S6E2GK6J0AGV20000 [INFINEON]

FM4 S6E2G-Series Connectivity Arm® Cortex®-M4 Microcontroller (MCU) Family;
S6E2GK6J0AGV20000
型号: S6E2GK6J0AGV20000
厂家: Infineon    Infineon
描述:

FM4 S6E2G-Series Connectivity Arm® Cortex®-M4 Microcontroller (MCU) Family

微控制器
文件: 总191页 (文件大小:3571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
S6E2G Series  
32-bit Arm® Cortex®-M4F  
FM4 Microcontroller  
S6E2G Series are FM4 devices with up to 180 MHz CPU, 1 MB flash, 192 KB SRAM, 20x communication peripherals, 33x digital  
peripherals and 3x analog peripherals. They are designed for industrial automation and metering applications.  
Devices in the S6E2G Series are highly integrated 32-bit microcontrollers with high performance and competitive cost. This series is  
based on the Arm® Cortex®-M4F processor with on-chip flash memory and SRAM. The series has peripherals such as motor control  
timers, A/D converters, and communications interfaces (USB, CAN, UART, CSIO (SPI), I2C, LIN). The products that are described in  
this data sheet are placed into TYPE5-M4 product categories in the "FM4 Family Peripheral Manual Main Part (002-04856)”.  
Features  
32-bit Arm Cortex-M4F Core  
Watch Counter  
Up to 180 MHz frequency operation  
External Interrupt Controller Unit  
On-chip Memories  
Flash memory: Up to 1024 Kbytes  
SRAM memory:  
• SRAM0: up to 128 Kbytes  
• SRAM1: 32 Kbytes  
Watchdog Timer (Two channels)  
Cyclic Redundancy Check (CRC) Accelerator  
SD Card Interface Available on S6E2GM, S6E2GH, and  
S6E2GK Devices Only  
• SRAM2: 32 Kbytes  
Ethernet-MAC Available on S6E2GM, S6E2GK, and  
Direct Memory Access (DMA) Controller (Eight Channels)  
S6E2G2 Devices only  
Descriptor System Data Transfer Controller (DSTC);  
Smartcard Interface (Max 2 channels)  
Five Clock Sources  
256 channels  
External Bus Interface  
Six Reset Sources  
USB Interface (Max two channels): Host and Device  
Clock Supervisor (CSV)  
Low-Voltage Detector (LVD)  
CAN Interface (Max one channel) Available on S6E2GM  
and S6E2GH Devices Only  
Multi-function Serial Interface (Max 10 Channels)  
UART (Universal Asynchronous Receiver/Transmitter)  
Clock Synchronous Serial Interface (CSIO (SPI))  
Local Interconnect Network (LIN)  
Six Low-power Consumption Modes  
Sleep  
Timer  
RTC  
Stop  
Deep standby RTC  
Deep standby stop  
Inter-Integrated Circuit (I2C)  
Inter-IC Sound (I2S)  
Base Timer (Max 16 channels)  
General Purpose I/O Port  
Up to 121 high-speed general-purpose I/O ports in 144-pin  
package  
Up to 153 high-speed general-purpose I/O ports in 176-pin  
package  
Peripheral Clock Gating System  
Crypto Assist Function  
Debug  
Serial wire JTAG debug port (SWJ-DP)  
Embedded trace macrocells (ETM) provide comprehensive  
Multi-function Timer (Max two units)  
Real-Time Clock (RTC)  
debug and trace facilities.  
AHB trace macrocells (HTM)  
41-bit Unique ID  
Analog to Digital Converter (ADC) (Max 32 Channels)  
Dual Timer (32-/16-bit Down Counter)  
Wide range voltage: VCC = 2.7 to 5.5 V  
Quadrature Position/Revolution Counter (QPRC; Max two  
channels)  
Cypress Semiconductor Corporation  
Document Number: 001-98708 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 24, 2019  
 
S6E2G Series  
Ecosystem for Cypress FM4 MCUs  
Cypress provides a wealth of data at www.cypress.com to help you to select the right MCU for your design, and to help you to  
quickly and effectively integrate the device into your design. Following is an abbreviated list for FM4 MCUs:  
Overview: Product Portfolio, Product Roadmap  
a Base Timer: Cypress FM4 Family of 32-bit Arm®  
Product Selectors: FM4 MCUs  
AN99235 - FM4 S6E2HG Series MCU - 16-Bit PWM Using  
Cortex®-M4 Microcontrollers FM4 S6E2H Series Motor  
Control Arm® Cortex®-M4 MCU  
Application notes: Cypress offers a large number of FM4  
application notes covering a broad range of topics, from  
basic to advanced level. Recommended application notes  
for getting started with FM4 family of MCUs are:  
AN204468 - FM4 I2S USB MP3 Player Application 32-Bit  
Microcontroller FM4 Family: This application note  
describes the general structure of the I²S USB MP3Player  
software example, its single modules in detail and how it is  
used.  
AN204471 - FM4 S6E2CC Series External Memory  
Programmer: This document describes use of the MCU  
Universal Programmer as an off-line programmer for Quad  
SPI flash memory programming on the S6E2CC Series  
SK.  
AN203277 - FM 32-Bit Microcontroller Family Hardware  
Design Considerations: This application note reviews  
several topics for designing a hardware system around  
FM0+, FM3, and FM4 family MCUs. Subjects include  
power system, reset, crystal, and other pin connections,  
and programming and debugging interfaces.  
AN202487 - Differences Among FM0+, FM3, and FM4  
32-Bit Microcontrollers: Highlights the peripheral  
differences in Cypress’s FM family MCUs. It provides  
dedicated sections for each peripheral and contains lists,  
tables, and descriptions of peripheral feature and register  
differences.  
AN204438 - How to Setup Flash Security for FM0+, FM3  
and FM4 Families: This application note describes how to  
setup the Flash Security for FM0+, FM3, and FM4 devices  
Development kits:  
FM4-U120-9B560 - Arm® Cortex®-M4 MCU Starter Kit  
with USB and CMSIS-DAP  
FM4-216-ETHERNET Arm® Cortex®-M4 MCU  
Development Kit with Ethernet, CAN and USB Host  
FM4-176L-S6E2CC-ETH - Arm® Cortex®-M4 MCU Starter  
Kit with Ethernet and USB Host  
FM4-176L-S6E2GM - Arm® Cortex®-M4 MCU Pioneer Kit  
with Ethernet and USB Host  
AN202488 - FM4 MB9BF56x and S6E2HG Series MCU -  
Servo Motor Speed Control: This document covers servo  
motor speed control solution on FM4 MCU - MB9BF56x  
and S6E2HG.  
Peripheral Manuals  
Document Number: 001-98708 Rev. *E  
Page 2 of 190  
S6E2G Series  
12.4.7 Reset Input Characteristics............................. 106  
12.4.8 Power-On Reset Timing.................................. 107  
12.4.9 GPIO Output Characteristics........................... 107  
12.4.10 External Bus Timing........................................ 108  
12.4.11 Base Timer Input Timing................................. 119  
12.4.12 CSIO (SPI) Timing .......................................... 120  
12.4.13 External Input Timing...................................... 153  
12.4.14 Quadrature Position/Revolution Counter Timing  
........................................................................ 154  
12.4.15 I2C Timing ....................................................... 157  
12.4.16 SD Card Interface Timing................................ 160  
12.4.17 ETM/ HTM Timing........................................... 162  
12.4.18 JTAG Timing................................................... 164  
12.4.19 Ethernet-MAC Timing ..................................... 165  
12.4.20 I2S Timing (Multi-function Serial Interface)...... 170  
12.5 12-bit A/D Converter.......................................... 171  
12.6 USB Characteristics........................................... 175  
12.7 Low-Voltage Detection Characteristics.............. 179  
12.7.1 Low-Voltage Detection Reset.......................... 179  
12.7.2 Interrupt of Low-Voltage Detection.................. 179  
12.8 MainFlash Memory Write/Erase Characteristics  
........................................................................... 180  
Table of Contents  
1.  
S6E2G Series Block Diagram................................ 4  
Product Lineup....................................................... 5  
Package-Dependent Features............................... 7  
Product Features in Detail..................................... 8  
Pin Assignments.................................................. 12  
Pin Descriptions................................................... 14  
I/O Circuit Type..................................................... 54  
Handling Precautions .......................................... 63  
Precautions for Product Design........................... 63  
Precautions for Package Mounting...................... 64  
Precautions for Use Environment........................ 66  
Handling Devices ................................................. 67  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
8.1  
8.2  
8.3  
9.  
10. Memory Map ......................................................... 70  
11. Pin Status in Each CPU State.............................. 74  
12. Electrical Characteristics .................................... 84  
12.1 Absolute Maximum Ratings................................. 84  
12.2 Recommended Operating Conditions ................. 86  
12.3 DC Characteristics .............................................. 91  
12.3.1 Current Rating .................................................. 91  
12.3.2 Pin Characteristics.......................................... 101  
12.4 AC Characteristics............................................. 103  
12.4.1 Main Clock Input Characteristics .................... 103  
12.4.2 Sub Clock Input Characteristics...................... 104  
12.4.3 Built-In CR Oscillation Characteristics ............ 104  
12.4.4 Operating Conditions of Main PLL (in the Case of  
Using Main Clock for Input Clock of PLL) ....... 105  
12.9 Standby Recovery Time .................................... 181  
12.9.1 Recovery Cause: Interrupt/WKUP .................. 181  
12.9.2 Recovery Cause: Reset .................................. 183  
13. Ordering Information.......................................... 185  
14. Package Dimensions.......................................... 186  
Document History....................................................... 188  
Worldwide Sales and Design Support....................... 190  
12.4.5 Operating Conditions of USB/Ethernet PLL (in the  
Case of Using Main Clock for Input Clock of PLL)  
....................................................................... 105  
12.4.6 Operating Conditions of Main PLL (in the Case of  
Using Built-in High-Speed CR Clock for Input Clock  
of Main PLL) ................................................... 106  
Document Number: 001-98708 Rev. *E  
Page 3 of 190  
S6E2G Series  
1. S6E2G Series Block Diagram  
Document Number: 001-98708 Rev. *E  
Page 4 of 190  
 
S6E2G Series  
2. Product Lineup  
Memory Size  
Product Name  
S6E2GM6  
S6E2GK6  
S6E2GH6  
S6E2G36  
S6E2G26  
S6E2GM8  
S6E2GK8  
S6E2GH8  
S6E2G38  
S6E2G28  
Memory Type  
On-chip flash  
memory  
512 Kbytes  
1024 Kbytes  
SRAM  
128 Kbytes  
64 Kbytes  
32 Kbytes  
32 Kbytes  
192 Kbytes  
128 Kbytes  
32 Kbytes  
32 Kbytes  
SRAM0  
On-chip  
SRAM1  
SRAM2  
Function Availability by Part  
Description  
Product Name  
S6E2GM6  
S6E2GM8  
S6E2GK6  
S6E2GK8  
S6E2GH6  
S6E2GH8  
S6E2G36  
S6E2G38  
S6E2G26  
S6E2G28  
Cortex-M4F, MPU, NVIC 128 ch  
CPU  
Freq.  
180 MHz  
Power supply voltage  
range  
2.7 V to 5.5 V  
2 ch  
USB2.0 (Device/Host)  
1 ch. (Max)  
MII: 1 ch /  
1ch. (Max)  
MII: 1 ch /  
Ethernet-MAC  
N/A  
RMII: 1 ch (Max)  
RMII: 1 ch (Max)  
CAN  
1 ch (Max)  
N/A  
1 unit  
1 ch (Max)  
N/A  
N/A  
SD card interface  
DMAC  
8 ch  
DSTC  
256 ch  
Addr: 25-bit (Max),  
Data: 8-/16-bit  
CS: 9 (Max),  
SRAM,  
External bus interface  
NOR flash  
NAND flash  
SDRAM  
Multi-function serial  
interface  
10ch (Max)  
ch 1, ch 4 to ch 7: FIFO,  
(UART/CSIO(SPI)/LIN/I2C  
/I2S)  
ch 0, ch 2, ch3, ch 8 to ch 15: No FIFO  
ch 1: I2S  
Document Number: 001-98708 Rev. *E  
Page 5 of 190  
S6E2G Series  
Product Name  
Description  
S6E2GM6  
S6E2GM8  
S6E2GK6  
S6E2GK8  
S6E2GH6  
S6E2GH8  
S6E2G36  
S6E2G38  
S6E2G26  
S6E2G28  
Base timer  
(PWC/Reload  
16 ch (Max)  
timer/PWM/PPG)  
A/D  
activation  
compare  
6 ch  
Input  
capture  
4 ch  
3 ch  
6 ch  
Free-run  
timer  
2 units (Max)  
Output  
compare  
Waveform  
generator  
3 ch  
3 ch  
PPG  
Smartcard (ISO7816)  
QPRC  
2 ch (Max)  
2 ch (Max)  
1 unit  
Dual timer  
Real-time clock  
Watch counter  
1 unit  
1 unit  
CRC accelerator  
Yes (fixed)  
1 ch (SW) + 1 ch (HW)  
32 pins (Max)+ NMI × 1  
Yes  
Watchdog timer  
External interrupts  
CSV (clock supervisor)  
LVD (low-voltage  
detector)  
2 ch  
High-speed  
Built-in CR  
4 MHz  
100 kHz  
Low-speed  
Debug function  
Unique ID  
SWJ-DP/ETM/HTM  
Yes  
*1: Crypto Assist Function is built in following products.  
S6E2GM6HHA, S6E2GM8HHA, S6E2GM6JHA, S6E2GM8JHA  
Notes:  
Because of package pin limitations, not all functions within the device can be brought out to external pins. You must carefully  
work out the pin allocation needed for your design.  
You must use the port relocate function of the I/O port according to your function use.  
See 12.4.3 Built-In CR Oscillation Characteristics for the accuracy of the built-in CR.  
Document Number: 001-98708 Rev. *E  
Page 6 of 190  
 
 
S6E2G Series  
3. Package-Dependent Features  
All S6E2G Series of parts are available in both 144-pin LQFP and 176-pin LQFP.  
Base Part Number  
S6E2G  
Description  
Package Suffix  
H0A  
HHA*  
J0A  
JHA*  
LQFP: (0.5 mm pitch)  
I/O Ports  
144 pins  
176 pins  
121 pins (Max)  
24 (3 units)  
153 pins (Max)  
32 ch (3 units)  
12-bit ADC converter  
Crypto Assist Function  
Yes  
Yes  
*HHA and JHA parts have the Crypto Assist Function built in. HHA and JHA options are not available for the S6E2GH or S6E2G3  
parts. The HHA and JHA options are available on the S6E2GM, S6E2GK, and S6E2G2 parts.  
Notes:  
For an explicit list of part numbers and the feature differences among them, see 13. Ordering Information  
See 14. Package Dimensions for detailed information on each package.  
Document Number: 001-98708 Rev. *E  
Page 7 of 190  
S6E2G Series  
• EndPoint 0 is control transfer  
4. Product Features in Detail  
• EndPoint 1,2 can be selected bulk-transfer, interrupt-  
transfer or isochronous-transfer  
32-bit Arm Cortex-M4F Core  
Up to 180 MHz frequency operation  
FPU built-in  
• EndPoint 3 to 5 can select bulk-transfer or interrupt-  
transfer  
EndPoint 1 to 5 comprise double buffer  
The size of each endpoint is as follows.  
• Endpoint 0, 2 to 5: 64 byte  
• EndPoint 1: 256 byte  
Support DSP instructions  
Memory protection unit (MPU): improves the reliability of an  
USB Host  
USB2.0 Full-Speed/Low-Speed supported  
Bulk-transfer, interrupt-transfer, and isochronous-  
transfer support  
USB Device connected/dis-connected automatically  
detect  
IN/OUT token handshake packet automatically  
Max 256-byte packet length supported  
Wake-up function supported  
embedded system  
Integrated nested vectored interrupt controller (NVIC): 1  
NMI (non-maskable interrupt) and 128 peripheral interrupts  
and 16 priority levels  
24-bit system timer (Sys Tick): system timer for OS task  
management  
On-chip Memories  
Flash memory  
This series is on-chip flash memories.  
CAN Interface (Max one channel) Available on  
S6E2GM and S6E2GH Devices Only  
Up to 1024 Kbytes  
Built-in flash accelerator for zero wait state  
Security function for code protection  
Compatible with CAN specification 2.0A/B  
Maximum transfer rate: 1 Mbps  
Built-in 32-message buffer  
SRAM  
This is composed of three independent SRAMs (SRAM0,  
SRAM1 and SRAM2). SRAM0 is connected to the I-code bus  
and D-code bus of Cortex-M4F core. SRAM1 and SRAM2  
are connected to system bus of Cortex-M4F core.  
Multi-function Serial Interface (Max 10 Channels)  
Separate 64 byte receive and transmit FIFO buffers for  
channels 1 and channels 4 to 7.  
SRAM0: up to 128 Kbytes  
SRAM1: 32 Kbytes  
SRAM2: 32 Kbytes  
Operation mode is selectable for each channel from the  
following:  
UART  
CSIO (SPI)  
LIN  
I2C  
I2S  
External Bus Interface  
Supports SRAM, NOR, NAND flash and SDRAM device  
Up to 9 chip selects CS0 to CS8 (CS8 is only for SDRAM)  
8-/16-/32-bit data width  
UART  
Full-duplex double buffer  
Selection with or without parity supported  
Built-in dedicated baud rate generator  
External clock available as a serial clock  
Various error detect functions available (parity errors,  
framing errors, and overrun errors)  
Up to 25-bit address bus  
Supports address/data multiplexing  
Supports external RDY function  
Supports scramble function  
Possible to set the validity/invalidity of the scramble  
function for the external areas 0x6000_0000 to  
0xDFFF_FFFF in 4 Mbytes units.  
Possible to set two kinds of the scramble key  
Note: It is necessary to use the Cypress provided software  
library to use the scramble function.  
CSIO (SPI)  
Full-duplex double buffer  
Built-in dedicated baud rate generator  
Overrun error detect function available  
Serial chip select function (ch 6 and ch 7 only)  
Supports high-speed SPI (ch 4 and ch 6 only)  
Data length 5 to 16-bit  
USB Interface (Max two channels)  
The USB interface is composed of a Device and a Host.  
LIN  
LIN protocol Rev.2.1 supported  
Full-duplex double buffer  
Master/slave mode supported  
LIN break field generation (can change to 13- to 16-bit  
length)  
USB Device  
USB 2.0 Full-speed supported  
Max 6 EndPoint supported  
Document Number: 001-98708 Rev. *E  
Page 8 of 190  
S6E2G Series  
LIN break delimiter generation (can change to 1- to 4-bit  
16-bit PPG timer  
length)  
16-/32-bit reload timer  
16-/32-bit PWC timer  
Various error detect functions available (parity errors,  
framing errors, and overrun errors)  
I2C  
Event counter mode (External clock mode)  
Standard mode (Max 100 kbps)/Fast mode (Max 400 kbps)  
supported  
General Purpose I/O Port  
Fast mode Plus (Fm+) (Max 1000 kbps, only for ch 3 = ch A  
This series can use its pins as general purpose I/O ports  
when they are not used for external bus or peripherals;  
moreover, the port relocate function is built in. It can set the  
I/O port to which the peripheral function can be allocated.  
and ch 7 = ch B) supported  
I2S  
Using CSIO (SPI) (ch 1 only) and I2S clock generator  
Supports two transfer protocol: I2S and MSB-justified  
Master mode only  
Capable of pull-up control per pin  
Capable of reading pin level directly  
Built-in port-relocate function  
DMA Controller (Eight Channels)  
DMA controller has an independent bus, so the CPU and  
Up to 121 high-speed general-purpose I/O ports in 144-pin  
DMA controller can process simultaneously.  
package  
Eight independently configured and operated channels  
Some pins 5 V tolerant I/O.  
Transfer can be started by software or request from the  
built-in peripherals  
See 6. Pin Descriptions and 7. I/O Circuit Type for the  
corresponding pins.  
Transfer address area: 32-bit (4 GB)  
Multi-function Timer (Max two units)  
The multi-function timer is composed of the following blocks:  
Minimum resolution: 5.56 ns  
Transfer mode: Block transfer/Burst transfer/Demand  
transfer  
Transfer data type: bytes/half-word/word  
Transfer block count: 1 to 16  
16-bit free-run timer × 3 ch/unit  
Input capture × 4 ch/unit  
Number of transfers: 1 to 65536  
Output compare × 6 ch/unit  
A/D activation compare × 6 ch/unit  
Waveform generator × 3 ch/unit  
DSTC (Descriptor System Data Transfer Controller;  
256 channels)  
The DSTC can transfer data at high-speed without going via  
the CPU. The DSTC adopts the descriptor system and,  
following the specified contents of the descriptor that has  
already been constructed on the memory, can access directly  
the memory/peripheral device and perform the data-transfer  
operation.  
16-bit PPG timer × 3 ch/unit  
The following functions can be used to achieve the motor  
control:  
PWM signal output function  
DC chopper waveform output function  
Dead time function  
It supports the software activation, the hardware activation,  
and the chain activation functions.  
Input capture function  
A/D convertor activate function  
DTIF (motor emergency stop) interrupt function  
A/D Converter (Max 32 Channels)  
12-bit A/D Converter  
Successive approximation type  
Real-Time Clock (RTC)  
Built-in three units  
The real-time clock can count year, month, day, hour, minute,  
Conversion time: 0.5 μs at 5 V  
Priority conversion available (priority at two levels)  
Scanning conversion mode  
Built-in FIFO for conversion data storage (for SCAN  
conversion: 16 steps, for priority conversion: 4 steps)  
second, or day of the week from 00 to 99.  
Interrupt function with specifying date and time  
(year/month/day/hour/minute) is available. This function is  
also available by specifying only year, month, day, hour, or  
minute.  
Base Timer (Max 16 channels)  
Operation mode is selected from the following for each  
channel:  
Timer interrupt function after set time or each set time.  
Capable of rewriting the time with continuing the time count.  
Leap year automatic count is available.  
16-bit PWM timer  
Document Number: 001-98708 Rev. *E  
Page 9 of 190  
 
S6E2G Series  
CCITT CRC16 and IEEE-802.3 CRC32 are supported.  
CCITT CRC16 generator polynomial: 0x1021  
Quadrature Position/Revolution Counter (QPRC;  
Max two channels)  
The Quadrature Position/Revolution Counter (QPRC) is used  
to measure the position of the position encoder. It is also  
possible to use up/down counter.  
IEEE-802.3 CRC32 generator polynomial: 0x04C11DB7  
SD Card Interface Available on S6E2GM, S6E2GH,  
and S6E2GK Devices Only  
It is possible to use the SD card that conforms to the  
The detection edge of the three external event input pins  
AIN, BIN and ZIN is configurable.  
following standards.  
16-bit position counter  
16-bit revolution counter  
Two 16-bit compare registers  
Part 1 Physical Layer Specification version 3.01  
Part E1 SDIO Specification version 3.00  
Part A2 SD Host Controller Standard Specification version  
Dual Timer (32-/16-bit Down Counter)  
The dual timer consists of two programmable 32-/16-bit down  
counters.  
3.00  
1-bit or 4-bit data bus  
Operation mode is selectable from the following for each  
channel:  
Ethernet-MAC Available on S6E2GM, S6E2GK, and  
S6E2G2 Devices only  
Free-running  
Periodic (= Reload)  
One shot  
Compliant with IEEE802.3 specification  
10 Mbps/100 Mbps data transfer rates supported  
MII/RMII for external PHY device supported.  
MII: Max one channel  
Watch Counter  
RMII: Max one channel  
The watch counter is used for wake up from low-power  
consumption mode. It is possible to select the main clock,  
sub clock, built-in High-speed CR clock, or built-in low-speed  
CR clock as the clock source.  
Full-duplex and half-duplex mode supported.  
Wake-ON-LAN supported  
Built-in dedicated descriptor-system DMAC  
Built-in 2 Kbytes transmit FIFO and 2 Kbytes receive FIFO.  
Compliant IEEE1558-2008 (PTP)  
Interval timer: up to 64 s (max) with a sub clock of 32.768  
kHz  
External Interrupt Controller Unit  
Smartcard Interface (Max 2 channels)  
Compliant with ISO7816-3 specification  
Card Reader only/B class card only  
External interrupt input pin: Max 32 pins  
Both edges(Rise edge and Fall edge) detect  
Include one non-maskable interrupt (NMI)  
Available protocols  
Transmitter: 8E2, 8O2, 8N2  
Receiver: 8E1, 8O1, 8N2, 8N1, 9N1  
Inverse mode  
Watchdog Timer (Two channels)  
A watchdog timer can generate interrupts or a reset when a  
time-out value is reached.  
TX/RX FIFO integrated (RX: 16-bytes, TX:16-bytes)  
This series consists of two different watchdogs: a "hardware"  
watchdog and a "software" watchdog.  
Clock and Reset  
Clocks  
The hardware watchdog timer is clocked by low-speed  
internal CR oscillator. The hardware watchdog is thus active  
in any power saving mode except RTC mode and Stop mode.  
Five clock sources (two external oscillators, two internal CR  
oscillators, and Main PLL) that are dynamically selectable.  
Main clock: 4 MHz to 48 MHz  
Sub clock: 30 kHz to 100 kHz  
High-speed internal CR clock: 4 MHz  
Low-speed internal CR clock: 100 kHz  
Main PLL Clock  
Cyclic Redundancy Check (CRC) Accelerator  
The CRC accelerator helps to verify data transmission or  
storage integrity.  
Document Number: 001-98708 Rev. *E  
Page 10 of 190  
 
S6E2G Series  
Resets  
Reset requests from INITX pin  
Power on reset  
Software reset  
Watchdog timer reset  
Low-voltage detector reset  
Clock supervisor reset  
Crypto Assist Function  
These features are enabled for the crypto assist function.  
The dedicated middleware is necessary for this calculator  
operation.  
PKA (Public Key Accelerator)  
PKAPublic Key Acceleratoris modular exponentiation  
calculation accelerator used of RSA Public Key crypto and  
so on.  
Clock Supervisor (CSV)  
Clocks generated by internal CR oscillators are used to  
Available bit length: Up to 2048-bit  
supervise abnormality of the external clocks.  
AES calculator  
AES (Advanced Encryption Standard) calculator is a AES  
common key crypto accelerator which is compliant with  
FIPS (Federal Information Processing Standard  
Publication)197.  
Available key length: 128/192/256-bit  
CBC mode and ECB mode support  
External OSC clock failure (clock stop) is detected, reset is  
asserted.  
External OSC frequency anomaly is detected, interrupt or  
reset is asserted.  
Low-Voltage Detector (LVD)  
External Bus Data Scramble  
It enables to scramble input/output data of External Bus  
This Series include two-stage monitoring of voltage on the  
VCC pins. When the voltage falls below the voltage that has  
been set, the low-voltage detector function generates an  
interrupt or reset.  
Interface.  
Debug  
Serial wire JTAG debug port (SWJ-DP)  
LVD1: error reporting via interrupt  
LVD2: auto-reset operation  
Embedded trace macrocells (ETM) provide comprehensive  
debug and trace facilities.  
AHB trace macrocells (HTM)  
Low-power Consumption Mode  
Six low power consumption modes are supported.  
Unique ID  
Unique value of the device (41-bit) is set.  
Sleep  
Timer  
RTC  
Stop  
Power Supply  
Four power supplies  
Wide range voltage:  
VCC = 2.7 V to 5.5 V  
Deep standby RTC (selectable from with/without RAM  
retention)  
Power supply for USB ch 0 I/O: USBVCC0  
= 3.0 V to 3.6 V (when USB is used)  
= 2.7 V to 5.5 V (when GPIO is used)  
Power supply for USB ch 1 I/O: USBVCC1  
= 3.0 V to 3.6 V (when USB is used)  
= 2.7 V to 5.5 V (when GPIO is used)  
Deep standby stop (selectable from with/without RAM  
retention)  
Peripheral Clock Gating  
The system can reduce the current consumption of the total  
system with gating the operation clocks of peripheral  
functions not used.  
Power supply for Ethernet-MAC I/O: ETHVCC  
= 3.0 V to 5.5 V (when Ethernet is used.)  
Document Number: 001-98708 Rev. *E  
Page 11 of 190  
 
S6E2G Series  
5. Pin Assignments  
LQS144  
Note:  
Only the GPIO function is shown on GPIO pins. See the table in Pin Descriptions for the full, multiplexed signal name.  
Document Number: 001-98708 Rev. *E  
Page 12 of 190  
S6E2G Series  
LQP176  
Note:  
Only the GPIO function is shown on GPIO pins. See the table in Pin Descriptions for the full, multiplexed signal name.  
Document Number: 001-98708 Rev. *E  
Page 13 of 190  
S6E2G Series  
6. Pin Descriptions  
List of Pin Functions  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these  
pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
1
1
VCC  
PA0  
-
-
RTO00_1  
(PPG00_1)  
TIOA8_0  
INT00_0  
2
2
E
K
MADATA00_0  
IC0_CIN_0  
PA1  
RTO01_1  
(PPG01_1)  
3
4
5
6
3
4
5
6
E
E
E
E
I
I
I
I
TIOA9_0  
MADATA01_0  
IC0_DATA_0  
PA2  
RTO02_1  
(PPG02_1)  
TIOA10_0  
MADATA02_0  
IC0_RST_0  
PA3  
RTO03_1  
(PPG03_1)  
TIOA11_0  
MADATA03_0  
IC0_VPEN_0  
PA4  
RTO04_1  
(PPG04_1)  
TIOA12_0  
MADATA04_0  
IC0_VCC_0  
PA5  
RTO05_1  
(PPG05_1)  
TIOA13_0  
INT01_0  
7
7
E
K
MADATA05_0  
IC0_CLK_0  
Document Number: 001-98708 Rev. *E  
Page 14 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
PA6  
DTTI0X_1  
INT00_2  
MADATA06_0  
PA7  
8
8
E
E
E
K
K
I
IC00_1  
INT02_2  
MADATA07_0  
RTCCO_1  
SUBOUT_1  
P50  
9
9
SCS72_0  
IC01_1  
10  
-
TIOA8_2  
P51  
SCS73_0  
IC02_1  
11  
12  
-
-
E
E
I
I
TIOB8_2  
P52  
IC03_1  
TIOA9_2  
PA8  
SIN7_0  
FRCK0_1  
13  
10  
I
Q
INT02_0  
WKUP1  
MADATA08_0  
PA9  
SOT7_0  
(SDA7_0)  
14  
15  
11  
12  
N
N
I
I
AIN1_1  
MADATA09_0  
PAA  
SCK7_0  
(SCL7_0)  
BIN1_1  
MADATA10_0  
PAB  
SCS70_0  
ZIN1_1  
16  
17  
13  
14  
E
E
K
I
INT03_0  
MADATA11_0  
PAC  
SCS71_0  
TIOB8_0  
MADATA12_0  
Document Number: 001-98708 Rev. *E  
Page 15 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
PAD  
SCK3_0  
(SCL3_0)  
18  
19  
15  
N
N
I
I
TIOB9_0  
MADATA13_0  
PAE  
ADTG_0  
SOT3_0  
(SDA3_0)  
16  
TIOB10_0  
MADATA14_0  
PAF  
SIN3_0  
20  
21  
17  
18  
TIOB11_0  
INT16_0  
MADATA15_0  
P08  
I
K
K
TIOB12_0  
E
INT17_0  
MDQM0_0  
P09  
TIOB13_0  
22  
23  
19  
20  
E
L
K
I
INT18_0  
MDQM1_0  
P0A  
ADTG_1  
MCLKOUT_0  
P30  
MI2SWS1_1  
24  
25  
-
-
RX0_1  
E
E
K
TIOB11_2  
INT01_2  
P31  
MI2SMCK1_1  
TX0_1  
I
TIOA12_2  
P32  
26  
27  
21  
22  
INT19_0  
S_DATA1_0  
P33  
L
L
K
I
FRCK0_0  
S_DATA0_0  
Document Number: 001-98708 Rev. *E  
Page 16 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P34  
IC03_0  
INT00_1  
S_CLK_0  
VCC  
28  
23  
L
K
29  
30  
24  
25  
-
-
-
-
VSS  
P35  
IC02_0  
INT01_1  
S_CMD_0  
P36  
31  
32  
26  
27  
L
L
K
K
IC01_0  
INT02_1  
S_DATA3_0  
P37  
IC00_0  
33  
34  
28  
29  
L
K
I
INT03_1  
S_DATA2_0  
P38  
ADTG_2  
E
DTTI0X_0  
S_WP_0  
P39  
RTO00_0  
(PPG00_0)  
TIOA0_1  
AIN1_0  
INT16_1  
S_CD_0  
MAD24_0  
P3A  
35  
30  
G
K
RTO01_0  
(PPG01_0)  
TIOA1_1  
BIN1_0  
INT17_1  
MAD23_0  
P3B  
36  
37  
31  
32  
G
G
K
K
RTO02_0  
(PPG02_0)  
TIOA2_1  
ZIN1_0  
INT18_1  
MAD22_0  
Document Number: 001-98708 Rev. *E  
Page 17 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P3C  
SIN2_1  
RTO03_0  
(PPG03_0)  
38  
39  
33  
G
G
K
TIOA3_1  
INT19_1  
MAD21_0  
P3D  
SOT2_1  
(SDA2_1)  
34  
RTO04_0  
I
(PPG04_0)  
TIOA4_1  
MAD20_0  
P3E  
SCK2_1  
(SCL2_1)  
40  
41  
35  
RTO05_0  
(PPG05_0)  
G
E
I
TIOA5_1  
MAD19_0  
P5D  
SIN1_1  
-
MI2SDI1_1  
TIOB12_2  
INT03_2  
P5E  
K
SOT1_1  
(SDA1_1)  
42  
43  
-
-
E
E
I
I
MI2SDO1_1  
TIOA13_2  
P5F  
SCK1_1  
(SCL1_1)  
MI2SCK1_1  
TIOB13_2  
VSS  
44  
45  
36  
37  
-
-
-
-
VCC  
P40  
SIN7_1  
RTO10_0  
(PPG10_0)  
46  
38  
G
K
TIOA0_0  
AIN0_0  
INT23_0  
MCSX7_0  
Document Number: 001-98708 Rev. *E  
Page 18 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P41  
SOT7_1  
(SDA7_1)  
RTO11_0  
(PPG11_0)  
47  
39  
G
I
TIOA1_0  
BIN0_0  
MCSX6_0  
P42  
SCK7_1  
(SCL7_1)  
RTO12_0  
(PPG12_0)  
48  
40  
G
I
TIOA2_0  
ZIN0_0  
MCSX5_0  
P43  
SCS70_1  
RTO13_0  
(PPG13_0)  
49  
41  
G
K
TIOA3_0  
INT04_0  
MCSX4_0  
P44  
SCS71_1  
RTO14_0  
(PPG14_0)  
50  
51  
42  
43  
G
G
I
I
TIOA4_0  
MCSX3_0  
P45  
SCS72_1  
RTO15_0  
(PPG15_0)  
TIOA5_0  
MCSX2_0  
C
52  
53  
54  
44  
45  
46  
-
-
-
-
-
-
VSS  
VCC  
P46  
55  
47  
D
S
X0A  
P47  
56  
57  
48  
49  
D
B
T
X1A  
INITX  
C
Document Number: 001-98708 Rev. *E  
Page 19 of 190  
 
