S80KS2563GABHI023 [INFINEON]

256MBit 1.8 V Industrial (85°C) xSPI (Octal) HYPERRAM Gen 2.0 in 24 FBGA;
S80KS2563GABHI023
型号: S80KS2563GABHI023
厂家: Infineon    Infineon
描述:

256MBit 1.8 V Industrial (85°C) xSPI (Octal) HYPERRAM Gen 2.0 in 24 FBGA

文件: 总53页 (文件大小:871K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S80KS2563  
256 Mb: HYPERRAM™ self-refresh dynamic  
RAM (DRAM) with Octal xSPI interface  
1.8 V  
Features  
• Interface  
- xSPI (Octal) interface  
- 1.8 V interface support  
• Single ended clock (CK) - 11 bus signals  
• Optional differential clock (CK, CK#) - 12 bus signals  
- Chip select (CS#)  
- 8-bit data bus (DQ[7:0])  
- Hardware reset (RESET#)  
- Bidirectional read-write data strobe (RWDS)  
• Output at the start of all transactions to indicate refresh latency  
• Output during read transactions as read data strobe  
• Input during write transactions as write data mask  
• Performance, power, and packages  
- 200 MHz maximum clock rate  
- DDR - transfers data on both edges of the clock  
- Data throughput up to 400 MBps (3,200 Mbps)  
- Configurable burst characteristics  
• Linear burst  
• Wrapped burst lengths:  
16 bytes (8 clocks)  
32 bytes (16 clocks)  
64 bytes (32 clocks)  
128 bytes (64 clocks)  
• Hybrid option - one wrapped burst followed by linear burst  
- Configurable output drive strength  
- Power modes  
• Hybrid sleep mode  
• Deep power down  
- Array refresh  
• Partial memory array (1/8, 1/4, 1/2, and so on)  
• Full  
- Package  
• 24-ball FBGA  
- Operating temperature range  
• Industrial (I): 40 °C to +85 °C  
• Industrial Plus (V): 40 °C to +105 °C  
• Automotive, AEC-Q100 Grade 3: 40 °C to +85 °C  
• Automotive, AEC-Q100 Grade 2: 40 °C to +105°C  
• Automotive, AEC-Q100 Grade 1: 40 °C to +125 °C  
• Technology  
• 25-nm DRAM  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Performance summary  
Performance summary  
Read transaction timings  
Unit  
200 MHz  
35 ns  
Maximum clock rate at 1.8 V VCC/VCCQ  
Maximum access time (tACC  
)
Maximum current consumption  
Burst read/write (linear burst at 200 MHz)  
Unit  
22 mA/25 mA  
1.55 mA  
Standby (105 °C)  
Deep power down (105 °C)  
15 µA  
Logic block diagram  
CS#  
CK/CK#  
RWDS  
Memory  
Control  
Logic  
Y Decoders  
Data Latch  
I/O  
DQ[7:0]  
RESET#  
Data Path  
Datasheet  
2 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Table of contents  
Table of contents  
1 General description.........................................................................................................................5  
1.1 xSPI (Octal) interface ..............................................................................................................................................5  
2 Product overview ...........................................................................................................................8  
2.1 xSPI (Octal) interface ..............................................................................................................................................8  
3 Signal description...........................................................................................................................9  
3.1 Input/output summary...........................................................................................................................................9  
4 xSPI (Octal) transaction details......................................................................................................10  
4.1 Command/address/data bit assignments...........................................................................................................11  
4.2 RESET ENABLE transaction ..................................................................................................................................12  
4.3 RESET transaction.................................................................................................................................................12  
4.4 READ ID transaction..............................................................................................................................................13  
4.5 DEEP POWER DOWN transaction .........................................................................................................................14  
4.6 READ transaction ..................................................................................................................................................15  
4.7 WRITE transaction.................................................................................................................................................16  
4.8 WRITE ENABLE transaction ..................................................................................................................................17  
4.9 WRITE DISABLE transaction .................................................................................................................................17  
4.10 READ ANY REGISTER transaction .......................................................................................................................17  
4.11 WRITE ANY REGISTER transaction......................................................................................................................18  
4.12 Data placement during memory READ/WRITE transactions ............................................................................19  
4.13 Data placement during register READ/WRITE transactions..............................................................................20  
5 Memory space ..............................................................................................................................21  
5.1 xSPI (Octal) interface ............................................................................................................................................21  
5.2 Density and row boundaries ................................................................................................................................21  
6 Register space access ....................................................................................................................22  
6.1 xSPI (Octal) interface ............................................................................................................................................22  
6.2 Device identification registers..............................................................................................................................22  
6.3 Device configuration registers .............................................................................................................................23  
6.3.1 Configuration register 0 (CR0)...........................................................................................................................23  
6.3.2 Configuration register 1.....................................................................................................................................26  
7 Interface states ............................................................................................................................28  
8 Power conservation modes............................................................................................................29  
8.1 Interface standby..................................................................................................................................................29  
8.2 Active clock stop ...................................................................................................................................................29  
8.3 Hybrid sleep ..........................................................................................................................................................29  
8.4 Deep power down.................................................................................................................................................30  
9 Electrical specifications.................................................................................................................31  
9.1 Absolute maximum ratings ..................................................................................................................................31  
9.2 Input signal overshoot..........................................................................................................................................31  
9.3 Latch-up characteristics .......................................................................................................................................32  
9.4 Operating ranges ..................................................................................................................................................32  
9.4.1 Temperature ranges ..........................................................................................................................................32  
9.4.2 Power supply voltages.......................................................................................................................................32  
9.5 DC characteristics .................................................................................................................................................33  
9.5.1 Capacitance characteristics ..............................................................................................................................36  
9.6 Power-up initialization .........................................................................................................................................37  
9.7 Power down ..........................................................................................................................................................38  
9.8 Hardware reset......................................................................................................................................................39  
10 Timing specifications ..................................................................................................................40  
10.1 Key to switching waveforms...............................................................................................................................40  
10.2 AC test conditions ...............................................................................................................................................40  
10.3 CLK characteristics .............................................................................................................................................41  
Datasheet  
3 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Table of contents  
10.4 AC characteristics................................................................................................................................................42  
10.4.1 Read transactions ............................................................................................................................................42  
10.4.2 Write transactions............................................................................................................................................43  
10.5 Timing reference levels.......................................................................................................................................45  
11 Physical interface .......................................................................................................................46  
11.1 FBGA 24-ball 5 x 5 array footprint ......................................................................................................................46  
11.2 Physical diagrams ...............................................................................................................................................47  
12 Ordering information ..................................................................................................................48  
12.1 Ordering part number.........................................................................................................................................48  
12.2 Valid combinations .............................................................................................................................................49  
12.3 Valid combinations - Automotive Grade / AEC-Q100 ........................................................................................49  
13 Acronyms ...................................................................................................................................50  
14 Document conventions................................................................................................................51  
14.1 Units of measure .................................................................................................................................................51  
Revision history ..............................................................................................................................52  
Datasheet  
4 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
General description  
1
General description  
The 256 Mb HYPERRAM™ device is a high-speed CMOS, self-refresh DRAM, with xSPI (Octal) interface. The DRAM  
array uses dynamic cells that require periodic refresh. Refresh control logic within the device manages the refresh  
operations on the DRAM array when the memory is not being actively read or written by the xSPI interface master  
(host). Since the host is not required to manage any refresh operations, the DRAM array appears to the host as  
though the memory uses static cells that retain data without refresh. Hence, the memory is more accurately  
described as pseudo static RAM (PSRAM).  
Since the DRAM cells cannot be refreshed during a read or write transaction, there is a requirement that the host  
limit read or write burst transfers lengths to allow internal logic refresh operations when they are needed. The  
host must confine the duration of transactions and allow additional initial access latency, at the beginning of a  
new transaction, if the memory indicates a refresh operation is needed.  
1.1  
xSPI (Octal) interface  
xSPI (Octal) is a SPI-compatible low signal count, DDR interface supporting eight I/Os. The DDR protocol in xSPI  
(Octal) transfers two data bytes per clock cycle on the DQ input/output signals. A read or write transaction on  
xSPI (Octal) consists of a series of 16-bit wide, one clock cycle data transfers at the internal RAM array with two  
corresponding 8-bit wide, one-half-clock-cycle data transfers on the DQ signals. All inputs and outputs are  
LV-CMOS compatible. Device are available as 1.8 V VCC/VCCQ (nominal) for array (VCC) and I/O buffer (VCCQ  
supplies, through different ordering part number (OPN).  
)
Each transaction on xSPI (Octal) must include a command whereas address and data are optional. The transac-  
tions are structures as follows:  
• Each transaction begins with CS# going LOW and ends with CS# returning HIGH.  
• The serial clock (CK) marks the transfer of each bit or group of bits between the host and memory. All transfers  
occur on every CK edge (DDR mode).  
• Each transaction has a 16-bit command which selects the type of device operation to perform. The 16-bit  
command is based on two 8-bit opcodes. The same 8-bit opcode is sent on both edges of the clock.  
• A command may be stand-alone or may be followed by address bits to select a memory location in the device  
to access data.  
• Read transactions require a latency period after the address bits and can be zero to several CK cycles. CK must  
continue to toggle during any read transaction latency period. During the command and address parts of a  
transaction, the memory can indicate whether an additional latency period is needed for a required refresh time  
(tRFH) which is added to the initial latency period; by driving the RWDS signal to the HIGH state.  
• Write transactions to registers do not require a latency period.  
• Write transactions to the memory array require a latency period after the address bits and can be zero to several  
CK cycles. CK must continue to toggle during any write transaction latency period. During the command and  
address parts of a transaction, the memory can indicate whether an additional latency period is needed for a  
required refresh time (tRFH) which is added to the initial latency period by driving the RWDS signal to the HIGH  
state.  
• In all transactions, command and address bits are shifted in the device with the most significant bits (MSb) first.  
The individual data bits within a data byte are shifted in and out of the device MSb first as well. All data bytes  
are transferred with the lowest address byte sent out first.  
Datasheet  
5 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
General description  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
CMD  
[7:0]  
CMD  
[7:0]  
DQ[7:0]  
Command  
(Host drives DQ[7:0])  
Figure 1  
xSPI (Octal) command only transaction (DDR)  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RW DS  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
RG  
[15:8]  
RG  
[7:0]  
DQ[7:0]  
Command - Address  
(Host drives DQ[7:0], Memory drives RW DS)  
W rite Data  
Figure 2  
xSPI (Octal) write with no latency transaction (DDR) (Register writes)[1]  
CS#  
CK#, CK  
Latency Count (1X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
DQ[7:0]  
RWDS acts as Data mask  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
DinA  
[7:0]  
DinA+1  
[7:0]  
DinA+2  
[7:0]  
DinA+3  
[7:0]  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Write Data  
(Host drivesDQ[7:0])  
Figure 3  
Notes  
xSPI (Octal) write with 1X latency transaction (DDR) (Memory array writes)[2, 3]  
1. Write with no latency transaction is used for register writes only.  
2. RWDS driven by the host.  
3. Data DinA and DinA+2 are masked.  
Datasheet  
6 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
General description  
CS#  
CK#, CK  
Latency Count (2X)  
RWDS  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS acts as Data Mask  
DQ[7:0]  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
DinA  
[7:0]  
DinA+1  
[7:0]  
DinA+2  
[7:0]  
DinA+3  
[7:0]  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Write Data  
(Host drives DQ[7:0])  
Figure 4  
xSPI (Octal) write with 2X latency transaction (DDR) (Memory array writes)[4, 5]  
CS#  
CK#, CK  
Latency Count (1X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
DQ[7:0]  
RWDS & Data are edge aligned  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
DoutA  
[7:0]  
DoutA+1  
[7:0]  
DoutA+2  
[7:0]  
DoutA+3  
[7:0]  
Command - Address  
(Host drives DQ[7:0] andMemory drivesRWDS)  
Read Data  
(Memorydrives RWDS)  
Figure 5  
xSPI (Octal) read with 1X latency transaction (DDR) (All reads)[6]  
CS#  
CK#, CK  
Laten  
cy Count (2  
X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
DQ[7:0]  
RWDS & Data are edge aligned  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
DoutA  
[7:0]  
DoutA+1  
[7:0]  
DoutA+2  
[7:0]  
DoutB+3  
[7:0]  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Read Data  
(Memory drives RWDS)  
Figure 6  
xSPI (Octal) read with 2X latency transaction (DDR) (All reads)[7]  
Notes  
4. RWDS driven by HYPERRAM™ during command & address cycles for 2X latency and then driven by the host  
for data masking.  
5. Data DinA and DinA+2 are masked.  
6. RWDS is driven by HYPERRAM™ phase aligned with data.  
7. RWDS is driven by HYPERRAM™ during command & address cycles for 2X latency and then driven again phase  
aligned with data.  
Datasheet  
7 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Product overview  
2
Product overview  
The 256 Mb HYPERRAM™ device is 1.8 V array and I/O, synchronous self-refresh dynamic RAM (DRAM). The  
HYPERRAM™ device provides an xSPI (Octal) slave interface to the host system. The xSPI (Octal) interface has an  
8-bit (1 byte) wide DDR data bus and use only word-wide (16-bit data) address boundaries. Read transactions  
provide 16 bits of data during each clock cycle (8 bits on both clock edges). Write transactions take 16 bits of data  
from each clock cycle (8 bits on each clock edge).  
RESET#  
V
CC  
V
CCQ  
CS#  
CK  
DQ[7:0]  
RWDS  
CK#  
V
SS  
V
SSQ  
Figure 7  
xSPI (Octal) HYPERRAM™ interface[8]  
2.1  
xSPI (Octal) interface  
Read and write transactions require three clock cycles to define the target row/column address and then an initial  
access latency of tACC. During the CA part of a transaction, the memory will indicate whether an additional latency  
for a required refresh time (tRFH) is added to the initial latency; by driving the RWDS signal to the HIGH state.  
During a read (or write) transaction, after the initial data value has been output (or input), additional data can be  
read from (or written to) the row on subsequent clock cycles in either a wrapped or linear sequence. When  
configured in linear burst mode, the device will automatically fetch the next sequential row from the memory  
array to support a continuous linear burst. Simultaneously accessing the next row in the array while the read or  
write data transfer is in progress, allows for a linear sequential burst operation that can provide a sustained data  
rate of 400 MBps (1 byte (8 bit data bus) * 2 (data clock edges) * 200 MHz = 400 MBps).  
Note  
8. CK# is used in differential clock mode, but optional.  
Datasheet  
8 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Signal description  
3
Signal description  
3.1  
Input/output summary  
The xSPI (Octal) HYPERRAM™ signals are shown in Table 1. Active low signal names have a hash symbol (#) suffix.  
Table 1  
Symbol  
I/O summary  
Type  
Description  
Chip select. Bus transactions are initiated with a HIGH to LOW  
transition. Bus transactions are terminated with a Low to High  
transition. The master device has a separate CS# for each slave.  
CS#  
Input  
Differential clock. Command, address, and data information is output  
with respect to the crossing of the CK and CK# signals. Use of  
differential clock is optional.  
CK, CK#[9]  
DQ[7:0]  
Input  
Single ended clock. CK# is not used, only a single ended CK is used.  
The clock is not required to be free-running.  
Data input/output. Command, address, and data information is  
transferred on these signals during read and write transactions.  
Input/output  
Read-write data strobe. During the command/address portion of all  
bus transactions RWDS is a slave output and indicates whether  
additional initial latency is required. Slave output during read data  
transfer, data is edge-aligned with RWDS. Slave input during data  
transfer in write transactions to function as a data mask.  
RWDS  
Input/output  
(HIGH = additional latency, LOW = no additional latency).  
Hardware RESET. When LOW, the slave device will self initialize and  
return to the standby state. RWDS and DQ[7:0] are placed into the  
RESET#  
Input, internal pull-up HIGH-Z state when RESET# is LOW. The slave RESET# input includes a  
weak pull-up, if RESET# is left unconnected it will be pulled up to the  
HIGH state.  
VCC  
VCCQ  
VSS  
Power supply  
Power supply  
Power supply  
Power supply  
Array power.  
Input/output power.  
Array ground.  
VSSQ  
Input/output ground.  
Reserved for future use. May or may not be connected internally, the  
signal/ball location should be left unconnected and unused by PCB  
routing channel for future compatibility. The signal/ball may be used  
by a signal in the future.  
RFU  
No connect  
Note  
9. CK# is used in differential clock mode, but optional connection. Tie the CK# input pin to either VCCQ or VSSQ  
if not connected to the host controller, but do not leave it floating.  
Datasheet  
9 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
4
xSPI (Octal) transaction details  
The xSPI (Octal) master begins a transaction by driving CS# LOW while clock is idle. Then the clock begins toggling  
while CA words are transferred.  
For memory read and write transactions, the xSPI (Octal) master then continues clocking for a number of cycles  
defined by the latency count setting in configuration register 0 (Register write transactions do not require any  
latency count). The initial latency count required for a particular clock frequency is based on RWDS. If RWDS is  
LOW during the CA cycles, one latency count is inserted. If RWDS is HIGH during the CA cycles, an additional  
latency count is inserted. Once these latency clocks have been completed the memory starts to simultaneously  
transition the RWDS and output the target data.  
During the read data transfers, read data is output edge-aligned with every transition of RWDS. Data will continue  
to be output as long as the host continues to transition the clock while CS# is LOW. Note that burst transactions  
should not be so long as to prevent the memory from doing distributed refreshes.  
During the write data transfers, write data is center-aligned with the clock edges. The first byte of data in each  
word is captured by the memory on the rising edge of CK and the second byte is captured on the falling edge of  
CK. RWDS is driven by the host master interface as a data mask. When data is being written and RWDS is HIGH the  
byte will be masked and the array will not be altered. When data is being written and RWDS is LOW the data will  
be placed into the array. Because the master is driving RWDS during write data transfers, neither the master nor  
the HYPERRAM™ device are able to indicate a need for latency within the data transfer portion of a write trans-  
action. The acceptable write data burst length setting is also shown in configuration register 0.  
Wrapped bursts will continue to wrap within the burst length and linear burst will output data in a sequential  
manner across row boundaries. When a linear burst read reaches the last address in the array, continuing the  
burst beyond the last address will provide data from the beginning of the address range. Read transfers can be  
ended at any time by bringing CS# HIGH when the clock is idle.  
The clock is not required to be free-running. The clock may remain idle while CS# is HIGH.  
Datasheet  
10 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
4.1  
Table 2  
Command/address/data bit assignments  
Command set[10-14]  
Address  
Data  
Command  
Code  
CA-Data  
Latency cycles  
Prerequisite  
(bytes)  
(bytes)  
Software reset  
REST ENABLE  
RESET  
0x66  
0x99  
8-0-0  
8-0-0  
0
0
0
0
0
0
RESET ENABLE  
Identification  
READ ID[10]  
0x9F  
8-8-8  
8-0-0  
8-8-8  
8-8-8  
4 (0x00)  
3-7  
0
4
Power modes  
DEEP POWER DOWN 0xB9  
0
4
4
0
Read memory array  
READ (DDR)  
0xEE  
0xDE  
3-7  
3-7  
1 to  
1 to ∞  
Write memory array  
WRITE (DDR)  
WRITE ENABLE  
WRITE ENABLE  
Write enable / disable  
WRITE ENABLE  
0x06  
0x04  
8-0-0  
8-0-0  
0
0
0
0
0
0
WRITE DISABLE  
Read registers  
READ ANY REGISTER  
Write registers  
0x65  
8-8-8  
8-8-8  
4
4
3-7  
0
2
2
WRITE ANY REGISTER 0x71  
Notes  
10.The two identification registers contents are read together - identification 0 followed by identification 1.  
11.Write enable provides protection against inadvertent changes to memory or register values. It sets the inter-  
nal write enable latch (WEL) which allows write transactions to execute afterwards.  
12.Write disable can be used to disable write transactions from execution. It resets the internal write enable  
latch (WEL).  
13.The WEL latch stays set to ‘1’ at the end of any successful memory write transaction. After a power down /  
power up sequence, or a hardware/software reset, WEL latch is cleared to ‘0.  
14.The internal WEL latch is cleared to ‘0’ at the end of any successful register write transaction.  
Datasheet  
11 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
4.2  
RESET ENABLE transaction  
The RESET ENABLE transaction is required immediately before a RESET transaction. Any transaction other than  
RESET following RESET ENABLE will clear the reset enable condition and prevent a later RESET transaction from  
being recognized.  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
CMD  
[7:0]  
CMD  
[7:0]  
DQ[7:0]  
Command  
(Host drives DQ[7:0])  
Figure 8  
RESET ENABLE transaction (DDR)  
4.3  
RESET transaction  
The RESET transaction immediately following a RESET ENABLE will initiate the software reset process. The  
software reset provides a software method of returning the device to the standby state. During tSR (400 ns, max)  
the device will draw ICC5 current. A software reset will:  
• Cause the configuration registers to return to their default values  
• Halt self-refresh operation during the software reset process - memory array data is considered invalid  
After software reset finishes, the self-refresh operation will resume. Because self-refresh operation is stopped,  
and the self-refresh row counter is reset to its default value, some rows may not be refreshed within the required  
array refresh interval. This may result in the loss of DRAM array data. The host system should consider DRAM array  
data is lost after software reset and reload any required data.  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
CMD  
[7:0]  
CMD  
[7:0]  
DQ[7:0]  
Command  
(Host drives DQ[7:0])  
Figure 9  
RESET transaction (DDR)  
Datasheet  
12 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
4.4  
READ ID transaction  
The READ ID transaction provides read access to device identification registers 0 and 1. The registers contain the  
manufacturer’s identification along with device identification. The read data sequence is as follows.  
Table 3  
READ ID data sequence  
Address space  
Byte order  
Byte position  
Word data Bit  
DQ  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
15  
14  
13  
12  
11  
10  
9
A
8
Register 0  
Big-endian  
7
6
5
4
B
A
B
3
2
1
0
15  
14  
13  
12  
11  
10  
9
8
Register 1  
Big-endian  
7
6
5
4
3
2
1
0
Datasheet  
13 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
CS#  
CK#, CK  
Latency Count (1X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
DQ[7:0]  
RWDS & Data are edge aligned  
CMD  
[7:0]  
CMD  
[7:0]  
IDRG0  
[15:8]  
IDRG 0  
[7:0]  
IDRG 1  
[15:8]  
IDRG1  
[7:0]  
0x00  
0x00  
0x00  
0x00  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Read Data  
(Memory drives RWDS)  
Figure 10  
READ ID with 1X latency transaction (DDR)[15]  
CS#  
CK#, CK  
Latency Count (2X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
DQ[7:0]  
RWDS & Data are edge aligned  
CMD  
[7:0]  
CMD  
[7:0]  
IDRG 0  
[15:8]  
IDRG 0  
[7:0]  
IDRG1  
[15:8]  
IDRG1  
[7:0]  
0x00  
0x00  
0x00  
0x00  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Read Data  
(Memory drives RWDS)  
Figure 11  
READ ID with 2X latency transaction (DDR)[16]  
4.5  
DEEP POWER DOWN transaction  
DEEP POWER DOWN transaction brings the device into deep power down state which is the lowest power  
consumption state. Writing a “0” to CR0[15] will also bring the device in deep power down state. All register  
contents are lost in deep power down state and the device powers-up in its default state.  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
CMD  
[7:0]  
CMD  
[7:0]  
DQ[7:0]  
Command  
(Host drives DQ[7:0])  
Figure 12  
Notes  
DEEP POWER DOWN transaction (DDR)  
15. RWDS is driven by HYPERRAM™ phase aligned with data.  
16. RWDS is driven by HYPERRAM™ during command & address cycles for 2X latency and then is driven again  
phase aligned with data.  
Datasheet  
14 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
4.6  
READ transaction  
The READ transaction reads data from the memory array. It has a latency requirement (dummy cycles) which  
allows the device’s internal circuitry enough time to access the addressed memory location. During these latency  
cycles, the host can tristate the data bus DQ[7:0].  
CS#  
CK#, CK  
Latency Count (1X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
DQ[7:0]  
RWDS & Data are edge aligned  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
DoutA  
[7:0]  
DoutA+1  
[7:0]  
DoutA+2  
[7:0]  
DoutA+3  
[7:0]  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Read Data  
(Memory drives RWDS)  
Figure 13  
READ with 1X latency transaction (DDR)[17]  
CS#  
CK#, CK  
Latency C  
ount (2X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
RWDS & Data are edge aligned  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
DoutA  
[7:0]  
DoutA+1  
[7:0]  
DoutA+2  
[7:0]  
DoutB+3  
[7:0]  
DQ[7:0]  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Read Data  
(Memory drives RWDS)  
Figure 14  
READ with 2X latency transaction (DDR)[18]  
Notes  
17. RWDS is driven by HYPERRAM™ phase aligned with data.  
18. RWDS is driven by HYPERRAM™ during command & address cycles for 2X latency and then is driven again  
phase aligned with data.  
Datasheet  
15 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
4.7  
WRITE transaction  
The WRITE transaction writes data to the memory array. It has a latency requirement (dummy cycles) which  
allows the device’s internal circuitry enough time to access the addressed memory location. During these latency  
cycles, the host can tristate the data bus DQ[7:0].  
WRITE ENABLE transaction which sets the WEL latch must be executed before the first WRITE. The WEL latch stays  
set to ‘1’ at the end of any successful memory write transaction. It must be reset by WRITE DISABLE transaction  
to prevent any inadvertent writes to the memory array.  
CS#  
CK#, CK  
Latency Count (1X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
RWDS acts as Data mask  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
DinA  
[7:0]  
DinA+1  
[7:0]  
DinA+2  
[7:0]  
DinA+3  
[7:0]  
DQ[7:0]  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Write Data  
(Host drives DQ[7:0])  
Figure 15  
WRITE with 1X latency transaction (DDR)[19, 20]  
CS#  
CK#, CK  
Latency Count (2X)  
RWDS  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS acts as Data Mask  
DQ[7:0]  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
DinA  
[7:0]  
DinA+1  
[7:0]  
DinA+2  
[7:0]  
DinA+3  
[7:0]  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Write Data  
(Host drives DQ[7:0])  
Figure 16  
WRITE with 2X latency transaction (DDR)[21, 22]  
Notes  
19. RWDS is driven by the host.  
20. Data DinA and DinA+2 are masked.  
21. RWDS is driven by HYPERRAM™ during command and address cycles for 2X latency and then is driven by the  
host for data masking.  
22. Data DinA and DinA+2 are masked.  
Datasheet  
16 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
4.8  
WRITE ENABLE transaction  
The WRITE ENABLE transaction must be executed prior to any transaction that modifies data either in the  
memory array or the registers.  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
CMD  
[7:0]  
CMD  
[7:0]  
DQ[7:0]  
Command  
(Host drives DQ[7:0])  
Figure 17  
WRITE ENABLE transaction (DDR)  
4.9  
WRITE DISABLE transaction  
The WRITE DISABLE transaction inhibits writing data either in the memory array or the registers.  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
CMD  
[7:0]  
CMD  
[7:0]  
DQ[7:0]  
Command  
(Host drives DQ[7:0])  
Figure 18  
WRITE DISABLE transaction (DDR)  
4.10  
READ ANY REGISTER transaction  
The READ ANY REGISTER transaction reads all the device registers. It has a latency requirement (dummy cycles)  
which allows the device’s internal circuitry enough time to access the addressed register location. During these  
latency cycles, the host can tristate the data bus DQ[7:0].  
CS#  
CK#, CK  
Latency Count (1X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
RWDS & Data are edge aligned  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
RG  
[15:8]  
RG  
[7:0]  
DQ[7:0]  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Read Data  
(Memory Drives RWDS)  
Figure 19  
Note  
READ ANY REGISTER with 1X latency transaction (DDR)[23]  
23. RWDS is driven by HYPERRAM™ phase aligned with data.  
Datasheet  
17 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
CS#  
CK#, CK  
Latency Count (2X)  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
RWDS & Data are edge aligned  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
RG  
[15:8]  
RG  
[7:0]  
DQ[7:0]  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Read Data  
(Memory drives RWDS)  
Figure 20  
READ ANY REGISTER with 2X latency transaction (DDR)[24]  
4.11  
WRITE ANY REGISTER transaction  
The WRITE ANY REGISTER transaction writes to the device registers. It does not have a latency requirement  
(dummy cycles).  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RWDS  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
RG  
[15:8]  
RG  
[7:0]  
DQ[7:0]  
Command - Address  
(Host drives DQ[7:0], Memory drives RWDS)  
Write Data  
Figure 21  
xSPI (Octal) write with no latency transaction (DDR) (Register writes)[25, 26]  
Notes  
24. RWDS is driven by HYPERRAM™ during command & address cycles for 2X latency and then driven again phase  
aligned with data.  
25. Write with no latency transaction is used for register writes only.  
26. Data mask on RWDS is not supported.  
Datasheet  
18 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
4.12  
Data placement during memory READ/WRITE transactions  
Data placement during memory read/write is dependent upon the host. The device will output data (read) as it  
was written in (write). Hence both Big Endian and Little Endian are supported for the memory array.  
Table 4  
Data placement during memory READ and WRITE  
Word  
order  
Address Byte  
Byte position data DQ  
bit  
Bit order  
space  
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
A
B
A
B
8
Big-  
endian  
7
6
5
4
3
When data is being accessed in memory space:  
The first byte of each word read or written is the “A” byte and the  
second is the “B” byte.  
2
1
The bits of the word within the A and B bytes depend on how the  
data was written. If the word lower address bits 7-0 are written  
in the A byte position and bits 15-8 are written into the B byte  
position, or vice versa, they will be read back in the same order.  
0
Memory  
7
6
So, memory space can be stored and read in either little-endian  
or big-endian order.  
5
4
3
2
1
0
Little-  
endian  
15  
14  
13  
12  
11  
10  
9
8
Datasheet  
19 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
xSPI (Octal) transaction details  
4.13  
Data placement during register READ/WRITE transactions  
Data placement during register read/write is Big Endian.  
Table 5  
Data placement during register READ/WRITE transactions  
Address Byte  
Worddata  
bit  
Byte position  
DQ  
Bit order  
space  
order  
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
When data is being accessed in register space:  
During a read transaction on the xSPI (Octal) two bytes are  
transferred on each clock cycle. The upper order byte A  
(Word[15:8]) is transferred between the rising and falling  
edges of RWDS (edge-aligned). The lower order byte B  
(Word[7:0]) is transferred between the falling and rising  
edges of RWDS.  
A
8
Big-  
endian  
Register  
7
During a write, the upper order byte A (Word[15:8]) is trans-  
ferred on the CK rising edge and the lower order byte B  
(Word[7:0]) is transferred on the CK falling edge.  
So, register space is always read and written in Big-endian  
order because registers have device dependent fixed bit  
location and meaning definitions.  
6
5
4
B
3
2
1
0
Datasheet  
20 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Memory space  
5
Memory space  
5.1  
xSPI (Octal) interface  
Table 6  
Memory space address map (byte based - 8 bits with least significant bit A(0) always set to ‘0’)  
System byte  
Unit type  
Count  
Address bits  
Notes  
address bits  
Rows within 256 Mb  
device  
A24 - A10  
24 - 10  
32,768 (rows)  
-
Each row has 64 half-pages. Each  
half-page has 16 bytes. Each column  
has 1K bytes).  
A9 - A4  
A3 - A0  
9 - 4  
3 - 0  
Row  
64 (half-pages)  
Half-page (HP) address is also refer-  
enced as upper column address. A  
word within a HP address is also  
referenced as lower column address.  
A0 always set to “0”  
16 (byte  
addresses)  
Half-page  
5.2  
Density and row boundaries  
The DRAM array size (density) of the device can be determined from the total number of system address bits used  
for the row and column addresses as indicated by the row address bit count and column address bit count fields  
in the ID0 register. For example: a 256 Mb HYPERRAM™ device has 10 column address bits and 15 row address bits  
for a total of 25 address bits (byte address) = 225 = 32M bytes (16M words). The 10 column address bits indicate  
that each row holds 210 = 1K bytes or 512 words. The row address bit count indicates there are 32768 rows to be  
refreshed within each array refresh interval. The row count is used in calculating the refresh interval.  
Datasheet  
21 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Register space access  
6
Register space access  
6.1  
xSPI (Octal) interface  
Table 7  
Register space address map (Address bit A0 always set to ‘0’)  
Registers  
Address (Byte addressable)  
Identification registers 0 (ID0[15:0])  
Identification registers 1 (ID1[15:0])  
Configuration registers 0 (ID0[15:0])  
Configuration registers 1 (ID1[15:0])  
0x00000000  
0x00000002  
0x00000004  
0x00000006  
6.2  
Device identification registers  
There are two read-only, nonvolatile, word registers, that provide information on the device selected when CS#  
is LOW. The device information fields identify:  
• Manufacturer  
• Type  
• Density  
- Row address bit count  
- Column address bit count  
• Refresh type  
Table 8  
Bits  
Identification register 0 (ID0) bit assignments  
Function  
Settings (binary)  
[15:14]  
13  
Reserved  
Reserved  
00b - Default  
0b - Default  
[12:8]  
[7:4]  
[3:0]  
Row address bit count 01110b - Fifteen row address bits (256 Mb)  
Column address bit count 1001b - Ten column address bits (default)  
Manufacturer  
0110b  
ID0 value for S80KS2563 is 0x0E96.  
Table 9  
Identification register 1 (ID1) bit assignments  
Function  
Bits  
[15:4]  
[3:0]  
Settings (binary)  
Reserved  
0000_0000_0000b (default)  
Device type  
0001b - HYPERRAM™ 2.0  
Datasheet  
22 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Register space access  
6.3  
Device configuration registers  
Configuration register 0 (CR0)  
6.3.1  
Configuration register 0 (CR0) is used to define the power state and access protocol operating conditions for the  
HYPERRAM™ device. Configurable characteristics include:  
• Wrapped burst length (16, 32, 64, or 128 byte aligned and length data group)  
• Wrapped burst type  
- Legacy wrap (sequential access with wrap around within a selected length and aligned group)  
- Hybrid wrap (Legacy wrap once then linear burst at start of the next sequential group)  
• Initial latency  
• Variable latency  
- Whether an array read or write transaction will use fixed or variable latency. If fixed latency is selected the  
memory will always indicate a refresh latency and delay the read data transfer accordingly. If variable latency  
is selected, latency for a refresh is only added when a refresh is required at the same time a new transaction  
is starting.  
• Output drive strength  
• Deep power down (DPD) mode  
Table 10  
CR0 bit  
Configuration register 0 (CR0) bit assignments  
Function  
Settings (binary)  
1 - Normal operation (default). HYPERRAM™ will automatically set this value to  
‘1’ after DPD exit  
Deep power  
down enable  
[15]  
0 - Writing 0 causes the device to enter deep power down  
000 - 34 ohms (default)  
001 - 115 ohms  
010 - 67 ohms  
011 - 46 ohms  
100 - 34 ohms  
101 - 27 ohms  
110 - 22 ohms  
111 - 19 ohms  
[14:12]  
[11:8]  
Drive strength  
Reserved  
1 - Reserved (default)  
Reserved for future use. When writing this register, these bits should be set to  
1 for future compatibility.  
0000 - 5 clock latency @ 133 MHz Max frequency  
0001 - 6 clock latency @ 166 MHz Max frequency  
0010 - 7 clock latency @ 200 MHz Max frequency (default)  
0011 - Reserved  
[7:4]  
Initial latency 0100 - Reserved  
...  
1101 - Reserved  
1110 - 3 clock latency @ 85 MHz Max frequency  
1111 - 4 clock latency @ 104 MHz Max frequency  
0 - Variable latency - 1 or 2 times initial latency depending on RWDS during CA  
Fixed latency  
enable  
[3]  
[2]  
cycles.  
1 - Fixed 2 times initial latency (default)  
Hybrid burst 0: Wrapped burst sequence to follow hybrid burst sequencing  
enable 1: Wrapped burst sequence in legacy wrapped burst manner (default)  
Datasheet  
23 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Register space access  
Table 10  
CR0 bit  
Configuration register 0 (CR0) bit assignments (continued)  
Function  
Settings (binary)  
00 - 128 bytes  
01 - 64 bytes  
[1:0]  
Burst length  
10- 16 bytes  
11 - 32 bytes (default)  
Wrapped burst  
A wrapped burst transaction accesses memory within a group of words aligned on a word boundary matching  
the length of the configured group. Wrapped access groups can be configured as 16, 32, 64, or 128 bytes  
alignment and length. During wrapped transactions, access starts at the CA selected location within the group,  
continues to the end of the configured word group aligned boundary, then wraps around to the beginning  
location in the group, then continues back to the starting location. Wrapped bursts are generally used for critical  
word first instruction or data cache line fill read accesses.  
Hybrid burst  
The beginning of a hybrid burst will wrap within the target address wrapped burst group length before continuing  
to the next half-page of data beyond the end of the wrap group. Continued access is in linear burst order until the  
transfer is ended by returning CS# HIGH. This hybrid of a wrapped burst followed by a linear burst starting at the  
beginning of the next burst group, allows multiple sequential address cache lines to be filled in a single access.  
The first cache line is filled starting at the critical word. Then the next sequential line in memory can be read in  
to the cache while the first line is being processed.  
Table 11  
Bit  
CR0[2] Control of wrapped burst sequence  
Default value  
Setting details  
Hybrid burst enable  
CR0[2] = 0: Wrapped burst sequence to follow hybrid burst sequencing  
CR0[2] = 1: Wrapped burst sequence in legacy wrapped burst manner  
CR0[2]  
1b  
Table 12  
Example wrapped burst sequences (Addressing)  
Wrap  
Start address  
Burst type boundary  
(bytes)  
Sequence of byte addresses (Hex) of data words  
(Hex)  
02, 04, 06, 08, 0A, 0C, 0E, 10, 12, 14, 16, 18, 1A, 1C, 1E, 20, 22, 24, 26, 28,  
2A, 2C, 2E, 30, 32, 34, 36, 38, 3A, 3C, 3E, 00  
64 wrap  
Hybrid 64 once then  
linear  
XXXXXX02 (wrap complete, now linear beyond the end of the initial 64 byte wrap  
group)  
40, 42, 44, 46, 48, 4A, 4C, 4E, 50, 52, ...  
2E, 30, 32, 34, 36, 38, 3A, 3C, 3E,  
00, 02, 04, 06, 08, 0A, 0C, 0E, 10, 12, 14, 16, 18, 1A, 1C, 1E, 20, 22, 24, 26,  
XXXXXX2E 28, 2A, 2C, (wrap complete, now linear beyond the end of the initial 64  
byte wrap group)  
64 wrap  
Hybrid 64 once then  
linear  
40, 42, 44, 46, 48, 4A, 4B, 4C, 4D, 4E, 4F, 50, 52, ...  
02, 04, 06, 08, 0A, 0C, 0E, 00  
16 wrap  
Hybrid 16 once then  
linear  
(wrap complete, now linear beyond the end of the initial 16 byte wrap  
XXXXXX02  
group)  
10, 12, 14, 16, 18, 1A, ..  
0C, 0E, 00, 02, 04, 06, 08, 0A  
16 wrap  
Hybrid 16 once then  
linear  
(wrap complete, now linear beyond the end of the initial 16 byte wrap  
XXXXXX0C  
group)  
10, 12, 14, 16, 18, 1A, ...  
Datasheet  
24 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Register space access  
Table 12  
Example wrapped burst sequences (Addressing) (continued)  
Wrap  
Start address  
Burst type boundary  
(bytes)  
Sequence of byte addresses (Hex) of data words  
(Hex)  
0A, 0C, 0E, 10, 12, 14, 16, 18, 1A, 1C, 1E, 00, 02, 04, 06, 08  
(wrap complete, now linear beyond the end of the initial 32 byte wrap  
group)  
32 wrap  
Hybrid 32 once then  
linear  
XXXXXX0A  
XXXXXX02  
20, 22, 24, 26, 28, 2A, ...  
02, 04, 06, 08, 0A, 0C, 0E, 10, 12, 14, 16, 18, 1A, 1C, 1E, 20, 22, 24, 26, 28,  
2A, 2C, 2E, 30, 32, 34, 36, 38, 3A, 3C, 3E, 00, ...  
Wrap 64  
Wrap 64  
64  
64  
2E, 30, 32, 34, 36, 38, 3A, 3C, 3E,  
XXXXXX2E 00, 02, 04, 06, 08, 0A, 0C, 0E, 10, 12, 14, 16, 18, 1A, 1C, 1E, 20, 22, 24, 26,  
28, 2A, 2C, 2E, 30, ….  
Wrap 16  
Wrap 16  
Wrap 32  
16  
16  
32  
XXXXXX02 02, 04, 06, 08, 0A, 0C, 0E, 00, ...  
XXXXXX0C 0C, 0E, 00, 02, 04, 06, 08, 0A, ...  
XXXXXX0A 0A, 0C, 0E, 10, 12, 14, 16, 18, 1A, 1C, 1E, 00, 02, 04, 06, 08, ...  
Linear  
burst  
Linear  
XXXXXX02 02, 04, 06, 08, 0A, 0C, 0E, 10, 12, 14, 16, 18, 1A, 1C, 1E, 20, 22, ...  
Initial latency  
Memory space read and write transactions or register space read transactions require some initial latency to  
open the row selected by the CA. This initial latency is tACC. The number of latency clocks needed to satisfy tACC  
depends on the clock input frequency can vary from 3 to 7 clocks. The value in CR0[7:4] selects the number of  
clocks for initial latency. The default value is 7 clocks, allowing for operation up to a maximum frequency of  
200MHz prior to the host system setting a lower initial latency value that may be more optimal for the system.  
In the event a distributed refresh is required at the time a memory space read or write transaction or register  
space read transaction begins, the RWDS signal goes High during the CA to indicate that an additional initial  
latency is being inserted to allow a refresh operation to complete before opening the selected row.  
Register space write transactions always have zero initial latency. RWDS may be HIGH or LOW during the CA  
period. The level of RWDS during the CA period does not affect the placement of register data immediately after  
the CA, as there is no initial latency needed to capture the register data. A refresh operation may be performed  
in the memory array in parallel with the capture of register data.  
Fixed latency  
A configuration register option bit CR0[3] is provided to make all memory space read and write transactions or  
register space read transactions require the same initial latency by always driving RWDS HIGH during the CA to  
indicate that two initial latency periods are required. This fixed initial latency is independent of any need for a  
distributed refresh, it simply provides a fixed (deterministic) initial latency for all of these transaction types. Fixed  
latency is the default POR or reset configuration. The system may clear this configuration bit to disable fixed  
latency and allow variable initial latency with RWDS driven HIGH only when additional latency for a refresh is  
required.  
Drive strength  
DQ and RWDS signal line loading, length, and impedance vary depending on each system design. Configuration  
register bits CR0[14:12] provide a means to adjust the DQ[7:0] and RWDS signal output impedance to customize  
the DQ and RWDS signal impedance to the system conditions to minimize high speed signal behaviors such as  
overshoot, undershoot, and ringing. The default POR or reset configuration value is 000b to select the mid point  
of the available output impedance options.  
The impedance values shown are typical for both pull-up and pull-down drivers at typical silicon process condi-  
tions, nominal operating voltage (1.8 V) and 50°C. The impedance values may vary from the typical values  
depending on the process, voltage, and temperature (PVT) conditions. Impedance will increase with slower  
process, lower voltage, or higher temperature. Impedance will decrease with faster process, higher voltage, or  
lower temperature.  
Datasheet  
25 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Register space access  
Each system design should evaluate the data signal integrity across the operating voltage and temperature  
ranges to select the best drive strength settings for the operating conditions.  
Deep power down  
When the HYPERRAM™ device is not needed for system operation, it may be placed in a very low power consuming  
state called deep power down (DPD), by writing 0 to CR0[15]. When CR0[15] is cleared to 0, the device enters the  
DPD state within tDPDIN time and all refresh operations stop. The data in RAM is lost, (becomes invalid without  
refresh) during DPD state. Exiting DPD requires driving CS# LOW then HIGH, POR, or a reset. Only CS# and RESET#  
signals are monitored during DPD mode. For additional details, see “Deep power down” on page 30.  
6.3.2  
Configuration register 1  
Configuration register 1 (CR1) is used to define the refresh array size, refresh rate and hybrid sleep for the  
HYPERRAM™ device. Configurable characteristics include:  
• Partial array refresh  
• Hybrid sleep state  
• Refresh rate  
Table 13  
CR1 bit  
Configuration register 1 (CR1) bit assignments  
Function  
Setting (binary)  
11111111 - Reserved (default)  
[15:8]  
Reserved  
When writing this register, these bits should keep 0xFFh for future compat-  
ibility.  
1 - Linear burst (default)  
0 - Wrapped burst  
[7]  
[6]  
[5]  
Burst type  
Master clock type  
Hybrid sleep  
1 - Single ended - CK (default)  
0 - Differential - CK#, CK  
1 - Causes the device to enter hybrid sleep state  
0 - Normal operation (default)  
000 - Full array (default)  
001 - Bottom 1/2 array  
010 - Bottom 1/4 array  
011 - Bottom 1/8 array  
100 - none  
Partial array  
refresh  
[4:2]  
101 - Top 1/2 array  
110 - Top 1/4 array  
111 - Top 1/8 array  
10 - 1µs tCSM (Industrial plus temperature range devices)  
Distributed refresh 11 - Reserved  
[1:0]  
interval  
00 - Reserved  
01 - 4µs tCSM (Industrial temperature range devices)  
Burst type  
Two burst types, namely linear and wrapped, are supported in xSPI (Octal) mode by HYPERRAM™. CR1[7] selects  
which type to use.  
Master clock type  
Two clock types, namely single ended and differential, are supported. CR1[6] selects which type to use.  
• In the single ended clock mode (by default), CK# input is not enabled; hence it may be left either floating or  
biased to HIGH or LOW.  
• In the differential clock mode (when enabled), the CK# input can't be left floating. It must be either driven by  
the host, or biased to HIGH or LOW.  
Datasheet  
26 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Register space access  
Partial array refresh  
The partial array refresh configuration restricts the refresh operation in HYPERRAM™ to a portion of the memory  
array specified by CR1[5:3]. This reduces the standby current. The default configuration refreshes the whole  
array.  
Hybrid sleep (HS)  
When the HYPERRAM™ is not needed for system operation but data in the device needs to be retained, it may be  
placed in hybrid sleep state to save more power. Enter hybrid sleep state by writing 1 to CR1[5]. Bringing CS# LOW  
will cause the device to exit HS state and set CR1[5] to 0. Also, POR, or a hardware reset will cause the device to  
exit hybrid sleep state. Note that a POR or a hardware reset disables refresh where the memory core data can  
potentially get lost.  
Distributed refresh interval  
The HYPERRAM™ device is built with volatile DRAM array which requires periodic refresh of all bits in it. The refresh  
operation can be done by an internal self-refresh logic that will evenly refresh the memory array automatically.  
The automatic refresh operation can only be done when the memory array is not actively read or written by the  
host system. The refresh logic waits for the end of any active read or write before doing a refresh, if a refresh is  
needed at that time. If a new read or write begins before the refresh is completed, the memory will drive RWDS  
high during the CA period to indicate that an additional initial latency time is required at the start of the new  
access in order to allow the refresh operation to complete before starting the new access. The evenly distributed  
refresh operations require a maximum refresh interval between two adjacent refresh operations. The maximum  
distributed refresh interval varies with temperature as shown in Table 14.  
Table 14  
Array refresh interval per temperature  
Refresh interval tCSM  
Operating temperature  
CR1[1:0]  
01b  
TA 85 °C  
4 µs  
1 µs  
85 °C < TA 125 °C  
10b  
The distributed refresh operation requires that the host does not perform burst transactions longer than the  
distributed refresh interval to prevent the memory from unable doing the distributed refreshes operation when  
it is needed. This sets an upper limit on the length of read and write transactions so that the automatic distributed  
refresh operation can be done between transactions. This limit is called the CS# low maximum time (tCSM) and  
the tCSM will be equal to the maximum distributed refresh interval. The host system is required to respect the tCSM  
value by terminating each transaction before violating tCSM. This can be done by host memory controller splitting  
long transactions when reaching the tCSM limit, or by host system hardware or software not performing a single  
burst read or write transaction that would be longer than tCSM  
.
As noted in Table 14, the maximum refresh interval is longer at lower temperatures such that tCSM could be  
increased to allow longer transactions. The host may determine the operating temperature from a temperature  
sensor in the system and use the tCSM value from the table accordingly, or it may determine dynamically by  
reading the read only CR1[1:0] bits in order to set the distributed refresh interval prior to the HYPERRAM™ access.  
Datasheet  
27 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Interface states  
7
Interface states  
Table 15 describes the required value of each signal for each interface state.  
Table 15 Interface states  
Interface state  
VCC / VCCQ  
CS# CK, CK# DQ7-DQ0  
RWDS  
HIGH-Z  
HIGH-Z  
HIGH-Z  
HIGH-Z  
RESET#  
Power-off  
< VLKO  
X
X
X
X
X
X
HIGH-Z  
HIGH-Z  
HIGH-Z  
HIGH-Z  
X
X
L
Power-on (cold) reset  
Hardware (warm) reset  
Interface standby  
VCC / VCCQ min  
VCC / VCCQ min  
VCC / VCCQ min  
X
H
H
Master  
CA  
VCC / VCCQ min  
VCC / VCCQ min  
VCC / VCCQ min  
VCC / VCCQ min  
L
L
L
L
T
T
T
T
Y
H
H
H
H
output valid  
Read initial access latency  
(data bus turn around  
period)  
HIGH-Z  
HIGH-Z  
L
Write initial access latency  
(RWDS turn around period)  
HIGH-Z  
Slaveoutput  
valid  
Slaveoutput  
valid  
Read data transfer  
Z or T  
Master  
output valid  
X or T  
Write data transfer with  
initial latency  
Master  
VCC / VCCQ min  
VCC / VCCQ min  
L
L
T
T
H
H
output valid  
Write data transfer without  
initial latency [27]  
Master  
Slaveoutput  
output valid L or HIGH-Z  
Master or  
slave output  
Active clock stop [28]  
VCC / VCCQ min  
L
Idle  
Y
H
valid or  
HIGH-Z  
Deep power down  
Hybrid sleep  
Notes  
VCC / VCCQ min  
VCC / VCCQ min  
H
H
X or T  
X or T  
HIGH-Z  
HIGH-Z  
HIGH-Z  
HIGH-Z  
H
H
27. Writes without initial latency (with zero initial latency), do not have a turn around period for RWDS. The  
HYPERRAM™ device will always drive RWDS during the CA period to indicate whether extended latency is  
required. Since master write data immediately follows the CA period the HYPERRAM™ device may continue  
to drive RWDS LOW or may take RWDS to HIGH-Z. The master must not drive RWDS during writes with zero  
latency. writes with zero latency do not use RWDS as a data mask function. All bytes of write data are written  
(full word writes).  
28. Active clock stop is described in “Active clock stop” on page 29. DPD is described in “Deep power down”  
on page 30  
Legend  
L = VIL; H = VIH; X = either VIL or VIH; Y= either VIL or VIH or VOL or VOH; Z = either VOL or VOH; L/H = rising edge;  
H/L = falling edge; T = Toggling during information transfer; Idle = CK is LOW and CK# is HIGH;  
Valid = all bus signals have stable L or H level  
Datasheet  
28 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Power conservation modes  
8
Power conservation modes  
8.1  
Interface standby  
Standby is the default, low power, state for the interface while the device is not selected by the host for data  
transfer (CS# = HIGH). All inputs, and outputs other than CS# and RESET# are ignored in this state.  
8.2  
Active clock stop  
Design Note: Active Clock Stop feature is pending device characterization to determine if it will be supported. The  
active clock stop state reduces device interface energy consumption to the ICC6 level during the data transfer  
portion of a read or write operation. The device automatically enables this state when clock remains stable for  
tACC + 30 ns. While in active clock Stop state, read data is latched and always driven onto the data bus. ICC6 shown  
in “DC characteristics” on page 33.  
Active clock stop state helps reduce current consumption when the host system clock has stopped to pause the  
data transfer. Even though CS# may be LOW throughout these extended data transfer cycles, the memory device  
host interface will go into the active clock stop current level at tACC + 30 ns. This allows the device to transition  
into a lower current state if the data transfer is stalled. Active read or write current will resume once the data  
transfer is restarted with a toggling clock. The active clock stop state must not be used in violation of the tCSM  
limit. CS# must go HIGH before tCSM is violated. Clock can be stopped during any portion of the active transaction  
as long as it is in the LOW state. Note that it is recommended to avoid stopping the clock during register access.  
CS#  
Clock Stopped  
CK#, CK  
Latency Count (1X)  
High: 2XLatencyCount  
Low: 1XLatencyCount  
RWDS  
DQ[7:0]  
RWDS&Data are edge aligned  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
DoutA  
[7:0]  
DoutB  
[7:0]  
DoutA+1  
[7:0]  
DoutB+1  
[7:0]  
Output Driven  
Read Data  
Command - Address  
(Host drives DQ[7:0] and Memory drives RWDS)  
Figure 22  
Active clock stop during read transaction (DDR)[29]  
8.3  
Hybrid sleep  
In the hybrid sleep (HS) state, the current consumption is reduced (IHS). HS state is entered by writing a 1 to  
CR1[5]. The device reduces power within tHSIN time. The data in memory space and register space is retained  
during HS state. Bringing CS# LOW will cause the device to exit HS state and set CR1[5] to 0. Also, POR, or a  
hardware reset will cause the device to exit hybrid sleep state. Note that a POR or a hardware reset disables  
refresh where the memory core data can potentially get lost. Returning to standby state requires tEXITHS time.  
Following the exit from HS due to any of these events, the device is in the same state as entering hybrid sleep.  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RW DS  
tHSIN  
CM D  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
RG  
[15:8]  
RG  
[7:0]  
DQ[7:0]  
W rite Data  
CR0 Value  
Enter Hybrid Sleep  
tHSIN  
Com mand - Address  
(Host drives DQ[7:0], Memory drives RW DS)  
HS  
Figure 23  
Note  
Enter HS transaction  
29. RWDS is LOW during the CA cycles. In this read transaction there is a single initial latency count for read data  
access because, this read transaction does not begin at a time when additional latency is required by the  
slave.  
Datasheet  
29 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Power conservation modes  
CS#  
tCSHS  
tEXTHS  
Figure 24  
Table 16  
Exit HS transaction  
Hybrid sleep timing parameters  
Parameter  
Description  
Min  
-
60  
Max  
3
Unit  
µs  
tHSIN  
tCSHS  
tEXTHS  
Hybrid sleep CR1[5] = 0 register write to DPD power level  
CS# pulse width to exit HS  
3000  
100  
ns  
CS# exit hybrid sleep to standby wakeup time  
-
µs  
8.4  
Deep power down  
In the deep power down (DPD) state, current consumption is driven to the lowest possible level (IDPD). DPD state  
is entered by writing a 0 to CR0[15]. The device reduces power within tDPDIN time and all refresh operations stop.  
The data in memory space is lost, (becomes invalid without refresh) during DPD state. Driving CS# LOW then HIGH  
will cause the device to exit DPD state. Also, POR, or a hardware reset will cause the device to exit DPD state.  
Returning to standby state requires tEXTDPD time. Returning to standby state following a POR requires tVCS time,  
as with any other POR. Following the exit from DPD due to any of these events, the device is in the same state as  
following POR.  
Note In xSPI (Octal), deep power down transaction or write any register transaction can be used to enter DPD.  
