Q67040-S4620 [INFINEON]

Power-Factor Controller (PFC) IC for High Power Factor and Low THD; 功率因数控制器( PFC) IC,适用于高功率因数和低THD
Q67040-S4620
型号: Q67040-S4620
厂家: Infineon    Infineon
描述:

Power-Factor Controller (PFC) IC for High Power Factor and Low THD
功率因数控制器( PFC) IC,适用于高功率因数和低THD

功率因数校正 控制器
文件: 总27页 (文件大小:966K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet, Version 2.1, 22 Feb 2005  
PFC-DCM IC  
Boost Controller  
TDA4863-2/TDA4863-2G  
Power-Factor Controller (PFC)  
IC for High Power Factor  
and Low THD  
Power Management & Supply  
N e v e r s t o p t h i n k i n g .  
TDA4863-2/TDA4863-2G  
Revision History:  
2005-02-22  
Datasheet  
Previous Version: V2.0  
Page  
Subjects ( major changes since last revision )  
Update package information  
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or  
the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://  
www.infineon.com  
CoolMOST™, CoolSET™ are trademarks of Infineon Technologies AG.  
Edition 2005-02-22  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München  
© Infineon Technologies AG 1999.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted charac-  
teristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Infi-  
neon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
TDA4863-2  
Page  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Improvements Referred to TDA 4862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1  
1.2  
1.3  
1.4  
1.5  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
IC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Voltage Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Overvoltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Current Sense Comparator, LEB and RS Flip-Flop . . . . . . . . . . . . . . . . . . 10  
Zero Current Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Restart Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Gate Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Signal Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
2.11  
3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Electrical Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.1  
3.2  
3.3  
4
4.1  
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Results of THD Measurements with Application Board Pout = 110 W . . . . 22  
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Version 2.1  
3
22 Feb 2005  
Power-Factor Controller (PFC)  
IC for High Power Factor  
and Low THD  
TDA4863-2  
Final Data  
Boost Controller  
1
Overview  
1.1  
Features  
• IC for sinusoidal line-current consumption  
• Power factor achieves nearly 1  
• Controls boost converter as active harmonic  
filter for low THD  
PG-DIP-8-4  
• Start up with low current consumption  
• Zero current detector for discontinuous  
operation mode  
• Output overvoltage protection  
• Output undervoltage lockout  
• Internal start up timer  
• Totem pole output with active shut down  
• Internal leading edge blanking LEB  
• Pb-free lead plating ; RoHS compliant  
PG-DSO-8-3  
1.2  
Improvements Referred to TDA 4862 and TDA 4863  
• Suitable for universal input applications with low THD at low load conditions  
• Very low start up current  
• Accurate OVR and VISENSEmax threshold  
• Competition compatible VCC thresholds  
• Enable threshold referred to VVSENSE  
• Compared to TDA4863 a bigger MOS Transistor can be driven (see 2.10)  
Type  
Ordering Code  
Q67040-S4620  
Q67040-S4621  
Package  
TDA4863-2  
TDA4863-2G  
PG-DIP-8-4  
PG-DSO-8-3  
Version 2.1  
4
22 Feb 2005  
TDA4863-2  
Overview  
RF-Filter  
and  
AC line  
DC Output  
Volage  
Rectifier  
TDA4863-2  
GND  
Figure 1  
1.3  
Typical application  
Description  
The TDA4863-2 IC controls a boost converter in a way that sinusoidal current is taken  
from the single phase line supply and stabilized DC voltage is available at the output.  
This active harmonic filter limits the harmonic currents resulting from the capacitor  
pulsed charge currents during rectification. The power factor which decibels the ratio  
between active and apparent power is almost one. Line voltage fluctuations can be  
compensated very efficiently.  
Version 2.1  
5
22 Feb 2005  
TDA4863-2  
Overview  
1.4  
Pin Configuration  
1 VSENSE  
2 VAOUT  
3 MULTIN  
4 ISENSE  
8 VCC  
7 GTDRV  
6 GND  
5 DETIN  
Figure 2  
Pin Configuration of TDA4863-2  
Version 2.1  
6
22 Feb 2005  
TDA4863-2  
Overview  
Pin Definitions and Functions  
Pin Symbol Description  
1
VSENSE Voltage Amplifier Inverting Input  
VSENSE is connected via a resistive divider to the boost converter  
output. With a capacitor connected to VAOUT the internal error  
amplifier acts as an integrator.  
2
VAOUT Voltage Amplifier Output  
VVAOUT is connected internally to the first multiplier input. To prevent  
overshoot the input voltage is clamped internally at 5 V. IfVVAOUT is  
less then 2.2 V the gate driver is inhibited. If the current flowing into  
this pin exceeds an internal threshold the multiplier output voltage is  
reduced to prevent the MOSFET from overvoltage damage.  
3
4
MULTIN Multiplier Input  
MULTIN is the second multiplier input and is connected via a resistive  
divider to the rectifier output voltage.  
ISENSE Current Sense Input  
ISENSE is connected to a sense resistor controlling the MOSFET  
source current. The input is internally clamped at -0.3 V to prevent  
negative input voltage interaction. A leading edge blanking circuitry  
suppresses voltage spits when turning the MOSFET on.  
5
DETIN  
GND  
Zero Current Detector Input  
DETIN is connected to an auxiliary winding monitoring the zero  
crossing of the inductor current.  
6
7
Ground  
GTDRV Gate Driver Output  
GTDRV is the output of a totem-pole circuitry for direct driving a  
MOSFET. Compared with TDA4863 the TDA4863-2 can drive 20A  
MOSFETS. To achieve this the gate output voltage VGTLat IGT =0A has  
been set to 0.85V. An active shutdown circuitry ensures that GTDRV  
is set to low if the IC is switched off.  
8
VCC  
Positive Voltage Supply  
If VCC excees the turn-on threshold the IC is switched on. When Vcc  
falls below the turn-off threshold the IC is switched off. In switch off  
mode power consumption is very low. Two capacitors should be  
connected to Vcc. An electrolytic capacitor and 100nF cermanic  
capacitor which is used to absorb fast supply current spikes. Make  
sure that the electrolytic capacitor is discharged before the IC is  
plugged into the application board.  
Version 2.1  
7
22 Feb 2005  
TDA4863-2  
Overview  
1.5  
Block Diagram  
VCC  
GND  
DETIN  
t
res=150us  
5V  
-
20V  
Restart  
Timer  
Clamp  
+
Current  
+
Reference  
Voltage  
Vref  
0.5V  
UVLO  
10V  
-
-
12.5V  
+
RS  
Flip-Flop  
Gate  
Drive  
GTDRV  
Detector  
0.2V  
1.0V  
Enable  
-
1.5V  
+
-
2.2V  
Inhibit  
Inhibit  
time delay  
tdVA=2us  
-
+
LEB  
dsd=70ns  
2.5V  
+
1V  
+
t
uvlo  
Voltage  
multout  
1V  
+
+
Multiplier  
active  
Amp  
-
shut down  
Current  
Comp  
-
-
3.5V  
OVR  
5.4V  
Vref  
+
MULTIN  
ISENSE  
VSENSE  
VAOUT  
Figure 3  
Internal Bolck Diagram  
Version 2.1  
8
22 Feb 2005  
TDA4863-2  
Functional Description  
2
Functional Description  
2.1  
Introduction  
Conventional electronic ballasts and switch mode power supplies are designed with a  
bridge rectifier and a bulk capacitor. Their disadvantage is that the circuit draws power  
from the line when the instantaneous AC voltage exceeds the capacitors voltage. This  
occurs near the line voltage peak and causes a high charge current spike with following  
characteristics: The apparent power is higher than the real power that means low power  
factor condition, the current spikes are non sinusoidal with a high content of harmonics  
causing line noise, the rectified voltage depends on load condition and requires a large  
bulk capacitor, special efforts in noise suppression are necessary.  
With the TDA4863-2 preconverter a sinusoidal current is achieved which varies in direct  
instantaneous proportional to the input voltage half sine wave and so provides a power  
factor near 1. This is due to the appearance of almost any complex load like a resistive  
one at the AC line. The harmonic distortions are reduced and comply with the IEC555  
standard requirements.  
2.2  
IC Description  
The TDA4863-2 contains a wide bandwidth voltage amplifier used in a feedback loop,  
an overvoltage regulator, an one quadrant multiplier with a wide linear operating range,  
a current sense comparator, a zero current detector, a PWM and logic circuitry, a totem-  
pole MOSFET driver, an internal trimmed voltage reference, a restart timer and an  
undervoltage lockout circuitry.  
2.3  
Voltage Amplifier  
With an external capacitor between the pins VSENSE and VAOUT the voltage amplifier  
acts like an integrator. The integrator monitors the average output voltage over several  
line cycles. Typically the integrator´s bandwidth is set below 20 Hz in order to suppress  
the 100 Hz ripple of the rectified line voltage. The voltage amplifier is internally  
compensated and has a gain bandwidth of 5 MHz (typ.) and a phase margin of 80  
degrees. The non-inverting input is biased internally at 2.5 V. The output is directly  
connected to the multiplier input.  
The gate drive is disabled when VSENSE voltage is less than 0.2 V or VAOUT voltage  
is less than 2.2 V.  
If the MOSFET is placed nearby the controller switching interferences have to be taken  
into account. The output of the voltage amplifier is designed in a way to minimize these  
inteferences.  
Version 2.1  
9
22 Feb 2005  
TDA4863-2  
Functional Description  
2.4  
Overvoltage Regulator  
Because of the integrator´s low bandwidth fast changes of the output voltage can’t be  
regulated within an adequate time. Fast output changes occur during initial start-up,  
sudden load removal, or output arcing. While the integrator´s differential input voltage  
remains zero during this fast changes a peak current is flowing through the external  
capacitor into pin VAOUT. If this current exceeds an internal defined margin the  
overvoltage regulator circuitry reduces the multiplier output voltage. As a result the on  
time of the MOSFET is reduced.  
2.5  
Multiplier  
The one quadrant multiplier regulates the gate driver with respect of the DC output  
voltage and the AC half wave rectified input voltage. Both inputs are designed to achieve  
good linearity over a wide dynamic range to represent an AC line free from distortion.  
Special efforts are made to assure universal line applications with respect to a 90 to  
270 V AC range.  
The multiplier output is internally clamped at 1.3 V. So the MOSFET is protected against  
critical operating during start up.  
2.6  
Current Sense Comparator, LEB and RS Flip-Flop  
The source current of the MOS transistor is transferred into a sense voltage via the  
external sense resistor. The multiplier output voltage is compared with this sense  
voltage. Switch on time of the MOS transistor is determined by the comparison result.  
To protect the current comparator input from negative pulses a current source is inserted  
which sends current out of the ISENSE pin every time when VISENSE-signal is falling  
below ground potential. An internal RC-filter is connected to the ISENSE pin which  
smoothes the switch-on current spike. The remaining switch-on current spike is blanked  
out via a leading edge blanking circuit with a blanking time of typ. 200 ns.  
The RS Flip-Flop ensures that only one single switch-on and switch-off pulse appears at  
the gate drive output during a given cycle (double pulse suppression).  
2.7  
Zero Current Detector  
The zero current detector senses the inductor current via an auxiliary winding and  
ensures that the next on-time of the MOSFET is initiated immediately when the inductor  
current has reached zero. This reduces the reverse recovery losses of the boost  
converter diode to a miniumum. The MOSFET is switched off when the voltage drop of  
the shunt resistor reaches the voltage level of the multiplier output. So the boost current  
waveform has a triangular shape and there are no deadtime gaps between the cycles.  
This leads to a continuous AC line current limiting the peak current to twice of the  
average current.  
Version 2.1  
10  
22 Feb 2005  
TDA4863-2  
Functional Description  
To prevent false tripping the zero current detector is designed as a Schmitt-Trigger with  
a hysteresis of 0.5 V. An internal 5 V clamp protects the input from overvoltage  
breakdown, a 0.6 V clamp prevents substrate injection. An external resistor has to be  
used in series with the auxiliary winding to limit the current through the clamps.  
2.8  
Restart Timer  
The restart timer function eliminates the need of an oscillator. The timer starts or restarts  
the TDA4863-2 when the driver output has been off for more than 150 µs after the  
inductor current reaches zero.  
2.9  
Undervoltage Lockout  
An undervoltage lockout circuitry switches the IC on when VCC reaches the upper  
threshold VCCH and switches the IC off when VCC is falling below the lower threshold VCCL  
.
During start up the supply current is less then 100 µA.  
An internal voltage clamp has been added to protect the IC from VCC overvoltage  
condition. When using this clamp special care must be taken on power dissipation.  
Start up current is provided by an external start up resistor which is connected from the  
AC line to the input supply voltage VCC and a storage capacitor which is connected from  
VCC to ground. Be aware that this capacitor is discharged before the IC is plugged into  
the application board. Otherwise the IC can be destroyed due to the high capacitor  
voltage.  
Bootstrap power supply is created with the previous mentioned auxiliary winding and a  
diode (see “Application Circuit” on Page 21).  
2.10  
Gate Drive  
The TDA4863-2 totem pole output stage is MOSFET compatible. An internal protection  
ciruitry is activated when VCC is within the start up phase and ensures that the MOSFET  
is turned off. The totem pole output has been optimized to achieve minimized cross  
conduction current during high speed operation.  
Compared to TDA4863 a bigger MOS Transistor can be driven by the TDA4863-2. When  
a big MOSFET is used in applications with TDA4863, for example SPP20N60C3, the  
falling edge of the gate drive voltage can swing under GND and can cause false  
triggering of the IC. To prevent false traiggering the gate drive voltage of theTDA4863-2  
at low state and gate current IGT = 0mA is set to VGTL= 0.85V (TDA4863: VGTL=0.25V).  
The difference between TDA4863-2 and TDA4863 is also depicted in the diagram: gate drive  
voltage low state on page 20.  
Version 2.1  
11  
22 Feb 2005  
TDA4863-2  
Functional Description  
2.11  
Signal Diagrams  
IVAOUT  
IOVR  
DETIN  
GTDRV  
LEB  
multout  
VISENSE  
Icoil  
Figure 4  
Typical signals  
Version 2.1  
12  
22 Feb 2005  
TDA4863-2  
Electrical Characteristics  
3
Electrical Characteristics  
3.1  
Absolute Maximum Ratings  
Parameter  
Symbol Limit Values Unit Remarks  
min.  
max.  
Supply + Zener Current  
Supply Voltage  
ICCH + IZ  
20  
mA  
V
VCC  
-0.3  
VZ  
VZ = Zener  
Voltage  
ICC+IZ = 20 mA  
Voltage at Pin 1,3,4  
Current into Pin 2  
-0.3  
-10  
6.5  
30  
IVAOUT  
mA VVAOUT = 4 V,  
VVSENSE = 2.8 V  
VVAOUT = 0 V,  
VVSENSE = 2.3 V  
t < 1 ms  
Current into Pin 5  
IDETIN  
10  
DETIN > 6 V  
DETIN < 0.4 V  
t < 1 ms  
-10  
Current into Pin 7  
ESD Protection  
IGTDRV  
-500  
500  
t < 1 ms  
2000  
V
MIL STD 883C  
method3015.6,  
100 pF,1500 Ω  
Storage Temperature  
Tstg  
TJ  
-50  
-40  
150  
150  
°C  
Operating Junction Temperature  
Thermal Resistance  
Junction-Ambient  
RthJA  
100  
180  
K/W PG-DIP-8-4  
PG-DSO-8-3  
Version 2.1  
13  
22 Feb 2005  
TDA4863-2  
Electrical Characteristics  
3.2  
Characteristics  
Unless otherwise stated, -40°C < Tj < 150°C, VCC = 14.5 V  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Start-Up circuit  
Zener Voltage  
VZ  
18  
20  
20  
4
22  
V
ICC + IZ = 20 mA  
VCC VCCON -0.5 V  
Start-up Supply Current  
Operating Supply Current  
VCC Turn-ON Threshold  
VCC Turn-OFF Threshold  
VCC Hysteresis  
ICCL  
ICCH  
VCCON  
100 µA  
=
6
mA  
V
Output low  
12  
12.5 13  
VCCOFF 9.5  
10  
10. 5  
VCCHY  
2.5  
Voltage Amplifier  
Voltage feedback Input  
Threshold  
VFB  
2.45 2.5  
2.55  
5
V
Line Regulation  
VFBLR  
GV  
mV  
dB  
VCC = 12 V to 16 V  
Open Loop Voltage Gain1)  
Unity Gain Bandwidth1)  
Phase Margin1)  
100  
5
BW  
MHz  
Degr  
µA  
M
80  
Bias Current VSENSE  
Enable Threshold  
IBVSENSE -1.0 -0.3  
VVSENSE 0.17 0.2  
0.25  
2.3  
V
Inhibit Threshold Voltage  
Inhibit Time Delay  
VVAOUTI 2.1  
tdVA  
2.2  
3
VISENSE = -0.38 V  
VISENSE = -0.38 V  
µs  
Output Current Source  
IVAOUTH  
-6  
mA  
VVAOUT = 0 V  
VVSENSE = 2.3 V,  
t < 1 ms  
Output Current Sink  
IVAOUTL  
30  
VVAOUT = 4 V  
VVSENSE = 2.8 V,  
t < 1 ms  
Upper Clamp Voltage  
Lower Clamp Voltage  
VVAOUTH 4.8  
VVAOUTL 0.8  
5.4  
1.1  
6.0  
1.4  
V
V
VVSENSE = 2.3 V,  
IVAOUT = -0.2 mA  
VVSENSE = 2.8 V,  
IVAOUT = 0.5 mA  
1)  
Guaranteed by design, not tested  
Version 2.1  
14  
22 Feb 2005  
TDA4863-2  
Electrical Characteristics  
3.2  
Characteristics (cont’d)  
Unless otherwise stated, -40°C < Tj < 150°C, VCC = 14.5 V  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Overvoltage Regulator  
Threshold Current  
IOVR  
35  
40  
45  
1
µA  
Tj = 25°C ,  
VVAOUT = 3.5 V  
Current Comparator  
Input Bias Current  
IBISENSE -1  
-0.2  
25  
µA  
VISENSE = 0 V  
Input Offset Voltage  
(Tj = 25 °C)  
VISENSEO  
mV  
VVAOUT = 2.7 V  
VMULTIN = 0 V  
Max Threshold Voltage  
Threshold at OVR  
Leading Edge Blanking  
Shut Down Delay  
Detector  
VISENSEM 0.95 1.0  
VISENOVR 0.05  
tLEB 100 200 300 ns  
1.05  
V
IOVR = 50 µA  
tdISG  
80  
130  
Upper Threshold Voltage  
Lower Threshold Voltage  
Hysteresis  
VDETINU  
1.5  
1.6  
V
VDETINL 0.95 1.1  
VDETINHY 0.25 0.4  
0.55  
1
Input Current  
IBDETIN  
-1  
-0.2  
µA  
V
VDETIN = 2 V  
Input Clamp Voltage  
High State  
Low State  
VDETINHC 4.5  
VDETINLC 0.1  
4.9  
0.4  
5.3  
0.7  
IDETIN = 5 mA  
IDETIN = -5 mA  
Multiplier  
Input bias current  
IBMULTIN -1  
-0.2  
1
µA  
V
VMULTIN = 0 V  
Dynamic voltage range  
MULTIN  
VMULTIN  
0 to 4  
VVAOUT = 2.75 V  
Dynamic voltage range  
VAOUT  
VVAOUT  
VFBto  
VMULTIN = 1 V  
VFB  
+
1.5  
Multiplier Gain  
Klow  
0.3  
VVAOUT < 3 V,  
VMULTIN = 1 V  
VVAOUT > 3.5V,  
VMULTIN = 1 V  
Khigh  
0.7  
K = deltaVISENSE/deltaVVAOUT at VMULTIN = constant  
Version 2.1  
15  
22 Feb 2005  
TDA4863-2  
Electrical Characteristics  
3.2  
Characteristics (cont’d)  
Unless otherwise stated, -40°C < Tj < 150°C, VCC = 14.5 V  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Restart Timer  
Restart time  
Gate Drive  
tRES  
100 160 250 µs  
Gate drive voltage low state VGTL  
0.85  
1.0  
V
V
IGT = 0 mA  
IGT = 2 mA  
IGT = 20 mA  
IGT = 200 mA  
VGTL  
1.7  
2.2  
Gate drive voltage high state VGTH  
10.8  
IGT = -5 mA,  
see “Gate Drive  
Voltage High  
State versus  
Vcc” on Page 20  
Output voltage active shut  
down  
VGTSD  
1
1.25  
IGT = 20 mA,  
VCC = 9 V  
Rise time  
Fall time  
trise  
tfall  
80  
55  
130 ns  
130  
CGT = 4.7 nF  
VGT = 2...8 V  
Version 2.1  
16  
22 Feb 2005  
TDA4863-2  
Electrical Characteristics  
3.3  
Electrical Diagrams  
Icc versus Vcc  
VCCON/OFF versus Temperature  
5
4,5  
4
14  
13  
12  
11  
10  
9
VCC  
ON  
3,5  
3
2,5  
VCC  
VCC  
ON  
2
1,5  
1
OFF  
VCC  
OFF  
8
0,5  
0
7
0
5
10  
15  
20  
-40  
0
40  
80  
120  
160  
Vcc/V  
Tj / °C  
Iccl versus Vcc  
ICCL versus Temperature, VCC = 10 V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
2
4
6
8
10 12 14 16  
-40  
0
40  
Tj / °C  
80  
120  
160  
Vcc / V  
Version 2.1  
17  
22 Feb 2005  
TDA4863-2  
Electrical Characteristics  
VFB versus Temperature  
(pin1 connected to pin2)  
Open Loop Gain and Phase versus  
Frequency  
Phi/deg  
GV/dB  
2,55  
2,54  
2,53  
2,52  
2,51  
2,5  
120  
180  
160  
140  
120  
100  
80  
Gv  
100  
80  
60  
40  
20  
0
Phi  
2,49  
2,48  
2,47  
2,46  
2,45  
60  
40  
20  
0
-40  
0
40  
80  
120  
160  
0,01  
0,1  
1
10  
100 1000 10000  
Tj / °C  
f/kHz  
Overvoltage Regulator VISENSE  
versus Threshold Voltage  
Leading Edge Blanking  
versus Temperature  
1,2  
300  
250  
200  
150  
100  
50  
VVAOUT = 3.5V  
V
MULTIN = 3.0V  
1
0,8  
0,6  
0,4  
0,2  
0
0
-40  
0
40  
80  
120  
160  
35  
37  
39  
41  
43  
45  
Tj / °C  
Iovp / uA  
Version 2.1  
18  
22 Feb 2005  
TDA4863-2  
Electrical Characteristics  
Current Sense Threshold VISENSE  
versus VMULTIN  
Current Sense Threshold VISENSE  
versus VVAOUT  