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
PF0  
SCS73_1  
RX0_2  
58  
59  
-
E
E
K
K
TIOA15_1  
INT22_1  
PF1  
TX0_2  
-
TIOB15_1  
INT23_1  
P48  
SIN1_0  
MI2SDI1_0  
DTTI1X_0  
INT06_0  
MRASX_0  
P49  
60  
61  
50  
L
L
K
SOT1_0  
(SDA1_0)  
51  
I
MI2SDO1_0  
IC10_0  
MCASX_0  
P4A  
SCK1_0  
(SCL1_0)  
62  
63  
52  
53  
L
L
I
MI2SCK1_0  
IC11_0  
MSDWEX_0  
P4B  
MI2SWS1_0  
IC12_0  
K
INT04_2  
MCSX8_0  
P4C  
MI2SMCK1_0  
IC13_0  
64  
65  
54  
55  
L
L
K
K
INT05_2  
MSDCKE_0  
P4D  
FRCK1_0  
INT07_0  
MSDCLK_0  
Document Number: 001-98708 Rev. *E  
Page 20 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P4E  
SCK9_0  
(SCL9_0)  
66  
67  
56  
L
L
Q
INT05_0  
WKUP2  
MCSX1_0  
P70  
ADTG_7  
57  
I
SOT9_0  
(SDA9_0)  
MCSX0_0  
P71  
ADTG_8  
SIN9_0  
INT04_1  
MRDY_0  
P72  
68  
69  
70  
58  
59  
60  
I
K
I
TIOB0_0  
INT06_2  
MAD00_0  
P73  
E
E
SIN8_0  
TIOB1_0  
INT20_0  
MAD01_0  
P74  
K
SOT8_0  
(SDA8_0)  
71  
72  
61  
62  
E
E
I
I
TIOB2_0  
MAD02_0  
P75  
SCK8_0  
(SCL8_0)  
TIOB3_0  
MAD03_0  
P76  
SIN6_0  
TIOB4_0  
INT21_0  
MAD04_0  
P77  
73  
74  
63  
64  
E
L
K
SOT6_0  
(SDA6_0)  
I
TIOB5_0  
MAD05_0  
Document Number: 001-98708 Rev. *E  
Page 21 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P78  
SCK6_0  
(SCL6_0)  
75  
76  
65  
L
I
AIN0_1  
MAD06_0  
P79  
SCS60_0  
BIN0_1  
66  
67  
-
E
K
INT22_0  
MAD07_0  
P7A  
SCS61_0  
ZIN0_1  
77  
78  
E
E
K
INT07_2  
MAD08_0  
PF2  
SCS62_0  
DTTI1X_1  
TIOA6_1  
IC1_CLK_1  
PF3  
I
SCS63_0  
FRCK1_1  
TIOB6_1  
INT05_1  
IC1_VCC_1  
PF4  
79  
80  
81  
-
-
-
E
E
E
K
K
K
IC10_1  
TIOA7_1  
INT06_1  
IC1_VPEN_1  
PF5  
SIN3_1  
IC11_1  
TIOB7_1  
INT07_1  
IC1_RST_1  
PF6  
SOT3_1  
(SDA3_1)  
IC12_1  
TIOA14_1  
INT20_1  
82  
-
E
K
IC1_DATA_1  
Document Number: 001-98708 Rev. *E  
Page 22 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
PF7  
SCK3_1  
(SCL3_1)  
IC13_1  
TIOB14_1  
INT21_1  
IC1_CIN_1  
PE0  
83  
-
E
K
84  
85  
86  
68  
69  
70  
C
J
E
D
A
MD1  
MD0  
PE2  
A
X0  
PE3  
87  
71  
A
B
X1  
88  
89  
90  
91  
92  
93  
72  
73  
74  
75  
76  
77  
VSS  
-
-
-
-
-
-
-
-
-
-
-
-
VCC  
AVCC  
AVSS  
AVRL  
AVRH  
P10  
AN00  
TIOA0_2  
INT08_0  
MNREX_0  
IC1_CLK_0  
P11  
94  
78  
F
M
AN01  
95  
96  
79  
80  
TIOB0_2  
MNWEX_0  
IC1_VCC_0  
P12  
F
F
L
L
AN02  
TIOA1_2  
MNCLE_0  
IC1_VPEN_0  
P13  
AN03  
SIN9_1  
TIOB1_2  
INT25_1  
MNALE_0  
IC1_RST_0  
97  
81  
F
M
Document Number: 001-98708 Rev. *E  
Page 23 of 190  
 
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P14  
AN04  
SOT9_1  
(SDA9_1)  
98  
82  
F
N
TIOA2_2  
IC1_DATA_0  
TRACED0  
P15  
AN05  
SCK9_1  
(SCL9_1)  
99  
83  
84  
F
F
N
O
TIOB2_2  
IC1_CIN_0  
TRACED1  
P16  
AN06  
SIN6_1  
RX0_0  
100  
INT09_0  
TRACED2  
P17  
AN07  
SOT6_1  
(SDA6_1)  
101  
102  
85  
F
F
N
N
TX0_0  
TRACED3  
PB0  
AN16  
SCK6_1  
(SCL6_1)  
-
TIOA9_1  
TRACED8  
PB1  
AN17  
SCS60_1  
TIOB9_1  
AIN0_2  
103  
-
F
O
INT08_1  
TRACED9  
PB2  
AN18  
SCS61_1  
TIOA10_1  
BIN0_2  
104  
-
F
O
INT09_1  
TRACED10  
Document Number: 001-98708 Rev. *E  
Page 24 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
PB3  
AN19  
SCS62_1  
TIOB10_1  
ZIN0_2  
TRACED11  
P18  
105  
106  
-
F
F
N
O
AN08  
SIN2_0  
TIOA3_2  
INT10_0  
TRACED4  
P19  
86  
87  
AN09  
SOT2_0  
(SDA2_0)  
107  
F
O
TIOB3_2  
INT24_1  
TRACED5  
P1A  
AN10  
SCK2_0  
(SCL2_0)  
108  
109  
88  
89  
F
F
N
O
TIOA4_2  
TRACED6  
P1B  
AN11  
TIOB4_2  
INT11_0  
TRACED7  
PB4  
AN20  
SCS63_1  
TIOA11_1  
INT10_1  
TRACED12  
PB5  
110  
111  
-
-
F
F
O
O
AN21  
SIN8_1  
TIOB11_1  
AIN1_2  
INT11_1  
TRACED13  
Document Number: 001-98708 Rev. *E  
Page 25 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
PB6  
AN22  
SOT8_1  
(SDA8_1)  
112  
-
F
N
TIOA12_1  
BIN1_2  
TRACED14  
PB7  
AN23  
SCK8_1  
(SCL8_1)  
113  
-
F
N
TIOB12_1  
ZIN1_2  
TRACED15  
P1C  
AN12  
SCK0_1  
(SCL0_1)  
114  
90  
F
N
TIOA5_2  
TRACECLK  
P1D  
AN13  
SOT0_1  
(SDA0_1)  
115  
116  
91  
92  
F
F
L
TIOB5_2  
MAD09_0  
P1E  
AN14  
SIN0_1  
TIOA8_1  
INT26_1  
MAD10_0  
P1F  
M
AN15  
RTS5_0  
TIOB8_1  
INT27_1  
MAD11_0  
P2A  
117  
118  
93  
94  
F
F
M
M
AN24  
CTS5_0  
INT08_2  
MAD12_0  
Document Number: 001-98708 Rev. *E  
Page 26 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P29  
AN25  
SCK5_0  
(SCL5_0)  
119  
120  
95  
F
F
M
M
INT09_2  
MAD13_0  
P28  
AN26  
SOT5_0  
(SDA5_0)  
96  
INT10_2  
MAD14_0  
P27  
AN27  
121  
122  
97  
98  
SIN5_0  
INT24_0  
MAD15_0  
P26  
F
E
M
M
ADTG_6  
TIOA6_2  
INT11_2  
MAD16_0  
P25  
AN28  
123  
124  
99  
TIOB6_2  
INT25_0  
MAD17_0  
P24  
F
F
M
L
AN29  
100  
TIOA13_1  
MAD18_0  
P23  
UHCONX1  
AN30  
125  
126  
101  
102  
F
E
L
SCK0_0  
(SCL0_0)  
TIOB13_1  
P22  
AN31  
M
SOT0_0  
(SDA0_0)  
INT26_0  
Document Number: 001-98708 Rev. *E  
Page 27 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P21  
ADTG_4  
SIN0_0  
INT27_0  
CROUT_0  
P20  
127  
103  
I
I
K
F
128  
104  
NMIX  
WKUP0  
USBVCC1  
P82  
129  
130  
105  
106  
-
-
H
R
UDM1  
P83  
131  
107  
H
R
UDP1  
VSS  
132  
133  
108  
109  
-
-
-
-
VCC  
P00  
134  
135  
136  
137  
110  
111  
112  
113  
E
E
E
E
G
G
G
G
TRSTX  
P01  
TCK  
SWCLK  
P02  
TDI  
P03  
TMS  
SWDIO  
P04  
138  
139  
114  
TDO  
E
E
G
K
SWO  
P90  
RTO10_1  
(PPG10_1)  
-
TIOB0_1  
INT12_1  
IC0_CLK_1  
P91  
SIN5_1  
RTO11_1  
(PPG11_1)  
140  
-
E
K
TIOB1_1  
INT13_1  
IC0_VCC_1  
Document Number: 001-98708 Rev. *E  
Page 28 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P92  
SOT5_1  
(SDA5_1)  
RTO12_1  
(PPG12_1)  
141  
-
E
K
TIOB2_1  
INT14_1  
IC0_VPEN_1  
P93  
SCK5_1  
(SCL5_1)  
RTO13_1  
(PPG13_1)  
142  
-
E
K
TIOB3_1  
INT15_1  
IC0_RST_1  
P94  
CTS5_1  
RTO14_1  
(PPG14_1)  
143  
144  
-
-
E
E
I
I
TIOB4_1  
IC0_DATA_1  
P95  
RTS5_1  
RTO15_1  
(PPG15_1)  
TIOB5_1  
IC0_CIN_1  
PC0  
145  
146  
115  
116  
K
K
V
V
E_RXER  
PC1  
TIOB6_0  
E_RX03  
PC2  
147  
148  
149  
150  
117  
118  
119  
120  
TIOA6_0  
E_RX02  
PC3  
K
K
K
K
V
V
V
V
TIOB7_0  
E_RX01  
PC4  
TIOA7_0  
E_RX00  
PC5  
TIOB14_0  
E_RXDV  
Document Number: 001-98708 Rev. *E  
Page 29 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
PC6  
TIOA14_0  
E_MDIO  
PC7  
151  
152  
121  
K
E
V
INT13_0  
E_MDC  
CROUT_1  
PC8  
122  
W
153  
154  
123  
124  
K
K
V
V
E_RXCK_REFCK  
PC9  
TIOB15_0  
E_COL  
PCA  
155  
125  
TIOA15_0  
E_CRS  
ETHVCC  
VSS  
K
V
156  
157  
126  
127  
-
-
-
-
PCB  
158  
159  
128  
129  
INT28_0  
E_COUT  
PCC  
L
W
V
K
E_TCK  
PCD  
SOT4_1  
(SDA4_1)  
160  
130  
L
W
INT14_0  
E_TXER  
PCE  
SIN4_1  
INT15_0  
E_TX03  
PCF  
161  
162  
131  
132  
L
L
W
W
RTS4_1  
INT12_0  
E_TX02  
PD0  
163  
164  
165  
133  
134  
135  
INT30_1  
E_TX01  
PD1  
L
L
L
W
W
V
INT31_1  
E_TX00  
PD2  
CTS4_1  
E_TXEN  
Document Number: 001-98708 Rev. *E  
Page 30 of 190  
S6E2G Series  
Pin Number  
I/O  
Circuit  
Type  
Pin State  
Type  
Pin Name  
LQFP-176  
LQFP-144  
P6E  
ADTG_5  
SCK4_1  
(SCL4_1)  
166  
136  
E
W
INT29_0  
E_PPS  
P65  
167  
168  
-
-
E
I
K
K
INT28_1  
P64  
CTS4_0  
INT29_1  
P63  
ADTG_3  
RTS4_0  
INT30_0  
MOEX_0  
P62  
169  
170  
137  
138  
L
L
K
SCK4_0  
(SCL4_0)  
I
TIOB7_2  
MWEX_0  
P61  
UHCONX0  
SOT4_0  
(SDA4_0)  
171  
172  
139  
140  
L
I
TIOA7_2  
MALE_0  
RTCCO_0  
SUBOUT_0  
P60  
SIN4_0  
INT31_0  
WKUP3  
USBVCC0  
P80  
I
Q
173  
174  
141  
142  
-
-
H
R
UDM0  
P81  
175  
176  
143  
144  
H
R
UDP0  
VSS  
-
-
Document Number: 001-98708 Rev. *E  
Page 31 of 190  
S6E2G Series  
Signal Descriptions  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these  
pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
19  
LQFP 144  
16  
20  
29  
137  
103  
136  
98  
57  
58  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
-
ADTG_0  
ADTG_1  
ADTG_2  
ADTG_3  
ADTG_4  
ADTG_5  
ADTG_6  
ADTG_7  
ADTG_8  
AN00  
23  
34  
169  
127  
166  
122  
67  
A/D converter external trigger input pin  
68  
94  
AN01  
95  
AN02  
96  
AN03  
97  
AN04  
98  
AN05  
99  
AN06  
100  
101  
106  
107  
108  
109  
114  
115  
116  
117  
102  
103  
104  
105  
110  
111  
112  
113  
118  
119  
120  
121  
123  
124  
125  
126  
AN07  
AN08  
AN09  
AN10  
A/D  
converter  
AN11  
AN12  
AN13  
AN14  
AN15  
A/D converter analog input pin.  
ANxx describes A/D converter ch xx.  
AN16  
AN17  
-
AN18  
-
AN19  
-
AN20  
-
AN21  
-
AN22  
-
AN23  
-
AN24  
94  
95  
96  
97  
99  
100  
101  
102  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
Document Number: 001-98708 Rev. *E  
Page 32 of 190  
S6E2G Series  
Pin Number  
LQFP 176  
Module  
Pin Name  
Function  
LQFP 144  
38  
30  
78  
59  
-
TIOA0_0  
TIOA0_1  
TIOA0_2  
TIOB0_0  
TIOB0_1  
TIOB0_2  
TIOA1_0  
TIOA1_1  
TIOA1_2  
TIOB1_0  
TIOB1_1  
TIOB1_2  
TIOA2_0  
TIOA2_1  
TIOA2_2  
TIOB2_0  
TIOB2_1  
TIOB2_2  
TIOA3_0  
TIOA3_1  
TIOA3_2  
TIOB3_0  
TIOB3_1  
TIOB3_2  
TIOA4_0  
TIOA4_1  
TIOA4_2  
TIOB4_0  
TIOB4_1  
TIOB4_2  
TIOA5_0  
TIOA5_1  
TIOA5_2  
TIOB5_0  
TIOB5_1  
TIOB5_2  
TIOA6_0  
TIOA6_1  
TIOA6_2  
TIOB6_0  
TIOB6_1  
TIOB6_2  
46  
35  
Base Timer ch 0 TIOA pin  
94  
Base Timer  
0
69  
Base Timer ch 0 TIOB pin  
Base Timer ch 1 TIOA pin  
Base Timer ch 1 TIOB pin  
Base Timer ch 2 TIOA pin  
Base Timer ch 2 TIOB pin  
Base Timer ch 3 TIOA pin  
Base Timer ch 3 TIOB pin  
Base Timer ch 4 TIOA pin  
Base Timer ch 4 TIOB pin  
Base Timer ch 5 TIOA pin  
Base Timer ch 5 TIOB pin  
Base Timer ch 6 TIOA pin  
Base Timer ch 6 TIOB pin  
139  
95  
79  
39  
31  
80  
60  
-
47  
36  
96  
Base Timer  
1
70  
140  
97  
81  
40  
32  
82  
61  
-
48  
37  
98  
Base Timer  
2
71  
141  
99  
83  
41  
33  
86  
62  
-
49  
38  
106  
72  
Base Timer  
3
142  
107  
50  
87  
42  
34  
88  
63  
-
39  
108  
73  
Base Timer  
4
143  
109  
51  
89  
43  
35  
90  
64  
-
40  
114  
74  
Base Timer  
5
144  
115  
147  
78  
91  
117  
-
122  
146  
79  
98  
116  
-
Base Timer  
6
123  
99  
Document Number: 001-98708 Rev. *E  
Page 33 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
TIOA7_0  
TIOA7_1  
TIOA7_2  
TIOB7_0  
TIOB7_1  
TIOB7_2  
TIOA8_0  
TIOA8_1  
TIOA8_2  
TIOB8_0  
TIOB8_1  
TIOB8_2  
TIOA9_0  
TIOA9_1  
TIOA9_2  
TIOB9_0  
TIOB9_1  
TIOA10_0  
TIOA10_1  
TIOB10_0  
TIOB10_1  
TIOA11_0  
TIOA11_1  
TIOB11_0  
TIOB11_1  
TIOB11_2  
TIOA12_0  
TIOA12_1  
TIOA12_2  
TIOB12_0  
TIOB12_1  
TIOB12_2  
TIOA13_0  
TIOA13_1  
TIOA13_2  
TIOB13_0  
TIOB13_1  
TIOB13_2  
TIOA14_0  
TIOA14_1  
TIOB14_0  
TIOB14_1  
149  
80  
119  
Base Timer ch 7 TIOA pin  
-
171  
148  
81  
139  
Base Timer  
7
118  
Base Timer ch 7 TIOB pin  
Base Timer ch 8 TIOA pin  
Base Timer ch 8 TIOB pin  
Base Timer ch 9 TIOA pin  
-
170  
2
138  
2
116  
10  
92  
-
Base Timer  
8
17  
14  
117  
11  
93  
-
3
3
102  
12  
-
Base Timer  
9
-
18  
15  
Base Timer ch 9 TIOB pin  
Base Timer ch 10 TIOA pin  
Base Timer ch 10 TIOB pin  
Base Timer ch 11 TIOA pin  
103  
4
-
4
104  
19  
-
Base Timer  
10  
16  
105  
5
-
5
110  
20  
-
Base Timer  
11  
17  
Base Timer ch 11 TIOB pin  
Base Timer ch 12 TIOA pin  
Base Timer ch 12 TIOB pin  
Base Timer ch 13 TIOA pin  
Base Timer ch 13 TIOB pin  
111  
24  
-
-
6
6
112  
25  
-
-
18  
-
Base Timer  
12  
21  
113  
41  
-
7
7
124  
42  
100  
-
Base Timer  
13  
22  
19  
101  
-
125  
43  
151  
82  
121  
-
Base Timer ch 14 TIOA pin  
Base Timer ch 14 TIOB pin  
Base Timer  
14  
150  
83  
120  
-
Document Number: 001-98708 Rev. *E  
Page 34 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
Base Timer ch 15 TIOA pin  
Base timer ch 15 TIOB pin  
LQFP 176  
LQFP 144  
TIOA15_0  
TIOA15_1  
TIOB15_0  
TIOB15_1  
TX0_0  
155  
58  
125  
-
Base Timer  
15  
154  
59  
124  
-
85  
-
101  
25  
CAN interface ch 0 TX output pin  
CAN interface ch 0 RX input pin  
TX0_1  
TX0_2  
59  
-
CAN 0  
RX0_0  
100  
24  
84  
-
RX0_1  
RX0_2  
58  
-
Serial wire debug interface clock input  
pin  
SWCLK  
SWDIO  
135  
137  
111  
113  
Serial wire debug interface data input/  
output pin  
Serial wire viewer output pin  
JTAG test clock input pin  
SWO  
138  
135  
136  
138  
137  
114  
98  
114  
111  
112  
114  
113  
90  
82  
83  
84  
85  
86  
87  
88  
89  
-
TCK  
JTAG test data input pin  
TDI  
JTAG debug data output pin  
JTAG test mode state input/output pin  
Trace CLK output pin of ETM/HTM  
TDO  
TMS  
TRACECLK  
TRACED0  
TRACED1  
TRACED2  
TRACED3  
TRACED4  
TRACED5  
TRACED6  
TRACED7  
TRACED8  
TRACED9  
TRACED10  
TRACED11  
TRACED12  
TRACED13  
TRACED14  
TRACED15  
TRSTX  
99  
Trace data output pin of ETM/  
Trace data output pin of HTM  
100  
101  
106  
107  
108  
109  
102  
103  
104  
105  
110  
111  
112  
113  
134  
Debugger  
-
Trace data output pin of HTM  
-
-
-
-
-
-
JTAG test reset Input pin  
110  
Document Number: 001-98708 Rev. *E  
Page 35 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
59  
MAD00_0  
MAD01_0  
MAD02_0  
MAD03_0  
MAD04_0  
MAD05_0  
MAD06_0  
MAD07_0  
MAD08_0  
MAD09_0  
MAD10_0  
MAD11_0  
MAD12_0  
MAD13_0  
MAD14_0  
MAD15_0  
MAD16_0  
MAD17_0  
MAD18_0  
MAD19_0  
MAD20_0  
MAD21_0  
MAD22_0  
MAD23_0  
MAD24_0  
MCSX0_0  
MCSX1_0  
MCSX2_0  
MCSX3_0  
MCSX4_0  
MCSX5_0  
MCSX6_0  
MCSX7_0  
MCSX8_0  
69  
70  
60  
71  
61  
72  
62  
73  
63  
74  
64  
75  
65  
76  
66  
77  
67  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
40  
91  
92  
93  
External bus interface address bus  
94  
95  
96  
97  
98  
External  
bus  
99  
100  
35  
39  
34  
38  
33  
37  
32  
36  
31  
35  
30  
67  
57  
66  
56  
51  
43  
50  
42  
External bus interface chip select  
output pin  
49  
41  
48  
40  
47  
39  
46  
38  
63  
53  
Document Number: 001-98708 Rev. *E  
Page 36 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
MADATA00_0  
MADATA01_0  
MADATA02_0  
MADATA03_0  
MADATA04_0  
MADATA05_0  
MADATA06_0  
MADATA07_0  
MADATA08_0  
MADATA09_0  
MADATA10_0  
MADATA11_0  
MADATA12_0  
MADATA13_0  
MADATA14_0  
MADATA15_0  
MDQM0_0  
2
3
2
3
4
4
5
5
6
6
7
7
8
8
9
9
External bus interface data bus  
(address/data multiplex bus)  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
External bus interface byte mask signal  
output pin  
MDQM1_0  
External bus interface address latch  
enable output signal for multiplex  
MALE_0  
MRDY_0  
171  
68  
139  
58  
External bus interface external RDY  
input signal  
External  
bus  
External bus interface external clock  
output pin  
MCLKOUT_0  
MNALE_0  
MNCLE_0  
MNREX_0  
MNWEX_0  
MOEX_0  
23  
20  
External bus interface ALE signal to  
control NAND flash output pin  
97  
81  
External bus interface CLE signal to  
control NAND flash output pin  
96  
80  
External bus interface read enable signal  
to control NAND flash  
94  
78  
External bus interface write enable signal  
to control NAND flash  
95  
79  
External bus interface read enable  
signal for SRAM  
169  
170  
65  
137  
138  
55  
External bus interface write enable  
signal for SRAM  
MWEX_0  
SDRAM interface  
SDRAM clock output pin  
MSDCLK_0  
MSDCKE_0  
MRASX_0  
MCASX_0  
MSDWEX_0  
SDRAM interface  
SDRAM clock enable pin  
64  
54  
SDRAM interface  
SDRAM row active strobe pin  
60  
50  
SDRAM interface  
SDRAM column active strobe pin  
61  
51  
SDRAM interface  
SDRAM write enable pin  
62  
52  
Document Number: 001-98708 Rev. *E  
Page 37 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
INT00_0  
INT00_1  
INT00_2  
INT01_0  
INT01_1  
INT01_2  
INT02_0  
INT02_1  
INT02_2  
INT03_0  
INT03_1  
INT03_2  
INT04_0  
INT04_1  
INT04_2  
INT05_0  
INT05_1  
INT05_2  
INT06_0  
INT06_1  
INT06_2  
INT07_0  
INT07_1  
INT07_2  
INT08_0  
INT08_1  
INT08_2  
INT09_0  
INT09_1  
INT09_2  
INT10_0  
INT10_1  
INT10_2  
INT11_0  
INT11_1  
INT11_2  
INT12_0  
INT12_1  
INT13_0  
INT13_1  
2
2
23  
8
External interrupt request 00 input pin  
28  
8
7
7
External interrupt request 01 input pin  
External interrupt request 02 input pin  
External interrupt request 03 input pin  
External interrupt request 04 input pin  
External interrupt request 05 input pin  
External interrupt request 06 input pin  
External interrupt request 07 input pin  
External interrupt request 08 input pin  
External interrupt request 09 input pin  
External interrupt request 10 input pin  
External interrupt request 11 input pin  
31  
26  
-
24  
13  
10  
27  
9
32  
9
16  
13  
28  
-
33  
41  
49  
41  
58  
53  
56  
-
68  
63  
66  
79  
64  
54  
50  
-
60  
80  
External  
interrupt  
69  
59  
55  
-
65  
81  
77  
67  
78  
-
94  
103  
118  
100  
104  
119  
106  
110  
120  
109  
111  
122  
162  
139  
152  
140  
94  
84  
-
95  
86  
-
96  
89  
-
98  
132  
-
External interrupt request 12 input pin  
External interrupt request 13 input pin  
122  
-
Document Number: 001-98708 Rev. *E  
Page 38 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
130  
-
INT14_0  
INT14_1  
INT15_0  
INT15_1  
INT16_0  
INT16_1  
INT17_0  
INT17_1  
INT18_0  
INT18_1  
INT19_0  
INT19_1  
INT20_0  
INT20_1  
INT21_0  
INT21_1  
INT22_0  
INT22_1  
INT23_0  
INT23_1  
INT24_0  
INT24_1  
INT25_0  
INT25_1  
INT26_0  
INT26_1  
INT27_0  
INT27_1  
INT28_0  
INT28_1  
INT29_0  
INT29_1  
INT30_0  
INT30_1  
INT31_0  
INT31_1  
NMIX  
160  
141  
161  
142  
20  
External interrupt request 14 input pin  
External interrupt request 15 input pin  
External interrupt request 16 input pin  
External interrupt request 17 input pin  
External interrupt request 18 input pin  
External interrupt request 19 input pin  
External interrupt request 20 input pin  
External interrupt request 21 input pin  
External interrupt request 22 input pin  
External interrupt request 23 input pin  
External interrupt request 24 input pin  
External interrupt request 25 input pin  
External interrupt request 26 input pin  
External interrupt request 27 input pin  
External interrupt request 28 input pin  
External interrupt request 29 input pin  
External interrupt request 30 input pin  
131  
-
17  
30  
18  
31  
19  
32  
21  
33  
60  
-
35  
21  
36  
22  
37  
26  
38  
70  
82  
73  
63  
-
83  
76  
66  
-
58  
External  
interrupt  
46  
38  
-
59  
121  
107  
123  
97  
97  
87  
99  
81  
102  
92  
103  
93  
128  
-
126  
116  
127  
117  
158  
167  
166  
168  
169  
163  
172  
164  
128  
136  
-
137  
133  
140  
134  
104  
External interrupt request 31 input pin  
Non-maskable interrupt input pin  
Document Number: 001-98708 Rev. *E  
Page 39 of 190  
S6E2G Series  
Pin Number  
LQFP 176  
Module  
Pin Name  
Function  
LQFP 144  
110  
111  
112  
113  
114  
18  
P00  
P01  
P02  
P03  
P04  
P08  
P09  
P0A  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P1A  
P1B  
P1C  
P1D  
P1E  
P1F  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P2A  
134  
135  
136  
137  
138  
21  
General-purpose I/O port 0  
22  
19  
23  
20  
94  
78  
95  
79  
96  
80  
97  
81  
98  
82  
99  
83  
100  
101  
106  
107  
108  
109  
114  
115  
116  
117  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
84  
85  
General-purpose I/O port 1  
86  
GPIO  
87  
88  
89  
90  
91  
92  
93  
104  
103  
102  
101  
100  
99  
General-purpose I/O port 2  
98  
97  
96  
95  
94  
Document Number: 001-98708 Rev. *E  
Page 40 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
-
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P38  
P39  
P3A  
P3B  
P3C  
P3D  
P3E  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
P48  
P49  
P4A  
P4B  
P4C  
P4D  
P4E  
P50  
P51  
P52  
P5D  
P5E  
P5F  
P60  
P61  
P62  
P63  
P64  
P65  
P6E  
24  
25  
26  
27  
28  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
46  
47  
48  
49  
50  
51  
55  
56  
60  
61  
62  
63  
64  
65  
66  
10  
11  
-
21  
22  
23  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
38  
39  
40  
41  
42  
43  
47  
48  
50  
51  
52  
53  
54  
55  
56  
-
General-purpose I/O port 3  
GPIO  
General-purpose I/O port 4  
-
12  
41  
42  
43  
172  
171  
170  
169  
168  
167  
166  
-
General-purpose I/O port 5  
-
-
-
140  
139  
138  
137  
-
General-purpose I/O port 6  
-
136  
Document Number: 001-98708 Rev. *E  
Page 41 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
P70  
P71  
P72  
P73  
P74  
P75  
P76  
P77  
P78  
P79  
P7A  
P80  
P81  
P82  
P83  
P90  
P91  
P92  
P93  
P94  
P95  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PA8  
PA9  
PAA  
PAB  
PAC  
PAD  
PAE  
PAF  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
174  
175  
130  
131  
139  
140  
141  
142  
143  
144  
2
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
142  
143  
106  
107  
-
General-purpose I/O port 7  
General-purpose I/O port 8  
General-purpose I/O port 9  
-
-
GPIO  
-
-
-
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
General-purpose I/O port A  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
Document Number: 001-98708 Rev. *E  
Page 42 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
PCA  
PCB  
PCC  
PCD  
PCE  
PCF  
PD0  
PD1  
PD2  
PE0  
PE2  
PE3  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
PF7  
102  
103  
104  
105  
110  
111  
112  
113  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
158  
159  
160  
161  
162  
163  
164  
165  
84  
-
-
-
-
General-purpose I/O port B  
GPIO  
-
-
-
-
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
128  
129  
130  
131  
132  
133  
134  
135  
68  
70  
71  
-
General-purpose I/O port C  
GPIO  
General-purpose I/O port D  
General-purpose I/O port E  
86  
87  
58  
59  
-
78  
-
79  
-
General-purpose I/O port F  
80  
-
81  
-
82  
-
83  
-
Document Number: 001-98708 Rev. *E  
Page 43 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
103  
SIN0_0  
SIN0_1  
127  
116  
Multi-function serial interface ch 0 input  
pin  
92  
Multi-function serial interface ch 0 output  
pin  
This pin operates as SOT0 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA0 when it is  
used in an I2C (operation mode 4).  
SOT0_0  
(SDA0_0)  
126  
115  
125  
114  
102  
Multi-  
Function  
Serial  
0
SOT0_1  
(SDA0_1)  
91  
Multi-function serial interface ch 0 clock  
I/O pin  
This pin operates as SCK0 when it is  
used in a CSIO (operation mode 2) and  
as SCL0 when it is used in an I2C  
(operation mode 4)  
SCK0_0  
(SCL0_0)  
101  
90  
SCK0_1  
(SCL0_1)  
SIN1_0  
(MI2SDI1_0)  
Multi-function serial interface ch 1 input  
pin.  
60  
41  
50  
SIN1 pin operates as MI2SDI1 when used  
SIN1_1  
(MI2SDI1_1)  
as an I2S pin (operation mode 2).  
-
Multi-function serial interface ch 1 output  
pin  
SOT1_0  
(SDA1_0)  
61  
51  
(MI2SDO1_0)  
This pin operates as SOT1 when it is used in a  
UART/CSIO/LIN (operation modes 0 to 3) and  
as SDA1 when it is used in an I2C (operation  
mode 4).  
SOT1_1  
(SDA1_1)  
42  
-
(MI2SDO1_1)  
SOT1 pin operates as MI2SDO1 when used as  
an I2S pin (operation mode 2).  
Multi-  
Function  
Serial  
1
Multi-function serial interface ch 1 clock  
I/O pin  
SCK1_0  
(SCL1_0)  
62  
43  
52  
This pin operates as SCK1 when it is  
used in a CSIO (operation mode 2) and  
as SCL1 when it is used in an I2C  
(operation mode 4).  
(MI2SCK1_0)  
SCK1_1  
(SCL1_1)  
(MI2SCK1_1)  
-
SCK1 pin operates as MI2SCK1 when  
used as an I2S pin (operation mode 2).  
MI2SWS1_0  
MI2SWS1_1  
MI2SMCK1_0  
MI2SMCK1_1  
63  
24  
64  
25  
53  
-
I2S word select (WS) output pin  
I2S master clock I/O pin  
54  
-
Document Number: 001-98708 Rev. *E  
Page 44 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
SIN2_0  
SIN2_1  
106  
38  
86  
33  
Multi-function serial interface ch 2 input  
pin  
Multi-function serial interface ch 2 output  
pin  
This pin operates as SOT2 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA2 when it is  
used in an I2C (operation mode 4).  
SOT2_0  
(SDA2_0)  
107  
87  
34  
88  
35  
Multi-  
Function  
Serial  
2
SOT2_1  
(SDA2_1)  
39  
Multi-function serial interface ch 2 clock  
I/O pin  
This pin operates as SCK2 when it is  
used in a CSIO (operation mode 2) and  
as SCL2 when it is used in an I2C  
(operation mode 4).  
SCK2_0  
(SCL2_0)  
108  
40  
SCK2_1  
(SCL2_1)  
SIN3_0  
SIN3_1  
20  
81  
17  
Multi-function serial interface ch 3 input  
pin  
-
Multi-function serial interface ch 3 output  
pin  
This pin operates as SOT3 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA3 when it is  
used in an I2C (operation mode 4).  
SOT3_0  
(SDA3_0)  
19  
82  
18  
83  
16  
Multi-  
Function  
Serial  
3
SOT3_1  
(SDA3_1)  
-
Multi-function serial interface ch 3 clock  
I/O pin  
This pin operates as SCK3 when it is  
used in a CSIO (operation modes 2) and  
as SCL3 when it is used in an I2C  
(operation mode 4).  
SCK3_0  
(SCL3_0)  
15  
-
SCK3_1  
(SCL3_1)  
SIN4_0  
SIN4_1  
172  
161  
140  
131  
Multi-function serial interface ch 4 input  
pin  
Multi-function serial interface ch 4 output  
pin  
This pin operates as SOT4 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA4 when it is  
used in an I2C (operation mode 4).  
SOT4_0  
(SDA4_0)  
171  
160  
170  
166  
139  
130  
138  
136  
SOT4_1  
(SDA4_1)  
Multi-  
Function  
Serial  
4
Multi-function serial interface ch 4 clock  
I/O pin  
This pin operates as SCK4 when it is  
used in a CSIO (operation mode 2) and  
as SCL4 when it is used in an I2C  
(operation mode 4).  
SCK4_0  
(SCL4_0)  
SCK4_1  
(SCL4_1)  
CTS4_0  
CTS4_1  
RTS4_0  
RTS4_1  
168  
165  
169  
162  
-
Multi-function serial interface ch 4 CTS  
input pin  
135  
137  
132  
Multi-function serial interface ch 4 RTS  
output pin  
Document Number: 001-98708 Rev. *E  
Page 45 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
SIN5_0  
SIN5_1  
121  
140  
97  
Multi-function serial interface ch 5 input  
pin  
-
Multi-function serial interface ch 5 output  
pin  
This pin operates as SOT5 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA5 when it is  
used in an I2C (operation mode 4).  
SOT5_0  
(SDA5_0)  
120  
141  
119  
142  
96  
SOT5_1  
(SDA5_1)  
-
Multi-  
Function  
Serial  
5
Multi-function serial interface ch 5 clock  
I/O pin  
This pin operates as SCK5 when it is  
used in a CSIO (operation mode 2)  
and as SCL5 when it is used in an I2C  
(operation mode 4).  
SCK5_0  
(SCL5_0)  
95  
-
SCK5_1  
(SCL5_1)  
CTS5_0  
CTS5_1  
RTS5_0  
RTS5_1  
SIN6_0  
SIN6_1  
118  
143  
117  
144  
73  
94  
-
Multi-function serial interface ch 5 CTS  
input pin  
93  
-
Multi-function serial interface ch 5 RTS  
output pin  
63  
84  
Multi-function serial interface ch 6 input  
pin  
100  
Multi-function serial interface ch 6 output  
pin  
This pin operates as SOT6 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA6 when it is  
used in an I2C (operation mode 4).  
SOT6_0  
(SDA6_0)  
74  
101  
75  
64  
85  
65  
-
SOT6_1  
(SDA6_1)  
Multi-function serial interface ch 6 clock  
I/O pin  
This pin operates as SCK6 when it is  
used in a CSIO (operation mode 2) and  
as SCL6 when it is used in an I2C  
(operation mode 4).  
SCK6_0  
(SCL6_0)  
Multi-  
Function  
Serial  
6
SCK6_1  
(SCL6_1)  
102  
SCS60_0  
SCS60_1  
SCS61_0  
SCS61_1  
SCS62_0  
SCS62_1  
SCS63_0  
SCS63_1  
76  
103  
77  
66  
-
Multi-function serial interface ch 6 chip  
select 0 input/output pin  
67  
-
Multi-function serial interface ch 6 chip  
select1 input/output pin  
104  
78  
-
Multi-function serial interface ch 6 chip  
select2 input/output pin  
105  
79  
-
-
Multi-function serial interface ch 6 chip  
select3 input/output pin  
110  
-
Document Number: 001-98708 Rev. *E  
Page 46 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
SIN7_0  
SIN7_1  
13  
46  
10  
38  
Multi-function serial interface ch 7 input  
pin  
Multi-function serial interface ch 7 output  
pin  
This pin operates as SOT7 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA7 when it is  
used in an I2C (operation mode 4).  
SOT7_0  
(SDA7_0)  
14  
47  
15  
48  
11  
39  
12  
40  
SOT7_1  
(SDA7_1)  
Multi-function serial interface ch 7  
clock I/O pin  
This pin operates as SCK7 when it is  
used in a CSIO (operation mode 2) and  
as SCL7 when it is used in an I2C  
(operation mode 4).  
SCK7_0  
(SCL7_0)  
Multi-  
Function  
Serial  
7
SCK7_1  
(SCL7_1)  
SCS70_0  
SCS70_1  
SCS71_0  
SCS71_1  
SCS72_0  
SCS72_1  
SCS73_0  
SCS73_1  
SIN8_0  
16  
49  
17  
50  
10  
51  
11  
13  
41  
14  
42  
-
Multi-function serial interface ch 7 chip  
select 0 input/output pin  
Multi-function serial interface ch 7 chip  
select 1 input/output pin  
Multi-function serial interface ch 7 chip  
select 2 input/output pin  
43  
-
Multi-function serial interface ch 7 chip  
select 3 input/output pin  
58  
70  
111  
-
60  
-
Multi-function serial interface ch 8 input  
pin  
SIN8_1  
Multi-function serial interface ch 8 output  
pin  
This pin operates as SOT8 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA8 when it is  
used in an I2C (operation mode 4).  
SOT8_0  
(SDA8_0)  
71  
112  
72  
61  
Multi-  
Function  
Serial  
8
SOT8_1  
(SDA8_1)  
-
Multi-function serial interface ch 8 clock  
I/O pin  
This pin operates as SCK8 when it is  
used in a CSIO (operation mode 2) and  
as SCL8 when it is used in an I2C  
(operation mode 4).  
SCK8_0  
(SCL8_0)  
62  
-
SCK8_1  
(SCL8_1)  
113  
SIN9_0  
SIN9_1  
68  
97  
58  
81  
Multi-function serial interface ch 9 input  
pin  
Multi-function serial interface ch 9 output  
pin  
This pin operates as SOT9 when it is  
used in a UART/CSIO/LIN (operation  
modes 0 to 3) and as SDA9 when it is  
used in an I2C (operation mode 4).  
SOT9_0  
(SDA9_0)  
67  
98  
66  
99  
57  
82  
56  
83  
Multi-  
Function  
Serial  
9
SOT9_1  
(SDA9_1)  
Multi-function serial interface ch 9 clock  
I/O pin  
This pin operates as SCK9 when it is  
used in a CSIO (operation mode 2) and  
as SCL9 when it is used in an I2C  
(operation mode 4).  
SCK9_0  
(SCL9_0)  
SCK9_1  
(SCL9_1)  
Document Number: 001-98708 Rev. *E  
Page 47 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
Input signal controlling waveform  
generator outputs RTO00 to RTO05 of  
Multi-Function Timer 0.  
DTTI0X_0  
DTTI0X_1  
34  
8
29  
8
FRCK0_0  
FRCK0_1  
IC00_0  
IC00_1  
IC01_0  
IC01_1  
IC02_0  
IC02_1  
IC03_0  
IC03_1  
27  
13  
33  
9
22  
10  
28  
9
16-bit free-run timer ch 0 external  
clock input pin  
32  
10  
31  
11  
28  
12  
27  
-
16-bit input capture input pin of  
Multi-Function Timer 0.  
ICxx describes channel number.  
26  
-
23  
-
RTO00_0  
(PPG00_0)  
Waveform generator output pin of  
Multi-Function Timer 0.  
This pin operates as PPG00 when it is  
used in PPG0 output modes.  
35  
2
30  
2
RTO00_1  
(PPG00_1)  
Multi-  
Function  
Timer 0  
RTO01_0  
(PPG00_0)  
Waveform generator output pin of  
Multi-Function Timer 0.  
This pin operates as PPG00 when it is  
36  
3
31  
3
RTO01_1  
(PPG00_1)  
used in PPG0 output modes.  
RTO02_0  
(PPG02_0)  
Waveform generator output pin of  
Multi-Function Timer 0.  
This pin operates as PPG02 when it is  
used in PPG0 output modes.  
37  
4
32  
4
RTO02_1  
(PPG02_1)  
RTO03_0  
(PPG02_0)  
Waveform generator output pin of  
Multi-Function Timer 0.  
This pin operates as PPG02 when it is  
used in PPG0 output modes.  
38  
5
33  
5
RTO03_1  
(PPG02_1)  
RTO04_0  
(PPG04_0)  
Waveform generator output pin of  
Multi-Function Timer 0.  
This pin operates as PPG04 when it is  
used in PPG0 output modes.  
39  
6
34  
6
RTO04_1  
(PPG04_1)  
RTO05_0  
(PPG04_0)  
Waveform generator output pin of  
Multi-Function Timer 0.  
This pin operates as PPG04 when it is  
40  
7
35  
7
RTO05_1  
(PPG04_1)  
used in PPG0 output modes.  
Document Number: 001-98708 Rev. *E  
Page 48 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
Input signal controlling waveform  
generator outputs RTO10 to RTO15 of  
Multi-Function Timer 1.  
DTTI1X_0  
DTTI1X_1  
60  
78  
50  
-
FRCK1_0  
FRCK1_1  
IC10_0  
IC10_1  
IC11_0  
IC11_1  
IC12_0  
IC12_1  
IC13_0  
IC13_1  
65  
79  
61  
80  
62  
81  
63  
82  
64  
83  
55  
-
16-bit free-run timer ch 1 external  
clock input pin  
51  
-
52  
-
16-bit input capture input pin of  
Multi-Function Timer 1.  
ICxx describes channel number.  
53  
-
54  
-
RTO10_0  
(PPG10_0)  
Waveform generator output pin of  
Multi-Function Timer 1.  
This pin operates as PPG10 when it is  
used in PPG1 output modes.  
46  
139  
47  
38  
-
RTO10_1  
(PPG10_1)  
Multi-  
Function  
Timer 1  
RTO11_0  
(PPG10_0)  
Waveform generator output pin of  
Multi-Function Timer 1.  
This pin operates as PPG10 when it is  
39  
-
RTO11_1  
(PPG10_1)  
140  
48  
used in PPG1 output modes.  
RTO12_0  
(PPG12_0)  
Waveform generator output pin of  
Multi-Function Timer 1.  
This pin operates as PPG12 when it is  
used in PPG1 output modes.  
40  
-
RTO12_1  
(PPG12_1)  
141  
49  
RTO13_0  
(PPG12_0)  
Waveform generator output pin of  
Multi-Function Timer 1.  
This pin operates as PPG12 when it is  
used in PPG1 output modes.  
41  
-
RTO13_1  
(PPG12_1)  
142  
50  
RTO14_0  
(PPG14_0)  
Waveform generator output pin of  
Multi-Function Timer 1.  
This pin operates as PPG14 when it is  
used in PPG1 output modes.  
42  
-
RTO14_1  
(PPG14_1)  
143  
51  
RTO15_0  
(PPG14_0)  
Waveform generator output pin of  
Multi-Function Timer 1.  
This pin operates as PPG14 when it is  
43  
-
RTO15_1  
(PPG14_1)  
144  
used in PPG1 output modes.  
Document Number: 001-98708 Rev. *E  
Page 49 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
AIN0_0  
AIN0_1  
AIN0_2  
BIN0_0  
BIN0_1  
BIN0_2  
ZIN0_0  
46  
75  
38  
65  
-
QPRC ch 0 AIN input pin  
103  
47  
Quadrature  
Position/  
Revolution  
Counter  
0
39  
66  
-
QPRC ch 0 BIN input pin  
QPRC ch 0 ZIN input pin  
QPRC ch 1 AIN input pin  
QPRC ch 1 BIN input pin  
QPRC ch 1 ZIN input pin  
76  
104  
48  
40  
67  
-
ZIN0_1  
77  
ZIN0_2  
105  
35  
AIN1_0  
AIN1_1  
AIN1_2  
BIN1_0  
BIN1_1  
BIN1_2  
ZIN1_0  
30  
11  
-
14  
111  
36  
Quadrature  
Position/  
Revolution  
Counter  
1
31  
12  
-
15  
112  
37  
32  
13  
-
ZIN1_1  
16  
ZIN1_2  
113  
171  
9
RTCCO_0  
RTCCO_1  
SUBOUT_0  
SUBOUT_1  
UDM0  
139  
9
0.5 seconds pulse output pin of  
real-time clock  
Real-time  
clock  
171  
9
139  
9
Sub-clock output pin  
USB ch 0 device/host D – pin  
USB ch 0 device/host D + pin  
USB ch 0 external pull-up control pin  
USB ch 1 device/host D – pin  
USB ch 1 device/host D + pin  
USB ch 1 external pull-up control pin  
174  
175  
171  
130  
131  
125  
142  
143  
139  
106  
107  
101  
USB0  
USB1  
UDP0  
UHCONX0  
UDM1  
UDP1  
UHCONX1  
Deep standby mode return signal input  
pin 0  
WKUP0  
WKUP1  
WKUP2  
WKUP3  
128  
13  
104  
10  
Deep standby mode return signal input  
pin 1  
Low power  
consump-  
tion  
Deep standby mode return signal input  
pin 2  
66  
56  
mode  
Deep standby mode return signal input  
pin 3  
172  
140  
Document Number: 001-98708 Rev. *E  
Page 50 of 190  
 
S6E2G Series  
Pin Number  
Module  
Pin Name  
S_CLK_0  
S_CMD_0  
Function  
LQFP 176  
LQFP 144  
SD memory card interface  
SD memory card clock output pin  
28  
31  
23  
SD memory card interface  
SD memory card command output  
26  
S_DATA1_0  
S_DATA0_0  
S_DATA3_0  
S_DATA2_0  
26  
27  
32  
33  
21  
22  
27  
28  
SD memory card interface  
SD memory card data bus  
SD I/F  
SD memory card interface  
SD memory card detection pin  
S_CD_0  
S_WP_0  
35  
34  
30  
29  
SD memory card interface  
SD memory card write protection  
Collision detection  
Clock output for Ethernet PHY  
Carrier detection  
E_COL  
E_COUT  
E_CRS  
E_MDC  
E_MDIO  
E_PPS  
154  
158  
155  
152  
151  
166  
149  
148  
147  
146  
124  
128  
125  
122  
121  
136  
119  
118  
117  
116  
Management clock  
Management data I/O  
PTP counter monitor  
Received data0  
E_RX00  
E_RX01  
E_RX02  
E_RX03  
Received data1  
Received data2  
Received data3  
Ethernet  
E_RXCK_RE Received clock input/  
153  
123  
Reference clock  
FCK  
Received data enable  
Received data error detection  
Transition clock input  
Transition data0  
E_RXDV  
E_RXER  
E_TCK  
150  
145  
159  
164  
163  
162  
161  
165  
160  
120  
115  
129  
134  
133  
132  
131  
135  
130  
E_TX00  
E_TX01  
E_TX02  
E_TX03  
E_TXEN  
E_TXER  
Transition data1  
Transition data2  
Transition data3  
Transition data enable  
Transition data error detection  
Document Number: 001-98708 Rev. *E  
Page 51 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
LQFP 176  
LQFP 144  
IC0_VCC_0  
IC0_VCC_1  
IC0_VPEN_0  
IC0_VPEN_1  
IC0_RST_0  
IC0_RST_1  
IC0_CIN_0  
IC0_CIN_1  
IC0_CLK_0  
IC0_CLK_1  
IC0_DATA_0  
IC0_DATA_1  
IC1_VCC_0  
IC1_VCC_1  
IC1_VPEN_0  
IC1_VPEN_1  
IC1_RST_0  
IC1_RST_1  
IC1_CIN_0  
IC1_CIN_1  
IC1_CLK_0  
IC1_CLK_1  
IC1_DATA_0  
IC1_DATA_1  
6
140  
5
6
-
Smartcard ch 0 power enable output pin  
Smartcard ch 0 programming output pin  
Smartcard ch 0 reset output pin  
5
-
141  
4
4
-
142  
2
Smartcard0  
2
-
Smartcard ch 0 insert detection input pin  
144  
7
7
-
Smartcard ch 0 serial interface clock  
output pin  
139  
3
3
-
Smartcard ch 0 serial interface data I/O  
pin  
143  
95  
79  
96  
80  
97  
81  
99  
83  
94  
78  
98  
82  
79  
-
Smartcard ch 1 power enable output pin  
Smartcard ch 1 programming output pin  
Smartcard ch 1 reset output pin  
80  
-
81  
-
Smartcard1  
83  
-
Smartcard ch 1 insert detection input pin  
78  
-
Smartcard ch 1 serial interface clock  
output pin  
82  
-
Smartcard ch 1 serial interface data I/O  
pin  
Document Number: 001-98708 Rev. *E  
Page 52 of 190  
S6E2G Series  
Pin Number  
Module  
Pin Name  
Function  
External reset Input pin  
LQFP 176  
LQFP 144  
Reset  
INITX  
57  
49  
A reset is valid when INITX = L.  
Mode 1 pin  
During serial programming to flash  
memory, MD1 = L must be input.  
MD1  
MD0  
84  
68  
69  
Mode  
Mode 0 pin  
During normal operation, MD0 = L must  
be input. During serial programming to  
flash memory, MD0 = H must be input.  
85  
1
1
29  
24  
45  
37  
Power supply pin  
VCC  
54  
46  
Power  
89  
73  
133  
173  
129  
156  
30  
109  
141  
105  
126  
25  
USBVCC0  
USBVCC1  
ETHVCC  
3.3V power supply port for USB I/O  
Power supply pin for Ethernet I/O  
44  
36  
53  
45  
GND pin  
GND  
VSS  
88  
72  
132  
157  
176  
86  
108  
127  
144  
70  
Main clock (oscillation) input pin  
Main clock (oscillation) I/O pin  
Sub clock (oscillation) input pin  
Sub clock (oscillation) I/O pin  
X0  
X1  
87  
71  
X0A  
55  
47  
Clock  
X1A  
56  
48  
CROUT_0  
CROUT_1  
127  
152  
103  
122  
Built-in high-speed CR-oscillation clock  
output port  
A/D converter and D/A converter  
analog power-supply pin  
AVCC  
AVRL  
AVRH  
90  
92  
93  
74  
76  
77  
Analog  
power  
A/D converter analog reference voltage  
input pin  
A/D converter analog reference voltage  
input pin  
Analog  
GND  
A/D converter and D/A converter  
GND pin  
AVSS  
C
91  
52  
75  
44  
Power supply stabilization capacity pin  
C pin  
Note:  
While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to  
all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other  
devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP  
controller.  
Document Number: 001-98708 Rev. *E  
Page 53 of 190  
S6E2G Series  
7. I/O Circuit Type  
Type  
Circuit  
Remarks  
P-ch  
P-ch  
Digital output  
Digital output  
X1  
N-ch  
R
It is possible to select the main  
Oscillation/GPIO function.  
Pull-up resistor control  
When the main oscillation  
is selected:  
Digital input  
Oscillation feedback resistor:  
approximately 1 MΩ  
Standby mode control  
Clock input  
Standby mode control  
A
When the GPIO is selected:  
CMOS level output.  
CMOS level hysteresis input  
Pull-up resistor control  
Standby mode control  
Pull-up resistor:  
Standby mode control  
Digital input  
approximately 50 kΩ  
Standby mode control  
IOH = -4 mA, IOL= 4 mA  
R
P-ch  
P-ch  
N-ch  
Digital output  
X0  
Digital output  
Pull-up resistor control  
CMOS level hysteresis input  
Pull-up resistor:  
Pull-up resistor  
B
approximately 50 kΩ  
Digital input  
Document Number: 001-98708 Rev. *E  
Page 54 of 190  
S6E2G Series  
Type  
Circuit  
Remarks  
Digital input  
Open drain output  
CMOS level hysteresis input  
C
N-ch  
Digital output  
Document Number: 001-98708 Rev. *E  
Page 55 of 190  
S6E2G Series  
Type  
Circuit  
Remarks  
P-ch  
P-ch  
Digital output  
Digital output  
X1A  
N-ch  
R
It is possible to select the sub  
oscillation/GPIO function.  
Pull-up resistor control  
When the main oscillation  
is selected:  
Digital input  
Oscillation feedback resistor:  
approximately 5 MΩ  
Standby mode control  
Clock input  
Standby mode control  
D
When the GPIO is selected:  
CMOS level output.  
CMOS level hysteresis input  
Pull-up resistor control  
Standby mode control  
Pull-up resistor:  
Standby mode control  
Digital input  
approximately 50 kΩ  
Standby mode control  
IOH = -4 mA, IOL= 4 mA  
R
P-ch  
P-ch  
N-ch  
Digital output  
X0A  
Digital output  
Pull-up resistor control  
Document Number: 001-98708 Rev. *E  
Page 56 of 190  
S6E2G Series  
Type  
Circuit  
Remarks  
P-ch  
P-ch  
Digital output  
CMOS level output  
CMOS level hysteresis input  
Pull-up resistor control  
Standby mode control  
Pull-up resistor:  
E
N-ch  
Digital output  
approximately 50 kΩ  
R
IOH = -4 mA, IOL = 4 mA  
When this pin is used as an I2C pin,  
the digital output P-ch transistor is  
always off.  
Pull-up resistor control  
Digital input  
Standby mode control  
P-ch  
P-ch  
Digital output  
CMOS level output  
CMOS level hysteresis input  
Input control  
Analog input  
N-ch  
Digital output  
Pull-up resistor control  
Standby mode control  
Pull-up resistor:  
F
approximately 50 kΩ  
Pull-up resistor control  
IOH = -4 mA, IOL = 4 mA  
When this pin is used as an I2C pin,  
the digital output P-ch transistor is  
always off.  
R
Digital input  
Standby mode control  
Analog input  
Input control  
Document Number: 001-98708 Rev. *E  
Page 57 of 190  
S6E2G Series  
Type  
Circuit  
Remarks  
CMOS level output  
P-ch  
P-ch  
Digital output  
Digital output  
CMOS level hysteresis input  
Pull-up resistor control  
Standby mode control  
Pull-up resistor:  
G
approximately 50 kΩ  
N-ch  
IOH = -12 mA, IOL = 12 mA  
When this pin is used as an I2C  
pin, the digital output P-ch  
transistor is always off.  
R
Pull-up resistor  
control  
Digital input  
Standby mode  
control  
GPIO Digital output  
GPIO Digital input/output direction  
GPIO Digital input  
GPIO Digital input circuit control  
It is possible to select either USB I/O  
or GPIO function.  
UDP output  
UDP/Pxx  
USB Full-speed/Low-speed control  
UDP input  
When the USB I/O is selected:  
Full-speed, low-speed control  
Differential  
UDM/Pxx  
Differential input  
USB/GPIO select  
H
When the GPIO is selected:  
CMOS level output  
UDM input  
CMOS level hysteresis input  
Standby mode control  
UDM output  
IOH = -20.5 mA, IOL = 18.5 mA  
USB Digital input/output direction  
GPIO Digital output  
GPIO Digital input/output direction  
GPIO Digital input  
GPIO Digital input circuit control  
Document Number: 001-98708 Rev. *E  
Page 58 of 190  
S6E2G Series  
Type  
Circuit  
Remarks  
CMOS level output  
CMOS level hysteresis input  
5 V tolerant  
P-ch  
P-ch  
Digital output  
Digital output  
Pull-up resistor control  
Standby mode control  
Pull-up resistor:  
approximately 50 kΩ  
I
IOH = -4 mA, IOL= 4 mA  
N-ch  
Available to control of PZR registers  
(pseudo-open drain control)  
For PZR registers, refer to GPIO in  
the FM4 Family Peripheral Manual  
Main Part (002-04856).  
R
Pull-up resistor  
control  
Digital input  
Standby mode control  
J
CMOS level hysteresis input  
Mode input  
P-ch  
P-ch  
Digital output  
Digital output  
CMOS level output  
TTL level hysteresis input  
Pull-up resistor control  
Standby mode control  
K
N-ch  
Pull-up resistor:  
R
approximately 50 kΩ  
IOH = -4 mA, IOL = 4 mA  
Pull-up resistor control  
Digital input  
Standby mode control  
Document Number: 001-98708 Rev. *E  
Page 59 of 190  
S6E2G Series  
Type  
Circuit  
Remarks  
CMOS level output  
P-ch  
P-ch  
Digital output  
Digital output  
CMOS level hysteresis input  
Pull-up resistor control  
Standby mode control  
Pull-up resistor:  
L
approximately 50 kΩ  
N-ch  
IOH = -8 mA, IOL = 8 mA  
When this pin is used as an I2C  
pin, the digital output P-ch  
transistor is always off.  
Pull-up resistor  
control  
R
Digital input  
Standby mode  
control  
CMOS level output  
CMOS level hysteresis input  
5V tolerant  
Pull-up resistor  
P-ch  
control  
Pull-up resistor control  
Standby mode control  
Pull-up resistor:  
P-ch  
Digital output  
approximately 50 kΩ  
IOH = -4 mA, IOL = 4 mA (GPIO)  
IOL = 20mA (Fast mode Plus)  
Available to control of PZR register  
(pseudo-open drain control)  
For PZR registers, refer to GPIO in  
the FM4 Family Peripheral Manual  
Main Part (002-04856).  
When this pin is used as an I2C pin,  
the digital output P-ch transistor is  
always off.  
N
N-ch  
N-ch  
Digital output  
Fast mode  
control  
R
Digital input  
Standby mode  
control  
Document Number: 001-98708 Rev. *E  
Page 60 of 190  
S6E2G Series  
Type  
Circuit  
Remarks  
CMOS level output  
Pull-up resistor  
control  
CMOS level hysteresis input  
5 V tolerant  
P-ch  
P-ch  
Digital output  
Pull-up resistor control  
Pull-up resistor:  
approximately 50 kΩ  
O
IOH = -4 mA, IOL= 4 mA  
Available to control of PZR register  
(pseudo-open drain control)  
For PZR registers, refer to GPIO in  
the FM4 Family Peripheral Manual  
Main Part (002-04856).  
N-ch  
Digital output  
R
Digital input  
P-ch  
Pull-up resistor  
control  
Digital output  
P-ch  
X0A  
CMOS level output  
CMOS level hysteresis input  
Pull-up resistor control  
Pull-up resistor:  
N-ch  
Digital output  
P
approximately 50 kΩ  
IOH = -4 mA, IOL= 4 mA  
R
Digital input  
Standby mode  
control  
OSC  
Document Number: 001-98708 Rev. *E  
Page 61 of 190  
S6E2G Series  
Type  
Circuit  
Remarks  
Pull-up resistor  
control  
Digital output  
P-ch  
P-ch  
It is possible to select the sub  
oscillation/GPIO function.  
X1A  
When the sub oscillation  
is selected:  
N-ch  
Digital output  
Oscillation feedback resistor:  
approximately 10 MΩ  
Q
When the GPIO is selected:  
CMOS level output.  
CMOS level hysteresis input  
Pull-up resistor control  
Pull-up resistor:  
R
Digital input  
Standby mode  
control  
OSC  
approximately 50 kΩ  
IOH = -4 mA, IOL = 4 mA  
RX  
Standby mode  
control  
Clock input  
Pull-up resistor  
P-ch  
control  
CMOS level output  
CMOS level hysteresis input  
Analog output  
P-ch  
N-ch  
Digital output  
Pull-up resistor control  
Standby mode control  
Pull-up resistor:  
Digital output  
R
approximately 50 kΩ  
IOH = -4 mA, IOL = 4 mA  
(4.5V to 5.5V)  
R
IOH = -2 mA, IOL = 2 mA  
(2.7V to 4.5V)  
Digital input  
Standby mode  
control  
Analog output  
Document Number: 001-98708 Rev. *E  
Page 62 of 190  
S6E2G Series  
8. Handling Precautions  
Every semiconductor device has a characteristic, inherent rate of failure. The possibility of failure is greatly affected by the  
conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must  
be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.  
8.1 Precautions for Product Design  
This section describes precautions when designing electronic equipment using semiconductor devices.  
Absolute Maximum Ratings  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of  
certain established limits, called absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions  
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical  
characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely  
affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users  
considering application outside the listed conditions are advised to contact their sales representative beforehand.  
Processing and Protection of Pins  
These precautions must be followed when handling the pins that connect semiconductor devices to power supply and I/O  
functions.  
1. Preventing Over-Voltage and Over-Current Conditions  
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,  
and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at  
the design stage.  
2. Protection of Output Pins  
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows.  
Such conditions, if present for extended periods of time, can damage the device; therefore, avoid this type of connection.  
3. Handling of Unused Input Pins  
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be  
connected through an appropriate resistance to a power-supply pin or ground pin.  
Document Number: 001-98708 Rev. *E  
Page 63 of 190  
S6E2G Series  
Latch-Up  
Semiconductor devices are constructed by the formation of p-type and n-type areas on a substrate. When subjected to  
abnormally high voltages, internal parasitic pnpn junctions (called thyristor structures) may be formed, causing large current levels  
in excess of several hundred milliamps to flow continuously at the power supply pin. This condition is called latch-up.  
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or  
damage from high heat, smoke or flame. To prevent this from happening, do the following:  
1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal  
noise, surge levels, etc.  
2. Be sure that abnormal current flows do not occur during the power-on sequence.  
Observance of Safety Regulations and Standards  
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic  
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.  
Fail-Safe Design  
As previously mentioned, all semiconductor devices have inherent rates of failure. You must protect against injury, damage or loss  
from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection,  
and prevention of over-current levels and other abnormal operating conditions.  
Precautions Related to Usage of Devices  
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office  
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).  
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support,  
etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages  
arising from such use without prior approval.  
8.2 Precautions for Package Mounting  
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering,  
you should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your  
sales representative.  
Lead Insertion Type  
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board,  
or mounting by using a socket.  
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow  
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be  
subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to  
Cypress recommended mounting conditions.  
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact  
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be  
verified before mounting.  
Document Number: 001-98708 Rev. *E  
Page 64 of 190  
S6E2G Series  
Surface Mount Type  
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily  
deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open  
connections caused by deformed pins, or shorting due to solder bridges.  
You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of  
mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of  
recommended conditions.  
Lead-Free Packaging  
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction  
strength may be reduced under some conditions of use.  
Storage of Semiconductor Devices  
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption  
of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel,  
reducing moisture resistance and causing packages to crack. To prevent this, do the following:  
1. Avoid exposure to rapid temperature changes, which can cause moisture to condense inside the product. Store products in  
locations where temperature changes are slight.  
2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C  
and 30°C.  
3. When Dry Packages are opened, it is recommended to have humidity between 40% and 70%.  
4. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica  
gel desiccant. Devices should be sealed in these aluminum laminate bags for storage.  
5. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.  
Baking  
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended  
conditions for baking.  
Condition: 125°C/24 h  
Static Electricity  
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following  
precautions:  
1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be  
needed to remove electricity.  
2. Electrically ground all conveyors, solder vessels, soldering irons, and peripheral equipment.  
3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1  
MΩ). Wearing of conductive clothing and shoes, and the use of conductive floor mats and other measures to minimize shock  
loads is recommended.  
4. Ground all fixtures and instruments, or protect with anti-static measures.  
5. Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies.  
Document Number: 001-98708 Rev. *E  
Page 65 of 190  
S6E2G Series  
8.3 Precautions for Use Environment  
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.  
For reliable performance, do the following:  
1. Humidity  
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are  
anticipated, consider anti-humidity processing.  
2. Discharge of static electricity  
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases,  
use anti-static measures or processing to prevent discharges.  
3. Corrosive gases, dust, or oil  
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If  
you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.  
4. Radiation, including cosmic radiation  
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide  
shielding as appropriate.  
5. Smoke, flame  
CAUTION: Plastic molded devices are flammable and therefore should not be used near combustible substances. If devices  
begin to smoke or burn, there is danger of the release of toxic gases.  
Customers considering the use of Cypress products in other special environmental conditions should consult with sales  
representatives.  
Document Number: 001-98708 Rev. *E  
Page 66 of 190  
S6E2G Series  
9. Handling Devices  
Power-Supply Pins  
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to  
prevent malfunctions such as latch-up. All of these pins should be connected externally to the power supply or ground lines,  
however, in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in  
the ground level, and to conform to the total output current rating.  
Be sure to connect the current-supply source with the power pins and GND pins of this device at low impedance. It is also  
advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS near this  
device.  
A malfunction may occur when the power-supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed  
operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the  
fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard  
VCC value, and the transient fluctuation rate does not exceed 0.1V/μs at a momentary fluctuation such as switching the power  
supply.  
Crystal Oscillator Circuit  
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,  
X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device  
as possible.  
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by  
ground plane, as this is expected to produce stable operation.  
Evaluate the oscillation introduced by the use of the crystal oscillator by your mount board.  
Sub Crystal Oscillator  
The sub-oscillator circuit for devices in this family is low gain to keep current consumption low. To stabilize the oscillation, Cypress  
recommends a crystal oscillator that meets the following conditions:  
Surface mount type  
Size: More than 3.2 mm × 1.5 mm  
Load capacitance: approximately 6 pF to 7 pF  
Lead type  
Load capacitance: approximately 6 pF to 7 pF  
Document Number: 001-98708 Rev. *E  
Page 67 of 190  
 
