conventional front end for modem  
solutions. The circuit consists of two major parts, a DSP-based codec and an electronic  
DAA. Advanced features such as ring detection, pulse dialing and caller ID are  
integrated on-chip. Additional operating modes such as sleep mode or ringing mode are  
implemented to minimize power consumption.  
4.1  
ALIS Block Diagram  
The tip/ring telephone line interface is connected mainly with the ALIS-A. It is also  
connected with the ALIS-D for Caller ID functions..  
Isolation  
Control Data  
Control  
Control Interface  
I/O  
Vdd  
Control  
Cap. Interface  
HW-  
Filter  
DSP  
A/D  
D/A  
Hybrid  
and  
Filters  
TIP/RING  
Data Interface  
Caller ID  
ALIS-D  
ALIS-A  
Transmit/Receive Data  
Figure 9 ALIS Block Diagram  
The analog front end (ALIS-A) is connected to the line via TIP/RING. The programmable  
supply voltage for ALIS-A is generated from the line by the Vdd control. Two/four wire  
conversion is implemented in the hybrid circuit. Analog anti-aliasing pre-filters (PREFI)  
and smoothing post-filters (POFI) are included for signal conditioning. High-performance  
over-sampling analog-to-digital converters (ADCs) and digital-to-analog converters  
(DACs) assure the required conversion accuracy. The ADCs and DACs are connected  
to the digital signal processor (DSP) on the digital part (ALIS-D) via a dedicated capacitor  
interface which also provides the required isolation to the line. Special hardware filters  
perform filtering functions such as interpolation and decimation. The DSP handles all the  
necessary algorithms. These include bandpass filtering, sample rate conversion, ringing  
detection, and caller ID decoding. All programmable filters and functions are also  
controlled and processed by the DSP. The control interface allows external control of the  
ALIS features and provides transparent access to ALIS commands and signaling pins.  
Thus pre-calculated sets of coefficients can be downloaded from the system to the on-  
Semiconductor Group  
20  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Implementation  
chip coefficient RAM (CRAM) in order to program the filters. Transmit and receive data  
is transferred to and from the data pump via the data interface.  
4.2  
ALIS AC Signal Flow Graph  
ALIS architecture is based on digital filters. The data path through these filters is shown  
in the next few diagrams. The filter concept also allows maximum autonomy between the  
different filter blocks. Each filter block has a one-to-one correspondence with a specific  
network element. Marked filters (grey) can be programmed by the user.  
digital out  
AR1  
FRR  
AR2  
RFIX1  
RFIX2  
ADC  
ADC  
DAA  
Tip/  
Ring  
IMFIX  
IM  
THFIX  
TH  
AX1  
FRX  
XFIX1  
XFIX2  
AX2  
DAC  
digital in  
Legend:  
DAA  
AR1  
Data Access Arrangement, Fixed Part  
Amplification Receive Filter 1  
Equalization Receive  
FRR  
RFIX1  
AR2  
Receive Filter Fixed Part 1  
Amplification Receive Filter 2  
Receive Filter Fixed Part 2  
Analog-to-Digital Converter  
Transhybrid Filter Fixed Part  
Transhybrid Filter  
RFIX2  
ADC  
THFIX  
TH  
IMFIX  
IM  
Impedance Filter Fixed Part  
Impedance Filter  
fixed functional block  
fixed filter block  
user-programmable block  
AX1  
Amplification Transmit Filter 1  
Equalization Transmit  
FRX  
XFIX1  
AX2  
Definition:  
Transmit:Digital-to-Analog  
Receive :Analog-to-Digital  
Transmit Filter Fixed Part 1  
Amplification Transmit Filter 2  
Transmit Filter Fixed Part 2  
Digital-to-Analog Converter  
XFIX2  
DAC  
Figure 10 AC Signal Flow Graph  
Semiconductor Group  
21  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Implementation  
4.2.1  
Receive Path  
After passing the DAA and a simple anti-aliasing pre-filter with an analog gain stage, the  
voice signal is converted to a 1-bit digital data stream in the sigma-delta converter. The  
first down-sampling steps are performed in fast digital hardware filters. Subsequent  
processing is implemented in the digital structure which allows easy and flexible  
programming of parameters. Finally, the fully processed signal is transferred to the data  
interface.  
Subsequent processing is done by microcode in the digital filter structure to allow  
adaptability. Gain adjustment is provided in two stages, AR1 and AR2. The total gain  
adjustment is programmable in two ranges: from 14 to 24 dB, in steps of 0.5 dB; and from  
-3 to 14 dB, with steps between 0.02 and 0.05 dB.  
Located inbetween is a decimation stage to reduce the sampling rate to the 8 kHz PCM  
rate, and a low-pass filter to band-limit the signal in accordance with ITU-T G.714 and  
ETSI (NET33) recommendations (in RFIX1); also an equalization stage (in FRR).  
Finally, the signal is passed out to the Serial Data Interface (SDI).  
ALIS meets or exceeds all ITU and ETSI (NET33) recommendations on attenuation  
distortion and group delay.  
4.2.2  
Transmit Path  
The digital input signal is received via the data interface. Low-pass filtering, gain  
correction and frequency-response correction are implemented in the digital filter  
structure. The up-sampling interpolation is then performed by fast hardware structures  
to reduce the DSP load. The up-sampled 1-bit data stream is converted to an analog  
equivalent which is smoothed by a post-filter (POFI) and converted to a 2-wire signal in  
the DAA.  
There are also two independent tone generators which can insert tones into the Transmit  
path. They have adjustable frequencies, default 2 kHz, and a programmable bandpass-  
filter to adapt the output for DTMF. When either tone generator is on, the data signal  
transmission is suppressed.  
4.2.3  
Loops  
ALIS implementation includes two loops. One is used to generate the AC-termination  
impedance (IM) and the other is used to perform proper hybrid balancing (TH). A simple  
additional path IM (from the receive to the transmit path) supports the impedance-  
matching function.  
4.2.4  
Test Features  
Several analog and digital test loops are implemented in ALIS. The receive and transmit  
paths may be short-circuited at two different points for test purposes.  
Semiconductor Group  
22  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Implementation  
4.3  
ALIS Ring and Caller ID Signal Flow Graph  
CID out  
CIDL  
CIDBP  
RLM  
CIDH  
Tip/Ring  
ADC  
RIM  
FIX  
RIM  
DAC  
Legend:  
CIDL Caller ID Lowpass  
CIDH Caller ID Hilbert Transformer  
CIDBP Caller ID Bandpass  
RLM  
Ring Level Metering  
ADC Analog-to-Digital Converter  
RIMFIX Ringer Impedace Filter Fixed Part  
RIM  
Ringer Impedace Filter  
user-programmable block  
comparator for CID  
fixed filter block  
fixed functional block  
DAC Digital-to-Analog Converter  
Figure 11 Ring Signal Flow Graph  
These data paths operate only when the ALIS is in Ringing state.  
4.3.1  
Caller ID (CID) Path  
The Caller ID receiver meets Bellcore specifications TR-NWT-000030 and  
SR-TSV-002476 for Caller ID. In this service, the calling party’s information (Calling Line  
Identification Presentation (CLIP)) is transmitted in the silent interval between the first  
and second ring. ALIS receives and stores up to 4096 bits of the 1200 baud FSK  
(Frequency Shift Keying) signal. The decoding scheme meets the Bell 202 and ITU-T  
V.23 specifications.  
The FSK signal which contains the caller information is converted to a 1-bit data stream  
by a comparator in order to minimize power consumption. Down-sampling steps are  
performed in fast digital hardware filters. To decode the caller ID, bandpass filtering,  
Hilbert transformation and other functions are implemented. The output CID-out is  
sampled at 1200 baud, and stored in the CID-RAM.  
Semiconductor Group  
23  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Implementation  
4.3.2  
Ring-Level Metering (RLM) Path  
The analog signal is converted to a 1-bit data stream in the ADC. After decimation in  
hardware filters, the remaining processing is done in the digital filter structure (in RLM):  
bandpass filtering to select the ringing frequency, and integration to determine if the  
amount of energy in-band has exceeded the threshold for a valid ring signal. The  
bandpass parameters and threshold are programmable.  
Ringing is detected in this path. The digital input is bandpass filtered, integrated and  
compared to a threshold to determine if a ringing signal has occurred. The threshold and  
bandpass filters are programmable. The result of this operation can be monitored by  
reading the RMR bit (see “CR1 Configuration Register 1 (Dialing)” on page 40).  
4.3.3  
Loops  
A loop is available to generate the Ring-termination impedance (RIM).  
4.3.3.1 Test Features  
There are three loopbacks on ALIS-D to test interfaces:  
- Host interface: loopback from the PCM interface (just inside ALIS-D)  
- Caller ID interface: loopback from Caller ID input to capacitor interface  
- Capacitor interface: loopback through different parts of the capacitor interface  
There are two loopbacks on ALIS-A:  
- Tip/ring interface: loopback from the tip/ring, before the ADC  
- Codec: loopback from the tip/ring, after the codec  
Semiconductor Group  
24  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
5
Configuration Overview  
5.1  
Connection to the Telephone Line  
VDDA  
SENS  
VDD  
T2  
T2G  
TIP  
TIP-AC  
TIP  
T1  
T1G  
RING  
RING-AC  
RING  
VREF  
GNDA  
CAP1  
CAP2  
Figure 12 Connection of ALIS-A to the Telephone Line  
As shown in the figure, ALIS-A requires a minimum of components to complete the DAA:  
- Protection circuit: not shown.  
- Bridge: using Schottky diodes will improve the performance at low feeding conditions.  
Recommended: Dual Schottky diode SIEMENS BAT 240A.  
- Resistors for current sensing.  
- Capacitors for AC coupling and VDD buffering.  
Semiconductor Group  
25  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
- Two transistors (T1, T2) to handle the line current. T2 must be of depletion type, in order  
to deal with start-up. Recommended transistors: T1: SIEMENS BSP 88; T2: SIEMENS  
BSP 129.  
- Components for EMC protection: not shown, as they depend on the board layout.  
ALIS-D can optionally be connected to the tip/ring to provide Caller ID functions. The CID  
circuit requires two capacitors and four resistors.  
5.2  
Host Interface  
The host interface consists of a serial µ-controller interface and a 16-bit linear data  
interface. They are used to connect ALIS either to a µ-controller and or to a data pump.  
The two serial interfaces can be accessed on two separate serial ports or in time-  
multiplex (MUX) mode on a single serial port.  
5.2.1  
The µ-Controller Interface  
The ALIS internal configuration registers, the auxiliary ports, and the Coefficient RAM  
(CRAM) are programmable via the serial µ-controller interface. This interface consists of  
four pins:  
CS:  
Chip select, to enable interface (active low)  
Clock, 1 kHz to 1024 kHz  
Data input  
DCLK:  
DIN:  
DOUT:  
Data output  
CS is used to start serial access to the ALIS registers and the Coefficient RAM. Following  
a CS falling edge, the first eight bits received at DIN specify the command. Subsequent  
data bytes (the number depends on the command) are stored in the selected  
configuration registers or the selected part of the CRAM.  
Serial interface specification: 8 bit, no parity, no start/stop bit. Every command must  
begin with a CS falling edge.  
Semiconductor Group  
26  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
CS  
DCLK  
DIN  
7
6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
7
6 5 4 3 2 1 0  
Control  
Data Byte 1  
Data Byte 2  
High ’Z’  
DOUT  
Figure 13 Example of a Write Access, two Data Bytes transferred  
If the first eight bits received via DIN specify a read command, ALIS will start to respond  
via DOUT with its specific identification byte. The number of specified data bytes within  
the command (contents of configuration registers or contents of the CRAM) will follow on  
DOUT.  
CS  
DCLK  
7
6 5 4 3 2 1 0  
DIN  
Control  
High ’Z’  
7
6 5 4 3 2 1 0  
7
6 5 4 3 2 1 0  
DOUT  
Identification  
Data Byte 1  
Figure 14 Example of a Read Access, one Data Byte transferred via DOUT  
Semiconductor Group  
27  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
The data transfer is synchronized by DCLK. DIN is latched at the falling edge of DCLK,  
while DOUT changes with the rising edge of DCLK. During the execution of a command  
which is followed by output data (read command), the device will not accept any new  
command via DIN. The data transfer sequence can be interrupted by setting CS to ’1’.  
To reduce the number of connections to the µ-processor, DIN and DOUT may be  
strapped together to form a bi-directional data pin.  
5.2.2  
The Data Interface  
A serial data interface is used for transferring voice data. The interface consists of five  
pins:  
DAT_CLK:  
FSC:  
Clock, 128 kHz to 1024 kHz  
Frame synchronization clock, 8 kHz  
Transmit data input  
DAT_IN:  
DAT_OUT:  
Receive data output  
The Frame Sync (FSC) pulse identifies the beginning of a receive and a transmit frame.  
DAT_CLK synchronizes the data transfer on DAT_IN and DAT_OUT. The data bytes are  
first serialized to 16-bit width and MSB. The rising edge indicates the start of the bit, while  
the falling edge is used to latch the contents of the received data.  
125 µS  
FSC  
DAT_CLK  
15 14 13 12 11 10 9  
15 14 13 12 11 10 9  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
1
1
2
2
0
DAT_IN  
DAT_OUT 0  
16 Bit Voicedata MSB first  
Figure 15 Example of a Clock Rate of 128 kb/s  
Semiconductor Group  
28  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
125 µS  
FSC  
DAT_CLK  
DAT_IN  
DAT_OUT  
151413121110 9 8 7 6 5 4 3 2 1 0  
151413121110 9 8 7 6 5 4 3 2 1 0  
t
Start  
tVoice  
tStop  
Figure 16 Example of a Clock Rate higher than 128 kb/s  
The data package must stay within the frame, tStart > 0 and tStop > 0.  
The FSC signal can be generated externally by the host or by ALIS.  
Semiconductor Group  
29  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
5.2.3  
Interface Modes  
5.2.3.1 Demux Mode  
Connection of the MODE pin to GND allows the µC and the data interface to be  
accessed via two serial ports.  
DSP  
ALIS-D  
(Data Pump)  
DCLK  
CS  
DIN  
DOUT  
INT  
µC Interface  
DAT_CLK  
FSC  
DAT_IN  
DAT_OUT  
Data  
Interface  
MODE  
Figure 17 Host Interface in Demux Mode, FSC as Input  
DSP  
ALIS-D  
(Data Pump)  
DCLK  
CS  
DIN  
DOUT  
INT  
µC Interface  
DAT_CLK  
FSC  
DAT_IN  
DAT_OUT  
Data  
Interface  
MODE  
Figure 18 Host Interface in Demux Mode, FSC as Output  
Semiconductor Group  
30  
Data Sheet 06.98  
 