CS#  
CK#, CK  
High: 2X Latency Count  
Low: 1X Latency Count  
RW DS  
tDPDIN  
CM D  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
RG  
[15:8]  
RG  
[7:0]  
DQ[7:0]  
W rite Data  
CR0 Value  
Enter Deep Power Down  
tDPDIN  
Command - Address  
(Host drives DQ[7:0], Memory drives RW DS)  
DPD  
Figure 25  
Enter DPD transaction  
CS#  
tCSDPD  
tEXTDPD  
Figure 26  
Table 17  
Exit DPD transaction  
Deep power down timing parameters  
Description  
Parameter  
tDPDIN  
Min  
Max  
Unit  
µs  
Deep power down CR0[15] = 0 register write to DPD power level  
CS# pulse width to exit DPD  
-
200  
-
3
tCSDPD  
3000  
150  
ns  
tEXTDPD  
CS# exit deep power down to standby wakeup time  
µs  
Datasheet  
30 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Electrical specifications  
9
Electrical specifications  
9.1  
Absolute maximum ratings  
Storage temperature plastic packages  
Ambient temperature with power applied  
Voltage with respect to ground all signals[30]  
Output short circuit current[31]  
-65 °C to +150 °C  
-65 °C to +135 °C  
-0.5 V to + (VCC + 0.5 V)  
100 mA  
Voltage on VCC, VCCQ pins relative to VSS  
-0.5 V to +2.5 V  
Electrostatic discharge voltage:  
Human body model (JEDEC Std JESD22-A114-B)  
2000 V  
Charged device model (JEDEC Std JESD22-C101-A) 500 V  
9.2  
Input signal overshoot  
During DC conditions, input or I/O signals should remain equal to or between VSS and VCC. During voltage  
transitions, inputs or I/Os may negative overshoot VSS to -1.0V or positive overshoot to VCC +1.0V, for periods up to  
20 ns.  
VSSQ to VCC  
Q
- 1.0V  
20 ns  
Figure 27  
Maximum negative overshoot waveform  
20 ns  
VCCQ + 1.0V  
VSSQ to VCC  
Q
Figure 28  
Notes  
Maximum positive overshoot waveform  
30. Minimum DC voltage on input or I/O signal is -1.0V. During voltage transitions, input or I/O signals may  
undershoot VSS to -1.0V for periods of up to 20 ns. See Figure 27. Maximum DC voltage on input or I/O signals  
is VCC +1.0V. During voltage transitions, input or I/O signals may overshoot to VCC +1.0V for periods up to 20  
ns. See Figure 28.  
31. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be  
greater than one second.  
32. Stresses above those listed under “Absolute maximum ratings” on page 31 may cause permanent dam-  
age to the device. This is a stress rating only; functional operation of the device at these or any other con-  
ditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the  
device to absolute maximum rating conditions for extended periods may affect device reliability.  
Datasheet  
31 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Electrical specifications  
9.3  
Table 18  
Latch-up characteristics  
Latch-up specification[33]  
Description  
Min  
Max  
Unit  
V
Input voltage with respect to VSSQ on all input only  
connections  
- 1.0  
VCCQ + 1.0  
Input voltage with respect to VSSQ on all I/O  
connections  
-1.0  
VCCQ + 1.0  
+100  
VCCQ current  
-100  
mA  
Note  
33. Excludes power supplies VCC/VCCQ. Test conditions: VCC = VCCQ, one connection at a time tested, connec-  
tions not being tested are at VSS  
.
9.4  
Operating ranges  
Operating ranges define those limits between which the functionality of the device is guaranteed.  
9.4.1  
Temperature ranges  
Table 19  
Temperature ranges  
Spec  
Parameter  
Symbol  
Device  
Unit  
Min  
–40  
–40  
–40  
–40  
–40  
Max  
85  
Industrial (I)  
Industrial plus (V)  
105  
85  
Ambient temperature  
TA  
Automotive, AEC-Q100 Grade 3 (A)  
Automotive, AEC-Q100 Grade 2 (B)  
Automotive, AEC-Q100 Grade 1 (M)  
°C  
105  
125  
9.4.2  
Table 20  
Power supply voltages  
Power supply voltages  
Description  
CC power supply  
Min  
Max  
Unit  
V
1.7  
2.0  
V
Datasheet  
32 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Electrical specifications  
9.5  
DC characteristics  
Table 21  
DC characteristics (CMOS compatible)  
Value  
Parameter  
Description  
Test conditions  
Unit  
[34]  
Min  
Typ  
Max  
Input leakage current.  
Device reset signal HIGH  
ILI2  
2
VIN = VSS to VCC, VCC = VCC  
max  
µA  
Input leakage current  
ILI4  
15  
20  
22  
Device reset signal LOW[35]  
VCC Active read current  
Operating temperature range  
ICC1  
14  
CS# = VSS, CK@200 MHz,  
VCC = VCC max  
mA  
VCC Active write current  
Operating temperature range  
ICC2  
16  
CS# = VCC, VCC = VCC max;  
full array  
470  
1200  
850  
700  
600  
850  
700  
600  
1550  
1150  
950  
850  
1150  
950  
850  
CS# = VCC, VCC = VCC max;  
bottom 1/2 array  
CS# = VCC, VCC = VCC max;  
bottom 1/4 array  
VCC standby current  
(-40 °C to +85 °C)  
CS# = VCC, VCC = VCC max;  
bottom 1/8 array  
µA  
CS# = VCC, VCC = VCC max;  
top 1/2 array  
CS# = VCC, VCC = VCC max;  
top 1/4 array  
CS# = VCC, VCC = VCC max;  
top 1/8 array  
ICC4  
CS# = VCC, VCC = VCC max;  
full array  
470  
CS# = VCC, VCC = VCC max;  
bottom 1/2 array  
CS# = VCC, VCC = VCC max;  
bottom 1/4 array  
VCC standby current  
(-40 °C to +105 °C)  
CS# = VCC, VCC = VCC max;  
bottom 1/8 array  
µA  
CS# = VCC, VCC = VCC max;  
top 1/2 array  
CS# = VCC, VCC = VCC max;  
top 1/4 array  
CS# = VCC, VCC = VCC max;  
top 1/8 array  
Notes  
34. Not 100% tested.  
35. RESET# LOW initiates exits from DPD state and initiates the draw of ICC5 reset current, making ILI during  
RESET# LOW insignificant.  
Datasheet  
33 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Electrical specifications  
Table 21  
DC characteristics (CMOS compatible) (continued)  
Value  
Parameter  
Description  
Test conditions  
Unit  
[34]  
Min  
Typ  
Max  
CS# = VCC, VCC = VCC max;  
full array  
470  
2000  
CS# = VCC, VCC = VCC max;  
bottom 1/2 array  
1550  
1250  
1100  
1550  
1250  
1100  
CS# = VCC, VCC = VCC max;  
bottom 1/4 array  
VCC standby current  
(-40 °C to +125 °C)  
CS# = VCC, VCC = VCC max;  
bottom 1/8 array  
ICC4  
µA  
CS# = VCC, VCC = VCC max;  
top 1/2 array  
CS# = VCC, VCC = VCC max;  
top 1/4 array  
CS# = VCC, VCC = VCC max;  
top 1/8 array  
Reset current (-40°C to +85°C)  
Reset current (-40°C to +105°C)  
Reset current (-40°C to +125°C)  
0.55  
0.75  
1
CS# = VCC, RESET# = VSS  
VCC = VCC max  
,
,
ICC5  
Active clock stop current  
(-40 °C to +85 °C)  
17  
17  
17  
25  
30  
40  
mA  
Active clock stop current  
(-40 °C to +105 °C)  
CS# = VSS, RESET# = VCC  
VCC = VCC max  
ICC6  
Active clock stop current  
(-40 °C to +125 °C)  
VCC current during power  
up[34]  
CS# = VCC, VCC = VCC max,  
VCCQ = VCC  
ICC7  
35  
Deep power down current  
(-40 °C to +85 °C)  
12  
15  
Deep power down current  
(-40 °C to +105 °C)  
[34]  
IDPD  
CS# = VCC, VCC = VCC max  
µA  
µA  
Deep power down current  
(-40 °C to +125 °C)  
20  
CS# = VCC; VCC = VCC max;  
full array  
140  
1100  
800  
600  
500  
CS# = VCC; VCC = VCC max;  
bottom 1/2 array  
Hybrid sleep current  
(-40 °C to +85 °C)  
[34]  
IHS  
CS# = VCC; VCC = VCC max;  
bottom 1/4 array  
CS# = VCC; VCC = VCC max;  
bottom 1/8 array  
Notes  
34. Not 100% tested.  
35. RESET# LOW initiates exits from DPD state and initiates the draw of ICC5 reset current, making ILI during  
RESET# LOW insignificant.  
Datasheet  
34 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Electrical specifications  
Table 21  
DC characteristics (CMOS compatible) (continued)  
Value  
Parameter  
Description  
Test conditions  
Unit  
[34]  
Min  
Typ  
Max  
CS# = VCC; VCC = VCC max;  
top 1/2 array  
800  
Hybrid sleep current  
(-40 °C to +85 °C)  
CS# = VCC; VCC = VCC max;  
top 1/4 array  
600  
500  
1250  
850  
650  
550  
850  
650  
550  
1500  
1150  
900  
750  
1150  
900  
750  
µA  
CS# = VCC; VCC = VCC max;  
top 1/8 array  
CS# = VCC; VCC = VCC max;  
full array  
140  
CS# = VCC; VCC = VCC max;  
bottom 1/2 array  
CS# = VCC; VCC = VCC max;  
bottom 1/4 array  
Hybrid sleep current  
(-40 °C to +105 °C)  
CS# = VCC; VCC = VCC max;  
bottom 1/8 array  
µA  
CS# = VCC; VCC = VCC max;  
top 1/2 array  
CS# = VC; VCC = VCC max;  
top 1/4 array  
[34]  
IHS  
CS# = VCC; VCC = VCC max;  
top 1/8 array  
CS# = VCC; VCC = VCC max;  
full array  
140  
CS# = VCC; VCC = VCC max;  
bottom 1/2 array  
CS# = VCC; VCC = VCC max;  
bottom 1/4 array  
Hybrid sleep current  
(-40 °C to +125 °C)  
CS# = VCC; VCC = VCC max;  
bottom 1/8 array  
µA  
CS# = VCC; VCC = VCC max;  
top 1/2 array  
CS# = VCC; VCC = VCC max;  
top 1/4 array  
CS# = VCC; VCC = VCC max;  
top 1/8 array  
VIL  
Input low voltage  
Input high voltage  
Output low voltage  
Output high voltage  
-0.15 × VCCQ  
0.70 × VCCQ  
0.30 × VCCQ  
VIH  
1.15 × VCCQ  
V
VOL  
VOH  
Notes  
0.2  
IOL = 100 µA for DQ[7:0]  
VCCQ - 0.20  
34. Not 100% tested.  
35. RESET# LOW initiates exits from DPD state and initiates the draw of ICC5 reset current, making ILI during  
RESET# LOW insignificant.  
Datasheet  
35 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Electrical specifications  
9.5.1  
Table 22  
Capacitance characteristics  
Capacitive characteristics[36-38]  
256 Mb  
Max  
3.0  
Description  
Parameter  
Unit  
Input capacitance (CK, CK#, CS#)  
Delta input capacitance (CK, CK#)  
Output capacitance (RWDS)  
IO capacitance (DQx)  
CI  
CID  
CO  
0.25  
3.0  
pF  
CIO  
CIOD  
3.0  
IO capacitance delta (DQx)  
Notes  
0.25  
36. These values are guaranteed by design and are tested on a sample basis only.  
37. Contact capacitance is measured according to JEP147 procedure for measuring capacitance using a vector  
network analyzer. VCC, VCCQ are applied and all other signals (except the signal under test) floating. DQs  
should be in the high impedance state.  
38. Note that the capacitance values for the CK, CK#, RWDS and DQx signals must have similar capacitance  
values to allow for signal propagation time matching in the system. The capacitance value for CS# is not as  
critical because there are no critical timings between CS# going active (LOW) and data being presented on  
the DQ’s bus.  
Table 23  
Thermal resistance  
Description  
24-ballFBGA  
package  
Parameter[39]  
Test conditions  
Unit  
θJA  
Thermal resistance Test conditions follow standard test methods  
(junction to ambient) and procedures for measuring thermal  
40.8  
°C/W  
impedance, per EIA/JESD51.  
θJC  
Thermal resistance  
(junction to case)  
8
Note  
39. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
36 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Electrical specifications  
9.6  
Power-up initialization  
HYPERRAM™ products include an on-chip voltage sensor used to launch the power-up initialization process. VCC  
and VCCQ must be applied simultaneously. When the power supply reaches a stable level at or above VCC(min),  
the device will require tVCS time to complete its self-initialization process.  
The device must not be selected during power-up. CS# must follow the voltage applied on VCCQ until VCC (min) is  
reached during power-up, and then CS# must remain high for a further delay of tVCS. A simple pull-up resistor  
from VCCQ to chip select (CS#) can be used to insure safe and proper power-up.  
If RESET# is LOW during power up, the device delays start of the tVCS period until RESET# is HIGH. The tVCS period  
is used primarily to perform refresh operations on the DRAM array to initialize it.  
When initialization is complete, the device is ready for normal operation.  
Vcc_VccQ  
VCC Minimum  
Device  
Access Allowed  
tVCS  
CS#  
RESET#  
Figure 29  
Power-up with RESET# HIGH  
Vcc_VccQ  
CS#  
VCC Minimum  
Device  
Access Allowed  
tVCS  
RESET#  
Figure 30  
Table 24  
Power-up with RESET# LOW  
Power up and reset parameters[40-42]  
Parameter  
Description  
Min  
Max  
Unit  
VCC  
VCC Power supply  
1.7  
2.0  
V
VCC and VCCQ minimum and RESET# HIGH to  
first access  
tVCS  
-
150  
µs  
Notes  
40. Bus transactions (read and write) are not allowed during the power-up reset time (tVCS).  
41. VCCQ must be the same voltage as VCC  
42. VCC ramp rate may be non-linear.  
.
Datasheet  
37 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Electrical specifications  
9.7  
Power down  
HYPERRAM™ devices are considered to be powered-off when the array power supply (VCC) drops below the VCC  
lock-out voltage (VLKO). During a power supply transition down to the VSS level, VCCQ should remain less than or  
equal to VCC. At the VLKO level, the HYPERRAM™ device will have lost configuration or array data.  
VCC must always be greater than or equal to VCCQ (VCC VCCQ).  
During power-down or voltage drops below VLKO, the array power supply voltages must also drop below VCC  
Reset (VRST) for a power down period (tPD) for the part to initialize correctly when the power supply again rises to  
VCC minimum. See Figure 31.  
If during a voltage drop the VCC stays above VLKO the part will stay initialized and will work correctly when VCC is  
again above VCC minimum. If VCC does not go below and remain below VRST for greater than tPD, then there is no  
assurance that the POR process will be performed. In this case, a hardware reset will be required ensure the  
device is properly initialized.  
V
(Max)  
(Min)  
CC  
V
CC  
No Device Access Allowed  
V
CC  
Device Access  
Allowed  
t
VCS  
V
LKO  
V
RST  
t
PD  
Time  
Figure 31  
Power down or voltage drop  
The following section describes HYPERRAM™ device dependent aspects of power down specifications.  
Table 25  
Symbol  
Power-down voltage and timing[42]  
Parameter  
VCC power supply  
Min  
1.7  
1.5  
0.7  
50  
Max  
Unit  
V
VCC  
VLKO  
VRST  
tPD  
2.0  
VCC lock-out below which re-initialization is required  
VCC low voltage needed to ensure initialization will occur  
Duration of VCC VRST  
-
-
-
V
V
µs  
Datasheet  
38 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Electrical specifications  
9.8  
Hardware reset  
The RESET# input provides a hardware method of returning the device to the standby state.  
During tRPH the device will draw ICC5 current. If RESET# continues to be held LOW beyond tRPH, the device draws  
CMOS standby current (ICC4). While RESET# is LOW (during tRP), and during tRPH, bus transactions are not allowed.  
A hardware reset will do the following:  
• Cause the configuration registers to return to their default values  
• Halt self-refresh operation while RESET# is LOW - memory array data is considered as invalid  
• Force the device to exit the hybrid sleep state  
• Force the device to exit the deep power down state  
After RESET# returns HIGH, the self-refresh operation will resume. Because self-refresh operation is stopped  
during RESET# LOW, and the self-refresh row counter is reset to its default value, some rows may not be refreshed  
within the required array refresh interval per Table 14. This may result in the loss of DRAM array data during or  
immediately following a hardware reset. The host system should assume DRAM array data is lost after a hardware  
reset and reload any required data.  
tRP  
RESET#  
tRH  
tRPH  
CS#  
Figure 32  
Table 26  
Hardware reset timing diagram  
Power-up and reset parameters  
Parameter  
Description  
Min  
200  
200  
Max  
Unit  
ns  
tRP  
tRH  
RESET# Pulse Width  
-
-
Time between RESET# (HIGH) and CS#  
(LOW)  
ns  
tRPH  
RESET# LOW to CS# LOW  
400  
-
ns  
Datasheet  
39 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Timing specifications  
10  
Timing specifications  
The following section describes HYPERRAM™ device dependent aspects of timing specifications.  
10.1  
Key to switching waveforms  
Valid_High_or_Low  
High_to_Low_Transition  
Low_to_High_Transition  
Invalid  
High_Impedance  
Figure 33  
Key to switching waveforms  
10.2  
AC test conditions  
Device  
Under  
Test  
CL  
Figure 34  
Table 27  
Test setup  
Test specification[44]  
Parameter  
All Speeds  
15  
Units  
pF  
V/ns  
V
Output load capacitance, CL  
Minimum input rise and fall slew rates (1.8 V)[43]  
1.13  
Input pulse levels  
0.0-VCCQ  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
CCQ/2  
CCQ/2  
V
V
V
Notes  
43. All AC timings assume this input slew rate.  
44. Input and output timing is referenced to VCCQ/2 or to the crossing of CK/CK#.  
VccQ  
Input VccQ / 2  
Measurement Level  
VccQ / 2 Output  
Vss  
Figure 35  
Note  
Input waveforms and measurement levels[45]  
45. Input timings for the differential CK/CK# pair are measured from clock crossings.  
Datasheet  
40 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Timing specifications  
10.3  
CLK characteristics  
t
CK  
t
t
CKHP  
CKHP  
CK#  
V
IX (Max)  
VCCQ / 2  
V
IX (Min)  
CK  
Figure 36  
Table 28  
Clock characteristics  
Clock timings[46-48]  
Parameter  
200 MHZ  
Symbol  
Unit  
Min  
5
Max  
CK period  
tCK  
ns  
CK half period - duty cycle  
tCKHP  
0.45  
0.55  
tCK  
CK half period at frequency  
Min = 0.45 tCK min  
Max = 0.55 tCK min  
tCKHP  
2.25  
2.75  
ns  
Notes  
46. Clock jitter of ±5% is permitted  
47. Minimum frequency (Maximum tCK) is dependent upon maximum CS# low time (tCSM), initial latency, and  
burst length.  
48. CK and CK# input slew rate must be 1 V/ns (2 V/ns if measured differentially).  
Table 29  
Clock AC/DC electrical characteristics[49, 50]  
Parameter Symbol  
Min  
Max  
Unit  
DC input voltage  
VIN  
VID(DC)  
VID(AC)  
VIX  
–0.3  
VCCQ + 0.3  
VCCQ + 0.6  
VCCQ + 0.6  
VCCQ x 0.6  
V
V
V
V
DC input differential voltage  
AC input differential voltage  
AC differential crossing voltage  
Notes  
VCCQ x 0.4  
VCCQ x 0.6  
VCCQ x 0.4  
49. VID is the magnitude of the difference between the input level on CK and the input level on CK#.  
50. The value of VIX is expected to equal VCCQ/2 of the transmitting device and must track variations in the DC  
level of VCCQ  
.
Datasheet  
41 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Timing specifications  
10.4  
AC characteristics  
10.4.1  
Read transactions  
Table 30  
HYPERRAM™ specific read timing parameters  
200 MHZ  
Parameter  
Symbol  
Unit  
Min  
Max  
Chip select high between transactions  
HYPERRAM™ read-write recovery time  
Chip select setup to next CK rising edge  
Data strobe valid  
t
6.0  
35  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSHI  
t
RWR  
t
CSS  
t
5.0  
DSV  
t
Input setup  
0.5  
0.5  
35  
0
IS  
Input hold  
t
IH  
t
HYPERRAM™ read initial access time  
Clock to DQs Low Z  
ACC  
t
DQLZ  
CK transition to DQ valid  
CK transition to DQ invalid  
t
1.0  
0
5.0  
4.2  
CKD  
t
CKDI  
Data valid (tDV min = the lesser of: tCKHP min - tCKD max + tCKDI max) or tCKHP  
min - tCKD min + tCKDI min)  
[51, 52]  
tDV  
1.45  
ns  
CK transition to RWDS valid  
tCKDS  
1.0  
–0.4  
–0.4  
0
5.0  
+0.4  
+0.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
RWDS transition to DQ valid  
DSS  
RWDS transition to DQ invalid  
Chip select hold after CK falling edge  
Chip select inactive to RWDS High-Z  
Chip select inactive to DQ High-Z  
Refresh time  
tDSH  
t
CSH  
tDSZ  
tOZ  
5.0  
5.0  
t
35  
1.0  
RFH  
t
CK transition to RWDS low @CA phase @read  
5.5  
CKDSR  
Notes  
51. Refer to Figure 39 for data valid timing.  
52. The tDV timing calculation is provided for reference only, not to determine the spec limit. The spec limit is  
guaranteed by testing.  
CS#  
tCSH  
tRWR=Read  
tACC  
Write Recovery  
tCSS  
CK#, CK  
RWDS  
tDSZ  
4 cycle latency  
tCKDS  
tDSV  
Low: 1X Latency Count  
tIS  
tOZ  
tDSS  
tIH  
tDQLZ  
tCKD  
tDSH  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
Dn  
A
Dn+1  
A
Dn+2  
A
Dn+3  
A
DQ[7:0]  
RWDS and Data  
are edge aligned  
Command - Address  
Host drives DQ[7:0] and Memory drives RWDS  
Memory drives DQ[7:0]  
and RWDS  
Figure 37  
Read timing diagram — No additional latency required  
Datasheet  
42 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Timing specifications  
tCSHI  
CS#  
tCSS  
tRWR=Read  
tCSH  
Additional latency  
4 cycle latency 1  
tACC  
Write Recovery  
tCSS  
CK#, CK  
RWDS  
tDSZ  
4 cycle latency 2  
tCKDS  
tDSV  
High: 2X Latency Count  
tCKDSR  
tOZ  
tDSS  
tDQLZ  
tCKD  
tIS  
tIH  
tDSH  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
Dn  
A
Dn+1  
A
Dn+2  
A
Dn+3  
A
DQ[7:0]  
RWDS and Data  
are edge aligned  
Command - Address  
Host drives DQ[7:0] and Memory drives RWDS  
Memory drives DQ[7:0]  
and RWDS  
Figure 38  
Read timing diagram — with additional latency required  
CS#  
tCKHP  
tCSHS tCSS  
CK  
CK#  
tDSZ  
tOZ  
tCKDS  
RWDS  
tDSS  
tCKD  
tCKDI  
tDV  
tDQLZ  
tCKD  
tDSH  
Dn  
A
Dn  
B
Dn+1  
A
Dn+1  
B
DQ[7:0]  
Figure 39  
Data valid timing[53-55]  
10.4.2  
Write transactions  
Table 31  
Write timing parameters  
200 MHz  
Parameter  
Symbol  
Unit  
Min  
35  
35  
35  
Max  
Read-write recovery time  
Access time  
tRWR  
tACC  
tRFH  
tCSM  
tCSM  
tDMV  
4
1
ns  
ns  
ns  
µs  
µs  
µs  
Refresh time  
Chip select maximum low time (85 °C)  
Chip select maximum low time (105/125 °C)  
RWDS data mask valid  
0
Notes  
53. tCKD and tCKDI parameters define the beginning and end position of data valid period.  
54. tDSS and tDSH define how early or late DQ may transition relative to RWDS. This is a potential skew between  
the CK to DQ delay tCKD and CK to RWDS delay tCKDS  
.
55. Since DQ and RWDS are the same output types, the tCKD, and tCKDS values track together (vary by the same  
ratio).  
Datasheet  
43 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Timing specifications  
CS#  
tCSH  
tRWR=Read  
Write Recovery  
tCSS  
CK#, CK  
tIS  
tIH  
tDSV  
tDSZ  
tDMV  
RWDS  
Low: 1X Latency Count  
tIS  
tIS tIH  
tIH  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
Dn  
A
Dn+1  
A
Dn+2  
A
Dn+3  
A
DQ[7:0]  
CK and Data  
are center aligned  
Command - Address  
Host drives DQ[7:0]  
and RWDS  
Host drives DQ[7:0] and Memory drives RWDS  
Figure 40  
Write timing diagram — no additional latency  
CS#  
tCSH  
tRWR=Read  
Additional Latency  
4 cycle latency1  
tACC  
2tCK  
Write Recovery  
tCSS  
CK#, CK  
RWDS  
tIS  
tIH  
tDSV  
4 cycle latency2  
tDSZ  
tDMV  
High: 2X Latency Count  
tIS  
tIS tIH  
tIH  
CMD  
[7:0]  
CMD  
[7:0]  
ADR  
[31:24]  
ADR  
[23:16]  
ADR  
[15:8]  
ADR  
[7:0]  
Dn  
A
Dn+1  
A
Dn+2  
A
Dn+3  
A
DQ[7:0]  
CK and Data  
Are center aligned  
Command - Address  
Host drives DQ[7:0] and Memory drives RWDS  
Host drives DQ[7:0]  
and RWDS  
Figure 41  
Write timing diagram — with additional latency required  
Datasheet  
44 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Timing specifications  
10.5  
Timing reference levels  
tCK  
VCCQ  
CK, CK#  
VT  
VSSQ  
tIS  
tIH  
tIS  
tIH  
VCCQ  
VIH(min)  
VIL(max)  
VT  
RWDS  
VSSQ  
tIS  
tIH  
tIS  
tIH  
VCCQ  
VIH(min)  
VIL(max)  
VT  
DQ[7:0]  
VSSQ  
Figure 42  
DDR input timing reference levels  
tSCK  
VCCQ  
RWDS  
VT  
VSSQ  
VCCQ  
tDSS  
tDSH  
VOH(min)  
VOL(max)  
VT  
DQ[7:0]  
VSSQ  
Figure 43  
DDR output timing reference levels  
Datasheet  
45 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Physical interface  
11  
Physical interface  
11.1  
FBGA 24-ball 5 x 5 array footprint  
HYPERRAM™ devices are provided in fortified ball grid array (FBGA), 1 mm pitch, 24-ball, 5 x 5 ball array footprint,  
with 6mm x 8mm body.  
1
2
3
4
5
A
B
C
D
E
RFU  
CK  
CS#  
Vss  
RESET# RFU  
CK#  
VssQ  
VccQ  
DQ7  
Vcc  
DQ2  
DQ3  
RFU  
RFU  
DQ4  
RFU  
DQ1  
DQ6  
RWDS  
DQ0  
DQ5  
VccQ VssQ  
Figure 44  
24-ball FBGA, 6 x 8 mm, 5 x 5 ball footprint, top view  
Datasheet  
46 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Physical interface  
11.2  
Physical diagrams  
NOTES:  
1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.  
DIMENSIONS  
SYMBOL  
MIN.  
-
NOM.  
MAX.  
1.00  
-
A
-
-
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
A1  
D
0.20  
3. BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.  
8.00 BSC  
4.  
5.  
"e" REPRESENTS THE SOLDER BALL GRID PITCH.  
E
6.00 BSC  
4.00 BSC  
4.00 BSC  
5
SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.  
D1  
E1  
MD  
ME  
N
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.  
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.  
5
24  
"SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE  
POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.  
0.40  
b
0.35  
0.45  
eE  
eD  
SD  
SE  
1.00 BSC  
1.00 BSC  
0.00 BSC  
0.00 BSC  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0.  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.  
8.  
9.  
"+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.  
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION  
OR OTHER MEANS.  
002-15550 *A  
JEDEC SPECIFICATION NO. REF: N/A  
10.  
Figure 45  
Fortified ball grid array 24-ball 6 x 8 x 1.0 mm (VAA024)  
Datasheet  
47 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Ordering information  
12  
Ordering information  
12.1  
Ordering part number  
The ordering part number is formed by a valid combination of the following:  
S80KS 256  
3
GA  
B
H
I
02 0  
Packing type  
0 = Tray  
3 = 13” Tape and reel  
Model number (Additional ordering options)  
02 = Standard 6 x 8 x 1.0 mm package (VAA024)  
Temperature range / grade  
I = Industrial (–40 °C to + 85 °C)  
V = Industrial Plus (–40 °C to + 105 °C)  
A = Automotive, AEC-Q100 Grade 3 (–40 °C to + 85 °C)  
B = Automotive, AEC-Q100 Grade 2(–40 °C to + 105 °C)  
M = Automotive, AEC-Q100 Grade 1(–40 °C to + 125 °C)  
Package materials  
H = Low-Halogen, Pb-free  
Package type  
B = 24-ball FBGA, 1.00 mm pitch (5x5 ball footprint)  
Speed  
GA = 200MHz  
Device technology  
2 = HYPERBUS™  
3 = Octal xSPI  
4 = HYPERBUS™ Extended-IO  
Density  
256 = 256 Mb  
Device family  
S80KS - Infineon Memory 1.8 V-only, HYPERRAM™ self-refresh  
DRAM  
Datasheet  
48 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Ordering information  
12.2  
Valid combinations  
The recommended combinations table lists configurations planned to be available in volume. Table 32 will be  
updated as new combinations are released. Contact your local sales representative to confirm availability of  
specific combinations and to check on newly released combinations.  
Table 32  
Valid combinations - standard  
Package,  
Density Technology Speed material, and  
temperature  
Device  
family  
Model Packing  
Ordering part number Package marking  
number  
type  
S80KS  
S80KS  
S80KS  
S80KS  
256  
256  
256  
256  
3
3
3
3
GA  
GA  
GA  
GA  
BHI  
BHI  
02  
02  
02  
02  
0
3
0
3
S80KS2563GABHI020  
S80KS2563GABHI023  
S80KS2563GABHV020  
S80KS2563GABHV023  
8KS2563GAHI02  
8KS2563GAHI02  
8KS2563GAHV02  
8KS2563GAHV02  
BHV  
BHV  
12.3  
Valid combinations - Automotive Grade / AEC-Q100  
Table 33 list configurations that are Automotive Grade / AEC-Q100 qualified and are planned to be available in  
volume. The table will be updated as new combinations are released. Contact your local sales representative to  
confirm availability of specific combinations and to check on newly released combinations.  
Production part approval process (PPAP) support is only provided for AEC-Q100 grade products.  
Products to be used in end-use applications that require ISO/TS-16949 compliance must be AEC-Q100 grade  
products in combination with PPAP. Non-AEC-Q100 grade products are not manufactured or documented in full  
compliance with ISO/TS-16949 requirements.  
AEC-Q100 grade products are also offered without PPAP support for end-use applications that do not require  
ISO/TS-16949 compliance.  
Table 33  
Valid combinations - Automotive Grade / AEC-Q100  
Package,  
Model Packing  
Device  
family  
Density Technology Speed material, and  
Ordering part number Package marking  
number  
type  
temperature  
BHA  
S80KS  
S80KS  
S80KS  
S80KS  
S80KS  
S80KS  
256  
256  
256  
256  
256  
256  
3
3
3
3
3
3
GA  
GA  
GA  
GA  
GA  
GA  
02  
02  
02  
02  
02  
02  
0
3
0
3
0
3
S80KS2563GABHA020 8KS2563GAHA02  
S80KS2563GABHA023 8KS2563GAHA02  
S80KS2563GABHB020 8KS2563GAHB02  
S80KS2563GABHB023 8KS2563GAHB02  
S80KS2563GABHM020 8KS2563GAHM02  
S80KS2563GABHM023 8KS2563GAHM02  
BHA  
BHB  
BHB  
BHM  
BHM  
Datasheet  
49 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Acronyms  
13  
Acronyms  
Table 34  
Acronyms used in this document  
Acronym  
Description  
CMOS  
DCARS  
DDR  
complementary metal oxide semiconductor  
DDR Center-Aligned Read Strobe  
double data rate  
DPD  
deep power down  
DRAM  
HS  
dynamic RAM  
hybrid sleep  
MSb  
most significant bit  
POR  
power-on reset  
PSRAM  
PVT  
pseudo static RAM  
process, voltage, and temperature  
read-write data strobe  
serial peripheral interface  
expanded serial peripheral interface  
RWDS  
SPI  
xSPI  
Datasheet  
50 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Document conventions  
14  
Document conventions  
14.1  
Units of measure  
Table 35  
Units of measure  
Symbol  
Unit of measure  
°C  
degree Celsius  
megahertz  
microampere  
microsecond  
milliampere  
millimeter  
nanosecond  
ohm  
MHz  
µA  
µs  
mA  
mm  
ns  
%
percent  
pF  
V
picofarad  
volt  
W
watt  
Datasheet  
51 of 53  
002-31339 Rev. *C  
2021-09-27  
256 Mb: HYPERRAM™ self-refresh dynamic RAM (DRAM) with Octal xSPI interface  
1.8 V  
Revision history  
Revision history  
Document  
Date of release  
Description of changes  
version  
*C  
2021-09-27  
Publish to web.  
Datasheet  
52 of 53  
002-31339 Rev. *C  
2021-09-27  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2021-09-27  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Go to www.cypress.com/support  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
002-31339 Rev. *C  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY