SAB-C502-LP [INFINEON]

8-Bit CMOS Microcontroller; 8位CMOS微控制器
SAB-C502-LP
型号: SAB-C502-LP
厂家: Infineon    Infineon
描述:

8-Bit CMOS Microcontroller
8位CMOS微控制器

微控制器
文件: 总46页 (文件大小:568K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microcomputer Components  
8-Bit CMOS Microcontroller  
C502  
Data Sheet 08.94  
8-Bit CMOS Microcontroller  
C502  
Preliminary  
Fully compatible to standard 8051 microcontroller  
Versions for 12 / 20 MHz operating frequency  
16 K × 8 ROM (SAB-C502-2R only)  
256 × 8 RAM  
256 × 8 XRAM (additional on-chip RAM)  
Eight datapointers for indirect addressing of program and external data memory  
(including XRAM)  
Four 8-bit ports  
Three 16 -bit Timers / Counters (Timer 2 with Up/Down Counter feature)  
USART with programmable 10-bit Baudrate-Generator  
Six interrupt sources, two priority levels  
Programmable 15-bit Watchdog Timer  
Oscillator Watchdog  
Fast Power On Reset  
Power Saving Modes  
P-DIP-40 package and P-LCC-44 package  
Temperature ranges:  
SAB-C502  
SAF-C502  
TA: 0 ˚C to 70 ˚C  
TA: – 40 ˚C to 85 ˚C  
SAB-C502  
Semiconductor Group  
1
08.94  
C502  
The SAB-C502-L/C502-2R described in this document is compatible with the SAB 80C52 and can  
be used for all present SAB 80C52 applications.  
The SAB-C502-2R contains a non-volatile 16 K × 8 read-only program memory, a volatile 256 × 8  
read/write data memory, four ports, three 16-bit timers/counters, a six source, two priority level  
interrupt structure, a serial port and versatile fail save mechanisms. The SAB-C502-L/C502-2R  
incorporates 256 × 8 additional on-chip RAM called XRAM. For higher performance eight  
datapointers are implemented. The SAB-C502-L is identical, except that it lacks the program  
memory on chip. Therefore the term SAB-C502 refers to both versions within this specification  
unless otherwise noted.  
Semiconductor Group  
2
C502  
Ordering Information  
Type  
Ordering  
Code  
Package  
Description  
(8-Bit CMOS microcontroller)  
SAB-C502-LN  
SAB-C502-LP  
Q67120-C838 P-LCC-44 for external memory 12 MHz  
Q67120-C889 P-DIP-40  
SAB-C502-2RN  
SAB-C502-2RP  
Q67120-C839 P-LCC-44 with mask-programmable ROM,  
Q67120-C890 P-DIP-40  
12 MHz  
SAB-C502-L20N  
SAB-C502-L20P  
Q67120-C885 P-LCC-44 for external memory 20 MHz  
Q67120-C891 P-DIP-40  
SAB-C502-2R20N  
SAB-C502-2R20P  
Q67120-C884 P-LCC-44 with mask-programmable ROM,  
Q67120-C892 P-DIP-40  
Q67120-C883 P-LCC-44 for external ROM, 12 MHz,  
Q67120-C893 P-DIP-40 ext. temp. – 40 ˚C to 85 ˚C  
Q67120-C886 P-LCC-44 with mask-programmable ROM,  
Q67120-C894 P-DIP-40 12 MHz, ext. temp. – 40 ˚C to 85 ˚C  
Q67120-C887 P-LCC-44 for external memory, 20 MHz,  
Q67120-C895 P-DIP-40 ext. temp. – 40 ˚C to 85 ˚C  
Q67120-C888 P-LCC-44 with mask-programmable ROM,  
Q67120-C896 P-DIP-40 20 MHz, ext. temp. – 40 ˚C to 85 ˚C  
20 MHz  
SAF-C502-LN  
SAF-C502-LP  
SAF-C502-2RN  
SAF-C502-2RP  
SAF-C502-L20N  
SAF-C502-L20P  
SAF-C502-2R20N  
SAF-C502-2R20P  
Note: Extended temperature range – 40 ˚C to 110 ˚C (SAH-C502) on request.  
Semiconductor Group  
3
C502  
Pin Configuration  
(top view)  
(P-LCC-44)  
Semiconductor Group  
4
C502  
Pin Configuration  
(top view)  
(P-DIP-40)  
Semiconductor Group  
5
C502  
Logic Symbol  
Semiconductor Group  
6
C502  
Pin Definitions and Functions  
Symbol  
Pin Number  
P-LCC-44 P-DIP-40  
I/O*) Function  
P1.7 – P1.0  
9–2  
8–1  
I
Port 1  
is a bidirectional I/O port with internal pull-up  
resistors. Port 1 pins that have 1s written to  
them are pulled high by the internal pull-up  
resistors, and in that state can be used as  
inputs. As inputs, port 1 pins being externally  
pulled low will source current (IIL, in the DC  
characteristics) because of the internal pull-up  
resistors. Port 1 also contains the timer 2 pins  
as secondary function. The output latch corre-  
sponding to a secondary function must be pro-  
grammed to a one (1) for that function to  
operate.  
The secondary functions are assigned to the  
pins of port 1, as follows:  
2
3
1
2
P1.0 T2  
Input to counter 2  
P1.1 T2EX Capture - Reload trigger of  
timer 2 / Up-Down count  
*) I = Input  
O = Output  
Semiconductor Group  
7
C502  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number  
P-LCC-44 P-DIP-40  
11, 13–19 10–17  
I/O*) Function  
P3.0 – P3.7  
I/O  
Port 3  
is a bidirectional I/O port with internal pull-up  
resistors. Port 3 pins that have 1s written to  
them are pulled high by the internal pull-up  
resistors, and in that state can be used as  
inputs. As inputs, port 3 pins being externally  
pulled low will source current (IIL, in the DC  
characteristics) because of the internal pull-up  
resistors. Port 3 also contains the interrupt,  
timer, serial port 0 and external memory strobe  
pins that are used by various options. The out-  
put latch corresponding to a secondary func-  
tion must be programmed to a one (1) for that  
function to operate.  
The secondary functions are assigned to the  
pins of port 3, as follows:  
11  
13  
10  
11  
P3.0 R×D receiver data input  
(asynchronous) or data input/  
output (synchronous) of serial  
interface 0  
P3.1 T×D transmitter data output  
(asynchronous) or clock output  
(synchronous) of the serial  
interface 0  
14  
15  
12  
13  
P3.2 INT0 interrupt 0 input/timer 0 gate  
control  
P3.3 INT1 interrupt 1 input/timer 1 gate  
control  
16  
17  
18  
14  
15  
16  
P3.4 T0  
P3.5 T1  
P3.6 WR  
counter 0 input  
counter 1 input  
the write control signal latches  
the data byte from port 0 into the  
external data memory  
the read control signal enables  
the external data memory to  
port 0  
19  
20  
17  
18  
P3.7 RD  
XTAL2  
XTAL2  
Output of the inverting oscillator amplifier  
*)I = Input  
O = Output  
Semiconductor Group  
8
C502  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number  
I/O*) Function  
P-LCC-44 P-DIP-40  
XTAL1  
21  
19  
XTAL1  
Input to the inverting oscillator amplifier and  
input to the internal clock generator circuits.  