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
5.2.3.2 Multiplex Mode  
Connection of the MODE pin to VDD allows the two interfaces to be time-multiplexed on  
a single port. The interfaces are selected by the DAT_IN/SEL pin.  
DSP  
ALIS-D  
(Data Pump)  
DCLK / DAT_CLK  
CS / FSC  
DIN / DAT_IN  
DOUT / DAT_OUT  
INT  
µC Interface  
Data  
Interface  
DAT_IN / SEL  
VDD  
MODE  
Figure 19 Host Interface in MUX Mode, FSC as Input  
DAT_IN / SEL = 0  
DAT_IN / SEL = 1  
PIN No  
11  
Function  
DCLK  
CS  
PIN No  
Function  
11  
10  
12  
13  
DAT_CLK  
FSC  
10  
12  
DIN  
DAT_IN  
DAT_OUT  
13  
DOUT  
Table 3: Pin Definition in MUX mode, FSC as Input  
Semiconductor Group  
31  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
DSP  
ALIS-D  
(Data Pump)  
DCLK / DAT_CLK  
CS  
DIN / DAT_IN  
DOUT / DAT_OUT  
INT  
µC Interface  
FSC  
DAT_IN / SEL  
Data  
Interface  
VDD  
MODE  
Figure 20 Host Interface in MUX mode, FSC as Output  
DAT_IN / SEL = 0  
PIN No Function  
DAT_IN / SEL = 1  
PIN No  
11  
Function  
DAT_CLK  
VDD / GND1)  
DAT_IN  
11  
10  
12  
13  
15  
DCLK  
CS  
10  
DIN  
12  
DOUT  
13  
DAT_OUT  
FSC (output)  
FSC (output)  
15  
1) must be connected to a fixed potential  
Table 4: Pin Definition in MUX Mode, FSC as Output  
Semiconductor Group  
32  
Data Sheet 06.98  
 
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
E
D
M
U
X
-
M
o
d
e
,
F
S
C
e
x
t
e
r
n
D
E
F
S
C
C
o
n
t
r
o
l
D
a
t
a
D
C
D
D
D
C
S
I
O
A
L
K
=
D
C
L
K
/
D
A
T
_
C
L
K
O
=
C
S
/
F
S
C
C
l
o
c
k
i
n
C
l
o
c
k
i
n
N
=
D
I
N
/
D
A
T
_
I
N
M
M
O
C
l
o
c
k
o
u
t
C
l
o
c
k
o
u
t
U
T
=
D
O
U
T
/
D
A
T
_
O
U
T
C
T
_
I
N
=
S
E
L
U
C
M
P
E
1
2
5
u
s
F
R
A
M
E
r
i
s
i
n
g
e
d
g
e
c
s
w
i
t
h
s
e
l
=
1
i
s
f
s
c
s
t
a
r
t
D
M
U
X
-
M
o
d
e
,
F
S
C
i
n
t
e
r
n
F
S
C
C
o
n
t
r
o
l
D
a
t
a
D
C
D
D
D
C
S
I
O
A
L
K
=
D
C
L
K
/
D
A
T
_
C
L
K
=
C
S
C
l
o
c
k
i
n
C
l
o
c
k
i
n
N
=
D
I
N
/
D
A
T
_
I
N
M
M
O
C
l
o
c
k
o
u
t
t
C
C
l
l
o
o
c
c
k
k
o
o
u
u
t
t
U
T
=
D
O
U
T
/
D
A
T
_
O
U
T
C
T
_
I
N
=
S
E
L
P
1
2
5
u
s
F
R
A
M
E
Figure 21 Protocol for Transmission of µC- and PCM Data in MUX Mode  
5.3 Clocking  
ALIS operates with a typical master clock frequency of 16.384 MHz. This clock can either  
be supplied from an external source or generated with a crystal by ALIS-D.  
It is essential that the ratio of the master clock frequency to the FSC frequency is exactly  
2048. This is of course guaranteed if the FSC signal is generated internally.  
5.3.1  
External clock  
When providing the master clock externally, an external clock signal must be connected  
to pin MCLK1. The MCLK2 pin must remain unconnected and the CLK_EXT bit in CR0  
must be programmed to a logic ’1’. (see the section “CR0 Configuration Register 0  
(Filters)” on page 39).  
Semiconductor Group  
33  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
5.3.2  
Crystal clock  
Because ALIS includes an on-chip oscillator circuit, an external crystal may be used.  
This crystal is connected across the MCLK1 and MCLK2 pins with two capacitors (see  
Figure 22  
”External Crystal Connections” ) . The CLK_EXT bit in CR0 must be  
programmed to a logic '0' (= default value after reset). The capacitor values depend on  
the crystal type and are specified by the crystal manufacturer. A microprocessor-grade  
crystal with a parallel-resonant fundamental frequency is recommended.  
To ensure that the ratio between the master clock and the FSC signal is correct, ALIS  
can be programmed to internal FSC generation (set Fsc_en bit in CR4 to a logic '1'). See  
Figure 18 “Host Interface in Demux Mode, FSC as Output” on page 30 and Figure 20  
“Host Interface in MUX mode, FSC as Output” on page 32.  
XTAL 16.384 MHz  
Cxtl  
Cxtl  
MCLK2  
MCLK1  
ALIS-D  
Figure 22 External Crystal Connections  
Semiconductor Group  
34  
Data Sheet 06.98  
 
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
5.4  
Capacitor Interface  
A capacitor interface is used to decouple ALIS-A from ALIS-D. It is a bi-directional serial  
interface and is used for exchanging control and data information between ALIS-A and  
ALIS-D. The transmission format is digital to avoid distortion and for performance  
reasons. For the size and tolerance of the capacitors, see the section “ALIS Cap  
Interface” on page 86.  
CAP_A1  
CAP_A2  
CAP_A11  
CAP_A12  
CAP_A21  
CAP_A22  
CAP_B1  
CAP_B2  
CAP_B11  
CAP_B12  
CAP_B21  
CAP_B22  
CAP_C1  
CAP_C2  
CAP_C11  
CAP_C12  
CAP_C21  
CAP_C22  
ALIS-D  
ALIS-A  
Figure 23 Connection of Capacitor Interface between ALIS-A and ALIS-D  
Semiconductor Group  
35  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Configuration Overview  
5.5  
Caller ID Interface  
To receive the caller ID, ALIS-D must be connected to the line via an RC network. See  
the section “ALIS Caller ID Interface” on page 86".  
Afeedback  
Rfb1  
Cin1  
TIP  
Rin1  
ID_Ain  
RING  
ID_Bin  
Cin2  
Rin2  
Rfb2  
Bfeedback  
ALIS-D  
Figure 24 Caller ID Interface Connection of ALIS-D to Tip/Ring  
Semiconductor Group  
36  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
6
Programming ALIS  
Appropriate commands via the serial µ-controller interface enable very flexible  
programming and verification of ALIS.  
Four different commands are used to access the various control registers and RAMs:  
SOP (see page 38), XOP (see page 44), COP (see page 50) and CAO (see page 51).  
The first byte received via DIN selects the command type. Each command can be used  
as a write or read command. Thanks to the extended ALIS control facilities, the SOP,  
XOP and COP commands contain additional information for programming (writing) and  
verifying (reading) the ALIS status (e.g. number of subsequent bytes, software reset,  
operating mode).  
Up to 8 bytes of data can be read or written with an SOP, XOP or COP command. The  
CAO command allows all 512 bytes of the caller ID RAM to be read or written. Any read  
command causes ALIS to respond with its specific identification byte before sending the  
requested information.  
6.1  
Types of Commands and Data Bytes  
The ALIS commands are selected by bit 3, 4 and 6 of the command byte as shown  
below.  
SOP command  
Bit  
7
6
5
4
1
3
0
2
1
0
PU 1  
PU 0  
RW  
LSEL2 LSEL1 LSEL0  
XOP command  
Bit  
7
6
0
5
4
1
3
1
2
1
0
RST  
RW  
LSEL2 LSEL1 LSEL0  
COP command  
Bit  
7
0
6
0
5
4
0
3
2
1
0
RW  
CODE CODE CODE CODE  
3
2
1
0
CAO command  
Bit  
7
0
6
1
5
4
1
3
1
2
0
1
0
0
0
RW  
Semiconductor Group  
37  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
6.1.1  
Storage of Programming Information:  
• 6 Configuration registers: CR0, CR1, etc. CR5 accessed by SOP commands  
• 8 Extended registers:  
• 1 Coefficient RAM:  
• 1 Caller ID RAM:  
XR0, XR1, etc. XR7 accessed by XOP commands  
CRAM accessed by COP commands  
RAM accessed by CAO commands  
6.2  
SOP Command  
The SOP (status operation) command allows the ALIS status registers to be written or  
read via the µ-controller interface.  
Bit  
7
6
5
4
1
3
0
2
1
0
PU 1  
PU 0  
RW  
LSEL2 LSEL1 LSEL0  
PU Power-up operation command (only with SOP write command)  
PU = 0 0:  
PU = 0 1:  
PU = 1 0:  
PU = 1 1:  
ALIS is set to sleep mode  
ALIS is set to ringing mode  
ALIS is set to conversation mode  
ALIS is set to pulse dialing mode  
RW Read/Write: Enables reading from ALIS or writing information to ALIS  
RW = 0:  
RW = 1:  
Write to ALIS  
Read from ALIS  
LSEL Length select information (see also programming procedure)  
This field identifies the number of subsequent data bytes  
LSEL = 000:1 byte of data follows (CR0)  
LSEL = 001:2 bytes of data follow (CR1, CR0)  
LSEL = 010:3 bytes of data follow (CR2. CR1, CR0)  
LSEL = 011:4 bytes of data follow (CR3, CR2. CR1, CR0)  
LSEL = 100:5 bytes of data follow (CR4, CR3, CR2, CR1, CR0)  
LSEL = 101:6 bytes of data follow (CR5, ...., CR1, CR0)  
Note: If only one configuration register requires modification, for example CR3, this can  
be accomplished by setting LSEL=011 and releasing pin CS after CR3 is written, to.  
Semiconductor Group  
38  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
6.2.1  
CR0 Configuration Register 0 (Filters)  
Default value: 00H  
Configuration register CR0 defines the basic ALIS settings, which are: enabling/  
disabling the programmable digital filters and tone generators.  
Bit  
7
6
5
4
3
2
1
0
TH  
IM  
FRX  
FRR  
AX  
AR  
RIP  
CLK_  
EXT  
TH Enable Trans-Hybrid Balancing (TH)-Filter  
TH = 0:  
TH = 1:  
TH-filter disabled  
TH-filter enabled  
IM Enable Impedance Matching (IM)-Filter  
IM = 0:  
IM = 1:  
IM-filter disabled  
IM-filter enabled  
FRX Enable Frequency Response Transmit (FRX)-Filter  
FRX = 0:  
FRX = 1:  
FRX-filter disabled  
FRX-filter enabled  
FRR Enable Frequency Response Receive (FRR)-Filter  
FRR = 0:  
FRR = 1:  
FRR-filter disabled  
FRR-filter enabled  
AX Enable Amplification/Attenuation Transmit (AX)-Filter  
AX = 0:  
AX = 1:  
AX-filter disabled  
AX-filter enabled  
AR Enable Amplification/Attenuation Receive (AR)-Filter  
AR = 0:  
AR = 1:  
AR-filter disabled  
AR-filter enabled  
RIP Enable Ringer Impedance (RIP)-Filter  
RIP = 0:  
RIP = 1:  
RIP-filter disabled  
RIP-filter enabled  
CLK_EXT  
External clock signal  
CLK_EXT = 0: Crystal Oscillator is enabled, clock will be generated by crystal  
CLK_EXT = 1: Crystal Oscillator is disabled, clock must be supplied by external  
source  
Semiconductor Group  
39  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
6.2.2  
Default value: 00H  
Configuration register CR01 selects tone generator modes and other operating modes  
CR1 Configuration Register 1 (Dialing)  
Bit  
7
6
5
4
3
2
1
0
E_  
E_  
P_  
P_  
Pulse  
No_  
auto_  
ring  
RMR  
RM  
Tone2 Tone1 Tone2 Tone1  
E_Tone2  
Enable programmable tone generator 2  
E_Tone2= 0:  
E_Tone2= 1:  
E_Tone1  
E_Tone1= 0:  
E_Tone1= 1:  
P_Tone2  
P_Tone2= 0:  
P_Tone2= 1:  
P_Tone1  
P_Tone1= 0:  
P_Tone1= 1:  
Pulse  
Pulse = 1:  
Programmable tone generator 2 disabled  
Programmable tone generator 2 enabled  
Enable programmable tone generator 1  
Programmable tone generator 1 disabled  
Programmable tone generator 1 enabled  
User-programmed frequency or fixed frequency selected  
Fixed frequency for tone generator 2 selected  
Programmed frequency for tone generator 2 selected  
User programmed frequency or fixed frequency selected  
Fixed frequency for tone generator 1 selected  
Programmed frequency for tone generator 1 selected  
Pulse dialing  
Make for pulse dialing  
Break for pulse dialing  
Pulse = 0:  
No_auto_ring  
No_auto_ring= 1:Test mode to disable automatic switching from sleep mode to  
ringing mode after valid ring.  
No_auto_ring= 0:Normal operating mode, ALIS switches automatically to ringing  
mode after ringing detection  
RMR  
Result of ringing metering function (this bit cannot be written)  
RMR = 0:  
RMR = 1:  
Detected level was lower than the programmed1) reference  
Detected level was higher than the programmed reference. See  
“Flow of Ring Sequence and Detection” on page 65.  
RM  
Ringing metering function2)  
1
The threshold can be programmed in the CRAM. Coefficients see “Ring Detect” on page 81.  
Semiconductor Group  
40  
Data Sheet 06.98  
 
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
RM = 0:  
RM = 1:  
Ringing metering function disabled  
Ringing metering function enabled  
6.2.3  
CR2 Configuration Register 2 (Caller ID)  
Bit  
7
6
5
4
3
2
1
0
COT/R  
IDR  
Call_  
pon  
Call_  
en  
Call_I  
Call_II  
Default value: 00H  
COT/R  
0 0 0:  
Select cut-off transmit/receive paths  
Normal operation  
0 0 1:  
0 1 0:  
1 0 1:  
1 1 0:  
COR16 Cut-off receive path at 16 kHz (input of TH filter)  
COR8 Cut-off receive path at 8 kHz  
COT2M Cut-off transmit path at 2 MHz (POFI output)  
COT64 Cut-off transmit path at 64 KHz (IM filter input)  
IDR  
Initialize data RAM  
IDR = 0:  
IDR = 1:  
Normal operation selected  
Contents of data RAM set to 0 (for test purposes)  
Call_pon  
Enable the caller ID Path  
Call_pon = 0: Caller ID Path disabled  
Call_pon = 1: Caller ID Path enabled  
(see Call_pctl in “CR3 Configuration Register 3 (Test Loops)” on  
page 42)  
Call_en  
Enable the caller ID  
Call_en = 1:  
Call_en = 0:  
Caller ID decoding enabled  
Caller ID decoding disabled  
Call_I  
Result of caller ID decoding (this bit cannot be written, for test purposes  
only)  
Call_I = 1:  
Call_I = 0:  
1st tone of caller ID detected  
1st tone of caller ID not detected  
Call_II  
Result of caller ID decoding (this bit can not be written, for test purpose  
only)  
Call_II = 1:  
2nd tone of caller ID detected  
2
Explanation of the ringing metering function: The ring signal is rectified, and the voltage is measured. If the  
voltage exceeds a certain value, the bit RMR is set to ’1’.  
Semiconductor Group  
41  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
Call_II = 0:  
2nd tone of caller ID not detected  
6.2.4  
CR3 Configuration Register 3 (Test Loops)  
Bit  
7
6
5
4
3
2
1
0
Test Loops  
SEL  
Call_  
pctl  
DHP-R DHP-X  
Default value: 00H  
Test Loops Four-bit field for selection of analog and digital loopbacks  
0101  
ALB_CIF: Cap. interface loop of the signal from the input circuit  
(CAP_B11/12 is connected to the output drivers (CAP_A11/12,  
CAP_C11/12)  
1000  
ALB-CID: Caller ID loop; the output signal from the caller ID  
comparator is connected to the output drivers of the capacitor  
interface (CAP_A11/12, CAP_C11/12);  
1001  
1100  
1101  
1111  
DLB-2M: Loop via HW filters;  
DLB-128k: Loop inside DSP;  
DLB-64k: Loop inside DSP;  
DLB-PCM: Loop via PCM interface; the received data is sent back  
in the next frame;  
SEL  
Test loop selection  
SEL = 0:  
SEL = 1:  
Test loops via impedance path selected  
Test loops via receive path selected  
Call_pctl  
Caller ID path control  
Call_pctl = 0: Caller ID interface enabled during ringing mode  
Call_pctl = 1: Caller ID interface will be selected by the Call_pon bit in CR2  
Note: The path can be controlled manually for test purposes. Must be ’0’ for normal  
operation.  
DHP-X  
DHP-X = 0:  
DHP-X = 1:  
Disable high-pass in transmit direction  
Transmit high-pass enabled  
Transmit high-pass disabled  
DHP-R  
Disable high-pass in receive direction  
DHP-R = 0:  
DHP-R = 1:  
Receive high-pass enabled  
Receive high-pass disabled  
Semiconductor Group  
42  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
6.2.5  
CR4 Configuration Register 4 (Analog Gain)  
Bit  
7
6
5
4
3
2
1
0
AGR_ AGR_ AGR_ AGR_ AGX 1 AGX 0 Int_en  
Z 1 Z 0 R 1 R 0  
Fsc_  
en  
Default value: 00H  
AGR_Z Analog gain in impedance loop (can be used as AGC)  
AGR_Z = 00: Analog gain A disabled (0 dB amplification)  
AGR_Z = 11: Analog gain A enabled (2.5 dB amplification)  
AGR_Z = 10: Analog gain A enabled (6 dB amplification)  
AGR_Z = 01: Analog gain A enabled (-3.5 dB amplification)1)  
AGR_R  
Analog gain in receive direction (can be used as AGC)  
AGR_R = 00: Analog gain B disabled (0 dB amplification)  
AGR_R = 01: Analog gain B enabled (3.5 dB amplification)  
AGR_R = 11: Analog gain B enabled (6 dB amplification)  
Analog gain in transmit direction (can be used as AGC)  
AGX  
AGX = 00:  
AGX = 01:  
AGX = 10:  
AGX = 11:  
Analog gain A disabled (0 dB amplification)  
Analog gain A enabled (-6 dB amplification)  
Analog gain A enabled (3.5 dB amplification)  
Analog gain A enabled (-2.5 dB amplification)  
Int_en  
Int_en = 1:  
Int_en = 0:  
Fsc_en  
Fsc_en = 0:  
Fsc_en = 1  
Interrupt enable  
Enable interrupts  
Disable interrupts  
FSC signal-source selection  
FSC must be generated externally  
FSC generated internally  
1
Note: the sum of AGR_Z and AGX should be zero for stability reasons.  
Semiconductor Group  
43  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
6.2.6  
CR5 Configuration Register 5 (Version)  
Bit  
7
6
5
4
3
2
1
0
V_7  
V_6  
V_5  
V_4  
V_3  
V_2  
V_1  
V_0  
V
The current version of ALIS (this byte cannot be written)  
02H for ALIS V2.1  
6.3  
XOP Command  
The ALIS digital command/indication interface to the line and external equipment is  
configured and evaluated by the Extended Operation (XOP) command. Other common  
functions are also assigned by this command.  
Bit  
7
6
0
5
4
1
3
1
2
1
0
RST  
RW  
LSEL2 LSEL1 LSEL0  
RST  
RW  
Software reset (same as RESET pin)  
No reset  
RST = 0:  
RST = 1:  
ALIS is reset to the default settings  
Read / Write: Enables reading from or writing to ALIS  
Write to ALIS  
RW = 0:  
RW = 1:  
Read from ALIS  
LSEL  
LSEL = 000  
LSEL = 001  
Length select information. Specifies the number of subsequent data bytes  
1 byte of data follows (XR0)  
2 bytes of data follow (XR1, XR0)  
:
LSEL= 111  
6.3.1  
8 bytes of data follow (XR7, ...., XR1, XR0)  
XR0 Extended Register 0 (Interrupt Register)  
Any interrupt indications can be monitored in the interrupt register. Interrupts can be  
signaled via a logic ’1’ on the INT line. After an indication has occurred, further loading  
of the interrupt register is locked until its contents are read via the µ-controller interface.  
Reading the interrupt register XR0 releases the lock and the INT line is set to low again.  
See “Interrupt Controller” on page 60 for more details.  
Semiconductor Group  
44  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
For XOP Read Commands  
Bit  
7
0
6
5
4
3
2
1
0
Wake_  
up  
Ca-  
dence  
RING  
Caller  
_ID  
VDD_  
OK  
SI_1  
SI_0  
Default value: 00H  
Wake_up Wake_up Interrupt  
Wake_up = 0: No Wake_up Interrupt  
Wake_up = 1: If CLK_OFF bit is set (see “XR6 Extended Register 6 (Power  
State)” on page 49) and a ringing signal occurs1), then a Wake_up  
Interrupt is generated. To clear this interrupt, the CLK_OFF bit  
must be reset and ALIS-D must be supplied with a clock.  
Cadence  
Cadence Interrupt  
Cadence = 0: No cadence Interrupt  
(time between two ring bursts is available from XR4)  
Cadence = 1: Time between two ring bursts exceeds the programmed time  
(see “XR2 Extended Register 2 (Cadence Time Out)” on page 47).  
RING  
Ring Interrupt  
RING = 0:  
RING = 1:  
No ring burst  
No_auto_ring=0: this bit is set after the second valid ring burst  
No_auto_ring=1: ALIS stays in sleep mode and waits for a  
command. This bit represents the ring detection signal from  
ALIS-A. See“CR1 Configuration Register 1 (Dialing)” on page 40.  
Note: In this case, a command is mandatory to avoid a deadlock.  
Caller_ID Caller ID Interrupt  
Caller_ID = 0: No caller ID preamble detected  
Caller_ID = 1: Caller ID preamble detected  
VDD_OK  
Vdd at ALIS-A Interrupt  
VDD_OK = 1: Power supply for ALIS-A is available and the connection between  
ALIS-A and ALIS-D is working  
VDD_OK = 0: No power supply for ALIS-A or no connection between ALIS-A and  
ALIS-D  
1
Any signal at the line with a voltage of more than 18 V. To decode a valid ring signal, ALIS must be switched  
to the Ringing Mode.  
Semiconductor Group  
45  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
SI_0  
SI_1  
Status of pin SI_0 at ALIS-A is transferred to this register  
Status of pin SI_1 at ALIS-A is transferred to this register  
Note: The auxiliary pins (SO_0, SO_1, SI_0, SI_1) are isolated via the capacitor  
interface.  
With XOP-Write Commands to Control the SO Output Pins  
Bit  
7
0
6
0
5
0
4
0
3
0
2
1
0
SO_2  
SO_1  
SO_0  
SO_0  
SO_1  
Pin SO_0 at ALIS-A is set to the assigned value if ALIS is not in  
sleep mode  
Pin SO_1Q at ALIS-A is set to the inverted assigned value if ALIS  
is not in sleep mode  
SO_2  
6.3.2  
Pin SO at ALIS-D is set to the assigned value  
XR1 Extended Register 1 (Interrupt Enable Register)  
Bit  
7
0
6
5
4
3
2
1
0
M_Wa  
M_  
M_  
M_  
M_  
M_  
M_  
ke_up Caden RING Caller_ VDD_  
ce ID OK  
SI_1  
SI_0  
Default value: 00H  
M_Wake_up  
M_Wake_up = 0:Disable Wake_up Interrupt  
M_Wake_up = 1:Enable Wake_up Interrupt  
M_Cadence  
M_Cadence = 0:Disable Cadence Interrupt  
M_Cadence = 1:Enable Cadence Interrupt  
M_RING  
M_RING = 0: Disable RING Interrupts  
M_RING = 1: Enable RING Interrupts  
M_Caller_ID  
Semiconductor Group  
46  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
M_Caller_ID = 0:Disable Caller_ID Interrupt  
M_Caller_ID = 1:Enable Caller_ID Interrupt  
M_VDD_OK  
M_VDD_OK = 0:Disable VDD Interrupt  
M_VDD_OK = 1:Enable VDD Interrupt  
M_SI_1  
M_SI_1 = 0:  
M_SI_1 = 1:  
M_SI_0  
Disable SI_1 Interrupts  
Enable SI_1 Interrupts  
M_SI_0 = 0:  
M_SI_0 = 1:  
Disable SI_0 Interrupts  
Enable SI_0 Interrupts  
6.3.3  
XR2 Extended Register 2 (Cadence Time Out)  
Bit  
7
6
5
4
3
2
1
0
CTO 7 CTO 6 CTO 5 CTO 4 CTO 3 CTO 2 CTO 1 CTO 0  
Default value: 7DH  
CTO ms Programmable Cadence Time Out:  
If the time between the first two ring bursts exceeds the time  
progammed in this register, a cadence interrupt is generated. The  
time-out is programmable in steps of 64 ms up to 16 seconds.  
Note: 00 means no cadence time-out programmed - no interrupt will be generated.  
6.3.4  
XR3 Extended Register 3 (DC Characteristic)  
Bit  
7
6
5
4
3
2
1
0
AGB1  
AGB0  
B_off  
DCU 1 DCU 0  
DCI  
DCR 1 DCR 0  
AGB  
Analog gain for analog trans-hybrid filter  
AGB = 00:  
Gain for analog trans-hybrid filter = 1.9 dB  
Gain for analog trans-hybrid filter = 0 dB  
Gain for analog trans-hybrid filter = -2.1 dB  
Gain for analog trans-hybrid filter = -3.4 dB  
AGB = 01:  
AGB = 10:  
AGB = 11:  
B_off  
Enable analog trans-hybrid filter  
Semiconductor Group  
47  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
B_off = 0:  
B_off = 1:  
Analog trans-hybrid filter on  
Analog trans-hybrid filter off  
Note: The analog trans-hybrid filter is an analog pre-filter optimized for long loops with a  
trans-hybrid loss of about 10 dB.  
DCU = 00:  
DCU = 01:  
DCU = 10:  
DCU = 11:  
U0 for DC characteristic is 0 V  
U0 for DC characteristic is 1.5 V  
U0 for DC characteristic is 3.5 V  
U0 for DC characteristic is 7.2 V  
Note: These values do not include the voltage drop at the external diodes. See also “DC  
Characteristics” on page 88.  
DCI  
Limit current for the DC characteristic  
Limit current is 100 mA  
DCI = 0:  
DCI = 1:  
Limit current is 50 mA  
DCR  
Resistance of the DC characteristic  
DCR = 00:  
DCR = 01:  
DCR = 10:  
DCR = 11:  
R for DC characteristic is 280 Ω  
R for DC characteristic is 240 Ω  
R for DC characteristic is 200 Ω  
R for DC characteristic is 100 Ω  
Note: If DCU is programmed to 7.2V (DCU = 11), then R for the DC characteristic is  
always 70 irrespective of the contents of DCR. See “DC Termination” on page  
84.  
6.3.5  
XR4 Extended Register 4 (Cadence)  
Bit  
7
6
5
4
3
2
1
0
C_7  
C_6  
C_5  
C_4  
C_3  
C_2  
C_1  
C_0  
C
ms (read only)  
Contains the measured time between the two first ring bursts (time  
step 64 ms) if the time is below the cadence time-out as  
programmed in XR2.  
Semiconductor Group  
48  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
6.3.6  
XR5 Extended Register 5 (Ring Timer)  
Bit  
7
6
5
4
3
2
1
0
T_7  
T_6  
T_5  
T_4  
T_3  
T_2  
T_1  
T_0  
Default value: 22H  
T
ms  
Ring latency timer, programmable in steps of 2 ms  
ALIS-A decodes any signal of more than 18 V at TIP/RING. This  
signal will be transferred over to ALIS-D for further processing.  
This timer bridges the time when the sine wave of the ring signal is  
below the 18 V mark to ensure that ALIS does not fall back into  
sleep mode.  
6.3.7  
XR6 Extended Register 6 (Power State)  
Bit  
7
0
6
0
5
0
4
3
0
2
0
1
0
CKL_  
OFF  
CPS1  
CPS0  
Default value: 00H  
CPS  
Current Power State (read only)  
Power state is sleep  
CPS = 00  
CPS = 01  
CPS = 10  
CPS = 11  
Power state is ringing  
Power state is conversation  
Power state is pulse dialing  
Note: The power mode can be programmed by the SOP command. The current power  
state will be indicated in this register.  
CLK_OFF  
Turn off master clock (ALIS is programmed to deep-sleep mode)  
CLK_OFF = 0 Master clock is not turned off internally  
CLK_OFF = 1 Master clock is turned off internally  
Note: The external clock can be turned off after setting the CLK_OFF bit. The clock must  
be switched on for programming ALIS.  
Semiconductor Group  
49  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
Note: When a crystal is used, it will be turned off automatically when the CLK_OFF bit  
is set. It will be switched on when the CS signal goes low. However, the user must  
wait until the crystal is working before initiating a command.  
6.3.8  
XR7 Extended Register 7 (Vdd)  
Bit  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
Vdd1  
Vdd0  
Default value: 00H  
Vdd Current Power State  
Vdd of ALIS-A is 4.25 V  
Vdd = 00  
Vdd = 01  
Vdd = 10  
Vdd = 11  
Vdd of ALIS-A is 4.38 V (test purpose only)  
Vdd of ALIS-A is 3.90 V (test purpose only)  
Vdd of ALIS-A is 4 V  
6.4  
COP Command  
A Coefficient Operation (COP) command allows the coefficients for the programmable  
filters to be written to the ALIS coefficient RAM or read from this RAM via the µ-controller  
interface for verification.  
Bit  
7
0
6
0
5
4
0
3
2
1
0
RW  
CODE CODE CODE CODE  
3
2
1
0
RW  
Read/Write  
RW = 0  
RW = 1  
Subsequent data is written to ALIS  
Read data from ALIS  
CODE  
includes the number of following bytes and the filter address  
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
TH filter coefficients (part 1)  
TH filter coefficients (part 2)  
TH filter coefficients (part 3)  
Ringer impedance (part 1)  
IM filter coefficients (part 1)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
Semiconductor Group  
50  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
IM filter coefficients (part 2)  
Ringer impedance (part 2)  
FRR filter coefficients  
FRX filter coefficients  
AR filter coefficients  
AX filter coefficients  
Tone1 coefficients  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
(followed by 4 bytes of data)  
(followed by 8 bytes of data)  
(followed by 8 bytes of data)  
Tone2 coefficients  
Level metering ringing  
Caller ID 1st tone  
Caller ID 2nd tone  
6.5  
CAO Command  
A CAO (caller ID operation) command allows the decoded caller ID to be read. A CAO  
command is always followed by 512 bytes of data.  
Bit  
7
0
6
1
5
4
1
3
1
2
0
1
0
0
0
RW  
RW  
Read/Write  
RW = 0  
RW = 1  
Subsequent data is written to ALIS (test purposes only)  
Read data from ALIS  
Semiconductor Group  
51  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Programming ALIS  
6.6  
Register Summary  
CR Registers:  
6.6.1  
Bit  
7
6
5
4
3
2
1
0
CR0  
TH  
IM  
FRX  
FRR  
AX  
AR  
RIP  
CLK_E  
XT  
CR1  
CR2  
CR3  
E_  
Tone2  
E_  
Tone1  
P_  
Tone2  
P_  
Tone1  
Pulse  
No_  
auto  
RMR  
RM  
COT/R  
IDR  
Call_p  
on  
Call_e  
n
Call_I  
Call_II  
TestLoops  
SEL  
Cal  
DHP-R DHP-X  
_pctl  
CR4 AGR_  
Z 1  
AGR_  
Z 0  
AGR_  
R1  
AGR_  
R 0  
AGX 1 AGX 0  
Int_en  
V_1  
Fsc_  
en  
CR5  
V_7  
V_6  
V_5  
V_4  
V_3  
V_2  
V_0  
Table 5: Summary of CR Registers  
6.6.2  
Bit  
XR Registers:  
7
6
5
4
3
2
1
0
XR0/  
R
0
Wake_ Caden  
RING  
Caller_ VDD_  
SI_1  
SI_0  
up  
ce  
ID  
OK  
XR0/  
W
0
0
0
0
0
0
SO_2  
SO_1  
SO_0  
XR1  
M_Wa M_Cad  
ke_up ence  
M_  
RING  
M_Call M_VD  
er_ID D_OK  
M_  
SI_1  
M_  
SI_0  
XR2 CTO 7 CTO 6 CTO 5 CTO 4 CTO 3 CTO 2 CTO 1 CTO 0  
XR3  
XR4  
XR5  
XR6  
AGB1  
C_7  
T_7  
0
AGB0  
C_6  
T_6  
0
B_off  
C_5  
T_5  
0
DCU 1 DCU 0  
DCI  
C_2  
T_2  
0
DCR 1  
C_1  
DCR0  
C_0  
C_4  
T_4  
C_3  
T_3  
0
T_1  
T_0  
CLK_O  
FF  
CPS1  
CPS0  
XR7  
0
0
0
0
0
Vdd1  
Vdd0  
0
Table 6: Summary of CR Registers  
Semiconductor Group  
52  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Command Structure  
7
ALIS Command Structure  
The sections below show the structure of the SOP, XOP, COP and CAO write and read  
commands. Section 7.5 shows an example of a mixed command.  
7.1  
SOP Commands  
7.1.1  
SOP - Write Commands  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
DOUT  
SOP write 1 byte x x 0 1 0 0 0 0  
Idle  
Idle  
CR0  
DIN  
Data  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
SOP write 2 bytes x x 0 1 0 0 0 1  
Idle  
Idle  
Idle  
CR1  
CR0  
Data  
Data  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
SOP write 3 bytes x x 0 1 0 0 1 0  
Idle  
Idle  
Idle  
Idle  
CR2  
CR1  
CR0  
Data  
Data  
Data  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
SOP write 4 bytes x x 0 1 0 0 1 1  
Idle  
Idle  
Idle  
Idle  
Idle  
CR3  
CR2  
CR1  
CR0  
Data  
Data  
Data  
Data  
Semiconductor Group  
53  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Command Structure  
7.1.2  
SOP - Read Commands  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
Idle  
DOUT  
SOP read 1 byte x x 1 1 0 0 0 0  
Idle  
Idle  
1 0 0 0 0 0 0 1  
Data  
ID  
CR0  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
SOP read 2 bytes x x 1 1 0 0 0 1  
Idle  
1 0 0 0 0 0 0 1  
Data  
Idle  
Idle  
Idle  
ID  
CR1  
CR0  
Data  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
SOP read 3 bytes x x 1 1 0 0 1 0  
Idle  
1 0 0 0 0 0 0 1  
Data  
Idle  
Idle  
Idle  
Idle  
ID  
CR2  
CR1  
CR0  
Data  
Data  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
SOP read 4 bytes x x 1 1 0 0 1 1  
Idle  
1 0 0 0 0 0 0 1  
Data  
Idle  
Idle  
Idle  
Idle  
Idle  
ID  
CR3  
CR2  
CR1  
CR0  
Data  
Data  
Data  
Note: x: in accordance with the description of the power-up operation command. See  
“SOP Command” on page 38.  
Semiconductor Group  
54  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Command Structure  
7.2  
XOP Commands  
7.2.1  
XOP - Write Commands  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
DOUT  
XOP write 2 bytes 0 0 0 1 1 0 0 1  
Idle  
Idle  
Idle  
XR1  
XR0  
Data  
Data  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
XOP write 3 bytes 0 0 0 1 1 0 1 0  
Idle  
Idle  
Idle  
Idle  
XR2  
XR1  
XR0  
Data  
Data  
Data  
7.2.2  
XOP - Read Commands  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
Idle  
DOUT  
XOP read 1 byte 0 0 1 1 1 0 0 0  
Idle  
Idle  
1 0 0 0 0 0 0 1  
Data  
ID  
XR0  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
XOP read 2 bytes 0 0 1 1 1 0 0 1  
Idle  
1 0 0 0 0 0 0 1  
Data  
Idle  
Idle  
Idle  
ID  
XR1  
XR0  
Data  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
Idle  
DOUT  
XOP read 3 bytes 0 0 1 1 1 0 1 0  
Semiconductor Group  
55  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Command Structure  
Idle  
Idle  
Idle  
Idle  
1 0 0 0 0 0 0 1  
ID  
Data  
Data  
Data  
XR2  
XR1  
XR0  
7.3  
COP Command  
COP - Write Commands  
7.3.1  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
COP write 4 bytes 0 0 0 0 b b b b  
Idle  
Idle  
Idle  
Idle  
Idle  
Coeff. 3  
Coeff. 2  
Coeff. 1  
Coeff. 0  
Data  
Data  
Data  
Data  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
COP write 8 bytes 0 0 0 0 b b b b  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Coeff. 7  
Coeff. 6  
Coeff. 5  
Coeff. 4  
Coeff. 3  
Coeff. 2  
Coeff. 1  
Coeff. 0  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Semiconductor Group  
56  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Command Structure  
7.3.2  
COP - Read Commands  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
COP read 4 bytes 0 0 1 0 b b b b  
Idle  
1 0 0 0 0 0 0 1  
Data  
Idle  
Idle  
Idle  
Idle  
Idle  
ID  
Coeff.3  
Coeff.2  
Coeff.1  
Coeff.0  
Data  
Data  
Data  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
COP read 8 bytes 0 0 1 0 b b b b  
Idle  
1 0 0 0 0 0 0 1  
Data  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
ID  
Coeff.7  
Coeff.6  
Coeff.5  
Coeff.4  
Coeff.3  
Coeff.2  
Coeff.1  
Coeff.0  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Note: b: in accordance with the description of the COP command. See “COP Command”  
on page 50.  
Semiconductor Group  
57  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Command Structure  
7.4  
CAO Command  
7.4.1  
CAO - Write Commands  
DIN  
CAO write  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
0 1 0 1 1 0 0 0  
Caller ID 512  
Caller ID 511  
Caller ID 510  
...  
Idle  
Idle  
Idle  
Idle  
Idle  
Idle  
Caller ID 1  
7.4.2  
CAO - Read Commands  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
ID  
CAO read  
0 1 1 1 1 0 0 0  
Idle  
Idle  
1 0 0 0 0 0 0 1  
Data  
Caller ID  
512  
Idle  
Data  
Data  
Caller ID  
511  
Idle  
Idle  
...  
Caller ID 1  
Semiconductor Group  
58  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
ALIS Command Structure  
7.5  
Example of a Mixed Command  
Every single command must begin with a falling edge of CS.  
DIN  
7 6 5 4 3 2 1 0 Bit  
7 6 5 4 3 2 1 0  
DOUT  
SOP write 4 bytes x x 0 1 0 0 1 1  
Idle  
CR3  
CR2  
CR1  
CR0  
Data  
Data  
Data  
Data  
Idle  
Idle  
Idle  
Idle  
XOP write 2 bytes 0 0 0 1 1 0 0 1  
Idle  
XR1  
XR0  
Data  
Data  
Idle  
Idle  
COP write 4 bytes 0 0 0 0 b b b b  
Idle  
Coeff. 3  
Coeff. 2  
Coeff. 1  
Coeff. 0  
Data  
Data  
Data  
Data  
Idle  
Idle  
Idle  
Idle  
SOP read 3 bytes x x 1 1 0 0 1 0  
Idle  
Idle  
1 0 0 0 0 0 0 1  
ID  
Idle  
Data  
CR2  
CR1  
CR0  
Idle  
Data  
Idle  
Data  
COP read 4 bytes 0 0 1 0 b b b b  
Idle  
Idle  
1 0 0 0 0 0 0 1  
ID  
Idle  
Data  
Coeff.3  
Coeff.2  
Coeff.1  
Coeff.0  
Idle  
Data  
Idle  
Data  
Idle  
Data  
Idle  
XOP read 1 byte 0 0 1 1 1 0 0 0  
Idle  
Idle  
1 0 0 0 0 0 0 1  
Data  
ID  
XR0  
Semiconductor Group  
59  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Interrupt Controller  
8
Interrupt Controller  
There are seven different sources that can cause interrupts in ALIS. The status of these  
sources are read from interrupt register XR0. Every interrupt source can be enabled  
individually in interrupt-enable register XR1.  
To monitor an interrupt source, the corresponding bit must be set in XR1. If an enabled  
interrupt indication occurs, the interrupt register XR0 is locked. The lock is released  
when the interrupt register XR0 is read. Any interrupt indication occurring during a locked  
period will be detected after the lock has been released.  
NOTE: An interrupt is only acknowledged when the appropriate bit has been set in the  
interrupt-enable register XR1.  
The INT pin can be used as an indication to allow external hardware to read the interrupt  
register. If the Int_en bit (CR4) is set, the INT pin goes to ’1’ whenever the interrupt  
register is locked.  
The host must analyze the bits in the interrupt register to determine the cause of the  
pending interrupt. All interrupt sources that are not enabled must be ignored by the host  
in its analysis. It is possible for several sources together to cause only one interrupt! (i.e.  
breakdown of serial connection to ALIS-A: VDD_OK, SI_0, SI_1; if more interrupts occur  
during the locked period). If the interrupt was caused by a CADENCE, RING,  
CALLER_ID or WAKE_UP interrupt, the indication that caused the pending interrupt is  
reset by reading interrupt register XR0.  
As only one interrupt can be stored internally, the host must respond immediately to  
avoid loss of interrupts.  
8.1  
Nature and Sources of Interrupts:  
There are three different kinds of interrupt indications depending on their source as  
shown in the sections below.  
Semiconductor Group  
60  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Interrupt Controller  
8.1.1  
Interrupt Indication at Signal Change:  
Interrupts:  
Sources:  
SI_0, SI_1, VDD_OK;  
Signaling pins at ALIS-A (SI_0, SI_1);  
VDD_OK indicates that ALIS-A has a power supply and that  
the serial connection via the cap. interface is working;  
Interrupt indication:  
Any change in the signals will generate an interrupt. The host  
must store the previous state of these bits to check which  
signal caused an interrupt.  
Note:  
These bits will go to ‘0’ when there is no connection to  
ALIS-A via the cap. interface. This will cause interrupts!  
Lock behaviour:  
At lock-release time, the current signal is compared to the  
signal stored at lock time. Any difference will cause another  
interrupt.  
8.1.2  
Interrupt Indication at Event:  
Interrupts:  
Sources:  
CALLER_ID, RING, CADENCE;  
CALLER_ID:  
Complete marker sequence of caller ID detected;  
RING:  
Depending on automatic mode switching:  
- detection of more than 18 V at TIP/RING (No_auto_ring ’1’);  
- 2nd valid ringing (No_auto_ring ’0’);  
CADENCE:  
Time-out for 2nd ring burst; the time can be programmed in  
XR2 (No_auto_ring ’0’);  
Interrupt indication:  
Lock behaviour:  
These interrupts indicate that a certain event has occurred.  
The bits are set from their source and can be reset from the  
host only by reading the interrupt register. Whenever one of  
these bits is set, this is an indication that this event has  
occurred.  
If one of these events occurs while the register is locked,  
another interrupt will be generated as soon as the lock is  
released.  
Semiconductor Group  
61  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Interrupt Controller  
8.1.3  
Interrupt Indication at High Level:  
If ALIS-D is set to deep-sleep mode (XR6, CLK_OFF = ’1’), this interrupt indicates that  
there is a signal greater than 18 V at TIP/RING.  
Interrupts:  
WAKE_UP;  
Source:  
ring_detect signal from ALIS-A;  
Interrupt indication:  
More than 18 V at TIP/RING. It is cleared after the interrupt  
register has been read. Another interrupt is generated if the  
signal remains higher than 18 V.  
Lock behaviour:  
The interrupt will lock the register as soon as clock is turned  
on again! (If no clock signal is applied to ALIS-D, the other  
interrupts cannot occur anyway.)  
Semiconductor Group  
62  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9
Operating Modes  
9.1  
Reset (Basic Settings Mode)  
Condition: RESET low, MCLK can be down  
ALIS-D:  
After initial application of VDD (power-on reset), reset of the setting pin to ’0’ during  
operation or a software reset (see XOP command), ALIS-D enters the basic settings  
mode. Basic settings means that the ALIS-D configuration registers CR0... CR5 and  
XR0... XR7 are initialized to the default value (sleep mode). All programmable filters are  
disabled.  
If any voltage is applied to any input pin before the initial application of VDD, ALIS may  
be unable to enter the basic settings mode. In this case, it is necessary to reset ALIS or  
to initialize its configuration registers to the default value.  
ALIS-A:  
When the plug is connected to TIP/RING and the hook switch is closed, ALIS-A  
generates its supply voltage from the line current and performs a power-on reset.  
9.2  
Deep Sleep Mode  
Condition: RESET ’1’, if used the external master clock can be deactivated.  
It can be entered from any mode by programming the CLK_OFF bit in XR6. During deep  
sleep mode, the serial control interface is ready to receive and register commands only  
when MCLK is switched on (see “XR6 Extended Register 6 (Power State)” on page 49).  
Incoming rings will be indicated by the Wake_up interrupt.  
9.3  
Sleep Mode  
Condition: RESET ’1’, if used the external master clock must be activated.  
When the RESET pin (RESET state) is released, ALIS enters sleep mode. ALIS is forced  
to sleep mode when the PU (power up) bits are set to '00' in the SOP command. During  
sleep mode, the serial control interface is ready to receive commands and transmit data.  
Voice data received on the DAT_IN pin will be ignored. The ALIS configuration registers  
the caller ID RAM, and the coefficient RAM can be loaded and read back in this mode.  
9.4  
Ringing Mode  
Condition: RESET ’1’, if used the external master clock must be activated.  
This mode is entered automatically when bit No_auto_ring is set to 0 from sleep mode  
after the first ringing pulse or when the PU bits are set to '01' in the SOP command. In  
this mode, ALIS will measure the level, frequency and cadence of the ringing signal. The  
cadence between the first two ring bursts is stored in XR4. If the Caller_en bit is enabled,  
an incoming caller ID will be decoded and stored (see CAO command).  
Semiconductor Group  
63  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.5  
Conversation Mode  
Condition: RESET ’1’, if used the external master clock must be activated.  
The operating mode is entered upon recognition of the PU bits set to '10' in a SOP  
command.  
In conversation mode, the AC impedance loops and the DC loops are switched on. The  
programmed AC and DC characteristics are implemented by these loops. The receive  
and transmit paths are on. The tone generators are available.  
9.6  
Pulse Dialing Mode  
Condition: RESET ’1’, if used the external master clock must be activated.  
The pulse dialing mode is entered by setting the PU bits to '11' in a SOP command.  
In pulse dialing mode, the external transistor T1 is switched on and off in accordance with  
the PULSE bit in CR1. The pulse timing must be controlled by the host.  
Semiconductor Group  
64  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.7  
Operating Flowchart  
clock_off Bit is 1  
1
wake_up  
DEEP  
SLEEP  
command  
SLEEP  
2
ring  
(in no_auto_ring = 1 and  
ring)  
cadence  
first ring ends & no caller ID ||  
no valid ring  
ringing &  
no_auto_ring = 0  
command  
3
ring  
(if no_auto_ring = 0 and  
second valid ring)  
RINGING  
vdd  
si0  
si1  
caller_id  
command  
on hook  
vdd  
si0  
si1  
PULSE  
DIALING  
CON  
VERSATION  
off hook  
user has to programm clock_off bit and supply clock signal in case of external clock  
1
2
after this interrupts the alis -d system will stay in sleep mode. A user command to ringing  
is mandatory.  
after this interrupts the alis -d system will stay in ringing mode. A user command to active  
or sleep is mandatory.  
3
Figure 25 Operating Mode Transitions and Interrupts  
9.8 Flow of Ring Sequence and Detection  
Ring detection works in ALIS as a two step procedure.  
In a first step, ALIS-A will detect any AC signal at TIP and RING with a peak value of  
more than 18 V and will generate the Ring_detect signal. This signal can either generate  
an interrupt or switch ALIS to ringing mode depending on the No_auto_ring bit in CR1  
(see “CR1 Configuration Register 1 (Dialing)” on page 40). The current power mode can  
Semiconductor Group  
65  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
be read from the register XR6 (see “XR6 Extended Register 6 (Power State)” on page  
49).  
As a second step, only if enabled by RM (see “CR1 Configuration Register 1 (Dialing)”  
on page 40) in ringing mode, the TIP/RING signal will be band-filtered and compared to  
a programmable threshold. If the result is higher than this threshold, the RMR-bit signal  
is set to one. The ring threshold can be polled as the RMR bit in CR1. The following flow  
charts show these sequences in more detail.  
Note: The initial connection to TIP RING looks like a ring voltage to ALIS-A. The reaction  
of ALIS-D depends on the auto_ring bit:  
a) auto_ring: ALIS-D goes to ringing, since the spike is not a valid ringing signal.  
ALIS-D then goes to sleep mode.  
b) No_auto_ring: ALIS-D generates a ring interrupt, stays in sleep mode and waits  
for a command. The user has to switch ALIS-D to ringing and poll the RMR bit. If  
ringing is not valid (RMR bit = 0), the chip can be set back to sleep mode.  
To detect a valid ring signal and caller ID, ALIS must be programmed to the following  
setting:  
• set RM to ’1’ (see “CR1 Configuration Register 1 (Dialing)” on page 40)  
• cadence time-out must be programmed to PTT requirements (see “XR2 Extended  
Register 2 (Cadence Time Out)” on page 47)  
• ring latency timer must be programmed to a value higher than four times the ring  
period (see “XR5 Extended Register 5 (Ring Timer)” on page 49)  
• valid ring coefficients  
• set No_auto_ring to ’0’ (see “CR1 Configuration Register 1 (Dialing)” on page 40)  
• enable Call_en (see “CR2 Configuration Register 2 (Caller ID)” on page 41)  
• enable corresponding interrupts  
Semiconductor Group  
66  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.1  
Successful Ring Sequence, Auto Ring Enabled, no Caller ID  
The following chart and diagram show the successful flow of a ring-event detection with  
automatic power-mode change (No_auto_ring = 0, Caller_en = 0, RM = 1). In this  
operating mode, ALIS will not decode a caller ID.  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
R
i
i
n
n
g
_
d
e
t
e
c
t
R
g
_
t
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
ringing  
on hook  
sleep  
2nd ring  
on  
hook  
off  
hook  
Line:  
sleep  
ringing  
conv.  
Mode:  
ringcounter  
ringcounter  
Counter:  
cadence counter  
VDD_ok  
VDD_ok  
VDD_ok  
VDD_ok VDD_ok  
ring  
Interrupt:  
Figure 26 Successful Ring Sequence, No_auto_ring = 0; Caller_en = 0  
Semiconductor Group  
67  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.2  
Successful Ring Sequence, Auto Ring Enabled, Caller ID  
The following chart and diagram show the successful flow of a ring-event detection with  
automatic power-mode change (No_auto_ring = 0, Caller_en = 1, RM = 1). In this  
operating mode, ALIS will decode and store a caller ID.  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
C
a
l
l
e
r
I
D
R
e
a
d
i
n
g
C
a
l
l
e
r
I
d
R
R
i
i
n
n
g
_
d
e
t
e
c
t
g
t
_
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
on  
hook  
caller ID  
on  
hook  
2nd ring  
on hook  
off  
hook  
Line:  
sleep  
ringing  
conv.  
Mode:  
ringcounter  
ringcounter  
Counter:  
Interrupt:  
cadence counter  
VDD_ok  
VDD_ Caller_ID  
ok  
VDD_ok  
Vdd_ok Vdd_ok  
ring  
Figure 27 Successful Ring Sequence, No_auto_ring = 0; Caller_en = 1  
Semiconductor Group  
68  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.3  
Unsuccessful Ring Sequence, Auto Ring Enabled, no Caller ID  
The following chart and diagram show the unsuccessful flow of a ring-event detection  
because of no 2nd ring with automatic power-mode change (No_auto_ring = 0,  
Caller_en = 0, RM = 1).  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
R
i
i
n
n
g
g
_
_
d
t
e
t
e
c
t
R
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
ringing  
on hook  
sleep  
Line:  
sleep  
Mode:  
ringcounter  
Counter:  
Interrupt:  
cadence counter  
VDD_ok  
VDD_ok  
cadence  
Figure 28 Unsuccessful Ring Sequence, No_auto_ring = 0; Caller_en = 0  
Semiconductor Group  
69  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.4  
Unsuccessful Ring Sequence, Auto Ring Enabled, Caller ID  
The following chart and diagram show the unsuccessful flow of a ring-event detection  
because of no 2nd ring with automatic power-mode change (No_auto_ring = 0,  
Caller_en = 1, RM = 1).  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
C
a
l
l
e
r
I
D
R
e
a
d
i
n
g
C
a
l
l
e
r
I
d
R
i
i
n
n
g
g
_
_
d
e
t
e
c
t
R
t
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
on hook  
ringing  
caller ID  
on hook  
Line:  
sleep  
sleep  
Mode:  
ringcounter  
Counter:  
Interrupt:  
cadence counter  
VDD_ok  
VDD_ok Caller_ID  
cadence  
Figure 29 Unsuccessful Ring Sequence, No_auto_ring = 0; Caller_en = 1  
Semiconductor Group  
70  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.5  
Successful Ring Sequence, Auto Ring Disabled, No Caller ID  
The following chart and diagram show the successful flow of a ring-event detection with  
no automatic power-mode change (No_auto_ring = 1, Caller_en = 0, RM = 1). In this  
operating mode, ALIS will not decode the caller ID.  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
R
i
i
n
n
g
_
d
e
t
e
c
t
R
g
t
_
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
ringing  
on hook  
sleep  
2nd ring  
on  
hook  
off  
hook  
Line:  
sleep  
ringing  
conv.  
Mode:  
ring  
VDD_ok  
VDD_ok  
ring  
VDD_ok VDD_  
ok  
Interrupt:  
ring mode  
sleep mode  
ring mode  
close  
hook;  
conv.  
Host  
CMDs:  
poll RMR √  
poll RMR √  
Figure 30 Successful Ring Sequence, No_auto_ring = 0; Caller_en = 0  
Note: The RMR bit must be polled by the host to verify that the ringing signal is above  
the programmed threshold level and check the VDD interrupts.  
Semiconductor Group  
71  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.6  
Successful Ring Sequence, Auto Ring Disabled, Caller ID  
The following chart and diagram show the successful flow of a ring-event detection with  
no automatic power-mode change (No_auto_ring = 1, Caller_en = 1, RM = 1). In this  
operating mode, ALIS will decode and store the caller ID.  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
C
a
l
l
e
r
I
D
R
e
a
d
i
n
g
C
a
l
l
e
r
I
d
R
i
i
n
n
g
g
_
_
d
t
e
t
e
c
t
R
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
on hook  
2nd ring  
on  
hook  
off  
hook  
Line:  
sleep  
ringing  
conv.  
Mode:  
ring  
VDD_ok  
Caller_ID  
VDD_ok  
ring  
VDD  
_ok  
VDD  
_ok  
Interrupt:  
ring mode  
close  
hook;  
conv.  
Host  
CMDs:  
poll RMR √  
poll RMR √  
Figure 31 Successful Ring Sequence, No_auto_ring = 1; Caller_en = 1  
Note: The RMR bit must be polled by the host to verify that the ringing signal is above  
the programmed threshold level.  
By leaving ALIS in ringing mode after the first ring, the caller ID can be detected  
and stored.  
Semiconductor Group  
72  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.7  
Unsuccessful Ring Sequence, Auto Ring Disabled, no Caller ID  
The following chart and diagram show the unsuccessful flow of a ring-event detection  
because of no 2nd ring with no automatic power-mode change (No_auto_ring = 1,  
Caller_en = 0, RM = 1).  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
R
R
i
i
n
n
g
g
_
_
d
t
e
t
e
c
t
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
ringing  
on hook  
sleep  
Line:  
sleep  
Mode:  
ring  
VDD_ok  
Interrupt:  
ring mode  
sleep mode  
Host  
CMDs:  
poll RMR √  
Figure 32 Unsuccessful Ring Sequence, No_auto_ring = 1; Caller_en = 0  
Note: The RMR bit must be polled by the host to verify that the ringing signal is above  
the programmed threshold level.  
The cadence time and number of rings must be calculated by the host.  
Semiconductor Group  
73  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.8  
Unsuccessful Ring Sequence, Auto Ring Disabled, Caller ID  
The following chart and diagram show the unsuccessful flow of a ring-event detection  
because of no 2nd ring with no automatic power-mode change (No_auto_ring = 0,  
Caller_en = 1, RM = 1). .  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
C
a
l
l
e
r
I
D
R
e
a
d
i
n
g
C
a
l
l
e
r
I
d
R
i
i
n
n
g
g
_
_
d
t
e
t
e
c
t
R
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
on  
hook  
caller ID  
on hook  
Line:  
sleep  
ringing  
Mode:  
ring  
VDD_ok Caller_ID  
Interrupt:  
ring mode  
Host  
CMDs:  
poll RMR √  
Figure 33 Unsuccessful Ring Sequence, No_auto_ring = 1; Caller_en = 1  
Note: The cadence time and the number of rings must be calculated by the host.  
Semiconductor Group  
74  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.9  
Unsuccessful Ring Sequence, Auto Ring Enabled  
The following chart and diagram shows an unsuccessful flow of a ring-event detection  
because ringing is below the ring threshold level with an automatic power-mode change  
(No_auto_ring = 0, RM = 1).  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
R
R
i
i
n
n
g
g
_
_
d
t
e
t
e
c
t
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
ringing  
on hook  
sleep  
Line:  
sleep  
Mode:  
ringcounter  
Counter:  
Interrupt:  
VDD_ok  
VDD_ok  
Figure 34 Unsuccessful Ring Sequence, No_auto_ring = 0  
Semiconductor Group  
75  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.10 Unsuccessful Ring Sequence, Auto Ring Disabled  
The following chart and diagram show an unsuccessful flow of a ring-event detection  
because ringing is below the ring threshold level with no automatic power-mode change  
(No_auto_ring = 1, RM = 1).  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
R
R
i
i
n
n
g
g
_
_
d
e
t
e
c
t
t
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
ringing  
on hook  
sleep  
Line:  
sleep  
Mode:  
ring  
VDD_ok  
Interrupt:  
ring mode  
sleep mode  
Host  
CMDs:  
poll RMR √  
Figure 35 Unsuccessful Ring Sequence, No_auto_ring = 0  
Note: RMR will not be ’1’  
Semiconductor Group  
76  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Operating Modes  
9.8.11 Start from Deep Sleep Mode  
The following chart and diagram show a start-up procedure from deep sleep mode.  
2
n
d
R
I
N
G
B
u
r
s
t
1
s
t
R
I
N
G
B
u
r
s
t
R
R
i
i
n
n
g
g
_
_
d
t
e
t
e
c
t
h
r
e
s
h
o
l
d
on  
hook  
1st ring  
Line:  
deep  
sleep  
Mode:  
Wake_up  
Interrupt:  
enable MCLK on board  
any power mode  
Host  
CMDs:  
set CLK_OFF = 0  
Figure 36 Deep Sleep Start  
Note: After the wake_up interrupt, any power mode and operation flow can be  
programmed as described in the previous sections .  
Semiconductor Group  
77  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Modem Functions  
10  
Modem Functions  
Pulse Dialing  
10.1  
Pulse dialing will be implemented by shortening the line with external transistor T1. Pulse  
timing must be controlled by the host. Pulse shaping is implemented in ALIS-A and  
complies with ETS 300 001  
10.2  
DTMF Dialing  
DTMF Dialing is implemented by two internal tone generators (see “Programming the  
ALIS DTMF Tone Generators” on page 78). Since the level of tone generator 2 is 3 dB  
higher than that of tone generator 1, the former should be used for the high frequency  
group. The frequency accuracy of the tone generators is better than 1%. The absolute  
±
transmission level can be programmed using the AX filter. Software for computing the  
coefficients is available.  
The tone generators can also be used to generate any in-band sine wave for test or  
measurement purposes.  
10.2.1 Programming the ALIS DTMF Tone Generators  
Two independent tone generators are available. When one or both of them are turned  
on, the voice signal is switched off automatically. A programmable bandpass filter is  
included to make the generated signal suitable for DTMF. The default frequency for both  
tone generators is 2000 Hz. Coefficients for other frequencies are generated by a  
software tool.  
Byte sequences for programming both tone generators and bandpass filters:  
Frequency Command  
Byte 1  
11  
Byte 2  
B3  
Byte 3  
5A  
Byte 4  
2C  
697 Hz  
770 Hz  
852 Hz  
941 Hz  
0B *)  
0B *)  
0B *)  
0B *)  
12  
33  
5A  
C3  
13  
3C  
5B  
32  
1D  
1B  
5C  
CC  
1209 Hz  
1336 Hz  
1477 Hz  
1633 Hz  
0C *)  
0C *)  
0C *)  
0C *)  
32  
EC  
AA  
9B  
32  
1D  
AC  
3B  
52  
52  
51  
51  
B3  
22  
D2  
25  
Semiconductor Group  
78  
Data Sheet 06.98  
 
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Modem Functions  
*) 0B is used for programming tone generator 1  
0C is used for programming tone generator 2  
Table 7: Programming the tone generators  
The sine wave is filtered by a bandpass, the Q factor of this band filter can be altered in  
the range from 0 to 7 and can be programmed by setting the first nibble of byte 3 to the  
corresponding value (always 5 in this table). The resulting signal amplitude can be set  
by programming the filters AR1 and AR2.  
10.3  
Caller ID  
The caller ID interface is compatible with Bellcore TR-NWT-000030 and SR-TSV-  
002476 as regards generic requirements for transmitting asynchronous voice-band data  
to customer premises equipment (CPE) from a serving stored-control switching system  
(SPCS) or a central office (CO). In this service, the information about the calling party is  
embedded in the silent interval between the first and the second ring. During this period,  
ALIS receives and stores up to 4096 bits of the1200-baud FSK signal. The decoding also  
complies with BELL 202 and CCITT V.23 specifications. (see “Programming the ALIS  
Caller ID Coefficients” on page 81)  
10.3.1 Characteristics for Caller ID  
Parameter  
Sym-  
bol  
Limit Values  
typ  
Unit  
Reference  
min  
max  
Input detection level  
Detect frequencies  
Vin  
-36  
12.3  
-9  
275  
dBm  
mV  
Bell 202 1 (mark)  
Bell 202 0 (space)  
1188  
2178  
1200  
2200  
1212  
2222  
Hz  
Hz  
Bell 202  
CCITT V.23 1 (mark)  
CCITT V.23 0 (space)  
1280.5 1300 1319.5  
2068.5 2100 2131.5  
Hz  
Hz  
CCITT V.23  
Input noise tolerance  
Input baud rate  
SNR  
20  
dB  
Hz  
1188  
1200  
1212  
Table 8: Characteristics of Caller ID  
Semiconductor Group  
79  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Modem Functions  
10.3.2 Storage and Reading of Caller ID  
The storage of the decoded caller ID is enabled after the first space following the mark  
state. This event will be indicated by the caller ID interrupt. The maximum storage size  
is 4096 bits. Start, stop-bit and check-sum decoding must be performed by the host.  
CID FSK  
First  
Ringing  
Second  
Ringing  
TIP/RING  
DATA  
mark  
state  
channel  
seizure  
Figure 37 CID Input Timing  
When the RAM is read with the CAO command, the received bits will be sent from ALIS  
in the following order:  
DIN:  
CAO-  
com-  
mand  
DOUT:  
id_byte  
...  
b0 is the first caller ID data bit after the ’0’ which ends the marker sequence, b1 the  
second, b2 the third etc. ...  
The host can read the caller ID RAM at any time. Note that the read data may be  
erroneous when caller ID data is received at the same time, as old and new data might  
be mixed. However, the received caller ID bits are stored correctly in the RAM!  
-> Try not to read the RAM while the caller ID is being received!  
Semiconductor Group  
80  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Modem Functions  
10.3.3 Programming the ALIS Caller ID Coefficients  
Frequency Command  
Byte 1,2  
CA 0E  
Byte 3,4  
CA 09  
Byte 5,6  
99 99  
Byte 7,8  
99 99  
BELL 202 /  
CCITT V.23  
0E (CID1)  
0F (CID2)  
FD B5  
BA 07  
DA XX  
XX XX  
Table 9: Programming the ALIS Caller ID Coefficients  
10.4  
Billing Pulse  
Billing pulse frequencies of 12 and 16 kHz are filtered out by the digital part of ALIS. No  
external components are necessary for blocking.  
10.5  
Ring Detect  
10.5.1 Functional Description  
In sleep mode, any signal greater than a typical value of 18 volts will be detected.  
Depending on the No_auto_ring bit, either an interrupt will occur or ALIS will be switched  
automatically to ringing mode. In this mode, the ringing signal will be passed to ALIS-D  
and decoded. If the ring burst does not meet the programmed requirements within a  
programmable time, ALIS will return to sleep mode. After a latency time, ALIS will  
decode the caller ID. When the second valid ring burst occurs, a ring interrupt is  
generated, signalling the incoming call to the host (see “Flow of Ring Sequence and  
Detection” on page 65)  
Semiconductor Group  
81  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Modem Functions  
10.5.2 Programming the ALIS Ring Detect Coefficients  
Frequency Command  
Byte 1  
AA  
Byte 2  
05  
Byte 3  
0F  
Byte 4  
8E  
25 Hz  
70Vrms  
10 kΩ  
0D  
Command  
03  
Byte 1,2  
1C B3  
2D 62  
Byte 3,4  
AB AB  
A6 BB  
Byte 5,6  
54 2D  
2A 7D  
Byte 7,8  
62 2D  
0A D4  
1.0 µF  
06  
Table 10: Programming ALIS Ring Detect Coefficients  
Frequency Command  
Byte 1  
22  
Byte 2  
15  
Byte 3  
B5  
Byte 4  
84  
50 Hz  
50Vrms  
10kΩ  
0D  
Command  
03  
Byte 1,2  
1C A4  
2B A2  
Byte 3,4  
AA AB  
A6 BB  
Byte 5,6  
BD 2B  
2C 63  
Byte 7,8  
A2 2D  
3A D4  
0.6 µF  
06  
Table 11: Programming ALIS Ring Detect Coefficients  
10.5.3 Ring Threshold in Sleep Mode  
Parameter  
Symbol  
Limit Values  
Unit  
Reference  
min  
typ  
max  
18  
Ring Threshold  
12  
Vrms  
Table 12: Ring Threshold in Sleep Mode  
Semiconductor Group  
82  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Characteristics  
11  
Electrical Characteristics  
Programmable Filters  
11.1  
A set of programmable filters is used to adapt the whole system to:  
• country standards  
• board designs (EMI capacitors etc.)  
• data pumps  
• telephone lines  
Note: All these coefficients will be computed by a coefficient program. Any change in  
these computed values may cause a loss of performance or instability.  
In detail, the following filters are programmable:  
• Trans-hybrid balancing (TH) filter  
• Trans-hybrid pre-balancing filter  
• Impedance matching (IM) filter  
• Frequency response receive (FRR) filter  
• Frequency response transmit (FRX) filter  
• Ringer impedance  
Amplification/attenuation transmit (AX) filter  
Gain for AX filter  
range 3.. -14 dB:  
step size 0.02 .. 0.05 dB  
step size 0.5 dB  
range -14 .. -24 dB:  
Gain for AGX  
range 3.5, 0 -2.5, -6  
Amplification/attenuation receive (AR) filter  
Gain for AR filter  
range -3 .. 14 dB:  
step size 0.02 .. 0.05 dB  
step size 0.5 dB  
range 14 .. 24 dB:  
Gain for AGR_R:  
range 0, 3.5, 6 dB  
Gain for AGR_Z:  
range -3.5, 0, 2.5, 6 dB  
11.2  
DC Characteristics  
The filter coefficients are generated by a software tool including a high-level model of  
ALIS and additional user-defined or application-specific system components.  
Semiconductor Group  
83  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Characteristics  
11.2.1 DC Termination  
The DC termination is enabled in conversation mode and is disabled during ringing  
mode, puls dialing mode and sleep mode. The DC termination can be programmed  
according to the formula:  
for i < Imax  
(u Uo)  
--------------------  
i(u) =  
for i > Imax  
i(u) = Imax  
R
Note: U0 is the sum of the U value listed in table 14 and the flow voltage of the diodes  
in the external bridge (typ. 2 x 0.4 V)  
11.2.2 Programming Ranges for DC Termination  
Imax  
50 mA  
100 mA  
Table 13: Programming Range for Imax  
U (DCU)  
0 V  
1.5 V  
3.5 V  
7.2 V  
Table 14: Programming Range for U  
R (DCR)  
70 Ω  
100 Ω  
200 Ω  
240 Ω  
280 Ω  
Table 15: Programming Range for R  
Note: For programming details, see “XR3 Extended Register 3 (DC Characteristic)” on  
page 47  
Semiconductor Group  
84  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Characteristics  
11.2.3 Input Current in Puls Dialing Mode  
Uab = 30 V DC  
Parameter  
Symbol  
Limit Values  
min typ max  
500  
Unit  
Input current at break  
Iin  
µA  
Table 16: Input Current in Puls Dialing Mode  
11.3  
AC Termination  
11.3.1 Ringer Impedance  
Programming of the ringer impedance is supported by a software tool. The following  
table shows typical values.  
Uab = 70 Vrms  
Parameter  
Ringer impedance (20 Hz < f <60 Hz)1)  
Typical capacitors  
Symbol  
Limit Values  
Unit  
min  
typ  
max  
Rin  
5
10  
25  
1
kΩ  
Cin  
0.6  
µF  
Ringer impedance in other modes2)  
1) The frequency range can be changed  
2) Ringer impedance is generated only in ring mode  
Table 17: Ringer Impedance  
Semiconductor Group  
85  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Characteristics  
11.4  
ALIS Caller ID Interface  
Parameter Symbol  
Limit Values  
Unit  
min  
typ  
50  
max  
Capacitance  
Cin  
Rin  
Rfb  
nF  
kΩ  
kΩ  
Rin  
Rfb  
50  
200  
Table 18: ALIS Caller ID Interface  
11.4.1 Ring Detect Levels and Frequencies  
.
Parameter  
Symbol  
Limit Values  
min typ max  
30 100  
Unit  
Tolerance  
Range of programs for  
ring-level detection  
Vring  
V
±10%  
Ring-level detection step  
size  
Vring  
Fring  
10  
60  
V
±10%  
±10%  
Range of programs for  
frequency detection  
20  
Hz  
Table 19: Ring Detect Levels and Frequencies  
11.5  
ALIS Cap Interface  
Parameter  
Symbol  
Limit Values  
Unit  
min  
typ  
max  
1000  
5
Capacitance  
Cin  
5
10  
pF  
%
Tolerance between CAP_x1  
and CAP_x2  
Inductance  
Isolation  
10  
nH  
kV  
2
4
Table 20: ALIS Cap Interface  
Semiconductor Group  
86  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12  
Electrical Performance Characteristic  
Absolute Maximum Ratings  
12.1  
Parameter  
Symbol  
Ratings  
Unit  
min  
max  
7.0  
Digital supply voltage  
VDD  
VDDA  
-0.3  
-0.3  
-0.3  
V
V
V
Analog supply voltage  
7.0  
Analog input and output voltage  
Vin, Vout  
VDDA +  
0.3  
Digital input voltages  
VDin  
-0.3  
VDD +  
0.3  
V
DC input and output current  
Storage temperature  
Iin, Iout  
TST  
-10  
-60  
-10  
10  
125  
80  
1
mA  
°C  
°C  
W
Ambient temperature under bias  
Max. power dissipation  
TA  
PDmax  
Note: Stresses above the absolute maximum ratings may cause permanent damage to  
the device. Extended operation at maximum levels may degrade performance and  
affect reliability.  
Table 21: Absolute Maximum Ratings  
Semiconductor Group  
87  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.2  
Recommended Operating Conditions  
Parameter  
Symbol  
Conditions  
Unit  
min  
4.75  
4.00  
typ  
max  
Digital supply voltage  
VDD  
5.0  
5.25  
V
V
Analog supply voltage ALIS-A  
(programmed to 4.25 V)  
VDDA  
4.25  
Analog supply voltage ALIS-D  
VDDA  
TA  
4.75  
0
5.0  
5.25  
70  
V
Ambient temperature under  
bias  
°C  
Operating frequency  
Clock duty cycle  
fclk  
16.384  
50  
20**  
55  
MHz  
%
45  
Signal rise and fall time  
tr, tf  
20  
ns  
Note: Extended operation outside the recommended limits may degrade performance  
and affect reliability.  
Note: **This value is guaranteed by design. Characterization and periodically samples  
will be applied to production devices at this test conditions.  
Table 22: Recommended Operating Conditions  
12.3  
DC Characteristics  
12.3.1 ALIS-A  
VDDA= 4.25V progr.; TA=0 - 70°C  
Parameter  
Symbol  
tPU  
Conditions  
Spec. Limits  
Unit  
ms  
min  
typ  
max  
Power-up time  
100  
VDDA supply current1)  
Ringing mode2)  
IDDA1  
Vring=60V DC +  
90Vrms,  
fring=25 - 50Hz  
2.5  
7
3
mA  
Conversation mode3)  
Pulse dialing mode  
Digital interface  
IDDA2 fclk=16.384MHz  
10  
mA  
IDDA3  
Vab=30 V DC  
500  
µA  
Semiconductor Group  
88  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
Low-level input voltage  
High-level input voltage  
Low-level output voltage  
VIL4)  
VIH4)  
VOL5)  
VOH5)  
0.8  
0.5  
V
V
V
V
2.0  
IOL=5mA  
High-level output  
voltage  
IOH=-5mA  
3.25  
Input current low  
Input current high  
Input resistance  
Sleep mode  
IIL  
VIL=GNDA  
±1  
±1  
µA  
µA  
IIH  
VIH=VDDA  
Rin  
Rin  
Rin  
note6)  
MΩ  
Conversation mode  
Pulse dialing mode  
see 10.2.3  
Inter-pulsing  
200  
period (make)  
Ring threshold  
VRThresh VDDA=4.25V ext.  
15 VRMS  
Power supply rejection  
PSRR  
Ripple:  
0-150kHz;  
70mVrms  
either supply/direction  
either supply/direction  
300Hz - 3.4kHz  
3.4kHz - 150kHz  
40  
25  
dB  
dB  
1) Will be taken from TIP/RING when the hook switch is open  
2) In ringing mode the ringer impedance will be synthesized. Therefore a current according to this impedance will  
flow from TIP/RING. This current is taken out of the ring burst as an AC current.  
3) In conversation mode the DC characteristic will be synthesized and a current according to this characteristic will  
flow from TIP/RING.  
4) Digital Inputs: Test, SI_0, SI_1  
5) Digital Outputs: SO_0, SO_1Q  
6) Within this mode the hook switch must be open and the input resistance is infinite.  
Table 23: DC Characteristics ALIS-A  
Semiconductor Group  
89  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.3.2 ALIS-D  
VDD = VDDA= 5V± 5%; TA=0 - 70°C  
Parameter  
Symbol  
Conditions  
Spec. Limits  
Unit  
min  
typ  
max  
Supply current  
VDD=5V, no  
loads  
Deep sleep mode  
Sleep mode  
IDD0  
IDD1  
IDD2  
IDD3  
IDD4  
<10  
3.5  
8.0  
13  
50  
10  
15  
25  
15  
µA  
fclk =  
16.384 MHz  
mA  
mA  
mA  
mA  
V
Ringing mode  
Conversation mode  
Pulse dialing mode  
Low-level input voltage VIL11)  
8.0  
0.8  
1.5  
0.5  
VIL22)  
VIL33)  
High-level input voltage VIH11)  
2.0  
3.5  
3.5  
V
VIH22)  
VIH33)  
Low-level output  
voltage  
VOL4)  
VOH4)  
IOL=5mA  
0.5  
V
V
High-level output  
voltage  
IOH=-5mA  
VDD-  
0.5  
Input current low  
IIL1,2)  
VIL=GND  
VIH=VDD  
VIL=GND  
VIH=VDD  
±1  
±1  
±1  
±1  
µA  
µA  
µA  
µA  
Input current high  
Tri-state current low  
Tri-state current high  
IIH1,2)  
IOZL5)  
IOZH5)  
1) TTL Inputs: DCLK, CS, DIN, DAT_CLK, DAT_IN, MODE, FSC  
2) CMOS Input: RESET  
3) Clock Input: MCLK1  
4) Outputs: DOUT, INT, DAT_OUT, FSC  
5) Tristates, Bidirectionals: DOUT, FSC  
Table 24: DC Characteristics ALIS-D  
Semiconductor Group  
90  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.4  
AC Transmission Characteristics  
Unless otherwise stated, the transmission characteristics are guaranteed within the  
following test conditions:  
TA=0 °C to 70 °C  
VDD=5V ±5%  
VDDA=4.25V (generated from ALIS-A)  
Line impedance ZL = 600 0.1% Ohms  
±
Termination impedance ZM = 600 Ohms  
digital: 0dBm0 = -3 dB FS  
analog: 0 dBm is equal to the voltage of 0.775 Vrms when loaded with 600 Ohms  
0 dBm = 0dBm0  
f=1004Hz.  
2 VRMS metering at 12 or 16 kHZ  
VDDA programmed to 4,25 V: VTIP/RING>=6,8 V  
VDDA programmed to 4 V: VTIP/RING>=6,5 V  
12.4.1 Absolute Gain Error  
AGX=AGR=0 dB  
Parameter  
Symbol  
Limit Values  
Unit  
Test condition  
min  
typ max  
Absolute gain error  
receive  
AE_R  
-10 dBm  
TA=25 °C;  
-1  
±0.5 +1  
dB  
VDDA=4.25V  
TA=0-70 °C;  
VDDA=4.25V  
-1.2 ±0.7 +1.2 dB  
Absolute gain error  
transmit  
AE_X  
-10 dBm0  
TA=25 °C;  
-1  
±0.5 +1  
dB  
VDDA=4.25V  
TA=0-70 °C;  
VDDA=4.25V  
-1.2 ±0.7 +1.2 dB  
Semiconductor Group  
91  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
Table 25: Absolute gain error  
12.4.2 Gain Tracking  
AGX=AGR=0dB  
Parameter  
Symbol  
Limit Values  
min typ max  
Unit  
Test condition  
Gain tracking receive  
GT_R  
-0.15 ±0.01 0.15  
0 to -10 dBm  
-0.15 ±0.01 0.15  
-30 to -40 dBm  
-40 to -50 0.dBm  
0 to -10 dBm0  
-0.3  
-0.5  
-0.1  
-0.5  
±0.07 0.3  
±0.05 0.5  
±0.07 0.1  
±0.3 0.5  
Gain tracking transmit  
GT_X  
-10 to -40 dBm0  
-40 to -50 dBm0  
Table 26: Gain Tracking  
12.4.3 Harmonic Distortion plus Noise  
-10 dBm0; ZL= 600 Ω; f=1004 Hz  
Parameter  
Symbol  
Limit Values  
Unit  
Test condition  
C-weighted  
min typ max  
HDN receive  
THDN_Rc 74  
THDN_Tc 74  
THDN_Rl 72  
THDN_Tl 72  
77  
77  
75  
75  
dBFS  
dBFS  
dBFS  
dBFS  
HDN transmit  
HDN receive  
HDN transmit  
linear-weighted1)  
1) Linear weighted values are guaranteed by design, characterization, and periodically samples and testing  
production devices at this test conditions  
Table 27: Harmonic Distortion plus Noise  
Semiconductor Group  
92  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.4.4 Harmonic Distortion  
-10 dBm0; ZL= 600 Ω; f=100 to 2000 Hz, 2nd and 3rd harmonic  
Parameter  
Symbol  
Limit Values  
min typ max  
Unit  
Test condition  
HD receive  
HDN_R  
HDN_T  
HDN_El  
80  
80  
80  
dB  
HD transmit  
dB  
dB  
HD of echo signals  
via TIP/RING  
Table 28: Harmonic Distortion for Echo Signals  
12.4.5 Return Loss  
The return loss at a level of 0 dBm0 will be better than 16 dB in a 300-3600 Hz bandwidth  
using the following set of defined impedances  
600 Ohms  
220 Ohms + (820 Ohms in parallel with 115 nF)  
120 Ohms + (820 Ohms in parallel with 110 nF)  
370 Ohms + (620 Ohms in parallel with 310 nF)  
Semiconductor Group  
93  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.4.6 Frequency Response  
12.4.6.1 Receive  
Reference frequency 1kHz, input signal level 0dBm0  
Figure 38 Frequency Response Receive  
Semiconductor Group  
94  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.4.6.2 Transmit  
Reference frequency 1kHz, input signal level 0dBm0  
Figure 39 Frequency Response Transmit  
Semiconductor Group  
95  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.4.7 Group Delay  
Maximum delays when ALIS is operating with H(TH)=H(IM)=0 and H(FRR)=H(FRX)=1  
including the delay through A/D- and D/A converters. Specific filter programming may  
cause additional group delays.  
Group Delay deviations remain within the limits in the figures below.  
12.4.7.1 Group Delay Absolute Values  
Parameter  
Symbol  
Limit Values  
min typ max  
Unit  
Reference  
Receive delay  
DRA  
340  
µs  
µs  
Input signal  
level 0 dBm0  
Transmit delay  
DXA  
400  
Table 29: Group Delay  
12.4.7.2 Group Delay Distortion Receive  
Input signal level 0dBm0  
Figure 40 Group Delay Distortion Receive  
Semiconductor Group  
96  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.4.7.3 Group Delay Distortion Transmit  
Input signal level 0dBm0 1))  
Figure 41 Group Delay Distortion Transmit  
1
R is switched on: reference point is at TGmin  
HPR is switched off: reference point is at 1.5 kHz  
Semiconductor Group  
97  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.4.8 Out-of-Band Signals at TIP/RING Receive  
When an 0dBm0 out-of-band sine-wave signal with a frequency of (<<100Hz or 3.4kHz  
to 100kHz) is applied to the analog input, the level of any resulting frequency component  
at the digital output will stay at least X dB below a 0dBm0, 1kHz sine wave reference  
signal at the analog input.1))  
Figure 42 Out of Band Receive  
1
Poles at 12 kHz ± 150 Hz and 16 kHz ± 150 Hz will be provided  
Semiconductor Group  
98  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.4.9 Out-of-Band Signals at TIP/RING Transmit  
When a 0 dBm0 sine wave with a frequency of (300Hz to 3.99kHz) is applied to the digital  
input, the level of any resulting out-of-band signal at the analog output will stay at least  
X dB below a 0 dBm0 1 kHz sine-wave reference signal at the analog output.  
Figure 43 Out of Band Transmit  
Semiconductor Group  
99  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.4.10 Trans-hybrid Loss  
The quality of trans-hybrid balancing is very sensitive to deviations in gain and group  
delay. These deviations are inherent in ALIS A/D and D/A converters as well as in all the  
external components used.  
Measurement of ALIS trans-hybrid loss: A 0dBm0 sine wave signal and a frequency in  
the range between 300 - 3400 Hz is applied to the digital input. The resulting analog  
output signal VOUT at TIP RING is received and canceled by the TH filter. The  
programmable filters FRR, AR, FRX, AX and IM and the balancing filter TH are enabled  
with optimized coefficients.  
The resulting echo measured at the digital output is at least X dB below the level of the  
digital input signal as shown in the table below. (Filter coefficients will be provided.)  
Parameter  
Symbol  
Limit  
Unit  
Test condition  
Values  
Trans-hybrid loss at  
min  
typ  
40  
45  
40  
35  
35  
300 Hz  
THL 300  
THL 500  
THL2500  
THL3000  
THL3400  
27  
33  
29  
27  
27  
dB TA=25° C; VDDA=4.25V;  
500 Hz  
dB  
dB  
dB  
dB  
2500 Hz  
3000 Hz  
3400 Hz  
Table 30: Trans-hybrid Loss  
The listed values for THL correspond to a typical variation of the signal amplitude and  
delay in the analog blocks.  
Amplitude  
=typ. ±0.8 dB  
=typ. ±0.5 µs  
Delay  
Semiconductor Group  
100  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.5  
AC Timing Characteristics  
12.5.1 Input/ Output Waveform for AC Tests  
2,8  
Device  
under  
Test  
2,4  
0,8  
2,4  
0,8  
Test Points  
= 50pF max  
C
Load  
0,4  
Figure 44 Waveform for AC Tests  
12.5.2 Reset Timing  
For resetting ALIS to its basic settings mode, negative pulses applied to the RESET pin  
have to be lower than 1.5 volts (CMOS Schmitt trigger input) and longer than 180 ns.  
Signals shorter than 40 ns are ignored.  
12.5.3 Control Interface Timing  
C
D
S
C
t
s
u
(
C
S
)
t
c
(
D
C
L
K
)
t
h
d
(
C
S
)
L
K
s
u
(
D
I
N
)
h
d
(
D
I
N
)
t
t
D
D
I
O
N
t
t
p
d
(
D
O
U
T
)
p
d
(
D
)
O
U
T
Z
H
I
I
G
H
.
M
P
U
T
Figure 45 Control Interface Timing  
Semiconductor Group  
101  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
VDD=VDDA= 5V± 5%; TA= 0 - 70°C  
Parameter Symbol  
Limit Values  
typ  
Unit  
min  
1/1024  
45  
max  
1
Clock cycle time  
tc(DCLK)  
tsu(CS)  
ms  
%
Clock duty cycle  
50  
55  
Setup time, CSbefore  
DCLK↓  
50  
ns  
2*tclk1)  
Hold time, CSafter DCLK↓  
thd(CS)  
tsu(DIN)  
120  
60  
ns  
ns  
Setup time, DIN before  
DCLK↓  
Hold time, DIN after DCLK↓  
Delay time, DCLK↑, to DOUT  
Delay time, CSto DOUTZ  
thd(DIN)  
tpd(DOUT)  
tpd(DOUTZ)  
120  
ns  
ns  
ns  
100  
100  
1) tclk=1/fclk  
Table 31: Control Interface Switching Characteristics  
12.5.4 Data Interface Timing  
c
(
F
S
C
)
t
w
(
F
S
C
)
t
F
D
S
C
t
p
d
(
F
S
C
)
t
c
(
D
A
T
_
C
L
K
)
t
i
d
l
e
(
F
S
C
)
A
T
_
C
L
K
s
u
(
D
A
T
_
I
h
N
d
)
(
D
A
T
_
I
N
)
t
t
D
D
A
A
T
T
_
I
N
t
p
d
(
D
A
T
_
O
U
T
)
O
U
T
Figure 46 Data Interface Timing  
Semiconductor Group  
102  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
VDD=VDDA= 5V± 5%; TA=0 - 70°C  
Parameter  
Symbol  
Limit Values  
Unit  
min  
typ  
max  
Data clock cycle time  
tc(DAT_CLK)  
1/  
1/  
ms  
1024  
128  
Data clock duty cycle  
45  
50  
55  
%
µs  
ns  
µs  
ns  
Frame synch clock cycle time  
FSC pulse width (as input)  
FSC pulse width (as output)1)  
tc(FSC)  
tw(FSC)  
125  
488  
tw(FSC)  
tclk*20  
Setup time, DAT_IN before  
tsu(DAT_IN)  
50  
DAT_CLK↓  
Hold time, DAT_IN after  
DAT_CLK↓  
thd(DAT_IN)  
100  
180  
100  
ns  
ns  
Delay time, DAT_CLKto  
tpd(DAT_OUT)  
DAT_OUT  
Idle time, DAT_CLKto FSC↑  
Delay time, DAT_CLKto FSC↑  
Setup time, FSCto DAT_CLK↓  
tidle(FSC)  
tpd(FSC)  
tsu(FSC)  
488  
ns  
ns  
ns  
0
tclk+60  
1) Guaranteed by design  
Table 32: Data Interface Switching Characteristics  
Semiconductor Group  
103  
Data Sheet 06.98  
PSB 4595 / PSB 4596  
Analog Line Interface Solution  
Electrical Performance Characteristic  
12.5.5 Package Outlines  
P-SSOP28  
(Plastic Shrink  
Small Outline Package)  
P-TSSOP24  
(Plastic Thin Shrink  
Small Outline Package)  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
104  
Data Sheet 06.98  

相关型号:

PSB4596

Analog Line Interface Solution ALIS
INFINEON

PSB4596V2.1

Telecom Circuit, 1-Func, CMOS, PDSO28, PLASTIC, SSOP-28
INFINEON

PSB4600

PCI Bus Controller, CMOS, PQFP100, TQFP-100
INFINEON

PSB4600F

PCI Interface for Telephony and Data Applications. discontinued
ETC

PSB4610

PCI Bus Controller, CMOS, PQFP100, TQFP-100
INFINEON

PSB470HA2D002Y

PTC Thermistor, 47ohm, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
THINKING

PSB470HA3B502Y

PTC Thermistor, 47ohm, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
THINKING

PSB470MA2B710Y

PTC Thermistor
THINKING

PSB483-7IPC

DC-DC Regulated Power Supply Module, 1 Output, METAL, CASE B02, MODULE-7
BEL

PSB483-7IR

3...8 A Switching Regulators
POWER-ONE

PSB483-7IR

DC-DC Regulated Power Supply Module, 1 Output, Hybrid,
BEL

PSB483-7IR9

DC-DC Regulated Power Supply Module, 1 Output, Hybrid,
BEL