1
1
4.5V  
0,9  
Vmultin=4.0  
0,9  
0,8  
0,7  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0
3.0  
4.0V  
0,8  
3.5V  
2.0  
0,7  
0,6  
1.5  
1.0  
3.25V  
0,5  
0,4  
0.5  
0,3  
3.0V  
0.25  
0,2  
0,1  
VAOUT=2.75V  
0
2,5  
3
3,5  
4
4,5  
0
1
2
3
4
VVAOUT / V  
VMULTIN / V  
Restart Time versus Temperature  
220  
200  
180  
160  
140  
120  
100  
-40  
0
40  
Tj / °C  
80  
120  
160  
Version 2.1  
19  
22 Feb 2005  
TDA4863-2  
Electrical Characteristics  
Gate Drive Rise Time and Fall Time  
versus Temperature  
Gate Drive Voltage High State  
versus Vcc  
12  
11,5  
11  
140  
120  
I =-2mA  
GT  
I =-20mA  
GT  
100  
rise  
10,5  
10  
I =-200mA  
GT  
time  
80  
60  
9,5  
fall  
time  
40  
9
20  
0
8,5  
8
11  
13  
Vcc / V  
15  
-40  
0
40  
80  
120  
160  
Tj / °C  
Gate Drive Voltage Low State  
versus IGT  
1,8  
TDA4863-2  
1,6  
1,4  
1,2  
1
0,8  
0,6  
0,4  
0,2  
0
dotted line: TDA4863  
0
2
4
6
8
10  
IGT / mA  
Version 2.1  
20  
22 Feb 2005  
TDA4863-2  
Application Circuit  
4
Application Circuit  
Application circuit: Pout=110W, universal Input Vin=90-270V AC  
L1=750uH  
E36/11,N27; gap=2mm  
W1=85 turns,d=40x0.1  
W2=17 turns, d=0.3  
MR856  
D5  
RF filter  
and  
rectifier  
Vin  
90-270V AC  
Vout  
410V DC  
C13  
3.3n  
400V  
D7  
D6  
R12  
470  
R8A  
R8B  
120k  
120k  
R9  
33k  
CoolMOS  
SPP04N60C3  
0.95 Ohm  
R10  
12  
C8  
47uF  
450V  
C10  
47uF  
25V  
8
1
7
6
5
4
R6A  
470k  
C9  
220n  
R4A  
422k  
TDA4863-2  
R6B  
470k  
2
3
R4B  
422k  
C1  
1u  
R7  
9.1k  
C2  
1u  
R5  
5k1  
R11  
0.5  
C4  
10n  
R7  
9.1k  
GND  
Figure 5  
Pout = 110 W, Universal Input Vin = 90 - 270 V AC  
Version 2.1  
21  
22 Feb 2005  
TDA4863-2  
Application Circuit  
4.1  
Results of THD Measurements with Application Board Pout = 110 W  
(Measurements according to IEC61000-3-2.  
150% limit (red line): Momentary measured value must be below this limit.  
100% limit (blue line): Average of measured values must be below this limit.  
The worst measured momentary value is shown in the diagrams.)  
0,30  
0,25  
0,20  
0,15  
0,10  
0,05  
0,00  
4
8
12 16 20 24 28 32 36 40  
Harmonic #  
Figure 6  
THD Class C:  
Pmax = 110 W, Vinac = 90 V, Iout = 250 mA, Vout = 420 V, PF = 0.998  
0,225  
0,200  
0,175  
0,150  
0,125  
0,100  
0,075  
0,050  
0,025  
0,000  
4
8
12 16 20 24 28 32 36 40  
Harmonic #  
Figure 7  
THD Class C:  
Pmax = 110 W, Vinac = 220 V, Iout = 250 mA, Vaout = 420 V, PF = 0.992  
Version 2.1  
22  
22 Feb 2005  
TDA4863-2  
Application Circuit  
0,175  
0,150  
0,125  
0,100  
0,075  
0,050  
0,025  
0,000  
4
8
12 16 20 24 28 32 36 40  
Harmonic #  
Figure 8  
THD Class C:  
Pmax = 110 W, Vinac = 270 V, Iout = 250 mA, Vaout = 420 V, PF = 0.978  
0,30  
0,25  
0,20  
0,15  
0,10  
0,05  
0,00  
4
8
12 16 20 24 28 32 36 40  
Harmonic #  
Figure 9  
THD Class C:  
Pmax = 110 W, Vinac = 90 V, Iout = 140 mA, Vaout = 420 V, PF = 0.999  
Version 2.1  
23  
22 Feb 2005  
TDA4863-2  
Application Circuit  
0,125  
0,100  
0,075  
0,050  
0,025  
0,000  
4
8
12 16 20 24 28 32 36 40  
Harmonic #  
Figure 10  
THD Class C:  
Pmax = 110 W, Vinac = 220 V, Iout = 140 mA, Vaout = 420 V, PF = 0.975  
0,10  
0,09  
0,08  
0,07  
0,06  
0,05  
0,04  
0,03  
0,02  
0,01  
0,00  
4
8
12 16 20 24 28 32 36 40  
Harmonic #  
Figure 11  
THD Class C:  
Pmax = 110 W, Vinac = 270 V, Iout = 140 mA, Vaout = 420 V, PF = 0.883  
Version 2.1  
24  
22 Feb 2005  
TDA4863-2  
Package Outlines  
5
Package Outlines  
PG-DIP-8-4  
(Plastic Dual In-line Package)  
±0.38  
7.87  
1.7 MAX.  
0.25 +0.1  
2.54  
1)  
±0.1  
0.46  
±0.25  
6.35  
8x  
0.35  
±1  
8.9  
8
5
1
4
1)  
±0.25  
9.52  
Index Marking  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
Figure 12  
Version 2.1  
25  
22 Feb 2005  
TDA4863-2  
Package Outlines  
PG-DSO-8-3  
(Plastic Dual Small Outline)  
±0.08  
0.33  
x 45˚  
1)  
4-0.2  
1.27  
C
0.1  
±0.25  
0.64  
+0.1  
-0.05  
0.41  
M
0.2 A C x8  
±0.2  
6
8
5
Index  
Marking  
1
4
A
1)  
5-0.2  
Index Marking (Chamfer)  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
Figure 13  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
22 Feb 2005  
Version 2.1  
26  
Total Quality Management  
Qualität hat für uns eine umfassende  
Bedeutung. Wir wollen allen Ihren  
Ansprüchen in der bestmöglichen  
Weise gerecht werden. Es geht uns also  
nicht nur um die Produktqualität –  
unsere Anstrengungen gelten  
gleichermaßen der Lieferqualität und  
Logistik, dem Service und Support  
sowie allen sonstigen Beratungs- und  
Betreuungsleistungen.  
Quality takes on an allencompassing  
significance at Semiconductor Group.  
For us it means living up to each and  
every one of your demands in the best  
possible way. So we are not only  
concerned with product quality. We  
direct our efforts equally at quality of  
supply and logistics, service and  
support, as well as all the other ways in  
which we advise and attend to you.  
Dazu gehört eine bestimmte  
Part of this is the very special attitude of  
our staff. Total Quality in thought and  
deed, towards co-workers, suppliers  
and you, our customer. Our guideline is  
“do everything with zero defects”, in an  
open manner that is demonstrated  
beyond your immediate workplace, and  
to constantly improve.  
Throughout the corporation we also  
think in terms of Time Optimized  
Processes (top), greater speed on our  
part to give you that decisive  
competitive edge.  
Geisteshaltung unserer Mitarbeiter.  
Total Quality im Denken und Handeln  
gegenüber Kollegen, Lieferanten und  
Ihnen, unserem Kunden. Unsere  
Leitlinie ist jede Aufgabe mit „Null  
Fehlern“ zu lösen – in offener  
Sichtweise auch über den eigenen  
Arbeitsplatz hinaus – und uns ständig  
zu verbessern.  
Unternehmensweit orientieren wir uns  
dabei auch an „top“ (Time Optimized  
Processes), um Ihnen durch größere  
Schnelligkeit den entscheidenden  
Wettbewerbsvorsprung zu verschaffen.  
Geben Sie uns die Chance, hohe  
Leistung durch umfassende Qualität zu  
beweisen.  
Give us the chance to prove the best of  
performance through the best of quality  
– you will be convinced.  
Wir werden Sie überzeugen.  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

Q67040-S4621

Power-Factor Controller (PFC) IC for High Power Factor and Low THD
INFINEON

Q67040-S4625

LightMOS Power Transistor
INFINEON

Q67040-S4626

LightMOS Power Transistor
INFINEON

Q67040-S4627

LightMOS Power Transistor
INFINEON

Q67040-S4628

LightMOS Power Transistor
INFINEON

Q67040-S4629

CoolMOS Power Transistor
INFINEON

Q67040-S4630

CoolMOS Power Transistor
INFINEON

Q67040-S4631

CoolMOS Power Transistor
INFINEON

Q67040-S4635

CoolMOS Power Transistor
INFINEON

Q67040-S4637-A101

Off-Line SMPS Current Mode Controller with integrated 500V Startup Cell
INFINEON

Q67040-S4640

CoolMOS Power Transistor
INFINEON

Q67040-S4648

HighSpeed 2-Technology
INFINEON