S6E2G Series  
Using an External Clock  
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0.  
X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set  
X0A/X1A to the external clock input and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.  
Example of Using an External Clock  
Device  
X0(X0A)  
Set as external clock  
input  
Can be used as  
general-purpose  
I/O ports.  
X1(PE3), X1A (P47)  
Handling When Using Multi-Function Serial Pin as I2C Pin  
If the application uses the multi-function serial pin as an I2C pin, the P-channel transistor of the digital output must be disabled. I2C  
pins need to conform to electrical limitations like other pins, however, and avoid connecting to live external systems with the MCU  
power off.  
C Pin  
Devices in this series contain a regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and  
the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.  
Some laminated ceramic capacitors have a large capacitance variation due to thermal fluctuation. Please select a capacitor that  
meets the specifications in the operating conditions to use by evaluating the temperature characteristics of the device. A  
smoothing capacitor of about 4.7 μF would be recommended for this series.  
C
Device  
CS  
VSS  
GND  
Mode Pins (MD0)  
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance  
stays low, the distance between the mode pins and VCC pins or VSS pins is as short as possible, and the connection impedance  
is low when the pins are pulled up/down such as for switching the pin level and rewriting the flash memory data. This is important  
to prevent the device from erroneously switching to test mode as a result of noise.  
Document Number: 001-98708 Rev. *E  
Page 68 of 190  
S6E2G Series  
Notes on Power-On  
Turn power on/off in the sequence shown below or at the same time. If not using the A/D converter and D/A converter, connect  
AVCC = VCC and AVSS = VSS.  
Turning on: VCC → USBVCC0  
VCC USBVCC1  
VCC →ETHVCC  
VCC → AVCC → AVRH  
Turning off: AVRH → AVCC → VCC  
ETHVCC VCC  
USBVCC1 VCC  
USBVCC0 → VCC  
Serial Communication  
There is a possibility of receiving incorrect data as a result of noise or other issues introduced by the serial communication. Take  
care to design the printed circuit board to minimize noise.  
Consider the case of introducing error as a result of noise, perform error detection such as by applying a checksum of data at the  
end. If an error is detected, retransmit the data.  
Differences in Characteristics within the Product Line  
The electric characteristics including power consumption, ESD, latch-up, noise, and oscillation differ among members of the  
product line because chip layout and memory structures are not the same; for example, different sizes, flash versus ROM, etc. If  
you are switching to a different product of the same series, please make sure to evaluate the electric characteristics.  
Pull-Up Function of 5 V Tolerant I/O  
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.  
Pin Doubled as Debug Function  
The pin doubled as TDO/TMS/TDI/TCK/TRSTX, SWO/SWDIO/SWCLK should be used as output only. Do not use as input.  
Document Number: 001-98708 Rev. *E  
Page 69 of 190  
S6E2G Series  
10.Memory Map  
Memory Map (1)  
See "Memory Map (2) for  
memory size details.  
Document Number: 001-98708 Rev. *E  
Page 70 of 190  
S6E2G Series  
Memory Map (2)  
*: See S6E2GM/GK/GH/G3/G2 Series Flash Programming Manual to confirm the detail of flash Memory.  
Document Number: 001-98708 Rev. *E  
Page 71 of 190  
S6E2G Series  
Peripheral Address Map  
Start Address  
0x4000_0000  
End Address  
Bus  
Peripherals  
0x4000_0FFF  
0x4000_FFFF  
0x4001_0FFF  
0x4001_1FFF  
0x4001_2FFF  
0x4001_4FFF  
0x4001_5FFF  
0x4001_FFFF  
0x4002_0FFF  
0x4002_1FFF  
0x4002_3FFF  
0x4002_4FFF  
0x4002_5FFF  
0x4002_6FFF  
0x4002_7FFF  
0x4002_DFFF  
0x4002_EFFF  
0x4002_FFFF  
0x4003_0FFF  
0x4003_1FFF  
0x4003_4FFF  
0x4003_57FF  
0x4003_5FFF  
0x4003_6FFF  
0x4003_7FFF  
MainFlash I/F register  
AHB  
0x4000_1000  
0x4001_0000  
0x4001_1000  
0x4001_2000  
0x4001_3000  
0x4001_5000  
0x4001_6000  
0x4002_0000  
0x4002_1000  
0x4002_2000  
0x4002_4000  
0x4002_5000  
0x4002_6000  
0x4002_7000  
0x4002_8000  
0x4002_E000  
0x4002_F000  
0x4003_0000  
0x4003_1000  
0x4003_2000  
0x4003_5000  
0x4003_5800  
0x4003_6000  
0x4003_7000  
Reserved  
Clock/reset control  
Hardware watchdog timer  
Software watchdog timer  
Reserved  
APB0  
Dual-timer  
Reserved  
Multi-Function Timer unit 0  
Multi-Function Timer unit 1  
Reserved  
PPG  
Base timer  
APB1  
Quadrature position/revolution counter  
A/D converter  
Reserved  
Internal CR trimming  
Reserved  
External interrupt controller  
Interrupt request batch-read function  
Reserved  
Low voltage detector  
Deep standby mode Controller  
USB clock generator  
CAN prescaler  
0x4003_8000  
0x4003_9000  
0x4003_A000  
0x4003_8FFF  
0x4003_9FFF  
0x4003_AFFF  
Multi-function serial interface  
CRC  
APB2  
Watch counter  
0x4003_B000  
0x4003_C000  
0x4003_C100  
0x4003_C800  
0x4003_BFFF  
0x4003_C0FF  
0x4003_C7FF  
0x4003_C8FF  
RTC/port control  
Low-speed CR prescaler  
Peripheral clock gating  
Reserved  
0x4003_C900  
0x4003_CA00  
0x4003_CB00  
0x4003_F000  
0x4003_C9FF  
0x4003_CAFF  
0x4003_EFFF  
0x4003_FFFF  
I2S clock generator  
Smartcard Interface  
Reserved  
External memory interface  
Document Number: 001-98708 Rev. *E  
Page 72 of 190  
S6E2G Series  
Start Address  
0x4004_0000  
End Address  
0x4004_FFFF  
Bus  
Peripherals  
USB ch 0  
0x4005_0000  
0x4006_0000  
0x4006_1000  
0x4006_2000  
0x4006_3000  
0x4006_4000  
0x4006_6000  
0x4006_7000  
0x4006_E000  
0x4006_F000  
0x4007_0000  
0x4005_FFFF  
0x4006_0FFF  
0x4006_1FFF  
0x4006_2FFF  
0x4006_3FFF  
0x4006_5FFF  
0x4006_6FFF  
0x4006_DFFF  
0x4006_EFFF  
0x4006_FFFF  
0x41FF_FFFF  
USB ch 1  
DMAC register  
DSTC register  
CAN ch 0  
Reserved  
AHB  
Ethernet-MAC ch 0  
Ethernet-MAC setting register  
Reserved  
SD card I/F  
GPIO  
Reserved  
Document Number: 001-98708 Rev. *E  
Page 73 of 190  
S6E2G Series  
11.Pin Status in Each CPU State  
The terms used for pin status have the following meanings:  
INITX = 0  
This is the period when the INITX pin is at the L level.  
INITX = 1  
This is the period when the INITX pin is at the H level.  
SPL = 0  
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.  
SPL = 1  
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.  
Input enabled  
Indicates that the input function can be used.  
Internal input fixed at 0  
This is the status that the input function cannot be used. Internal input is fixed at L.  
Hi-Z  
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.  
Setting disabled  
Indicates that the setting is disabled.  
Maintain previous state  
Maintains the state that was immediately prior to entering the current mode.  
If a built-in peripheral function is operating, the output follows the peripheral function.  
If the pin is being used as a port, that output is maintained.  
Analog input is enabled  
Indicates that the analog input is enabled.  
Trace output  
Indicates that the trace function can be used.  
GPIO selected  
In Deep standby mode, pins switch to the general-purpose I/O port.  
Setting prohibition  
Prohibition of a setting by specification limitation  
Document Number: 001-98708 Rev. *E  
Page 74 of 190  
S6E2G Series  
List of Pin Behavior by Mode State  
Power-On  
Reset or  
Low-  
Voltage  
Detection  
State  
Device  
Return from  
Deep  
Standby  
INITX  
Input  
State  
Run mode  
or Sleep  
mode State  
Timer mode,  
RTC mode, or  
Stop mode State  
Deep Standby RTC  
mode or Deep Standby  
Stop mode State  
Internal  
Reset  
State  
mode State  
Function  
Group  
Power  
Supply  
Unstable  
Power  
Supply  
Stable  
Power  
Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
INITX=0 INITX=1  
INITX=1  
INITX=1  
INITX=1  
INITX=1  
SPL=0  
SPL=1  
SPL=0  
SPL=1  
-
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed internal input input fixed  
selected,  
Hi-Z/internal  
GPIO  
selected  
Setting  
Setting Setting  
GPIO  
selected  
disabled disabled disabled  
at 0  
fixed  
at 0  
at 0  
A
Main crystal  
oscillator  
input pin/  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
external main enabled enabled enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Enabled  
clock input  
selected  
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed internal input input fixed  
selected,  
Hi-Z/internal  
GPIO  
selected  
Setting  
Setting Setting  
GPIO  
selected  
disabled disabled disabled  
at 0  
fixed  
at 0  
at 0  
External main  
clock input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed  
at 0  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed  
at 0  
Maintain  
previous  
State  
Setting  
Setting Setting  
disabled disabled disabled  
B
Hi-Z/  
Hi-Z/  
internal internal  
input  
fixed  
at 0  
Hi-Z/  
internal  
input fixed  
at 0/  
or input  
enabled  
Main crystal  
oscillator  
output pin  
Maintain previous state while oscillator active/  
When oscillation stops*1, it will be Hi-Z/  
Internal input fixed at 0  
input  
fixed  
at 0  
Pull-up/  
input  
enabled enabled enabled  
Pull-up/ Pull-up/  
Input Input  
Pull-up/  
Input  
enabled  
Pull-up/  
Input  
enabled  
Pull-up/  
Input  
enabled  
INITX  
input pin  
Pull-up/  
Input enabled  
Pull-up/  
Input enabled  
Pull-up/  
Input enabled  
C
D
Mode  
input pin  
Input  
Input  
Input  
Input  
enabled  
Input  
enabled  
Input  
enabled  
Input  
enabled  
Input  
enabled  
Input  
enabled  
enabled enabled enabled  
Mode  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
input pin  
enabled enabled enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
E
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/  
input  
enabled  
Hi-Z/  
input  
enabled  
GPIO  
selected  
Setting  
Setting Setting  
GPIO  
selected  
GPIO  
selected  
disabled disabled disabled  
Document Number: 001-98708 Rev. *E  
Page 75 of 190  
S6E2G Series  
Power-On  
Reset or  
Low-  
Voltage  
Detection  
State  
Device  
Internal  
Reset  
Return from  
Deep  
Standby  
INITX  
Input  
State  
Run mode  
or Sleep  
mode State  
Timer mode,  
RTC mode, or  
Stop mode State  
Deep Standby RTC  
mode or Deep Standby  
Stop mode State  
State  
mode State  
Function  
Group  
Power  
Supply  
Unstable  
Power  
Supply  
Stable  
Power  
Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
INITX=0 INITX=1  
INITX=1  
INITX=1  
INITX=1  
INITX=1  
SPL=0  
SPL=1  
SPL=0  
SPL=1  
-
Maintain  
previous  
state  
Maintain  
previous  
state  
NMIX  
selected  
Setting  
Setting Setting  
disabled disabled disabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
WKUP  
input  
enabled  
Hi-Z/  
WKUP  
input enabled  
Resource  
other than  
above  
F
Hi-Z/  
internal  
input fixed  
at 0  
Hi-Z/  
input  
enabled enabled  
Hi-Z/  
input  
GPIO  
selected  
Hi-Z  
selected  
GPIO  
selected  
Pull-up/ Pull-up/  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
JTAG  
selected  
Hi-Z  
input  
input  
enabled enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
G
GPIO  
selected,  
internal input  
fixed  
Hi-Z/  
internal  
input fixed  
at 0  
Hi-Z/  
internal input  
fixed  
GPIO  
selected  
Setting  
Setting Setting  
GPIO  
selected  
disabled disabled disabled  
at 0  
at 0  
Pull-up/ Pull-up/  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
JTAG  
selected  
Hi-Z  
input  
input  
enabled enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
Resource  
other than  
above  
H
GPIO  
selected,  
Hi-Z/Internal  
Hi-Z/Internal  
Setting  
Setting Setting  
GPIO  
selected  
input fixed internal input input fixed  
selected  
disabled disabled disabled  
at 0  
fixed  
at 0  
at 0  
GPIO  
selected  
GPIO  
selected,  
Resource  
selected  
Hi-Z/  
input  
enabled enabled  
Hi-Z/  
input  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/Internal  
Hi-Z/internal  
GPIO  
selected  
I
Hi-Z  
input fixed internal input input fixed  
at 0  
fixed  
at 0  
at 0  
GPIO  
selected  
Document Number: 001-98708 Rev. *E  
Page 76 of 190  
S6E2G Series  
Power-On  
Reset or  
Low-  
Voltage  
Detection  
State  
Device  
Internal  
Reset  
Return from  
Deep  
Standby  
INITX  
Input  
State  
Run mode  
or Sleep  
mode State  
Timer mode,  
RTC mode, or  
Stop mode State  
Deep Standby RTC  
mode or Deep Standby  
Stop mode State  
State  
mode State  
Function  
Group  
Power  
Supply  
Unstable  
Power  
Supply  
Stable  
Power  
Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
INITX=0 INITX=1  
INITX=1  
INITX=1  
INITX=1  
INITX=1  
SPL=0  
SPL=1  
SPL=0  
SPL=1  
-
Analog output  
selected  
*2  
*3  
External  
interrupt  
enable  
Maintain  
previous  
state  
GPIO  
selected,  
internal input input fixed  
Maintain  
previous  
state  
Hi-Z/internal  
Hi-Z/  
input  
enabled enabled  
Hi-Z/  
input  
GPIO  
selected  
J
selected  
Hi-Z  
fixed  
at 0  
at 0  
Maintain  
previous  
state  
Resource  
other than  
above  
Hi-Z/internal  
input fixed  
at 0  
selected  
GPIO  
selected  
External  
interrupt  
enable  
Maintain  
previous  
state  
Setting  
Setting Setting  
disabled disabled disabled  
selected  
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
selected,  
internal input input fixed  
Hi-Z/internal  
Resource  
other than  
above  
GPIO  
selected  
K
fixed  
at 0  
at 0  
Hi-Z/  
input  
enabled enabled  
Hi-Z/  
input  
Hi-Z/internal  
input fixed  
at 0  
Hi-Z  
selected  
GPIO  
selected  
Hi-Z/  
internal internal  
input input  
fixed at fixed at  
Hi-Z/  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Analog input  
selected  
Hi-Z  
at 0/  
analog  
input  
at 0/  
analog  
input  
at 0/  
analog  
input  
0/  
0/  
analog  
input  
analog  
input  
enabled  
enabled  
enabled  
enabled enabled  
L
Resource  
other than  
above  
GPIO  
selected,  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
Hi-Z/internal  
Setting  
Setting Setting  
GPIO  
selected  
input fixed internal input input fixed  
selected  
disabled disabled disabled  
at 0  
fixed  
at 0  
at 0  
GPIO  
selected  
Document Number: 001-98708 Rev. *E  
Page 77 of 190  
S6E2G Series  
Power-On  
Reset or  
Low-  
Voltage  
Detection  
State  
Device  
Internal  
Reset  
Return from  
Deep  
Standby  
INITX  
Input  
State  
Run mode  
or Sleep  
mode State  
Timer mode,  
RTC mode, or  
Stop mode State  
Deep Standby RTC  
mode or Deep Standby  
Stop mode State  
State  
mode State  
Function  
Group  
Power  
Supply  
Unstable  
Power  
Supply  
Stable  
Power  
Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
INITX=0 INITX=1  
INITX=1  
INITX=1  
INITX=1  
INITX=1  
SPL=0  
SPL=1  
SPL=0  
SPL=1  
-
Hi-Z/  
internal internal  
input  
fixed  
at 0/  
analog  
input  
enabled enabled  
Hi-Z/  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
input  
fixed  
at 0/  
analog  
input  
Analog input  
selected  
Hi-Z  
at 0/  
analog  
input  
at 0/  
analog  
input  
at 0/  
analog  
input  
enabled  
enabled  
enabled  
External  
interrupt  
enable  
M
Maintain  
previous state  
selected  
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
selected,  
internal input input fixed  
Hi-Z/internal  
Resource  
other than  
above  
Setting  
Setting Setting  
GPIO  
selected  
disabled disabled disabled  
fixed  
at 0  
at 0  
Hi-Z/internal  
input fixed  
at 0  
selected  
GPIO  
selected  
Hi-Z/  
internal internal  
Hi-Z/  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
input  
fixed  
at0/  
analog  
input  
input  
fixed  
at 0/  
analog  
input  
Analog input  
selected  
Hi-Z  
at 0/  
analog  
input  
at 0/  
analog  
input  
at 0/  
analog  
input  
enabled  
enabled  
enabled  
enabled enabled  
N
Trace  
Trace  
selected  
output  
GPIO  
selected,  
internal input input fixed  
Resource  
other than  
above  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
Setting  
Setting Setting  
GPIO  
selected  
Hi-Z/internal  
input fixed  
at 0  
disabled disabled disabled  
fixed  
at 0  
at 0  
selected  
GPIO  
selected  
Document Number: 001-98708 Rev. *E  
Page 78 of 190  
S6E2G Series  
Power-On  
Reset or  
Low-  
Voltage  
Detection  
State  
Device  
Internal  
Reset  
Return from  
Deep  
Standby  
INITX  
Input  
State  
Run mode  
or Sleep  
mode State  
Timer mode,  
RTC mode, or  
Stop mode State  
Deep Standby RTC  
mode or Deep Standby  
Stop mode State  
State  
mode State  
Function  
Group  
Power  
Supply  
Unstable  
Power  
Supply  
Stable  
Power  
Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
INITX=0 INITX=1  
INITX=1  
INITX=1  
INITX=1  
INITX=1  
SPL=0  
SPL=1  
SPL=0  
SPL=1  
-
Hi-Z/  
internal internal  
input  
fixed  
at 0/  
analog  
input  
enabled enabled  
Hi-Z/  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
input  
fixed  
at 0/  
analog  
input  
Analog input  
selected  
Hi-Z  
at 0/  
analog  
input  
at 0/  
analog  
input  
at 0/  
analog  
input  
enabled  
enabled  
enabled  
Trace  
Trace  
selected  
output  
O
External  
interrupt  
enable  
Maintain  
previous state  
GPIO  
selected,  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
internal input input fixed  
selected  
Setting  
Setting Setting  
GPIO  
selected  
disabled disabled disabled  
fixed  
at 0  
at 0  
Resource  
other than  
above  
Hi-Z/internal  
input fixed  
at 0  
selected  
GPIO  
selected  
Hi-Z/  
internal internal  
input input  
fixed at fixed at  
Hi-Z/  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Hi-Z/  
internal input  
fixed  
at 0/  
analog  
input enabled  
Analog input  
selected  
Hi-Z  
at 0/  
analog  
input  
at 0/  
analog  
input  
at 0/  
analog  
input  
0/  
0/  
analog  
input  
analog  
input  
enabled  
enabled  
enabled  
enabled enabled  
WKUP  
input  
enabled  
Hi-Z/  
WKUP input  
enabled  
WKUP  
enabled  
Maintain  
previous state  
P
Resource  
other than  
above  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting Setting  
GPIO  
selected  
GPIO  
selected,  
disabled disabled disabled  
Hi-Z/internal  
Hi-Z/internal  
selected  
input fixed internal input input fixed  
at 0  
fixed  
at 0  
at 0  
GPIO  
selected  
Document Number: 001-98708 Rev. *E  
Page 79 of 190  
S6E2G Series  
Power-On  
Reset or  
Low-  
Voltage  
Detection  
State  
Device  
Internal  
Reset  
Return from  
Deep  
Standby  
INITX  
Input  
State  
Run mode  
or Sleep  
mode State  
Timer mode,  
RTC mode, or  
Stop mode State  
Deep Standby RTC  
mode or Deep Standby  
Stop mode State  
State  
mode State  
Function  
Group  
Power  
Supply  
Unstable  
Power  
Supply  
Stable  
Power  
Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
INITX=0 INITX=1  
INITX=1  
INITX=1  
INITX=1  
INITX=1  
SPL=0  
SPL=1  
SPL=0  
SPL=1  
-
Hi-Z/  
WKUP  
input enabled  
WKUP  
enabled  
WKUP input  
enabled  
WKUP input  
enabled  
Maintain  
previous  
state  
Setting  
Setting Setting  
External  
interrupt  
enable  
disabled disabled disabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
selected  
GPIO  
selected,  
internal input input fixed  
Q
Hi-Z/internal  
Resource  
other than  
above  
GPIO  
selected  
fixed  
at 0  
at 0  
Hi-Z/  
input  
enabled enabled  
Hi-Z/  
input  
Hi-Z/internal  
input fixed  
at 0  
Hi-Z  
Hi-Z  
selected  
GPIO  
selected  
GPIO  
selected,  
Hi-Z/  
input  
enabled enabled  
Hi-Z/  
input  
Maintain  
previous  
state  
Hi-Z/internal  
Hi-Z/internal  
GPIO  
selected  
Maintain  
previous state  
GPIO  
selected  
input fixed internal input input fixed  
at 0  
fixed  
at 0  
at 0  
Hi-Z at  
trans-  
Hi-Z at  
trans-  
Hi-Z at  
trans-  
R
mission/  
input  
enabled/  
mission/  
input  
enabled/  
mission/  
input  
enabled/  
Hi-Z/  
input  
enabled  
Setting  
Setting Setting  
Hi-Z/  
Hi-Z/  
USB I/O pin  
disabled disabled disabled  
input enabled input enabled  
internal input internal input internal input  
fixed  
at 0 at  
fixed  
at 0 at  
fixed  
at 0 at  
reception  
reception  
reception  
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed internal input input fixed  
selected,  
Hi-Z/internal  
GPIO  
selected  
Setting  
Setting Setting  
GPIO  
selected  
disabled disabled disabled  
at 0  
fixed  
at 0  
at 0  
S
Sub crystal  
oscillator  
input pin/  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
external main enabled enabled enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Enabled  
clock input  
selected  
Document Number: 001-98708 Rev. *E  
Page 80 of 190  
S6E2G Series  
Power-On  
Reset or  
Low-  
Voltage  
Detection  
State  
Device  
Internal  
Reset  
Return from  
Deep  
Standby  
INITX  
Input  
State  
Run mode  
or Sleep  
mode State  
Timer mode,  
RTC mode, or  
Stop mode State  
Deep Standby RTC  
mode or Deep Standby  
Stop mode State  
State  
mode State  
Function  
Group  
Power  
Supply  
Unstable  
Power  
Supply  
Stable  
Power  
Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
INITX=0 INITX=1  
INITX=1  
INITX=1  
INITX=1  
INITX=1  
SPL=0  
SPL=1  
SPL=0  
SPL=1  
-
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed internal input input fixed  
selected,  
Hi-Z/internal  
GPIO  
selected  
Setting  
Setting Setting  
GPIO  
selected  
disabled disabled disabled  
at 0  
fixed  
at 0  
at 0  
External main  
clock input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed  
at 0  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed  
at 0  
Maintain  
previous  
State  
Setting  
Setting Setting  
disabled disabled disabled  
T
Hi-Z/  
Hi-Z/  
internal internal  
input  
fixed  
at 0  
Hi-Z/  
internal  
input fixed  
at 0/  
or input  
enabled  
Sub crystal  
oscillator  
output pin  
Maintain previous state while oscillator active/  
When oscillation stops*5, it will be Hi-Z/  
Internal input fixed at 0  
input  
fixed  
at 0  
Ethernet I/O  
selected  
*4  
Maintain  
previous  
state  
Setting  
Setting Setting  
disabled disabled disabled  
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
selected,  
internal input input fixed  
Hi-Z/internal  
Resource  
other than  
above  
GPIO  
selected  
V
fixed  
at 0  
at "0  
Hi-Z/  
input  
enabled enabled  
Hi-Z/  
input  
Hi-Z/internal  
input fixed  
at 0  
selected  
Hi-Z  
GPIO  
selected  
Document Number: 001-98708 Rev. *E  
Page 81 of 190  
S6E2G Series  
Power-On  
Reset or  
Low-  
Voltage  
Detection  
State  
Device  
Internal  
Reset  
Return from  
Deep  
Standby  
INITX  
Input  
State  
Run mode  
or Sleep  
mode State  
Timer mode,  
RTC mode, or  
Stop mode State  
Deep Standby RTC  
mode or Deep Standby  
Stop mode State  
State  
mode State  
Function  
Group  
Power  
Supply  
Unstable  
Power  
Supply  
Stable  
Power  
Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
Power Supply  
Stable  
INITX=0 INITX=1  
INITX=1  
INITX=1  
INITX=1  
INITX=1  
SPL=0  
SPL=1  
SPL=0  
SPL=1  
-
Ethernet  
input/output  
selected*4  
Maintain  
previous  
state  
Setting  
Setting Setting  
disabled disabled disabled  
External  
interrupt  
enable  
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
selected,  
internal input input fixed  
Hi-Z/internal  
GPIO  
selected  
W
selected  
fixed  
at 0  
at 0  
Resource  
other than  
above  
Hi-Z/  
input  
enabled enabled  
Hi-Z/  
input  
Hi-Z/internal  
input fixed  
at 0  
Hi-Z  
selected  
GPIO  
selected  
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed internal input input fixed  
selected,  
Hi-Z/internal  
GPIO  
selected  
Setting  
Setting Setting  
GPIO  
selected  
disabled disabled disabled  
at 0  
fixed  
at 0  
at 0  
S
Sub crystal  
oscillator  
input pin/  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
external main enabled enabled enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Enabled  
clock input  
selected  
GPIO  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed internal input input fixed  
selected,  
Hi-Z/internal  
GPIO  
selected  
Setting  
Setting Setting  
GPIO  
selected  
disabled disabled disabled  
at 0  
fixed  
at 0  
at 0  
External main  
clock input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed  
at 0  
Maintain  
previous  
state  
Hi-Z/internal  
input fixed  
at 0  
Maintain  
previous  
State  
Setting  
Setting Setting  
disabled disabled disabled  
T
Hi-Z/  
Hi-Z/  
internal internal  
input  
fixed  
at 0  
Hi-Z/  
internal  
input fixed  
at 0/  
or input  
enabled  
Sub crystal  
oscillator  
output pin  
Maintain previous state while oscillator active/  
When oscillation stops*5, it will be Hi-Z/  
Internal input fixed at 0  
input  
fixed  
at 0  
Document Number: 001-98708 Rev. *E  
Page 82 of 190  
S6E2G Series  
1: Oscillation is stopped at Sub Timer mode, sub CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode,  
and Deep Standby Stop mode.  
2: Maintain previous state at Timer mode. GPIO selected internal input fixed at 0 at RTC mode, Stop mode.  
3: Maintain previous state at Timer mode. Hi-Z/internal input fixed at 0 at RTC mode, Stop mode.  
4: It shows the case selected by EPFR14.E_SPLC register.  
Document Number: 001-98708 Rev. *E  
Page 83 of 190  
S6E2G Series  
12.Electrical Characteristics  
12.1 Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
Power supply voltage*1,*2  
VCC  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
VSS + 6.5  
VSS + 6.5  
VSS + 6.5  
VSS + 6.5  
VSS + 6.5  
VSS + 6.5  
V
V
V
V
V
V
Power supply voltage (for USB) *1,*3  
Power supply voltage (for USB) *1,*3  
Power supply voltage (for Ethernet-MAC) *1, *4  
USBVCC  
0
USBVCC  
1
ETHVCC  
AVCC  
*1 ,*5  
Analog power supply voltage  
*1 ,*5  
Analog reference voltage  
AVRH  
Except for USB and  
Ethernet-MAC pin  
VSS - 0.5  
VCC + 0.5 (≤ 6.5 V)  
V
USB ch 0 pin  
USB ch 1 pin  
Ethernet-MAC Pin  
5 V tolerant  
VSS - 0.5 USBVCC0 + 0.5 (≤ 6.5 V)  
VSS - 0.5 USBVCC1 + 0.5 (≤ 6.5 V)  
V
V
V
V
*1  
Input voltage  
VI  
VSS - 0.5  
VSS - 0.5  
ETHVCC + 0.5 (≤ 6.5 V)  
VSS + 6.5  
*1  
Analog pin input voltage  
VIA  
VO  
VSS - 0.5  
VSS - 0.5  
AVCC + 0.5 (≤ 6.5 V)  
V
*1  
Output voltage  
VCC + 0.5 (≤ 6.5 V)  
V
4 mA type  
8 mA type  
12 mA type  
I2C Fm+  
10  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
L level maximum output current *6  
L level average output current *7  
IOL  
-
-
20  
22.4  
4
4 mA type  
8 mA type  
12 mA type  
I2C Fm+  
8
IOLAV  
12  
20  
L level total maximum output current  
L level total average output current*8  
∑IOL  
-
-
100  
50  
∑IOLAV  
4 mA type  
8 mA type  
12 mA type  
4 mA type  
8 mA type  
12 mA type  
- 10  
-20  
- 20  
- 4  
H level maximum output current *6  
H level average output current *7  
IOH  
-
-
IOHAV  
-8  
- 12  
- 100  
- 50  
+ 150  
H level total maximum output current  
H level total average output current *8  
Storage temperature  
∑IOH  
∑IOHAV  
TSTG  
-
-
- 55  
1: These parameters are based on the condition that VSS = AVSS = 0.0 V.  
Document Number: 001-98708 Rev. *E  
Page 84 of 190  
S6E2G Series  
2: VCC must not drop below VSS - 0.5 V.  
3: USBVCC0, USBVCC1 must not drop below VSS - 0.5 V.  
4: ETHVCC must not drop below VSS - 0.5 V.  
5: Ensure that the voltage does not exceed VCC + 0.5V, for example, when the power is turned on.  
6: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.  
7: The average output current is defined as the average current value flowing through any one of the corresponding pins for a  
100-ms period.  
8: The total average output current is defined as the average current value flowing through all of corresponding pins for a  
100-ms period.  
WARNING:  
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or  
temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.  
Document Number: 001-98708 Rev. *E  
Page 85 of 190  
S6E2G Series  
12.2 Recommended Operating Conditions  
Value  
Parameter  
Power supply voltage  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
VCC  
-
2.7*10  
5.5  
V
*1  
*2  
*3  
*4  
3.0  
2.7  
3.0  
2.7  
3.6 (VCC  
5.5 (VCC  
3.6 (VCC  
5.5 (VCC  
)
)
)
)
Power supply voltage (for USB ch 0)  
Power supply voltage (for USB ch 1)  
USBVCC  
0
-
-
V
V
USBVCC  
1
*5  
*5  
3.0  
4.5  
2.7  
3.6 (VCC  
5.5 (VCC  
5.5 (VCC  
)
)
)
Power supply voltage (for  
Ethernet-MAC)  
ETHVCC  
-
V
*6  
Analog power supply voltage  
Analog reference voltage  
Smoothing capacitor  
AVCC = VCC  
AVCC  
AVRH  
AVRL  
CS  
-
-
-
-
-
-
2.7  
*9  
5.5  
AVCC  
AVSS  
10  
V
V
AVSS  
1
V
for built-in regulator *7  
μF  
°C  
°C  
Junction temperature  
Operating  
TJ  
- 40  
-40  
+ 125  
*8  
temperature  
Ambient temperature  
TA  
1: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0)  
2: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80)  
3: When P83/UDP1 and P82/UDM1 pins are used as USB (UDP1, UDM1)  
4: When P83/UDP1 and P82/UDM1 pins are used as GPIO (P83, P82)  
5: When the pins in Ethernet-MAC Timing, except P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS pin, are used as  
Ethernet-MAC pin  
6: When the pins in Ethernet-MAC Timing, except P6E/ADTG_5/SCK4_1/IC23_1/INT29_0/E_PPS pin, are used as function  
pins  
7: See "C pin" in 9 Handling Devices for the connection of the smoothing capacitor.  
8: The maximum temperature of the ambient temperature (TA) can guarantee a range that does not exceed the junction  
temperature (TJ).  
The calculation formula of the ambient temperature (TA) is:  
TA (Max) = TJ(Max) - Pd(Max) × θJA  
Pd:  
θJA:  
Power dissipation (W)  
Package thermal resistance (°C/W)  
Pd (Max) = VCC × ICC (Max) + Σ (IOL×VOL) + Σ ((VCC-VOH) × (- IOH))  
IOL  
IOH  
VOL  
VOH  
:
:
L level output current  
H level output current  
L level output voltage  
H level output voltage  
:
:
9: The minimum value of analog reference voltage depends on the value of compare clock cycle (Tcck). See 12.5.  
12-bit A/D Converter for the details.  
10: For the voltage range between VCC(min) and the low voltage detection reset (VDH), the MCU must be clocked from either  
the High-speed CR or the low-speed CR.  
Document Number: 001-98708 Rev. *E  
Page 86 of 190  
S6E2G Series  
Package thermal resistance and maximum permissible power for each package are shown below.  
The operation is guaranteed maximum permissible power or less for semiconductor devices.  
Table for Package Thermal Resistance and Maximum Permissible Power  
Maximum Permissible Power  
(mW)  
Thermal  
Resistance  
θja  
Printed  
Circuit Board  
Package  
TA = +85 °C  
TA = +105 °C  
(°C/W)  
Single-layered  
both sides  
48  
33  
45  
31  
833  
1212  
889  
417  
606  
444  
645  
LQS144  
(0.5-mm pitch)  
4 layers  
Single-layered  
both sides  
LQP176  
(0.5-mm pitch)  
4 layers  
1290  
WARNING:  
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All  
of the device's electrical characteristics are warranted when the device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may  
adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.  
Users considering application outside the listed conditions are advised to contact their representatives beforehand.  
Document Number: 001-98708 Rev. *E  
Page 87 of 190  
S6E2G Series  
Ethernet-MAC Pins  
Except For  
Ethernet-MAC  
Function  
Power  
Supply  
Type  
Ethernet-MAC  
Pin Name  
Function  
P6E/ADTG_5/SCK4_1/INT29_0/E_PPS  
PC0/E_RXER  
E_PPS *  
E_RXER  
E_RX03  
E_RX02  
E_RX01  
E_RX00  
E_RXDV  
E_MDIO  
E_MDC  
P6E/ADTG_5/SCK4_1/INT29_0  
PC0  
VCC  
PC1/TIOB6_0/E_RX03  
PC2/TIOA6_0/E_RX02  
PC3/TIOB7_0/E_RX01  
PC4/TIOA7_0/E_RX00  
PC5/TIOB14_0/E_RXDV  
PC6/TIOA14_0/E_MDIO  
PC7/INT13_0/E_MDC/CROUT_1  
PC8/E_RXCK_REFCK  
PC9/TIOB15_0/E_COL  
PCA/TIOA15_0/E_CRS  
PCB/INT28_0/E_COUT  
PCC/E_TCK  
PC1/TIOB6_0  
PC2/TIOA6_0  
PC3/TIOB7_0  
PC4/TIOA7_0  
PC5/TIOB14_0  
PC6/TIOA14_0  
PC7/INT13_0/CROUT_1  
E_RXCK_REFCK PC8  
E_COL  
PC9/TIOB15_0  
ETHVCC  
E_CRS  
E_COUT  
E_TCK  
PCA/TIOA15_0  
PCB/INT28_0  
PCC  
PCD/SOT4_1/INT14_0/E_TXER  
PCE/SIN4_1/INT15_0/E_TX03  
PCF/RTS4_1/INT12_0/E_TX02  
PD0/INT30_1/E_TX01  
E_TXER  
E_TX03  
E_TX02  
E_TX01  
E_TX00  
E_TXEN  
PCD/SOT4_1/INT14_0  
PCE/SIN4_1/INT15_0  
PCF/RTS4_1/INT12_0  
PD0/INT30_1  
PD1/INT31_1/E_TX00  
PD1/INT31_1  
PD2/CTS4_1/E_TXEN  
PD2/CTS4_1  
*: It is used to confirm the PTP counter cycle in Ethernet-MAC by waveforms.  
Document Number: 001-98708 Rev. *E  
Page 88 of 190  
S6E2G Series  
Calculation Method of Power Dissipation (Pd)  
The power dissipation is shown in the following formula.  
Pd = VCC × ICC + Σ (IOL × VOL) + Σ ((VCC-VOH) × (-IOH))  
IOL  
IOH  
VOL  
VOH  
:
L level output current  
H level output current  
L level output voltage  
H level output voltage  
:
:
:
ICC is the current drawn by the device.  
It can be analyzed as follows.  
ICC = ICC (INT) + ΣICC (IO)  
ICC (INT): Current drawn by internal logic and memory, etc. through the regulator  
ΣICC (IO): Sum of current (I/O switching current) drawn by the output pin  
For ICC (INT), it can be anticipated by "(1) Current Rating" in "12.3. DC Characteristics" (This rating value does not include ICC (IO)  
for a value at pin fixed).  
For ICC (IO), it depends on system used by customers.  
The calculation formula is shown below.  
ICC (IO) =  
(CINT + CEXT) × VCC × fSW  
CINT  
CEXT  
fSW  
:
Pin internal load capacitance  
External load capacitance of output pin  
Pin switching frequency  
:
:
Parameter  
Symbol  
Conditions  
4 mA type  
8 mA type  
12 mA type  
Capacitance Value  
1.93 pF  
Pin internal load  
capacitance  
CINT  
3.45 pF  
3.42 pF  
Calculate ICC (Max) as follows when the power dissipation can be evaluated by yourself:  
Measure current value ICC (Typ) at normal temperature (+25°C).  
Add maximum leakage current value ICC (leak_max) at operating on a value in (1).  
ICC(Max) = ICC (Typ) + ICC (leak_max)  
Parameter  
Symbol  
Conditions  
TJ = +125 °C  
TJ = +105 °C  
TJ = +85 °C  
Current Value  
53.6 mA  
Maximum leakage current  
at operating  
ICC (leak_max)  
26.6 mA  
17.5 mA  
Document Number: 001-98708 Rev. *E  
Page 89 of 190  
S6E2G Series  
Current Explanation Diagram  
Pd=VCC×ICC + Σ(IOL×VOL)Σ((VCC-VOH)×(IOH))  
ICC=ICC (INT)ΣICC (IO)  
VCC  
A
ICC  
Chip  
ΣICC (IO)  
ICC (INT)  
A
IOL  
Regulator  
VOL  
V
Flash  
VOH  
A
IOH  
V
Logic  
RAM  
CEXT  
Document Number: 001-98708 Rev. *E  
Page 90 of 190  
S6E2G Series  
12.3 DC Characteristics  
12.3.1 Current Rating  
Table 12-1 Typical and Maximum Current Consumption in Normal Operation (PLL), Code Running from Flash Memory  
(Flash Accelerator Mode and Trace Buffer Function Enabled)  
Value  
Typ*1 Max*2  
Pin  
Name  
Parameter Symbol  
Conditions  
Frequency*4  
Unit  
Remarks  
*5  
*6  
*5  
*6  
180 MHz  
160 MHz  
144 MHz  
120 MHz  
100 MHz  
80 MHz  
60 MHz  
40 MHz  
20 MHz  
8 MHz  
73  
65  
59  
50  
43  
35  
27  
19  
11  
131  
123  
117  
108  
101  
93  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
*3  
When all peripheral  
clocks are on  
85  
77  
69  
6.9  
5.3  
44  
40  
36  
31  
27  
22  
17  
13  
7.9  
5.2  
4.3  
64  
Normal  
operation  
*7,*8  
4 MHz  
63  
Power  
supply  
current  
ICC  
VCC  
180 MHz  
160 MHz  
144 MHz  
120 MHz  
100 MHz  
80 MHz  
60 MHz  
40 MHz  
20 MHz  
8 MHz  
102  
98  
(PLL)  
94  
89  
85  
*3  
When all peripheral  
clocks are off  
80  
75  
71  
65  
63  
4 MHz  
62  
1: TA = +25 °C, VCC = 3.3 V  
2: TJ = +125 °C, VCC = 5.5 V  
3: When all ports are input and are fixed at 0  
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2  
5: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 1)  
6: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1)  
7: Firmware being executed during data collection for this table is not being accessed from the MainFlash memory.”  
8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)  
Document Number: 001-98708 Rev. *E  
Page 91 of 190  
S6E2G Series  
Table 12-2 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running  
from Flash Memory (Flash Accelerator Mode and Trace Buffer Function Disabled)  
Value  
Typ*1 Max*2  
Pin  
Name  
Parameter Symbol  
Conditions  
Frequency*4  
Unit  
Remarks  
*5  
*6  
*5  
*6  
180 MHz  
160 MHz  
144 MHz  
120 MHz  
100 MHz  
80 MHz  
60 MHz  
40 MHz  
20 MHz  
8 MHz  
82  
74  
68  
58  
49  
40  
31  
22  
13  
7.5  
5.6  
48  
44  
41  
35  
30  
25  
20  
14  
8.7  
5.6  
4.5  
140  
132  
126  
116  
107  
98  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
*3  
When all peripheral  
clocks are on  
89  
80  
71  
65  
Normal  
operation  
*7,*8  
4 MHz  
63  
Power  
supply  
current  
ICC  
VCC  
180 MHz  
160 MHz  
144 MHz  
120 MHz  
100 MHz  
80 MHz  
60 MHz  
40 MHz  
20 MHz  
8 MHz  
106  
102  
99  
(PLL)  
93  
88  
*3  
83  
When all peripheral  
clocks are off  
78  
72  
66  
63  
4 MHz  
62  
1: TA = +25 °C, VCC = 3.3 V  
2: TJ = +125 °C, VCC = 5.5 V  
3: When all ports are input and are fixed at 0  
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK  
5: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 11, FBFCR.BE = 0)  
6: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 0)  
7: With data access to a MainFlash memory.  
8: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)  
Document Number: 001-98708 Rev. *E  
Page 92 of 190  
S6E2G Series  
Table 12-3 Typical and Maximum Current Consumption in Normal Operation (PLL), Code with Data Accessing Running  
from Flash Memory (Flash 0 Wait-Cycle Mode and Read Access 0 Wait)  
Value  
Typ*1 Max*2  
Pin  
Name  
Parameter Symbol  
Conditions  
Frequency*4  
Unit  
Remarks  
72 MHz  
60 MHz  
48 MHz  
36 MHz  
24 MHz  
12 MHz  
8 MHz  
54  
47  
39  
31  
23  
14  
11  
112  
105  
97  
89  
81  
72  
69  
65  
95  
91  
86  
81  
75  
69  
66  
63  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
*3  
*5  
When all peripheral  
clocks are on  
Normal  
operation  
*6,*7  
4 MHz  
7.2  
37  
33  
28  
23  
17  
11  
Power  
supply  
ICC  
VCC  
72 MHz  
60 MHz  
48 MHz  
36 MHz  
24 MHz  
12 MHz  
8 MHz  
current  
(PLL)  
*3  
*5  
When all peripheral  
clocks are off  
8.3  
5.9  
4 MHz  
1: TA = +25 °C, VCC = 3.3 V  
2: TJ = +125 °C, VCC = 5.5 V  
3: When all ports are input and are fixed at 0  
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK  
5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000)  
6: With data access to a MainFlash memory.  
7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)  
Document Number: 001-98708 Rev. *E  
Page 93 of 190  
S6E2G Series  
Table 12-4 Typical and Maximum Current Consumption in Normal Operation (Other than PLL), Code with Data Accessing  
Running from Flash Memory (Flash 0 Wait-Cycle Mode and Read Access 0 Wait)  
Value  
Pin  
Name  
Parameter Symbol  
Conditions  
Frequency*4  
Unit  
Remarks  
Typ*1  
Max*2  
*3  
mA  
4.3  
62  
When all peripheral  
clocks are on  
Normal  
operation  
*6, *7  
*5  
4 MHz  
(main  
oscillation)  
*3  
mA  
3.7  
61  
When all peripheral  
clocks are off  
*3  
Normal  
operation  
*6  
(built-in  
High-speed  
CR)  
3.5  
2.9  
61  
60  
58  
58  
58  
58  
mA  
mA  
mA  
mA  
mA  
mA  
When all peripheral  
clocks are on  
*5  
*5  
*5  
4 MHz  
32 kHz  
100 kHz  
*3  
When all peripheral  
clocks are off  
Power  
supply  
ICC  
VCC  
current  
*3  
0.47  
0.46  
0.51  
0.50  
Normal  
operation  
*6, *8  
(sub  
oscillation)  
When all peripheral  
clocks are on  
*3  
When all peripheral  
clocks are off  
*3  
Normal  
operation  
*6  
(built-in  
low-speed  
CR)  
When all peripheral  
clocks are on  
*3  
When all peripheral  
clocks are off  
1: TA = +25 °C, VCC = 3.3 V  
2: TJ = +125 °C, VCC = 5.5 V  
3: When all ports are input and are fixed at 0  
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2  
5: When operating flash 0 wait-cycle mode and read access 0 wait (FRWTR.RWT = 00, FBFCR.SD = 000)  
6: With data access to a MainFlash memory.  
7: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)  
8: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)  
Document Number: 001-98708 Rev. *E  
Page 94 of 190  
S6E2G Series  
Table 12-5 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2  
Value  
Pin  
Parameter Symbol  
Conditions  
Frequency*4  
Unit  
Remarks  
Name  
Typ*1  
58  
Max*2  
116  
110  
106  
98  
180 MHz  
160 MHz  
144 MHz  
120 MHz  
100 MHz  
80 MHz  
60 MHz  
40 MHz  
20 MHz  
8 MHz  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
52  
48  
40  
35  
93  
*3  
86  
28  
When all peripheral clocks  
are on  
80  
22  
74  
16  
67  
9.7  
6.2  
5.0  
30  
64  
Sleep  
operation*5  
(PLL)  
Power  
4 MHz  
63  
supply  
current  
ICCS  
VCC  
180 MHz  
160 MHz  
144 MHz  
120 MHz  
100 MHz  
80 MHz  
60 MHz  
40 MHz  
20 MHz  
8 MHz  
88  
27  
85  
25  
83  
21  
79  
18  
76  
*3  
When all peripheral clocks  
are off  
15  
73  
12  
70  
9.3  
6.2  
4.5  
4.0  
67  
64  
62  
4 MHz  
62  
1: TA = +25 °C, VCC = 3.3 V  
2: TJ = +125 °C, VCC = 5.5 V  
3: When all ports are input and are fixed at 0  
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2  
5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)  
Document Number: 001-98708 Rev. *E  
Page 95 of 190  
S6E2G Series  
Table 12-6 Typical and Maximum Current Consumption in Sleep Operation (PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK  
Value  
Pin  
Parameter Symbol  
Conditions  
Frequency*4  
Unit  
Remarks  
Name  
Typ*1  
32  
Max*2  
90  
85  
81  
76  
71  
66  
64  
63  
73  
71  
69  
67  
65  
63  
62  
62  
72 MHz  
60 MHz  
48 MHz  
36 MHz  
24 MHz  
12 MHz  
8 MHz  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
27  
23  
*3  
18  
When all peripheral clocks  
are on  
13  
8.5  
6.9  
5.3  
15  
Sleep  
operation*5  
(PLL)  
Power  
4 MHz  
supply  
current  
ICCS  
VCC  
72 MHz  
60 MHz  
48 MHz  
36 MHz  
24 MHz  
12 MHz  
8 MHz  
13  
11  
*3  
9.3  
7.3  
5.4  
4.7  
4.1  
When all peripheral clocks  
are off  
4 MHz  
1: TA = +25 °C, VCC = 3.3 V  
2: TJ = +125 °C, VCC = 5.5 V  
3: When all ports are input and are fixed at 0  
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK  
5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)  
Document Number: 001-98708 Rev. *E  
Page 96 of 190  
S6E2G Series  
Table 12-7 Typical and Maximum Current Consumption in Sleep Operation (Other than PLL), when PCLK0 = PCLK1 =  
PCLK2 = HCLK/2  
Value  
Pin  
Parameter Symbol  
Conditions  
Frequency*4  
Unit  
mA  
mA  
Remarks  
Name  
Typ*1  
Max*2  
*3  
2.6  
60  
When all peripheral clocks  
are on  
Sleep  
operation*5  
(main oscillation)  
4 MHz  
*3  
2.0  
2.0  
60  
60  
59  
58  
58  
58  
58  
When all peripheral clocks  
are off  
*3  
When all peripheral clocks  
are on  
mA  
mA  
mA  
mA  
mA  
mA  
Sleep  
operation  
(built-in  
4 MHz  
32 kHz  
100 kHz  
*3  
High-speed CR)  
When all peripheral clocks  
1.3  
Power  
are off  
supply  
current  
ICCS  
VCC  
*3  
When all peripheral clocks  
are on  
0.46  
0.45  
0.47  
0.46  
Sleep  
operation*6  
(sub oscillation)  
*3  
When all peripheral clocks  
are off  
*3  
When all peripheral clocks  
Sleep  
operation  
(built-in  
are on  
*3  
low-speed CR)  
When all peripheral clocks  
are off  
1: TA = +25 °C, VCC = 3.3 V  
2: TJ = +125 °C, VCC = 5.5 V  
3: When all ports are input and are fixed at 0.  
4: Frequency is a value of HCLK when PCLK0 = PCLK1 = PCLK2 = HCLK/2  
5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)  
6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)  
Document Number: 001-98708 Rev. *E  
Page 97 of 190  
S6E2G Series  
Table 12-8 Typical and Maximum Current Consumption in Stop Mode, Timer Mode and RTC Mode  
Value  
Pin  
Name  
Parameter Symbol  
Conditions  
Frequency  
Unit  
Remarks  
Typ*1  
Max*2  
*3, *4  
TA = +25°C  
0.41  
1.9  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
*3, *4  
TA = +85°C  
Stop mode  
-
-
18  
26  
2.9  
19  
27  
2.2  
19  
27  
1.9  
18  
27  
1.9  
18  
27  
1.9  
18  
27  
ICCH  
*3, *4  
TA = +105°C  
-
*3, *4  
TA = +25°C  
1.4  
Timer mode*5  
(main oscillation)  
*3, *4  
TA = +85°C  
4 MHz  
4 MHz  
-
*3, *4  
TA = +105°C  
-
*3, *4  
TA = +25°C  
0.71  
Timer mode  
(built-in  
*3, *4  
TA = +85°C  
-
High-speed CR)  
*3, *4  
TA = +105°C  
-
Power  
supply  
current  
VCC  
ICCT  
*3, *4  
TA = +25°C  
0.41  
Timer mode*6  
(sub oscillation)  
*3, *4  
TA = +85°C  
32 kHz  
100 kHz  
32 kHz  
-
*3, *4  
TA = +105°C  
-
*3, *4  
TA = +25°C  
0.42  
Timer mode  
(built-in  
low-speed CR)  
*3, *4  
TA = +85°C  
-
*3, *4  
TA = +105°C  
-
*3, *4  
TA = +25°C  
0.42  
RTC mode*6  
(sub oscillation)  
*3, *4  
TA = +85°C  
-
-
ICCR  
*3, *4  
TA = +105°C  
1: VCC = 3.3 V  
2: VCC = 5.5 V  
3: When all ports are input and are fixed at 0  
4: When LVD is off  
5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)  
6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)  
Document Number: 001-98708 Rev. *E  
Page 98 of 190  
S6E2G Series  
Table 12-9 Typical and Maximum Current Consumption in Deep Standby Stop Mode, Deep Standby RTC Mode  
Value  
Pin  
Parameter Symbol  
Conditions  
Frequency  
Unit  
Remarks  
*3, *4  
Name  
Typ*1  
Max*2  
89  
162  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
TA = +25°C  
Deep standby  
Stop mode  
(When RAM  
is off)  
*3, *4  
TA = +85°C  
-
-
1689  
2189  
245  
*3, *4  
TA = +105°C  
-
ICCHD  
*3, *4  
TA = +25°C  
101  
Deep standby  
Stop mode  
(When RAM  
is on)  
*3, *4  
TA = +85°C  
-
-
2401  
3223  
166  
*3, *4  
TA = +105°C  
-
Power  
supply  
current  
VCC  
*3, *4  
TA = +25°C  
93  
Deep standby  
RTC mode*6  
(When RAM  
is off)  
*3, *4  
TA = +85°C  
-
1693  
2193  
249  
*3, *4  
TA = +105°C  
-
32 kHz  
ICCRD  
*3, *4  
TA = +25°C  
105  
Deep standby  
RTC mode*6  
(When RAM  
is on)  
*3, *4  
TA = +85°C  
-
-
2405  
3227  
*3, *4  
TA = +105°C  
1: VCC = 3.3 V  
2: VCC = 5.5 V  
3: When all ports are input and are fixed at 0  
4: When LVD is off  
5: When sub oscillation is off  
6: When using the crystal oscillator of 32 kHz (including the current consumption of the oscillation circuit)  
Document Number: 001-98708 Rev. *E  
Page 99 of 190  
S6E2G Series  
Table 12-10 Typical and Maximum Current Consumption in Low-voltage Detection Circuit, Main Flash Memory Write/Erase  
Value  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Typ  
Max  
Low-voltage  
detection  
circuit (LVD)  
power supply  
current  
For occurrence of  
interrupt  
ICCLVD  
At operation  
-
4
7
μA  
VCC  
MainFlash  
memory  
write/erase  
current  
At  
*1  
ICCFLASH  
-
13.4  
15.9  
mA  
write/erase  
1: When programming or erase in flash memory, Flash Memory Write/Erase current (ICCFLASH) is added to the Power  
supply current (ICC).  
Table 12-11 Peripheral Current Dissipation  
Frequency (MHz)  
Clock  
Peripheral  
Unit  
Unit  
Remarks  
System  
45  
90  
180  
2.76  
2.83  
2.12  
0.87  
2.18  
0.12  
1.64  
5.84  
1.50  
GPIO  
DMAC  
All ports  
0.69  
0.74  
0.58  
0.23  
0.56  
0.09  
0.41  
1.52  
0.38  
1.39  
1.46  
1.13  
0.44  
1.10  
0.10  
0.83  
2.97  
0.76  
-
DSTC  
-
-
External bus I/F  
SD card I/F  
CAN  
TA=+25°C,  
VCC=3.3 V  
HCLK  
mA  
-
1 ch  
1 ch  
-
USB  
Ethernet-MAC  
Base timer  
4 ch  
Multi-functional  
timer/PPG  
1 unit/4 ch  
1 unit  
0.72  
0.06  
1.43  
0.12  
2.83  
0.22  
TA=+25°C,  
VCC=3.3 V  
PCLK1  
PCLK2  
mA  
mA  
Quadrature  
position/revolution  
counter  
A/D converter  
Multi-function serial  
IC Card Interface  
I2S clock generator  
1 unit  
1 ch  
1 ch  
1 ch  
0.31  
0.36  
0.27  
0.26  
0.61  
0.72  
0.54  
0.53  
1.22  
-
-
-
TA=+25°C,  
VCC=3.3 V  
Document Number: 001-98708 Rev. *E  
Page 100 of 190  
S6E2G Series  
12.3.2 Pin Characteristics  
(VCC = USBVCC0 = USBVCC1 = ETHVCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit Remarks  
Min  
Typ  
Max  
VCC×0.8  
-
-
VCC + 0.3  
V
V
CMOS hysteresis input pin,  
MD0, MD1  
-
ETHVCC×0.8  
ETHVCC + 0.3  
H level input  
voltage  
(hysteresis  
input)  
At External  
V
V
CC >3.0 V,  
CC 3.6 V,  
MADATAxx  
2.4  
-
VCC + 0.3  
V
Bus  
VIHS  
5V tolerant input pin  
Input pin doubled as I2C Fm+  
TTL Schmitt input pin  
-
-
-
VCC×0.8  
VCC×0.7  
2.0  
-
-
-
-
-
-
-
-
VSS + 5.5  
VSS + 5.5  
ETHVCC+0.3  
VCC×0.2  
V
V
V
V
V
V
V
V
VSS - 0.3  
VSS - 0.3  
VSS - 0.3  
VSS  
CMOS hysteresis input pin,  
MD0, MD1  
-
ETHVCC×0.2  
VCC×0.2  
L level input  
voltage  
(hysteresis  
input)  
5V tolerant input pin  
Input pin doubled as I2C Fm+  
TTL Schmitt input pin  
-
VILS  
-
VCC×0.3  
-
VSS - 0.3  
0.8  
VCC 4.5 V,  
IOH = - 4 mA  
VCC - 0.5  
-
-
-
-
VCC  
ETHVCC  
VCC  
V
V
V
V
VCC < 4.5 V,  
IOH = - 2 mA  
4 mA type  
ETHVCC 4.5 V,  
IOH = - 4 mA  
VCC - 0.5  
ETHVCC < 4.5 V,  
IOH = - 2 mA  
VCC 4.5 V,  
IOH = - 8 mA  
VCC - 0.5  
VCC < 4.5 V,  
IOH = - 4 mA  
8 mA type  
ETHVCC 4.5 V,  
IOH = - 8 mA  
H level output  
voltage  
ETHVCC - 0.5  
ETHVCC  
VOH  
ETHVCC < 4.5 V,  
IOH = - 4 mA  
VCC 4.5 V,  
IOH = - 12 mA  
12 mA type  
VCC - 0.5  
USBVCC - 0.4  
VCC - 0.5  
-
-
-
VCC  
USBVCC  
VCC  
V
VCC < 4.5 V,  
IOH = - 8 mA  
USBVCC 4.5 V,  
IOH = - 20.5 mA  
The pin  
doubled as USB I/O  
V
V
*1  
USBVCC < 4.5 V,  
IOH = - 13.0 mA  
VCC 4.5 V,  
IOH = - 4 mA  
The pin doubled as I2C Fm+  
At GPIO  
VCC < 4.5V,  
IOH = - 3 mA  
Document Number: 001-98708 Rev. *E  
Page 101 of 190  
S6E2G Series  
Value  
Typ  
Parameter  
Symbol  
Pin Name  
Conditions  
CC 4.5 V,  
Unit Remarks  
Min  
Max  
V
IOL = 4 mA  
VSS  
-
-
-
-
-
-
0.4  
V
VCC < 4.5 V,  
IOL = 2 mA  
4 mA type  
ETHVCC 4.5 V,  
IOL = 4 mA  
VSS  
VSS  
VSS  
VSS  
VSS  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
RTHVCC < 4.5 V,  
IOL = 2 mA  
VCC 4.5 V,  
IOL = 8 mA  
VCC < 4.5 V,  
IOL = 4 mA  
8 mA type  
ETHVCC 4.5 V,  
IOL = 8 mA  
RTHVCC < 4.5 V,  
IOL = 4 mA  
L level output  
voltage  
VOL  
VCC 4.5 V,  
IOL = 12 mA  
12 mA type  
VCC < 4.5 V,  
IOL = 8 mA  
USBVCC 4.5 V,  
IOL = 18.5 mA  
The pin doubled  
as USB I/O  
V
V
*1  
USBVCC < 4.5 V,  
IOL = 10.5 mA  
VCC 4.5 V,  
IOL = 4 mA  
At GPIO  
VCC < 4.5 V,  
IOL = 3 mA  
The pin doubled  
as I2C Fm+  
VSS  
-
-
0.4  
+ 5  
At I2C  
Fm+  
VCC 4.5 V,  
IOL = 20 mA  
Input leak  
current  
IIL  
-
-
- 5  
μA  
kΩ  
VCC 4.5 V  
25  
30  
50  
80  
100  
200  
Pull-up  
resistor value  
RPU  
Pull-up pin  
VCC < 4.5 V  
Other than  
VCC,  
USBVCC0,  
USBVCC1,  
ETHVCC,  
VSS,  
Input  
capacitance  
CIN  
-
-
5
15  
pF  
AVCC, AVSS,  
AVRH  
1: USBVCC0 and USBVCC1 are described as USBVCC  
.
Document Number: 001-98708 Rev. *E  
Page 102 of 190  
S6E2G Series  
12.4 AC Characteristics  
12.4.1 Main Clock Input Characteristics  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = -40C to +105C)  
Value  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
4
4
48  
20  
V
CC 4.5 V  
VCC < 4.5 V  
CC 4.5 V  
VCC < 4.5 V  
CC 4.5 V  
VCC < 4.5 V  
PWH/tCYLH  
When crystal oscillator is  
connected  
MHz  
MHz  
ns  
Input frequency  
fCH  
4
48  
V
When using external clock  
When using external clock  
4
20  
X0,  
X1  
V
20.83  
50  
250  
250  
Input clock cycle  
tCYLH  
,
Input clock pulse width  
When using external clock  
When using external clock  
-
45  
55  
5
%
PWL/tCYLH  
Input clock rise time and  
fall time  
tCF  
,
-
-
ns  
tCR  
Base clock (HCLK/FCLK)  
APB0bus clock *2  
fCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
180  
MHz  
MHz  
MHz  
MHz  
ns  
fCP0  
90  
Internal operating clock *1  
frequency  
APB1bus clock *2  
fCP1  
-
180  
APB2bus clock *2  
fCP2  
-
90  
-
Base clock (HCLK/FCLK)  
APB0bus clock *2  
tCYCC  
tCYCP0  
tCYCP1  
tCYCP2  
5.56  
11.1  
5.56  
11.1  
-
ns  
Internal operating clock *1  
cycle time  
APB1bus clock *2  
-
ns  
APB2bus clock *2  
-
ns  
1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main  
Part (002-04856).  
2: For more about each APB bus to which each peripheral is connected, see 1. S6E2G Series Block Diagram in this data  
sheet.  
X0  
Document Number: 001-98708 Rev. *E  
Page 103 of 190  
S6E2G Series  
12.4.2 Sub Clock Input Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Typ  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
When crystal  
Min  
Max  
oscillator is connected  
-
-
32.768  
-
kHz  
*
Input frequency  
1/tCYLL  
When using external  
clock  
-
-
32  
10  
45  
-
-
-
100  
31.25  
55  
kHz  
μs  
X0A,  
X1A  
When using external  
clock  
Input clock cycle  
tCYLL  
PWH/tCYLL  
PWL/tCYLL  
,
When using external  
clock  
Input clock pulse width  
-
%
*: For more information about crystal oscillator, see Sub crystal oscillator in 9. Handling Devices.  
tCYLL  
0.8 × VCC  
0.8 × VCC  
0.2 × VCC  
0.8 × VCC  
0.2 × VCC  
X0A  
PWH  
PWL  
12.4.3 Built-In CR Oscillation Characteristics  
Built-In High-speed CR  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
3.92  
3.88  
2.9  
Typ  
4
Max  
4.08  
4.12  
5
TJ = - 20°C to + 105°C  
TJ = - 40°C to + 125°C  
TJ = - 40°C to + 125°C  
*1  
When trimmed  
Clock frequency  
fCRH  
4
MHz  
When not trimmed  
*2  
4
Frequency  
stabilization  
time  
tCRWT  
-
-
-
30  
μs  
1: In the case of using the values in CR trimming area of flash memory at shipment for frequency/temperature trimming  
2: This is the time to stabilize the frequency of the High-speed CR clock after setting trimming value. During this period, it is  
able to use the High-speed CR clock as a source clock.  
Built-In Low-speed CR  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Typ  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min  
Max  
Clock frequency  
fCRL  
-
50  
100  
150  
kHz  
Document Number: 001-98708 Rev. *E  
Page 104 of 190  
S6E2G Series  
12.4.4 Operating Conditions of Main PLL (in the Case of Using Main Clock for Input Clock of PLL)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Typ  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
PLL oscillation stabilization wait time*1  
(lock up time)  
tLOCK  
100  
-
-
μs  
PLL input clock frequency  
PLL multiplication rate  
fPLLI  
-
fPLLO  
fCLKPLL  
4
13  
200  
-
-
-
-
-
16  
MHz  
multiplier  
MHz  
100  
400  
180  
PLL macro oscillation clock frequency  
Main PLL clock frequency*2  
MHz  
1: Time from when the PLL starts operating until the oscillation stabilizes  
2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral Manual  
Main Part (002-04856).  
12.4.5 Operating Conditions of USB/Ethernet PLL (in the Case of Using Main Clock for Input Clock of PLL)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Typ  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
PLL oscillation stabilization wait time*1  
(lock up time)  
tLOCK  
100  
-
-
μs  
PLL input clock frequency  
fPLLI  
-
4
-
-
-
16  
MHz  
multiplier  
MHz  
PLL multiplication rate  
13  
100  
400  
PLL macro oscillation clock frequency  
USB/Ethernet  
fPLLO  
200  
After the M  
frequency division  
*2  
USB/Ethernet clock frequency  
fCLKPLL  
-
-
50  
MHz  
1: Time from when the PLL starts operating until the oscillation stabilizes  
2: For more information about USB/Ethernet clock, see Chapter 2-2: USB/Ethernet Clock Generation in FM4 Family  
Peripheral Manual Communication Macro Part (002-04862).  
Document Number: 001-98708 Rev. *E  
Page 105 of 190  
S6E2G Series  
12.4.6 Operating Conditions of Main PLL (in the Case of Using Built-in High-Speed CR Clock for Input Clock of Main PLL)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Typ  
Max  
PLL oscillation stabilization wait time*1  
(lock up time)  
tLOCK  
fPLLI  
100  
-
-
μs  
PLL input clock frequency  
3.8  
4
4.2  
MHz  
PLL multiplication rate  
-
50  
-
-
95  
multiplier  
MHz  
PLL macro oscillation clock frequency  
fPLLO  
190  
400  
Main PLL clock frequency *2  
fCLKPLL  
-
-
180  
MHz  
1: Time from when the PLL starts operating until the oscillation stabilizes  
2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part  
(002-04856).  
Note:  
The High-speed CR clock (CLKHC) should be set with frequency/temperature trimming to act as the source clock of the Main  
PLL.  
12.4.7 Reset Input Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol Pin Name  
tINITX INITX  
Conditions  
Unit  
Remarks  
Min  
Max  
Reset input time  
-
500  
-
ns  
Document Number: 001-98708 Rev. *E  
Page 106 of 190  
S6E2G Series  
12.4.8 Power-On Reset Timing  
(VSS = 0V)  
Value  
Typ  
-
Pin  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Name  
Min  
1
Max  
Power supply shut down time  
Power ramp rate  
*1  
*2  
tOFF  
dV/dt  
tPRT  
-
-
ms  
VCC  
VCC: 0.2V to 2.70V  
0.6  
0.33  
-
-
1000 mV/µs  
0.60 ms  
Time until releasing Power-on reset  
-
1: VCC must be held below 0.2V for a minimum period of tOFF. Improper initialization may occur if this condition is not met.  
2: This dV/dt characteristic is applied at the power-on of cold start (tOFF>1ms).  
Note:  
If tOFF cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per 12. 4. 7.  
2.7V  
VCC  
VDH  
0.2V  
0.2V  
0.2V  
dV/dt  
tPRT  
tOFF  
Internal RST  
release  
start  
RST Active  
CPU Operation  
Glossary  
VDH: detection voltage of Low Voltage detection reset. See “12.7. Low-Voltage Detection Characteristics”.  
12.4.9 GPIO Output Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
50  
VCC ≥ 4.5V  
VCC < 4.5V  
-
-
MHz  
MHz  
Output frequency  
tPCYCLE  
Pxx*  
32  
*: GPIO is a target.  
Pxx  
tPCYCLE  
Document Number: 001-98708 Rev. *E  
Page 107 of 190  
 
S6E2G Series  
12.4.10 External Bus Timing  
External Bus Clock Output Characteristics  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
MCLKOUT *1  
50 *2  
Output frequency  
tCYCLE  
-
MHz  
1: The external bus clock (MCLKOUT) is a divided clock of HCLK.  
For more information about setting of clock divider, see Chapter 14: External Bus Interface in FM4 Family Peripheral  
Manual Main Part (002-04856).  
2: Generate MCLKOUT at setting more than four divisions when the AHB bus clock exceeds 100 MHz.  
0.8 × VCC  
0.8 × VCC  
MCLK  
tCYCLE  
External Bus Signal I/O Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Parameter  
Symbol  
VIH  
Conditions  
Value  
Unit  
V
Remarks  
0.8 × VCC  
0.2 × VCC  
0.8 × VCC  
0.2 × VCC  
Signal input characteristics  
VIL  
V
-
VOH  
V
Signal output characteristics  
VOL  
V
VIH  
VIL  
VIH  
VIL  
Input signal  
VOH  
VOL  
VOH  
VOL  
Document Number: 001-98708 Rev. *E  
Page 108 of 190  
S6E2G Series  
Separate Bus Access Asynchronous SRAM Mode  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
MOEX  
Minimum pulse width  
tOEW  
tCSL – AV  
tOEH - AX  
tCSL - OEL  
tOEH - CSH  
tCSL - RDQML  
tDS - OE  
MOEX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MCLK×n-3  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MCSX↓→Address  
output delay time  
MCSX[7: 0],  
MAD[24: 0]  
-9  
+9  
MOEX↑→Address  
hold time  
MOEX,  
MAD[24: 0]  
0
MCLK×m+9  
MCLK×m+9  
MCLK×m+9  
MCLK×m+9  
-
MCSX↓→  
MOEXdelay time  
MCLK×m-9  
MOEX,  
MCSX[7: 0]  
MOEX↑→  
MCSXtime  
0
MCSX↓→  
MDQMdelay time  
MCSX,  
MDQM[3: 0]  
MCLK×m-9  
Data set upMOEX↑  
time  
MOEX,  
MADATA[31: 0]  
20  
MOEX↑→  
Data hold time  
MOEX,  
MADATA[31: 0]  
tDH - OE  
0
-
MWEX  
Minimum pulse width  
tWEW  
MWEX  
MCLK×n-3  
-
MWEX↑→Address  
output delay time  
MWEX,  
MAD[24: 0]  
tWEH - AX  
tCSL - WEL  
tWEH - CSH  
tCSL-WDQML  
tCSL-DX  
0
MCLK×n-9  
0
MCLK×m+9  
MCLK×n+9  
MCLK×m+9  
MCLK×n+9  
MCLK+9  
MCLK×m+9  
MCSX↓→  
MWEXdelay time  
MWEX,  
MCSX[7: 0]  
MWEX↑→  
MCSXdelay time  
MCSX↓→  
MDQMdelay time  
MCSX,  
MDQM[3: 0]  
MCLK×n-9  
MCLK-9  
0
MCSX↓→  
Data output time  
MCSX,  
MADATA[31: 0]  
MWEX↑→  
Data hold time  
MWEX,  
MADATA[31: 0]  
tWEH - DX  
Note:  
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16)  
Document Number: 001-98708 Rev. *E  
Page 109 of 190  
S6E2G Series  
tCYCLE  
MCLK  
tOEH-CSH  
tWEH-CSH  
tWEH-AX  
MCSX[7: 0]  
tCSL-AV  
tOEH-AX  
tCSL-AV  
MAD[24: 0]  
MOEX  
Address  
Address  
tCSL-OEL  
tOEW  
tCSL-WDQML  
tCSL-RDQML  
MDQM[1: 0]  
MWEX  
tCSL-WEL  
tWEW  
tDS-OE  
tDH-OE  
tWEH-DX  
Invalid  
RD  
WD  
MADATA[15: 0]  
tCSL-DX  
Document Number: 001-98708 Rev. *E  
Page 110 of 190  
S6E2G Series  
Separate Bus Access Synchronous SRAM Mode  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Address delay time  
MCSX delay time  
Symbol  
Pin Name  
Conditions  
Unit Remarks  
Min  
Max  
MCLK,  
MAD[24: 0]  
tAV  
-
1
9
ns  
tCSL  
tCSH  
tREL  
tREH  
-
-
-
-
1
1
1
1
9
9
9
9
ns  
ns  
ns  
ns  
MCLK,  
MCSX[7: 0]  
MCLK,  
MOEX  
MOEX delay time  
Data set up  
MCLKtime  
MCLK,  
MADATA[31: 0]  
tDS  
tDH  
-
-
19  
0
-
-
ns  
ns  
MCLK↑→  
Data hold time  
MCLK,  
MADATA[31: 0]  
tWEL  
tWEH  
tDQML  
tDQMH  
-
-
-
-
1
1
1
1
9
9
9
9
ns  
ns  
ns  
ns  
MCLK,  
MWEX  
MWEX delay time  
MDQM[1: 0]  
delay time  
MCLK,  
MDQM[3: 0]  
MCLK↑→  
Data output time  
MCLK,  
MADATA[31: 0]  
tODS  
tOD  
-
-
MCLK+1  
1
MCLK+18  
18  
ns  
ns  
MCLK↑→  
Data hold time  
MCLK,  
MADATA[31: 0]  
Note:  
When the external load capacitance CL = 30 pF  
tCYCLE  
MCLK  
tCSL  
tCSH  
MCSX[7: 0]  
tAV  
tAV  
Address  
Address  
MAD[24: 0]  
MOEX  
tREL  
tREH  
tDQML  
tDQMH  
tDQML  
tDQMH  
tWEH  
tOD  
MDQM[3: 0]  
MWEX  
tWEL  
tDS  
tDH  
RD  
Invalid  
WD  
MADATA[31: 0]  
tODS  
Document Number: 001-98708 Rev. *E  
Page 111 of 190  
S6E2G Series  
Multiplexed Bus Access Asynchronous SRAM Mode  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Multiplexed  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
tALE-CHMADV  
tCHMADH  
-
-
0
10  
ns  
ns  
address delay time  
MALE,  
MAD[24: 0]  
Multiplexed address hold  
time  
MCLK×n+0 MCLK×n+10  
Note:  
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16)  
MCLK  
MCSX[7: 0]  
MALE  
MAD [24: 0]  
MOEX  
MDQM [3: 0]  
MWEX  
MADATA[31: 0]  
Document Number: 001-98708 Rev. *E  
Page 112 of 190  
S6E2G Series  
Multiplexed Bus Access Synchronous SRAM Mode  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit Remarks  
Min  
Max  
tCHAL  
tCHAH  
tCHMADV  
tCHMADX  
-
-
1
9
9
MCLK,  
MALE  
MALE delay time  
1
1
MCLK↑→Multiplexed  
address delay time  
-
-
tOD  
tOD  
ns  
ns  
MCLK,  
MADATA[31: 0]  
MCLK↑→Multiplexed  
data output time  
1
Note:  
When the external load capacitance CL = 30 pF  
MCLK  
MCSX[7: 0]  
MALE  
MAD [24: 0]  
MOEX  
MDQM [3: 0]  
MWEX  
MADATA[31: 0]  
Document Number: 001-98708 Rev. *E  
Page 113 of 190  
S6E2G Series  
NAND Flash Mode  
Parameter  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Symbol  
Pin Name  
Conditions  
Unit Remarks  
Min  
Max  
MNREX  
Min pulse width  
tNREW  
MNREX  
-
-
-
-
-
-
-
-
-
-
MCLK×n-3  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data set up  
MNREXtime  
MNREX,  
MADATA[31: 0]  
tDS – NRE  
20  
-
MNREX↑→  
Data hold time  
MNREX,  
MADATA[31: 0]  
tDH – NRE  
0
-
MNALE↑→  
MNWEX delay time  
MNALE,  
MNWEX  
tALEH - NWEL  
tALEL - NWEL  
tCLEH - NWEL  
tNWEH - CLEL  
tNWEW  
MCLK×m-9  
MCLK×m-9  
MCLK×m-9  
0
MCLK×m+9  
MCLK×m+9  
MCLK×m+9  
MCLK×m+9  
-
MNALE↓→  
MNWEX delay time  
MNALE,  
MNWEX  
MNCLE↑→  
MNWEX delay time  
MNCLE,  
MNWEX  
MNWEX↑→  
MNCLE delay time  
MNCLE,  
MNWEX  
MNWEX  
Min pulse width  
MNWEX  
MCLK×n-3  
-9  
MNWEX↓→  
Data output time  
MNWEX,  
MADATA[31: 0]  
tNWEL – DV  
tNWEH – DX  
9
MNWEX↑→  
Data hold time  
MNWEX,  
MADATA[31: 0]  
0
MCLK×m+9  
Note:  
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16)  
NAND Flash Read  
MCLK  
MNREX  
MADATA[31: 0]  
Read  
Document Number: 001-98708 Rev. *E  
Page 114 of 190  
S6E2G Series  
NAND Flash Address Write  
MCLK  
MNALE  
MNCLE  
MNWEX  
MADATA[31: 0]  
Write  
NAND Flash Command Write  
MCLK  
MNALE  
MNCLE  
MNWEX  
MADATA[31: 0]  
Write  
Document Number: 001-98708 Rev. *E  
Page 115 of 190  
S6E2G Series  
External Ready Input Timing  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
MCLK↑  
MRDY input  
setup time  
Symbol  
Pin Name  
Conditions  
Unit Remarks  
Min  
Max  
MCLK,  
MRDY  
tRDYI  
-
19  
-
ns  
When RDY is input  
···  
MCLK  
Over 2cycle  
Original  
MOEX  
MWEX  
tRDYI  
MRDY  
When RDY is released  
··· ···  
MCLK  
2 cycles  
Extended  
MOEX  
tRDYI  
MWEX  
0.5×VCC  
MRDY  
Document Number: 001-98708 Rev. *E  
Page 116 of 190  
S6E2G Series  
SDRAM Mode  
Parameter  
(VCC = 2.7V to 3.6V, VSS = 0V)  
Unit  
Symbol  
Pin Name  
Value  
Unit  
Remarks  
Min  
Max  
Output frequency  
tCYCSD  
tAOSD  
MSDCLK  
-
-
-
50  
MHz  
ns  
MSDCLK,  
MAD[15: 0]  
Address delay time  
2
2
12  
12  
19.5  
12  
12  
12  
12  
12  
12  
-
MSDCLK↑→  
Data output delay time  
MSDCLK,  
MADATA[31: 0]  
tDOSD  
tDOZSD  
tWROSD  
tMCSSD  
tRASSD  
tCASSD  
tMWESD  
tCKESD  
tDSSD  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MSDCLK↑→  
Data output Hi-Z time  
MSDCLK,  
MADATA[31: 0]  
2
MSDCLK,  
MDQM[1: 0]  
MDQM[3: 0] delay time  
MCSX delay time  
1
MSDCLK,  
MCSX8  
2
MSDCLK,  
MRASX  
MRASX delay time  
MCASX delay time  
MSDWEX delay time  
MSDCKE delay time  
Data set up time  
2
MSDCLK,  
MCASX  
2
MSDCLK,  
MSDWEX  
2
MSDCLK,  
MSDCKE  
2
MSDCLK,  
MADATA[31: 0]  
19  
0
MSDCLK,  
MADATA[31: 0]  
Data hold time  
tDHSD  
-
Note:  
When the external load capacitance CL = 30 pF  
Document Number: 001-98708 Rev. *E  
Page 117 of 190  
S6E2G Series  
tCYCSD  
SDRAM Access  
MSDCLK  
tAOSD  
MAD[24:0]  
MDQM[1:0]  
MCSX  
Address  
tWROSD  
tMCSSD  
tRASSD  
MRASX  
tCASSD  
tMWESD  
tCKESD  
MCASX  
MSDWEX  
MSDCKE  
tDSSD  
RD  
tDHSD  
MADATA[15:0]  
MADATA[15:0]  
tDOSD  
tDOZSD  
WD  
Document Number: 001-98708 Rev. *E  
Page 118 of 190  
S6E2G Series  
12.4.11 Base Timer Input Timing  
Timer Input Timing  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Conditi  
ons  
Parameter  
Symbol  
Pin Name  
Unit  
Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as ECK, TIN)  
Input pulse width  
tTIWH, tTIWL  
-
2tCYCP  
-
ns  
tTIWH  
tTIWL  
ECK  
TIN  
VIHS  
VIHS  
VILS  
VILS  
Trigger Input Timing  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Conditi  
ons  
Parameter  
Symbol  
Pin Name  
Unit  
Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as TGIN)  
Input pulse width  
tTRGH, tTRGL  
-
2tCYCP  
-
ns  
tTRGH  
tTRGL  
TGIN  
VIHS  
VIHS  
VILS  
VILS  
Note:  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the base timer is  
connected, see 1. S6E2G Series Block Diagram in this data sheet.  
Document Number: 001-98708 Rev. *E  
Page 119 of 190  
S6E2G Series  
12.4.12 CSIO (SPI) Timing  
Synchronous Serial (SPI = 0, SCINV = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Baud rate  
-
-
-
-
8
-
8
Mbps  
ns  
Serial clock cycle time  
SCK↓→SOT delay time  
tSCYC  
SCKx  
4tCYCP  
-
4tCYCP  
-
SCKx,  
SOTx  
tSLOVI  
tIVSHI  
tSHIXI  
- 30  
50  
0
+ 30  
- 20  
30  
0
+ 20  
ns  
ns  
ns  
Internal shift  
clock operation  
SIN→SCK↑  
setup time  
SCKx,  
SINx  
-
-
-
-
SCKx,  
SINx  
SCK↑→SIN hold time  
Serial clock L pulse width  
Serial clock H pulse width  
tSLSH  
tSHSL  
SCKx  
SCKx  
2tCYCP - 10  
-
-
2tCYCP - 10  
-
-
ns  
ns  
tCYCP + 10  
tCYCP + 10  
SCKx,  
SOTx  
SCK↓→SOT delay time  
tSLOVE  
tIVSHE  
tSHIXE  
-
50  
-
-
30  
-
ns  
ns  
ns  
External shift  
clock  
operation  
SIN→SCK↑  
setup time  
SCKx,  
SINx  
10  
20  
10  
20  
SCKx,  
SINx  
SCK↑→SIN hold time  
-
-
SCK fall time  
SCK rise time  
tF  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
tR  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and  
SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 120 of 190  
S6E2G Series  
tSCYC  
VOH  
SCK  
VOL  
VOL  
tSLOVI  
VOH  
VOL  
SOT  
SIN  
tIVSHI  
VIH  
VIL  
tSHIXI  
VIH  
VIL  
MS bit = 0  
tSLSH  
tSHSL  
VIH  
tF  
VIH  
tR  
VIH  
SCK  
VIL  
VIL  
SLOVE  
t
VOH  
VOL  
SOT  
SIN  
tIVSHE  
tSHIXE  
VIH  
VIL  
VIH  
VIL  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 121 of 190  
S6E2G Series  
Synchronous Serial (SPI = 0, SCINV = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Baud rate  
-
-
-
-
8
-
8
Mbps  
ns  
Serial clock cycle time  
tSCYC  
SCKx  
4tCYCP  
-
4tCYCP  
-
SCKx,  
SOTx  
SCK↑→SOT delay time  
tSHOVI  
- 30  
+ 30  
- 20  
+ 20  
ns  
ns  
Internal shift  
clock operation  
SCKx,  
SINx  
SIN→SCK↓ setup time  
tIVSLI  
50  
-
30  
-
SCKx,  
SINx  
SCK↓→SIN hold time  
tSLIXI  
tSLSH  
tSHSL  
0
-
-
-
0
-
-
-
ns  
ns  
ns  
Serial clock L pulse width  
Serial clock H pulse width  
SCKx  
SCKx  
2tCYCP - 10  
tCYCP + 10  
2tCYCP - 10  
tCYCP + 10  
SCKx,  
SOTx  
SCK↑→SOT delay time  
SIN→SCK↓ setup time  
SCK↓→SIN hold time  
tSHOVE  
tIVSLE  
tSLIXE  
-
50  
-
-
30  
-
ns  
ns  
ns  
External shift  
clock operation  
SCKx,  
SINx  
10  
20  
10  
20  
SCKx,  
SINx  
-
-
SCK fall time  
SCK rise time  
tF  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
tR  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and  
SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 122 of 190  
S6E2G Series  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSHOVI  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
VIH  
VIL  
tSLIXI  
VIH  
VIL  
MS bit = 0  
tSHSL  
tSLSH  
VIH  
tSHOVE  
VIH  
SCK  
VIL  
VIL  
VIL  
tF  
tR  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 123 of 190  
S6E2G Series  
Synchronous Serial (SPI = 1, SCINV = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Baud rate  
-
-
-
-
8
-
8
Mbps  
ns  
Serial clock cycle time  
tSCYC  
SCKx  
4tCYCP  
-
4tCYCP  
-
SCKx,  
SOTx  
SCK↑→SOT delay time  
tSHOVI  
- 30  
+ 30  
- 20  
+ 20  
ns  
SIN→SCK↓  
setup time  
SCKx,  
SINx  
Internal shift  
clock operation  
tIVSLI  
tSLIXI  
tSOVLI  
50  
0
-
-
-
30  
0
-
-
-
ns  
ns  
ns  
SCKx,  
SINx  
SCK↓→SIN hold time  
SOT→SCK↓ delay time  
SCKx,  
SOTx  
2tCYCP - 30  
2tCYCP - 30  
Serial clock L pulse width  
Serial clock H pulse width  
tSLSH  
tSHSL  
SCKx  
SCKx  
2tCYCP - 10  
-
-
2tCYCP - 10  
-
-
ns  
ns  
tCYCP + 10  
tCYCP + 10  
SCKx,  
SOTx  
SCK↑→SOT delay time  
tSHOVE  
tIVSLE  
tSLIXE  
-
50  
-
-
30  
-
ns  
ns  
ns  
SIN→SCK↓  
setup time  
SCKx,  
SINx  
External shift  
clock operation  
10  
20  
10  
20  
SCKx,  
SINx  
SCK↓→SIN hold time  
-
-
SCK fall time  
SCK rise time  
tF  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
tR  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and  
SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 124 of 190  
S6E2G Series  
tSCYC  
VOH  
VOL  
VOL  
SCK  
SOT  
tSHOVI  
tSOVLI  
VOH  
VOL  
VOH  
VOL  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
SIN  
MS bit = 0  
tSLSH  
tSHSL  
SCK  
VIH  
tF  
VIH  
VIL  
VIH  
VIL  
tSHOVE  
tR  
*
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
MS bit = 1  
*: Changes when writing to TDR register  
Document Number: 001-98708 Rev. *E  
Page 125 of 190  
S6E2G Series  
Synchronous Serial (SPI = 1, SCINV = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Baud rate  
-
-
-
-
8
-
8
Mbps  
ns  
Serial clock cycle time  
SCK↓→SOT delay time  
tSCYC  
SCKx  
4tCYCP  
-
4tCYCP  
-
SCKx,  
SOTx  
tSLOVI  
tIVSHI  
tSHIXI  
tSOVHI  
- 30  
+ 30  
- 20  
+ 20  
ns  
ns  
ns  
ns  
SCKx,  
SINx  
SIN→SCK↑ setup time  
SCK↑→SIN hold time  
SOT→SCK↑ delay time  
Internal shift  
clock operation  
50  
0
-
-
-
30  
0
-
-
-
SCKx,  
SINx  
SCKx,  
SOTx  
2tCYCP - 30  
2tCYCP - 30  
Serial clock L pulse width  
Serial clock H pulse width  
tSLSH  
tSHSL  
SCKx  
SCKx  
2tCYCP - 10  
-
-
2tCYCP - 10  
-
-
ns  
ns  
tCYCP + 10  
tCYCP + 10  
SCKx,  
SOTx  
SCK↓→SOT delay time  
SIN→SCK↑ setup time  
SCK↑→SIN hold time  
tSLOVE  
tIVSHE  
tSHIXE  
-
50  
-
-
30  
-
ns  
ns  
ns  
SCKx,  
SINx  
External shift  
clock operation  
10  
20  
10  
20  
SCKx,  
SINx  
-
-
SCK fall time  
SCK rise time  
tF  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
tR  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
These characteristics only guarantee the same relocate port number; for example, the combination of SCLKx_0 and  
SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 126 of 190  
S6E2G Series  
tSCYC  
VOL  
VOH  
VOH  
SCK  
tSOVHI  
tSLOVI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tSHIXI  
tIVSHI  
VIH  
VIL  
VIH  
VIL  
MS bit = 0  
tSHSL  
tSLSH  
tR  
tF  
SCK  
VIH  
VIH  
VIH  
V
IL  
VIL  
VIL  
t
SLOVE  
SOT  
SIN  
VOH  
VOL  
VOH  
VOL  
tIVSHE  
tSHIXE  
VIH  
VIL  
VIH  
VIL  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 127 of 190  
S6E2G Series  
When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL = 1)  
VCC < 4.5 V  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC ≥ 4.5 V  
Unit  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
SCS↓→SCK↓ setup time  
SCK↑→SCS↑ hold time  
tCSSI  
tCSHI  
(*1)-50  
(*2)+0  
(*1)+0  
(*2)+50  
(*1)-50  
(*1)+0  
(*2)+50  
ns  
ns  
Internal shift  
clock  
(*2)+0  
operation  
(*3)-50  
+5tCYCP  
(*3)+50  
+5tCYCP  
(*3)-50  
+5tCYCP  
(*3)+50  
+5tCYCP  
SCS deselect time  
tCSDI  
ns  
SCS↓→SCK↓ setup time  
SCK↑→SCS↑ hold time  
SCS deselect time  
tCSSE  
tCSHE  
tCSDE  
tDSE  
3tCYCP+30  
-
-
3tCYCP+30  
-
-
ns  
ns  
ns  
ns  
ns  
0
0
External shift  
clock  
operation  
3tCYCP+30  
-
3tCYCP+30  
-
SCS↓→SOT delay time  
SCS↑→SOT delay time  
-
40  
-
-
40  
-
tDEE  
0
0
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]  
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]  
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]  
Notes:  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family  
Peripheral Manual Main Part (002-04856).  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 128 of 190  
 
S6E2G Series  
SCS  
output  
tCSDI  
tCSHI  
tCSSI  
SCK  
output  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
MS bit = 0  
SCS  
input  
tCSDE  
tCSHE  
tCSSE  
SCK  
input  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 129 of 190  
S6E2G Series  
When Using Synchronous Serial Chip Select (SCINV = 1, CSLVL = 1)  
VCC < 4.5 V  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC ≥ 4.5 V  
Unit  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
SCS↓→SCK↓ setup time  
SCK↑→SCS↑ hold time  
tCSSI  
tCSHI  
(*1)-50  
(*2)+0  
(*1)+0  
(*2)+50  
(*1)-50  
(*1)+0  
(*2)+50  
ns  
ns  
Internal shift  
clock  
(*2)+0  
operation  
(*3)-50  
+5tCYCP  
(*3)+50  
+5tCYCP  
(*3)-50  
+5tCYCP  
(*3)+50  
+5tCYCP  
SCS deselect time  
tCSDI  
ns  
SCS↓→SCK↓ setup time  
SCK↑→SCS↑ hold time  
SCS deselect time  
tCSSE  
tCSHE  
tCSDE  
tDSE  
3tCYCP+30  
-
-
3tCYCP+30  
-
-
ns  
ns  
ns  
ns  
ns  
0
0
External shift  
clock  
operation  
3tCYCP+30  
-
3tCYCP+30  
-
SCS↓→SOT delay time  
SCS↑→SOT delay time  
-
40  
-
-
40  
-
tDEE  
0
0
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]  
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]  
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]  
Notes:  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family  
Peripheral Manual Main Part (002-04856).  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 130 of 190  
S6E2G Series  
SCS  
output  
tCSDI  
tCSHI  
tCSSI  
SCK  
output  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
MS bit = 0  
SCS  
input  
tCSDE  
tCSHE  
tCSSE  
SCK  
input  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 131 of 190  
S6E2G Series  
When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL = 0)  
VCC < 4.5 V  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC ≥ 4.5 V  
Unit  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max  
SCS↑→SCK↓ setup time  
SCK↑→SCS↓ hold time  
tCSSI  
(*1)-50  
(*2)+0  
(*1)+0  
(*2)+50  
(*1)-50  
(*1)+0  
(*2)+50  
ns  
ns  
Internal shift  
tCSHI  
(*2)+0  
clock  
operation  
(*3)-50  
+5tCYCP  
(*3)+50  
+5tCYCP  
(*3)-50  
+5tCYCP  
(*3)+50  
+5tCYCP  
SCS deselect time  
tCSDI  
ns  
SCS↑→SCK↓ setup time  
SCK↑→SCS↓ hold time  
SCS deselect time  
tCSSE  
3tCYCP+30  
-
-
3tCYCP+30  
-
-
ns  
ns  
ns  
ns  
ns  
tCSHE  
0
0
External shift  
clock  
operation  
tCSDE  
tDSE  
tDEE  
3tCYCP+30  
-
3tCYCP+30  
-
SCS↑→SOT delay time  
SCS↓→SOT delay time  
-
40  
-
-
40  
-
0
0
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]  
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]  
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]  
Notes:  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family  
Peripheral Manual Main Part (002-04856).  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 132 of 190  
S6E2G Series  
tCSDI  
SCS  
output  
tCSHI  
tCSSI  
SCK  
output  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
MS bit = 0  
tCSDE  
SCS  
input  
tCSHE  
tCSSE  
SCK  
input  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 133 of 190  
S6E2G Series  
When Using Synchronous Serial Chip Select (SCINV = 1, CSLVL = 0)  
VCC < 4.5 V  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC ≥ 4.5 V  
Units  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max  
SCS↑→SCKsetup time  
SCK↓→SCShold time  
tCSSI  
(*1)-50  
(*2)+0  
(*1)+0  
(*2)+50  
(*1)-50  
(*1)+0  
(*2)+50  
ns  
ns  
Internal shift  
tCSHI  
(*2)+0  
clock  
operation  
tCSDI  
(*3)-50  
+5tCYCP  
(*3)+50  
+5tCYCP  
(*3)-50  
+5tCYCP  
(*3)+50  
+5tCYCP  
SCS deselect time  
ns  
SCS↑→SCKsetup time  
SCK↓→SCShold time  
SCS deselect time  
tCSSE  
3tCYCP+30  
-
-
3tCYCP+30  
-
-
ns  
ns  
ns  
ns  
ns  
tCSHE  
0
0
External  
shift clock  
operation  
tCSDE  
tDSE  
tDEE  
3tCYCP+30  
-
3tCYCP+30  
-
SCS↑→SOT delay time  
SCS↓→SOT delay time  
-
40  
-
-
40  
-
0
0
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]  
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]  
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]  
Notes:  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family  
Peripheral Manual Main Part (002-04856).  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 134 of 190  
S6E2G Series  
tCSDI  
SCS  
output  
tCSHI  
tCSSI  
SCK  
output  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
MS bit = 0  
tCSDE  
SCS  
input  
tCSHE  
tCSSE  
SCK  
input  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 135 of 190  
S6E2G Series  
High-Speed Synchronous Serial (SPI = 0, SCINV = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Serial clock cycle time  
tSCYC  
tSLOVI  
SCKx  
4tCYCP  
-
4tCYCP  
-
ns  
ns  
SCKx,  
SOTx  
SCK↓→SOT delay time  
- 10  
+ 10  
- 10  
12.5  
5
+ 10  
Internal shift  
clock operation  
14  
SCKx,  
SINx  
SINSCKsetup time  
SCK↑→SIN hold time  
tIVSHI  
-
-
-
-
ns  
ns  
12.5*  
SCKx,  
SINx  
tSHIXI  
5
Serial clock L pulse width  
Serial clock H pulse width  
tSLSH  
tSHSL  
SCKx  
SCKx  
2tCYCP - 5  
-
-
2tCYCP - 5  
-
-
ns  
ns  
tCYCP + 10  
tCYCP + 10  
SCKx,  
SOTx  
SCK↓→SOT delay time  
SINSCKsetup time  
SCK↑→SIN hold time  
tSLOVE  
tIVSHE  
tSHIXE  
-
15  
-
-
15  
-
ns  
ns  
ns  
SCKx,  
SINx  
External shift  
clock operation  
5
5
5
5
SCKx,  
SINx  
-
-
SCK fall time  
SCK rise time  
tF  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
tR  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
These characteristics only guarantee the following pins:  
No chip select: SIN4_0, SOT4_0, SCK4_0  
Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0  
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)  
Document Number: 001-98708 Rev. *E  
Page 136 of 190  
 
S6E2G Series  
tSCYC  
VOH  
SCK  
VOL  
VOL  
tSLOVI  
VOH  
VOL  
SOT  
SIN  
tIVSHI  
VIH  
VIL  
tSHIXI  
VIH  
VIL  
MS bit = 0  
tSLSH  
tSHSL  
SCK  
VIH  
tF  
VIH  
tR  
VIH  
VIL  
VIL  
tSLOVE  
SOT  
SIN  
VOH  
VOL  
tIVSHE  
VIH  
VIL  
tSHIXE  
VIH  
VIL  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 137 of 190  
S6E2G Series  
High-Speed Synchronous Serial (SPI = 0, SCINV = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Pin  
Parameter  
Serial clock cycle time  
SCK↑→SOT delay time  
Symbol  
tSCYC  
Conditions  
Name  
Min  
Max  
Min  
Max  
SCKx  
4tCYCP  
-
4tCYCP  
-
ns  
ns  
SCKx,  
SOTx  
tSHOVI  
- 10  
+ 10  
- 10  
+ 10  
Internal shift  
clock operation  
14  
SCKx,  
SINx  
SINSCKsetup time  
SCK↓→SIN hold time  
tIVSLI  
-
-
12.5  
5
-
-
ns  
ns  
12.5*  
SCKx,  
SINx  
tSLIXI  
5
Serial clock L pulse width  
Serial clock H pulse width  
tSLSH  
tSHSL  
SCKx  
SCKx  
2tCYCP - 5  
-
-
2tCYCP - 5  
-
-
ns  
ns  
tCYCP + 10  
tCYCP + 10  
SCKx,  
SOTx  
SCK↑→SOT delay time  
SINSCK↓ setup time  
SCK↓→SIN hold time  
tSHOVE  
tIVSLE  
tSLIXE  
-
15  
-
-
15  
-
ns  
ns  
ns  
SCKx,  
SINx  
External shift  
clock operation  
5
5
5
5
SCKx,  
SINx  
-
-
SCK fall time  
SCK rise time  
tF  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
tR  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
These characteristics only guarantee the following pins:  
No chip select: SIN4_0, SOT4_0, SCK4_0  
Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0  
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)  
Document Number: 001-98708 Rev. *E  
Page 138 of 190  
S6E2G Series  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSHOVI  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
VIH  
VIL  
tSLIXI  
VIH  
VIL  
MS bit = 0  
tSHSL  
tSLSH  
VIH  
tSHOVE  
VIH  
SCK  
VIL  
V
IL  
VIL  
tF  
tR  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
V
V
IH  
IH  
V
IL  
V
IL  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 139 of 190  
S6E2G Series  
High-Speed Synchronous Serial (SPI = 1, SCINV = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Pin  
Parameter  
Serial clock cycle time  
SCK↑→SOT delay time  
Symbol  
tSCYC  
Conditions  
Name  
Min  
Max  
Min  
Max  
SCKx  
4tCYCP  
-
4tCYCP  
-
ns  
ns  
SCKx,  
SOTx  
tSHOVI  
- 10  
+ 10  
- 10  
+ 10  
14  
SCKx,  
SINx  
Internal shift  
clock operation  
SINSCKsetup time  
tIVSLI  
-
12.5  
-
ns  
12.5*  
SCKx,  
SINx  
SCK↓→SIN hold time  
SOTSCK↓ delay time  
tSLIXI  
5
-
-
5
-
-
ns  
ns  
SCKx,  
SOTx  
tSOVLI  
2tCYCP - 10  
2tCYCP - 10  
Serial clock L pulse width  
Serial clock H pulse width  
tSLSH  
tSHSL  
SCKx  
SCKx  
2tCYCP - 5  
-
-
2tCYCP - 5  
-
-
ns  
ns  
tCYCP + 10  
tCYCP + 10  
SCKx,  
SOTx  
SCK↑→SOT delay time  
SINSCKsetup time  
SCK↓→SIN hold time  
tSHOVE  
tIVSLE  
tSLIXE  
-
15  
-
-
15  
-
ns  
ns  
ns  
SCKx,  
SINx  
External shift  
clock operation  
5
5
5
5
SCKx,  
SINx  
-
-
SCK fall time  
SCK rise time  
tF  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
tR  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
These characteristics only guarantee the following pins:  
No chip select: SIN4_0, SOT4_0, SCK4_0  
Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0  
When the external load capacitance CL = 30 pF. (for *, when CL = 10 pF)  
Document Number: 001-98708 Rev. *E  
Page 140 of 190  
S6E2G Series  
tSCYC  
VOH  
VOL  
VOL  
SCK  
SOT  
SIN  
tSHOVI  
tSOVLI  
VOH  
VOL  
VOH  
VOL  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
MS bit = 0  
tSLSH  
tSHSL  
SCK  
VIH  
tF  
VIH  
VIL  
VIH  
VIL  
tSHOVE  
tR  
*
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
V
IL  
V
IH  
IL  
IH  
V
V
MS bit = 1  
*: Changes when writing to TDR register  
Document Number: 001-98708 Rev. *E  
Page 141 of 190  
S6E2G Series  
High-Speed Synchronous Serial (SPI = 1, SCINV = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Serial clock cycle time  
tSCYC  
tSLOVI  
SCKx  
4tCYCP  
-
4tCYCP  
-
ns  
ns  
SCKx,  
SOTx  
SCK↓→SOT delay time  
- 10  
+ 10  
- 10  
+ 10  
14  
SCKx,  
SINx  
SINSCKsetup time  
tIVSHI  
Internal shift  
clock operation  
-
12.5  
-
ns  
12.5*  
SCKx,  
SINx  
SCK↑→SIN hold time  
SOTSCK↑ delay time  
tSHIXI  
5
-
-
5
-
-
ns  
ns  
SCKx,  
SOTx  
tSOVHI  
2tCYCP - 10  
2tCYCP - 10  
Serial clock L pulse width  
Serial clock H pulse width  
tSLSH  
tSHSL  
SCKx  
SCKx  
2tCYCP - 5  
-
-
2tCYCP - 5  
-
-
ns  
ns  
tCYCP + 10  
tCYCP + 10  
SCKx,  
SOTx  
SCK↓→SOT delay time  
SINSCKsetup time  
SCK↑→SIN hold time  
tSLOVE  
tIVSHE  
tSHIXE  
-
15  
-
-
15  
-
ns  
ns  
ns  
SCKx,  
SINx  
External shift  
clock operation  
5
5
5
5
SCKx,  
SINx  
-
-
SCK fall time  
SCK rise time  
tF  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
tR  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
These characteristics only guarantee the following pins:  
No chip select: SIN4_0, SOT4_0, SCK4_0  
Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0  
When the external load capacitance CL = 30 pF. (for *, when CL = 10 pF)  
Document Number: 001-98708 Rev. *E  
Page 142 of 190  
S6E2G Series  
tSCYC  
VOL  
VOH  
VOH  
SCK  
tSOVHI  
tSLOVI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tSHIXI  
tIVSHI  
VIH  
VIL  
VIH  
VIL  
MS bit = 0  
tSHSL  
tSLSH  
tR  
tF  
SCK  
VIH  
VIH  
VIH  
V
IL  
VIL  
V
IL  
tSLOVE  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSHE  
tSHIXE  
V
V
IH  
IH  
V
IL  
V
IL  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 143 of 190  
S6E2G Series  
When Using High-Speed Synchronous Serial Chip Select (SCINV = 0, CSLVL = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max  
SCS↓→SCK↓ setup time  
SCK↑→SCS↑ hold time  
tCSSI  
(*1)-20  
(*2)+0  
(*1)+0  
(*2)+20  
(*1)-20  
(*1)+0  
(*2)+20  
ns  
ns  
Internal shift  
tCSHI  
(*2)+0  
clock  
operation  
(*3)-20  
+5tCYCP  
(*3)+20  
+5tCYCP  
(*3)-20  
+5tCYCP  
(*3)+20  
+5tCYCP  
SCS deselect time  
tCSDI  
ns  
SCS↓→SCK↓ setup time  
SCK↑→SCS↑ hold time  
SCS deselect time  
tCSSE  
3tCYCP+15  
-
-
3tCYCP+15  
-
-
ns  
ns  
ns  
ns  
ns  
tCSHE  
0
0
External shift  
clock  
operation  
tCSDE  
tDSE  
tDEE  
3tCYCP+15  
-
3tCYCP+15  
-
SCS↓→SOT delay time  
SCS↑→SOT delay time  
-
25  
-
-
25  
-
0
0
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]  
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]  
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]  
Notes:  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family  
Peripheral Manual Main Part (002-04856).  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 144 of 190  
 
S6E2G Series  
SCS  
output  
tCSDI  
tCSHI  
tCSSI  
SCK  
output  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
MS bit = 0  
SCS  
input  
tCSDE  
tCSHE  
tCSSE  
SCK  
input  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 145 of 190  
S6E2G Series  
When Using High-Speed Synchronous Serial Chip Select (SCINV = 1, CSLVL = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC≥ 4.5 V  
Unit  
Parameter  
Symbol  
Conditions  
Min  
Min  
Min  
Max  
SCS↓→SCK↓ setup time  
SCK↑→SCS↑ hold time  
tCSSI  
tCSHI  
(*1)-20  
(*2)+0  
(*1)+0  
(*2)+20  
(*1)-20  
(*1)+0  
(*2)+20  
ns  
ns  
Internal shift  
clock  
(*2)+0  
operation  
(*3)-20  
+5tCYCP  
(*3)+20  
+5tCYCP  
(*3)-20  
+5tCYCP  
(*3)+20  
+5tCYCP  
SCS deselect time  
tCSDI  
ns  
SCS↓→SCK↑ setup time  
SCK↑→SCS↑ hold time  
SCS deselect time  
tCSSE  
tCSHE  
tCSDE  
tDSE  
3tCYCP+15  
-
-
3tCYCP+15  
-
-
ns  
ns  
ns  
ns  
ns  
0
0
External shift  
clock  
operation  
3tCYCP+15  
-
3tCYCP+15  
-
SCS↓→SOT delay time  
SCS↑→SOT delay time  
-
25  
-
-
25  
-
tDEE  
0
0
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]  
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]  
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]  
Notes:  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family  
Peripheral Manual Main Part (002-04856).  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 146 of 190  
S6E2G Series  
SCS  
output  
tCSDI  
tCSHI  
tCSSI  
SCK  
output  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
MS bit = 0  
SCS  
input  
tCSDE  
tCSHE  
tCSSE  
SCK  
input  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 147 of 190  
S6E2G Series  
When Using High-Speed Synchronous Serial Chip Select (SCINV = 0, CSLVL = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max  
SCS↑→SCK↓ setup time  
SCK↑→SCS↓ hold time  
tCSSI  
(*1)-20  
(*2)+0  
(*1)+0  
(*2)+20  
(*1)-20  
(*1)+0  
(*2)+20  
ns  
ns  
Internal shift  
tCSHI  
(*2)+0  
clock  
operation  
(*3)-20  
+5tCYCP  
(*3)+20  
+5tCYCP  
(*3)-20  
+5tCYCP  
(*3)+20  
+5tCYCP  
SCS deselect time  
tCSDI  
ns  
SCS↑→SCK↓ setup time  
SCK↑→SCS↓ hold time  
SCS deselect time  
tCSSE  
3tCYCP+15  
-
-
3tCYCP+15  
-
-
ns  
ns  
ns  
ns  
ns  
tCSHE  
0
0
External shift  
clock  
operation  
tCSDE  
tDSE  
tDEE  
3tCYCP+15  
-
3tCYCP+15  
-
SCS↑→SOT delay time  
SCS↓→SOT delay time  
-
25  
-
-
25  
-
0
0
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]  
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]  
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]  
Notes:  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family  
Peripheral Manual Main Part (002-04856).  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 148 of 190  
S6E2G Series  
tCSDI  
SCS  
output  
tCSHI  
tCSSI  
SCK  
output  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
MS bit = 0  
tCSDE  
SCS  
input  
tCSHE  
tCSSE  
SCK  
input  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 149 of 190  
S6E2G Series  
When Using High-Speed Synchronous Serial Chip Select (SCINV = 1, CSLVL = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
VCC < 4.5 V  
VCC ≥ 4.5 V  
Unit  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
SCS↓→SCK↓ setup time  
SCK↑→SCS↓ hold time  
tCSSI  
tCSHI  
(*1)-20  
(*2)+0  
(*1)+0  
(*2)+20  
(*1)-20  
(*1)+0  
(*2)+20  
ns  
ns  
Internal shift  
clock  
(*2)+0  
operation  
(*3)-20  
+5tCYCP  
(*3)+20  
+5tCYCP  
(*3)-20  
+5tCYCP  
(*3)+20  
+5tCYCP  
SCS deselect time  
tCSDI  
ns  
SCS↑→SCK↑ setup time  
SCK↓→SCS↓ hold time  
SCS deselect time  
tCSSE  
tCSHE  
tCSDE  
tDSE  
3tCYCP+15  
-
-
3tCYCP+15  
-
-
ns  
ns  
ns  
ns  
ns  
0
0
External shift  
clock  
operation  
3tCYCP+15  
-
3tCYCP+15  
-
SCS↑→SOT delay time  
SCS↓→SOT delay time  
-
40  
-
-
40  
-
tDEE  
0
0
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]  
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]  
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]  
Notes:  
tCYCP indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function  
serial is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family  
Peripheral Manual Main Part (002-04856).  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 150 of 190  
S6E2G Series  
tCSDI  
SCS  
output  
tCSHI  
tCSSI  
SCK  
output  
SOT  
(SPI=0)  
SOT  
(SPI=1)  
MS bit = 0  
tCSDE  
SCS  
input  
tCSHE  
tCSSE  
SCK  
input  
tDEE  
SOT  
(SPI=0)  
tDSE  
SOT  
(SPI=1)  
MS bit = 1  
Document Number: 001-98708 Rev. *E  
Page 151 of 190  
S6E2G Series  
External Clock (EXT = 1): When in Asynchronous Mode Only  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol Condition  
Unit  
Remarks  
Min  
Max  
Serial clock L pulse width  
Serial clock H pulse width  
SCK fall time  
tSLSH  
tCYCP + 10  
-
-
ns  
ns  
ns  
ns  
tSHSL  
tCYCP + 10  
CL = 30 pF  
tF  
-
-
5
5
SCK rise time  
tR  
tR  
tF  
tSHSL  
tSLSH  
SCK  
VIH  
VIH  
VIH  
IL  
V
V
IL  
V
IL  
Document Number: 001-98708 Rev. *E  
Page 152 of 190  
S6E2G Series  
12.4.13 External Input Timing  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
2tCYCP  
2tCYCP  
Max  
A/D converter trigger input  
ADTGx  
FRCKx  
*1  
*1  
-
-
ns  
Free-run timer input clock  
Input capture  
Icxx  
Waveform generator  
DTTIxX  
-
-
-
-
ns  
ns  
Input pulse  
width  
tINH, tINL  
2tCYCP + 100*1  
500*2  
INT00 to INT31,  
NMIX  
External interrupt,  
NMI  
-
-
ns  
ns  
500*3  
Deep standby wake up  
WKUPx  
-
1: tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in Timer mode. For more information about  
the APB bus number to which the A/D converter, multi-function timer, and external interrupt are connected, see 1. S6E2G  
Series Block Diagram in this data sheet.  
2: When in Stop mode, in Timer mode  
3: When in Deep Standby RTC mode, in Deep Standby Stop mode  
Document Number: 001-98708 Rev. *E  
Page 153 of 190  
S6E2G Series  
12.4.14 Quadrature Position/Revolution Counter Timing  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V)  
Value  
Unit  
Parameter  
AIN pin H width  
Symbol  
Conditions  
Min  
Max  
tAHL  
tALL  
tBHL  
tBLL  
-
-
-
-
AIN pin L width  
BIN pin H width  
BIN pin L width  
BIN rise time from  
AIN pin H level  
tAUBU  
tBUAD  
tADBD  
tBDAU  
tBUAU  
tAUBD  
tBDAD  
tADBU  
PC_Mode2 or PC_Mode3  
PC_Mode2 or PC_Mode3  
PC_Mode2 or PC_Mode3  
PC_Mode2 or PC_Mode3  
PC_Mode2 or PC_Mode3  
PC_Mode2 or PC_Mode3  
PC_Mode2 or PC_Mode3  
PC_Mode2 or PC_Mode3  
AIN fall time from  
BIN pin H level  
BIN fall time from  
AIN pin L level  
AIN rise time from  
BIN pin L level  
AIN rise time from  
BIN pin H level  
-
ns  
2tCYCP  
*
BIN fall time from  
AIN pin H level  
AIN fall time from  
BIN pin L level  
BIN rise time from  
AIN pin L level  
ZIN pin H width  
ZIN pin L width  
tZHL  
tZLL  
QCR: CGSC = 0  
QCR: CGSC = 0  
AIN/BIN rise and fall time  
from determined ZIN level  
tZABE  
tABEZ  
QCR: CGSC = 1  
QCR: CGSC = 1  
Determined ZIN level from  
AIN/BIN rise and fall time  
*: tCYCP indicates the APB bus clock cycle time except when in Stop mode, in Timer mode. For more information about the  
APB bus number to which the quadrature position/revolution counter is connected, see 1. S6E2G Series Block Diagram in  
this data sheet.  
Document Number: 001-98708 Rev. *E  
Page 154 of 190  
S6E2G Series  
tALL  
tAHL  
AIN  
BIN  
tADBD  
tAUBU  
tBUAD  
tBDAU  
tBHL  
tBLL  
tBLL  
tBHL  
BIN  
AIN  
tBDAD  
tBUAU  
tAUBD  
tADBU  
tAHL  
tALL  
Document Number: 001-98708 Rev. *E  
Page 155 of 190  
S6E2G Series  
ZIN  
ZIN  
AIN/BIN  
Document Number: 001-98708 Rev. *E  
Page 156 of 190  
S6E2G Series  
12.4.15 I2C Timing  
Standard-Mode, Fast-Mode  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Standard-Mode  
Fast-Mode  
Conditions  
Unit Remarks  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
SCL clock frequency  
fSCL  
0
100  
0
400  
kHz  
(Repeated) START condition  
hold time  
tHDSTA  
4.0  
-
0.6  
-
μs  
SDA ↓ → SCL ↓  
SCL clock L width  
SCL clock H width  
tLOW  
tHIGH  
4.7  
4.0  
-
-
1.3  
0.6  
-
-
μs  
μs  
(Repeated) START condition  
setup time  
SCL ↑ → SDA ↓  
tSUSTA  
4.7  
-
0.6  
-
μs  
CL = 30 pF,  
*1  
R = (Vp/IOL  
)
Data hold time  
SCL ↓ → SDA ↓ ↑  
3.45*2  
0.9*3  
tHDDAT  
tSUDAT  
tSUSTO  
0
0
μs  
ns  
μs  
Data setup time  
SDA ↓ ↑ → SCL ↑  
250  
4.0  
-
-
100  
0.6  
-
-
Stop condition setup time  
SCL ↑ → SDA ↑  
Bus free time between  
Stop condition and  
START condition  
tBUF  
4.7  
-
1.3  
-
μs  
ns  
2 MHz ≤  
CYCP40 MHz  
*4  
*4  
*4  
*4  
*4  
*4  
*4  
*4  
-
-
-
-
-
-
-
-
2 tCYCP  
4 tCYCP  
6 tCYCP  
8 tCYCP  
2 tCYCP  
4 tCYCP  
6 tCYCP  
8 tCYCP  
t
40 MHz ≤  
tCYCP 60 MHz  
ns  
Noise filter  
tSP  
*5  
60 MHz ≤  
tCYCP 80 MHz  
ns  
ns  
80 MHz ≤  
tCYCP ≤100 MHz  
1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates  
the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.  
2: The maximum tHDDAT must not extend beyond the low period (tLOW) of the device’s SCL signal.  
3: Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the  
requirement of "tSUDAT ≥ 250 ns.  
4: tCYCP is the APB bus clock cycle time. For more information about the APB bus number to which the I2C is connected, see  
1.S6E2G Series Block Diagram in this data sheet.  
When using Standard-mode, the peripheral bus clock must be set more than 2 MHz.  
When using Fast-mode, the peripheral bus clock must be set more than 8 MHz.  
5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to the APB  
bus clock frequency.  
Document Number: 001-98708 Rev. *E  
Page 157 of 190  
S6E2G Series  
Fast mode Plus (Fm+)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Fast mode Plus (Fm+)*6  
Parameter  
Symbol  
fSCL  
Conditions  
Unit  
kHz  
μs  
Remarks  
Min  
Max  
SCL clock frequency  
0
1000  
(Repeated) START condition  
hold time  
tHDSTA  
0.26  
-
SDA ↓ → SCL ↓  
SCL clock L width  
SCL clock H width  
tLOW  
tHIGH  
0.5  
-
-
μs  
μs  
0.26  
(Repeated) START condition  
setup time  
SCL ↑ → SDA ↓  
tSUSTA  
0.26  
-
μs  
CL = 30 pF,  
*1  
R = (Vp/IOL  
)
Data hold time  
SCL ↓ → SDA ↓ ↑  
0.45*2, *3  
tHDDAT  
tSUDAT  
tSUSTO  
0
μs  
ns  
μs  
Data setup time  
SDA ↓ ↑ → SCL ↑  
50  
-
-
Stop condition setup time  
SCL ↑ → SDA ↑  
0.26  
Bus free time between  
Stop condition and  
START condition  
tBUF  
0.5  
-
μs  
60 MHz ≤  
CYCP80 MHz  
*4  
*4  
-
-
ns  
ns  
6 tCYCP  
8 tCYCP  
t
Noise filter  
tSP  
*5  
80 MHz ≤  
tCYCP ≤100 MHz  
1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates  
the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.  
2: The maximum tHDDAT must not extend beyond the low period (tLOW) of the device’s SCL signal.  
3: The Fast mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the  
requirement of "tSUDAT ≥ 250 ns.”  
4: tCYCP is the APB bus clock cycle time. For more information about the APB bus number to which the I2C is connected, see  
1.S6E2G Series Block Diagram in this data sheet.  
To use fast mode plus (Fm+), set the peripheral bus clock at 64 MHz or more.  
5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to the APB  
bus clock frequency.  
6: When using fast mode plus (Fm+), set the I/O pin to the mode corresponding to I2C Fm+ in the EPFR register.  
See Chapter 12: I/O Port in FM4 Family Peripheral Manual Main Part (002-04856) for the details.  
Document Number: 001-98708 Rev. *E  
Page 158 of 190  
S6E2G Series  
Document Number: 001-98708 Rev. *E  
Page 159 of 190  
S6E2G Series  
12.4.16 SD Card Interface Timing  
Default-Speed Mode  
Clock CLK (All values are referenced to VIH and VIL transition points)  
(VCC = 2.7V to 3.6V, VSS = 0V)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Remarks  
Min  
Max  
Clock frequency Data  
Transfer mode  
fPP  
fOD  
S_CLK  
S_CLK  
0
25  
MHz  
kHz  
Clock frequency  
Identification mode  
0/100  
400  
CCARD ≤ 10 pF  
(1card)  
Clock low time  
Clock high time  
Clock rise time  
Clock fall time  
tWL  
tWH  
tTLH  
tTHL  
S_CLK  
S_CLK  
S_CLK  
S_CLK  
10  
10  
-
-
ns  
ns  
ns  
ns  
-
10  
10  
-
*: 0 Hz means to stop the clock. The given minimum frequency range is for cases where a continuous clock is required.  
Card Inputs CMD, DAT (referenced to Clock CLK)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Remarks  
Min  
Max  
S_CMD,  
S_DATA3: 0  
Input set-up time  
tISU  
tIH  
5
-
ns  
ns  
CCARD ≤ 10 pF  
(1card)  
S_CMD,  
S_DATA3: 0  
Input hold time  
5
-
Card Outputs CMD, DAT (referenced to Clock CLK)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Remarks  
Min  
Max  
Output Delay time during  
Data Transfer mode  
S_CMD,  
S_DATA3: 0  
tODLY  
tODLY  
0
14  
ns  
ns  
CCARD ≤ 40 pF  
(1card)  
Output Delay time during  
Identification mode  
S_CMD,  
S_DATA3: 0  
0
50  
tWH  
tWL  
VIH  
VIH  
S_CLK  
VIH  
VIL  
VIL  
(SD Clock)  
tTLH  
tTHL  
tIH  
tISU  
S_CMD,  
VIH  
VIL  
VIH  
VIL  
S_DATA3: 0  
(Card Input)  
tODLY(Min)  
tODLY(Max)  
S_CMD,  
VOH  
VOL  
VOH  
VOL  
S_DATA3: 0  
(Card Output)  
Default-Speed mode  
Document Number: 001-98708 Rev. *E  
Page 160 of 190  
S6E2G Series  
Notes:  
The Card Input corresponds to the Host Output and the Card Output corresponds to the Host Input because this model is the  
Host.  
For more information about clock frequency (fPP), see Chapter 15: SD card Interface in FM4 Family Peripheral Manual Main  
Part (002-04856).  
High-speed Mode  
Clock CLK (All values are referred to VIH and VIL)  
(VCC = 2.7V to 3.6V, VSS = 0V)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Remarks  
Max  
Min  
Clock frequency Data Transfer  
mode  
fPP  
S_CLK  
0
45  
MHz  
Clock low time  
Clock high time  
Clock rise time  
Clock fall time  
tWL  
tWH  
tTLH  
tTHL  
S_CLK  
S_CLK  
S_CLK  
S_CLK  
7
7
-
-
-
ns  
ns  
ns  
ns  
CCARD ≤ 10 pF  
(1 card)  
3
3
-
Card Inputs CMD, DAT (referenced to Clock CLK)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Remarks  
Min  
Max  
S_CMD,  
S_DATA3: 0  
Input set-up time  
Input hold time  
tISU  
tIH  
6
-
ns  
ns  
CCARD ≤ 10 pF  
(1 card)  
S_CMD,  
S_DATA3: 0  
2
-
Card Outputs CMD, DAT (referenced to Clock CLK)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Remarks  
Min  
Max  
Output delay time during data  
transfer mode  
S_CMD,  
S_DATA3: 0  
CL ≤ 40 pF  
(1 card)  
tODLY  
tOH  
0
14  
ns  
ns  
pF  
S_CMD,  
S_DATA3: 0  
CL ≥ 15 pF  
(1 card)  
Output hold time  
2.5  
-
Total system capacitance for  
each line*  
CL  
-
1 card  
-
40  
*: In order to satisfy severe timing, host shall drive only one card.  
Document Number: 001-98708 Rev. *E  
Page 161 of 190  
S6E2G Series  
tWH  
tWL  
VIH  
VIH  
S_CLK  
VIH  
50%VCC  
50%VCC  
tIH  
VIL  
VIL  
(SD Clock)  
tTLH  
tTHL  
tISU  
S_CMD,  
VIH  
VIL  
VIH  
VIL  
S_DATA3: 0  
(Card Input)  
tOH(Min)  
tODLY(Max)  
S_CMD,  
VOH  
VOL  
VOH  
VOL  
S_DATA3: 0  
(Card Output)  
High-speed mode  
Notes:  
The Card Input corresponds to the Host Output and the Card Output corresponds to the Host Input because this model is  
the Host.  
For more information about clock frequency (fPP), see Chapter 15: SD card Interface in FM4 Family Peripheral Manual  
Main Part (002-04856).  
12.4.17 ETM/ HTM Timing  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
VCC ≥ 4.5 V  
2
9
ns  
TRACECLK,  
Data hold  
tETMH  
TRACED[15: 0]  
VCC 4.5 V  
VCC ≥ 4.5 V  
VCC 4.5 V  
2
15  
50  
32  
MHz  
MHz  
TRACECLK  
frequency  
1/tTRACE  
TRACECLK  
VCC ≥ 4.5 V  
20  
-
-
ns  
ns  
TRACECLK  
clock cycle  
tTRACE  
VCC 4.5 V  
31.25  
Note:  
When the external load capacitance CL = 30 pF.  
Document Number: 001-98708 Rev. *E  
Page 162 of 190  
S6E2G Series  
HCLK  
TRACECLK  
TRACED[15: 0]  
Document Number: 001-98708 Rev. *E  
Page 163 of 190  
S6E2G Series  
12.4.18 JTAG Timing  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Remarks  
Min  
Max  
VCC ≥ 4.5 V  
TCK,  
TMS, TDI setup time  
tJTAGS  
15  
-
ns  
TMS, TDI  
VCC 4.5 V  
VCC ≥ 4.5 V  
VCC 4.5 V  
VCC ≥ 4.5 V  
VCC 4.5 V  
TCK,  
TMS, TDI  
TMS, TDI hold time  
tJTAGH  
15  
-
ns  
ns  
-
-
25  
45  
TCK,  
TDO  
TDO delay time  
tJTAGD  
Note:  
When the external load capacitance CL = 30 pF.  
TCK  
TMS/TDI  
TDO  
Document Number: 001-98708 Rev. *E  
Page 164 of 190  
S6E2G Series  
12.4.19 Ethernet-MAC Timing  
RMII Transmission (100 Mbps/10 Mbps)  
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V*1, VSS = 0V, CL = 25 pF)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Min  
Max  
Reference clock cycle time*2  
tREFCYC  
tREFCYCH  
tREFCYCL  
E_RXCK_REFCK  
E_RXCK_REFCK  
E_RXCK_REFCK  
20 ns (typical)  
tREFCYCH/tREFCYC  
tREFCYCL/tREFCYC  
-
-
ns  
%
%
Reference clock  
High-pulse-width duty cycle  
35  
35  
65  
65  
Reference clock  
Low-pulse-width duty cycle  
E_TX03, E_RX02,  
E_TX01, E_TX00,  
E_TXEN  
REFCK ↑ → Transmitted data  
delay time  
tRMIITX  
-
-
12  
ns  
*1: When ETHV = 4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output  
current.  
*2: The reference clock is fixed to 50 MHz in the RMII specifications. The clock accuracy should meet the PHY-device  
specifications.  
tREFCYC  
E_RXCK_REFCK  
VIHS  
VIHS  
VILS  
tREFCYCH  
tREFCYCL  
E_TX03  
E_TX02  
E_TX01  
E_TX00  
E_TXEN  
VOH  
VOL  
tRMIITX  
Document Number: 001-98708 Rev. *E  
Page 165 of 190  
S6E2G Series  
RMII Receiving (100 Mbps/10 Mbps)  
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V, VSS = 0V, CL = 25 pF)  
Value  
Parameter  
Reference clock  
Symbol  
Pin Name  
Conditions  
Unit  
Min  
Max  
tREFCYC  
tREFCYCH  
tREFCYCL  
E_RXCK_REFCK  
E_RXCK_REFCK  
E_RXCK_REFCK  
20 ns (typical)  
tREFCYCH/tREFCYC  
tREFCYCL/tREFCYC  
-
-
ns  
%
%
cycle time*  
Reference clock  
High-pulse-width duty cycle  
35  
35  
65  
65  
Reference clock  
Low-pulse-width duty cycle  
E_RX03, E_RX02,  
E_RX01, E_RX00,  
E_RXDV  
Received data REFCK↑  
Setup time  
tRMIIRXS  
-
-
4
2
-
-
ns  
ns  
E_RX03, E_RX02,  
E_RX01, E_RX00,  
E_RXDV  
REFCK ↑ → Received data  
Hold time  
tRMIIRXH  
*: The reference clock is fixed to 50 MHz in the RMII specifications.  
The clock accuracy should meet the PHY-device specifications.  
tREFCYC  
VILS  
E_RXCK_REFCK  
VIHS  
VIHS  
tREFCYCH  
tREFCYCL  
E_RX03  
E_RX02  
E_RX01  
E_RX00  
E_RXDV  
VIHS  
VILS  
VIHS  
VILS  
tRMIIRXH  
tRMIIRXS  
Document Number: 001-98708 Rev. *E  
Page 166 of 190  
S6E2G Series  
Management Interface  
Parameter  
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V, VSS = 0V, CL = 25 pF)  
Value  
Symbol  
Pin Name  
Conditions  
Unit  
Min  
Max  
Management clock  
cycle time*  
tMDCYC  
tMDCYCH  
tMDCYCL  
tMDO  
E_MDC  
E_MDC  
E_MDC  
E_MDIO  
E_MDIO  
E_MDIO  
-
400  
-
ns  
%
Management clock  
High pulse width duty cycle  
tMDCYCH/tMDCYC  
35  
35  
-
65  
65  
60  
-
Management clock  
Low pulse width duty cycle  
tMDCYCL/tMDCYC  
%
MDC ↓ → MDIO  
Delay time  
-
-
-
ns  
ns  
ns  
MDIO → MDC ↑  
Setup time  
tMDIS  
20  
0
MDC ↑ → MDIO  
Hold time  
tMDIH  
-
*: The clock time should be set to a value greater than the minimum value by setting the Ethernet-MAC setting register.  
tMDCYC  
VOH  
VOL  
VOH  
VOL  
E_MDC (output)  
E_MDIO (input)  
tMDCYCH  
tMDCYCL  
VIHS  
VILS  
VIHS  
VILS  
VIHS  
VILS  
VIHS  
VILS  
tMDIS  
tMDIH  
tMDIS  
tMDIH  
tMDO  
tMDO  
VOH  
VOL  
VOH  
VOL  
E_MDIO (output)  
Document Number: 001-98708 Rev. *E  
Page 167 of 190  
S6E2G Series  
MII Transmission (100 Mbps/10 Mbps)  
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V*1, VSS = 0V, CL = 25 pF)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Min  
Max  
100 Mbps  
40 ns (typical)  
-
-
ns  
ns  
%
%
Transmission clock  
Cycle time*2  
tTXCYC  
E_TCK  
100 Mbps  
400 ns (typical)  
-
-
Transmission clock  
High-pulse-width duty cycle  
tTXCYCH  
tTXCYCL  
E_TCK  
E_TCK  
tTXCYCH/tTXCYC  
tTXCYCL/tTXCYC  
35  
35  
65  
65  
Transmission clock  
Low-pulse-width duty cycle  
E_TX03, E_TX02,  
E_TX01, E_TX00,  
E_TXEN  
TXCK ↑ → Transmitted data delay  
time  
tMIITX  
-
-
24  
ns  
1: When ETHV = 4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output current.  
2: The transmission clock is fixed to 25 MHz or 2.5 MHz in the MII specifications. The clock accuracy should meet the  
PHY-device specifications.  
tTXCYC  
VIHS  
VIHS  
E_TCK  
VILS  
tTXCYCH  
tTXCYCL  
E_TX03  
E_TX02  
E_TX01  
E_TX00  
E_TXEN  
VOH  
VOL  
tMIITX  
Document Number: 001-98708 Rev. *E  
Page 168 of 190  
S6E2G Series  
MII Receiving (100 Mbps/10 Mbps)  
(ETHVCC = 3.0V to 3.6V, 4.5V to 5.5V, VSS = 0V, CL = 25 pF)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit  
Min  
Max  
100 Mbps  
40 ns (typical)  
-
-
ns  
ns  
%
%
Receiving clock  
cycle time*  
tRXCYC  
E_RXCK_REFCK  
100 Mbps  
400 ns (typical)  
-
-
Receiving clock  
High pulse width duty cycle  
tRXCYCH  
tRXCYCL  
E_RXCK_REFCK  
E_RXCK_REFCK  
tRXCYCH/tRXCYC  
tRXCYCL/tRXCYC  
35  
35  
65  
65  
Receiving clock  
Low pulse width duty cycle  
E_RX03, E_RX02,  
E_RX01, E_RX00,  
E_RXDV  
Received data →  
REFCK ↑Setup time  
tMIIRXS  
-
-
5
2
-
-
ns  
ns  
E_RX03, E_RX02,  
E_RX01, E_RX00,  
E_RXDV  
REFCK ↑ →  
Received data Hold time  
tMIIRXH  
*: The receiving clock 100Mbps is fixed to 25MHz or 2.5MHz in the MII specifications.  
The clock accuracy should meet the PHY-device specifications.  
tRXCYC  
E_RXCK_REFCK  
VIHS  
VIHS  
VILS  
tRXCYCH  
tRXCYCL  
E_RX03  
E_RX02  
E_RX01  
E_RX00  
E_RXDV  
VIHS  
VILS  
VIHS  
VILS  
tMIIRXS  
tMIIRXH  
Document Number: 001-98708 Rev. *E  
Page 169 of 190  
S6E2G Series  
12.4.20 I2S Timing (Multi-function Serial Interface)  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Pin Name  
Conditions  
Unit Remarks  
Min  
-
Max  
6.144  
-
I2SCK max frequency *1  
I2S clock cycle time *1  
I2S clock Duty cycle  
fI2SCK  
tICYC  
MI2SCKx  
MI2SCKx  
MI2SCKx  
-
-
MHz  
%
4 tCYCP2  
45  
55  
%
MI2SCKx,  
MI2SWSx  
I2SCK↓ → I2SWS delay time  
I2SCK↓ → I2SDO delay time  
tSWDT  
tSDDT  
-
-
-20  
-20  
+20  
+20  
ns  
ns  
MI2SCKx,  
MI2SDOx  
I2SDI I2SCK setup time  
I2SCK ↑ → I2SDI hold time  
I2SCK falling time  
tDSST  
tSDHT  
tF  
-
-
-
-
36  
0
-
-
-
ns  
ns  
ns  
ns  
MI2SCKx, MI2SDIx  
MI2SCKx  
5
5
I2SCK rising time  
tR  
-
*1: I2S clock should meet the multiple of PCLK(tICYC) and the frequency less than fI2SCK meantime.  
Note:  
See Chapter 1-6: I2S (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (002-04856)  
for the details.  
VIH  
VIH  
MI2SCK  
VIL  
VIL  
tF  
tR  
tSWDT,  
tSDDT  
VOH  
VOL  
MI2SWS  
and  
MI2SDO  
tDSST  
tSDHT  
VIH  
VIH  
MI2SDI  
VIL  
VIL  
Document Number: 001-98708 Rev. *E  
Page 170 of 190  
S6E2G Series  
12.5 12-bit A/D Converter  
Electrical Characteristics for the A/D Converter  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V)  
Value  
Parameter  
Resolution  
Symbol Pin Name  
Unit  
Remarks  
Min  
Typ  
Max  
12  
-
-
-
-
-
-
-
-
-
bit  
Integral nonlinearity  
Differential nonlinearity  
Zero transition voltage  
-
-
± 4.5  
± 2.5  
± 7  
LSB  
LSB  
LSB  
-
-
AVRH  
= 2.7 V to 5.5 V  
Offset calibration  
when used  
Anxx  
± 2  
VZT  
Full-scale transition voltage  
Anxx  
-
AVRH ± 2  
AVRH ± 7  
LSB  
VFST  
Total error  
-
-
-
-
-
± 3  
± 8  
LSB  
μs  
0.5 *1  
0.15  
0.3  
Conversion time  
AVCC ≥ 4.5 V  
AVCC ≥ 4.5 V  
AVCC < 4.5 V  
AVCC ≥ 4.5 V  
AVCC < 4.5 V  
-
-
-
-
-
-
Sampling time *2  
tS  
-
10  
μs  
25  
1000  
1000  
Compare clock cycle*3  
tCCK  
tSTT  
-
-
-
ns  
μs  
50  
State transition time to  
operation permission  
-
-
1.0  
A/D 1 unit operation  
When A/D stop  
-
-
0.69  
1.3  
0.92  
22  
mA  
μA  
Power supply current (analog +  
digital)  
AVCC  
A/D 1 unit operation  
AVRH = 5.5 V  
-
1.1  
1.97  
mA  
Reference power supply  
current (AVRH)  
-
AVRH  
When A/D stop  
-
-
0.3  
6.3  
12.05  
1.2  
μA  
pF  
Analog input capacity  
Analog input resistance  
-
-
-
CAIN  
RAIN  
AVCC ≥ 4.5 V  
AVCC < 4.5 V  
-
-
kΩ  
1.8  
Interchannel disparity  
-
-
-
-
-
-
-
-
-
-
-
4
LSB  
μA  
V
Analog port input leak current  
Anxx  
-
5
AVRH  
AVSS  
AVSS  
4.5  
Analog input voltage  
Reference voltage  
-
Anxx  
V
AVCC  
AVCC  
AVCC  
AVSS  
Tcck 50 ns  
-
-
AVRH  
AVRL  
V
V
Tcck ≥ 50 ns  
2.7  
AVSS  
1: The conversion time is the value of sampling time (tS) + compare time (tC).  
The condition of the minimum conversion time is when the value of Ts = 150 ns and Tc = 350 ns (AVCC ≥ 4.5V). Ensure that it  
satisfies the value of sampling time (tS) and compare clock cycle (tCCK).  
For setting of sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM4 Family Peripheral Manual Analog  
Macro Part (002-04860). The register setting of the A/D converter is reflected by the APB bus clock timing. For more information  
about the APB bus number to which the A/D converter is connected, see 1. S6E2G Series Block Diagram in this data sheet.  
The sampling clock and compare clock are set at base clock (HCLK).  
2: A necessary sampling time changes by external impedance. Ensure that it sets the sampling time to satisfy (Equation 1).  
3: The compare time (tC) is the value of (Equation 2).  
Document Number: 001-98708 Rev. *E  
Page 171 of 190  
S6E2G Series  
ANxx  
Comparator  
Analog input pin  
RAIN  
Rext  
Analog signal  
source  
CAIN  
(Equation 1) tS ≥ (RAIN + Rext) × CAIN × 9  
tS:  
Sampling time  
RAIN: Input resistance of A/D = 1.2 kΩ at 4.5 V ≤ AVCC ≤ 5.5 V  
Input resistance of A/D = 1.8 kΩ at 2.7 V ≤ AVCC < 4.5 V  
CAIN: Input capacity of A/D = 12.05 pF at 2.7 V ≤ AVCC ≤ 5.5 V  
Rext: Output impedance of external circuit  
(Equation 2) tC = tCCK × 14  
tC:  
Compare time  
tCCK  
:
Compare clock cycle  
Document Number: 001-98708 Rev. *E  
Page 172 of 190  
S6E2G Series  
Definition of 12-bit A/D Converter Terms  
Resolution:  
Analog variation that is recognized by an A/D converter.  
Integral nonlinearity:  
Deviation of the line between the zero-transition point  
(0b000000000000 ←→ 0b000000000001) and the full-scale transition point  
(0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics.  
Differential nonlinearity:Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.  
Integral nonlinearity  
Differential nonlinearity  
0xFFF  
Actual conversion  
Actual conversion  
characteristics  
0xFFE  
0xFFD  
0x(N+1)  
0xN  
characteristics  
{1 LSB(N-1) + VZT}  
VFST  
Ideal characteristics  
(Actually-  
measured  
value)  
VNT  
0x004  
(Actual
value)  
V(N+1)T  
(Actually-measured  
0x(N-1)  
0x(N-2)  
0x003  
0x002  
Actual conversion  
characteristics  
Ideal characteristics  
value)  
VNT  
(Asured  
value)  
0x001  
ly-measured value)  
VZT  
Actual conversion characteristics  
AVss  
AVRH  
AVss  
AVRH  
Analog input  
Analog input  
VNT - {1LSB × (N - 1) + VZT}  
Integral nonlinearity of digital output N =  
Differential nonlinearity of digital output N =  
[LSB]  
1LSB  
V(N + 1) T - VNT  
- 1 [LSB]  
1LSB  
VFST - VZT  
1LSB =  
4094  
N:  
A/D converter digital output value.  
VZT:  
VFST  
VNT:  
Voltage at which the digital output changes from 0x000 to 0x001.  
Voltage at which the digital output changes from 0xFFE to 0xFFF.  
Voltage at which the digital output changes from 0x(N − 1) to 0xN.  
:
Document Number: 001-98708 Rev. *E  
Page 173 of 190  
S6E2G Series  
Total error: A difference between actual value and theoretical value.  
The overall error includes zero-transition voltage, full-scale transition voltage and linearity error.  
Total error  
0xFFF  
V
FST=1.5LSB’  
0xFFE  
0xFFD  
Actual conversion  
characteristics  
{1LSBx (N-1) + 0.5 LSB}  
0x004  
0x003  
0x002  
0x001  
VNT  
(Actually-measured  
value)  
Actual conversion  
characteristics  
Ideal characterisics  
VZT=0.5LSB’  
AVRL  
AVRH  
Analog input  
V
NT {1 LSBX (N-1) + 0.5 LSB}  
1 LSB’  
Total error of digital output N =  
[LSB]  
AVRH AVRL  
[V]  
1 LSB(ideal value) =  
4096  
[V]  
[V]  
V
V
V
ZT(ideal value) =  
AVRL + 0.5 LSB’  
AVRH - 1.5 LSB’  
FST(ideal value) =  
NT: A voltage for causing transition of digital output from (N-1) to N  
Document Number: 001-98708 Rev. *E  
Page 174 of 190  
S6E2G Series  
12.6 USB Characteristics  
(VCC = AVCC = 2.7V to 5.5V, USBVCC0 = USBVCC1 = 3.0V to 3.6V, VSS = AVSS = 0V)  
Value  
Pin  
Name  
Parameter  
Symbol  
Conditions  
Unit Remarks  
Min  
2.0  
Max  
Input H level voltage  
VIH  
VIL  
VDI  
-
-
-
USBVCC + 0.3  
V
V
V
*1  
*1  
*2  
Input L level voltage  
VSS - 0.3  
0.2  
0.8  
Input  
characteristics  
Differential input sensitivity  
-
Different common mode  
range  
VCM  
VOH  
VOL  
-
0.8  
2.8  
0.0  
2.5  
3.6  
0.3  
V
V
V
*2  
*3  
*3  
External pull-down  
resistance = 15 kΩ  
Output H level voltage  
Output L level voltage  
External pull-up  
resistance = 1.5 kΩ  
UDP0/  
UDM0,  
UDP1/  
UDM1  
Crossover voltage  
Rise time  
VCRS  
tFR  
-
1.3  
4
2.0  
20  
V
*4  
*5  
*5  
*5  
Full-Speed  
Full-Speed  
Full-Speed  
ns  
ns  
%
Output  
characteristics  
Fall time  
tFF  
4
20  
Rise/fall time matching  
tFRFM  
90  
111.11  
Output impedance  
Rise time  
ZDRV  
tLR  
Full-Speed  
Low-Speed  
28  
75  
44  
Ω
*6  
*7  
300  
ns  
Fall time  
tLF  
Low-Speed  
Low-Speed  
75  
80  
300  
125  
ns  
%
*7  
*7  
Rise/fall time matching  
tLRFM  
1: The switching threshold voltage of the single-end-receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V,  
VIH (Min) = 2.0 V (TTL input standard).  
There is some hysteresis applied to lower noise sensitivity.  
2: Use differential-receiver to receive USB differential data signal. Differential-receiver has 200 mV of differential input  
sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level.  
Above voltage range is the common mode input voltage range.  
Common mode input voltage [V]  
Document Number: 001-98708 Rev. *E  
Page 175 of 190  
S6E2G Series  
3: The output drive capability of the driver is below 0.3 V at low state (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or  
above (to the VSS and 1.5 kΩ load) at high state (VOH).  
4: The cross voltage of the external differential output signal (D +/D −) of USB I/O buffer is within 1.3 V to 2.0 V.  
VCRS specified range  
5: They indicate rise time (tRISE) and fall time (tFALL) of the full-speed differential data signal.  
They are defined by the time between 10% and 90% of the output signal voltage.  
For full-speed buffer, tR/tF ratio is regulated as within ± 10% to minimize RFI emission.  
D+  
90%  
90%  
10%  
10%  
D-  
TRISE  
TFALL  
Falling time  
Rise time  
Full-speed Buffer  
Rs=27  
Rs=27  
TxD+  
CL=50pF  
CL=50pF  
TxD-  
3-State Enable  
Document Number: 001-98708 Rev. *E  
Page 176 of 190  
S6E2G Series  
6: USB Full-speed connection is performed via twisted-pair cable shield with 90Ω ± 15% characteristic impedance  
(differential mode).  
USB standard defines that the output impedance of the USB driver must be in the range from 28 Ω to 44 Ω. So, a discrete  
series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance.  
When using this USB I/O, use it with 25 Ω to 30 Ω (recommended value 27 Ω) series resistor Rs.  
28Ω to 44Ω Equiv. Imped.  
28Ω to 44Ω Equiv. Imped.  
Mount it as external resistance.  
Rs series resistor 25Ω to 30Ω  
Series resistor of 27Ω (recommendation value) must be added.  
And, use "resistance with an uncertainty of 5% by E24 sequence.”  
7: They indicate rise time (tRISE) and fall time (tFALL) of the low-speed differential data signal.  
They are defined by the time between 10% and 90% of the output signal voltage.  
D+  
90%  
90%  
10%  
10%  
D-  
TRISE  
TFALL  
Rise time  
Falling time  
Note:  
See Low-Speed Load (Compliance Load) for conditions of external load.  
Document Number: 001-98708 Rev. *E  
Page 177 of 190  
S6E2G Series  
Low-Speed Load (Upstream Port Load) - Reference 1  
CL=50pF to 150pF  
CL=50pF to 150pF  
Low-Speed Load (Downstream Port Load) - Reference 2  
CL=  
200pF to 600pF  
CL=  
200pF to 600pF  
Low-Speed Load (Compliance Load)  
CL=200pF to 450pF  
CL=200pF to 450pF  
Document Number: 001-98708 Rev. *E  
Page 178 of 190  
S6E2G Series  
12.7 Low-Voltage Detection Characteristics  
12.7.1 Low-Voltage Detection Reset  
Value  
Typ  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
2.46  
2.51  
Max  
2.64  
2.69  
Detected voltage  
Released voltage  
When voltage drops  
When voltage rises  
VDL  
VDH  
-
-
2.55  
2.60  
V
V
12.7.2 Interrupt of Low-Voltage Detection  
Value  
Typ  
Parameter  
Symbol  
Conditions  
SVHI = 00111  
SVHI = 00100  
SVHI = 01100  
SVHI = 01111  
SVHI = 01110  
SVHI = 01001  
SVHI = 01000  
Unit  
Remarks  
Min  
2.80  
2.90  
2.99  
3.09  
3.18  
3.28  
3.67  
3.76  
3.76  
3.86  
4.05  
4.15  
4.15  
4.25  
4.25  
4.34  
Max  
3.00  
3.11  
3.21  
3.31  
3.42  
3.52  
3.93  
4.04  
4.04  
4.14  
4.35  
4.45  
4.45  
4.55  
4.55  
4.66  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
2.90  
3.00  
3.10  
3.20  
3.30  
3.40  
3.80  
3.90  
3.90  
4.00  
4.20  
4.30  
4.30  
4.40  
4.40  
4.50  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SVHI = 11000  
LVD stabilization wait  
time  
-
-
-
μs  
tLVDW  
6000×tCYCP*  
*: tCYCP indicates the APB2 bus clock cycle time.  
Document Number: 001-98708 Rev. *E  
Page 179 of 190  
S6E2G Series  
12.8 MainFlash Memory Write/Erase Characteristics  
(VCC = 2.7V to 5.5V)  
Value  
Parameter  
Unit  
Remarks  
Min  
Typ  
0.7  
0.3  
Max  
3.7  
Large Sector  
-
-
s
s
Includes write time prior to internal  
erase  
Sector erase time  
Small Sector  
1.1  
Write cycles < 100 times  
Write cycles > 100 times  
100  
200  
Half word (16-bit)  
write time  
Not including system-level overhead  
time  
-
12  
μs  
s
Includes write time prior to internal  
erase  
Chip erase time*  
-
13.6  
68  
*: It indicates the chip erase time of 1MB MainFlash memory  
For devices with 1.5 MB or 2 MB of MainFlash memory, two erase cycles are required.  
See 3.2.2 Command Operating Explanations and 3.3.3 Flash Erase Operation in this product's Flash Programming Manual for  
the detail.  
Write Cycles and Data Retention Time  
Erase/Write Cycles (Cycle)  
Data Retention Time (Year)  
1,000  
10,000  
100,000  
20*  
10*  
5*  
*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature  
acceleration test result into average temperature value at + 85°C).  
Document Number: 001-98708 Rev. *E  
Page 180 of 190  
S6E2G Series  
12.9 Standby Recovery Time  
12.9.1 Recovery Cause: Interrupt/WKUP  
The time from the interrupt occurring to the time of program operation start is shown.  
Recovery Count Time  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
Sleep mode  
HCLK×1  
μs  
High-speed CR Timer mode  
Main Timer mode  
40  
80  
μs  
PLL Timer mode  
Low-speed CR Timer mode  
450  
896  
900  
μs  
μs  
Sub Timer mode  
1136  
RTC mode  
Stop mode  
tICNT  
316  
270  
581  
540  
μs  
μs  
(High-speed CR/Main/PLL Run mode return)  
RTC mode  
Stop mode  
(Low-speed CR/sub Run mode return)  
without RAM  
retention  
365  
365  
667  
667  
μs  
μs  
Deep Standby RTC mode with RAM retention  
Deep Standby Stop mode with RAM retention  
with RAM retention  
*: The maximum value depends on the built-in CR accuracy.  
Example of Standby Recovery Operation (when in External Interrupt Recovery*)  
Ext.INT  
Interrupt factor  
Active  
accept  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
*: External interrupt is set to detecting fall edge.  
Document Number: 001-98708 Rev. *E  
Page 181 of 190  
S6E2G Series  
Example of Standby Recovery Operation (when in Internal Resource Interrupt Recovery*)  
Internal  
Resource INT  
Interrupt factor  
accept  
Active  
tICNT  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
*: Depending on the standby mode, interrupt from the internal resource is not included in the recovery cause.  
Notes:  
The return factor is different in each low-power consumption mode. See Chapter 6: Low Power Consumption mode and  
Operations of Standby modes in FM4 Family Peripheral Manual Main Part (002-04856).  
The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption mode in FM4 Family  
Peripheral Manual Main Part (002-04856).  
Document Number: 001-98708 Rev. *E  
Page 182 of 190  
S6E2G Series  
12.9.2 Recovery Cause: Reset  
The time from reset release to the program operation start is shown.  
Recovery Count Time  
(VCC = 2.7V to 5.5V, VSS = 0V)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
Sleep mode  
155  
266  
μs  
High-speed CR Timer mode  
Main Timer mode  
155  
266  
μs  
PLL Timer mode  
Low-speed CR Timer mode  
315  
315  
567  
567  
μs  
μs  
Sub Timer mode  
tRCNT  
RTC mode  
Stop mode  
315  
567  
μs  
without RAM  
retention  
336  
336  
667  
667  
μs  
μs  
Deep Standby RTC mode with RAM retention  
Deep Standby Stop mode with RAM retention  
with RAM retention  
*: The maximum value depends on the built-in CR accuracy.  
Example of Standby Recovery Operation (when in INITX Recovery)  
INITX  
Internal RST  
RST Active  
Release  
tRCNT  
CPU  
Operation  
Start  
Document Number: 001-98708 Rev. *E  
Page 183 of 190  
S6E2G Series  
Example of Standby Recovery Operation (when in Internal Resource Reset Recovery*)  
Internal  
Resource RST  
Internal RST  
RST Active  
Release  
tRCNT  
CPU  
Operation  
Start  
*: Depending on the low-power consumption mode, the reset issue from the internal resource is not included in the  
recovery cause.  
Notes:  
The return factor is different in each low power consumption mode.  
See Chapter 6: Low Power Consumption mode and Operations of Standby modes in “FM4 Family Peripheral Manual  
Main Part (002-04856).  
The recovery process is unique for each operating mode. See Chapter 6: Low Power Consumption mode in FM4 Family  
Peripheral Manual Main Part (002-04856).  
When the power-on reset/low-voltage detection reset, they are not included in the return factor. See 12.4.8 Power-On  
Reset Timing.  
In recovering from reset, CPU changes to High-speed Run mode. In the case of using the main clock and PLL clock,  
they need further main clock oscillation stabilization wait time and oscillation stabilization wait time of Main PLL clock.  
Internal resource reset indicates Watchdog reset and CSV reset.  
Document Number: 001-98708 Rev. *E  
Page 184 of 190  
S6E2G Series  
13.Ordering Information  
Part Number  
Flash  
RAM  
CAN  
✓  
✓  
✓  
Ethernet SD Card  
Crypto  
Package  
S6E2GM6H0AGV2000A  
S6E2GM8H0AGV2000A  
✓  
✓  
✓  
✓  
✓  
✓  
512 KB 128 KB  
1 MB  
192 KB  
Plastic LQFP (0.5 mm pitch),  
144 pin  
S6E2GM6HHAGV2000A  
512 KB 128 KB  
(LQS144)  
✓  
✓  
✓  
S6E2GM8HHAGV2000A  
S6E2GM6J0AGV2000A  
S6E2GM8J0AGV2000A  
S6E2GM6JHAGV2000A  
S6E2GM8JHAGV2000A  
S6E2GK6H0AGV2000A  
1 MB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
192 KB  
✓  
✓  
✓  
✓  
✓  
✓  
✓  
✓  
✓  
✓  
✓  
✓  
✓  
Plastic LQFP (0.5 mm pitch),  
176 pin  
(LQP176)  
✓  
✓  
✓  
✓  
✓  
✓  
✓  
Plastic LQFP (0.5 mm pitch),  
144 pin  
S6E2GK8H0AGV2000A  
S6E2GK6HHAGV2000A  
S6E2GK8HHAGV2000A  
S6E2GK6J0AGV2000A  
S6E2GK8J0AGV2000A  
S6E2GK6JHAGV2000A  
S6E2GK8JHAGV2000A  
S6E2GH6H0AGV2000A  
S6E2GH8H0AGV2000A  
S6E2GH6J0AGV2000A  
S6E2GH8J0AGV2000A  
S6E2G36H0AGV2000A  
S6E2G38H0AGV2000A  
S6E2G36J0AGV2000A  
S6E2G38J0AGV2000A  
1 MB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
192 KB  
(LQS144)  
Plastic LQFP (0.5 mm pitch),  
176 pin  
(LQP176)  
Plastic LQFP (0.5 mm pitch),  
144 pin  
(LQS144)  
Plastic LQFP (0.5 mm pitch),  
176 pin  
1 MB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
192 KB  
(LQP176)  
Plastic LQFP (0.5 mm pitch),  
144 pin  
(LQS144)  
Plastic LQFP (0.5 mm pitch),  
176 pin  
(LQP176)  
S6E2G26H0AGV2000A  
S6E2G28H0AGV2000A  
S6E2G26HHAGV2000A  
Plastic LQFP (0.5 mm pitch),  
144 pin  
(LQS144)  
S6E2G28HHAGV2000A  
S6E2G26J0AGV2000A  
S6E2G28J0AGV2000A  
S6E2G26JHAGV2000A  
S6E2G28JHAGV2000A  
1 MB  
512 KB 128 KB  
1 MB 192 KB  
512 KB 128 KB  
1 MB 192 KB  
192 KB  
Plastic LQFP (0.5 mm pitch),  
176 pin  
(LQP176)  
Document Number: 001-98708 Rev. *E  
Page 185 of 190  
 
S6E2G Series  
14.Package Dimensions  
Package Type  
Package Code  
LQFP 144  
LQS144  
4
4
5
D
D
5
7
7
D1  
D1  
108  
73  
73  
108  
109  
109  
72  
72  
E1  
E
E
E1  
5
7
5
7
4
4
3
3
6
144  
144  
37  
37  
1
1
36  
36  
2
A-B  
5
D
7
BOTTOM VIEW  
e
3
0.10  
C
0.20  
C
A-B D  
b
0.08  
C
A-B  
D
8
TOP VIEW  
2
A
9
c
A
A1  
SEATING  
PLANE  
0.25  
L
b
L1  
10  
A'  
SECTION A-A'  
0.08  
C
SIDE VIEW  
DIMENSIONS  
SYMBOL  
MIN. NOM. MAX.  
1.70  
A
A1  
b
0.05  
0.17 0.22 0.27  
0.09 0.20  
0.15  
c
D
22.00 BSC  
20.00 BSC  
0.50 BSC  
D1  
e
E
22.00 BSC  
20.00 BSC  
E1  
L
0.45 0.60 0.75  
0.30 0.50 0.70  
L1  
PACKAGE OUTLINE, 144 LEAD LQFP  
20.0X20.0X1.7 MM LQS144 REV*A  
002-13015 *A  
Document Number: 001-98708 Rev. *E  
Page 186 of 190  
 
S6E2G Series  
Package Type  
Package Code  
LQFP 176  
LQP176  
4
D
5
7
D1  
132  
89  
89  
132  
133  
133  
88  
88  
E1  
E
5
7
4
3
6
176  
45  
45  
176  
1
44  
44  
1
e
2
A-B  
5
7
D
3
0.10  
A-B  
C
BOTTOM VIEW  
0.20  
C A-B D  
b
0.08  
C
D
8
TOP VIEW  
2
A
c
9
θ
A
SEA TING  
PLANE  
A1  
0.25  
A'  
b
L1  
10  
0.08  
C
SECTION A-A'  
L
SIDE VIEW  
DIMENSIONS  
SYMBOL  
MIN. NOM. MAX.  
1.70  
A
A1  
b
0.05  
0.17  
0.09  
0.15  
0.27  
0.20  
0.22  
c
D
26.00 BSC  
24.00 BSC  
0.50 BSC  
26.00 BSC  
24.00 BSC  
0.60  
D1  
e
E
E1  
L
0.45  
0.30  
0.75  
0.70  
L1  
θ
0.50  
0°  
8°  
PACKAGE OUTLINE, 176 LEAD LQFP  
24.0X24.0X1.7 MM LQP176 REV**  
002-15150 **  
Document Number: 001-98708 Rev. *E  
Page 187 of 190  
S6E2G Series  
Document History  
Document Title: S6E2G Series 32-bit Arm® Cortex®-M4F, FM4 Microcontroller  
Document Number: 001-98708  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
New spec.  
**  
4861788  
4945035  
YOHO  
HITK  
07/27/2015  
11/20/2015  
Changed status from Preliminary to Final.  
Updated 4 Pin Description:  
*A  
Added “Note” about TAP pins.  
Updated 12.2 Recommended Operating Conditions:  
Added the "Smoothing capacitor (CS)”.  
Added the “Current Value” in “Maximum leak current at operating”.  
Updated 12.3.1 Current Rating:  
Updated Table 12-1 to Table 12-9:  
Added the MAXvalue.  
Updated Table 12-11:  
Updated 12.5 12-bit A/D Converter:  
Updated “Zero transition” and “Full-scale transition” value.  
Added “Total error”.  
Removed full multiplexed signal names from the Pin Assignments drawing.  
Consolidated the G Series of Cypress MCUs into one data sheet.  
Added tables to differentiate parts in 2 Product Lineup and 3  
Package-Dependent Features.  
*B  
5122844  
BOO  
03/29/2016  
Added hyperlinks to 6 Pin Descriptions.  
Added circuit type D to 7 I/O Circuit Type and pin state types S and T to 11  
Pin Status in Each CPU State.  
Consolidated 10 Memory Map to two pages.  
Expanded 13 Ordering Information.  
Modified typo about the number (from 5 to 4) of power supplies. (Page 11)  
Updated “12.4.8 Power-On Reset Timing”. Changed parameter from  
“Power Supply rise time(tVCCR) [ms]” to “Power ramp rate(dV/dt) [mV/us]”  
and add some comments. (Page 107)  
*C  
5448447  
YSKA  
04/12/2017  
Modified “12.4.12 CSIO(SPI) Timing”. Deleted “SPI=1, MS=0” in the titles  
and added MS=0,1 in the schematic (Page 128-135, 144-151)  
Deleted Baud rate spec for High-Speed Synchronous Serial in “12.4.12  
CSIO(SPI) Timing”(Page 136-142)  
“Modified RTC description in “4. Product Features in Detail, Real-Time  
Clock(RTC)”  
Changed starting count value from 01 to 00. Deleted “second, or day of  
the week” in the Interrupt function (Page 9)  
Updated “14. Package dimensions” (Page 186-187)  
Change the name from “USB Function” to “USB Device” (Page 50)  
Deleted MPNs below from “13. Ordering Information” (Page 185)  
S6E2G26H0AGV20000, S6E2G26HHAGV20000,  
S6E2G26J0AGV20000,  
S6E2G26JHAGV20000, S6E2G28H0AGV20000,  
S6E2G28HHAGV20000,  
S6E2G28J0AGV20000, S6E2G28JHAGV20000, S6E2G36H0AGV20000,  
S6E2G36J0AGV20000, S6E2G38H0AGV20000, S6E2G38J0AGV20000,  
Document Number: 001-98708 Rev. *E  
Page 188 of 190  
S6E2G Series  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
S6E2GH6H0AGV20000, S6E2GH6J0AGV20000,  
S6E2GH8H0AGV20000,  
S6E2GH8J0AGV20000, S6E2GK6H0AGV20000,  
S6E2GK6HHAGV20000,  
S6E2GK6J0AGV20000, S6E2GK6JHAGV20000,  
S6E2GK8H0AGV20000,  
S6E2GK8HHAGV20000, S6E2GK8J0AGV20000,  
S6E2GK8JHAGV20000,  
S6E2GM6H0AGV20000, S6E2GM6HHAGV20000,  
S6E2GM6J0AGV20000,  
S6E2GM6JHAGV20000, S6E2GM8H0AGV20000,  
S6E2GM8HHAGV20000,  
S6E2GM8J0AGV20000, S6E2GM8JHAGV20000  
Added MPNs below to “13. Ordering Information” (Page 185)  
S6E2G26H0AGV2000A, S6E2G26HHAGV2000A,  
S6E2G26J0AGV2000A,  
S6E2G26JHAGV2000A, S6E2G28H0AGV2000A,  
S6E2G28HHAGV2000A,  
S6E2G28J0AGV2000A, S6E2G28JHAGV2000A,  
S6E2G36H0AGV2000A,  
S6E2G36J0AGV2000A, S6E2G38H0AGV2000A,  
S6E2G38J0AGV2000A,  
S6E2GH6H0AGV2000A, S6E2GH6J0AGV2000A,  
S6E2GH8H0AGV2000A,  
S6E2GH8J0AGV2000A, S6E2GK6H0AGV2000A,  
S6E2GK6HHAGV2000A,  
S6E2GK6J0AGV2000A, S6E2GK6JHAGV2000A,  
S6E2GK8H0AGV2000A,  
S6E2GK8HHAGV2000A, S6E2GK8J0AGV2000A,  
S6E2GK8JHAGV2000A,  
S6E2GM6H0AGV2000A, S6E2GM6HHAGV2000A,  
S6E2GM6J0AGV2000A,  
S6E2GM6JHAGV2000A, S6E2GM8H0AGV2000A,  
S6E2GM8HHAGV2000A,  
S6E2GM8J0AGV2000A, S6E2GM8JHAGV2000A  
Modified typo about the munber of QPRC channels(from 4ch to 2ch) (Page  
1,6,10)  
Modified the expression of the “Built-in CR” in “2. Product Lineup” (Page 6).  
Updated Cypress Logo and Copyright.  
Updated to new template.  
Completing Sunset Review.  
*D  
*E  
6298066  
6602132  
XITO  
XITO  
09/03/2018  
06/24/2019  
Updated to new template.  
Completing Sunset Review.  
Document Number: 001-98708 Rev. *E  
Page 189 of 190  
S6E2G Series  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the  
office closest to you, visit us at Cypress Locations.  
Products  
Arm® Cortex® Microcontrollers  
PSoC® Solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
Automotive  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Community | Projects | Videos | Blogs | Training  
Components  
|
Internet of Things  
Memory  
cypress.com/memory  
cypress.com/mcu  
Technical Support  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
© Cypress Semiconductor Corporation, 2015-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document, including any software or  
firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress  
reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property  
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants  
you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and  
reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either  
directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or  
compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach,  
such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED  
USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION  
(collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from  
any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the  
application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for  
reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting  
product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations,  
surgical implants, and other medical devices. “Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly,  
the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other  
liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,  
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property  
damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk  
Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has  
given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-98708 Rev. *E  
June 24, 2019  
Page 190 of 190  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY