Q67100-Q1838 [INFINEON]

64-MBit Synchronous DRAM; 64兆位同步DRAM
Q67100-Q1838
型号: Q67100-Q1838
厂家: Infineon    Infineon
描述:

64-MBit Synchronous DRAM
64兆位同步DRAM

动态存储器
文件: 总53页 (文件大小:410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
64-MBit Synchronous DRAM  
• High Performance:  
• Multiple Burst Read with Single Write  
Operation  
• Automatic and Controlled Precharge  
Command  
-7.5 -8  
Units  
fCKMAX  
tCK3  
133 125 MHz  
• Data Mask for Read/Write Control (x4, x8)  
• Data Mask for Byte Control (x16)  
• Auto Refresh (CBR) and Self Refresh  
• Suspend Mode and Power Down Mode  
• 4096 Refresh Cycles / 64 ms  
7.5  
5.4  
10  
6
8
ns  
ns  
ns  
ns  
tAC3  
6
tCK2  
10  
6
tAC2  
• Random Column Address every CLK  
(1-N Rule)  
• Fully Synchronous to Positive Clock Edge  
• 0 to 70 °C operating temperature  
• Four Banks controlled by BA0 & BA1  
• Programmable CAS Latency: 2, 3  
• Single 3.3 V ± 0.3 V Power Supply  
• LVTTL Interface  
• Plastic Packages:  
P-TSOPII-54 400mil width (x4, x8, x16)  
• Programmable Wrap Sequence: Sequential  
or Interleave  
• -7.5 version for PC133 3-3-3 application  
-8 version for PC100 2-2-2 applications  
• Programmable Burst Length: 1, 2, 4, 8  
• Full page (optional) for sequential wrap  
around  
The HYB 39S64400/800/160BT are four bank Synchronous DRAM’s organized as  
4 banks × 4MBit ×4, 4 banks × 2 MBit ×8 and 4 banks × 1 Mbit ×16 respectively. These synchron-  
ous devices achieve high speed data transfer rates by employing a chip architecture that prefects  
multiple bits and then synchronizes the output data to a system clock. The chip is fabricated using  
the Infineon advanced 0.2 µm 64 MBit DRAM process technology.  
The device is designed to comply with all JEDEC standards set for Synchronous DRAM products,  
both electrically and mechanically. All of the control, address, data input and output circuits are  
synchronized with the positive edge of an externally supplied clock.  
Operating the four memory banks in an interleave fashion allows random access operation to occur  
at higher rates than is possible with standard DRAMs. A sequential and gapless data rate is  
possible depending on burst length, CAS latency and speed grade of the device.  
Auto Refresh (CBR) and Self Refresh operation are supported. These devices operates with a  
single 3.3 V ± 0.3 V power supply and are available in TSOPII packages.  
Data Book  
1
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Ordering Information  
Type  
Ordering Code Package  
Description  
HYB 39S64400BT-7.5 Q67100-Q2781 P-TSOP-54-2 (400mil) 133MHz 4B × 4M x4 SDRAM  
HYB 39S64400BT-8 Q67100-Q1838 P-TSOP-54-2 (400mil) 125MHz 4B × 4M x4 SDRAM  
HYB 39S64800BT-7.5 Q67100-Q2776 P-TSOP-54-2 (400mil) 133MHz 4B × 2M x8 SDRAM  
HYB 39S64800BT-8 Q67100-Q1841 P-TSOP-54-2 (400mil) 125MHz 4B × 2M x8 SDRAM  
HYB 39S64160BT-7.5 Q67100-Q2800 P-TSOP-54-2 (400mil) 133MHz 4B × 1M x16 SDRAM  
HYB 39S64160BT-8 Q67100-Q1844 P-TSOP-54-2 (400mil) 125MHz 4B × 1M x16 SDRAM  
HYB 39S64xxx0BTL- on request  
7.5/-8  
P-TSOP-54-2 (400mil) Low Power (L-versions)  
Pin Definitions and Functions  
CLK  
CKE  
Clock Input  
DQ  
Data Input/Output  
Data Mask  
Clock Enable  
DQM, LDQM,  
UDQM  
CS  
Chip Select  
VDD  
VSS  
Power (+ 3.3 V)  
Ground  
RAS  
Row Address Strobe  
CAS  
Column Address Strobe VDDQ  
Power for DQ’s (+ 3.3 V)  
Ground for DQ’s  
Not connected  
WE  
Write Enable  
Address Inputs  
Bank Select  
VSSQ  
A0 - A11  
BA0, BA1  
N.C.  
Data Book  
2
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
TSOPII-54 (10.16 mm × 22.22 mm, 0.8 mm pitch)  
4M x 16  
8M x 8  
16M x 4  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
1
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
DQ0  
VDDQ  
DQ0  
VDDQ  
N.C.  
VDDQ  
2
N.C.  
VSSQ  
DQ7  
VSSQ  
DQ15  
VSSQ  
3
DQ1  
N.C.  
N.C.  
4
N.C.  
N.C.  
DQ14  
DQ2  
VSSQ  
DQ1  
VSSQ  
DQ0  
VSSQ  
5
DQ3  
VDDQ  
DQ6  
VDDQ  
DQ13  
VDDQ  
6
DQ3  
N.C.  
N.C.  
7
N.C.  
N.C.  
DQ12  
DQ4  
VDDQ  
DQ2  
VDDQ  
N.C.  
VDDQ  
8
N.C.  
VSSQ  
DQ5  
VSSQ  
DQ11  
VSSQ  
9
DQ5  
N.C.  
N.C.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
N.C.  
N.C.  
DQ10  
DQ6  
VSSQ  
DQ3  
VSSQ  
DQ1  
VSSQ  
DQ2  
VDDQ  
DQ4  
VDDQ  
DQ9  
VDDQ  
DQ7  
VDD  
N.C.  
VDD  
N.C.  
VDD  
N.C.  
VSS  
N.C.  
VSS  
DQ8  
VSS  
LDQM  
WE  
CAS  
RAS  
CS  
N.C.  
WE  
CAS  
RAS  
CS  
N.C.  
WE  
CAS  
RAS  
CS  
N.C.  
DQM  
CLK  
CKE  
N.C.  
A11  
A9  
N.C.  
DQM  
CLK  
CKE  
N.C.  
A11  
A9  
N.C.  
UDQM  
CLK  
CKE  
N.C.  
A11  
A9  
BA0  
BA1  
A10  
A0  
BA0  
BA1  
A10  
A0  
BA0  
BA1  
A10  
A0  
A8  
A8  
A8  
A7  
A7  
A7  
A1  
A1  
A1  
A6  
A6  
A6  
A2  
A2  
A2  
A5  
A5  
A5  
A3  
VDD  
A3  
VDD  
A3  
VDD  
A4  
VSS  
A4  
VSS  
A4  
VSS  
SPP03695  
Pin Configuration for x4, x8 & x16 Organized 64M-SDRAMs  
Data Book  
3
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Functional Block Diagrams  
Column Addresses  
Row Addresses  
A0 - A9, AP, BA0, BA1  
A0 - A11, BA0, BA1  
Column Address  
Counter  
Column Address  
Buffer  
Row Address  
Buffer  
Refresh Counter  
Row Decoder  
Row Decoder  
Row Decoder  
Row Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
4096 x 1024  
x 4 Bit  
4096 x 1024  
x 4 Bit  
4096 x 1024  
x 4 Bit  
4096 x 1024  
x 4 Bit  
Control Logic &  
Timing Generator  
Input Buffer  
Output Buffer  
DQ0 - DQ3  
SPB03696  
Block Diagram: 4 Bank × 4M × 4 SDRAM  
Data Book  
4
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Column Addresses  
Row Addresses  
A0 - A8, AP, BA0, BA1  
A0 - A11, BA0, BA1  
Column Address  
Counter  
Column Address  
Buffer  
Row Address  
Buffer  
Refresh Counter  
Row Decoder  
Row Decoder  
Row Decoder  
Row Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
4096 x 512  
x 8 Bit  
4096 x 512  
x 8 Bit  
4096 x 512  
x 8 Bit  
4096 x 512  
x 8 Bit  
Control Logic &  
Timing Generator  
Input Buffer  
Output Buffer  
DQ0 - DQ7  
SPB03697  
Block Diagram: 4 Bank × 2M × 8 SDRAM  
Data Book  
5
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Column Addresses  
Row Addresses  
A0 - A7, AP,  
BA0, BA1  
A0 - A11,  
BA0, BA1  
Column Address  
Counter  
Column Address  
Buffer  
Row Address  
Buffer  
Refresh Counter  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
4096 x 256  
x 16 Bit  
4096 x 256  
x 16 Bit  
4096 x 256  
x 16 Bit  
4096 x 256  
x 16 Bit  
Input Buffer Output Buffer  
DQ0 - DQ15  
Control Logic &  
Timing Generator  
SPB04120  
Block Diagram: 4 Bank × 1M × 16 SDRAM  
Data Book  
6
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Signal Pin Description  
Pin  
Type Signal Polarity Function  
CLK  
Input  
Pulse Positive The System Clock Input. All of the SDRAM inputs are  
Edge  
sampled on the rising edge of the clock.  
CKE  
CS  
Input  
Level Active  
High  
Activates the CLK signal when high and deactivates the  
CLK signal when low, thereby initiates either the Power  
Down mode, Suspend mode, or the Self Refresh mode.  
Input  
Input  
Pulse Active  
Low  
CS enables the command decoder when low and disables  
the command decoder when high. When the command  
decoder is disabled, new commands are ignored but  
previous operations continue.  
RAS  
CAS  
WE  
Pulse Active  
Low  
When sampled at the positive rising edge of the clock,  
CAS, RAS, and WE define the command to be executed by  
the SDRAM.  
A0 - A11 Input  
Level  
During a Bank Activate command cycle, A0 - A11 define  
the row address (RA0 - RA11) when sampled at the rising  
clock edge.  
During a Read or Write command cycle, A0-An define the  
column address (CA0 - CAn) when sampled at the rising  
clock edge.CAn depends from the SDRAM organization:  
16M ×4 SDRAM CAn = CA9 (Page Length = 1024 bits)  
8M × 8 SDRAM CAn = CA8 (Page Length = 512 bits)  
4M ×16 SDRAM CAn = CA7 (Page Length = 256 bits)  
In addition to the column address, A10 (= AP) is used to  
invoke autoprecharge operation at the end of the burst read  
or write cycle. If A10 is high, autoprecharge is selected and  
BA0, BA1 defines the bank to be precharged. If A10 is low,  
autoprecharge is disabled.  
During a Precharge command cycle, A10 (= AP) is used in  
conjunction with BA0 and BA1 to control which bank(s) to  
precharge. If A10 is high, all four banks will be precharged  
regardless of the state of BA0 and BA1. If A10 is low, then  
BA0 and BA1 are used to define which bank to precharge.  
BA0, BA1 Input  
Level  
Level  
Bank Select Inputs. Selects which bank is to be active.  
DQx  
Input  
Data Input/Output pins operate in the same manner as on  
conventional DRAMs.  
Output  
Data Book  
7
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Signal Pin Description (cont’d)  
Pin  
Type Signal Polarity Function  
DQM  
LDQM  
UDQM  
Input  
Pulse Active  
High  
The Data Input/Output mask places the DQ buffers in a  
high impedance state when sampled high. In Read mode,  
DQM has a latency of two clock cycles and controls the  
output buffers like an output enable. In Write mode, DQM  
has a latency of zero and operates as a word mask by  
allowing input data to be written if it is low but blocks the  
write operation if DQM is high.  
One DQM input it present in ×4 and ×8 SDRAMs, LDQM  
and UDQM controls the lower and upper bytes in ×16  
SDRAMs.  
VDD  
VSS  
Supply –  
Power and ground for the input buffers and the core logic.  
VDDQ  
VSSQ  
Supply –  
Isolated power supply and ground for the output buffers to  
provide improved noise immunity.  
VREF  
Input  
Level  
Reference voltage for SDRAM versions supporting SSTL  
interface  
Data Book  
8
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Operation Definition  
All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at  
the positive edge of the clock. The following list shows the truth table for the operation commands.  
Operation  
Device CKE CKE  
CS  
RAS CAS WE DQM A0-9, A10 BA0  
State  
Idle3  
Active3  
Active3  
n-1  
n
X
X
X
A11  
BA1  
Row Activate (ACT)  
Read (READ)  
H
L
L
L
L
H
H
H
L
L
H
H
H
X
X
X
V
V
L
V
H
V
V
Read w/ Autoprecharge  
(READA)  
H
V
H
V
Write (WRITE)  
Active3  
Active3  
H
H
X
X
L
L
H
H
L
L
L
L
X
X
V
V
L
V
V
Write w/ Autoprecharge  
(WRITEA)  
H
Row Precharge (PRE)  
Precharge All (PREA)  
Mode Register Set (MRS)  
No Operation (NOP)  
Any  
Any  
Idle  
Any  
Any  
Idle  
H
H
H
H
H
H
H
X
X
X
X
X
H
L
L
L
L
L
H
L
L
H
L
L
L
H
H
L
L
L
X
X
X
X
X
X
X
X
X
V
X
X
X
X
L
H
V
X
X
X
X
V
X
V
X
X
X
X
L
L
H
X
L
H
X
L
H
X
H
H
X
X
Device Deselect (INHBT)  
Auto Refresh (REFA)  
Self Refresh Entry (REFS-EN) Idle  
L
L
Self Refresh Exit (REFS-EX) Idle  
X
H
X
H
(Self  
Refr.)  
L
H
X
X
X
X
Power Down Entry (PDN-EN) Idle  
Active5  
H
L
X
H
X
H
X
H
X
H
X
X
X
L
H
L
L
X
X
X
X
X
X
X
X
Power Down Exit (PDN-EX)  
Any  
H
L
(Power  
Down)  
H
Data Write/Output Enable  
Data Write/Output Disable  
Active  
Active  
H
H
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
H
Notes  
1. V = Valid, x = Don’t Care, L = Low Level, H = High Level  
2. CKEn signal is input level when commands are provided, CKEn-1 signal is input level one clock  
before the commands are provided.  
3. This is the state of the banks designated by BA0, BA1 signals.  
4. Device state is Full Page Burst operation  
5. Power Down Mode can not entry in the burst cycle. When this command assert in the burst mode  
cycle device is clock suspend mode.  
Data Book  
9
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Address Input for Mode Set (Mode Register Operation)  
BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address Bus (Ax)  
Burst Length  
Operation Mode  
CAS Latency  
BT  
Mode Register (Mx)  
Operation Mode  
BA1 BA0 M11 M10 M9 M8 M7  
Burst Type  
Type  
Mode  
M3  
burst read /  
burst write  
Sequential  
Interleave  
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
burst read /  
single write  
CAS Latency  
Burst Length  
M6 M5 M4  
Latency  
Length  
M2 M1 M0  
Sequential  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
1
2
4
8
1
2
4
8
2
3
Reserved  
Reserved  
Reserved  
Full Page*)  
*) optional  
SPS03409  
Data Book  
10  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Power On and Initialization  
The default power on state of the mode register is supplier specific and may be undefined. The  
following power on and initialization sequence guarantees the device is preconditioned to each  
users specific needs. Like a conventional DRAM, the Synchronous DRAM must be powered up and  
initialized in a predefined manner.During power on, all VDD and VDDQ pins must be built up  
simultaneously to the specified voltage when the input signals are held in the “NOP” state. The  
power on voltage must not exceed VDD + 0.3 V on any of the input pins or VDD supplies. The CLK  
signal must be started at the same time. After power on, an initial pause of 200 µs is required  
followed by a precharge of both banks using the precharge command. To prevent data contention  
on the DQ bus during power on, it is required that the DQM and CKE pins be held high during the  
initial pause period. Once all banks have been precharged, the Mode Register Set Command must  
be issued to initialize the Mode Register. A minimum of eight Auto Refresh cycles (CBR) are also  
required.These may be done before or after programming the Mode Register. Failure to follow these  
steps may lead to unpredictable start-up modes.  
Programming the Mode Register  
The Mode register designates the operation mode at the read or write cycle. This register is divided  
into 4 fields. A Burst Length Field to set the length of the burst, an Addressing Selection bit to  
program the column access sequence in a burst cycle (interleaved or sequential), a CAS Latency  
Field to set the access time at clock cycle and a Operation mode field to differentiate between  
normal operation (Burst read and burst Write) and a special Burst Read and Single Write mode. The  
mode set operation must be done before any activate command after the initial power up. Any  
content of the mode register can be altered by re-executing the mode set command. All banks must  
be in precharged state and CKE must be high at least one clock before the mode set operation. After  
the mode register is set, a Standby or NOP command is required. Low signals of RAS, CAS, and  
WE at the positive edge of the clock activate the mode set operation. Address input data at this  
timing defines parameters to be set as shown in the previous table.  
Read and Write Operation  
When RAS is low and both CAS and WE are high at the positive edge of the clock, a RAS cycle  
starts. According to address data, a word line of the selected bank is activated and all of sense  
amplifiers associated to the wordline are set. A CAS cycle is triggered by setting RAS high and CAS  
low at a clock timing after a necessary delay, tRCD, from the RAS timing. WE is used to define either  
a read (WE = H) or a write (WE = L) at this stage.  
SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read or  
write operations are allowed at up to a 133 MHz data rate. The numbers of serial data bits are the  
burst length programmed at the mode set operation, i.e., one of 1, 2, 4, 8 and full page, where full  
page is an optional feature in this device. Column addresses are segmented by the burst length and  
serial data accesses are done within this boundary. The first column address to be accessed is  
supplied at the CAS timing and the subsequent addresses are generated automatically by the  
programmed burst length and its sequence. For example, in a burst length of 8 with interleave  
sequence, if the first address is ‘2’, then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5.  
Full page burst operation is only possible using the sequential burst type and page length is a  
function of the I/O organization and column addressing. Full page burst operation do not self  
Data Book  
11  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
terminate once the burst length has been reached. In other words, unlike burst length of 2, 3 or 8,  
full page burst continues until it is terminated using another command.  
Similar to the page mode of conventional DRAM’s, burst read or write accesses on any column  
address are possible once the RAS cycle latches the sense amplifiers. The maximum tRAS or the  
refresh interval time limits the number of random column accesses. A new burst access can be  
done even before the previous burst ends. The interrupt operation at every clock cycle is supported.  
When the previous burst is interrupted, the remaining addresses are overridden by the new address  
with the full burst length. An interrupt which accompanies an operation change from a read to a write  
is possible by exploiting DQM to avoid bus contention.  
When two or more banks are activated sequentially, interleaved bank read or write operations are  
possible. With the programmed burst length, alternate access and precharge operations on two or  
more banks can realize fast serial data access modes among many different pages. Once two or  
more banks are activated, column to column interleave operation can be done between different  
pages.  
Burst Length and Sequence  
Burst  
Length  
Starting  
Address  
(A2 A1 A0)  
Sequential Burst Addressing  
(decimal)  
Interleave Burst  
Addressing  
(decimal)  
2
4
xx0  
xx1  
0, 1  
1, 0  
0, 1  
1, 0  
x00  
x01  
x10  
x11  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
8
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
1
0
3
2
5
4
7
6
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
Full Page  
(optional)  
nnn  
Cn, Cn+1, Cn+2,.....  
not supported  
Refresh Mode  
SDRAM has two refresh modes, Auto Refresh and Self Refresh. Auto Refresh is similar to the CAS  
-before-RAS refresh of conventional DRAMs. All of banks must be precharged before applying any  
refresh mode. An on-chip address counter increments the word and the bank addresses and no  
bank information is required for both refresh modes.  
The chip enters the Auto Refresh mode, when RAS and CAS are held low and CKE and WE are  
held high at a clock timing. The mode restores word line after the refresh and no external precharge  
Data Book  
12  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
command is necessary. A minimum tRC time is required between two automatic refreshes in a burst  
refresh mode. The same rule applies to any access command after the automatic refresh operation.  
The chip has an on-chip timer and the Self Refresh mode is available. It enters the mode when RAS,  
CAS, and CKE are low and WE is high at a clock timing. All of external control signals including the  
clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation.  
After the exit command, at least one tRC delay is required prior to any access command.  
DQM Function  
DQM has two functions for data I/O read and write operations. During reads, when it turns to “high”  
at a clock timing, data outputs are disabled and become high impedance after two clock delay (DQM  
Data Disable Latency tDQZ). It also provides a data mask function for writes. When DQM is activated,  
the write operation at the next clock is prohibited (DQM Write Mask Latency tDQW = zero clocks).  
Suspend Mode  
During normal access mode, CKE is held high enabling the clock. When CKE is low, it freezes the  
internal clock and extends data read and write operations. One clock delay is required for mode  
entry and exit (Clock Suspend Latency tCSL).  
Power Down  
In order to reduce standby power consumption, a power down mode is available. All banks must be  
precharged and the necessary Precharge delay (tRP) must occur before the SDRAM can enter the  
Power Down mode. Once the Power Down mode is initiated by holding CKE low, all of the receiver  
circuits except CLK and CKE are gated off. The Power Down mode does not perform any refresh  
operations, therefore the device can’t remain in Power Down mode longer than the Refresh period  
(tREF) of the device. Exit from this mode is performed by taking CKE “high”. One clock delay is  
required for mode entry and exit.  
Auto Precharge  
Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS  
timing accepts one extra address, CA10, to determine whether the chip restores or not after the  
operation. If CA10 is high when a Read Command is issued, the Read with Auto-Precharge  
function is initiated. If CA10 is high when a Write Command is issued, the Write with Auto-  
Precharge function is initiated. The SDRAM automatically enters the precharge operation two  
clocks after the last data in.  
Precharge Command  
There is also a separate precharge command available. When RAS and WE are low and CAS is  
high at a clock timing, it triggers the precharge operation. Three address bits, BA0, BA1 and A10 are  
used to define banks as shown in the following list. The precharge command can be imposed one  
clock before the last data out for CAS latency = 2 and two clocks before the last data out for CAS  
latency = 3. Writes require a time delay tWR from the last data out to apply the precharge command.  
Data Book  
13  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
A10  
0
BA0 BA1  
0
0
1
1
x
0
1
0
1
x
Bank 0  
Bank 1  
Bank 2  
Bank 3  
all Banks  
0
0
0
1
Burst Termination  
Once a burst read or write operation has been initiated, there are several methods in which to  
terminate the burst operation prematurely. These methods include using another Read or Write  
Command to interrupt an existing burst operation, use a Precharge Command to interrupt a burst  
cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst  
operation but leave the bank open for future Read or Write Commands to the same page of the  
active bank. When interrupting a burst with another Read or Write Command care must be taken to  
avoid DQ contention. The Burst Stop Command, however, has the fewest restrictions making it the  
easiest method to use when terminating a burst operation before it has been completed. If a Burst  
Stop command is issued during a burst write operation, then any residual data from the burst write  
cycle will be ignored. Data that is presented on the DQ pins before the Burst Stop Command is  
registered will be written to the memory.  
Data Book  
14  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Electrical Characteristics  
Absolute Maximum Ratings  
Operating Temperature Range.......................................................................................0 to + 70 °C  
Storage Temperature Range .................................................................................. – 55 to + 150 °C  
Input/Output Voltage......................................................................................... – 0.3 to VDD + 0.3 V  
Power Supply Voltage VDD/VDDQ.............................................................................. – 0.3 to + 4.6 V  
Power Dissipation ....................................................................................................................... 1W  
Data Out Current (short circuit)............................................................................................... 50 mA  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage of the device. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
Recommended Operation and DC Characteristics  
TA = 0 to 70 °C; VSS = 0 V; V VDDQ = 3.3 V ± 0.3 V  
,
DD  
Parameter  
Symbol  
Limit Values  
max.  
Unit Notes  
min.  
2.0  
– 0.3  
2.4  
1, 2  
Input High Voltage  
VIH  
VIL  
V
DD + 0.3  
V
1, 2  
Input Low Voltage  
0.8  
V
Output High Voltage (IOUT = – 4.0 mA)  
Output Low Voltage (IOUT = 4.0 mA)  
VOH  
VOL  
II(L)  
V
0.4  
5
V
Input Leakage Current, any input  
– 5  
µA  
(0 V < VIN < VDDQ, all other inputs = 0 V)  
Output Leakage Current  
IO(L)  
– 5  
5
µA  
(DQ is disabled, 0 V < VOUT < VDD)  
Notes  
1. All voltages are referenced to VSS  
2. VIH may overshoot to VDD + 2.0 V for pulse width of < 4 ns with 3.3 V. VIL may undershoot to  
– 2.0 V for pulse width < 4.0 ns with 3.3 V. Pulse width measured at 50% points with amplitude  
measured peak to DC reference.  
Capacitance  
TA = 0 to 70 °C; VDD = 3.3 V ± 0.3 V, f = 1 MHz  
Parameter  
Symbol  
Values  
max.  
Unit  
min.  
2.5  
Input Capacitance (CLK)  
CI1  
CI2  
3.5  
3.8  
pF  
pF  
Input Capacitance  
2.5  
(A0 - A11, BA0, BA1, RAS, CAS, WE, CS, CKE, DQM)  
Input/Output Capacitance (DQ)  
CIO  
4.0  
6.0  
pF  
Data Book  
15  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Operating Currents  
TA = 0 to 70 °C, VDD = 3.3 V ± 0.3 V  
(Recommended Operating Conditions unless otherwise noted)  
Parameter & Test Condition  
Symb. -7.5 -8  
max.  
Unit Note  
Operating Current  
ICC1  
t
RC = tRC(MIN.), tCK = tCK(MIN.)  
3
Outputs open, Burst Length = 4, CL=3  
All banks operated in random access,  
all banks operated in ping-pong  
manner to maximize gapless data  
access  
x4 110 100 mA  
x8 120 110 mA  
x16 140 130 mA  
3
3
Precharge Standby Current  
in Power Down Mode  
CS = VIH (MIN.), CKE VIL(MAX.)  
t
t
CK = min  
ICC2P  
2
1
2
1
mA  
mA  
CK = infinity  
ICC2PS  
3
3
Precharge Standby Current  
in Non-Power Down Mode  
CS = VIH (MIN.), CKE VIH(MIN.)  
t
t
CK = min  
ICC2N  
40 35 mA  
mA  
CK = infinity  
ICC2NS  
5
5
3
3
CKE VIH(MIN.)  
CKE VIL(MAX.)  
No Operating Current  
ICC3N  
ICC3P  
50 45 mA  
mA  
tCK = min., CS = VIH (MIN.),  
8
8
active state (max. 4 banks)  
Burst Operating Current  
ICC4  
3, 4  
tCK = min  
x4 70 60 mA  
x8 80 70 mA  
x16 110 100 mA  
Read command cycling  
3
Auto Refresh Current  
ICC5  
140 130 mA  
tCK = min  
Auto Refresh command cycling  
3
3
Self Refresh Current  
Self Refresh Mode  
CKE = 0.2 V  
standard  
version  
ICC6  
1
1
mA  
L-version  
400 400 µA  
Notes  
3. These parameters depend on the cycle rate and these values are measured at 133 MHz for -7.5,  
and at 100 MHz for -8 components. Input signals are changed once during tCK, excepts for ICC6  
and for standby currents when tCK = infinity.  
4. These parameters are measured with continuous data stream during read access and all DQ  
toggling. CL = 3 and BL = 4 is assumed and the VDDQ current is excluded.  
Data Book  
16  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
1, 2  
AC Characteristics  
TA = 0 to 70 °C; VSS = 0 V; VDD = 3.3 V ± 0.3 V, tT = 1 ns  
Parameter  
Symb.  
Limit Values  
-7.5 -8  
min. max. min. max.  
Unit Note  
Clock and Clock Enable  
Clock Cycle Time  
ns  
ns  
CAS Latency = 3  
CAS Latency = 2  
7.5  
10  
8
10  
tCK  
Clock Frequency  
MHz  
MHz  
CAS Latency = 3 tCK  
CAS Latency = 2  
133  
100  
125  
100  
2, 3  
Access Time from Clock  
CAS Latency = 3  
5.4  
6
6
6
ns  
ns  
tAC  
CAS Latency = 2  
Clock High Pulse Width  
tCH  
tCL  
tT  
2.5  
2.5  
0.3  
3
ns  
ns  
ns  
Clock Low Pulse Width  
Transition Time  
3
1.2  
0.5  
10  
Setup and Hold Times  
Input Setup Time  
4
4
4
4
tIS  
1.5  
0.8  
1.5  
0.8  
2
7
2
1
2
1
2
0
8
ns  
Input Hold Time  
tIH  
ns  
CKE Setup Time  
tCKS  
tCKH  
tRSC  
tSB  
ns  
CKE Hold Time  
ns  
Mode Register Set-up Time  
Power Down Mode Entry Time  
CLK  
ns  
0
Common Parameters  
Row to Column Delay Time  
Row Precharge Time  
Row Active Time  
5
5
5
5
5
tRCD  
tRP  
tRAS  
tRC  
20  
20  
45  
67  
14  
20  
20  
ns  
ns  
100k 48  
100k ns  
Row Cycle Time  
70  
16  
ns  
ns  
Activate(a) to Activate(b) Command tRRD  
Period  
CAS(a) to CAS(b) Command Period tCCD  
1
1
CLK  
Refresh Cycle  
Data Book  
17  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
AC Characteristics (cont’d)1, 2  
TA = 0 to 70 °C; VSS = 0 V; VDD = 3.3 V ± 0.3 V, tT = 1 ns  
Parameter  
Symb.  
Limit Values  
-7.5 -8  
min. max. min. max.  
Unit Note  
Refresh Period  
(4096 cycles)  
tREF  
64  
64  
ms  
6
Self Refresh Exit Time  
tSREX  
1
1
CLK  
Read Cycle  
2
Data Out Hold Time  
tOH  
tLZ  
3
1
3
7
2
3
0
3
8
2
ns  
Data Out to Low Impedance Time  
Data Out to High Impedance Time  
DQM Data Out Disable Latency  
ns  
tHZ  
ns  
tDQZ  
CLK  
Write Cycle  
Write Recovery Time  
DQM Write Mask Latency  
tWR  
2
0
2
0
CLK  
CLK  
tDQW  
Data Book  
18  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Notes  
1. For proper power-up see the operation section of this data sheet.  
2. AC timing tests have VIL = 0.4 V and VIH = 2.4 V with the timing referenced to the 1.4 V crossover  
point. The transition time is measured between VIH and VIL. All AC measurements assume  
tT = 1 ns with the AC output load circuit shown in figure below. Specified tAC and tOH parameters  
are measured with a 50 pF only, without any resistive termination and with a input signal of 1V /  
ns edge rate between 0.8 V and 2.0 V.  
tCH  
2.4 V  
0.4 V  
CLOCK  
tT  
tCL  
tHOLD  
tSETUP  
INPUT  
1.4 V  
tAC  
tAC  
tLZ  
tOH  
I/O  
OUTPUT  
1.4 V  
50 pF  
tHZ  
Measurement conditions for  
AC and tOH  
SPT03404  
t
3. If clock rising time is longer than 1 ns, a time (tT/2 0.5) ns has to be added to this parameter.  
4. If tT is longer than 1 ns, a time (tT 1) ns has to be added to this parameter.  
5. These parameter account for the number of clock cycle and depend on the operating frequency  
of the clock, as follows:  
the number of clock cycle = specified value of timing period (counted in fractions as a whole  
number)  
6. Self Refresh Exit is a synchronous operation and begins on the 2nd positive clock edge after  
CKE returns high. Self Refresh Exit is not complete until a time period equal to tRC is satisfied  
once the Self Refresh Exit command is registered.  
Data Book  
19  
12.99  
HYB 39S64400/800/160BT(L)  
64-MBit Synchronous DRAM  
Package Outlines  
Plastic Package, P-TSOPII-54  
400 mil, 0.8 mm lead pitch  
(
)
Thin Small Outline Package, SMD  
15˚±5˚  
15˚±5˚  
2)  
10.16±0.13  
0.8  
0.5±0.1  
11.76±0.2  
0.1 54x  
26x 0.8 = 20.8  
3)  
+0.1  
M
0.2  
54x  
0.35  
-0.05  
54  
28  
27  
1
2.5 max  
1)  
22.22±0.13  
GPX09039  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max per side  
2) Does not include plastic protrusion of 0.25 max per side  
3) Does not include dambar protrusion of 0.13 max per side  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Data Book  
20  
12.99  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
Timing Diagrams  
1. Bank Activate Command Cycle  
2. Burst Read Operation  
3. Read Interrupted by a Read  
4. Read to Write Interval  
4.1 Read to Write Interval  
4.2 Minimum Read to Write Interval  
4.3 Non-Minimum Read to Write Interval  
5. Burst Write Operation  
6. Write and Read Interrupt  
6.1 Write Interrupted by a Write  
6.2 Write Interrupted by Read  
7. Burst Write & Read with Auto-Precharge  
7.1 Burst Write with Auto-Precharge  
7.2 Burst Read with Auto-Precharge  
8. Burst Termination  
8.1 Termination of a full Page Burst Write Operation  
8.2 Termination of a full Page Burst Write Operation  
9. AC- Parameters  
9.1 AC Parameters for a Write Timing  
9.2 AC Parameters for a Read Timing  
10. Mode Register Set  
11. Power on Sequence and Auto Refresh (CBR)  
12. Clock Suspension (using CKE)  
12. 1 Clock Suspension During Burst Read CAS Latency = 2  
12. 2 Clock Suspension During Burst Read CAS Latency = 3  
12. 3 Clock Suspension During Burst Write CAS Latency = 2  
12. 4 Clock Suspension During Burst Write CAS Latency = 3  
13. Power Down Mode and Clock Suspend  
14. Self Refresh ( Entry and Exit )  
15. Auto Refresh ( CBR )  
16. Random Column Read ( Page within same Bank)  
16.1 CAS Latency = 2  
16.2 CAS Latency = 3  
17. Random Column Write ( Page within same Bank)  
17.1 CAS Latency = 2  
17.2 CAS Latency = 3  
Semiconductor Group  
20  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
Timing Diagrams (cont’d)  
18. Random Row Read ( Interleaving Banks) with Precharge  
18.1 CAS Latency = 2  
18.2 CAS Latency = 3  
19. Random Row Write ( Interleaving Banks) with Precharge  
19.1 CAS Latency = 2  
19.2 CAS Latency = 3  
20. Full Page Read Cycle  
20.1 CAS Latency = 2  
20.2 CAS Latency = 3  
21. Full Page Write Cycle  
21.1 CAS Latency = 2  
21.2 CAS Latency = 3  
22. Precharge Termination of a Burst  
Semiconductor Group  
21  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
1. Bank Activate Command Cycle  
(CAS latency = 3)  
T0  
T1  
T
T
T
T
T
CLK  
Bank B  
Row Addr.  
Bank B  
Col. Addr.  
Bank A  
Row Addr.  
Bank B  
Row Addr.  
Address  
tRCD  
NOP  
tRRD  
Write B  
with Auto  
Precharge  
Bank B  
Activate  
Bank A  
Activate  
Bank B  
Activate  
Command  
NOP  
NOP  
tRC  
"H" or "L"  
SPT03784  
2. Burst Read Operation  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
Read A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS  
latency = 2  
tCK2, DQ’s  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
CAS  
latency = 3  
tCK3, DQ’s  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
SPT03712  
Semiconductor Group  
22  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
3. Read Interrupted by a Read  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
Read A  
Read B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS  
latency = 2  
tCK2, DQ’s  
DOUT A0 DOUT B0 DOUT B1 DOUT B2 DOUT B3  
CAS  
latency = 3  
tCK3, DQ’s  
DOUT A0 DOUT B0 DOUT B1 DOUT B2 DOUT B3  
SPT03713  
4. Read to Write Intrerval  
4.1 Read to Write Interval  
(Burst Length = 4, CAS latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Minimum delay between the Read and Write  
Commands = 4 + 1 = 5 cycles  
Write latency tDQW of DQMx  
DQMx  
tDQZ  
Command  
DQ’s  
NOP  
Read A  
NOP  
NOP  
NOP  
NOP  
Write B  
DIN B0  
NOP  
NOP  
DOUT A0  
DIN B1  
DIN B2  
Must be Hi-Z before  
the Write Command  
"H" or "L"  
SPT03787  
Semiconductor Group  
23  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
4 2. Minimum Read to Write Interval  
(Burst Length = 4, CAS latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
tDQW  
DQM  
tDQZ  
1 Clk Interval  
Bank A  
Activate  
Command  
NOP  
NOP  
NOP  
Read A  
Write A  
NOP  
NOP  
NOP  
Must be Hi-Z before  
the Write Command  
CAS  
latency = 2  
tCK2, DQ’s  
DIN A0  
DIN A1  
DIN A2  
DIN A3  
"H" or "L"  
SPT03939  
4. 3. Non-Minimum Read to Write Interval  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
tDQW  
DQM  
tDQZ  
Command  
NOP  
Read A  
NOP  
NOP  
Read A  
NOP  
Write B  
NOP  
NOP  
Must be Hi-Z before  
the Write Command  
CAS  
latency = 2  
tCK2, DQ’s  
DOUT A0 DOUT A1  
DOUT A0  
DIN B0  
DIN B0  
DIN B1  
DIN B1  
DIN B2  
DIN B2  
CAS  
latency = 3  
tCK3, DQ’s  
"H" or "L"  
SPT03940  
Semiconductor Group  
24  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
5. Burst Write Operation  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
DQ’s  
NOP  
Write A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
don’t care  
DIN A1  
DIN A2  
DIN A3  
The first data element and the Write  
are registered on the same clock edge.  
Extra data is ignored after  
termination of a Burst.  
SPT03790  
Semiconductor Group  
25  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
6. Write and Read Interrupt  
6.1 Write Interrupted by a Write  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Write A  
Command  
DQ’s  
NOP  
Write B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
1 Clk Interval  
DIN A0  
DIN B0  
DIN B1  
DIN B2  
DIN B3  
SPT03791  
6.2 Write Interrupted by a Read  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
NOP  
Write A  
DIN A0  
DIN A0  
Read B  
don’t care  
don’t care  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS  
latency = 2  
tCK2, DQ’s  
DOUT B0 DOUT B1 DOUT B2 DOUT B3  
CAS  
latency = 3  
tCK3, DQ’s  
don’t care  
DOUT B0 DOUT B1 DOUT B2 DOUT B3  
Input data must be removed from the DQ’s  
at least one clock cycle before the Read data  
appears on the outputs to avoid data contention.  
Input data for the Write is ignored.  
SPT03719  
Semiconductor Group  
26  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
7. Burst Write and Read with Auto Precharge  
7.1 Burst Write with Auto-Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
BANK A  
ACTIVE  
WRITE A  
Auto-Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tRP  
tWR  
CAS latency = 2  
DIN A  
DIN A  
1
0
DQ’s  
*
*
tRP  
tWR  
CAS latency = 3  
DIN A  
DIN A  
1
0
DQ’s  
Begin Autoprecharge  
*
Bank can be reactivated after trp  
7.2 Burst Read with Auto-Precharge  
(Burst Length = 4, CAS latency = 2,3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
with AP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
tRP  
CAS latency = 2  
*
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
tCK2, DQ’s  
tRP  
*
CAS latency = 3  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
t
CK3, DQ’s  
Begin Autoprecharge  
*
Bank can be reactivated after trp  
Semiconductor Group  
27  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
8. Burst Termination  
8.1 Termination of a Full Page Burst Read Operation  
(CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Terminate  
Command  
Read A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS  
latency = 2  
tCK2, DQ’s  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
CAS  
latency = 3  
tCK3, DQ’s  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
The burst ends after a delay equal to the CAS latency.  
SPT03722  
8.2 Termination of a Full Page Burst Write Operation  
(CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Command  
NOP  
Write A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Terminate  
CAS  
latency = 2, 3  
DQ’s  
don’t care  
DIN A1  
DIN A2  
Input data for the Write is masked.  
SPT03419  
Semiconductor Group  
28  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
9. AC Parameters  
9.1 AC Parameters for a Write Timing  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
t CH  
t CK2  
t CL  
t CKH  
t CKS  
Begin Auto  
Precharge  
Bank A  
Begin Auto  
Precharge  
Bank B  
t CS  
t CH  
CS  
RAS  
CAS  
WE  
BS  
tAH  
AP  
RAx  
RAx  
RBx  
RBx  
RAy  
RAz  
RAz  
RBy  
R
tAS  
Addr.  
DQM  
CAx  
CBx  
RAy  
RAy  
t DS  
t RCD  
t WR  
t DH  
t RC  
t RP  
t RRD  
Hi-Z  
DQ  
Ax0 Ax1 Ax2 Ax3 Bx0 Bx1 Bx2 Bx3 Ay0 Ay1 Ay2 Ay3  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Activate  
Command Command  
Bank A  
Write  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Bank A  
Write with  
Auto Precharge  
Command  
Write with  
Auto Precharge  
Command  
Bank B  
Bank A  
SPT03910  
Semiconductor Group  
29  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
9.2 AC Parameters for a Read Timing  
Burst Length = 2, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
CLK  
CKE  
tCH  
tCK2  
tCL  
tCKH  
tCS  
Begin Auto  
Precharge  
Bank A  
Begin Auto  
Precharge  
Bank B  
tCKS  
tCH  
CS  
RAS  
CAS  
WE  
BS  
t AH  
AP  
RAx  
RAx  
RBx  
RBx  
RAy  
RAy  
t AS  
Addr.  
CAx  
RBx  
t RRD  
t RAS  
t RC  
DQM  
tAC2  
tLZ  
t HZ  
t RP  
t AC2  
t OH  
t RCD  
t HZ  
Bx1  
Hi-Z  
DQ  
Ax0  
Ax1  
Bx0  
Activate  
Command  
Bank A  
Read with  
Auto Precharge  
Command  
Activate  
Command  
Bank B  
Read with  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Auto Precharge  
Command  
Bank B  
Bank A  
SPT03911  
Semiconductor Group  
30  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
10. Mode Register Set  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
t RSC  
CS  
RAS  
CAS  
WE  
BS0, BS1  
A10, A11  
Address Key  
A0-A9  
Precharge  
Command  
All Banks  
Any  
Command  
Mode Register  
Set Command  
SPT03912  
Semiconductor Group  
31  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
11. Power on Sequence and Auto Refresh (CBR)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High Level  
is required  
2 Clock min.  
Minimum of 8 Refresh Cycles are required  
CS  
RAS  
CAS  
WE  
BS  
AP  
Address Key  
Addr.  
DQM  
t RP  
t RC  
Hi-Z  
DQ  
Precharge  
Command  
All Banks  
8th Auto Refresh  
Command  
Mode Register  
Set Command  
Any  
Command  
Inputs must be  
stable for 200  
1st Auto Refresh  
Command  
µ
s
SPT03913  
Semiconductor Group  
32  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
12. Clock Suspension ( Using CKE)  
12.1 Clock Suspension During Burst Read CAS Latency = 2  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
Addr.  
DQM  
RAx  
CAx  
tCSL  
tHZ  
tCSL  
tCSL  
Hi-Z  
DQ  
Ax0  
Ax1  
Ax2  
Ax3  
Activate  
Command Command  
Bank A Bank A  
Read  
Clock  
Suspend  
1 Cycle  
Clock  
Suspend  
2 Cycles  
Clock  
Suspend  
3 Cycles  
SPT03914  
Semiconductor Group  
33  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
12.2 Clock Suspension During Burst Read CAS Latency = 3  
Burst Length = 4, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
Addr.  
DQM  
RAx  
CAx  
tCSL  
tCSL  
tCSL  
tHZ  
Hi-Z  
DQ  
Ax0  
Ax1  
Ax2  
Ax3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock  
Suspend  
1 Cycle  
Clock  
Suspend  
2 Cycles  
Clock  
Suspend  
3 Cycles  
SPT03915  
Semiconductor Group  
34  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
12.3 Clock Suspension During Burst Write CAS Latency = 2  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
Addr.  
DQM  
DQ  
RAx  
CAx  
Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock  
Suspend  
1 Cycle  
Clock  
Suspend  
2 Cycles  
Clock  
Suspend  
3 Cycles  
Write  
Command  
Bank A  
SPT03916  
Semiconductor Group  
35  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
12.4 Clock Suspension During Burst Write CAS Latency = 3  
Burst Length = 4, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
RAS  
CAS  
WE  
BA  
A8/AP  
Addr.  
DQMx  
DQ  
RAx  
RAx  
CAx  
Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock  
Suspend  
1 Cycle  
Clock  
Suspend  
2 Cycles  
Clock  
Suspend  
3 Cycles  
Write  
Command  
Bank A  
SPT03917  
Semiconductor Group  
36  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
13. Power Down Mode and Clock Suspend  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CKS  
t CKS  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
Addr.  
DQM  
RAx  
CAx  
tHZ  
Hi-Z  
DQ  
Ax0 Ax1  
Ax2  
Ax3  
Activate  
Command  
Bank A  
Active  
Standby  
Read  
Command  
Bank A  
Clock Mask  
Start  
Clock Mask  
End  
Precharge  
Command  
Bank A  
Precharge  
Standby  
Any  
Command  
Clock Suspend  
Mode Entry  
Clock Suspend  
Mode Exit  
Power Down  
Mode Entry  
Power Down  
Mode Exit  
SPT03918  
Semiconductor Group  
37  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
14. Self Refresh (Entry and Exit)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
t CKS  
t CKS  
CS  
RAS  
CAS  
WE  
BS  
AP  
Addr.  
t SREX  
t RC  
DQM  
DQ  
Hi-Z  
All Banks  
must be idle  
Self Refresh  
Entry  
Begin Self Refresh  
Exit Command  
Any  
Command  
Self Refresh Exit  
Command issued  
Self Refresh  
Exit  
SPT03919  
Semiconductor Group  
38  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
15. Auto Refresh (CBR)  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
Addr.  
RAx  
CAx  
t RC  
(Minimum Interval)  
t RC  
t RP  
DQM  
DQ  
Hi-Z  
Ax0 Ax1 Ax2 Ax3  
Precharge  
Command  
All Banks  
Auto Refresh  
Command  
Auto Refresh  
Command  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
SPT03920  
Semiconductor Group  
39  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
16. Random Column Read (Page within same Bank)  
16.1 CAS Latency = 2  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAw  
RAz  
Addr.  
DQM  
DQ  
RAw  
CAw  
CAx  
CAy  
RAz  
CAz  
Hi Z  
Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3  
Az0 Az1 Az2 Az3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command Command Command  
Bank A Bank A Bank A  
Activate  
Read  
SPT03921  
Semiconductor Group  
40  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
16.2 CAS Latency = 3  
Burst Length = 4, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAw  
RAz  
Addr.  
DQM  
RAw  
CAw  
CAx  
CAy  
RAz  
CAz  
Hi Z  
DQ  
Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Read  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A SPT03922  
Command Command  
Bank A  
Bank A  
Semiconductor Group  
41  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
17. Random Column write (Page within same Bank)  
17.1 CAS Latency = 2  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAw  
RAz  
Addr.  
DQM  
DQ  
RAw  
CAw  
CAx  
CAy  
RAz  
CAz  
Hi Z  
DBw0 DBw1 DBw2 DBw3 DBx0  
DBx1 DBy0  
Write  
DBy1 DBy2 DBy3  
DBz0  
DBz1 DBz2 DBz3  
Activate  
Command  
Bank A  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Activate  
Read  
Command  
Bank B  
Command Command Command  
Bank B Bank B Bank B  
SPT03923  
Semiconductor Group  
42  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
17.2. CAS Latency = 3  
Burst Length = 4, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RBz  
RBz  
Addr.  
DQM  
DQ  
RBz  
CBz  
CBx  
CBy  
RBz  
CBz  
Hi Z  
DBw0 DBw1 DBw2 DBw3 DBx0  
DBx1 DBy0  
Write  
DBy1 DBy2 DBy3  
DBz0  
DBz1  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank BSPT03924  
Command  
Bank B  
Semiconductor Group  
43  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
18. Random Row Read (Interleaving Banks) with Precharge  
18.1 CAS Latency = 2  
Burst Length = 8, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
High  
RAS  
CAS  
WE  
BS  
AP  
RBx  
RBx  
RAx  
RAx  
RBy  
Addr.  
CBx  
CAx  
RBy  
CBy  
t RCD  
t RP  
DQM  
DQ  
t AC2  
Hi-Z  
Bx0 Bx1 Bx2 Bx3 Bx4 Bx5 Bx6 Bx7 Ax0 Ax1 Ax2 Ax3 Ax4 Ax5 Ax6 Ax7  
By0 By1  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Precharge  
Command Command  
Bank B Bank B  
Activate  
Read  
Command  
Bank B  
Read  
Command  
Bank A  
SPT03925  
Semiconductor Group  
44  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
18.2 CAS Latency = 3  
Burst Length = 8, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
High  
RAS  
CAS  
WE  
BS  
AP  
RBx  
RBx  
RAx  
RAx  
RBy  
Addr.  
CBx  
CAx  
RBy  
CBy  
tAC3  
tRCD  
t RP  
DQM  
DQ  
Hi-Z  
Bx0 Bx1 Bx2 Bx3 Bx4 Bx5 Bx6 Bx7 Ax0 Ax1 Ax2 Ax3 Ax4 Ax5 Ax6 Ax7 By0  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command Command  
Bank A Bank B  
Precharge  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Precharge  
Command  
Bank A  
SPT03926  
Semiconductor Group  
45  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
19. Random Row Write (Interleaving Banks) with Precharge  
19.1 CAS Latency = 2  
Burst Length = 8, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
High  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RBx  
RBx  
RAy  
Addr.  
CAx  
CBx  
RAy  
CAy  
t RCD  
t WR  
t RP  
t WR  
DQM  
DQ  
Hi-Z  
DAx0  
DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0  
DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0  
DAy1 DAy2 DAy3 DAy4  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command Command  
Bank B Bank B  
Write  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank B  
Precharge  
Command  
Bank A  
Write  
Command  
Bank A  
SPT03927  
Semiconductor Group  
46  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
19.2 CAS Latency = 3  
Burst Length = 8, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
High  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RBx  
RBx  
RAy  
Addr.  
CAx  
CBx  
RAy  
CAy  
tRCD  
tWR  
t RP  
tWR  
DQM  
DQ  
Hi-Z  
DAx0  
DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0  
DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0  
DAy1 DAy2 DAy3  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank B  
SPT03928  
Semiconductor Group  
47  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
\
20. Full Page Read Cycle  
20.1 CAS Latency = 2  
Burst Length = Full Page, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RBx  
RBx  
RBy  
Addr.  
CAx  
CBx  
RBy  
t RP  
DQM  
DQ  
Hi-Z  
Ax  
Ax +1 Ax + 2 Ax -2  
Ax -1  
Ax  
Ax +1  
Bx  
Bx +1 Bx +2 Bx +3 Bx+4 Bx+5 Bx +6  
Activate  
Command Command Command  
Bank A Bank A Bank B  
Read  
Activate  
Read  
Command  
Bank B  
Burst Stop Precharge  
Command Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Full Page burst operation does not  
Activate  
Command  
Bank B  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
SPT03929  
Semiconductor Group  
48  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
20.2 CAS Latency = 3  
Burst Length = Full Page, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
High  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RBx  
RBx  
RBy  
Addr.  
CAx  
CBx  
RBy  
tRRD  
DQM  
DQ  
Hi-Z  
Ax  
Ax +1 Ax +2 Ax -2  
Ax -1  
Ax  
Ax +1  
Bx  
Bx +1 Bx+2 Bx+3 Bx+4 Bx+5  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Burst Stop Precharge  
Command Command  
Bank B  
Activate  
Command  
Bank B  
Read  
Command  
Bank A  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Full Page burst operation does not  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
SPT03930  
Semiconductor Group  
49  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
21. Full Page Write Cycle  
21.1 CAS Latency = 2  
Burst Length = Full Page, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RBx  
RBx  
RBy  
RBy  
Addr.  
DQM  
DQ  
CAx  
CBx  
Hi-Z  
DAx  
DAx+1  
DAx+2  
DAx+3  
DAx-1  
DAx  
DAx+1  
DBx  
DBx+1  
DBx+2  
DBx+3  
DBx+4  
DBx+5  
DBx+6  
Activate  
Write  
Activate  
Write  
Command  
Bank B  
Data is  
ignored.  
Burst Stop  
Command  
Activate  
Command  
Bank B  
Command Command Command  
Bank A Bank A Bank B  
Precharge  
Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Full Page burst operation does not  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
SPT03931  
Semiconductor Group  
50  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
21.2 CAS Latency = 3  
Burst Length = Full Page, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
High  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RBx  
RBx  
RBy  
Addr.  
DQM  
DQ  
CAx  
CBx  
RBy  
Hi Z  
DAx  
DAx+1  
DAx+2  
DAx+3  
DAx-1  
DAx  
DAx+ 1  
DBx  
DBx+1  
DBx+2 DBx+ 3  
DBx+4  
DBx+5  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Data is  
ignored.  
Burst Stop  
Command  
Activate  
Command  
Bank B  
Write  
Command  
Bank A  
Precharge  
Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Full Page burst operation does not  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
SPT03932  
Semiconductor Group  
51  
HYB39S64400/800/160BT(L)  
64MBit Synchronous DRAM  
22. Precharge termination of a Burst  
22.1 CAS Latency = 2  
Burst Length = 8 or Full Page, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
High  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RAy  
RAy  
RAz  
Addr.  
CAx  
CAy  
RAz  
CAz  
t RP  
t RP  
t RP  
DQM  
DQ  
Hi Z  
DAx0  
DAx1 DAx2 DAx3  
Ay0 Ay1 Ay2  
Az0 Az1 Az2  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Precharge Termination  
of a Write Burst.  
Write Data is masked.  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge Termination  
of a Read Burst.  
SPT03933  
Semiconductor Group  
52  

相关型号:

Q67100-Q1841

64-MBit Synchronous DRAM
INFINEON

Q67100-Q1844

64-MBit Synchronous DRAM
INFINEON

Q67100-Q2001

8M x 32-Bit Dynamic RAM Module
INFINEON

Q67100-Q2002

1M x 64-Bit Dynamic RAM Module
INFINEON

Q67100-Q2003

1M x 64-Bit Dynamic RAM Module
INFINEON

Q67100-Q2004

1M x 72-Bit Dynamic RAM Module
INFINEON

Q67100-Q2005

4M x 32-Bit Dynamic RAM Module
INFINEON

Q67100-Q2006

4M x 36-Bit Dynamic RAM Module
INFINEON

Q67100-Q2007

8M x 36-Bit Dynamic RAM Module
INFINEON

Q67100-Q2008

8M x 32-Bit Dynamic RAM Module
INFINEON

Q67100-Q2009

1M x 32-Bit Dynamic RAM Module
INFINEON

Q67100-Q2010

1M x 32-Bit Dynamic RAM Module
INFINEON