SAFC501 [INFINEON]

8-Bit CMOS Microcontroller; 8位CMOS微控制器
SAFC501
型号: SAFC501
厂家: Infineon    Infineon
描述:

8-Bit CMOS Microcontroller
8位CMOS微控制器

微控制器
文件: 总48页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microcomputer Components  
8-Bit CMOS Microcontroller  
C501  
Data Sheet 04.97  
C501 Data Sheet  
Revision History :  
1997-04-01  
Previous Releases :  
11.92, 11.93, 08.94, 08.95, 10.96  
Subjects (changes since last revision)  
Page  
Page  
(previous (new  
version)  
general  
version)  
C501G-1E OTP version included  
4
5
4
5
Ordering information resorted and C501G-1E types added  
Table with literature hints added  
5-7  
11  
5-7  
11  
Pin configuration logic symbol for pins EA/Vpp and ALE/PROG updated  
Pin description for ALE/PROG and EA/Vpp completed  
8, 9, 10  
8, 9, 10 Port 1, 3, 2 pin description: “bidirectional” replaced by “quasi-  
bidirectional”  
13  
14  
-
13  
14  
15  
Block diagram updated for C501G-1E  
New design of register (PSW) description  
“Memory organization” added  
15-18  
17  
-
-
41  
-
16-18  
17  
25-28  
31  
41  
43, 44  
Actualized design of the SFR tables  
Reset value of T2CON corrected  
Description for the C501-1E OTP version added  
DC characteristics for C501-1E added  
Timing “External Clock Drive” now behind “Data Memory Cycle”  
AC characteristics for C501-1E added  
Edition 1997-04-01  
Published by Siemens AG,  
Bereich Halbleiter, Marketing-  
Kommunikation, Balanstraße 73,  
81541 München  
© Siemens AG 1997.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes  
and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies  
and Representatives worldwide (see address list).  
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact  
your nearest Siemens Office, Semiconductor Group.  
Siemens AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will  
take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs in-  
curred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express  
written approval of the Semiconductor Group of Siemens AG.  
1
A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the  
failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.  
2
Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain hu-  
man life. If they fail, it is reasonable to assume that the health of the user may be endangered.  
8-Bit CMOS Microcontroller  
C501  
Preliminary  
Fully compatible to standard 8051 microcontroller  
Versions for 12/24/40 MHz operating frequency  
Program memory : completely external (C501-L)  
8K × 8 ROM (C501-1R)  
8K × 8 OTP memory (C501-1E)  
256 × 8 RAM  
Four 8-bit ports  
Three 16-bit timers / counters (timer 2 with up/down counter feature)  
USART  
Six interrupt sources, two priority levels  
Power saving modes  
Quick Pulse programming algorithm (C501-1E only)  
2-Level program memory lock (C501-1E only)  
P-DIP-40, P-LCC-44, and P-MQFP-44 package  
Temperature ranges :  
SAB-C501  
SAF-C501  
TA : 0 ˚C to 70 ˚C  
TA : – 40 ˚C to 85 ˚C  
Power  
Saving  
Modes  
RAM  
256 x 8  
Port 0  
Port 1  
Port 2  
Port 3  
Ι
Ι
Ι
Ι
/O  
/O  
/O  
/O  
T0  
T1  
USART  
T2  
CPU  
8K x 8 ROM (C501-1R)  
8K x 8 OTP (C501-1E)  
MCA03238  
Figure 1  
C501G Functional Units  
Semiconductor Group  
3
1997-04-01  
C501  
The C501-1R contains a non-volatile 8K × 8 read-only program memory, a volatile 256 × 8 read/  
write data memory, four ports, three 16-bit timers counters, a seven source, two priority level  
interrupt structure and a serial port. The C501-L is identical, except that it lacks the program  
memory on chip. The C501-1E contains a one-time programmable (OTP) program memory on chip.  
The term C501 refers to all versions within this specification unless otherwise noted. Further, the  
term C501 refers to all versions which are available in the different temperature ranges, marked with  
SAB-C501... or SAF-C501.... .  
Ordering Information  
Type  
Ordering Code Package  
Description  
(8-Bit CMOS microcontroller)  
SAB-C501G-LN  
SAB-C501G-LP  
SAB-C501G-LM  
Q67120-C969  
Q67120-C968  
Q67127-C970  
P-LCC-44  
P-DIP-40  
P-MQFP-44  
for external memory (12 MHz)  
for external memory (24 MHz)  
for external memory (40 MHz)  
for external memory (24 MHz)  
SAB-C501G-L24N  
SAB-C501G-L24P  
SAB-C501G-L24M  
Q67120-C1001 P-LCC-44  
Q67120-C999 P-DIP-40  
Q67127-C1014 P-MQFP-44  
SAB-C501G-L40N  
SAB-C501G-L40P  
SAB-C501G-L40M  
Q67120-C1002 P-LCC-44  
Q67120-C1000 P-DIP-40  
Q67127-C1009 P-MQFP-44  
SAF-C501G-L24N  
SAF-C501G-L24P  
Q67120-C1011 P-LCC-44  
Q67120-C1010 P-MQFP-44 ext. temp. – 40 ˚C to 85 ˚C  
SAB-C501G-1RN  
SAB-C501G-1RP  
SAB-C501G-1RM  
Q67120-DXXX P-LCC-44  
Q67120-DXXX P-DIP-40  
Q67127-DXXX P-MQFP-44  
with mask-programmable ROM (12 MHz)  
SAB-C501G-1R24N Q67120-DXXX P-LCC-44  
SAB-C501G-1R24P Q67120-DXXX P-DIP-40  
SAB-C501G-1R24M Q67127-DXXX P-MQFP-44  
with mask-programmable ROM (24 MHz)  
with mask-programmable ROM (40 MHz)  
SAB-C501G-1R40N Q67120-DXXX P-LCC-44  
SAB-C501G-1R40P Q67120-DXXX P-DIP-40  
SAB-C501G-1R40M Q67127-DXXX P-MQFP-44  
SAF-C501G-1R24N Q67120-DXXX P-LCC-44  
SAF-C501G-1R24P Q67120-DXXX P-DIP-40  
with mask-programmable ROM (24 MHz)  
ext. temp. – 40 ˚C to 85 ˚C  
SAB-C501G-1EN  
SAB-C501G-1EP  
Q67120-C1054 P-LCC-44  
Q67120-C1056 P-DIP-40  
with OTP memory (12 MHz)  
SAF-C501G-1EN  
SAF-C501G-1EP  
Q67120-C2002 P-LCC-44  
Q67120-C2003 P-DIP-40  
with OTP memory (12 MHz))  
ext. temp. – 40 ˚C to 85 ˚C  
SAB-C501G-1E24N Q67120-C2005 P-LCC-44  
SAB-C501G-1E24P Q67120-C2006 P-DIP-40  
with OTP memory (24 MHz)  
SAF-C501G-1E24N Q67120-C2008 P-LCC-44  
SAF-C501G-1E24P Q67120-C2009 P-DIP-40  
with OTP memory (24 MHz))  
ext. temp. – 40 ˚C to 85 ˚C  
Semiconductor Group  
4
1997-04-01  
C501  
Note: Versions for extended temperature range – 40 ˚C to 110 ˚C (SAH-C501G) on request.  
The ordering number of ROM types (DXXX extensions) is defined after program release  
(verification) of the customer.  
Additional Literature  
For further information about the C501 the following literature is available :  
Title  
Ordering Number  
C501 8-Bit CMOS Microcontroller User’s Manual  
B158-H6723-X-X-7600  
B158-H6987-X-X-7600  
C500 Microcontroller Family  
Architecture and Instruction Set User’s Manual  
C500 Microcontroller Family - Pocket Guide  
B158-H6986-X-X-7600  
V
6
5
4
3
2
1 44 43 42 41 40  
P1.5  
P1.6  
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA/VPP  
P1.7  
9
RESET  
RxD/P3.0  
N.C.  
10  
11  
12  
13  
14  
15  
16  
17  
C501  
N.C.  
TxD/P3.1  
INT0/P3.2  
INT1/P3.3  
T0/P3.4  
T1/P3.5  
ALE/PROG  
PSEN  
P2.7/A15  
P2.6/A14  
P2.5/A13  
18 19 20 21 22 23 24 25 26 27 28  
MCP03214  
V
Figure 2  
Pin Configuration P-LCC-44 Package (Top view)  
Semiconductor Group  
5
1997-04-01  
C501  
T2/P1.0  
T2EX/P1.1  
P1.2  
1
40  
39  
VCC  
2
P0.0/AD0  
P0.1/AD1  
P0.2/AD2  
P0.3/AD3  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA/VPP  
3
38  
P1.3  
4
37  
P1.4  
5
36  
P1.5  
6
35  
P1.6  
7
34  
P1.7  
8
33  
RESET  
RxD/P3.0  
TxD/P3.1  
INT0/P3.2  
9
32  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
31  
C501  
30  
ALE/PROG  
PSEN  
29  
28  
P2.7/A15  
P2.6/A14  
P2.5/A13  
P2.4/A12  
P2.3/A11  
P2.2/A10  
P2.1/A9  
INT1/P3.3  
T0/P3.4  
T1/P3.5  
WR/P3.6  
RD/P3.7  
XTAL2  
27  
26  
25  
24  
23  
XTAL1  
22  
21  
P2.0/A8  
VSS  
MCP03215  
Figure 3  
Pin Configuration P-DIP-40 Package (top view)  
Semiconductor Group  
6
1997-04-01  
C501  
V
33 32 31 30 29 28 27 26 25 24 23  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
VCC  
N.C.  
P1.0/T2  
P1.1/T2EX  
P1.2  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
P2.4/A12  
P2.3/A11  
P2.2/A10  
P2.1/A9  
P2.0/A8  
N.C.  
VSS  
XTAL1  
C501  
XTAL2  
RD/P3.7  
WR/P3.6  
P1.3  
P1.4  
1
2
3
4
5
6
7
8
9 10 11  
MCP03216  
Figure 4  
Pin Configuration P-MQFP-44 Package (top view)  
VCC  
VSS  
Port 0  
8-Bit Digital Ι /O  
XTAL1  
XTAL2  
Port 1  
8-Bit Digital Ι /O  
RESET  
C501  
Port 2  
8-Bit Digital Ι /O  
EA/  
VPP  
ALE/PROG  
PSEN  
Port 3  
8-Bit Digital Ι /O  
MCL03217  
Figure 5  
Logic Symbol  
Semiconductor Group  
7
1997-04-01  
C501  
Table 1  
Pin Definitions and Functions  
Symbol  
Pin Number  
P-LCC-44 P-DIP-40 P-MQFP-44  
I/O*) Function  
P1.0 – P1.7 2–9  
1–8  
40–44,  
1–3,  
I/O  
Port 1  
is a quasi-bidirectional I/O port with  
internal pull-up resistors. Port 1 pins that  
have 1s written to them are pulled high by  
the internal pullup resistors, and in that  
state can be used as inputs. As inputs,  
port 1 pins being externally pulled low will  
source current (IIL, in the DC character-  
istics) because of the internal pull-up  
resistors. Port 1 also contains the timer 2  
pins as secondary function. The output  
latch corresponding to a secondary  
function must be pro-grammed to a one  
(1) for that function to operate.  
The secondary functions are assigned to  
the pins of port 1, as follows:  
2
3
1
2
40  
41  
P1.0 T2  
Input to counter 2  
P1.1 T2EX Capture - Reload trigger of  
timer 2 / Up-Down count  
*) I = Input  
O = Output  
Semiconductor Group  
8
1997-04-01  
C501  
Table 1  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number  
I/O*) Function  
P-LCC-44 P-DIP-40 P-MQFP-44  
P3.0 – P3.7 11,  
13–19  
10–17  
5, 7–13  
I/O  
Port 3  
is a quasi-bidirectional I/O port with  
internal pull-up resistors. Port 3 pins that  
have 1s written to them are pulled high by  
the internal pull-up resistors, and in that  
state they can be used as inputs. As  
inputs, port 3 pins being externally pulled  
low will source current (IIL, in the DC  
characteristics) because of the internal  
pull-up resistors. Port 3 also contains the  
interrupt, timer, serial port 0 and external  
memory strobe pins which are used by  
various options. The output latch  
corresponding to a secondary function  
must be programmed to a one (1) for that  
function to operate.  
The secondary functions are assigned to  
the pins of port 3, as follows:  
11  
13  
10  
11  
5
7
P3.0 R×D receiver data input (asyn-  
chronous) or data input  
output (synchronous) of  
serial interface 0  
P3.1 T×D transmitter data output  
(asynchronous) or clock  
output (synchronous) of  
the serial interface 0  
14  
15  
12  
13  
8
9
P3.2 INT0 interrupt 0 input/timer 0  
gate control  
P3.3 INT1 interrupt 1 input/timer 1  
gate control  
16  
17  
18  
14  
15  
16  
10  
11  
12  
P3.4 T0  
P3.5 T1  
P3.6 WR  
counter 0 input  
counter 1 input  
the write control signal lat-  
ches the data byte from  
port 0 into the external  
data memory  
19  
17  
13  
P3.7 RD  
the read control signal  
enables the external data  
memory to port 0  
*) I = Input  
O = Output  
Semiconductor Group  
9
1997-04-01  
C501  
Table 1  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number  
I/O*) Function  
P-LCC-44 P-DIP-40 P-MQFP-44  
XTAL2  
20  
18  
14  
XTAL2  
Output of the inverting oscillator  
amplifier.  
XTAL1  
21  
19  
15  
XTAL1  
Input to the inverting oscillator amplifier  
and input to the internal clock generator  
circuits.  
To drive the device from an external  
clock source, XTAL1 should be driven,  
while XTAL2 is left unconnected. There  
are no requirements on the duty cycle of  
the external clock signal, since the input  
to the internal clocking circuitry is divided  
down by a divide-by-two flip-flop.  
Minimum and maximum high and low  
times as well as rise fall times specified  
in the AC characteristics must be  
observed.  
P2.0 – P2.7 24–31  
21–28  
18–25  
I/O  
Port 2  
is a quasi-bidirectional I/O port with  
internal pull-up resistors. Port 2 pins that  
have 1s written to them are pulled high  
by the internal pull-up resistors, and in  
that state they can be used as inputs. As  
inputs, port 2 pins being externally pulled  
low will source current (IIL, in the DC  
characteristics) because of the internal  
pull-up resistors. Port 2 emits the high-  
order address byte during fetches from  
external program memory and during  
accesses to external data memory that  
use 16-bit addresses (MOVX @DPTR).  
In this application it uses strong internal  
pull-up resistors when issuing 1s. During  
accesses to external data memory that  
use 8-bit addresses (MOVX @Ri), port  
2 issues the contents of the P2 special  
function register.  
*) I = Input  
O = Output  
Semiconductor Group  
10  
1997-04-01  
C501  
Table 1  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number  
I/O*) Function  
P-LCC-44 P-DIP-40 P-MQFP-44  
PSEN  
32  
29  
26  
O
The Program Store Enable  
output is a control signal that enables the  
external program memory to the bus  
during external fetch operations. It is  
activated every six oscillator periods  
except during external data memory  
accesses. Remains high during internal  
program execution.  
RESET  
10  
9
4
I
RESET  
A high level on this pin for two machine  
cycles while the oscillator is running  
resets the device. An internal diffused  
resistor to VSS permits power-on reset  
using only an external capacitor to VCC.  
ALE/PROG 33  
30  
27  
I/O  
The Address Latch Enable  
output is used for latching the low-byte of  
the address into external memory during  
normal operation. It is activated every six  
oscillator periods except during an  
external data memory access.  
For the C501-1E this pin is also the  
program pulse input (PROG) during OTP  
memory programming.  
EA/VPP  
35  
31  
29  
I
External Access Enable  
When held at high level, instructions are  
fetched from the internal ROM (C501-1R  
and C501-1E) when the PC is less than  
2000 . When held at low level, the C501  
H
fetches all instructions from external  
program memory. For the C501-L this  
pin must be tied low.  
This pin also receives the programming  
supply voltage VPP during OTP memory  
programming (C501-1E) only).  
*) I = Input  
O = Output  
Semiconductor Group  
11  
1997-04-01  
C501  
Table 1  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number  
I/O*) Function  
P-LCC-44 P-DIP-40 P-MQFP-44  
P0.0 – P0.7 43–36  
39–32  
37–30  
I/O  
Port 0  
is an 8-bit open-drain bidirectional I/O  
port. Port 0 pins that have 1s written to  
them float, and in that state can be used  
as high-impedance inputs. Port 0 is also  
the multiplexed low-order address and  
data bus during accesses to external  
program or data memory. In this  
application it uses strong internal pull-up  
resistors when issuing 1s.  
Port 0 also outputs the code bytes during  
program verification in the C501-1R and  
C501-1E. External pull-up resistors are  
required during program verification.  
VSS  
22  
44  
20  
40  
16  
38  
Circuit ground potential  
Supply terminal for all operating modes  
No connection  
VCC  
N.C.  
1, 12,  
6, 17,  
23, 34  
28, 39  
*) I = Input  
O = Output  
Semiconductor Group  
12  
1997-04-01  
C501  
Functional Description  
The C501 is fully compatible to the standard 8051 microcontroller family.  
It is compatible with the 80C32/52/82C52. While maintaining all architectural and operational  
characteristics of the 8051microcontroller family, the C501 incorporates some enhancements in the  
timer 2 unit.  
Figure 6 shows a block diagram of the C501.  
C501  
VCC  
C501-1R : ROM  
C501-1E : OTP  
RAM  
VSS  
XTAL1  
XTAL2  
8K x 8  
256 x 8  
OSC & Timing  
CPU  
RESET  
ALE/PROG  
PSEN  
Port 0  
8-Bit Digit. Ι /O  
Timer 0  
Timer 1  
Timer 2  
Port 0  
Port 1  
Port 2  
Port 3  
EA/VPP  
Port 1  
8-Bit Digit. Ι /O  
Port 2  
8-Bit Digit. Ι /O  
Interrupt Unit  
Port 3  
8-Bit Digit. Ι /O  
Serial Channel  
(USART)  
MCB03219  
Figure 6  
Block Diagram of the C501  
Semiconductor Group  
13  
1997-04-01  
C501  
CPU  
The C501 is efficient both as a controller and as an arithmetic processor. It has extensive facilities  
for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program  
memory results from an instruction set consisting of 44 % one-byte, 41 % two-byte, and 15%  
three-byte instructions. With a 12 MHz crystal, 58% of the instructions are executed in 1.0 µs  
24 MHz: 500 ns, 40 MHz : 300 ns).  
Special Function Register PSW (Address D0 )  
H
Reset Value : 00  
H
Bit No. MSB  
LSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
H
H
H
H
H
H
H
H
D0  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
PSW  
H
Bit  
Function  
CY  
Carry Flag  
Used by arithmetic instruction.  
AC  
F0  
Auxiliary Carry Flag  
Used by instructions which execute BCD operations.  
General Purpose Flag  
RS1  
RS0  
Register Bank select control bits  
These bits are used to select one of the four register banks.  
RS1  
RS0  
Function  
Bank 0 selected, data address 00 -07  
0
0
1
1
0
1
0
1
H
H
Bank 1 selected, data address 08 -0F  
H
H
Bank 2 selected, data address 10 -17  
H
H
Bank 3 selected, data address 18 -1F  
H
H
OV  
Overflow Flag  
Used by arithmetic instruction.  
General Purpose Flag  
Parity Flag  
F1  
P
Set/cleared by hardware after each instruction to indicate an odd/even  
number of "one" bits in the accumulator, i.e. even parity.  
Semiconductor Group  
14  
1997-04-01  
C501  
Memory Organization  
The C501 CPU manipulates data and operands in the following four address spaces:  
– up to 64 Kbyte of internal/external program memory  
– up to 64 Kbyte of external data memory  
– 256 bytes of internal data memory  
– a 128 byte special function register area  
Figure 7 illustrates the memory address spaces of the C501.  
FFFF  
FFFF  
H
H
External  
External  
Indirect  
Address  
Direct  
Address  
FF  
80  
FF  
80  
H
H
H
H
Special  
Function  
Register  
Internal  
RAM  
2000  
H
7F  
H
1FFF  
H
H
Internal  
(EA = 1)  
External  
(EA = 0)  
Internal  
RAM  
0000  
0000  
00  
H
H
"Code Space"  
"Data Space"  
"Internal Data Space"  
MCD03224  
Figure 7  
C501 Memory Map  
Semiconductor Group  
15  
1997-04-01  
C501  
Special Function Registers  
The registers, except the program counter and the four general purpose register banks, reside in  
the special function register area.  
The 27 special function registers (SFRs) include pointers and registers that provide an interface  
between the CPU and the other on-chip peripherals. All SFRs with addresses where address bits  
0-2 are 0 (e.g. 80 , 88 , 90 , 98 , ..., F8 , FF ) are bitaddressable.  
H
H
H
H
H
H
The SFRs of the C501 are listed in table 2 and table 3. In table 2 they are organized in groups  
which refer to the functional blocks of the C501. Table 3 illustrates the contents of the SFRs in  
numeric order of their addresses.  
Semiconductor Group  
16  
1997-04-01  
C501  
Table 2  
Special Function Registers - Functional Blocks  
Block  
Symbol  
Name  
Address Contents after  
Reset  
1)  
CPU  
ACC  
B
DPH  
DPL  
PSW  
SP  
Accumulator  
B-Register  
Data Pointer, High Byte  
Data Pointer, Low Byte  
Program Status Word Register  
Stack Pointer  
E0  
F0  
83  
82  
00  
00  
00  
00  
00  
07  
H
H
H
H
H
H
H
1)  
H
H
H
1)  
D0  
H
81  
H
1)  
1)  
3)  
3)  
Interrupt  
System  
IE  
IP  
Interrupt Enable Register  
Interrupt Priority Register  
A8  
B8  
0X000000  
XX000000  
H
H
B
B
1)  
1)  
1)  
1)  
Ports  
P0  
P1  
P2  
P3  
Port 0  
Port 1  
Port 2  
Port 3  
80  
90  
A0  
B0  
FF  
H
H
H
H
H
FF  
H
FF  
H
FF  
H
3)  
Serial  
Channel  
PCON 2)  
SBUF  
SCON  
Power Control Register  
Serial Channel Buffer Register  
Serial Channel Control Register  
87  
99  
98  
0XXX0000  
H
H
H
B
3)  
XX  
00  
H
H
1)  
1)  
Timer 0 / TCON  
Timer 1  
Timer 0/1 Control Register  
Timer 0, High Byte  
Timer 1, High Byte  
Timer 0, Low Byte  
Timer 1, Low Byte  
Timer Mode Register  
88  
00  
H
H
TH0  
TH1  
TL0  
TL1  
TMOD  
8C  
8D  
8A  
00  
H
H
H
H
H
00  
H
00  
H
8B  
89  
00  
H
00  
H
H
1)  
Timer 2  
T2CON  
T2MOD  
RC2H  
RC2L  
TH2  
Timer 2 Control Register  
Timer 2 Mode Register  
Timer 2 Reload/Capture Register, High Byte CB  
Timer 2 Reload/Capture Register, Low Byt CA  
Timer 2 High Byte  
Timer 2 Low Byte  
C8  
C9  
00  
H
XXXXXXX0  
H
H
H
H
H
H
3)  
B
00  
H
00  
H
CD  
CC  
00  
H
TL2  
00  
H
3)  
Pow.Sav. PCON 2)  
Modes  
Power Control Register  
87  
0XXX0000  
H
B
1) Bit-addressable special function registers  
2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3) “X“ means that the value is undefined and the location is reserved  
Semiconductor Group  
17  
1997-04-01  
C501  
Table 3  
Contents of the SFRs, SFRs in numeric order of their addresses  
Addr Register Content Bit 7  
after  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1)  
Reset  
2)  
80  
81  
82  
83  
87  
P0  
FF  
07  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.3  
.2  
.1  
.0  
H
H
H
H
H
H
SP  
.3  
.2  
.1  
.0  
H
H
H
DPL  
DPH  
PCON  
00  
00  
.3  
.2  
.1  
.0  
.3  
.2  
.1  
.0  
0XXX- SMOD –  
0000  
GF1  
GF0  
PDE  
IDLE  
B
2)  
88  
89  
TCON  
TMOD  
TL0  
00  
00  
00  
00  
00  
00  
TF1  
TR1  
TF0  
M1  
.5  
TR0  
M0  
.4  
IE1  
IT1  
IE0  
M1  
.1  
IT0  
M0  
.0  
H
H
H
H
H
H
H
H
GATE C/T  
GATE C/T  
8A  
.7  
.6  
.3  
.2  
H
H
8B  
TL1  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
8C  
8D  
90  
TH0  
TH1  
P1  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
2)  
FF  
00  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
H
H
2)  
98  
99  
SCON  
SBUF  
P2  
SM0  
.7  
SM1  
.6  
SM2  
.5  
REN  
.4  
TB8  
.3  
RB8  
.2  
TI  
RI  
.0  
H
XX  
.1  
H
2)  
2)  
A0  
A8  
FF  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
H
IE  
0X00-  
0000  
EA  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
B
2)  
2)  
B0  
B8  
P3  
IP  
FF  
RD  
WR  
T1  
T0  
INT1  
PT1  
INT0  
PX1  
TxD  
PT0  
RxD  
PX0  
H
H
H
XX00.  
0000  
PT2  
PS  
B
2)  
C8  
C9  
T2CON 00  
TF2  
EXF2 RCLK TCLK EXEN2 TR2  
C/T2  
CP/RL2  
DCEN  
H
H
T2MOD XXXX-  
XXX0  
H
B
CA  
CB  
RC2L  
RC2H  
TL2  
00  
00  
00  
00  
00  
00  
00  
.7  
.7  
.7  
.7  
CY  
.7  
.7  
.6  
.6  
.6  
.6  
AC  
.6  
.6  
.5  
.5  
.5  
.5  
F0  
.5  
.5  
.4  
.3  
.2  
.1  
.1  
.1  
.1  
F1  
.1  
.1  
.0  
.0  
.0  
.0  
P
H
H
H
H
H
H
H
H
H
.4  
.3  
.2  
CC  
CD  
D0  
.4  
.3  
.2  
H
TH2  
PSW  
ACC  
B
.4  
.3  
.2  
H
2)  
RS1  
.4  
RS0  
.3  
OV  
.2  
H
2)  
E0  
F0  
.0  
.0  
H
2)  
.4  
.3  
.2  
H
1) X means that the value is undefined and the location is reserved  
2) Bit-addressable special function registers  
Semiconductor Group  
18  
1997-04-01  
C501  
Timer / Counter 0 and 1  
Timer/counter 0 and 1 can be used in four operating modes as listed in table 4.  
Table 4  
Timer/Counter 0 and 1 Operating Modes  
Mode Description  
TMOD  
Gate C/T M1  
Input Clock  
internal external (max)  
M0  
0
8-bit timer/counter with a  
X
X
0
0
fOSC 12 × 32  
/
fOSC/24 × 32  
divide-by-32 prescaler  
1
2
16-bit timer/counter  
X
X
X
X
1
0
1
0
fOSC 12  
/
fOSC 24  
/
8-bit timer/counter with  
8-bit autoreload  
fOSC 12  
/
fOSC 24  
/
3
Timer/counter 0 used as one  
8-bit timer/counter and one  
8-bit timer  
X
X
1
1
fOSC 12  
/
fOSC/24  
Timer 1 stops  
In the “timer” function (C/T = ‘0’) the register is incremented every machine cycle. Therefore the  
count rate is fOSC/12.  
In the “counter” function the register is incremented in response to a 1-to-0 transition at its  
corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a  
falling edge the max. count rate is fOSC/24. External inputs INTO and INT1 (P3.2, P3.3) can be  
programmed to function as a gate to facilitate pulse width measurements. Figure 8 illustrates the  
input clock logic.  
f OSC  
f OSC/12  
÷
12  
C/T  
TMOD  
0
1
P3.4/T0  
P3.5/T1  
max f OSC/24  
Timer 0/1  
Input Clock  
TR 0/1  
TCON  
Control  
&
Gate  
=1  
TMOD  
_
<
1
P3.2/INT0  
P3.3/INT1  
MCS01768  
Figure 8  
Timer/Counter 0 and 1 Input Clock Logic  
Semiconductor Group  
19  
1997-04-01  
C501  
Timer 2  
Timer 2 is a 16-bit timer/counter with an up/down count feature. It can operate either as timer or as  
an event counter which is selected by bit C/T2 (T2CON.1). It has three operating modes as shown  
in table 5.  
Table 5  
Timer/Counter 2 Operating Modes  
T2CON  
T2MOD T2CON  
Input Clock  
external  
P1.1/  
T2EX  
R×CLK  
Mode  
Remarks  
CP/  
or  
TR2  
internal  
RL2  
(P1.0/T2)  
DCEN  
EXEN  
T×CLK  
16-bit  
Auto-  
reload  
0
0
0
1
1
0
0
X
reload upon  
overflow  
reload trigger  
(falling edge)  
Down counting  
Up counting  
0
0
1
max  
OSC/24  
f
OSC/12  
f
f
f
0
0
0
0
1
1
1
1
X
X
0
1
16-bit  
Cap-  
ture  
0
1
1
X
0
X
16 bit Timer/  
Counter (only  
up-counting)  
capture TH2,  
TL2 RC2H,  
RC2L  
max  
OSC/24  
fOSC/12  
0
1
1
X
1
Baud  
Rate  
Gene-  
rator  
1
1
X
X
1
1
X
X
0
1
X
no overflow  
interrupt  
request (TF2)  
extra external  
interrupt  
max  
OSC/24  
f
OSC/2  
(“Timer 2”)  
off  
X
X
0
X
X
X
Timer 2 stops  
Note: =  
falling edge  
Semiconductor Group  
20  
1997-04-01  
C501  
Serial Interface (USART)  
The serial port is full duplex and can operate in four modes (one synchronous mode, three  
asynchronous modes) as illustrated in table 6. The possible baudrates can be calculated using the  
formulas given in table 7.  
Table 6  
USART Operating Modes  
SCON  
Baudrate  
Description  
Mode  
SM0  
SM1  
0
0
0
1
1
0
f
OSC/12  
Serial data enters and exits through R×D.  
T×D outputs the shift clock. 8-bit are  
transmitted/received (LSB first)  
1
2
3
1
0
1
Timer 1/2 overflow rate  
8-bit UART  
10 bits are transmitted (through T×D) or  
received (R×D)  
f
OSC/32 or fOSC/64  
9-bit UART  
11 bits are transmitted (T×D) or  
received (R×D)  
Timer 1/2 overflow rate  
9-bit UART  
Like mode 2 except the variable baud rate  
Table 7  
Formulas for Calculating Baudrates  
Baud Rate  
Interface Mode  
Baudrate  
derived from  
Oscillator  
0
2
fOSC/12  
(2SMOD × fOSC) / 64  
Timer 1 (16-bit timer)  
(8-bit timer with  
1,3  
1,3  
(2SMOD × timer 1 overflow rate) /32  
(2SMOD × fOSC) / (32 × 12 × (256-TH1))  
8-bit autoreload)  
Timer 2  
1,3  
fOSC / (32 × (65536-(RC2H, RC2L))  
Semiconductor Group  
21  
1997-04-01  
C501  
Interrupt System  
The C501 provides 6 interrupt sources with two priority levels. Figure 9 gives a general overview of  
the interrupt sources and illustrates the request and control flags.  
High Priority  
Low Priority  
Timer 0 Overflow  
TF0  
TCON.5  
ET0  
IE.1  
PT0  
IP.1  
Timer 1 Overflow  
Timer 2 Overflow  
TF1  
TCON.7  
TCON.0  
ET1  
IE.3  
PT1  
IP.3  
TF2  
T2CON.7  
_
<
1
P1.1/  
T2EX  
EXF2  
T2CON.6  
ET2  
IE.5  
PT2  
IP.5  
EXEN2  
T2CON.3  
RI  
SCON.0  
_
<
1
USART  
TI  
ES  
PS  
SCON.1  
IE.4  
IP.4  
P3.2/  
INT0  
IE0  
TCON.1  
IT0  
EX0  
IE.0  
PX0  
IP.0  
TCON.0  
P3.3/  
INT1  
IE1  
TCON.3  
IT1  
EX1  
IE.2  
EA  
PX1  
IP.2  
TCON.2  
IE.7  
MCS01783  
Figure 9  
Interrupt Request Sources  
Semiconductor Group  
22  
1997-04-01  
C501  
Table 8  
Interrupt Sources and their Corresponding Interrupt Vectors  
Source (Request Flags)  
Vector  
Vector Address  
IE0  
TF0  
IE1  
TF1  
RI + TI  
TF2 + EXF2  
External interrupt 0  
Timer 0 interrupt  
External interrupt 1  
Timer 1 interrupt  
Serial port interrupt  
Timer 2 interrupt  
0003  
H
000B  
H
0013  
H
001B  
H
0023  
H
002B  
H
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-  
priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.  
If two requests of different priority level are received simultaneously, the request of higher priority is  
serviced. If requests of the same priority are received simultaneously, an internal polling sequence  
determines which request is serviced. Thus within each priority level there is a second priority  
structure determined by the polling sequence as shown in table 9.  
Table 9  
Interrupt Priority-Within-Level  
Interrupt Source  
Priority  
External Interrupt 0,  
IE0  
High  
Timer 0 Interrupt,  
External Interrupt 1,  
Timer 1 Interrupt,  
Serial Channel,  
TF0  
IE1  
TF1  
RI + TI  
TF2 + EXF2  
Timer 2 Interrupt,  
Low  
Semiconductor Group  
23  
1997-04-01  
C501  
Power Saving Modes  
Two power down modes are available, the Idle Mode and Power Down Mode.  
The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode,  
respectively. If the Power Down mode and the Idle mode are set at the same time, the Power Down  
mode takes precedence. Table 10 gives a general overview of the power saving modes.  
Table 10  
Power Saving Modes Overview  
Mode  
Entering  
Instruction  
Example  
Leaving by  
Remarks  
Idle mode  
ORL PCON, #01H  
– enabled interrupt  
– Hardware Reset  
CPU is gated off  
CPU status registers maintain  
their data.  
Peripherals are active  
Power-Down  
Mode  
ORL PCON, #02H  
Hardware Reset  
Oscillator is stopped, contents  
of on-chip RAM and SFR’s are  
maintained (leaving Power  
Down Mode means redefinition  
of SFR contents).  
In the Power Down mode of operation, VCC can be reduced to minimize power consumption. It must  
be ensured, however, that VCC is not reduced before the Power Down mode is invoked, and that VCC  
is restored to its normal operating level, before the Power Down mode is terminated. The reset  
signal that terminates the Power Down mode also restarts the oscillator. The reset should not be  
activated before VCC is restored to its normal operating level and must be held active long enough  
to allow the oscillator to restart and stabilize (similar to power-on reset).  
Semiconductor Group  
24  
1997-04-01  
C501  
OTP Operation  
TM 1)  
The C501-1E is programmed by usng a modified Quick-Pulse Programming  
algorithm. It differs  
from older methods in the value used for VPP (programming supply voltage) and in the width and  
number of the ALE/PROG pulses. The C501-1E contains two signature bytes that can be read and  
used by a programming system to identify the device. The signature bytes identify the manufacturer  
of the device.  
Table 11 shows the logic levels for reading the signature byte, and for programming the program  
memory, the encryption table, and the security bits. The circuit configuration and waveforms for  
quick-pulse programming are shown in figures 10 to 12.  
Table 11  
OTP Programming Modes  
Mode  
RESET PSEN  
ALE/  
EA/VPP P2.7  
P2.6  
P3.7  
P3.6  
PROG  
Read signature  
1
1
1
1
1
1
0
0
0
0
0
0
1
0
1
0
0
0
1
0
1
0
1
1
1
0
0
0
0
1
1
0
1
1
1
1
0
0
1
1
0
1
0
Program code data  
Verify code data  
VPP  
1
Progam encryption table  
Program security bit 1  
Program security bit 2  
VPP  
VPP  
VPP  
Notes :  
1. “0” = valid low for that pin, “1” = valid high for that pin.  
2. VPP = 12.75 V ± 0.25V  
3. VCC = 5 V ± 10% during programming and verification.  
4. ALE/PROG receives 25 programming pulses while VPP is held at 12.75 V. Each programming pulse is low for  
100 µs (± 10 µs) and high for a minimum of 10 µs.  
1)  
Quick-Pulse ProgrammingTM is a trademark phrase of Intel Corporation  
Semiconductor Group  
25  
1997-04-01  
C501  
Quick-Pulse Programming  
The setup for microcontroller quick-pulse programming is shown in figure 10. Note that the C501-  
1E is running with a 4 to 6 MHz oscillator The reason the oscillator needs to be running is that the  
device is executing internal address and program data transfers.  
The address of the OTP memory location to be programmed is applied to port 1 and 2 as shown in  
figure 10. The code byte to be programmed into that location is applied to port 0. RESET, PSEN  
and pins of port 2 and 3 specified in table 11 are held at the “Program code data“ levels. The ALE/  
PROG signal is pulsed low 25 times as shown in figure 11.  
For programming of the encryption table, the 25 pulse programming sequence must be repeated for  
addresses 0 through 1F , using the “Program encrytion table“ levels. After the encryption table is  
H
programmed, verification cycles will produce only encrypted data.  
For programming of the security bits, the 25 pulse programming sequence must be repeat using the  
“Program security bit“ levels. After one security bit is programmed, further programming of the code  
memory and encryption table is disabled. However, the other security bit can still be programmed.  
Note that the EA/VPP pin must not be allowed to go above the maximum specified VPP level. for any  
amount of time. Even a narrow glitch above that voltage can cause permanent damage to the  
device. The VPP source should be well regulated and free of glitches and overshoots.  
Program Verification  
If security bit 2 has not been programmed, the on-chip OTP program memory can be read out for  
program verification. The address of the OTP program memory locations to be read is applied to  
ports 1 and 2 as shown in figure 12. The other pins are held at the “Verify code data“ levels  
indicated in table 11. The contents of the address location will be emitted on port 0. External pullups  
are required on port 0 for this operation.  
If the encryption table has been programmed, the data presented at port 0 will be the exclusive NOR  
of the program byte with one of the encryption bytes. The user will have to know the encryption  
table contents in order to correctly decode the verification data. The encryption table itself cannot be  
read out.  
Reading the SIgnature Bytes  
The signature bytes are read by the same procedure as a normal verification of loctions 30 and  
H
31 , except that P3.6 and P3.7 need to be pulled to a logic low. The values are :  
H
30 = E0 indicates manufacturer  
H
H
31 = 71 indicates C501-1E  
H
H
Semiconductor Group  
26  
1997-04-01  
C501  
+5 V  
A0 - A7  
1
Port 1  
VCC  
C501-1E  
RESET  
Programming  
Data  
Port 0  
1
1
P3.6  
P3.7  
V
EA/  
+12.75 V  
PP  
25 x 100µs  
ALE/PROG  
PSEN  
P2.7  
Low Pulses  
0
XTAL2  
4 - 6 MHz  
1
0
P2.6  
XTAL1  
VSS  
P2.0 - P2.4  
A8 - A12  
MCS03232  
Figure 10  
C501-1E OTP Memory Programming Configuration  
25 Pulses  
ALE/PROG  
ALE/PROG  
10  
µ
s min.  
µ
µ
1
0
MCT03234  
Figure 11  
C501-1E ALE/PROG Waveform  
Semiconductor Group  
27  
1997-04-01  
C501  
+5 V  
A0 - A7  
1
Port 1  
VCC  
C501-1E  
10 k  
RESET  
1
1
P3.6  
P3.7  
Programming  
Data  
Port 0  
V
EA/  
1
PP  
XTAL2  
ALE/PROG  
PSEN  
P2.7  
1
0
4 - 6 MHz  
0 Enable  
0
P2.6  
XTAL1  
VSS  
P2.0 - P2.4  
A8 - A12  
MCS03235  
Figure 12  
C501-1E OTP Memory Verification  
Semiconductor Group  
28  
1997-04-01  
C501  
Absolute Maximum Ratings  
Ambient temperature under bias (TA) ......................................................... – 40 to 85 °C  
Storage temperature (Tstg) .......................................................................... – 65 °C to 150 °C  
Voltage on VCC pins with respect to ground (VSS) ....................................... – 0.5 V to 6.5 V  
Voltage on any pin with respect to ground (VSS)......................................... – 0.5 V to VCC +0.5 V  
Input current on any pin during overload condition..................................... – 10 mA to 10 mA  
Absolute sum of all input currents during overload condition ..................... I 100 mA I  
Power dissipation........................................................................................ TBD  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage of the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for longer  
periods may affect device reliability. During overload conditions (VIN > VCC or VIN < VSS) the  
Voltage on VCC pins with respect to ground (VSS) must not exceed the values defined by the  
absolute maximum ratings.  
Semiconductor Group  
29  
1997-04-01  
C501  
DC Characteristics for C501-L / C501-1R  
VCC = 5 V + 10 %, – 15 %; VSS = 0 V;  
TA = 0 ˚C to 70 ˚C  
for the SAB-C501  
TA = – 40 ˚C to 85 ˚C for the SAF-C501  
Parameter  
Symbol  
Limit Values  
max.  
Unit Test Condition  
min.  
Input low voltage (except EA, VIL  
– 0.5  
0.2 VCC – 0.1 V  
RESET)  
Input low voltage (EA)  
VIL 1  
– 0.5  
– 0.5  
0.2 VCC – 0.3 V  
0.2 VCC + 0.1 V  
Input low voltage (RESET)  
VIL 2  
VIH  
Input high voltage (except  
XTAL1, EA, RESET)  
0.2 VCC + 0.9 VCC + 0.5  
V
Input high voltage to XTAL1 VIH 1  
0.7 VCC  
0.6 VCC  
VCC + 0.5  
VCC + 0.5  
V
V
Input high voltage to EA,  
RESET  
VIH 2  
Output low voltage  
(ports 1, 2, 3)  
VOL  
0.45  
0.45  
V
V
V
V
IOL = 1.6 mA1)  
IOL = 3.2 mA1)  
Output low voltage  
(port 0, ALE, PSEN)  
VOL 1  
VOH  
Output high voltage  
(ports 1, 2, 3)  
2.4  
0.9 VCC  
I
I
OH = – 80 µA,  
OH = – 10 µA  
Output high voltage  
(port 0 in external bus mode,  
ALE, PSEN)  
VOH 1  
2.4  
0.9 VCC  
I
I
OH = – 800 µA 2),  
OH = – 80 µA2)  
Logic 0 input current  
(ports 1, 2, 3)  
IIL  
– 10  
– 65  
– 50  
– 650  
± 1  
µA VIN = 0.45 V  
µA VIN = 2 V  
Logical 1-to-0 transition  
current (ports 1, 2, 3)  
ITL  
ILI  
Input leakage current  
(port 0, EA)  
µA 0.45 < VIN < VCC  
Pin capacitance  
CIO  
10  
pF  
fC = 1 MHz,  
TA = 25 ˚C  
Power supply current:  
Active mode, 12 MHz 7) ICC  
21  
4.8  
mA VCC = 5 V, 4)  
mA VCC = 5 V, 5)  
mA VCC = 5 V, 4)  
mA VCC = 5 V, 5)  
mA VCC = 5 V, 4)  
mA VCC = 5 V, 5)  
µA VCC = 2 … 5.5 V 3)  
Idle mode, 12 MHz 7)  
Active mode, 24 MHz 7) ICC  
Idle mode, 24 MHz 7)  
ICC  
36.2  
8.2  
56.5  
12.7  
50  
ICC  
Active mode, 40 MHz 7) ICC  
Idle mode, 40 MHz 7)  
Power Down Mode  
ICC  
IPD  
Notes see page 32.  
Semiconductor Group  
30  
1997-04-01  
C501  
DC Characteristics for C501-1E  
VCC = 5 V + 10 %, – 15 %; VSS = 0 V;  
TA = 0 ˚C to 70 ˚C  
for the SAB-C501  
TA = – 40 ˚C to 85 ˚C for the SAF-C501  
Parameter  
Symbol  
Limit Values  
max.  
Unit Test Condition  
min.  
Input low voltage (except  
VIL  
– 0.5  
0.2 VCC – 0.1 V  
EA/V , RESET)  
PP  
Input low voltage (EA/V )  
VIL 1  
VIL 2  
VIH  
– 0.5  
– 0.5  
0.1 VCC – 0.1 V  
0.2 VCC + 0.1 V  
PP  
Input low voltage (RESET)  
Input high voltage (except  
0.2 VCC + 0.9 VCC + 0.5  
V
XTAL1, EA/V , RESET)  
PP  
Input high voltage to XTAL1 VIH 1  
0.7 VCC  
0.6 VCC  
VCC + 0.5  
VCC + 0.5  
V
V
Input high voltage to EA/V , VIH 2  
PP  
RESET  
Output low voltage  
(ports 1, 2, 3)  
VOL  
0.45  
0.45  
V
V
V
V
IOL = 1.6 mA1)  
IOL = 3.2 mA1)  
Output low voltage  
(port 0, ALE/PROG, PSEN)  
VOL 1  
VOH  
Output high voltage  
(ports 1, 2, 3)  
2.4  
0.9 VCC  
I
I
OH = – 80 µA,  
OH = – 10 µA  
Output high voltage  
(port 0 in external bus mode,  
ALE/PROG, PSEN)  
VOH 1  
2.4  
0.9 VCC  
I
I
OH = – 800 µA 2),  
OH = – 80 µA2)  
Logic 0 input current  
(ports 1, 2, 3)  
IIL  
– 10  
– 65  
– 50  
– 650  
± 1  
µA VIN = 0.45 V  
µA VIN = 2 V  
Logical 1-to-0 transition  
current (ports 1, 2, 3)  
ITL  
ILI  
Input leakage current  
µA 0.45 < VIN < VCC  
(port 0, EA/V )  
PP  
Pin capacitance  
CIO  
10  
pF  
fC = 1 MHz,  
TA = 25 ˚C  
Power supply current:  
Active mode, 12 MHz 7) ICC  
21  
18  
36.2  
20  
50  
mA VCC = 5 V, 4)  
mA VCC = 5 V, 5)  
mA VCC = 5 V, 4)  
mA VCC = 5 V, 5)  
µA VCC = 2 … 5.5 V 3)  
Idle mode, 12 MHz 7)  
ICC  
Active mode, 24 MHz 7) ICC  
Idle mode, 24 MHz 7)  
Power Down Mode  
ICC  
IPD  
Notes see next page.  
Semiconductor Group  
31  
1997-04-01  
C501  
Notes:  
1)  
Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOL of ALE  
and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these  
pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise  
pulse on ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a schmitt-trigger,  
or use an address latch with a schmitt-trigger strobe input.  
2)  
3)  
4)  
Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall bellow the  
0.9 VCC specification when the address lines are stabilizing.  
I
PD (Power Down Mode) is measured under following conditions:  
EA = Port0 = VCC; RESET = VSS; XTAL2 = N.C.; XTAL1 = VSS; all other pins are disconnected.  
ICC (active mode) is measured with:  
XTAL1 driven with tCLCH, tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC – 0.5 V; XTAL2 = N.C.;  
EA = Port0 = RESET= VCC; all other pins are disconnected. ICC would be slightly higher if a crystal oscillator is  
used (appr. 1 mA).  
5)  
7)  
I
CC (Idle mode) is measured with all output pins disconnected and with all peripherals disabled;  
XTAL1 driven with tCLCH, tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC – 0.5 V; XTAL2 = N.C.;  
RESET = EA = VSS; Port0 = VCC; all other pins are disconnected;  
ICC max at other frequencies is given by:  
active mode:  
idle mode:  
I
CC = 1.27 x fOSC + 5.73  
ICC = 0.28 x fOSC + 1.45 (C501-L and C501-1R only)  
where fOSC is the oscillator frequency in MHz. ICC values are given in mA and measured at VCC = 5 V.  
Semiconductor Group  
32  
1997-04-01  
C501  
AC Characteristics for C501-L / C501-1R / C501-1E  
VCC = 5 V + 10 %, – 15 %; VSS = 0 V TA = 0 ˚C to 70 ˚C  
TA = – 40 ˚C to 85 ˚C for the SAF-C501  
for the SAB-C501  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 12 MHz  
Unit  
12 MHz  
Clock  
min. max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
127  
43  
30  
2tCLCL – 40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instr in  
ALE to PSEN  
t
CLCL – 40  
CLCL – 53  
t
233  
4tCLCL – 100  
tLLPL  
tPLPH  
tPLIV  
58  
215  
tCLCL – 25  
PSEN pulse width  
PSEN to valid instr in  
3tCLCL – 35  
150  
0
3tCLCL – 100  
Input instruction hold after PSEN tPXIX  
0
*)  
Input instruction float after PSEN tPXIZ  
63  
tCLCL – 20  
*)  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
75  
tCLCL – 8  
302  
0
5tCLCL – 115  
0
*) Interfacing the C501 to devices with float times up to 75 ns is permissible. This limited bus contention will not  
cause any damage to port 0 Drivers.  
Semiconductor Group  
33  
1997-04-01  
C501  
AC Characteristics for C501-L / C501-1R / C501-1E (cont’d)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 12 MHz  
Unit  
12 MHz  
Clock  
min. max. min.  
max.  
RD pulse width  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
400  
400  
30  
6tCLCL – 100  
6tCLCL – 100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR pulse width  
Address hold after ALE  
RD to valid data in  
tCLCL – 53  
252  
5tCLCL – 165  
Data hold after RD  
0
0
Data float after RD  
97  
517  
585  
300  
2tCLCL – 70  
8tCLCL – 150  
9tCLCL – 165  
3tCLCL + 50  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
200  
203  
43  
33  
433  
33  
3tCLCL – 50  
4tCLCL – 130  
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
123  
t
CLCL – 40  
CLCL – 50  
tCLCL + 40  
t
0
7tCLCL – 150  
CLCL – 50  
t
0
External Clock Drive Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
Unit  
Freq. = 3.5 MHz to 12 MHz  
min.  
83.3  
20  
20  
max.  
Oscillator period  
High time  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
285.7  
ns  
ns  
ns  
ns  
ns  
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
t
Rise time  
20  
20  
Fall time  
Semiconductor Group  
34  
1997-04-01  
C501  
AC Characteristics for C501-L24 / C501-1R24 / C501-1E24  
VCC = 5 V + 10 %, – 15 %; VSS = 0 V TA = 0 ˚C to 70 ˚C  
TA = – 40 ˚C to 85 ˚C for the SAF-C501  
for the SAB-C501  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 24 MHz  
Unit  
24 MHz  
Clock  
min. max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
43  
17  
17  
2tCLCL – 40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instr in  
ALE to PSEN  
t
CLCL – 25  
CLCL – 25  
t
80  
4tCLCL – 87  
tLLPL  
tPLPH  
tPLIV  
22  
95  
tCLCL – 20  
PSEN pulse width  
PSEN to valid instr in  
3tCLCL – 30  
60  
0
3tCLCL – 65  
Input instruction hold after PSEN tPXIX  
0
*)  
Input instruction float after PSEN tPXIZ  
32  
tCLCL – 10  
*)  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
37  
tCLCL – 5  
148  
0
5tCLCL – 60  
0
*) Interfacing the C501 to devices with float times up to 37 ns is permissible. This limited bus contention will not  
cause any damage to port 0 Drivers.  
Semiconductor Group  
35  
1997-04-01  
C501  
AC Characteristics for C501-L24 / C501-1R24 / C501-1E24 (cont’d)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 24 MHz  
Unit  
24 MHz  
Clock  
min. max. min.  
max.  
RD pulse width  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
180  
180  
15  
6tCLCL – 70  
6tCLCL – 70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR pulse width  
Address hold after ALE  
RD to valid data in  
tCLCL – 27  
118  
5tCLCL – 90  
Data hold after RD  
0
0
Data float after RD  
63  
200  
220  
175  
2tCLCL – 20  
8tCLCL – 133  
9tCLCL – 155  
3tCLCL + 50  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
75  
67  
17  
5
3tCLCL – 50  
4tCLCL – 97  
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
67  
t
CLCL – 25  
CLCL – 37  
tCLCL + 25  
t
0
170  
15  
7tCLCL – 122  
CLCL – 27  
t
0
External Clock Drive Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
Unit  
Freq. = 3.5 MHz to 24 MHz  
min.  
41.7  
12  
12  
max.  
Oscillator period  
High time  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
285.7  
ns  
ns  
ns  
ns  
ns  
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
t
Rise time  
12  
12  
Fall time  
Semiconductor Group  
36  
1997-04-01  
C501  
AC Characteristics for C501-L40 / C501-1R40  
VCC = 5 V + 10 %, – 15 %; VSS = 0 V TA = 0 ˚C to 70 ˚C  
for the SAB-C501  
TA = – 40 ˚C to 85 ˚C for the SAF-C501  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 40 MHz  
Unit  
40 MHz  
Clock  
min. max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
35  
10  
10  
2 tCLCL– 15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instr in  
ALE to PSEN  
t
CLCL– 15  
CLCL– 15  
t
55  
4 tCLCL– 45  
tLLPL  
tPLPH  
tPLIV  
10  
60  
tCLCL– 15  
PSEN pulse width  
PSEN to valid instr in  
3 tCLCL– 15  
25  
0
3 tCLCL– 50  
Input instruction hold after PSEN tPXIX  
0
*)  
Input instruction float after PSEN tPXIZ  
20  
tCLCL– 5  
*)  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
20  
tCLCL– 5  
65  
5 tCLCL– 60  
– 5  
– 5  
*) Interfacing the C501 to devices with float times up to 25ns is permissible. This limited bus contention will not  
cause any damage to port 0 Drivers.  
Semiconductor Group  
37  
1997-04-01  
C501  
AC Characteristics for C501-L40 / C501-1R40 (cont’d)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 40 MHz  
Unit  
40 MHz  
Clock  
min. max. min.  
max.  
RD pulse width  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
120  
120  
10  
6 tCLCL– 30  
6 tCLCL– 30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR pulse width  
Address hold after ALE  
RD to valid data in  
tCLCL– 15  
75  
5 tCLCL– 50  
Data hold after RD  
0
0
Data float after RD  
38  
150  
150  
90  
2 tCLCL– 12  
8 tCLCL– 50  
9 tCLCL– 75  
3 tCLCL+ 15  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
60  
70  
10  
5
3 tCLCL– 15  
4 tCLCL– 30  
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
40  
t
CLCL– 15  
CLCL– 20  
tCLCL+ 15  
t
0
125  
5
7 tCLCL– 50  
CLCL– 20  
t
0
External Clock Drive Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
Unit  
Freq. = 3.5 MHz to 40 MHz  
min.  
25  
10  
10  
max.  
Oscillator period  
High time  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
285.7  
ns  
ns  
ns  
ns  
ns  
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
t
Rise time  
10  
10  
Fall time  
Semiconductor Group  
38  
1997-04-01  
C501  
t LHLL  
ALE  
PSEN  
Port 0  
Port 2  
t AVLL  
t PLPH  
t LLPL  
t
LLIV  
t
PLIV  
t AZPL  
t LLAX  
t
PXAV  
PXIZ  
t
t PXIX  
A0 - A7  
Instr.IN  
A0 - A7  
t
AVIV  
A8 - A15  
A8 - A15  
MCT00096  
Figure 13  
Program Memory Read Cycle  
Semiconductor Group  
39  
1997-04-01  
C501  
tWHLH  
ALE  
PSEN  
RD  
t LLDV  
t LLWL  
t RLRH  
t RLDV  
t AVLL  
tRHDZ  
t LLAX2  
t RLAZ  
tRHDX  
A0 - A7 from  
Ri or DPL  
A0 - A7  
from PCL  
Instr.  
IN  
Port 0  
Data IN  
tAVWL  
t AVDV  
Port 2  
P2.0 - P2.7 or A8 - A15 from DPH  
A8 - A15 from PCH  
MCT00097  
Figure 14  
Data Memory Read Cycle  
Semiconductor Group  
40  
1997-04-01  
C501  
tWHLH  
ALE  
PSEN  
WR  
t LLWL  
t WLWH  
tQVWX  
t AVLL  
tWHQX  
t LLAX2  
tQVWH  
A0 - A7 from  
Ri or DPL  
A0 - A7  
from PCL  
Instr.IN  
Port 0  
Port 2  
Data OUT  
tAVWL  
P2.0 - P2.7 or A8 - A15 from DPH  
A8 - A15 from PCH  
MCT00098  
Figure 15  
Data Memory Write Cycle  
tCLCL  
V
CC- 0.5V  
0.45V  
0.7 VCC  
0.2 VCC- 0.1  
tCLCX  
tCHCX  
MCT00033  
tCHCL  
tCLCH  
Figure 16  
External Clock Drive at XTAL2  
Semiconductor Group  
41  
1997-04-01  
C501  
ROM Verification Characteristics for C501-1R  
ROM Verification Mode 1  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
Address to valid data  
ENABLE to valid data  
Data float after ENABLE  
Oscillator frequency  
tAVQV  
tELQV  
0
4
48tCLCL  
48tCLCL  
48tCLCL  
6
ns  
ns  
tEHQZ  
1/tCLCL  
ns  
MHz  
P1.0 - P1.7  
P2.0 - P2.4  
Address  
t AVQV  
Port 0  
Data OUT  
t ELQV  
tEHQZ  
P2.7  
ENABLE  
MCT00049  
V
Address: P1.0 - P1.7 = A0 - A7  
P2.0 - P2.4 = A8 - A12  
Inputs: P2.5 - P2.6, PSEN =  
VSS  
ALE, EA =  
RESET =  
V IH  
P0.0 - P0.7 = D0 - D7  
Data:  
SS  
Figure 17  
ROM Verification Mode 1  
Semiconductor Group  
42  
1997-04-01  
C501  
OTP Programming and Verification Characteristics  
VCC = 5 V ± 10%, VSS = 0 V, TA = 21 ˚C to + 27 ˚C  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
12.5  
max.  
13.0  
50  
Programming supply voltage  
Programming supply current  
Oscillator frequency  
VPP  
V
IPP  
mA  
MHz  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
1 / tCLCL  
tAVGL  
tGHAX  
tDVGL  
tGHDX  
tEHSH  
tSHGL  
tGHSL  
tGLGH  
tAVQV  
tELQV  
tEHQZ  
tGHGL  
4
6
Address setup to ALE/PROG low  
Address hold after ALE/PROG  
Data setup to ALE/PROG low  
Data hold after ALE/PROG  
P2.7 (ENABLE) high to VPP  
48 tCLCL  
48 tCLCL  
48 tCLCL  
48 tCLCL  
48 tCLCL  
10  
VPP setup to ALE/PROG low  
VPP hold after ALE/PROG low  
ALE/PROG width  
10  
90  
110  
Address to data valid  
48 tCLCL  
48 tCLCL  
48 tCLCL  
ENABLE low to data valid  
Data float after ENABLE  
ALE/PROG high to ALE/PROG low  
0
10  
Semiconductor Group  
43  
1997-04-01  
C501  
Programming  
Address  
Verification  
Address  
P1.0 - P1.7  
P2.0 - P2.4  
t AVQV  
Port 0  
Data  
Data  
t DVGL  
t AVGL  
t GHDX  
t GHAX  
ALE/PROG  
t GHGL  
t GHSL  
t GLGH  
t SHGL  
Logic 1  
EA/VPP  
Logic 0  
t EHSH  
t ELQV  
t EHQZ  
P2.7  
ENABLE  
MCT03237  
Figure 18  
C501-1E OTP Memory Program/Read Cycle  
Semiconductor Group  
44  
1997-04-01  
C501  
VCC -0.5 V  
0.2 VCC+0.9  
0.2 VCC -0.1  
Test Points  
0.45 V  
MCT00039  
AC Inputs during testing are driven at VCC – 0.5 V for a logic ‘1’ and 0.45 V for a logic ‘0’. Timing  
measurements are made at VIHmin for a logic ‘1’ and VILmax for a logic ‘0’.  
Figure 19  
AC Testing: Input, Output Waveforms  
-0.1 V  
VOH  
VLoad +0.1 V  
Timing Reference  
Points  
VLoad  
-0.1 V  
VLoad  
V
OL +0.1 V  
MCT00038  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage  
occurs and begins to float when a 100 mV change from the loaded VOH / VOL level occurs.  
IOL / IOH ≥ ± 20 mA.  
Figure 20  
AC Testing: Float Waveforms  
Crystal Oscillator Mode  
C
Driving from External Source  
N.C.  
XTAL2  
XTAL2  
P-LCC-44/Pin 20  
P-DIP-40/Pin 18  
M-QFP-44/Pin 14  
P-LCC-44/Pin 20  
P-DIP-40/Pin 18  
M-QFP-44/Pin 14  
3.5 - 40 MHz  
C
External Oscillator  
Signal  
XTAL1  
XTAL1  
P-LCC-44/Pin 21  
P-DIP-40/Pin 19  
M-QFP-44/Pin 15  
P-LCC-44/Pin 21  
P-DIP-40/Pin 19  
M-QFP-44/Pin 15  
C = 20 pF 10 pF  
MCS02452  
(incl. stray capacitance)  
Note: During programming and verification of the C501-1E OTP memory  
a clock signal of 4-6 MHz must be applied to the device.  
Figure 21  
Recommended Oscillator Circuits  
Semiconductor Group  
45  
1997-04-01  
C501  
Package Outlines  
Plastic Package, P-DIP-40 for C501G-L / C501G-1R  
(Plastic Dual in-Line Package)  
Figure 22  
P-DIP-40 Package Outlines  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”  
Dimensions in mm  
Semiconductor Group  
46  
1997-04-01  
C501  
Plastic Package, P-LCC-44 – SMD for C501G-L / C501G-1R / C501G-1E  
(Plastic Leaded Chip-Carrier)  
Figure 23  
P-LCC-44 Package Outlines  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
47  
1997-04-01  
C501  
Plastic Package, P-MQFP-44 – SMD for C501G-L / C501G-1R  
(Plastic Metric Quad Flat Package)  
Figure 24  
P-MQFP-44 Package Outlines  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
48  
1997-04-01  

相关型号:

SAFC501G-LP

Microcontroller, 8-Bit, 8051 CPU, 12MHz, CMOS, PDIP40
INFINEON

SAFC502

8-Bit CMOS Microcontroller
INFINEON

SAFC503

8-Bit CMOS Microcontroller
INFINEON

SAFC504

8-Bit Single-Chip Microcontroller
INFINEON

SAFC505

8-Bit CMOS Microcontroller
INFINEON

SAFC505A-2R

Microcontroller, 8-Bit, MROM, 20MHz, CMOS, PQFP44, METRIC, PLASTIC, QFP-44
INFINEON

SAFC505CA-2R

Microcontroller, 8-Bit, MROM, 20MHz, CMOS, PQFP44, METRIC, PLASTIC, QFP-44
INFINEON

SAFC505CA-4EM

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 20MHz, CMOS, PQFP44
INFINEON

SAFC509-L

8-Bit CMOS Microcontroller
INFINEON

SAFC515LN

8-Bit CMOS Microcontroller
SIEMENS

SAFC517A-L24N

Microcontroller, 8-Bit, 8051 CPU, 24MHz, CMOS, PQCC84
INFINEON

SAFC517A-LM

Microcontroller, 8-Bit, 8051 CPU, 18MHz, CMOS, PQFP100
INFINEON