To drive the device from an external clock  
source, XTAL1 should be driven, while XTAL2  
is left unconnected. There are no requirements  
on the duty cycle of the external clock signal,  
since the input to the internal clocking circuitry  
is divided down by a divide-by-two flip-flop.  
Minimum and maximum high and low times as  
well as rise fall times specified in the AC  
characteristics must be observed.  
P2.0 – P2.7  
24–31  
21–28  
I/O  
Port 2  
ia a bidirectional I/O port with internal pull-up  
resistors. Port 2 pins that have 1s written to  
them are pulled high by the internal pull-up  
resistors, and in that state can be used as  
inputs. As inputs, port 2 pins being externally  
pulled low will source current (IIL, in the DC  
characteristics) because of the internal pull-up  
resistors. Port 2 emits the high-order address  
byte during fetches from external program  
memory and during accesses to external data  
memory that use 16-bit addresses (MOVX  
@DPTR). In this application it uses strong  
internal pull-up resistors when issuing 1s.  
During accesses to external data memory that  
use 8-bit addresses (MOVX @Ri), port 2  
issues the contents of the P2 special function  
register.  
PSEN  
32  
29  
O
The Program Store Enable  
output is a control signal that enables the  
external program memory to the bus during  
external fetch operations. It is activated every  
six oscillator periodes except during external  
data memory accesses. Remains high during  
internal program execution.  
*) I = Input  
O = Output  
Semiconductor Group  
9
C502  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number  
I/O*) Function  
P-LCC-44 P-DIP-40  
RESET  
10  
33  
35  
9
I
RESET  
A high level on this pin for two machine cycles  
while the oscillator is running resets the  
device. An internal diffused resistor to VSS  
permits power-on reset using only an external  
capacitor to VCC.  
ALE  
EA  
30  
31  
O
The Address Latch Enable  
output is used for latching the low-byte of the  
address into external memory during normal  
operation. It is activated every six oscillator  
periodes except during an external data  
memory access.  
I
External Access Enable  
When held at high level, instructions are  
fetched from the internal ROM (SAB-C502-2R  
only) when the PC is less than 4000 . When  
H
held at low level, the SAB-C502 fetches all  
instructions from external program memory.  
For the SAB-C502-L this pin must be tied low.  
P0.0 – P0.7  
43–36  
39–32  
I/O  
Port 0  
is an 8-bit open-drain bidirectional I/O port.  
Port 0 pins that have 1s written to them float,  
and in that state can be used as high-  
impedance inputs. Port 0 is also the  
multiplexed low-order address and data bus  
during accesses to external program or data  
memory. In this application it uses strong  
internal pull-up resistors when issuing 1s.  
Port 0 also outputs the code bytes during  
program verification in the SAB-C502-2R.  
External pull-up resistors are required during  
program verification.  
VSS  
22  
44  
20  
40  
Circuit ground potential  
Supply terminal for all operating modes  
No connection  
VCC  
N.C.  
1, 12,  
23, 34  
*) I = Input  
O = Output  
Semiconductor Group  
10  
C502  
Functional Description  
The SAB-C502 is fully compatible to the standard 8051 microcontroller family.  
It is compatible with the SAB 80C52. While maintaining all architectural and operational  
characteristics of the SAB 80C52 the SAB-C502 incorporates some enhancements in the Timer2  
and Fail Save Mechanism Unit.  
Figure 1 shows a block diagram of the SAB-C502.  
Figure 1  
Block Diagram of the SAB-C502  
Semiconductor Group  
11  
C502  
CPU  
The SAB-C502 is efficient both as a controller and as an arithmetic processor. It has extensive  
facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of  
program memory results from an instruction set consisting of 44 % one-byte, 41 % two-byte, and  
15 % three-byte instructions. With a 12 MHz crystal, 58 % of the instructions execute in 1.0 µs  
(18 MHz : 667 ns).  
Special Function Register PSW  
MSB  
7
LSB  
0
Bit No.  
6
5
4
3
2
1
Addr. D0  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
PSW  
H
Bit  
CY  
AC  
F0  
Function  
Carry Flag  
Auxiliary Carry Flag (for BCD operations)  
General Purpose Flag  
RS1  
RS0  
Register Bank select control bits  
0
0
1
1
0
1
0
1
Bank 0 selected, data address 00 - 07  
H
H
H
Bank 1 selected, data address 08 - 0F  
H
Bank 2 selected, data address 10 - 17  
Bank 3 selected, data address 18 - 1F  
H
H
H
H
OV  
F1  
P
Overflow Flag  
General Purpose Flag  
Parity Flag.  
Set/cleared by hardware each instruction cycle to indicate an odd/  
even number of “one” bits in the accumulator, i.e. even parity.  
Reset value of PSW is 00H.  
Semiconductor Group  
12  
C502  
Special Function Registers  
All registers, except the program counter and the four general purpose register banks, reside in the  
special function register area.  
The 36 special function register (SFR) include pointers and registers that provide an interface  
between the CPU and the other on-chip peripherals. There are also 128 directly addressable bits  
within the SFR area.  
All SFRs are listed in table 1, table 2 and table 3. In table 1 they are organized in numeric order  
of their addresses. In table 2 they are organized in groups which refer to the functional blocks of the  
SAB-C502. Table 3 illustrates the contents of the SFRs.  
Table 1  
Special Function Register in Numeric Order of their Addresses  
Address  
Register  
Contents  
Address  
Register  
Contents  
after Reset  
after Reset  
80  
H
P0 1)  
SP  
DPL  
FF  
H
98  
H
SCON1)  
SBUF  
00  
H
2)  
XX  
81  
H
07  
H
99  
H
H
2)  
XX  
82  
H
00  
H
00  
H
9A  
H
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
H
2)  
XX  
83  
H
DPH  
9B  
H
H
2)  
XX  
84  
H
reserved  
reserved  
WDTREL  
PCON  
9C  
H
H
2)  
XX  
85  
H
9D  
H
H
2)  
XX  
86  
H
00  
H
000X0000  
9E  
H
H
2)  
B
2)  
XX  
87  
H
9F  
H
H
1)  
88  
H
TCON  
TMOD  
TL0  
00  
H
A0  
H
P2 1)  
FF  
H
2)  
XX  
89  
H
00  
H
A1  
H
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
H
2)  
XX  
8A  
H
00  
H
A2  
H
H
2)  
XX  
8B  
H
TL1  
TH0  
TH1  
00  
H
A3  
H
H
2)  
XX  
8C  
H
00  
H
A4  
H
H
2)  
XX  
8D  
H
00  
A5  
H
H
H
2)  
XX  
2)  
XX  
8E  
H
reserved  
reserved  
A6  
H
H
H
2)  
XX  
2)  
XX  
8F  
H
A7  
H
H
H
2)  
90  
H
P1 1)  
FF  
H
A8  
H
IE1)  
reserved  
SRELL  
reserved  
reserved  
reserved  
reserved  
reserved  
0X000000  
B
2)  
91  
H
XPAGE  
DPSEL  
reserved  
XCON  
reserved  
reserved  
reserved  
00  
H
A9  
H
XX  
H
H
2)  
92  
H
XXXXX000  
AA  
H
D9  
B
2)  
2)  
XX  
93  
H
XX  
F8  
AB  
H
H
H
2)  
XX  
94  
H
AC  
H
H
H
H
H
2)  
XX  
2)  
XX  
95  
H
AD  
H
H
2)  
XX  
2)  
XX  
96  
H
AE  
H
H
2)  
XX  
2)  
XX  
97  
H
AF  
H
H
H
1): Bit-addressable Special Function Register  
2): X means that the value is indeterminate and the location is reserved  
Semiconductor Group  
13  
C502  
Table 1  
Special Function Register in Numeric Order of their Addresses (cont’d)  
Address  
Register  
Contents  
Address  
Register  
Contents  
after Reset  
after Reset  
2)  
B0  
H
P31)  
FF  
H
D8  
H
BAUD  
0XXXXXXX  
B
2)  
2)  
XX  
B1  
H
SYSCON  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
XXXXXX01  
D9  
H
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
B
H
2)  
XX  
2)  
XX  
B2  
H
DA  
H
H
H
2)  
XX  
2)  
XX  
B3  
H
DB  
H
H
H
2)  
XX  
2)  
XX  
B4  
H
DC  
H
H
H
2)  
XX  
2)  
XX  
B5  
H
DD  
H
H
H
2)  
XX  
2)  
XX  
N6  
H
DE  
H
H
H
2)  
XX  
2)  
XX  
B7  
H
DF  
H
H
H
2)  
B8  
H
IP1)  
reserved  
SRELH  
reserved  
reserved  
reserved  
reserved  
reserved  
X0000000  
E0  
H
ACC 1)  
00  
B
H
2)  
2)  
XX  
B9  
H
XX  
E1  
H
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
H
H
2)  
2)  
XX  
BA  
H
XXXXXX11  
E2  
H
B
H
2)  
2)  
XX  
BB  
H
XX  
E3  
H
H
H
H
H
H
2)  
XX  
2)  
XX  
BC  
H
E4  
H
H
2)  
XX  
2)  
XX  
BD  
H
E5  
H
H
2)  
XX  
2)  
XX  
BE  
H
E6  
H
H
2)  
XX  
2)  
XX  
BF  
H
E7  
H
H
H
2)  
2)  
XX  
C0  
H
WDCON1)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
XXXX0000  
E8  
H
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
B
H
2)  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
XX  
C1  
H
XX  
XX  
XX  
XX  
XX  
XX  
XX  
E9  
H
H
H
H
H
H
H
H
H
2)  
XX  
C2  
H
EA  
H
H
2)  
XX  
C3  
H
EB  
H
H
2)  
XX  
C4  
H
EC  
H
H
2)  
XX  
C5  
H
ED  
H
H
2)  
XX  
C6  
H
EE  
H
H
2)  
XX  
C7  
H
EF  
H
H
C8  
H
T2CON1)  
T2MOD  
RC2L  
RC2H  
TL2  
TH2  
reserved  
reserved  
00  
F0  
H
B1)  
00  
H
H
2)  
2)  
XX  
C9  
H
XXXXXXX0  
F1  
H
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
B
H
2)  
XX  
CA  
H
00  
00  
H
00  
H
F2  
H
H
H
2)  
XX  
CB  
H
F3  
H
H
2)  
XX  
CC  
H
F4  
H
H
2)  
XX  
CD  
H
00  
F5  
H
H
H
2)  
XX  
2)  
XX  
CE  
H
F6  
H
H
H
2)  
XX  
2)  
XX  
CF  
H
F7  
H
H
H
2)  
XX  
D0  
H
PSW1)  
00  
F8  
H
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
H
H
2)  
XX  
2)  
XX  
D1  
H
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
F9  
H
H
H
2)  
XX  
2)  
XX  
D2  
H
FA  
H
H
H
2)  
XX  
2)  
XX  
D3  
H
FB  
H
H
H
2)  
XX  
2)  
XX  
D4  
H
FC  
H
H
H
2)  
XX  
2)  
XX  
D5  
H
FD  
H
H
H
2)  
XX  
2)  
XX  
D6  
H
FE  
H
H
H
2)  
XX  
2)  
XX  
D7  
H
FF  
H
H
H
1): Bit-addressable Special Function Register  
2): X means that the value is indeterminate and the location is reserved  
Semiconductor Group  
14  
C502  
Table 2  
Special Function Registers - Functional Blocks  
Block  
Symbol  
Name  
Address  
Contents  
after Reset  
1)  
E0  
CPU  
ACC  
B
Accumulator  
B-Register  
00  
H
H
1)  
F0  
00  
H
H
DPH  
DPL  
DPSEL  
PSW  
SP  
Data Pointer, High Byte  
Data Pointer, Low Byte  
Data pointer select register  
Program Status Word Register  
Stack Pointer  
83  
00  
H
H
82  
H
00  
H
3)  
B
92  
XXXX X000  
H
1)  
D0  
00  
07  
H
H
H
81  
H
1)  
A8  
3)  
Interrupt  
System  
IE  
IP  
Interrupt Enable Register  
Interrupt Priority Register  
0X00 0000  
X000 0000  
H
B
B
1)  
B8  
3)  
H
1)  
80  
Ports  
P0  
P1  
P2  
P3  
Port 0  
Port 1  
Port 2  
Port 3  
FF  
H
H
1)  
90  
FF  
H
H
1)  
A0  
FF  
H
H
1)  
B0  
FF  
H
H
XRAM  
XPAGE  
XCON  
Page addr. reg. for XRAM  
XRAM startaddress (highbyte)  
91  
H
00  
H
94  
H
F8  
H
3)  
SYSCON XRAM control register  
B1  
H
XXXX XX01  
B
Serial  
Channels  
PCON2)  
SBUF  
SCON  
SRELL  
SRELH  
BAUD  
Power Control Register  
Serial Channel Buffer Reg.  
Serial Channel Control Reg.  
Baudrate Generator Reloadvalue, Lowbyte  
Baudrate Generator Reloadvalue, Highbyte BA  
87  
H
00  
H
3)  
XX  
99  
H
H
1)  
98  
00  
H
H
AA  
D9  
H
H
3)  
3)  
XXXX XX11  
0XXX XXXX  
H
H
B
B
1)  
Baudrate Generator Enable Bit  
D8  
1)  
Timer 0/  
Timer 1  
TCON  
TH0  
TH1  
TL0  
TL1  
Timer 0/1 Control Register  
Timer 0, High Byte  
Timer 1, High Byte  
Timer 0, Low Byte  
Timer 1, Low Byte  
Timer Mode Register  
88  
8C  
8D  
8A  
00  
H
H
H
H
H
H
00  
H
00  
H
00  
H
8B  
89  
00  
H
TMOD  
00  
H
H
1)  
Timer 2  
T2CON  
T2MOD  
RC2L  
RC2H  
TH2  
Timer 2 Control Register  
Timer 2 Mode Register  
Timer 2, Reload Capture Register, Low Byte CA  
Timer 2, Reload Capture Register, High Byte CB  
Timer 2, High Byte  
Timer 2, Low Byte  
C8  
00  
H
XXXX XXX0  
H
3)  
B
C9  
H
00  
H
H
00  
H
H
CD  
00  
H
H
H
TL2  
CC  
00  
H
1)  
3)  
Watchdog WDCON Watchdog Timer Control Register  
WDTREL Watchdog Timer Reload Reg.  
C0  
XXXX 0000  
H
B
86  
00  
H
H
Pow. Sav. PCON2)  
Modes  
Power Control Register  
87  
000X 0000  
3)  
H
B
1): Bit-addressable special function registers  
2): This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3): X means that the value is indeterminate and the location is reserved  
Semiconductor Group  
15  
C502  
Table 3  
Contents of SFR’s, SFR’s in Numeric Order  
Address Register  
Bit 7  
6
5
4
3
2
1
0
80  
81  
82  
83  
86  
87  
88  
89  
P0  
SP  
H
H
H
H
H
H
H
H
DPL  
DPH  
WDTREL  
PCON  
TCON  
TMOD  
TL0  
SMOD  
TF1  
PDS  
TR1  
C/T  
IDLS  
TF0  
M1  
GF1  
IE1  
GF0  
IT1  
PDE  
IE0  
M1  
IDLE  
IT0  
TR0  
M0  
GATE  
GATE  
C/T  
M0  
8A  
8B  
8C  
8D  
90  
H
H
H
H
TL1  
TH0  
TH1  
P1  
H
H
H
H
H
H
91  
92  
94  
98  
99  
XPAGE  
DPSEL  
XCON  
SCON  
SBUF  
P2  
.2  
.1  
TI  
.0  
SM0  
SM1  
SM2  
REN  
TB8  
RB8  
RI  
A0  
A8  
H
H
IE  
EA  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
AA  
SRELL  
H
bit and byte addressable  
not bit addressable  
– = reserved  
Semiconductor Group  
16  
C502  
Table 3  
Contents of SFRs, SFRs in Numeric Order (cont’d)  
Address Register  
Bit 7  
6
5
4
3
2
1
0
B0  
B1  
B8  
P3  
SYSCON  
IP  
H
H
H
XMAP1 XMAP0  
PADC  
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
BA  
C0  
C8  
C9  
SRELH  
WDCON  
T2CON  
T2MOD  
RC2L  
RC2H  
TL2  
H
H
H
H
OWDS  
WDTS  
WDT  
SWDT  
CP/RL2  
DCEN  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CA  
CB  
CC  
CD  
D0  
H
H
H
H
TH2  
PSW  
CY  
BD  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
H
H
H
D8  
E0  
F0  
BAUD  
ACC  
B
H
bit and byte addressable  
not bit addressable  
– = reserved  
Semiconductor Group  
17  
C502  
Timer/Counter 0 and 1  
Timer/Counter 0 and 1 can be used in four operating modes as listed in table 4:  
Table 4  
Timer/Counter 0 and 1 Operating Modes  
Mode Description  
TMOD  
Gate C/T M1  
Input Clock  
internal external  
(max)  
M0  
0
8-bit timer/counter with a  
X
X
0
0
fOSC 12 × 32  
/
fOSC/24 × 32  
divide-by-32 prescaler  
1
2
16-bit timer/counter  
X
X
X
X
0
1
1
0
fOSC 12  
/
fOSC 24  
/
8-bit timer/counter with  
8-bit auto-reload  
fOSC 12  
/
fOSC 24  
/
3
Timer/counter 0 used as one  
8-bit timer/counter and one  
8-bit timer  
X
X
1
1
fOSC 12  
/
fOSC/24  
Timer 1 stops  
In “timer” function (C/T = ‘0’) the register is incremented every machine cycle. Therefore the count  
rate is fOSC/12.  
In “counter” function the register is incremented in response to a 1-to-0 transition at its  
corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a  
falling edge the max. count rate is fOSC/24. External inputs INT0 and INT1 (P3.2, P3.3) can be  
programmed to function as a gate to facilitate pulse width measurements. Figure 2 illustrates the  
input clock logic.  
Figure 2  
Timer/Counter 0 and 1 Input Clock Logic  
Semiconductor Group  
18  
C502  
Timer 2  
Timer 2 is a 16-bit Timer/Counter with up/down count feature. It can operate either as timer or as an  
event counter which is selected by bit C/T2 (T2CON.1). It has three operating modes as shown in  
table 5.  
Table 5  
Timer/Counter 2 Operating Modes  
T2CON  
T2MOD T2CON  
Input Clock  
external  
P1.1/  
T2EX  
R×CLK  
Mode  
Remarks  
CP/  
or  
TR2  
internal  
RL2  
(P1.0/T2)  
DCEN  
EXEN  
T×CLK  
16-bit  
Auto-  
reload  
0
0
0
1
1
0
0
X
reload upon  
overflow  
reload trigger  
(falling edge)  
Down counting  
Up counting  
0
0
1
max  
OSC/24  
f
OSC/12  
f
f
f
0
0
0
0
1
1
1
1
X
X
0
1
16-bit  
Cap-  
ture  
0
1
1
X
0
X
16-bit Timer/  
Counter (only  
up-counting)  
capture TH2,  
TL2 RC2H,  
RC2L  
max  
OSC/24  
fOSC/12  
0
1
1
X
1
Baud  
Rate  
Gene-  
rator  
1
1
X
X
1
1
X
X
0
1
X
no overflow  
interrupt  
request (TF2)  
extra external  
interrupt  
max  
OSC/24  
f
OSC/2  
(“Timer 2”)  
off  
X
X
0
X
X
X
Timer 2 stops  
Note: =  
falling edge  
Semiconductor Group  
19  
C502  
Serial Interface (USART)  
The serial port is full duplex and can operate in four modes (one synchronous mode, three  
asynchronous modes) as illustrated in table 6. Figure 3 illustrates the block diagram of Baudrate  
generation for the serial interface.  
Table 6  
USART Operating Modes  
SCON  
Baudrate  
Description  
Mode  
SM0  
SM1  
0
0
0
1
1
0
f
OSC/12  
Serial data enters and exits through R×D.  
T×D outputs the shift clock. 8-bit are  
transmitted/received (LSB first)  
1
2
3
1
0
1
Timer 1/2 overflow rate  
or  
Baudrate Generator  
8-bit UART  
10 bits are transmitted (through T×D) or  
received (R×D)  
f
OSC/32 or fOSC/64  
9-bit UART  
11 bits are transmitted (T×D) or  
received (R×D)  
Timer 1/2 overflow rate  
or  
Baudrate Generator  
9-bit UART  
Like mode 2 except the variable  
baud rate  
Figure 3  
Block Diagram of Baud Rate Generation for Serial Interface  
Semiconductor Group  
20  
C502  
The possible baudrate can be calculated using the formulas given in table 7.  
Table 7  
Baudrates  
Baud Rate  
Interface Mode  
Baudrate  
derived from  
Oscillator  
0
2
f
OSC/12  
(2SMOD × fOSC)/64  
Timer 1 (16-bit timer)  
(8-bit timer with  
1,3  
1,3  
(2SMOD × timer 1 overflow rate)/32  
(2SMOD × fOSC)/(32 × 12 × (256-TH1))  
8-bit autoreload)  
Timer 2  
1,3  
1,3  
f
OSC/(32 × (65536-(RC2H, RC2L))  
Baudrate  
(2SMOD × fOSC)/(64 × (210-SREL))  
Generator  
The internal baudrate generator consists of a free running 10-bit timer with fOSC/2 input frequency.  
The internal baudrate generator is selected by setting bit BD in SFR BAUD.  
Semiconductor Group  
21  
C502  
Additional On-Chip RAM - XRAM  
The SAB-C502 contains another 256byte of On-Chip RAM additional to the 256bytes internal RAM.  
This RAM is called XRAM (‘eXtended RAM’) in this document.  
The additional ON-Chip RAM is logically located in the external data memory range. The highbyte  
of the XRAM address range startaddress is programmable by SFR XCON (94 ). The reset value of  
H
XCON is 0F8 (that is, XRAM address range F800H … F8FF ).  
H
H
H
The contents of the XRAM is not affected by a reset. After power up the contents is undefined, while  
it remains unchanged during and after reset as long as the power supply is not turned off. The  
XRAM is controlled by SFR SYSCON as shown in table 8.  
Table 8  
Control of the XRAM  
SFR SYSCON  
Description  
XMAP1  
XMAP0  
0
1
Resetvalue. Access to XRAM is disabled. When cleared it can  
be set again only by a reset  
0
1
0
0
XRAM enabled  
XRAM enabled. The signals RD and WR are activated during  
accesses to XRAM  
Because of the XRAM is used in the same way as external data memory the same instruction types  
must be used for accessing the XRAM. A general overview gives table 9.  
Table 9  
Accessing the XRAM  
Instruction  
using  
Instruction  
Remarks  
DPTR  
MOVX A @DPTR  
MOVX @ DPTR,A  
Normally the use of these instructions would use a  
physically external memory. However, in the SAB-C502  
the XRAM is accessed if it is enabled.  
R0/R1  
(page mode)  
MOVX A, @Ri  
MOVX@Ri,A  
Normally Port 2 serves as page register. However, the  
distinction, whether Port 2 is as general purpose I/O or  
as “page address” is made by the external design.  
Hence a special SFR XPAGE is implemented the serve  
the same function for the XRAM as Port 2 for external  
data memory.  
Note: When writing the page address (in page mode) at Port2 the value is also written in XPAGE.  
However when writing XPAGE the value at PORT2 is not changed!  
The behaviour of Port0/Port2 and RD/WR during MOVX accesses is shown in table 10.  
Semiconductor Group  
22  
EA = 0  
XMAP1, XMAP0  
10  
EA = 1  
XMAP1, XMAP0  
10  
00  
X1  
00  
X1  
DPTR outside  
XRAM address  
range  
a) P0/P2 Bus a) P0/P2 Bus a) P0/P2 Bus a) P0/P2 Bus a) P0/P2 Bus a) P0/P2 Bus  
b) RD/WR  
active  
b) RD/WR  
active  
b) RD/WR  
active  
b) RD/WR  
active  
b) RD/WR  
active  
b) RD/WR  
active  
c) ext. memory  
is used  
c) ext. memory  
is used  
c) ext. memory  
is used  
c) ext. memory  
is used  
c) ext. memory  
is used  
c) ext. memory  
is used  
(DPH XCON)  
MOVX  
@DPTR  
DPTR within  
XRAM address  
range  
a) P0/P2 Bus a) P0/P2 Bus a) P0/P2 Bus a) P0/P2 I/O  
(WR-Data only) (WR-Data only) b) RD/WR  
a) P0/P2 Bus a) P0/P2 Bus  
(WR-Data only) b) RD/WR  
b) RD/WR  
inactive  
b) RD/WR  
active  
active  
c) ext. memory  
b) RD/WR  
inactive  
b) RD/WR  
active  
active  
c) ext. memory  
(DPH = XCON)  
XPAGE outside  
XRAM addr. page P2 I/O  
c) XRAM is used c) XRAM is used is used  
c) XRAM is used c) XRAM is used is used  
a) P0 Bus  
a) P0 Bus  
P2 I/O  
a) P0 Bus  
P2 I/O  
a) P0 Bus  
P2 I/O  
a) P0 Bus  
P2 I/O  
a) P0 Bus  
P2 I/O  
range  
b) RD/WR  
active  
b) RD/WR  
active  
b) RD/WR  
active  
b) RD/WR  
active  
b) RD/WR  
active  
b) RD/WR  
active  
(XPAGE XCON) c) ext. memory  
c) ext. memory  
is used  
c) ext. memory  
is used  
c) ext. memory  
is used  
c) ext. memory  
is used  
c) ext. memory  
is used  
is used  
MOVX  
@Ri  
XPAGE within  
a) P0 Bus  
a) P0 Bus  
a) P0 Bus  
a) P0/P2 I/O  
a) P0 Bus  
a) P0 Bus  
XRAM addr. page (WR-Data only) (WR-Data only) P2 I/O  
(WR-Data only) P2 I/O  
range  
P2 I/O  
b) RD/WR  
P2 I/O  
b) RD/WR  
active  
b) RD/WR  
active  
c) ext. memory  
b) RD/WR  
inactive  
c) XRAM is used active  
P2 I/O  
b) RD/WR  
b) RD/WR  
active  
c) ext. memory  
(XPAGE = XCON) inactive  
c) XRAM is used c) XRAM is used is used  
c) XRAM is used is used  
modes compatible to the standard 8051-family  
C502  
Eight Datapointers for Faster External Bus Access  
The SAB-C502 contains a set of eight 16-bit-Datapointer (DPTR) from which the actual DPTR can  
be selected.  
This means that the user’s program may keep up to eight 16-bit addresses resident in these  
registers, but only one register at the time is selected to be the datapointer. Thus the DPTR in turn  
is accessed (or selected) via indirect addressing. This indirect addressing is done through a special  
function register (SFR) called DPSEL (data pointer select register, Bits 0 to 2). All instructions of the  
SAB-C502 which handle the DPTR therefore affect only one of the eight pointers which is  
addressed by DPSEL at that very moment.  
A 3-bit field in SFR DPSEL points to the currently used DPTRx:  
DPSEL  
.2  
selected  
DPTR  
.1  
.0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DPTR 0  
DPTR 1  
DPTR 2  
DPTR 3  
DPTR 4  
DPTR 5  
DPTR 6  
DPTR 7  
Semiconductor Group  
24  
C502  
Interrupt System  
The SAB-C502 provides 6 interrupt sources with two priority levels. Figure 4 gives a general  
overview of the interrupt sources and illustrates the request and control flags.  
Figure 4  
Interrupt Request Sources  
Semiconductor Group  
25  
C502  
Table 11  
Interrupt Sources and their Corresponding Interrupt Vectors  
Source (Request Flags)  
Vector  
Vector Address  
IE0  
TF0  
IE1  
TF1  
RI + TI  
TF2 + EXF2  
External interrupt 0  
Timer 0 interrupt  
External interrupt 1  
Timer 1 interrupt  
Serial port interrupt  
Timer 2 interrupt  
0003  
H
000B  
H
0013  
H
001B  
H
0023  
H
002B  
H
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-  
priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.  
If two requests of different priority level are received simultaneously, the request of higher priority is  
serviced. If requests of the same priority are received simultaneously, an internal polling sequence  
determines which request is serviced. Thus within each priority level there is a second priority  
structure determined by the polling sequence as shown in table 12.  
Table 12  
Interrupt Priority-within-Level  
Interrupt Source  
Priority  
External Interrupt 0,  
IE0  
High  
Timer 0 Interrupt,  
External Interrupt 1,  
Timer 1 Interrupt,  
Serial Channel,  
TF0  
IE1  
TF1  
RI or TI  
TF2 or EXF2  
Timer 2 Interrupt,  
Low  
Semiconductor Group  
26  
C502  
Fail Safe Mechanisms  
The SAB-C502 offers enhanced fail safe mechanisms, which allow an automatic recovery from  
software upset or hardware failure.  
1) Watchdog Timer (15 bit, WDT)  
2) Oscillator Watchdog (OWD)  
1) Watchdog Timer (WDT)  
The Watchdog Timer in the SAB-C502 is a 15-bit timer, which is incremented by a count rate of  
either fCYCLE/2 or fCYCLE/32 (fCYCLE = fOSC/12). That is, the machine clock is divided by a series of  
arrangement of two prescalers, a divide-by-two and a divide-by-16 prescaler. The latter is enabled  
by setting bit WDTREL.7.  
Figure 5 shows the block diagram of the programmable Watchdog Timer.  
Figure 5  
Block Diagram of the Programmable Watchdog Timer  
Semiconductor Group  
27  
C502  
– Starting and refreshing the WDT  
Table 13 gives an overview how to start and refresh the WDT. The mentioned bits are located in  
SFR WDCON.  
Table 13  
Starting and Refreshing the WDT  
Function  
Example  
Remarks  
Starting WD  
SETB  
SWDT  
Cannot be stopped during active mode of the  
device. WDT is halted during idle mode, power  
down mode or the oscillator watchdog reset is  
active.  
Refreshing WD  
SETB  
SETB  
WDT  
SWDT  
Double instruction sequence  
(setting bit WDT and SWDT consecutively) to  
increase system security.  
– Watchdog reset and watchdog status flag (WDTS)  
If the software fails to clear the watchdog in time, an internally generated watchdog reset is  
entered at the counter state 7FFC . The duration of the reset signal then depends on the  
H
prescaler selection (either 8 or 128 cycles). This internal reset differs from an external one in so  
far as the Watchdog Timer is not disabled and bit WDTS (SFR WDCON) is set. The WDTS is a  
flip-flop, which is set by a Watchdog Timer reset and can be cleared by an external hardware  
reset. Bit WDTS allows the software to examine from which source the reset was activated. The  
bit WDTS can also be cleared by software.  
Semiconductor Group  
28  
C502  
2) Oscillator Watchdog (OWD)  
The OWD consists of an internal RC oscillator which provides the reference frequency for the  
comparison with the frequency of the on-chip oscillator.  
Figure 6 shows the block diagram of the oscillator watchdog unit while table 14 shows the effect  
when the OWD becomes activ/inactiv.  
Note: The OWD is always enabled!  
Figure 6  
Functional Block Diagram of the Oscillator Watchdog  
Table 14  
Effects of the OWD  
Conditions  
Effect  
fOSC < fRC/5  
Switch input of internal clock system to RC oscillator output  
Activating internal reset at the same time (reset sequence is clocked by  
RC-oscillator).  
Exception from effects of a Hardware Reset:  
Watchdog Timer Status Flag, WDTS is not reset  
Oscillator Watchdog Status Flag, OWDS is set  
fOSC > fRC/5  
Input of internal clock system is fOSC/2.  
When failure condition (fOSC < fRC/5) disappears the part executes a  
final reset phase of typ. 1 ms in order to allow the external oscillator to  
stabilize.  
Semiconductor Group  
29  
C502  
Fast Internal Resest after Power-On  
The SAB-C502 can use the oscillator watchdog unit for a fast internal resert procedure after power-  
on.  
Normally members of the 8051 family enter their default reset state not before the on-chip oscillator  
starts. The reason is that the external reset signal must be internally synchronized and processed  
in order to bring the device into the correct reset state. Especially if a crystal is used the start up  
timed of the oscillator is relatively long (typ. 1 ms). During this time period the pins have an  
undefined state which could have severe effects e.g. to actuators connected to port pins.  
In the SAB-C502 the oscillator watchdog unit avoids this situation. After power-on the oscillator  
watchdog’s RC oscillator starts working within a very short start-up time (typ. less than 2 µs). In the  
following the watchdog circuitry detects a failure condition for the on-chip oscillator this has not yet  
started (a failure is always recognized if the watchdog’s RC oscillator runs faster than the on-chip  
oscillator). As long as this condition is valid the watchdog uses the RC oscillator output as a clock  
source for the chip rather than the on-chip oscillator’s 16 output. This allows correct resetting of the  
part and brings also all ports to the defined state.  
Delay between power-on and correct reset state:  
Typ: 18 µs  
Max: 34 µs  
Semiconductor Group  
30  
C502  
Power Saving Modes  
Two power down modes are available, the Idle Mode and the Power Down Mode.  
The bits PDE, PDS and IDLE, IDLS select the Power Down mode or the idle mode, respectively. If  
the Power Down mode and the idle mode are set at the same time, Power Down takes precedence.  
Table 15 gives a general overview of the power saving modes.  
Table 15  
Entering and Leaving the Power Saving Modes  
Mode  
Entering  
Example  
Leaving by  
Remarks  
Idle mode  
ORL PCON, #01H – enabled interrupt  
ORL PCON, #20H – Hardware Reset  
CPU is gated off  
CPU status registers maintain  
their data.  
Peripherals are active  
Double instruction sequence  
Power Down  
Mode  
ORL PCON, #02H Hardware Reset  
ORL PCON, #40H  
Oscillators are stopped. Contents  
of on-chip RAM and SFR’s are  
maintained (leaving Power  
Down Mode means redefinition  
of SFR’s contents.)  
Double instruction sequence  
In the Power Down mode of operation, VCC can be reduced to minimize power consumption. It must  
be ensured, however, that VCC is not reduced before the Power Down mode is invoked, and that VCC  
is restored to its normal operating level, before the Power Down mode is terminated. The reset  
signal that terminates the Power Down mode also restarts the oscillator. The reset should not be  
activated before VCC is restored to its normal operating level and must be held active long enough  
to allow the oscillator to restart and stabilize (similar to power-on reset).  
Semiconductor Group  
31  
C502  
Absolute Maximum Ratings  
Ambient temperature under bias (TA) ..............................................................– 40 ˚C to + 85 ˚C  
Storage temperature (TST) ...............................................................................– 65 ˚C to + 150 ˚C  
Voltage on VCC pins with respect to ground (VSS) ............................................– 0.5 V to 6.5 V  
Voltage on any pin with respect to ground (VSS)..............................................– 0.5 V to VCC + 0.5 V  
Input current on any pin during overload condition..........................................– 10 mA to + 10 mA  
Absolute sum of all input currents during overload condition ..........................| 100 mA |  
Power dissipation.............................................................................................TBD  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage of the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for longer  
periods may affect device reliability. During overload conditions (VIN > VCC or VIN < VSS) the  
Voltage on VCC pins with respect to ground (VSS) must not exceed the values defined by the  
absolute maximum ratings.  
Semiconductor Group  
32  
C502  
DC Characteristics  
CC = 5 V + 10 %, – 15 %; VSS = 0 V;  
V
TA = 0 to + 70 ˚C for the SAB-C502  
TA = – 40 to + 85 ˚C for the SAF-C502  
Parameter  
Symbol  
Limit Values  
max.  
Unit Test Condition  
min.  
Input low voltage  
(except EA, RESET)  
VIL  
– 0.5  
– 0.5  
– 0.5  
0.2 VCC  
– 0.1  
V
V
V
V
Input low voltage (EA)  
VIL1  
VIL2  
VIH  
0.2 VCC  
– 0.3  
Input low voltage (RESET)  
0.2 VCC  
+ 0.1  
Input high voltage  
0.2 VCC  
VCC + 0.5  
(except EA, RESET, XTAL1)  
+ 0.9  
Input high voltage to XTAL1  
VIH1  
0.7 VCC  
V
CC + 0.5  
CC + 0.5  
V
V
V
V
Input high voltage to RESET, EA VIH2  
0.6 VCC  
V
Output low voltage (ports 2, 3)  
VOL  
0.45  
0.45  
IOL = 1.6 mA1)  
IOL = 3.2 mA1)  
Output low voltage  
(port 0, ALE, PSEN)  
VOL1  
Output high voltage (ports 2, 3) VOH  
2.4  
0.9 VCC  
V
V
I
I
OH = – 80 µA  
OH = – 10 µA  
Output high voltage (port 0 in  
VOH1  
2.4  
0.9 VCC  
I
I
OH = – 800 µA2),  
OH = – 80 µA2)  
external bus mode, ALE, PSEN)  
Logic 0 input current  
(ports 1, 2, 3)  
IIL  
– 10  
– 65  
– 50  
– 650  
± 1  
µA VIN = 0.45 V  
Logical 1-to-0 transition current ITL  
(ports 1, 2, 3)  
µA VIN = 2 V  
Input leakage current  
(port 0, EA, P1)  
ILI  
µA 0.45 < VIN < VCC  
Pin capacitance  
CIO  
10  
pF  
fC = 1 MHz,  
TA = 25 ˚C  
Power supply current:  
Active mode, 12 MHz7)  
Idle mode, 12 MHz7)  
Active mode, 20 MHz7)  
Idle mode, 20 MHz7)  
Power Down Mode  
ICC  
ICC  
ICC  
ICC  
IPD  
23.3  
7.4  
33.9  
10.6  
50  
mA  
mA  
mA  
mA  
µA  
V
V
V
V
V
CC = 5 V,4)  
CC = 5 V,5)  
CC = 5 V,4)  
CC = 5 V,5)  
CC = 2 … 5.5 V,3)  
Semiconductor Group  
33  
C502  
1)  
Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOL of ALE  
and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these  
pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise  
pulse on ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a schmitt-trigger,  
or use an address latch with a schmitt-trigger strobe input.  
2)  
3)  
4)  
Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall bellow the  
0.9 VCC specification when the address lines are stabilizing.  
I
PD (Power Down Mode) is measured under following conditions:  
EA = Port0 = VCC; RESET = VSS; XTAL2 = N.C.; XTAL1 = VSS; all other pins are disconnected.  
ICC (active mode) is measured with:  
XTAL1 driven with tCLCH, tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC – 0.5 V; XTAL2 = N.C.;  
EA = Port0 = RESET = VCC; all other pins are disconnected. ICC would be slightly higher if a crystal oscillator  
is used (appr. 1 mA).  
5)  
7)  
I
CC (Idle mode) is measured with all output pins disconnected and with all peripherals disabled;  
XTAL1 driven with tCLCH, tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC – 0.5 V; XTAL2 = N.C.;  
RESET = EA = VSS; Port0 = VCC; all other pins are disconnected;  
ICC max at other frequencies is given by:  
active mode:  
idle mode:  
I
I
CC max = 1.32 x fOSC + 7.48  
CC max = 0.40 x fOSC + 2.62  
where fOSC is the oscillator frequency in MHz. ICC values are given in mA and measured at VCC = 5 V.  
Semiconductor Group  
34  
C502  
AC Characteristics for SAB-C502-L / C502-2R  
CC = 5 V + 10 %, – 15 %; VSS = 0 V  
V
TA = 0 ˚C to + 70 ˚C  
TA = – 40 ˚C to + 85 ˚C  
for the SAB-C502  
for the SAF-C502  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 12 MHz  
Unit  
12 MHz  
Clock  
min. max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
127  
43  
30  
2tCLCL – 40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instr in  
ALE to PSEN  
t
CLCL – 40  
CLCL – 53  
t
233  
4tCLCL – 100  
tLLPL  
tPLPH  
tPLIV  
58  
215  
tCLCL – 25  
PSEN pulse width  
PSEN to valid instr in  
3tCLCL – 35  
150  
0
3tCLCL – 100  
Input instruction hold after PSEN tPXIX  
0
*)  
Input instruction float after PSEN tPXIZ  
63  
tCLCL – 20  
*)  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
75  
tCLCL – 8  
302  
0
5tCLCL – 115  
0
*) Interfacing the SAB-C502-L/C502-2R to devices with float times up to 75 ns is permissible. This limited bus  
contention will not cause any damage to port 0 Drivers.  
Semiconductor Group  
35  
C502  
AC Characteristics for SAB-C502-L / C502-2R  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 12 MHz  
Unit  
12 MHz  
Clock  
min. max. min.  
max.  
RD pulse width  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
400  
400  
30  
6tCLCL – 100  
6tCLCL – 100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR pulse width  
Address hold after ALE  
RD to valid data in  
tCLCL – 53  
252  
5tCLCL – 165  
Data hold after RD  
0
0
Data float after RD  
97  
517  
585  
300  
2tCLCL – 70  
8tCLCL – 150  
9tCLCL – 165  
3tCLCL + 50  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
200  
203  
43  
33  
433  
33  
3tCLCL – 50  
4tCLCL – 130  
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
123  
t
CLCL – 40  
CLCL – 50  
tCLCL + 40  
t
0
7tCLCL – 150  
tCLCL – 50  
0
Semiconductor Group  
36  
C502  
External Clock Drive  
Parameter  
Symbol  
Limit Values  
Unit  
Variable Clock  
Freq. = 3.5 MHz to 12 MHz  
min.  
83.3  
20  
20  
max.  
Oscillator period  
High time  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
285.7  
ns  
ns  
ns  
ns  
ns  
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
t
Rise time  
20  
20  
Fall time  
Semiconductor Group  
37  
C502  
AC Characteristics for SAB-C502-L20 / C502-2R20  
CC = 5 V + 10 %, – 15 %; VSS = 0 V  
V
TA = 0 ˚C to + 70 ˚C  
TA = – 40 ˚C to + 85 ˚C  
for the SAB-C502  
for the SAF-C502  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 20 MHz  
Unit  
20 MHz  
Clock  
min. max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
60  
20  
20  
2tCLCL – 40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instr in  
ALE to PSEN  
t
CLCL – 30  
CLCL – 30  
t
100  
4tCLCL – 100  
tLLPL  
tPLPH  
tPLIV  
25  
115  
tCLCL – 25  
PSEN pulse width  
PSEN to valid instr in  
3tCLCL – 35  
75  
0
3tCLCL – 75  
Input instruction hold after PSEN tPXIX  
0
*)  
Input instruction float after PSEN tPXIZ  
40  
tCLCL – 10  
*)  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
47  
tCLCL – 3  
190  
0
5tCLCL – 60  
0
*) Interfacing the SAB-C502-L20/C502-2R20 to devices with float times up to 45 ns is permissible. This limited  
bus contention will not cause any damage to port 0 Drivers.  
Semiconductor Group  
38  
C502  
AC Characteristics for SAB-C502-L20 / C502-2R20  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 20 MHz  
Unit  
18 MHz  
Clock  
min. max. min.  
max.  
RD pulse width  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
200  
200  
20  
6tCLCL – 100  
6tCLCL – 100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR pulse width  
Address hold after ALE  
RD to valid data in  
tCLCL – 30  
155  
5tCLCL – 95  
Data hold after RD  
0
0
Data float after RD  
76  
250  
285  
200  
2tCLCL – 24  
8tCLCL – 150  
9tCLCL – 165  
3tCLCL + 50  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
100  
70  
20  
5
3tCLCL – 50  
4tCLCL – 130  
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
80  
t
CLCL – 30  
CLCL – 45  
tCLCL + 30  
t
0
200  
10  
7tCLCL – 150  
tCLCL – 40  
0
Semiconductor Group  
39  
C502  
External Clock Drive  
Parameter  
Symbol  
Limit Values  
Unit  
Variable Clock  
Freq. = 3.5 MHz to 20 MHz  
min.  
50  
12  
12  
max.  
Oscillator period  
High time  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
285.7  
ns  
ns  
ns  
ns  
ns  
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
t
Rise time  
12  
12  
Fall time  
Figure 7  
Program Memory Read Cycle  
Semiconductor Group  
40  
C502  
Figure 8  
Data Memory Read Cycle  
Semiconductor Group  
41  
C502  
Figure 9  
Data Memory Write Cycle  
Semiconductor Group  
42  
C502  
ROM Verification Characteristics for SAB-C502-2R  
ROM Verification Mode 1  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
Address to valid data  
ENABLE to valid data  
Data float after ENABLE  
Oscillator frequency  
tAVQV  
tELQV  
0
4
48tCLCL  
48tCLCL  
48tCLCL  
6
ns  
ns  
tEHQZ  
1/tCLCL  
ns  
MHz  
Figure 10  
ROM Verification Mode 1  
Semiconductor Group  
43  
C502  
AC Inputs during testing are driven at VCC – 0.5 V for a logic ‘1’ and 0.45 V for a logic ‘0’. Timing  
measurements are made at VIHmin for a logic ‘1’ and VILmax for a logic ‘0’.  
Figure 11  
AC Testing: Input, Output Waveforms  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage  
occurs and begins to float when a 100 mV change from the loaded VOH / VOL level occurs.  
IOL / IOH ≥ ± 20 mA.  
Figure 12  
AC Testing: Float Waveforms  
Figure 13  
External Clock Cycle  
Semiconductor Group  
44  
C502  
Figure 14  
Recommended Oscillator Circuits  
Semiconductor Group  
45  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY