SAK-TC1762-128F80HL AC [INFINEON]

The TC1762 - member of the AUDO-NG family - is cost optimized for demanding applications where real-time performance and DSP capabilities combined with an outstanding fast interrupt response time and highest level of fault tolerance are required.;
SAK-TC1762-128F80HL AC
型号: SAK-TC1762-128F80HL AC
厂家: Infineon    Infineon
描述:

The TC1762 - member of the AUDO-NG family - is cost optimized for demanding applications where real-time performance and DSP capabilities combined with an outstanding fast interrupt response time and highest level of fault tolerance are required.

文件: 总114页 (文件大小:852K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V1.0, Apr. 2008  
TC1762  
32-Bit Single-Chip Microcontroller  
TriCore  
Microcontrollers  
Edition 2008-04  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2008.  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values  
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby  
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-  
infringement of intellectual property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V1.0, Apr. 2008  
TC1762  
32-Bit Single-Chip Microcontroller  
TriCore  
Microcontrollers  
TC1762  
Preliminary  
TC1762 Data Sheet  
Revision History: V1.0, 2008-04  
Previous Version: V0.5 2007-03  
Page  
7
Subjects (major changes since last revision)  
VSSOSC3 is deleted from the TC1762 Logic Symbol.  
8, 10  
TDATA0 of Pin 17, TCLK0 of Pin 20, TCLK0 of Pin 74 and TDATA0 of Pin  
77 are updated in the Pinning Diagram and Pin Definition and Functions  
Table.  
33  
Transmit DMA request in Block Diagram of ASC Interfaces is updated.  
Alternate output functions in block diagram of SSC interfaces are updated.  
Programmable baud rate of the MLI is updated.  
35  
41  
42  
TDATA0 and TCLK0 of the block diagram of MLI interfaces are updated.  
The description for WDT double reset detection is updated.  
The power sequencing details is updated.  
54  
91  
102  
106  
MLI timing, maximum operating frequency limit is extended, t31 is added.  
Thermal resistance junction leads is updated.  
Trademarks  
TriCore® is a trademark of Infineon Technologies AG.  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V1.0, 2008-04  
TC1762  
Preliminary  
Table of Contents  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Pad Driver and Input Classes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.1  
2.2  
2.3  
2.4  
2.5  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
System Architecture and On-Chip Bus Systems . . . . . . . . . . . . . . . . . . . . .24  
On-Chip Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Architectural Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Memory Protection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
DMA Controller and Memory Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Asynchronous/Synchronous Serial Interfaces (ASC0, ASC1) . . . . . . . . . . .33  
High-Speed Synchronous Serial Interface (SSC0) . . . . . . . . . . . . . . . . . . .35  
Micro Second Bus Interface (MSC0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
MultiCAN Controller (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Micro Link Serial Bus Interface (MLI0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
General Purpose Timer Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Functionality of GPTA0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Analog-to-Digital Converter (ADC0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Fast Analog-to-Digital Converter Unit (FADC) . . . . . . . . . . . . . . . . . . . . . . .49  
System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
System Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Boot Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Power Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
On-Chip Debug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Clock Generation and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Identification Register Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
3.8  
3.9  
3.10  
3.11  
3.12  
3.12.1  
3.13  
3.14  
3.15  
3.16  
3.17  
3.18  
3.19  
3.20  
3.21  
3.22  
3.23  
4
4.1  
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Pad Driver and Pad Classes Summary . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.2  
Data Sheet  
1
V1.0, 2008-04  
TC1762  
Preliminary  
Table of Contents  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
Input/Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Analog to Digital Converter (ADC0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Fast Analog to Digital Converter (FADC) . . . . . . . . . . . . . . . . . . . . . . . . .82  
Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
4.3  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Power, Pad and Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Debug Trace Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Timing for JTAG Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Peripheral Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Micro Link Interface (MLI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Micro Second Channel (MSC) Interface Timing . . . . . . . . . . . . . . . .104  
Synchronous Serial Channel (SSC) Master Mode Timing . . . . . . . . .105  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.8.1  
4.3.8.2  
4.3.8.3  
5
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
5.1  
5.2  
5.3  
5.4  
Data Sheet  
2
V1.0, 2008-04  
TC1762  
Preliminary  
Summary of Features  
1
Summary of Features  
The TC1762 has the following features:  
• High-performance 32-bit super-scaler TriCore v1.3 CPU with 4-stage pipeline  
– Superior real-time performance  
– Strong bit handling  
– Fully integrated DSP capabilities  
– Single precision Floating Point Unit (FPU)  
– 66 or 80 MHz operation at full temperature range  
• Multiple on-chip memories  
– 32 Kbyte Local Data Memory (SRAM)  
– 4 Kbyte Overlay Memory  
– 8 Kbyte Scratch-Pad RAM (SPRAM)  
– 8 Kbyte Instruction Cache (ICACHE)  
– 1024 Kbyte Flash Memory  
– 16 Kbyte Data Flash (2 Kbyte EEPROM emulation)  
– 16 Kbyte Boot ROM  
• 8-channel DMA Controller  
• Fast-response interrupt system with 255 hardware priority arbitration levels serviced  
by CPU  
• High-performance on-chip bus structure  
– 64-bit Local Memory Bus (LMB) to Flash memory  
– System Peripheral Bus (SPB) for interconnections of functional units  
• Versatile on-chip Peripheral Units  
– Two Asynchronous/Synchronous Serial Channels (ASCs) with baudrate  
generator, parity, framing and overrun error detection  
– One High Speed Synchronous Serial Channel (SSC) with programmable data  
length and shift direction  
– One Micro Second Bus (MSC) interface for serial port expansion to external power  
devices  
– One high-speed Micro Link Interface (MLI) for serial inter-processor  
communication  
– One MultiCAN Module with two CAN nodes and 64 free assignable message  
objects for high efficiency data handling via FIFO buffering and gateway data  
transfer  
– One General Purpose Timer Array Module (GPTA) with a powerful set of digital  
signal filtering and timer functionality to realize autonomous and complex  
Input/Output management  
– One 16-channel Analog-to-Digital Converter unit (ADC) with selectable 8-bit, 10-  
bit, or 12-bit, supporting 32 input channels  
– One 2-channel Fast Analog-to-Digital Converter unit (FADC) with concatenated  
comb filters for hardware data reduction: supporting 10-bit resolution, with  
minimum conversion time of 262.5ns (@ 80 MHz) or 318.2ns (@ 66 MHz)  
Data Sheet  
3
V1.0, 2008-04  
TC1762  
Preliminary  
Summary of Features  
• 32 analog input lines for ADC and FADC  
• 81 digital general purpose I/O lines  
• Digital I/O ports with 3.3 V capability  
• On-chip debug support for OCDS Level 1 and 2 (CPU, DMA)  
• Dedicated Emulation Device chip for multi-core debugging, tracing, and calibration  
via USB V1.1 interface available (TC1766ED)  
• Power Management System  
• Clock Generation Unit with PLL  
• Core supply voltage of 1.5 V  
• I/O voltage of 3.3 V  
• Full automotive temperature range: -40° to +125°C  
• PG-LQFP-176-2 package  
Data Sheet  
4
V1.0, 2008-04  
TC1762  
Preliminary  
Summary of Features  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the  
required product. This ordering code identifies:  
• The derivative itself, i.e. its function set, the temperature range, and the supply  
voltage  
• The package and the type of delivery  
For the available ordering codes for the TC1762, please refer to the “Product Catalog  
Microcontrollers” that summarizes all available microcontroller variants.  
This document describes the derivatives of the device.The Table 1-1 enumerates these  
derivatives and summarizes the differences.  
Table 1-1  
TC1762 Derivative Synopsis  
Derivative  
Ambient Temperature Range  
SAK-TC1762-128F66HL  
SAK-TC1762-128F80HL  
TA = -40oC to +125oC; 66 MHz operation frequency  
TA = -40oC to +125oC; 80 MHz operation frequency  
Data Sheet  
5
V1.0, 2008-04  
TC1762  
Preliminary  
General Device Information  
2
General Device Information  
Chapter 2 provides the general information for the TC1762.  
2.1  
Block Diagram  
Figure 2-1 shows the TC1762 block diagram.  
FPU  
PMI  
DMI  
8 KB SPRAM  
8 KB ICACHE  
TriCore  
(TC1.3M)  
32 KB LDRAM  
Abbreviations:  
ICACHE:  
SPRAM:  
CPS  
Instruction Cache  
Scratch-Pad RAM  
LDRAM:  
OVRAM:  
BROM:  
PFlash:  
DFlash:  
Local Data RAM  
Local Memory Bus (LMB)  
LBCU  
Overlay RAM  
PMU  
Boot ROM  
Program Flash  
Data Flash  
Local Memory Bus  
System Peripheral Bus  
16 KB BROM  
1024 KB Pflash  
16 KB DFlash  
LMB:  
SPB:  
LFI Bridge  
4 KB OVRAM  
OCDS Debug  
Interface/JTAG  
STM  
ASC0  
ASC1  
SBCU  
Ports  
fFP I  
SSC0  
SCU  
PLL  
fCPU  
GPTA  
DMA  
ADC0  
32 ch.  
8 ch.  
FADC  
2 ch.  
SMIF  
Ext.  
Request  
Unit  
Multi CAN  
(2 Nodes,  
64 Buffer)  
MSC0  
Mem  
Check  
MLI0  
MCB06056  
Figure 2-1  
TC1762 Block Diagram  
Data Sheet  
6
V1.0, 2008-04  
TC1762  
Preliminary  
General Device Information  
2.2  
Logic Symbol  
Figure 2-2 shows the TC1762 logic symbol.  
Alternate Functions  
PORST  
HDRST  
GPTA, SCU  
Port 0 16-bit  
Port 1 15-bit  
Port 2 14-bit  
Port 3 16-bit  
Port 4 4-bit  
Port 5 16-bit  
General Control  
NMI  
BYPASS  
GPTA, ADC  
TESTMODE  
SSC0, MLI0, GPTA, MSC0  
ASC0/1, SSC0, SCU, CAN  
GPTA, SCU  
FCLP0A  
FCLN0  
MSC0 Control  
SOP0A  
SON0  
GPTA, OCDS L 2, MLI0  
AN[35:0]  
ADCAnalog Inputs  
VDDM  
VSSM  
TRST  
TCK  
TC1762  
VDDMF  
TDI  
VSSMF  
VDDAF  
TDO  
TMS  
BRKIN  
OCDS / JTAG Control  
ADC/FADCAnalog  
Power Supply  
VSSAF  
VAREF0  
VAGND0  
VFAREF  
VFAGND  
VDDFL3  
BRKOUT  
TRCLK  
XTAL1  
XTAL2  
VDDOSC3  
7
8
9
VDD  
VDDP  
VSS  
Oscillator  
Digital Circuitry  
Power Supply  
VDDOSC  
VSSOSC  
MCB06066  
Figure 2-2  
TC1762 Logic Symbol  
Data Sheet  
7
V1.0, 2008-04  
TC1762  
Preliminary  
General Device Information  
2.3  
Pin Configuration  
Figure 2-3 shows the TC1762 pin configuration.  
OCDSDBG0/OUT40/IN40/P5.0  
OCDSDBG1/OUT41/IN41/P5.1  
OCDSDBG2/OUT42/IN42/P5.2  
OCDSDBG3/OUT43/IN43/P5.3  
OCDSDBG4/OUT44/IN44/P5.4  
OCDSDBG5/OUT45/IN45/P5.5  
OCDSDBG6/OUT46/IN46/P5.6  
OCDSDBG7/OUT47/IN47/P5.7  
1
2
3
4
5
6
7
8
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
P3.4/MTSR0  
P3.7/SLSI0/SLSO02  
P3.3/MRST0  
P3.2/SCLK0  
P3.8/SLSO06/TXD1A  
P3.6/SLSO01/SLSO01  
P3.5/SLSO00/SLSO00  
VSS  
VDDP  
TRCLK  
VDD  
VDDP  
VSS  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
HDRST  
PORST  
NMI  
BYPASS  
TESTMODE  
BRKIN  
BRKOUT  
TCK  
TRST  
TDO  
TMS  
TDI  
P1.7/IN23/OUT23/OUT79  
P1.6/IN22/OUT22/OUT78  
P1.5/IN21/OUT21/OUT77  
P1.4/IN20/EMG_IN/OUT20/OUT76  
VDDOSC3  
VDDOSC  
VSSOSC  
XTAL2  
XTAL1  
VSS  
OCDSDBG8/RDATA0B/P5.8  
OCDSDBG9/RVALID0B/P5.9  
OCDSDBG10/RREADY0B/P5.10  
OCDSDBG11/RCLK0B/P5.11  
OCDSDBG12/TDATA0/P5.12  
OCDSDBG13/TVALID0B/P5.13  
OCDSDBG14/TREADY0B/P5.14  
OCDSDBG15/TCLK0/P5.15  
N.C.  
VSSAF  
VDDAF  
VDDMF  
VSSMF  
VFAREF  
VFAGND  
TC1762  
AN35  
AN34  
AN33  
AN32  
AN31  
AN30  
AN29  
AN28  
AN7  
AN27  
AN26  
AN25  
AN24  
AN23  
AN22  
AN21  
AN20  
VDDP  
VDD  
98  
97  
96  
95  
94  
93  
92  
91  
P1.3/IN19/OUT19/OUT75  
P1.11/IN27/IN51/OUT27/OUT51  
P1.10/IN26/IN50/OUT26/OUT50  
P1.9/IN25/IN49/OUT25/OUT49  
P1.8/IN24/IN48/OUT24/OUT48  
P1.2/IN18/OUT18/OUT74  
P1.1/IN17/OUT17/OUT73  
P1.0/IN16/OUT16/OUT72  
P4.3/IN31/IN55/OUT31/OUT55/SYSCLK  
N.C.  
90  
89  
MCP06067  
Figure 2-3  
TC1762 Pinning for PG-LQFP-176-2 Package  
Data Sheet  
8
V1.0, 2008-04  
TC1762  
Preliminary  
General Device Information  
2.4  
Pad Driver and Input Classes Overview  
The TC1762 provides different types and classes of input and output lines. For  
understanding of the abbreviations in Table 2-1 starting at the next page, Table 4-1  
gives an overview on the pad type and class types.  
Data Sheet  
9
V1.0, 2008-04  
TC1762  
Preliminary  
General Device Information  
2.5  
Pin Definitions and Functions  
Table 2-1 shows the TC1762 pin definitions and functions.  
Table 2-1  
Symbol Pins I/O Pad  
Driver Supply  
Class  
Pin Definitions and Functions  
Power Functions  
Parallel Ports  
P0  
I/O A1  
VDDP  
Port 0  
Port 0 is a 16-bit bi-directional general-  
purpose I/O port which can be alternatively  
used for GPTA I/O lines or external trigger  
inputs.  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
145  
146  
147  
148  
166  
167  
173  
IN0 / OUT0 /  
IN1 / OUT1 /  
IN2 / OUT2 /  
IN3 / OUT3 /  
IN4 / OUT4 /  
IN5 / OUT5 /  
IN6 / OUT6 /  
REQ2  
IN7 / OUT7 /  
REQ3  
IN8 / OUT8 /  
IN9 / OUT9 /  
IN10 / OUT10 / OUT66 line of GPTA  
IN11 / OUT11 / OUT67 line of GPTA  
IN12 / OUT12 / OUT68 line of GPTA  
IN13 / OUT13 / OUT69 line of GPTA  
IN14 / OUT14 / OUT70 line of GPTA  
OUT56 line of GPTA  
OUT57 line of GPTA  
OUT58 line of GPTA  
OUT59 line of GPTA  
OUT60 line of GPTA  
OUT61 line of GPTA  
OUT62 line of GPTA  
External trigger input 2  
OUT63 line of GPTA  
External trigger input 3  
OUT64 line of GPTA  
OUT65 line of GPTA  
P0.7  
174  
P0.8  
P0.9  
149  
150  
151  
152  
168  
169  
175  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
REQ4  
IN15 / OUT15 / OUT71 line of GPTA  
REQ5 External trigger input 5  
External trigger input 4  
P0.15  
176  
In addition, the state of the port pins are  
latched into the software configuration input  
register SCU_SCLIR at the rising edge of  
HDRST. Therefore, Port 0 pins can be used  
for operating mode selections by software.  
Data Sheet  
10  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
P1  
I/O  
VDDP  
Port 1  
Port 1 is a 15-bit bi-directional general  
purpose I/O port which can be alternatively  
used for GPTA I/O lines and ADC0 interface.  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P1.8  
P1.9  
P1.10  
P1.11  
P1.12  
91  
92  
93  
98  
107  
108  
109  
110  
94  
95  
96  
97  
73  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
A2  
A2  
A2  
A2  
A1  
IN16 / OUT16 / OUT72 line of GPTA  
IN17 / OUT17 / OUT73 line of GPTA  
IN18 / OUT18 / OUT74 line of GPTA  
IN19 / OUT19 / OUT75 line of GPTA  
IN20 / OUT20 / OUT76 line of GPTA  
IN21 / OUT21 / OUT77 line of GPTA  
IN22 / OUT22 / OUT78 line of GPTA  
IN23 / OUT23 / OUT79 line of GPTA  
IN24 / OUT24 / IN48 / OUT48 line of GPTA  
IN25 / OUT25 / IN49 / OUT49 line of GPTA  
IN26 / OUT26 / IN50 / OUT50 line of GPTA  
IN27 / OUT27 / IN51 / OUT51 line of GPTA  
AD0EMUX0  
AD0EMUX1  
AD0EMUX2  
ADC0 external multiplexer  
control output 0  
ADC0 external multiplexer  
control output 1  
ADC0 external multiplexer  
control output 2  
P1.13  
P1.14  
72  
71  
A1  
A1  
In addition, P1.4 also serves as emergency  
shut-off input for certain I/O lines (e.g. GPTA  
related outputs).  
Data Sheet  
11  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
P2  
I/O  
VDDP  
Port 2  
Port 2 is a 14-bit bi-directional general-  
purpose I/O port which can be alternatively  
used for GPTA I/O, and interface for MLI0,  
MSC0 or SSC0.  
P2.0  
P2.1  
74  
75  
A2  
A2  
TCLK0  
MLI0 transmit channel clock  
output A  
IN32 / OUT32 line of GPTA  
TREADY0A MLI0 transmit channel ready  
input A  
IN33 / OUT33 line of GPTA  
SLSO03  
SSC0 slave select output 3  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
76  
77  
78  
79  
80  
81  
A2  
A2  
A1  
A2  
A1  
A1  
TVALID0A  
MLI0 transmit channel valid  
output A  
IN34 / OUT34 line of GPTA  
TDATA0 MLI0 transmit channel data  
output A  
IN35 / OUT35 line of GPTA  
RCLK0A MLI0 receive channel clock  
input A  
IN36 / OUT36 line of GPTA  
RREADY0A MLI0 receive channel ready  
output A  
IN37 / OUT37 line of GPTA  
RVALID0A MLI0 receive channel valid  
input A  
IN38 / OUT38 line of GPTA  
RDATA0A MLI0 receive channel data  
input A  
IN39 / OUT39 line of GPTA  
Data Sheet  
12  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
P2.8  
P2.9  
164  
160  
A2  
SLSO04  
EN00  
SLSO05  
EN01  
SSC0 Slave Select output 4  
MSC0 enable output 0  
SSC0 Slave Select output 5  
MSC0 enable output 1  
A2  
P2.10  
P2.11  
P2.12  
P2.13  
161  
162  
163  
165  
A2  
A2  
A2  
A1  
FCLP0B  
SOP0B  
SDI0  
MSC0 clock output B  
MSC0 serial data output B  
MSC0 serial data input  
Data Sheet  
13  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
P3  
I/O  
VDDP  
Port 3  
Port 3 is a 16-bit bi-directional general-  
purpose I/O port which can be alternatively  
used for ASC0/1, SSC0 and CAN lines.  
P3.0  
P3.1  
136  
135  
A2  
A2  
RXD0A  
TXD0A  
ASC0 receiver inp./outp. A  
ASC0 transmitter output A  
This pin is sampled at the rising edge of  
PORST. If this pin and the BYPASS input pin  
are both active, then oscillator bypass mode  
is entered.  
P3.2  
P3.3  
129  
130  
A2  
A2  
SCLK0  
MRST0  
SSC0 clock input/output  
SSC0 master receive input/  
slave transmit output  
P3.4  
132  
A2  
MTSR0  
SSC0 master transmit  
output/slave receive input  
SSC0 slave select output 0  
SSC0 slave select output 1  
SSC0 slave select input  
SSC0 slave select output 2  
SSC0 slave select output 6  
ASC1 transmitter output A  
ASC1 receiver inp./outp. A  
External trigger input 0  
P3.5  
P3.6  
P3.7  
126  
127  
131  
A2  
A2  
A2  
SLSO00  
SLSO01  
SLSI0  
SLSO02  
SLSO06  
TXD1A  
RXD1A  
REQ0  
REQ1  
RXDCAN0  
RXD0B  
TXDCAN0  
TXD0B  
RXDCAN1  
RXD1B  
TXDCAN1  
TXD1B  
P3.8  
128  
A2  
P3.9  
138  
137  
144  
143  
A2  
A1  
A1  
A2  
P3.10  
P3.11  
P3.12  
External trigger input 1  
CAN node 0 receiver input  
ASC0 receiver inp./outp. B  
CAN node 0 transm. output  
ASC0 transmitter output B  
CAN node 1 receiver input  
ASC1 receiver inp./outp. B  
CAN node 1 transm. output  
ASC1 transmitter output B  
P3.13  
P3.14  
P3.15  
142  
134  
133  
A2  
A2  
A2  
Data Sheet  
14  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
P4  
I/O  
VDDP  
Port 4 / Hardware Configuration Inputs  
P4.[3:0]  
HWCFG[3:0]  
Boot mode and boot location  
inputs; inputs are latched  
with the rising edge of  
HDRST.  
During normal operation, Port 4 pins may be  
used as alternate functions for GPTA or  
system clock output.  
P4.0  
P4.1  
P4.2  
P4.3  
86  
87  
88  
90  
A1  
A1  
A2  
A2  
IN28 / OUT28 / IN52 / OUT52 line of GPTA  
IN29 / OUT29 / IN53 / OUT53 line of GPTA  
IN30 / OUT30 / IN54 / OUT54 line of GPTA  
IN31 / OUT31 / IN55 / OUT55 line of GPTA  
SYSCLK  
System Clock Output  
Data Sheet  
15  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Class  
I/O A2  
Symbol Pins I/O Pad  
P5  
VDDP  
Port 5  
Port 5 is a 16-bit bi-directional general-  
purpose I/O port. In emulation, it is used as a  
trace port for OCDS Level 2 debug lines. In  
normal operation, it is used for GPTA I/O or  
the MLI0 interface.  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
1
2
3
4
5
6
OCDSDBG0  
OCDS L2 Debug Line 0  
(Pipeline Status Sig. PS0)  
IN40 / OUT40 line of GPTA  
OCDSDBG1 OCDS L2 Debug Line 1  
(Pipeline Status Sig. PS1)  
IN41 / OUT41 line of GPTA  
OCDSDBG2 OCDS L2 Debug Line 2  
(Pipeline Status Sig. PS2)  
IN42 / OUT42 line of GPTA  
OCDSDBG3 OCDS L2 Debug Line 3  
(Pipeline Status Sig. PS3)  
IN43 / OUT43 line of GPTA  
OCDSDBG4 OCDS L2 Debug Line 4  
(Pipeline Status Sig. PS4)  
IN44 / OUT44 line of GPTA  
OCDSDBG5 OCDS L2 Debug Line 5  
(Break Qualification Line  
BRK0)  
IN45 / OUT45 line of GPTA  
OCDSDBG6 OCDS L2 Debug Line 6  
(Break Qualification Line  
BRK1)  
IN46 / OUT46 line of GPTA  
OCDSDBG7 OCDS L2 Debug Line 7  
P5.6  
P5.7  
7
8
(Break Qualification Line  
BRK2)  
IN47 / OUT47 line of GPTA  
Data Sheet  
16  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Class  
Symbol Pins I/O Pad  
P5.8  
13  
14  
15  
16  
17  
18  
19  
20  
OCDSDBG8  
OCDS L2 Debug Line 8  
(Indirect PC Addr. PC0)  
MLI0 receive channel data  
input B  
OCDS L2 Debug Line 9  
(Indirect PC Addr. PC1)  
MLI0 receive channel valid  
input B  
RDATA0B  
P5.9  
OCDSDBG9  
RVALID0B  
P5.10  
P5.11  
P5.12  
P5.13  
P5.14  
P5.15  
OCDSDBG10 OCDS L2 Debug Line 10  
(Indirect PC Addr. PC2)  
RREADY0B  
MLI0 receive channel ready  
output B  
OCDSDBG11 OCDS L2 Debug Line 11  
(Indirect PC Addr. PC3)  
RCLK0B  
MLI0 receive channel clock  
input B  
OCDSDBG12 OCDS L2 Debug Line 12  
(Indirect PC Addr. PC04)  
TDATA0  
MLI0 transmit channel data  
output B  
OCDSDBG13 OCDS L2 Debug Line 13  
(Indirect PC Addr. PC05)  
TVALID0B  
MLI0 transmit channel valid  
output B  
OCDSDBG14 OCDS L2 Debug Line 14  
(Indirect PC Address PC6)  
TREADY0B  
MLI0 transmit channel ready  
input B  
OCDSDBG15 OCDS L2 Debug Line 15  
(Indirect PC Address PC7)  
TCLK0  
MLI0 transmit channel clock  
output B  
Data Sheet  
17  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
MSC0 Outputs  
C
VDDP  
LVDS MSC Clock and Data Outputs2)  
MSC0 Differential Driver Clock Output  
Positive A  
FCLP0A 157 O  
FCLN0  
156 O  
MSC0 Differential Driver Clock Output  
Negative  
SOP0A 159 O  
MSC0 Differential Driver Serial Data Output  
Positive A  
SON0  
158 O  
MSC0 Differential Driver Serial Data Output  
Negative  
Data Sheet  
18  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
Analog Inputs  
AN[35:0]  
I
D
Analog Input Port  
The Analog Input Port provides altogether 36  
analog input lines to ADC0 and FADC.  
AN[31:0]: ADC0 analog inputs [31:0]  
AN[35:32]: FADC analog differential inputs  
Analog input 0  
Analog input 1  
Analog input 2  
Analog input 3  
Analog input 4  
Analog input 5  
Analog input 6  
Analog input 7  
Analog input 8  
Analog input 9  
Analog input 10  
Analog input 11  
Analog input 12  
Analog input 13  
Analog input 14  
Analog input 15  
Analog input 16  
Analog input 17  
Analog input 18  
Analog input 19  
Analog input 20  
Analog input 21  
Analog input 22  
Analog input 23  
Analog input 24  
Analog input 25  
Analog input 26  
Analog input 27  
Analog input 28  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
67  
66  
65  
64  
63  
62  
61  
36  
60  
59  
58  
57  
56  
55  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
35  
34  
33  
AN8  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
Analog input 29  
Analog input 30  
Data Sheet  
19  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
AN31  
AN32  
AN33  
AN34  
AN35  
32  
31  
30  
29  
28  
I
D
Analog input 31  
Analog input 32  
Analog input 33  
Analog input 34  
Analog input 35  
System I/O  
TRST  
TCK  
114 I  
115 I  
111 I  
113 O  
112 I  
A21)  
A21)  
A11)  
A2  
VDDP  
VDDP  
VDDP  
VDDP  
VDDP  
VDDP  
VDDP  
JTAG Module Reset/Enable Input  
JTAG Module Clock Input  
TDI  
JTAG Module Serial Data Input  
TDO  
TMS  
BRKIN  
JTAG Module Serial Data Output  
JTAG Module State Machine Control Input  
OCDS Break Input (Alternate Output)2)3)  
OCDS Break Output (Alternate Input)2)3)  
A21)  
117 I/O A3  
116 I/O A3  
BRK  
OUT  
TRCLK  
9
O
A4  
VDDP  
Trace Clock for OCDS_L2 Lines2)  
Non-Maskable Interrupt Input  
NMI  
120 I  
A24)5) VDDP  
HDRST 122 I/O A26)  
VDDP  
VDDP  
VDDP  
Hardware Reset Input /  
Reset Indication Output  
PORST 121 I  
A24)  
A11)  
Power-on Reset Input  
7)  
BYPASS 119 I  
PLL Clock Bypass Select Input  
This input has to be held stable during power-  
on resets. With BYPASS = 1, the spike filters  
in the HDRST, PORST and NMI inputs are  
switched off.  
TEST  
118 I  
A24)8) VDDP  
Test Mode Select Input  
MODE  
For normal operation of the TC1762, this pin  
should be connected to high level.  
XTAL1  
XTAL2  
102 I  
103 O  
n.a.  
VDDOSC Oscillator/PLL/Clock Generator  
Input/Output Pins  
N.C.  
21,  
89  
Not Connected  
These pins are reserved for future extension  
and must not be connected externally.  
Data Sheet  
20  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
Power Supplies  
VDDM  
VSSM  
54  
53  
24  
25  
23  
ADC Analog Part Power Supply (3.3 V)  
ADC Analog Part Ground for VDDM  
FADC Analog Part Power Supply (3.3 V)  
FADC Analog Part Ground for VDDMF  
VDDMF  
VSSMF  
VDDAF  
FADC Analog Part Logic Power Supply  
(1.5 V)  
VSSAF  
22  
52  
51  
26  
27  
FADC Analog Part Logic Ground for VDDAF  
ADC Reference Voltage  
VAREF0  
VAGND0  
VFAREF  
VFAGND  
VDDOSC  
ADC Reference Ground  
FADC Reference Voltage  
FADC Reference Ground  
105 –  
Main Oscillator and PLL Power Supply  
(1.5 V)  
VDDOSC3 106 –  
Main Oscillator Power Supply (3.3 V)  
Main Oscillator and PLL Ground  
Power Supply for Flash (3.3 V)  
Core Power Supply (1.5 V)  
VSSOSC  
VDDFL3  
VDD  
104 –  
141 –  
10,  
68,  
84,  
99,  
123,  
153,  
170  
Data Sheet  
21  
V1.0, 2008-04  
TC1762  
Preliminary  
Table 2-1  
General Device Information  
Pin Definitions and Functions (cont’d)  
Power Functions  
Driver Supply  
Symbol Pins I/O Pad  
Class  
VDDP  
11,  
Port Power Supply (3.3 V)  
69,  
83,  
100,  
124,  
154,  
171,  
139  
VSS  
12,  
Ground  
70,  
85,  
101,  
125,  
155,  
172,  
140,  
82  
1) These pads are I/O pads with input only function. Its input characteristics are identical with the input  
characteristics as defined for class A pads.  
2) In case of a power-fail condition (one or more power supply voltages drop below the specified voltage range),  
an undefined output driving level may occur at these pins.  
3) Programmed by software as either break input or break output.  
4) These pads are input only pads with input characteristics.  
5) Input only pads with input spike filter.  
6) Open drain pad with input spike filter.  
7) The dual input reset system of TC1762/TC1766ED, assumes that the PORST reset pin is used for power-on  
reset only. It has to be taken into account that if a system uses the PORST reset input for other system resets,  
the emulation part of the TC1766ED Emulation Device is reset as well. Thus, it will always force a complete  
re-initialization of the emulator and will prevent the user debugging across these types of resets.  
8) Input only pads without input spike filter.  
Data Sheet  
22  
V1.0, 2008-04  
TC1762  
Preliminary  
General Device Information  
Table 2-2  
List of Pull-up/Pull-down Reset Behavior of the Pins  
Pins  
PORST = 0  
Pull-up  
PORST = 1  
All GPIOs, TDI, TMS, TDO  
HDRST  
Drive-low  
Pull-up  
BYPASS  
Pull-up  
High-impedance  
Pull-down  
TRST, TCK  
High-impedance  
High-impedance  
Pull-up  
TRCLK  
BRKIN, BRKOUT, TESTMODE  
NMI, PORST  
Pull-down  
Data Sheet  
23  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3
Functional Description  
Chapter 3 provides an overview of the TC1762 functional description.  
3.1  
System Architecture and On-Chip Bus Systems  
The TC1762 has two independent on-chip buses (see also TC1762 block diagram on  
Page 2-6):  
• Local Memory Bus (LMB)  
• System Peripheral Bus (SPB)  
The LMB Bus connects the CPU local resources for data and instruction fetch. The Local  
Memory Bus interconnects the memory units and functional units, such as CPU and  
PMU. The main target of the LMB bus is to support devices with fast response times,  
optimized for speed. This allows the DMI and PMI fast access to local memory and  
reduces load on the FPI bus. The Tricore system itself is located on LMB bus.  
The Local Memory Bus is a synchronous, pipelined, split bus with variable block size  
transfer support. It supports 8-, 16-, 32- and 64-bit single transactions and variable  
length 64-bit block transfers.  
The SPB Bus is accessible to the CPU via the LMB Bus bridge. The System Peripheral  
Bus (SPB Bus) in TC1762 is an on-chip FPI Bus. The FPI Bus interconnects the  
functional units of the TC1762, such as the DMA and on-chip peripheral components.  
The FPI Bus is designed to be quick to be acquired by on-chip functional units, and quick  
to transfer data. The low setup overhead of the FPI Bus access protocol guarantees fast  
FPI Bus acquisition, which is required for time-critical applications.The FPI Bus is  
designed to sustain high transfer rates. For example, a peak transfer rate of up to 320  
Mbyte/s can be achieved with a 80 MHz bus clock and 32-bit data bus. With a 66 MHz  
bus clock, the peak transfer rate is up to 264 Mbytes/s. Multiple data transfers per bus  
arbitration cycle allow the FPI Bus to operate at close to its peak bandwidth.  
Both the LMB Bus and the SPB Bus runs at full CPU speed. The maximum CPU speed  
is 66 or 80 MHz depending on the derivative.  
Additionally, two simplified bus interfaces are connected to and controlled by the DMA  
Controller:  
• DMA Bus  
• SMIF Interface  
Data Sheet  
24  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.2  
On-Chip Memories  
As shown in the TC1762 block diagram on Page 2-6, some of the TC1762 units provide  
on-chip memories that are used as program or data memory.  
• Program memory in PMU  
– 16 Kbyte Boot ROM (BROM)  
– 1024 Kbyte Program Flash (PFlash)  
• Program memory in PMI  
– 8 Kbyte Scratch-Pad RAM (SPRAM)  
– 8 Kbyte Instruction Cache (ICACHE)  
• Data memory in PMU  
– 16 Kbyte Data Flash (DFlash)  
– 4 Kbyte Overlay RAM (OVRAM)  
• Data memory in DMI  
– 32 Kbyte Local Data RAM (LDRAM)  
• On-chip SRAM with parity error protection  
Features of Program Flash  
• 1024 Kbyte on-chip program Flash memory  
• Usable for instruction code or constant data storage  
• 256-byte program interface  
– 256 bytes are programmed into PFLASH page in one step/command  
• 256-bit read interface  
– Transfer from PFLASH to CPU/PMI by four 64-bit single cycle burst transfers  
• Dynamic correction of single-bit errors during read access  
• Detection of double-bit errors  
• Fixed sector architecture  
– Eight 16 Kbyte, one 128 Kbyte, one 256 Kbyte and one 512 Kbyte sectors  
– Each sector separately erasable  
– Each sector separately write-protectable  
• Configurable read protection for complete PFLASH with sophisticated read access  
supervision, combined with write protection for complete PFLASH (protection against  
“Trojan horse” software)  
• Configurable write protection for each sector  
– Each sector separately write-protectable  
– With capability to be re-programmed  
– With capability to be locked forever (OTP)  
• Password mechanism for temporary disabling of write and read protection  
• On-chip generation of programming voltage  
• JEDEC-standard based command sequences for PFLASH control  
– Write state machine controls programming and erase operations  
– Status and error reporting by status flags and interrupt  
• Margin check for detection of problematic PFLASH bits  
Data Sheet  
25  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
Features of Data Flash  
• 16 Kbyte on-chip data Flash memory, organized in two 8 Kbyte banks  
• Usable for data storage with EEPROM functionality  
• 128 Byte of program interface  
– 128 bytes are programmed into one DFLASH page by one step/command  
• 64-bit read interface (no burst transfers)  
• Dynamic correction of single-bit errors during read access  
• Detection of double-bit errors  
• Fixed sector architecture  
– Two 8 Kbyte banks/sectors  
– Each sector separately erasable  
• Configurable read protection (combined with write protection) for complete DFLASH  
together with PFLASH read protection  
• Password mechanism for temporary disabling of write and read protection  
• Erasing/programming of one bank possible while reading data from the other bank  
• Programming of one bank while erasing the other bank possible  
• On-chip generation of programming voltage  
• JEDEC-standard based command sequences for DFLASH control  
– Write state machine controls programming and erase operations  
– Status and error reporting by status flags and interrupt  
• Margin check for detection of problematic DFLASH bits  
Data Sheet  
26  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.3  
Architectural Address Map  
Table 3-1 shows the overall architectural address map as defined for the TriCore and as  
implemented in TC1762.  
Table 3-1  
TC1762 Architectural Address Map  
Seg-  
Contents  
Size  
Description  
ment  
0-7  
Global  
8 x 256  
Mbyte  
Reserved (MMU space); cached  
8
Global  
Memory  
256 Mbyte Reserved (246 Mbyte); PMU, Boot ROM;  
cached  
9
Global  
256 Mbyte FPI space; cached  
Memory  
10  
11  
12  
13  
Global  
Memory  
256 Mbyte Reserved (246 Mbyte), PMU, Boot ROM; non-  
cached  
Global  
Memory  
256 Mbyte FPI space; non-cached  
Local LMB  
Memory  
256 Mbyte Reserved; bottom 4 Mbyte visible from FPI bus  
in segment 14; cached  
DMI  
64 Mbyte  
64 Mbyte  
96 Mbyte  
16 Mbyte  
16 Mbyte  
Local Data Memory RAM; non-cached  
Local Code Memory RAM; non-cached  
Reserved; non-cached  
PMI  
EXT_PER  
EXT_EMU  
BOOTROM  
Reserved; non-cached  
Boot ROM space, Boot ROM mirror;  
non-cached  
14  
15  
EXTPER  
128 Mbyte Reserved;  
non-speculative; non-cached; no execution  
CPU[0 ..15]  
image region Mbyte  
16 x 8  
Non-speculative; non-cached; no execution  
LMB_PER  
CSFRs  
INT_PER  
256  
Mbyte  
CSFRs of CPUs[0 ..15];  
LMB & FPI Peripheral Space;  
non-speculative; non-cached;  
no execution  
Data Sheet  
27  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.4  
Memory Protection System  
The TC1762 memory protection system specifies the addressable range and read/write  
permissions of memory segments available to the current executing task. The memory  
protection system controls the position and range of addressable segments in memory.  
It also controls the types of read and write operations allowed within addressable  
memory segments. Any illegal memory access is detected by the memory protection  
hardware, which then invokes the appropriate Trap Service Routine (TSR) to handle the  
error. Thus, the memory protection system protects critical system functions against both  
software and hardware errors. The memory protection hardware can also generate  
signals to the Debug Unit to facilitate tracing illegal memory accesses.  
There are two Memory Protection Register Sets in the TC1762, numbered 0 and 1,  
which specify memory protection ranges and permissions for code and data. The  
PSW.PRS bit field determines which of these is the set currently in use by the CPU. As  
the TC1762 uses a Harvard-style memory architecture, each Memory Protection  
Register Set is broken down into a Data Protection Register Set and a Code Protection  
Register Set. Each Data Protection Register Set can specify up to four address ranges  
to receive a particular protection modes. Each Code Protection Register Set can specify  
up to two address ranges to receive a particular protection modes.  
Each Data Protection Register Sets and Code Protection Register Sets determines the  
range and protection modes for a separate memory area. Each set contains a pair of  
registers which determine the address range (the Data Segment Protection Registers  
and Code Segment Protection Registers) and one register (Data Protection Mode  
Register) which determines the memory access modes that applies to the specified  
range.  
Data Sheet  
28  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.5  
DMA Controller and Memory Checker  
The DMA Controller of the TC1762 transfers data from data source locations to data  
destination locations without intervention of the CPU or other on-chip devices. One data  
move operation is controlled by one DMA channel. Eight DMA channels are provided in  
one DMA Sub-Block. The Bus Switch provides the connection of the DMA Sub-Block to  
the two FPI Bus interfaces and an MLI bus interface. In the TC1762, the FPI Bus  
interfaces are connected to the System Peripheral Bus and the DMA Bus. The third  
specific bus interface provides a connection to the Micro Link Interface module (MLI0 in  
the TC1762) and other DMA-related devices (Memory Checker module in the TC1762).  
Clock control, address decoding, DMA request wiring, and DMA interrupt service request  
control are implementation-specific and managed outside the DMA controller kernel.  
Figure 3-1 shows the implementation details and interconnections of the DMA module.  
fDMA  
DMA Controller  
Clock  
Control  
System  
Periphera  
Bus  
DMA Sub-Block 0  
DMA  
Requests  
of  
On-chip  
Periph.  
Units  
DMA  
Channels  
00-07  
Request  
Selection/  
Bus  
Switch  
DMA Bus  
Arbitration  
Transaction  
Control Unit  
MLI0  
Address  
Decoder  
Memory  
Checker  
Interrupt  
Request  
Nodes  
Arbiter/  
Switch  
Control  
SR[15:0]  
DMA Interrupt Control  
MCB06149  
Figure 3-1  
Features  
DMA Controller Block Diagram  
• 8 independent DMA channels  
Data Sheet  
29  
V1.0, 2008-04  
TC1762  
Preliminary  
– 8 DMA channels in the DMA Sub-Block  
Functional Description  
– Up to 8 selectable request inputs per DMA channel  
– 2-level programmable priority of DMA channels within the DMA Sub-Block  
– Software and hardware DMA request  
– Hardware requests by selected on-chip peripherals and external inputs  
• Programmable priority of the DMA Sub-Blocks on the bus interfaces  
• Buffer capability for move actions on the buses (at least 1 move per bus is buffered).  
• Individually programmable operation modes for each DMA channel  
– Single Mode: stops and disables DMA channel after a predefined number of DMA  
transfers  
– Continuous Mode: DMA channel remains enabled after a predefined number of  
DMA transfers; DMA transaction can be repeated.  
– Programmable address modification  
• Full 32-bit addressing capability of each DMA channel  
– 4 Gbyte address range  
– Support of circular buffer addressing mode  
• Programmable data width of DMA transfer/transaction: 8-bit, 16-bit, or 32-bit  
• Micro Link bus interface support  
• Register set for each DMA channel  
– Source and destination address register  
– Channel control and status register  
– Transfer count register  
• Flexible interrupt generation (the service request node logic for the MLI channels is  
also implemented in the DMA module)  
• All buses connected to the DMA module must work at the same frequency.  
• Read/write requests of the System Bus side to the peripherals on DMA Bus are  
bridged to the DMA Bus (only the DMA is the master on the DMA bus), allowing easy  
access to these peripherals by CPU  
Memory Checker  
The Memory Checker Module (MCHK) makes it possible to check the data consistency  
of memories. Any SPB bus master may access the memory checker. It is preferable the  
DMA does it as described hereafter. It uses DMA 8-bit, 16-bit, or 32-bit moves to read  
from the selected address area and to write the value read in a memory checker input  
register. With each write operation to the memory checker input register, a polynomial  
checksum calculation is triggered and the result of the calculation is stored in the  
memory checker result register.  
The memory checker uses the standard Ethernet polynomial, which is given by:  
G32 = x32+ x26+ x23+ x22+ x16+ x12+ x11+ x10+ x8+ x7+ x5+ x4+ x2+ x +1  
Note: Although the polynomial above is used for generation, the generation algorithm  
differs from the one that is used by the Ethernet protocol.  
Data Sheet  
30  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.6  
Interrupt System  
The TC1762 interrupt system provides a flexible and time-efficient means of processing  
interrupts. An interrupt request is serviced by the CPU, which is called the “Service  
Provider”. Interrupt requests are called “Service Requests” rather than “Interrupt  
Requests” in this document.  
Each peripheral in the TC1762 can generate service requests. Additionally, the Bus  
Control Units, the Debug Unit, and even the CPU itself can generate service requests to  
the Service Provider.  
As shown in Figure 3-2, each TC1762 unit that can generate service requests is  
connected to one or multiple Service Request Nodes (SRN). Each SRN contains a  
Service Request Control Register mod_SRCx, where “mod” is the identifier of the  
service requesting unit and “x” an optional index. The CPU Interrupt Arbitration Bus  
connects the SRNs with the Interrupt Control Unit (ICU), which arbitrates service  
requests for the CPU and administers the CPU Interrupt Arbitration Bus.  
The Debug Unit can generate service requests to the CPU. The CPU makes service  
requests directly to itself (via the ICU). The CPU Service Request Nodes are activated  
through software.  
Depending on the selected system clock frequency fSYS, the number of fSYS clock cycles  
per arbitration cycle must be selected as follows:  
fSYS < 60 MHz: ICR.CONECYC = 1  
fSYS > 60 MHz: ICR.CONECYC = 0  
Data Sheet  
31  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
Service  
Requestors  
Service Req.  
Nodes  
CPU  
Interrupt  
Arbitration Bus  
2
4
2
4
MSC0  
MLI0  
2 SRNs  
4 SRNs  
3 SRNs  
4 SRNs  
4 SRNs  
6 SRNs  
4 SRNs  
2 SRNs  
38 SRNs  
2 SRNs  
1 SRN  
Interrupt  
Service  
Provider  
3
3
SSC0  
ASC0  
ASC1  
MultiCAN  
ADC0  
FADC  
GPTA0  
STM  
CPU Interrupt  
Control Unit  
4
4
5
5
5 SRNs  
Software  
and  
Breakpoint  
Interrupts  
4
4
CPU Interrupt  
Control Unit  
6
6
CPU  
ICU  
4
4
Int. Req.  
Int. Ack.  
CCPN  
PIPN  
2
2
38  
2
38  
2
Service Req.  
Nodes  
Service  
Requestors  
1
1
1
4
1
1
1 SRN  
1 SRN  
4 SRNs  
1 SRN  
1 SRN  
LBCU  
SBCU  
1
1
4
1
1
1
FPU  
1
1
Flash  
1 SRN  
DMA  
2
2
Ext. Int  
2 SRNs  
Cerberus  
DMA Bus  
MCA06181  
Figure 3-2  
Block Diagram of the TC1762 Interrupt System  
Data Sheet  
32  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.7  
Asynchronous/Synchronous Serial Interfaces (ASC0, ASC1)  
Figure 3-3 shows a global view of the functional blocks and interfaces of the two  
Asynchronous/Synchronous Serial Interfaces, ASC0 and ASC1.  
fASC  
Clock  
Control  
P3.0 /  
RXD0A  
A2  
A2  
RXD_I0  
RXD_I1  
RXD_O  
TXD_O  
P3.1 /  
TXD0A  
Address  
Decoder  
ASC0  
Module  
(Kernel)  
P3.12 /  
RXD0B  
A2  
A2  
EIR  
TBIR  
TIR  
P3.13 /  
TXD0B  
Interrupt  
Control  
RIR  
ASC0_RDR  
ASC0_TDR  
Port 3  
Control  
To  
DMA  
P3.9 /  
RXD1A  
A2  
A2  
RXD_I0  
RXD_I1  
RXD_O  
TXD_O  
P3.8 /  
TXD1A  
ASC1  
Module  
(Kernel)  
P3.14 /  
RXD1B  
A2  
A2  
EIR  
TBIR  
TIR  
P3.15 /  
TXD1B  
Interrupt  
Control  
RIR  
ASC1_RDR  
ASC1_TDR  
To  
DMA  
MCB06211c  
Figure 3-3  
Block Diagram of the ASC Interfaces  
The ASC provides serial communication between the TC1762 and other  
microcontrollers, microprocessors, or external peripherals.  
The ASC supports full-duplex asynchronous communication and half-duplex  
synchronous communication. In Synchronous Mode, data is transmitted or received  
synchronous to a shift clock that is generated by the ASC internally. In Asynchronous  
Mode, 8-bit or 9-bit data transfer, parity generation, and the number of stop bits can be  
Data Sheet  
33  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
selected. Parity, framing, and overrun error detection are provided to increase the  
reliability of data transfers. Transmission and reception of data is double-buffered. For  
multiprocessor communication, a mechanism is included to distinguish address bytes  
from data bytes. Testing is supported by a loop-back option. A 13-bit baud rate generator  
provides the ASC with a separate serial clock signal, which can be accurately adjusted  
by a prescaler implemented as fractional divider.  
Features  
• Full-duplex asynchronous operating modes  
– 8-bit or 9-bit data frames, LSB first  
– Parity-bit generation/checking  
– One or two stop bits  
– Baud rate from 5.0 Mbit/s to 1.19 bit/s (@ 80 MHz module clock) and 4.1Mbit/s to  
0.98 bit/s (@ 66 MHz module clock)  
– Multiprocessor mode for automatic address/data byte detection  
– Loop-back capability  
• Half-duplex 8-bit synchronous operating mode  
– Baud rate from 10.0 Mbit/s to 813.8 bit/s (@ 80 MHz module clock) and 8.25 Mbit/s  
to 671.4 bit/s (@ 66 MHz module clock)  
• Double-buffered transmitter/receiver  
• Interrupt generation  
– On a transmit buffer empty condition  
– On a transmit last bit of a frame condition  
– On a receive buffer full condition  
– On an error condition (frame, parity, overrun error)  
Data Sheet  
34  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.8  
High-Speed Synchronous Serial Interface (SSC0)  
Figure 3-4 shows a global view of the functional blocks and interfaces of the high-speed  
Synchronous Serial Interface, SSC0.  
MRSTA  
MRSTB  
MTSR  
A2 P3.4 /MTSR0  
fSSC0  
fCLC0  
Master  
Slave  
Clock  
Control  
MTSRA  
MTSRB  
MRST  
A2 P3.3 /MRST0  
A2 P3.2 /SCLK0  
Address  
Decoder  
SCLKA  
SCLKB  
SCLK  
Slave  
Master  
A2 P3.7 /SLSI0  
SSC0  
Module  
(Kernel)  
Port 3  
Control  
SLSI1  
SLSI[7:2]1)  
EIR  
TIR  
RIR  
Slave  
Interrupt  
Control  
A2 P3.5 /SLSO00  
SLSO[2:0]  
A2  
SSC0_RDR  
SSC0_TDR  
P3.6 /SLSO01  
To  
DMA  
SLSO[5:3]  
SLSO6  
SLSO7 1)  
Master  
A2 P3.7 /SLSO02  
A2 P3.8 /SLSO06  
M/S Select1)  
Enable 1)  
A2 P2.1 /SLSO03  
A2 P2.8 /SLSO04  
Port 2  
Control  
A2  
P2.9 /SLSO05  
1) These lines are not connected  
MCB06225  
Figure 3-4  
Block Diagram of the SSC Interfaces  
The SSC supports full-duplex and half-duplex serial synchronous communication up to  
40.0 MBaud at 80 MHz module clock and up to 33 MBaud at 66 MHz module clock. The  
serial clock signal can be generated by the SSC itself (Master Mode) or can be received  
from an external master (Slave Mode). Data width, shift direction, clock polarity and  
phase are programmable. This allows communication with SPI-compatible devices.  
Transmission and reception of data is double-buffered. A shift clock generator provides  
the SSC with a separate serial clock signal. Seven slave select inputs are available for  
Data Sheet  
35  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
Slave Mode operation. Eight programmable slave select outputs (chip selects) are  
supported in Master Mode.  
Features  
• Master and Slave Mode operation  
– Full-duplex or half-duplex operation  
– Automatic pad control possible  
• Flexible data format  
– Programmable number of data bits: 2 to 16 bits  
– Programmable shift direction: LSB or MSB shift first  
– Programmable clock polarity: Idle low or idle high state for the shift clock  
– Programmable clock/data phase: Data shift with leading or trailing edge of the shift  
clock  
• Baud rate generation from 40.0 Mbit/s to 610.36 bit/s (@ 80 MHz module clock) and  
503.5 bit/s to 33 Mbit/s (@ 66 MHz module clock)  
• Interrupt generation  
– On a transmitter empty condition  
– On a receiver full condition  
– On an error condition (receive, phase, baud rate, transmit error)  
• Flexible SSC pin configuration  
• Seven slave select inputs SLSI[7:1] in Slave Mode  
• Eight programmable slave select outputs SLSO[7:0] in Master Mode  
– Automatic SLSO generation with programmable timing  
– Programmable active level and enable control  
Data Sheet  
36  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.9  
Micro Second Bus Interface (MSC0)  
The MSC interface provides a serial communication link typically used to connect power  
switches or other peripheral devices. The serial communication link includes a fast  
synchronous downstream channel and a slow asynchronous upstream channel.  
Figure 3-5 shows a global view of the MSC interface signals.  
SR15 (from CAN)  
fMSC0  
FCLP  
Clock  
Control  
C
C
C
C
FCLP0A  
FCLN0  
SOP0A  
SON0  
fCLC0  
FCLN  
SOP  
SON  
Address  
Decoder  
A2 P2.11 / FCLP0B  
A2 P2.12 / SOP0B  
MSC0  
Module  
(Kernel)  
SR[1:0]  
Interrupt  
Control  
EN0  
EN1  
P2.8 / EN00  
A2  
A2 P2.9 / EN01  
SR[3:2]  
16  
To DMA  
Port 2  
Control  
ALTINL[15:0]  
(from GPTA)  
ALTINH[15:0]  
16  
SDI[0]1)  
P2.13 / SDI0  
A1  
EMGSTOPMSC  
(from SCU)  
1) SDI[7:1] are connected to high level  
MCA06255  
Figure 3-5  
Block Diagram of the MSC Interfaces  
The downstream and upstream channels of the MSC module communicate with the  
external world via nine I/O lines. Eight output lines are required for the serial  
communication of the downstream channel (clock, data, and enable signals). One out of  
eight input lines SDI[7:0] is used as serial data input signal for the upstream channel. The  
source of the serial data to be transmitted by the downstream channel can be MSC  
register contents or data that is provided at the ALTINL/ALTINH input lines. These input  
lines are typically connected to other on-chip peripheral units (for example with a timer  
unit like the GPTA). An emergency stop input signal makes it possible to set bits of the  
serial data stream to dedicated values in emergency cases.  
Data Sheet  
37  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
Clock control, address decoding, and interrupt service request control are managed  
outside the MSC module kernel. Service request outputs are able to trigger an interrupt  
or a DMA request.  
Features  
• Fast synchronous serial interface to connect power switches in particular, or other  
peripheral devices via serial buses  
• High-speed synchronous serial transmission on downstream channel  
– Serial output clock frequency: fFCL = fMSC/2  
– Fractional clock divider for precise frequency control of serial clock fMSC  
– Command, data, and passive frame types  
– Start of serial frame: Software-controlled, timer-controlled, or free-running  
– Programmable upstream data frame length (16 or 12 bits)  
– Transmission with or without SEL bit  
– Flexible chip select generation indicates status during serial frame transmission  
– Emergency stop without CPU intervention  
• Low-speed asynchronous serial reception on upstream channel  
– Baud rate: fMSC divided by 4, 8, 16, 32, 64, 128, or 256  
– Standard asynchronous serial frames  
– Parity error checker  
– 8-to-1 input multiplexer for SDI lines  
– Built-in spike filter on SDI lines  
Data Sheet  
38  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.10  
MultiCAN Controller (CAN)  
Figure 3-6 shows a global view of the MultiCAN module with its functional blocks and  
interfaces.  
fCAN  
MultiCAN Module Kernel  
Clock  
Control  
fCLC  
P3.15 /  
TXDCAN1  
P3.14 /  
RXDCAN1  
Address  
Decoder  
A2  
A2  
TXDC1  
RXDC1  
TXDC0  
RXDC0  
Message  
Object  
Buffer  
CAN  
Node 1  
Linked  
List  
Control  
Port 3  
Control  
DMA  
CAN  
Node 0  
P3.13 /  
TXDCAN0  
P3.12 /  
RXDCAN0  
64  
Objects  
A2  
A2  
INT_O  
[1:0]  
Interrupt  
Control  
INT_O  
[5:2]  
INT_O15  
CAN Control  
MCA06281  
Figure 3-6  
Block Diagram of MultiCAN Module  
The MultiCAN module contains two independently-operating CAN nodes with Full-CAN  
functionality that are able to exchange Data and Remote Frames via a gateway function.  
Transmission and reception of CAN frames is handled in accordance with CAN  
specification V2.0 B (active). Each CAN node can receive and transmit standard frames  
with 11-bit identifiers as well as extended frames with 29-bit identifiers.  
Both CAN nodes share a common set of message objects. Each message object can be  
individually allocated to one of the CAN nodes. Besides serving as a storage container  
for incoming and outgoing frames, message objects can be combined to build gateways  
between the CAN nodes or to setup a FIFO buffer.  
The message objects are organized in double-chained linked lists, where each CAN  
node has its own list of message objects. A CAN node stores frames only into message  
objects that are allocated to the message object list of the CAN node, and it transmits  
only messages belonging to this message object list. A powerful, command-driven list  
controller performs all message object list operations.  
The bit timings for the CAN nodes are derived from the module timer clock (fCAN), and  
are programmable up to a data rate of 1 Mbit/s. External bus transceivers are connected  
to a CAN node via a pair of receive and transmit pins.  
Data Sheet  
39  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
MultiCAN Features  
• CAN functionality conforms to CAN specification V2.0 B active for each CAN node  
(compliant to ISO 11898)  
• Two independent CAN nodes  
• 64 independent message objects (shared by the CAN nodes)  
• Dedicated control registers for each CAN node  
• Data transfer rate up to 1Mbit/s, individually programmable for each node  
• Flexible and powerful message transfer control and error handling capabilities  
• Full-CAN functionality: message objects can be individually  
– assigned to one of the two CAN nodes  
– configured as transmit or receive object  
– configured as message buffer with FIFO algorithm  
– configured to handle frames with 11-bit or 29-bit identifiers  
– provided with programmable acceptance mask register for filtering  
– monitored via a frame counter  
– configured for Remote Monitoring Mode  
• Automatic Gateway Mode support  
• 6 individually programmable interrupt nodes  
• CAN analyzer mode for bus monitoring  
Data Sheet  
40  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.11  
Micro Link Serial Bus Interface (MLI0)  
The Micro Link Interface is a fast synchronous serial interface that allows data exchange  
between microcontrollers of the 32-bit AUDO microcontroller family without intervention  
of a CPU or other bus masters. Figure 3-7 shows how two microcontrollers are typically  
connected together via their MLI interface. The MLI operates in both microcontrollers as  
a bus master on the system bus.  
Controller 1  
CPU  
Controller 2  
CPU  
Peripheral  
A
Peripheral  
B
Peripheral  
C
Peripheral  
D
Memory  
MLI  
MLI  
Memory  
System Bus  
System Bus  
MCA06061  
Figure 3-7  
Features  
Typical Micro Link Interface Connection  
• Synchronous serial communication between MLI transmitters and MLI receivers  
located on the same or on different microcontroller devices  
• Automatic data transfer/request transactions between local/remote controller  
• Fully transparent read/write access supported (= remote programming)  
• Complete address range of remote controller available  
• Specific frame protocol to transfer commands, addresses and data  
• Error control by parity bit  
• 32-bit, 16-bit, and 8-bit data transfers  
• Programmable baud rates  
– MLI transmitter baud rate: max. fMLI/2 (= 40 Mbit/s @ 80 MHz module clock)  
– MLI receiver baud rate: max. fMLI  
• Multiple remote (slave) controllers are supported  
MLI transmitter and MLI receiver communicate with other off-chip MLI receivers and MLI  
transmitters via a 4-line serial I/O bus each. Several I/O lines of these I/O buses are  
available outside the MLI module kernel as four-line output or input buses.  
Data Sheet  
41  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
Figure 3-8 shows a global view of the functional blocks of the MLI module with its  
interfaces.  
A2 P2.0 / TCLK0  
TCLK  
A2 P2.1 / TREADY0A  
TREADYA  
A2 P2.2 / TVALID0A  
A2 P2.3 / TDATA0  
TREADYB  
TREADYD  
fMLI0  
Clock  
Control  
Port 2  
Control  
TVALIDA  
TVALIDB  
TVALIDD  
TDATA  
P2.4 / RCLK0A  
A1  
A2 P2.5 / RREADY0A  
A1 P2.6 / RVALID0A  
A1 P2.7 / RDATA0A  
Address  
Decoder  
MLI0  
Module  
RCLKA  
SR[3:0] (Kernel)  
Interrupt  
Control  
RCLKB  
RCLKD  
A2 P5.15 / TCLK0  
RREADYA  
RREADYB  
RREADYD  
RVALIDA  
RVALIDB  
RVALIDD  
RDATAA  
RDATAB  
RDATAD  
SR[4:7]  
To DMA  
Cerberus  
A2 P5.14 / TREADY0B  
BRKOUT  
P5.13 / TVALID0B  
A2  
A2 P5.12 / TDATA0  
A2 P5.11 / RCLK0B  
A2 P5.10 / RREADY0B  
A2 P5.9 / RVALID0B  
Port 5  
Control  
A2 P5.8 / RDATA0B  
MCB06322  
Figure 3-8  
Block Diagram of the MLI Module  
Data Sheet  
42  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.12  
General Purpose Timer Array  
The GPTA provides a set of timer, compare, and capture functionalities that can be  
flexibly combined to form signal measurement and signal generation units. They are  
optimized for tasks typical of engine, gearbox, electrical motor control applications, but  
can also be used to generate simple and complex signal waveforms needed in other  
industrial applications.  
The TC1762 contains one General Purpose Timer Array (GPTA0). Figure 3-9 shows a  
global view of the GPTA module.  
GPTA  
Clock Generation Unit  
FPC0  
DCM0  
FPC1  
FPC2  
FPC3  
FPC4  
FPC5  
PDL0  
PDL1  
DCM1  
DCM2  
DCM3  
DIGITAL  
PLL  
Clock  
Conn.  
fGPTA Clock Distribution Unit  
Signal  
Generation Unit  
GT0  
GT1  
GTC00  
GTC01  
GTC02  
GTC03  
LTC00  
LTC01  
LTC02  
LTC03  
Global  
Timer  
Cell Array  
Local  
Timer  
Cell Array  
GTC30  
GTC31  
LTC62  
LTC63  
I/O Line Sharing Unit  
Interrupt Sharing Unit  
MCB06063  
Figure 3-9  
Block Diagram of the GPTA Module  
Data Sheet  
43  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.12.1  
Functionality of GPTA0  
The General Purpose Timer Array GPTA0 provides a set of hardware modules required  
for high-speed digital signal processing:  
• Filter and Prescaler Cells (FPC) support input noise filtering and prescaler operation.  
• Phase Discrimination Logic units (PDL) decode the direction information output by a  
rotation tracking system.  
• Duty Cycle Measurement Cells (DCM) provide pulse-width measurement  
capabilities.  
• A Digital Phase Locked Loop unit (PLL) generates a programmable number of GPTA  
module clock ticks during an input signal’s period.  
• Global Timer units (GT) driven by various clock sources are implemented to operate  
as a time base for the associated Global Timer Cells.  
• Global Timer Cells (GTC) can be programmed to capture the contents of a Global  
Timer on an external or internal event. A GTC may also be used to control an external  
port pin depending on the result of an internal compare operation. GTCs can be  
logically concatenated to provide a common external port pin with a complex signal  
waveform.  
• Local Timer Cells (LTC) operating in Timer, Capture, or Compare Mode may also be  
logically tied together to drive a common external port pin with a complex signal  
waveform. LTCs — enabled in Timer Mode or Capture Mode — can be clocked or  
triggered by various external or internal events.  
Input lines can be shared by an LTC and a GTC to trigger their programmed operation  
simultaneously.  
The following list summarizes the specific features of the GPTA unit.  
Clock Generation Unit  
• Filter and Prescaler Cell (FPC)  
– Six independent units  
– Three basic operating modes:  
Prescaler, Delayed Debounce Filter, Immediate Debounce Filter  
– Selectable input sources:  
Port lines, GPTA module clock, FPC output of preceding FPC cell  
– Selectable input clocks:  
GPTA module clock, prescaled GPTA module clock, DCM clock, compensated or  
uncompensated PLL clock  
fGPTA/2 maximum input signal frequency in Filter Modes  
• Phase Discriminator Logic (PDL)  
– Two independent units  
– Two operating modes (2- and 3-sensor signals)  
fGPTA/4 maximum input signal frequency in 2-sensor Mode, fGPTA/6 maximum input  
signal frequency in 3-sensor Mode  
Data Sheet  
44  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
• Duty Cycle Measurement (DCM)  
– Four independent units  
– 0 - 100% margin and time-out handling  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Digital Phase Locked Loop (PLL)  
– One unit  
– Arbitrary multiplication factor between 1 and 65535  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Clock Distribution Unit (CDU)  
– One unit  
– Provides nine clock output signals:  
f
GPTA, divided fGPTA clocks, FPC1/FPC4 outputs, DCM clock, LTC prescaler clock  
Signal Generation Unit  
• Global Timers (GT)  
– Two independent units  
– Two operating modes (Free-Running Timer and Reload Timer)  
– 24-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Global Timer Cell (GTC)  
– 32 units related to the Global Timers  
– Two operating modes (Capture, Compare and Capture after Compare)  
– 24-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
• Local Timer Cell (LTC)  
– 64 independent units  
– Three basic operating modes (Timer, Capture and Compare) for 63 units  
– Special compare modes for one unit  
– 16-bit data width  
fGPTA maximum resolution  
fGPTA/2 maximum input signal frequency  
Interrupt Control Unit  
• 111 interrupt sources, generating up to 38 service requests  
Data Sheet  
45  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
I/O Sharing Unit  
• Interconnecting inputs and outputs from internal clocks, FPC, GTC, LTC, ports, and  
MSC interface  
Data Sheet  
46  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.13  
Analog-to-Digital Converter (ADC0)  
Section 3.13 shows the global view of the ADC module with its functional blocks and  
interfaces and the features which are provided by the module.  
VDDM  
VDD  
VAGND0 VSS VSSM VAREF0  
P1.14 /  
AD0EMUX2 (GRPS)  
GPRS  
fADC  
fCLC  
A1  
A1  
Clock  
Control  
Port 1  
Control  
EMUX0  
EMUX1  
P1.13 /AD0EMUX1  
A1 P1.12 /AD0EMUX0  
ASGT  
8
2
6
From Ports  
From MSC0  
From GPTA  
SW0TR, SW0GT  
ETR, EGT  
QTR, QGT  
TTR, TGT  
Address  
Decoder  
External  
Request  
Unit  
(SCU)  
ADC0  
Module  
Kernel  
AIN0  
D
D
D
AN0  
SR[3:0]  
SR[7:4]  
Group 0  
AIN15  
Interrupt  
Control  
AN15  
AN16  
AIN16  
Group 1  
AIN30  
AN30  
AN31  
D
D
To DMA  
AIN31  
0
Die  
Temperature  
1
Measurement  
SCU_CON.DTSON  
MCA06427  
Figure 3-10 Block Diagram of the ADC Module  
The ADC module has 16 analog input channels. An analog multiplexer selects the input  
line for the analog input channels from among 32 analog inputs. Additionally, an external  
analog multiplexer can be used for analog input extension. External Clock control,  
address decoding, and service request (interrupt) control are managed outside the ADC  
module kernel. External trigger conditions are controlled by an External Request Unit.  
This unit generates the control signals for auto-scan control (ASGT), software trigger  
control (SW0TR, SW0GT), the event trigger control (ETR, EGT), queue control (QTR,  
QGT), and timer trigger control (TTR, TGT).  
An automatic self-calibration adjusts the ADC module to changing temperatures or  
process variations. Figure 3-10 shows the global view of the ADC module with its  
functional blocks and interfaces.  
Data Sheet  
47  
V1.0, 2008-04  
TC1762  
Preliminary  
Features  
Functional Description  
• 8-bit, 10-bit, 12-bit A/D conversion  
• Conversion time below 2.5µs @ 10-bit resolution  
• Extended channel status information on request source  
• Successive approximation conversion method  
• Total Unadjusted Error (TUE) of ±2 LSB @ 10-bit resolution  
• Integrated sample & hold functionality  
• Direct control of up to 16 analog input channels  
• Dedicated control and status registers for each analog channel  
• Powerful conversion request sources  
• Selectable reference voltages for each channel  
• Programmable sample and conversion timing schemes  
• Limit checking  
• Flexible ADC module service request control unit  
• Automatic control of external analog multiplexers  
• Equidistant samples initiated by timer  
• External trigger and gating inputs for conversion requests  
• Power reduction and clock control feature  
• On-chip die temperature sensor output voltage measurement  
Data Sheet  
48  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.14  
Fast Analog-to-Digital Converter Unit (FADC)  
The on-chip FADC module of the TC1762 basically is a 2-channel A/D converter with 10-  
bit resolution that operates by the method of the successive approximation.  
As shown in Figure 3-11, the main FADC functional blocks are:  
• The Input Stage — contains the differential inputs and the programmable amplifier  
• The A/D Converter — is responsible for the analog-to-digital conversion  
• The Data Reduction Unit — contains programmable antialiasing and data reduction  
filters  
• The Channel Trigger Control block — determines the trigger and gating conditions  
for the two FADC channels  
• The Channel Timers — can independently trigger the conversion of each FADC  
channel  
• The A/D Control block is responsible for the overall FADC functionality  
The FADC module is supplied by the following power supply and reference voltage lines:  
VDDMF/VDDMF:FADC Analog Part Power Supply (3.3 V)  
VDDAF/VDDAF:FADC Analog Part Logic Power Supply (1.5 V)  
VFAREF/VFAGND:FADC Reference Voltage (3.3 V)/FADC Reference Ground  
Data Sheet  
49  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
VFAREF VDDAF VDDMF  
VFAGND VSSAF  
VSSMF  
fFADC  
fCLC  
Clock  
Control  
FAIN0P  
FAIN0N  
FAIN1P  
FAIN1N  
AN32  
AN33  
AN34  
AN35  
D
D
D
D
Address  
Decoder  
SR[1:0]  
SR[3:2]  
Interrupt  
Control  
FADC  
Module  
Kernel  
DMA  
OUT1  
OUT9  
OUT18  
OUT26  
OUT2  
OUT10  
OUT19  
OUT27  
P3.10 / REQ0  
P3.11 / REQ1  
P0.14 / REQ4  
P0.15 / REQ5  
A1  
A1  
A1  
A1  
GPTA0  
GS[7:0]  
TS[7:0]  
PDOUT2  
PDOUT3  
External Request Unit  
(SCU)  
MCA06445  
Figure 3-11 Block Diagram of the FADC Module  
Features  
• Extreme fast conversion, 21 cycles of fFADC clock (262.5 ns @ fFADC = 80 MHz and  
318.2 ns @ fFADC = 66 MHz)  
• 10-bit A/D conversion  
– Higher resolution by averaging of consecutive conversions is supported  
• Successive approximation conversion method  
• Two differential input channels  
• Offset and gain calibration support for each channel  
• Differential input amplifier with programmable gain of 1, 2, 4 and 8 for each channel  
• Free-running (Channel Timers) or triggered conversion modes  
• Trigger and gating control for external signals  
• Built-in Channel Timers for internal triggering  
• Channel timer request periods independently selectable for each channel  
Data Sheet  
50  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
• Selectable, programmable anti-aliasing and data reduction filter block  
3.15  
System Timer  
The TC1762’s STM is designed for global system timing applications requiring both high  
precision and long period.  
Features  
• Free-running 56-bit counter  
• All 56 bits can be read synchronously  
• Different 32-bit portions of the 56-bit counter can be read synchronously  
• Flexible interrupt generation based on compare match with partial STM content  
• Driven by maximum 66 or 80 MHz (= fSYS, default after reset = fSYS/2) depending on  
derivative  
• Counting starts automatically after a reset operation  
• STM is reset by:  
– Watchdog reset  
– Software reset (RST_REQ.RRSTM must be set)  
– Power-on reset  
• STM (and clock divider STM_CLC.RMC) is not reset at a hardware reset (HDRST =  
0)  
• STM can be halted in debug/suspend mode (via STM_CLC register)  
The STM is an upward counter, running either at the system clock frequency fSYS or at a  
fraction of it. The STM clock frequency is fSTM = fSYS/RMC with RMC = 0-7 (default after  
reset is fSTM = fSYS/2, selected by RMC = 010B). RMC is a bit field in register STM_CLC.  
In case of a power-on reset, a watchdog reset, or a software reset, the STM is reset. After  
one of these reset conditions, the STM is enabled and immediately starts counting up. It  
is not possible to affect the content of the timer during normal operation of the TC1762.  
The timer registers can only be read but not written to.  
The STM can be optionally disabled for power-saving purposes, or suspended for  
debugging purposes via its clock control register. In suspend mode of the TC1762  
(initiated by writing an appropriate value to STM_CLC register), the STM clock is  
stopped but all registers are still readable.  
Due to the 56-bit width of the STM, it is not possible to read its entire content with one  
instruction. It needs to be read with two load instructions. Since the timer would continue  
to count between the two load operations, there is a chance that the two values read are  
not consistent (due to possible overflow from the low part of the timer to the high part  
between the two read operations). To enable a synchronous and consistent reading  
operation of the STM content, a capture register (STM_CAP) is implemented. It latches  
the content of the high part of the STM each time when one of the registers STM_TIM0  
to STM_TIM5 is read. Thus, STM_CAP holds the upper value of the timer at exactly the  
Data Sheet  
51  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
same time when the lower part is read. The second read operation would then read the  
content of the STM_CAP to get the complete timer value.  
The STM can also be read in sections from seven registers, STM_TIM0 through  
STM_TIM6, that select increasingly higher-order 32-bit ranges of the STM. These can  
be viewed as individual 32-bit timers, each with a different resolution and timing range.  
The content of the 56-bit System Timer can be compared with the content of two  
compare values stored in the STM_CMP0 and STM_CMP1 registers. Interrupts can be  
generated on a compare match of the STM with the STM_CMP0 or STM_CMP1  
registers.  
The maximum clock period is 256 × fSTM. At fSTM = 80 MHz, for example, the STM counts  
28.56 years before overflowing. Thus, it is capable of timing the entire expected product  
life-time of a system without overflowing continuously.  
Figure 3-12 shows an overview on the System Timer with the options for reading parts  
of the STM contents.  
Data Sheet  
52  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
STM Module  
31  
23  
15  
7
0
STM_CMP0  
Compare Register 0  
31  
23  
15  
7
0
STM_CMP1  
Compare Register1  
STMIR1  
STMIR0  
55  
47  
39  
31  
23  
15  
7
0
Interrupt  
Control  
56-Bit System Timer  
Enable /  
Disable  
00H  
00H  
STM_CAP  
STM_TIM6  
Clock  
Control  
fSTM  
STM_TIM5  
STM_TIM4  
Address  
Decoder  
STM_TIM3  
STM_TIM2  
STM_TIM1  
STM_TIM0  
PORST  
MCB06185  
Figure 3-12 General Block Diagram of the STM Module Registers  
Data Sheet  
53  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.16  
Watchdog Timer  
The WDT provides a highly reliable and secure way to detect and recover from software  
or hardware failure. The WDT helps to abort an accidental malfunction of the TC1762 in  
a user-specified time period. When enabled, the WDT will cause the TC1762 system to  
be reset if the WDT is not serviced within a user-programmable time period. The CPU  
must service the WDT within this time interval to prevent the WDT from causing a  
TC1762 system reset. Hence, routine service of the WDT confirms that the system is  
functioning as expected.  
In addition to this standard “Watchdog” function, the WDT incorporates the End-of-  
Initialization (Endinit) feature and monitors its modifications. A system-wide line is  
connected to the WDT_CON0.ENDINIT bit, serving as an additional write-protection for  
critical registers (besides Supervisor Mode protection). Registers protected via this line  
can only be modified when Supervisor Mode is active and bit ENDINIT = 0.  
A further enhancement in the TC1762’s WDT is its reset prewarning operation. Instead  
of resetting the device upon the detection of an error immediately (the way that standard  
Watchdogs do), the WDT first issues a Non-Maskable Interrupt (NMI) to the CPU before  
resetting the device at a specified time period later. This step gives the CPU a chance to  
save the system state to the memory for later investigation of the cause of the  
malfunction; an important aid in debugging.  
Features  
• 16-bit Watchdog counter  
• Selectable input frequency: fSYS/256 or fSYS/16384  
• 16-bit user-definable reload value for normal Watchdog operation, fixed reload value  
for Time-Out and Prewarning Modes  
• Incorporation of the ENDINIT bit and monitoring of its modifications  
• Sophisticated Password Access mechanism with fixed and user-definable password  
fields  
• Proper access always requires two write accesses. The time between the two  
accesses is monitored by the WDT and is limited.  
• Access Error Detection: Invalid password (during first access) or invalid guard bits  
(during second access) trigger the Watchdog reset generation  
• Overflow Error Detection: An overflow of the counter triggers the Watchdog reset  
generation.  
• Watchdog function can be disabled; access protection and ENDINIT monitor function  
remain enabled.  
• Double Reset Detection: If a Watchdog induced reset occurs twice, a severe system  
malfunction is assumed and the TC1762 is held in reset until a power-on or hardware  
reset occurs. This prevents the device from being periodically reset if, for instance,  
connection to the external memory has been lost such that system initialization could  
not even be performed.  
Data Sheet  
54  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
• Important debugging support is provided through the reset prewarning operation by  
first issuing an NMI to the CPU before finally resetting the device after a certain  
period of time.  
3.17  
System Control Unit  
The System Control Unit (SCU) of the TC1762 handles several system control tasks.  
The system control tasks of the SCU are:  
• Clock system selection and control  
• Reset and boot operation control  
• Power management control  
• Configuration input sampling  
• External Request Unit  
• System clock output control  
• On-chip SRAM parity control  
• Pad driver temperature compensation control  
• Emergency stop input control for GPTA outputs  
• GPTA input IN1 control  
• Pad test mode control for dedicated pins  
• ODCS level 2 trace control  
• NMI control  
• Miscellaneous SCU control  
Data Sheet  
55  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.18  
Boot Options  
The TC1762 booting schemes provide a number of different boot options for the start of  
code execution. Table 3-2 shows the boot options available in the TC1762.  
Table 3-2  
BRKIN  
TC1762 Boot Selections  
HWCFG TESTMODE Type of Boot  
[3:0]  
BootROM  
Exit Jump  
Address  
Normal Boot Options  
1
0000B  
1
Enter bootstrap loader mode 1:  
Serial ASC0 boot via ASC0 pins  
D400 0000H  
0001B  
Enter bootstrap loader mode 2:  
Serial CAN boot via P3.12 and  
P3.13 pins  
0010B  
0011B  
Start from internal PFLASH  
A000 0000H  
Alternate boot mode (ABM): Start Defined in  
from internal PFLASH after CRC ABM header  
check is correctly executed; enter or D400 0000H  
a serial bootstrap loader mode1) if  
CRC check fails  
1111B  
others  
Enter bootstrap loader mode 3:  
Serial ASC0 boot via P3.12 and  
P3.13 pins  
D400 0000H  
Reserved; execute stop loop  
Debug Boot Options  
0
0000B  
others  
1
Tri-state chip  
irrel.  
Reserved; execute stop loop  
1) The type of the alternate bootstrap loader mode is selected by the value of the SCU_SCLIR.SWOPT[2:0] bit  
field, which contains the levels of the P0.[2:0] latched in with the rising edge of the HDRST.  
Data Sheet  
56  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.19  
Power Management System  
The TC1762 power management system allows software to configure the various  
processing units so that they automatically adjust to draw the minimum necessary power  
for the application. There are three power management modes:  
• Run Mode  
• Idle Mode  
• Sleep Mode  
The operation of each system component in each of these states can be configured by  
software. The power-management modes provide flexible reduction of power  
consumption through a combination of techniques, including stopping the CPU clock,  
stopping the clocks of other system components individually, and individually clock-  
speed reduction of some peripheral components.  
Besides these explicit software-controlled power-saving modes, special attention has  
been paid to automatic power-saving in those operating units which are not required at  
a certain point of time, or idle in the TC1762. In that case, they are shut off automatically  
until their operation is required again.  
Table 3-3 describes the features of the power management modes.  
Table 3-3  
Mode  
Power Management Mode Summary  
Description  
Run  
The system is fully operational. All clocks and peripherals are enabled,  
as determined by software.  
Idle  
The CPU clock is disabled, waiting for a condition to return it to Run  
Mode. Idle Mode can be entered by software when the processor has no  
active tasks to perform. All peripherals remain powered and clocked.  
Processor memory is accessible to peripherals. A reset, Watchdog  
Timer event, a falling edge on the NMI pin, or any enabled interrupt event  
will return the system to Run Mode.  
Sleep  
The system clock signal is distributed only to those peripherals  
programmed to operate in Sleep Mode. The other peripheral module will  
be shut down by the suspend signal. Interrupts from operating  
peripherals, the Watchdog Timer, a falling edge on the NMI pin, or a  
reset event will return the system to Run Mode. Entering this state  
requires an orderly shut-down controlled by the Power Management  
State Machine.  
In typical operation, Idle Mode and Sleep Mode may be entered and exited frequently  
during the run time of an application. For example, system software will typically cause  
the CPU to enter Idle Mode each time it has to wait for an interrupt before continuing its  
tasks. In Sleep Mode and Idle Mode, wake-up is performed automatically when any  
Data Sheet  
57  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
enabled interrupt signal is detected, or when the count value (WDT_SR.WDTTIM)  
changes from 7FFFH to 8000H.  
3.20  
On-Chip Debug Support  
Figure 3-13 shows a block diagram of the TC1762 OCDS system.  
OCDS  
L1  
BCU  
SPB  
Peripheral  
Unit 1  
SPB  
Peripheral  
Unit n  
OCDS  
L2  
OCDS  
L1  
TriCore  
16  
OCDS2[15:0]  
Watch-  
dog  
Timer  
DMA  
TDO  
TDI  
OSCU  
TMS  
TCK  
TRST  
JTAG  
Controller  
JDI  
Debug  
I/F  
BRKIN  
MCBS  
Break  
Switch  
BRKOUT  
MCB06195  
Figure 3-13 OCDS System Block Diagram  
The TC1762 basically supports three levels of debug operation:  
• OCDS Level 1 debug support  
• OCDS Level 2 debug support  
• OCDS Level 3 debug support  
Data Sheet  
58  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
OCDS Level 1 Debug Support  
The OCDS Level 1 debug support is mainly assigned for real-time software debugging  
purposes which have a demand for low-cost standard debugger hardware.  
The OCDS Level 1 is based on a JTAG interface that is used by the external debug  
hardware to communicate with the system. The on-chip Cerberus module controls the  
interactions between the JTAG interface and the on-chip modules. The external debug  
hardware may become master of the internal buses, and read or write the on-chip  
register/memory resources. The Cerberus also makes it possible to define breakpoint  
and trigger conditions as well as to control user program execution (run/stop, break,  
single-step).  
OCDS Level 2 Debug Support  
The OCDS Level 2 debug support makes it possible to implement program tracing  
capabilities for enhanced debuggers by extending the OCDS Level 1 debug functionality  
with an additional 16-bit wide trace output port with trace clock. With the trace extension,  
the following four trace capabilities are provided (only one of the three trace capabilities  
can be selected at a time):  
• Trace of the CPU program flow  
• Trace of the DMA Controller transaction requests  
• Trace of the DMA Controller Move Engine status information  
OCDS Level 3 Debug Support  
The OCDS Level 3 debug support is based on a special TC1766 emulation device, the  
TC1766ED, which provides additional features required for high-end emulation  
purposes. The TC1766ED is a device which includes the TC1766 product chip and  
additional emulation extension hardware in a package with the same footprint as the  
TC1766.  
Data Sheet  
59  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.21  
Clock Generation and PLL  
The TC1762 clock system performs the following functions:  
• Acquires and buffers incoming clock signals to create a master clock frequency  
• Distributes in-phase synchronized clock signals throughout the TC1762’s entire clock  
tree  
• Divides a system master clock frequency into lower frequencies required by the  
different modules for operation.  
• Dynamically reduces power consumption during operation of functional units  
• Statically reduces power consumption through programmable power-saving modes  
• Reduces electromagnetic interference (EMI) by switching off unused modules  
The clock system must be operational before the TC1762 can function, so it contains  
special logic to handle power-up and reset operations. Its services are fundamental to  
the operation of the entire system, so it contains special fail-safe logic.  
Features  
• PLL operation for multiplying clock source by different factors  
• Direct drive capability for direct clocking  
• Comfortable state machine for secure switching between basic PLL, direct or  
prescaler operation  
• Sleep and Power-Down Mode support  
The TC1762 Clock Generation Unit (CGU) as shown in Figure 3-14 allows a very  
flexible clock generation. It basically consists of an main oscillator circuit and a Phase-  
Locked Loop (PLL). The PLL can converts a low-frequency external clock signal from the  
oscillator circuit to a high-speed internal clock for maximum performance.  
The system clock fSYS is generated from an oscillator clock fOSC in either one of the four  
hardware/software selectable ways:  
Direct Drive Mode (PLL Bypass):  
In Direct Drive Mode, the TC1762 clock system is directly driven by an external clock  
signal. input, i.e. fCPU = fOSC and fSYS = fOSC. This allows operation of the TC1762 with  
a reasonably small fundamental mode crystal.  
VCO Bypass Mode (Prescaler Mode):  
In VCO Bypass Mode, fCPU and fSYS are derived from fOSC by the two divider stages,  
P-Divider and K-Divider. The system clock fSYS is equal to fCPU  
PLL Mode:  
.
In PLL Mode, the PLL is running. The VCO clock fVCO is derived from fOSC, divided by  
the P factor, multiplied by the PLL (N-Divider). The clock signals fCPU and fSYS are  
derived from fVCO by the K-Divider. The system clock fSYS is equal to fCPU  
PLL Base Mode:  
.
In PLL Base Mode, the PLL is running at its VCO base frequency and fCPU and fSYS  
Data Sheet  
60  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
are derived from fVCO only by the K-Divider. In this mode, the system clock fSYS is  
equal to fCPU  
.
XTAL1  
XTAL2  
Clock Generation Unit (CGU)  
fOSC  
Oscillator  
Circuit  
1:1  
Divider  
fSYS  
fCPU  
M
U
X
1 M  
U
P
Divi-  
der  
1  
K:1  
Divider  
fVCO  
X
Phase  
VCO  
0
Osc. Run  
Detect.  
Detect.  
N
Divider  
PLL  
Lock  
Detector  
OGC MOSC OSCR PDIV OSC  
[2:0] DISC  
PLL_  
LOCK  
NDIV VCO_  
[6:0] SEL[1:0] BYPASS [3:0] FSL BYPASS  
VCO_  
KDIV SYS PLL_  
BYPASS  
Register  
OSC_CON  
Register PLL_CLC  
OSC_  
BYPASS  
System Control Unit (SCU)  
MCA06083  
Figure 3-14 Clock Generation Unit  
Recommended Oscillator Circuits  
The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal  
oscillator or an external stable clock source. It basically consists of an inverting amplifier  
and a feedback element with XTAL1 as input, and XTAL2 as output.  
When using a crystal, a proper external oscillator circuitry must be connected to both  
pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz  
to 25 MHz. Additionally, it is necessary to have two load capacitances CX1 and CX2, and  
depending on the crystal type, a series resistor RX2, to limit the current. A test resistor RQ  
may be temporarily inserted to measure the oscillation allowance (negative resistance)  
of the oscillator circuitry. RQ values are typically specified by the crystal vendor. The CX1  
and CX2 values shown in Figure 3-15 can be used as starting points for the negative  
resistance evaluation and for non-productive systems. The exact values and related  
operating range are dependent on the crystal frequency and have to be determined and  
optimized together with the crystal vendor using the negative resistance method.  
Data Sheet  
61  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
Oscillation measurement with the final target system is strongly recommended to verify  
the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin  
negative resistance) for the oscillator-crystal system.  
When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is  
left open (unconnected). The external clock frequency can be in the range of 0 - 40 MHz  
if the PLL is bypassed, and 4 - 40 MHz if the PLL is used.  
The oscillator can also be used in combination with a ceramic resonator. The final  
circuitry must also be verified by the resonator vendor.  
Figure 3-15 shows the recommended external oscillator circuitries for both operating  
modes, external crystal mode and external input clock mode. A block capacitor is  
recommended to be placed between VDDOSC/VDDOSC3 and VSSOSC  
.
VDDOSC VDDOSC3  
VDDOSC VDDOSC3  
fOSC  
fOSC  
External Clock  
XTAL1  
XTAL1  
Signal  
4 - 40  
MHz  
4 - 25  
MHz  
TC1762  
TC1762  
Oscillator  
Oscillator  
RQ  
RX2  
CX2  
XTAL2  
XTAL2  
CX1  
Fundamental  
Mode Crystal  
VSSOSC  
VSSOSC  
1)  
1)  
Crystal Frequency CX1  
,
CX2  
RX2  
4 MHz  
33 pF  
0
0
0
0
8 MHz  
18 pF  
12 pF  
10 pF  
12 MHz  
16 - 25 MHz  
1) Note that these are evaluation start values!  
MCS06084  
Figure 3-15 Oscillator Circuitries  
Note: For crystal operation, it is strongly recommended to measure the negative  
resistance in the final target system (layout) to determine the optimum parameters  
for the oscillator operation. Please refer to the minimum and maximum values of  
the negative resistance specified by the crystal supplier.  
Data Sheet  
62  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.22  
Power Supply  
The TC1762 has several power supply lines for different voltage classes:  
• 1.5 V: Core logic, oscillator and A/D converter supply  
• 3.3 V: I/O ports, Flash memories, oscillator, and A/D converter supply with reference  
voltages  
Figure 3-16 shows the power supply concept of the TC1762 with the power supply pins  
and its connections to the functional units.  
VDDAF VDDMF  
VFAREF  
(3.3V)  
VFAGND  
VDDM  
(3.3V)  
VSSM  
VAREF  
(3.3V)  
VAGND  
(1.5V)  
(3.3V)  
VSSAF VSSMF  
2
2
2
2
2
TC1762  
FADC  
ADC  
VSSA  
VDDA  
(1.5 V)  
1
1
PLL  
Core  
Flash  
Memories  
OSC  
Ports  
9
8
7
3
1
VDDOSC3 (3.3 V)  
VDDOSC (1.5 V)  
VSSOSC  
VSS  
VDD  
(1.5 V)  
VDDP  
(3.3 V)  
VDDFL3  
3.3 V  
TC1762PwrSupply  
Figure 3-16 Power Supply Concept of TC1762  
Data Sheet  
63  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
3.23  
Identification Register Values  
Table 3-4 shows the address map and reset values of the TC1762 Identification  
Registers.  
Table 3-4  
Short Name  
SCU_ ID  
MANID  
TC1762 Identification Registers  
Address  
Reset Value  
Stepping  
F000 0008H  
F000 0070H  
F000 0074H  
F000 0078H  
002C C002H  
0000 1820H  
0000 8B02H  
0000 0001H  
0000 0011H  
0000 0007H  
0000 6A0AH  
0000 C006H  
0000 6307H  
0028 C001H  
0000 4402H  
0000 4402H  
0029 C004H  
001A C012H  
002B C012H  
0000 4510H  
0027 C012H  
0030 C001H  
0025 C006H  
001B C001H  
0015 C006H  
000A C005H  
002E C012H  
0041 C002H  
0008 C004H  
000B C004H  
-
-
CHIPID  
-
RTID  
AA-Step  
AB-Step  
AC-Step  
SBCU_ID  
STM_ID  
F000 0108H  
F000 0208H  
F000 0408H  
F000 0808H  
F000 0A08H  
F000 0B08H  
F000 1808H  
F000 3C08H  
F000 4008H  
F010 0108H  
F010 0308H  
F010 0408H  
F010 C008H  
F010 C208H  
F7E0 FF08H  
F7E1 FE18H  
F800 0508H  
F800 2008H  
F87F FC08H  
F87F FD08H  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CBS_ JDPID  
MSC0_ ID  
ASC0_ ID  
ASC1_ ID  
GPTA0_ ID  
DMA_ID  
CAN_ID  
SSC0_ ID  
FADC_ ID  
ADC0_ID  
MLI0_ ID  
MCHK_ ID  
CPS_ID  
CPU_ID  
PMU_ID  
FLASH_ID  
DMI_ID  
PMI_ID  
Data Sheet  
64  
V1.0, 2008-04  
TC1762  
Preliminary  
Functional Description  
Table 3-4  
Short Name  
LBCU_ID  
LFI_ID  
TC1762 Identification Registers  
Address  
Reset Value  
Stepping  
F87F FE08H  
F87F FF08H  
000F C005H  
000C C005H  
-
-
Data Sheet  
65  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4
Electrical Parameters  
Chapter 4 provides the characteristics of the electrical parameters which are  
implementation-specific for the TC1762.  
4.1  
General Parameters  
The general parameters are described here to aid the users in interpreting the  
parameters mainly in Section 4.2 and Section 4.3. The absolute maximum ratings and  
its operating conditions are provided for the appropriate setting in the TC1762.  
4.1.1  
Parameter Interpretation  
The parameters listed in this section partly represent the characteristics of the TC1762  
and partly its requirements on the system. To aid interpreting the parameters easily  
when evaluating them for a design, they are marked with an two-letter abbreviation in  
column “Symbol”:  
CC  
Such parameters indicate Controller Characteristics which are a distinctive feature of  
the TC1762 and must be regarded for a system design.  
SR  
Such parameters indicate System Requirements which must provided by the  
microcontroller system in which the TC1762 designed in.  
Data Sheet  
66  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.1.2  
Pad Driver and Pad Classes Summary  
This section gives an overview on the different pad driver classes and its basic  
characteristics. More details (mainly DC parameters) are defined in Section 4.2.1.  
Table 4-1  
Pad Driver and Pad Classes Overview  
Class Power Type  
Supply  
Sub Class Speed Load Leakage1) Termination  
Grade  
A
3.3V  
LVTTL A1  
6 MHz 100 pF 500 nA  
No  
I/O,  
(e.g. GPIO)  
LVTTL  
outputs  
A2  
(e.g. serial  
I/Os)  
40  
MHz  
50 pF 6 µA  
50 pF 6 µA  
Series  
termination  
recommended  
A3  
66 or  
Series  
(e.g. BRKIN, 80  
BRKOUT)  
termination  
recommended  
(for f > 25 MHz)  
MHz2)  
A4  
66 or  
25 pF 6 µA  
Series  
(e.g. Trace 80  
Clock)  
termination  
recommended  
MHz2)  
C
D
3.3V  
LVDS  
50  
MHz  
Parallel  
termination3),  
100Ω ± 10%  
Analog inputs, reference voltage inputs  
1) Values are for TJmax = 150 °C.  
2) This value corresponds to the operating frequency of the device, which depending on the derivative, can be  
66 or 80 MHz.  
3) In applications where the LVDS pins are not used (disabled), these pins must be either left unconnected, or  
properly terminated with the differential parallel termination of 100Ω ± 10%.  
Data Sheet  
67  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.1.3  
Absolute Maximum Ratings  
Table 4-2 shows the absolute maximum ratings of the TC1762 parameters.  
Table 4-2  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
Unit Notes  
Min.  
SR -40  
Max.  
125  
150  
150  
2.25  
Ambient temperature  
Storage temperature  
Junction temperature  
TA  
TST  
TJ  
°C  
°C  
°C  
V
Under bias  
SR -65  
SR -40  
SR –  
Under bias  
Voltage at 1.5 V power supply VDD  
pins with respect to VSS  
1)  
Voltage at 3.3 V power supply VDDP  
pins with respect to VSS  
SR –  
3.75  
V
V
2)  
Voltage on any Class A input VIN  
pin and dedicated input pins  
with respect to VSS  
SR -0.5  
V
DDP + 0.5  
Whateveris  
lower  
or  
max. 3.7  
Voltage on any Class D  
analog input pin with respect VAREFx  
to VAGND  
VAIN,  
SR -0.5  
SR -0.5  
V
DDM + 0.5 V  
Whateveris  
lower  
or max. 3.7  
Voltage on any Class D  
analog input pin with respect VFAREF  
VAINF,  
V
DDMF + 0.5 V  
Whateveris  
lower  
or max. 3.7  
to VSSAF  
CPU & LMB Bus  
Frequency3)4)  
FPI Bus Frequency3)4)  
fCPU  
fSYS  
SR –  
SR –  
66 or 80  
MHz –  
5)  
66 or 80  
MHz  
1) Applicable for VDD, VDDOSC, VDDPLL, and VDDAF  
2) Applicable for VDDP, VDDFL3, DDM, and VDDMF  
.
V
.
3) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter  
parameters.  
4) This value depend on the derivative and the operating frequency it is designated for. For a device operating  
at 66 MHz, the absolute maximum frequency is also 66 MHz. Similarly, for a device operating at 80 MHz, the  
absolute maximum frequency is 80 MHz.  
5) The ratio between fCPU and fSYS is fixed at 1:1.  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
Data Sheet  
68  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > related VDD or  
VIN < VSS) the voltage on the related VDD pins with respect to ground (VSS) must  
not exceed the values defined by the absolute maximum ratings.  
4.1.4  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the TC1762. All parameters specified in the following table refer to these  
operating conditions, unless otherwise noted.  
Table 4-3  
Operating Condition Parameters  
Symbol  
Parameter  
Limit  
Values  
Unit Notes  
Conditions  
Min. Max.  
Digital supply voltage1)  
VDD  
VDDOSC  
SR  
SR  
1.42 1.582)  
V
V
VDDP  
VDDOSC3  
3.13 3.473)  
For Class A  
pins  
(3.3V ± 5%)  
VDDFL3  
VSS  
SR  
SR  
SR  
3.13 3.473)  
0
V
V
Digital ground voltage  
Ambient temperature under TA  
-40  
+125 °C  
bias  
Analog supply voltages  
See separate  
specification  
Page 4-75,  
Page 4-82  
4)  
CPU clock  
fCPU  
ISC  
SR  
SR  
SR  
805)  
+5  
MHz –  
6)  
Short circuit current  
-5  
mA  
Absolute sum of short circuit Σ|ISC|  
currents of a pin group (see  
Table 4-4)  
20  
mA See note7)  
Absolute sum of short circuit Σ|ISC|  
SR  
100  
mA See note 7)  
currents of the device  
Data Sheet  
69  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Table 4-3  
Operating Condition Parameters  
Symbol  
Parameter  
Limit  
Values  
Unit Notes  
Conditions  
Min. Max.  
Inactive device pin current  
(VDD = VDDP = 0)  
IID  
CL  
SR  
SR  
-1  
1
mA Voltage on all  
power supply  
pins VDDx = 0  
External load capacitance  
See  
DC  
pF  
Depending on  
pin class  
chara  
cterist  
ics  
1) Digital supply voltages applied to the TC1762 must be static regulated voltages which allow a typical voltage  
swing of ±5%.  
2) Voltage overshoot up to 1.7 V is permissible at Power-Up and PORST low, provided the pulse duration is less  
than 100 µs and the cumulated summary of the pulses does not exceed 1 h.  
3) Voltage overshoot to 4 V is permissible at Power-Up and PORST low, provided the pulse duration is less than  
100 µs and the cumulated summary of the pulses does not exceed 1 h.  
4) The TC1762 uses a static design, so the minimum operation frequency is 0 MHz. Due to test time restriction  
no lower frequency boundary is tested, however.  
5) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter  
parameters.  
6) Applicable for digital outputs.  
7) See additional document “TC1796 Pin Reliability in Overload“ for overload current definitions.  
Data Sheet  
70  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Table 4-4  
Pin Groups for Overload/Short-Circuit Current Sum Parameter  
Group  
Pins  
1
2
3
4
5
TRCLK, P5.[7:0], P0.[7:6], P0.[15:14]  
P0.[13:12], P0.[5:4], P2.[13:8], SOP0A, SON0, FCLP0A, FCLN0  
P0.[11:8], P0.[3:0], P3.[13:11]  
P3[10:0], P3.[15:14]  
HDRST, PORST, NMI, TESTMODE, BRKIN, BRKOUT, BYPASS, TCK,  
TRST, TDO, TMS, TDI, P1.[7:4]  
6
7
8
P1.[3:0], P1.[11:8], P4.[3:0]  
P2.[7:0], P1.[14:12]  
P5.[15:8]  
Data Sheet  
71  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.2  
DC Parameters  
The electrical characteristics of the DC Parameters are detailed in this section.  
4.2.1  
Input/Output Pins  
Table 4-5 provides the characteristics of the input/output pins of the TC1762.  
Table 4-5  
Input/Output DC-Characteristics (Operating Conditions apply)  
Symbol Limit Values Unit Test Conditions  
Parameter  
Min.  
Max.  
General Parameters  
Pull-up current1)  
|IPUH| CC 10  
100  
200  
150  
200  
10  
µA VIN < VIHAmin  
;
class A1/A2/Input pads.  
20  
CC 10  
20  
µA VIN < VIHAmin  
;
class A3/A4 pads.  
Pull-down  
current1)  
|IPDL  
|
µA VIN > VILAmax  
;
class A1/A2/Input pads.  
µA VIN > VILAmax  
;
class A3/A4 pads.  
Pin capacitance1) CIO  
CC –  
pF f = 1 MHz  
(Digital I/O)  
TA = 25 °C  
Input only Pads (VDDP = 3.13 to 3.47 V = 3.3V ±5%)  
Input low voltage VILA  
class A1/A2 pins  
SR -0.3  
0.34 ×  
VDDP  
V
V
Input high voltage VIHA  
SR 0.64 × VDDP  
+
Whatever is lower  
class A1/A2 pins  
VDDP  
0.3 or  
max. 3.6  
Ratio VIL/VIH  
CC 0.53  
Input low voltage VILA3 SR –  
0.8  
V
class A3 pins  
Input high voltage VIHA3 SR 2.0  
class A3 pins  
V
V
2)5)  
Input hysteresis  
HYSA CC 0.1 ×  
VDDP  
Input leakage  
current  
IOZI  
CC –  
±3000  
±6000  
nA ((VDDP/2)-1) < VIN  
< ((VDDP/2)+1)  
otherwise3)  
Data Sheet  
72  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Table 4-5  
Input/Output DC-Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Min. Max.  
Class A Pads (VDDP = 3.13 to 3.47 V = 3.3V ±5%)  
Unit Test Conditions  
Output low  
voltage4)  
VOLA CC –  
0.4  
V
IOL = 2 mA for strong driver  
mode, (Not applicable to  
Class A1 pins)  
IOL = 1.8 mA for medium  
driver mode, A2 pads  
IOL = 1.4 mA for medium  
driver mode, A1 pads  
IOL = 370 µA for weak  
driver mode  
Output high  
voltage3)  
VOHA CC 2.4  
V
IOH = -2 mA for strong  
driver mode, (Not  
applicable to Class A1  
pins)  
I
OH = -1.8 mA for medium  
driver mode, A1/A2 pads  
OH = -370 µA for weak  
driver mode  
OH = -1.4 mA for strong  
I
VDDP  
-
V
I
0.4  
driver mode, (Not  
applicable to Class A1  
pins)  
I
OH = -1 mA for medium  
driver mode, A1/A2 pads  
OH = -280 µA for weak  
I
driver mode  
Input low voltage VILA  
class A1/2 pins  
SR -0.3  
0.34 ×  
VDDP  
V
V
Input high voltage VIHA  
SR 0.64 × VDDP  
+
Whatever is lower  
class A1/2 pins  
VDDP  
0.3 or  
3.6  
Ratio VIL/VIH  
CC 0.53  
2)5)  
Input hysteresis  
Data Sheet  
HYSA CC 0.1 ×  
V
VDDP  
73  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Table 4-5  
Input/Output DC-Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Min.  
Max.  
Input leakage  
current Class  
A2/3/4 pins  
IOZA24 CC –  
±3000  
nA ((VDDP/2)-1) < VIN  
<((VDDP/2)+1)  
±6000  
±500  
otherwise3)  
Input leakage  
current  
IOZA1 CC –  
nA 0 V <VIN < VDDP  
Class A1 pins  
Class C Pads (VDDP = 3.13 to 3.47 V = 3.3V ±5%)  
Output low voltage VOL  
CC 815  
CC  
mV Parallel termination  
100 Ω ± 1%  
Output high  
voltage  
VOH  
1545  
600  
mV  
Output differential VOD  
voltage  
CC 150  
CC 1075  
CC 40  
mV  
mV  
Output offset  
voltage  
VOS  
1325  
140  
Output impedance R0  
Class D Pads  
see ADC Characteristics  
1) Not subject to production test, verified by design / characterization.  
2) The pads that have spike filter function in the input path: PORST, HDRST, NMI do not have hysteresis.  
3) Only one of these parameters is tested, the other is verified by design characterization  
4) Max. resistance between pin and next power supply pin 25 for strong driver mode  
(verified by design characterization).  
5) Function verified by design, value is not subject to production test - verified by design/characterization.  
Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot  
be guaranteed that it suppresses switching due to external system noise.  
Data Sheet  
74  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.2.2  
Analog to Digital Converter (ADC0)  
Table 4-6 provides the characteristics of the ADC module in the TC1762.  
Table 4-6  
ADC Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Typ. Max.  
Unit Test Conditions /  
Remarks  
Min.  
SR 3.13  
SR 1.42  
Analog supply  
voltage  
VDDM  
VDD  
3.3  
1.5  
3.471)  
1.582)  
V
V
Power supply for  
ADC digital part,  
internal supply  
Analog ground  
voltage  
VSSM  
SR -0.1  
0.1  
V
Analog reference VAREFx  
SR VAGNDx+ VDDM VDDM+ V  
voltage 17)  
1V  
0.051)  
3)4)  
Analog reference VAGNDx  
SR VSSMx - 0  
VAREF  
- 1 V  
V
V
ground 17)  
0.05V  
Analog reference VAREFx  
-
SR VDDM/2  
VDDM  
+ 0.05  
voltage range5)17) VAGNDx  
Analog input  
voltage range  
VAIN  
IDDM  
tPUC  
SR VAGNDx  
SR  
VAREFx  
4
6)  
VDDM  
supply current  
2.5  
mA  
rms  
Power-up  
calibration  
time  
CC –  
3840 fADC  
CLK  
Internal ADC  
clocks  
fBC  
fANA  
tS  
CC 2  
40  
10  
MHz fBC = fANA × 4  
MHz fANA = fBC / 4  
CC 0.5  
Sample time  
CC 4 × (CHCONn.STC  
+ 2) × tBC  
µs  
8 × tBC  
µs  
Data Sheet  
75  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Table 4-6  
ADC Characteristics (cont’d) (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Typ. Max.  
Unit Test Conditions /  
Remarks  
Min.  
Conversion time tC  
CC tS + 40 × tBC + 2 × tDIV µs  
tS + 48 × tBC + 2 × tDIV µs  
tS + 56 × tBC + 2 × tDIV µs  
For 8-bit  
conversion  
For 10-bit  
conversion  
For 12-bit  
conversion  
Total unadjusted TUE7)  
error 4)  
CC –  
±1  
±2  
±4  
±8  
LSB For 8-bit conv.  
LSB For 10-bit conv.  
LSB For 12-bit conv.8)9)  
LSB For 12-bit  
conv.10)9)  
DNL error11)5)  
INL error11)5)  
Gain error11)5)  
Offset error11)5)  
TUEDNL  
TUEINL  
TUEGAIN  
TUEOFF  
CC –  
CC –  
CC –  
CC –  
CC –1000  
–200  
±1.5 ±3.0  
±1.5 ±3.0  
±0.5 ±3.5  
±1.0 ±4.0  
LSB For 12-bit conv.12)  
9)  
LSB For 12-bit conv.12)  
9)  
LSB For 12-bit conv.12)  
9)  
LSB For 12-bit conv.12)  
9)  
14)  
Input leakage  
IOZ1  
300  
nA  
nA  
(0% VDDM) < VIN <  
(2% VDDM  
(2% VDDM) < VIN <  
(95% VDDM  
(95% VDDM) < VIN  
< (98% VDDM  
(98% VDDM) < VIN  
< (100% VDDM  
current at analog  
inputs AN0, AN1  
and AN31.  
)
400  
)
see Figure 4-313)  
–200  
1000 nA  
3000 nA  
)
–200  
)
Data Sheet  
76  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Table 4-6  
ADC Characteristics (cont’d) (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Typ. Max.  
Unit Test Conditions /  
Remarks  
Min.  
14)  
Input leakage  
current at analog  
inputs AN2 to  
AN30, see  
IOZ1  
CC –1000  
200  
nA  
nA  
(0% VDDM) < VIN <  
(2% VDDM  
(2% VDDM) < VIN <  
(95% VDDM  
(95% VDDM) < VIN  
< (98% VDDM  
(98% VDDM) < VIN  
< (100% VDDM  
)
–200  
–200  
300  
)
Figure 4-3  
1000 nA  
3000 nA  
)
–200  
)
Input leakage  
current at VAREF  
IOZ2  
CC –  
±1  
µA  
0 V < VAREF  
DDM, no  
<
V
conversion  
running  
Input current at  
VAREF  
IAREF  
CC –  
35  
75  
25  
µA  
0 V < VAREF  
<
17)  
15)  
rms VDDM  
9)  
Total capacitance CAREFTOT CC –  
of the voltage  
pF  
reference  
inputs16)17)  
9)18)  
Switched  
CAREFSW CC –  
15  
1
20  
pF  
capacitance at  
the positive  
reference voltage  
input 17)  
Resistance of the RAREF  
reference voltage  
input path16)  
CC –  
1.5  
kΩ  
500 Ohm  
increased for  
AN[1:0] used as  
reference input 9)  
6)9)  
Total capacitance CAINTOT  
of the analog  
CC –  
CC –  
25  
7
pF  
pF  
inputs16)  
9)19)  
Switched  
CAINSW  
capacitance at  
the analog  
voltage inputs  
Data Sheet  
77  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Table 4-6  
ADC Characteristics (cont’d) (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Typ. Max.  
1.5  
Unit Test Conditions /  
Remarks  
Min.  
CC –  
9)  
ON resistance of RAIN  
the transmission  
gates in the  
1
kΩ  
analog voltage  
path  
ON resistance for RAIN7T  
the ADC test  
(pull-down for  
AIN7)  
CC 200  
CC –  
300 1000  
Test feature  
available only for  
AIN7  
9)  
Current through IAIN7T  
resistance for the  
ADC test (pull-  
15  
30  
mA Test feature  
available only for  
AIN7  
rms peak  
9)  
down for AIN7)  
1) Voltage overshoot to 4 V are permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h.  
2) Voltage overshoot to 1.7 V are permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h.  
3) A running conversion may become inexact in case of violating the normal operating conditions (voltage  
overshoot).  
4) If the reference voltage VAREF increases or the VDDM decreases, so that VAREF = ( VDDM + 0.05 V to  
V
DDM + 0.07 V), then the accuracy of the ADC decreases by 4LSB12.  
5) If a reduced reference voltage in a range of VDDM/2 to VDDM is used, then the ADC converter errors increase.  
If the reference voltage is reduced with the factor k (k<1), then TUE, DNL, INL Gain and Offset errors increase  
with the factor 1/k.  
If a reduced reference voltage in a range of 1 V to VDDM/2 is used, then there are additional decrease in the  
ADC speed and accuracy.  
6) Current peaks of up to 6 mA with a duration of max. 2 ns may occur  
7) TUE is tested at VAREF = 3.3 V, VAGND = 0 V and VDDM = 3.3 V  
8) ADC module capability.  
9) Not subject to production test, verified by design / characterization.  
10) Value under typical application conditions due to integration (switching noise, etc.).  
11) The sum of DNL/INL/Gain/Offset errors does not exceed the related TUE total unadjusted error.  
12) For 10-bit conversions the DNL/INL/Gain/Offset error values must be multiplied with factor 0.25.  
For 8-bit conversions the DNL/INL/Gain/Offset error values must be multiplied with 0.0625.  
13) The leakage current definition is a continuous function, as shown in Figure 4-3. The numerical values defined  
determine the characteristic points of the given continuous linear approximation - they do not define step  
function.  
14) Only one of these parameters is tested, the other is verified by design characterization.  
Data Sheet  
78  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
15) IAREF_MAX is valid for the minimum specified conversion time. The current flowing during an ADC conversion  
with a duration of up to tC = 25µs can be calculated with the formula IAREF_MAX = QCONV/tC. Every conversion  
needs a total charge of QCONV = 150pC from VAREF  
.
All ADC conversions with a duration longer than tC = 25µs consume an IAREF_MAX = 6µA.  
16) For the definition of the parameters see also Figure 4-2.  
17) Applies to AIN0 and AIN1, when used as auxiliary reference inputs.  
18) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage  
at once. Instead of this smaller capacitances are successively switched to the reference voltage.  
19) The sampling capacity of the conversion C-Network is pre-charged to VAREF/2 before the sampling moment.  
Because of the parasitic elements the voltage measured at AINx is lower then VAREF/2.  
A/D Converter Module  
Sample  
Time tS  
Programmable  
Clock Divider  
(1:1) to (1:256)  
fANA  
fDIV  
fBC  
Fractional  
Divider  
Programmable  
Counter  
fCLC  
1:4  
CON. CTC  
CHCONn. STC  
fTIMER  
Arbiter  
(1:20)  
Control Unit  
(Timer)  
Control/Status Logic  
Interrupt Logic  
External Trigger Logic  
External Multiplexer Logic  
Request Generation Logic  
MCA04657_mod  
Figure 4-1  
ADC0 Clock Circuit  
Data Sheet  
79  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Analog Input Circuitry  
RAIN, On  
REXT  
ANx  
VAIN  
CEXT  
CAINSW  
=
CAINTOT - CAINSW  
VAGNDx  
RAIN7T  
Reference Voltage Input Circuitry  
RAREF, On  
VAREFx  
VAREF  
CAREFTOT - CAREFSW  
CAREFSW  
VAGNDx  
Analog_InpRefDiag  
Figure 4-2  
ADC0 Input Circuits  
Data Sheet  
80  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Ioz1  
3uA  
AN0, AN1 and AN31  
1uA  
400nA  
300nA  
VIN[VDDM%]  
-200nA  
95% 98%100%  
2%  
-1uA  
Ioz1  
3uA  
AN2 to AN30  
1uA  
300nA  
200nA  
V
IN[VDDM%]  
-200nA  
2%  
95% 98%100%  
-1uA  
Figure 4-3  
ADC0 Analog Inputs Leakage  
Data Sheet  
81  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.2.3  
Fast Analog to Digital Converter (FADC)  
Table 4-7 provides the characteristics of the FADC module in the TC1762.  
Table 4-7  
FADC Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
Conditions  
Min.  
Max.  
±1  
12)  
DNL error  
EDNL  
EINL  
CC –  
CC –  
LSB  
LSB  
%
12)  
INL error  
Gradient error1)12)  
±4  
EGRAD CC –  
±3  
2)With calibration,  
gain 1, 2  
±5  
±6  
%
%
Without calibration  
gain 1, 2, 4  
Without calibration  
gain 8  
3)  
Offset error12)  
EOFF  
CC –  
±204)  
±604)  
±60  
mV  
mV  
mV  
2)With calibration  
Without calibration  
Reference error of  
EREF  
CC –  
internal VFAREF/2  
6)  
Input leakage current IOZ1  
at analog inputs  
CC –1000  
–200  
300  
nA  
nA  
nA  
nA  
(0% VDDM) < VIN <  
(2% VDDM  
(2% VDDM) < VIN <  
(95% VDDM  
(95% VDDM) < VIN <  
(98% VDDM  
(98% VDDM) < VIN <  
)
AN32 to AN35.  
400  
5) see Figure 4-5  
)
–200  
1000  
3000  
)
–200  
(100% VDDM  
)
Analog supply  
voltages  
VDDMF SR 3.13  
VDDAF SR 1.42  
VSSAF SR -0.1  
3.477)  
1.588)  
0.1  
V
V
V
Analog ground  
voltage  
Analog reference  
voltage  
VFAREF SR 3.13  
3.477)9)  
V
V
V
Nominal 3.3 V  
Analog reference  
ground  
VFAGND SR VSSAF  
-
VSSAF  
+0.05V  
0.05V  
Analog input voltage VAINF SR VFAGND VDDMF  
range  
Data Sheet  
82  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Table 4-7  
FADC Characteristics (cont’d)(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
Conditions  
Min.  
Max.  
9
Analog supply  
currents  
IDDMF SR –  
IDDAF SR –  
mA  
mA  
10)  
17  
Input current at each IFAREF CC –  
VFAREF  
150  
µA  
rms  
Independent of  
conversion  
Input leakage current IFOZ2  
at VFAREF  
CC –  
CC  
±500  
±8  
nA  
0 V < VIN < VDDMF  
11)  
Input leakage current IFOZ3  
at VFAGND  
µA  
Conversion time  
tC  
CC –  
CC –  
21  
CLK of For 10-bit conv.  
fADC  
Converter Clock  
fADC  
80  
MHz  
12)  
Input resistance of  
the analog voltage  
path (Rn, Rp)  
RFAIN CC 100  
200  
kΩ  
Channel Amplifier  
Cutoff Frequency  
fCOFF  
tSET  
CC 2  
CC  
MHz  
Settling Time of a  
Channel Amplifier  
after changing ENN  
or ENP  
5
µsec  
1) Calibration of the gain is possible for the gain of 1 and 2, and not possible for the gain of 4 and 8.  
2) Calibration should be performed at each power-up. In case of continuous operation, calibration should be  
performed minimum once per week.  
3) The offset error voltage drifts over the whole temperature range typically ±2 LSB.  
4) Applies when the gain of the channel equals one. For the other gain settings, the offset error increases; it must  
be multiplied with the applied gain.  
5) The leakage current definition is a continuous function, as shown in Figure 4-5. The numerical values defined  
determine the characteristic points of the given continuous linear approximation - they do not define step  
function.  
6) Only one of these parameters is tested, the other is verified by design characterization.  
7) Voltage overshoot to 4 V are permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h.  
8) Voltage overshoot to 1.7 V are permissible, provided the pulse duration is less than 100 µs and the cumulated  
sum of the pulses does not exceed 1 h.  
9) A running conversion may become inexact in case of violating the normal operating conditions (voltage  
overshoots).  
10) Current peaks of up to 40 mA with a duration of max. 2 ns may occur  
Data Sheet  
83  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
11) This value applies in power-down mode.  
12) Not subject to production test, verified by design / characterization.  
The calibration procedure should run after each power-up, when all power supply  
voltages and the reference voltage have stabilized. The offset calibration must run first,  
followed by the gain calibration.  
FADC Analog Input Stage  
RN  
FAINxN  
-
+
VFAREF/2  
VFAGND  
+
-
RP  
FAINxP  
FADC Reference Voltage  
Input Circuitry  
VFAREF  
IFAREF  
VFAREF  
VFAGND  
FADC_InpRefDiag  
Figure 4-4  
FADC Input Circuits  
Data Sheet  
84  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Ioz1  
3uA  
AN32 to AN35  
1uA  
400nA  
300nA  
V
IN[VDDM%]  
-200nA  
95% 98%100%  
2%  
-1uA  
Figure 4-5  
Analog Inputs AN32-AN35 Leakage  
Data Sheet  
85  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.2.4  
Oscillator Pins  
Table 4-8 provides the characteristics of the oscillator pins in the TC1762.  
Table 4-8  
Oscillator Pins Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit values  
Max.  
Unit Test Conditions  
Min.  
Frequency Range  
fOSC CC 4  
25  
MHz –  
Input low voltage at  
XTAL11)  
VILX SR -0.2  
0.3 ×  
VDDOSC3  
V
Input high voltage at  
XTAL11)  
VIHX SR 0.7 ×  
VDDOSC3  
+ 0.2  
V
VDDOSC3  
Input current at XTAL1 IIX1  
CC –  
±25  
µA  
0 V < VIN < VDDOSC3  
1) If the XTAL1 pin is driven by a crystal, reaching a minimum amplitude (peak-to-peak) of 0.3 × VDDOSC3 is  
necessary.  
Note: It is strongly recommended to measure the oscillation allowance (negative  
resistance) in the final target system (layout) to determine the optimal parameters  
for the oscillator operation. Please refer to the limits specified by the crystal  
supplier.  
Data Sheet  
86  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.2.5  
Temperature Sensor  
Table 4-9 provides the characteristics of the temperature sensor in the TC1762.  
Table 4-9  
Temperature Sensor Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Remarks  
Min.  
Temperature TSR SR -40  
150  
°C  
Sensor Range  
Start-up time tTSST SR  
after resets  
10  
µs  
inactive  
Temperature TTS CC TTS = (ADC_Code - 487) × 0.396 - 40 °C  
of the die at  
10-bit ADC  
result  
the sensor  
location  
TTS = (ADC_Code - 1948) × 0.099 - 40 °C  
12Bit ADC  
result  
Sensor  
TTSA CC  
±10  
°C  
Inaccuracy  
A/D Converter fANA SR –  
clock for DTS  
10  
MHz Conversion  
with ADC0  
signal  
Data Sheet  
87  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.2.6  
Power Supply Current  
Table 4-10 provides the characteristics of the power supply current in the TC1762.  
Table 4-10 Power Supply Current (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test  
Conditions /  
Min. Typ. Max.  
Remarks  
PORSTlowcurrentat IDD_PORST CC  
VDD  
961)  
1382)  
mA The PLL  
running at the  
base frequency  
mA The PLL  
PORSTlowcurrentat IDDP_PORST CC  
VDDP  
121)  
132)  
running at the  
base frequency  
Active mode core  
supply current3)4)  
IDD  
IDD  
CC  
CC  
2901) mA  
3302)  
2501) mA  
3002)  
f
CPU = 80MHz  
fCPU/fSYS = 1:1  
Active mode core  
supply current3)4)  
fCPU = 66MHz  
fCPU/fSYS = 1:1  
Active mode analog IDDAx;  
CC  
CC  
CC  
CC  
CC  
SR  
mA See  
ADC0/FADC  
supply current  
IDDMx  
Oscillator and PLL  
core power supply  
IDDOSC  
5
mA  
Oscillator and PLL  
pads power supply  
IDDOSC3  
3.65) mA  
FLASH power supply IDDFL3  
current  
45  
25  
mA  
LVDS port supply  
ILVDS  
mA LVDS pads  
active  
6)  
(via VDDP  
)
Maximum Allowed  
Power Dissipation7)  
PDmax  
PD × RTJA < 25°C  
At worst case,  
TA = 125 °C  
1) Maximum value measured at TA = 125 °C.  
2) Maximum value measured at TJ = 150 °C.  
3) Infineon Power Loop: CPU and PCP running, all peripherals active. The power consumption of each custom  
application will most probably be lower than this value, but must be evaluated separately.  
4) The IDD decreases typically to 240mA if the fCPU is decreased to 40 MHz, at constant TJ = 150 °C, for the  
Infineon Max. Power Loop.  
5) Estimated value; double-bonded at package level with VDDP  
.
6) In case the LVDS pads are disabled, the power consumption per pair is negligible (less than 1µA).  
7) For the calculation of the junction to ambient thermal resistance RTJA, see Chapter 5.1.  
Data Sheet  
88  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3  
AC Parameters  
All AC parameters are defined with the temperature compensation disabled, which  
means that pads are constantly kept at the maximum strength.  
4.3.1  
Testing Waveforms  
The testing waveforms for rise/fall time, output delay and output high impedance are  
shown in Figure 4-6, Figure 4-7 and Figure 4-8.  
VDDP  
90%  
90%  
10%  
10%  
VSS  
tF  
tR  
rise_fall  
Figure 4-6  
Rise/Fall Time Parameters  
VDDP  
VDDE / 2  
VDDE / 2  
Test Points  
VSS  
Mct04881_LL.vsd  
Figure 4-7  
Testing Waveform, Output Delay  
VLoad + 0.1 V  
VLoad - 0.1 V  
VOH - 0.1 V  
Timing  
Reference  
Points  
VOL - 0.1 V  
MCT04880_LL  
Figure 4-8  
Testing Waveform, Output High Impedance  
Data Sheet  
89  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3.2  
Output Rise/Fall Times  
Table 4-11 provides the characteristics of the output rise/fall times in the TC1762.  
Table 4-11 Output Rise/Fall Times (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min. Max.  
Class A1 Pads  
Rise/fall times1)  
Class A1 pads  
tRA1, tFA1  
50  
140  
18000  
150  
ns  
Regular (medium) driver, 50 pF  
Regular (medium) driver, 150 pF  
Regular (medium) driver, 20 nF  
Weak driver, 20 pF  
550  
Weak driver, 150 pF  
65000  
Weak driver, 20 000 pF  
Class A2 Pads  
Rise/fall times 1)  
Class A2 pads  
tFA2, tFA2  
3.3  
6
5.5  
16  
ns  
Strong driver, sharp edge, 50 pF  
Strong driver, sharp edge, 100pF  
Strong driver, med. edge, 50 pF  
Strong driver, soft edge, 50 pF  
Medium driver, 50 pF  
50  
140  
18000  
150  
550  
65000  
Medium driver, 150 pF  
Medium driver, 20 000 pF  
Weak driver, 20 pF  
Weak driver, 150 pF  
Weak driver, 20 000 pF  
Class A3 Pads  
Rise/fall times 1)  
Class A3 pads  
t
FA3, tFA3  
2.5  
2.0  
2
ns  
ns  
ns  
50 pF  
25 pF  
Class A4 Pads  
Rise/fall times 1)  
Class A4 pads  
tFA4, tFA4  
Class C Pads  
Rise/fall times  
Class C pads  
trC, tfC  
1) Not all parameters are subject to production test, but verified by design/characterization and test correlation.  
Data Sheet  
90  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3.3  
Power Sequencing  
There is a restriction for the power sequencing of the 3.3 V domain as shown in  
Figure 4-9. It must always be higher than 1.5 V domain - 0.5 V. The gray area shows the  
valid range for V3.3V relative to an exemplary V1.5V ramp. VDDP, VDDOSC3, VDDM, VDDMF  
,
VDDFL3 belong to the 3.3 V domain. The VDDM and VDDMF subdomains are connected with  
antiparallel ESD protection diodes. There are no other such connections between the  
subdomains. VDD , VDDOSC and VDDAF belong to the 1.5 V domain.  
Power Supply Voltage  
3.3V  
V3.3  
V1.5  
V
a
l
i
d
V
r
a
1.5V  
o
r
e
f
a
a
e
f
o
r
a
r
V
d
i
l
a
V
V3.3 > V1.5 - 0.5V  
Time  
VDDP  
(3.3V)  
PORST  
Time  
PowerSeq  
Figure 4-9  
VDDP / VDD Power Up Sequence  
All ground pins VSS must be externally connected to one single star point in the system.  
The difference voltage between the ground pins must not exceed 200 mV.  
The PORST signal must be activated at latest before any power supply voltage falls  
below the levels shown on the figure below. In this case, only the memory row of a Flash  
memory that was the target of the write at the moment of the power loss will contain  
unreliable content. Additionally, the PORST signal should be activated as soon as  
possible. The sooner the PORST signal is activated, the less time the system operates  
outside of the normal operating power supply range.  
Data Sheet  
91  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Power Supply Voltage  
3.3V  
VDDP  
VDDP  
VDDPmin  
3.13V  
-5%  
2.9V  
-12%  
VPORST3.3  
t
PORST  
t
VDD  
1.5V  
VDD  
VDDmin  
VPORST1.5min  
1.42V  
-5%  
1.32V  
-12%  
t
PORST  
t
PowerDown3.3_1.5_reset_only_LL.vsd  
Figure 4-10 Power Down / Power Loss Sequence  
Data Sheet  
92  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3.4  
Power, Pad and Reset Timing  
Table 4-12 provides the characteristics of the power, pad and reset timing in the  
TC1762.  
Table 4-12 Power, Pad and Reset Timing Parameters  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
CC 0.6  
Max.  
Min. VDDP voltage to ensure defined  
VDDPPA  
V
pad states1)  
Oscillator start-up time2)  
tOSCS  
tPOA  
CC –  
10  
ms  
ms  
Minimum PORST active time after  
power supplies are stable at operating  
levels  
SR 10  
HDRST pulse width  
tHD  
CC 1024 clock –  
cycles3)  
fSYS  
PORST rise time  
Setup time to PORST rising edge4)  
Hold time from PORST rising edge4) tPOH  
Setup time to HDRST rising edge5)  
Hold time from HDRST rising edge5) tHDH  
tPOR  
tPOS  
SR –  
50  
ms  
ns  
ns  
ns  
ns  
SR 0  
SR 100  
SR 0  
tHDS  
SR 100 +  
(2 × 1/fSYS  
)
Ports inactive after PORST reset  
active6)7)  
tPIP  
tPI  
CC –  
CC –  
150  
ns  
ns  
V
Ports inactive after HDRST reset  
active8)  
150 +  
5 × 1/fSYS  
Minimum VDDP PORST activation  
VPORST3.3 SR –  
VPORST1.5 SR –  
tBP CC 2.15  
2.9  
threshold.9)  
Minimum VDD PORST activation  
1.32  
V
threshold. 9)  
Power-on Reset Boot Time10)  
3.50  
800  
ms  
Hardware/Software Reset Boot Time tB  
at fCPU=80MHz11)  
CC 500  
µs  
Hardware/Software Reset Boot Time tB  
at fCPU=66MHz11)  
CC 560  
860  
µs  
1) This parameter is valid under assumption that PORST signal is constantly at low-level during the power-  
up/power-down of the VDDP  
.
Data Sheet  
93  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
2) This parameter is verified by device characterization. The external oscillator circuitry must be optimized by the  
customer and checked for negative resistance as recommended and specified by crystal suppliers.  
3) Any HDRST activation is internally prolonged to 1024 FPI bus clock (fSYS) cycles.  
4) Applicable for input pins TESTMODE, TRST, BRKIN, and TXD1A with noise suppression filter of PORST  
switched-on (BYPASS = 0).  
5) The setup/hold values are applicable for Port 0 and Port 4 input pins with noise suppression filter of HDRST  
switched-on (BYPASS = 0), independently whether HDRST is used as input or output.  
6) Not subject to production test, verified by design / characterization.  
7) This parameter includes the delay of the analog spike filter in the PORST pad.  
8) Not subject to production test, verified by design / characterization.  
9) In case of power loss during internal flash write, prevents Flash write to random address.  
10) Booting from Flash, the duration of the boot-time is defined between the rising edge of the PORST and the  
moment when the first user instruction has entered the CPU and its processing starts.  
11) Booting from Flash, the duration of the boot time is defined between the following events:  
1. Hardware reset: the falling edge of a short HDRST pulse and the moment when the first user instruction has  
entered the CPU and its processing starts, if the HDRST pulse is shorter than 1024 × TSYS  
.
If the HDRST pulse is longer than 1024 × TSYS, only the time beyond the 1024 × TSYS should be added to the  
boot time (HDRST falling edge to first user instruction).  
2. Software reset: the moment of starting the software reset and the moment when the first user instruction  
has entered the CPU and its processing starts  
VDDPPA  
VDDPPA  
VDDP  
VDDPR  
VDD  
t
oscs  
OSC  
t
POA  
t
POA  
PORST  
HDRST  
Pads  
t
hd  
t
hd  
1)  
2)  
1)  
2)  
2)  
t
pi  
Pad-  
state  
undefined  
Pad-  
state  
undefined  
1) as programmed  
2) Tri-state, pull device active  
reset_beh  
Figure 4-11 Power, Pad and Reset Timing  
Data Sheet  
94  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3.5  
Phase Locked Loop (PLL)  
Section 4.3.5 provides the characteristics of the PLL parameters and its operation in the  
TC1762.  
Note: All PLL characteristics defined on this and the next page are verified by design  
characterization.  
Table 4-13 PLL Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
Max.  
Accumulated jitter  
DP  
See Figure 4-12  
VCO frequency range  
fVCO  
400  
500  
600  
140  
150  
200  
500  
600  
700  
320  
400  
480  
200  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
µs  
PLL base frequency1)  
fPLLBASE  
PLL lock-in time  
tL  
1) The CPU base frequency which is selected after reset is calculated by dividing the limit values by 16 (this is  
the K factor after reset).  
Phase Locked Loop Operation  
When PLL operation is enabled and configured, the PLL clock fVCO (and with it the CPU  
clock fCPU) is constantly adjusted to the selected frequency. The relation between fVCO  
and fSYS is defined by: fVCO = K × fCPU. The PLL causes a jitter of fCPU and affects the  
clock outputs TRCLK and SYSCLK (P4.3) which are derived from the PLL clock fVCO  
.
There are two formulas that define the (absolute) approximate maximum value of jitter  
DP in ns dependent on the K-factor, the CPU clock frequency fCPU in MHz, and the  
number P of consecutive fCPU clock periods.  
5 × P  
fcpu[MHz]  
(4.1)  
P × K < 900  
P × K 900  
Dp[ns] = ± ----------------------------- + 0 , 9  
4500  
(4.2)  
Dp[ns] = ± ---------------------------------------- + 0 , 9  
fcpu[MHz] × K  
K : K-Divider Value  
P : Number of fCPU periods  
DP : Jitter in ns  
fCPU : CPU frequency in MHz  
Data Sheet  
95  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Note: The frequency of system clock fSYS can be selected to be either fCPU or fCPU/2.  
With rising number P of clock cycles the maximum jitter increases linearly up to a value  
of P that is defined by the K-factor of the PLL. Beyond this value of P the maximum  
accumulated jitter remains at a constant value. Further, a lower CPU clock frequency  
fCPU results in a higher absolute maximum jitter value.  
Figure 4-12 illustrates the jitter curve for for several K/ fCPU combinations.  
TC1762 PLL Jitter (Preliminary)  
±13.0  
±12.0  
fCPU = 80 MHz (K = 5)  
fCPU = 40 MHz (K = 10)  
±11.0  
±10.0  
fCPU = 66 MHz ( K = 7)  
±9.0  
±8.0  
fCPU = 40 MHz  
(K = 17)  
fCPU = 80 MHz (K = 8)  
fCPU = 66 MHz (K = 10)  
±7.0  
±6.0  
±5.0  
±4.0  
±3.0  
±2.0  
±1.0  
±0.0  
1
25  
50  
75  
100  
125  
150  
175  
oo  
P [Periods]  
Figure 4-12 Approximated Maximum Accumulated PLL Jitter for Typical CPU  
Clock Frequencies fCPU (overview)  
Data Sheet  
96  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
TC1762 PLL Jitter (preliminary )  
fCPU = 40 MHz  
±1.40  
±1.30  
±1.20  
±1.10  
fCPU = 66 MHz  
fCPU = 80 MHz  
±1.00  
±0.90  
1
2
3
4
5
P [Periods]  
Figure 4-13 Approximated Maximum Accumulated PLL Jitter for Typical CPU  
Clock Frequencies fCPU (detail)  
Note: The maximum peak-to-peak noise on the main oscillator and PLL power supply  
(measured between VDDOSC and VSSOSC) is limited to a peak-to-peak voltage of  
VPP = 10 mV. This condition can be achieved by appropriate blocking to the supply  
pins and using PCB supply and ground planes.  
Data Sheet  
97  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3.6  
Debug Trace Timing  
VSS = 0 V; VDDP = 3.13 to 3.47 V (Class A); TA = -40 °C to +125 °C;  
CL (TRCLK) = 25 pF; CL (TR[15:0]) = 50 pF  
Table 4-14 Debug Trace Timing Parameter1)  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
CC -1  
Max.  
TR[15:0] new state from TRCLK  
t9  
4
ns  
1) Not subject to production test, verified by design/characterization.  
TRCLK  
t9  
Old State  
New State  
TR[15:0]  
Trace_Tmg  
Figure 4-14 Debug Trace Timing  
Data Sheet  
98  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3.7  
Timing for JTAG Signals  
(Operating Conditions apply, CL = 50 pF)  
Table 4-15 TCK Clock Timing Parameter  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
SR 25  
Max.  
TCK clock period1)  
TCK high time  
tTCK  
t1  
4
4
ns  
ns  
ns  
ns  
ns  
SR 10  
SR 10  
SR –  
SR –  
TCK low time  
t2  
TCK clock rise time  
t3  
TCK clock fall time  
t4  
1) fTCK should be lower or equal to fSYS  
0.9 VDD  
0.1 VDD  
0.5 VDD  
TCK  
t1  
t2  
t4  
t3  
tTCK  
Figure 4-15 TCK Clock Timing  
Data Sheet  
99  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
Table 4-16 JTAG Timing Parameter1)  
Parameter  
Symbol  
Limit  
Values  
Unit Test  
Conditions /  
Remarks  
Min. Max.  
TMS setup to TCK  
TMS hold to TCK  
t1  
t2  
t1  
t2  
t3  
SR 6.0  
ns  
ns  
ns  
ns  
SR 6.0  
TDI setup to TCK  
SR 6.0  
SR 6.0  
TDI hold to TCK  
TDO valid output from TCK2)  
CC –  
3.0  
14.5 ns  
CL = 50 pF3)4)  
CL = 20 pF  
TDO high impedance to valid output  
from TCK2)  
t4  
t5  
CC –  
15.5 ns  
CL = 50 pF3)4)  
TDO valid output to high impedance  
from TCK2)  
CC –  
14.5 ns  
CL = 50 pF4)  
1) Not subject to production test, verified by design / characterization.  
2) The falling edge on TCK is used to capture the TDO timing.  
3) By reducing the load from 50 pF to 20 pF, a reduction of approximately 1.0 ns in timing is expected.  
4) By reducing the power supply range from +/-5 % to +5/-2 %, a reduction of approximately 0.5 ns in timing is  
expected.  
Data Sheet  
100  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
TCK  
t1  
t2  
TMS  
TDI  
t1  
t2  
t4  
t5  
t3  
TDO  
Figure 4-16 JTAG Timing  
Note: The JTAG module is fully compliant with IEEE1149.1-2000 with JTAG clock at  
20 MHz. The JTAG clock at 40 MHz is possible with the modified timing diagram  
shown in Figure 4-16.  
Data Sheet  
101  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3.8  
Peripheral Timings  
Section 4.3.8 provides the characteristics of the peripheral timings in the TC1762.  
Note: Peripheral timing parameters are not subject to production test. They are verified  
by design/characterization.  
4.3.8.1 Micro Link Interface (MLI) Timing  
Table 4-17 provides the characteristics of the MLI timing in the TC1762.  
Table 4-17 MLI Timing (Operating Conditions apply, CL = 50 pF)  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
CC 23)  
Max.  
TCLK clock period1)2)  
RCLK clock period  
t30  
t31  
t35  
8
1/fSYS  
1/fSYS  
ns  
SR  
CC  
1
0
MLI outputs delay from TCLK  
MLI inputs setup to RCLK  
MLI inputs hold to RCLK  
t36  
t37  
t38  
SR  
SR  
CC  
4
4
0
8
ns  
ns  
ns  
RREADY output delay from RCLK  
1) TCLK signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) TCLK high and low times can be minimum 1 × TMLI  
3) TMLImin = TSYS = 1/fSYS. When fSYS = 80MHz, t30 = 25ns  
Data Sheet  
102  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
t30  
0.9 VDDP  
0.1 VDDP  
TCLKx  
t35  
t35  
TDATAx  
TVALIDx  
TREADYx  
RCLKx  
t30  
t37  
t36  
RDATAx  
RVALIDx  
t38  
t38  
RREADYx  
MLI_Tmg_1.vsd  
Figure 4-17 MLI Interface Timing  
Note: The generation of RREADYx is in the input clock domain of the receiver. The  
reception of TREADYx is asynchronous to TCLKx.  
Data Sheet  
103  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3.8.2 Micro Second Channel (MSC) Interface Timing  
Table 4-18 provides the characteristics of the MSC timing in the TC1762.  
Table 4-18 MSC Interface Timing (Operating Conditions apply, CL = 50 pF)  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
Max.  
FCLP clock period1)2)  
t40  
t45  
CC 2 × TMSC  
ns  
ns  
3)  
SOP/ENx outputs delay from FCLP  
CC -10  
10  
SDI bit time  
SDI rise time  
SDI fall time  
t46  
t48  
t49  
SR 8 × TMSC  
ns  
ns  
ns  
SR  
SR  
100  
100  
1) FCLP signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) FCLP signal high and low can be minimum 1 × TMSC  
.
3) TMSCmin = TSYS = 1/fSYS. When fSYS = 80MHz, t40 = 25ns  
t40  
0.9 VDDP  
0.1 VDDP  
FCLP  
t45  
t45  
SOP  
EN  
t48  
t49  
0.9 VDDP  
0.1 VDDP  
SDI  
t46  
t46  
MSC_Tmg_1.vsd  
Figure 4-18 MSC Interface Timing  
Note: The data at SOP should be sampled with the falling edge of FCLP in the target  
device.  
Data Sheet  
104  
V1.0, 2008-04  
TC1762  
Preliminary  
Electrical Parameters  
4.3.8.3 Synchronous Serial Channel (SSC) Master Mode Timing  
Table 4-19 provides the characteristics of the SSC timing in the TC1762.  
Table 4-19 SSC Master Mode Timing (Operating Conditions apply, CL = 50 pF)  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
Max.  
SCLK clock period1)2)  
t50  
t51  
CC 2 × TSSC  
8
ns  
ns  
3)  
MTSR/SLSOx delay from SCLK  
CC 0  
MRST setup to SCLK  
MRST hold from SCLK  
t52  
t53  
SR 10  
SR 5  
ns  
ns  
1) SCLK signal rise/fall times are the same as the A2 Pads rise/fall times.  
2) SCLK signal high and low times can be minimum 1 × TSSC  
3) TSSCmin = TSYS = 1/fSYS. When fSYS = 80 MHz, t50 = 25ns  
.
t50  
SCLK1)2)  
t51  
t51  
MTSR1)  
t52  
t53  
Data  
valid  
MRST1)  
t51  
SLSOx2)  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
2) The transition at SLSOx is based on the following setup: SSOTC.TRAIL = 0  
and the first SCLK high pulse is in the first one of a transmission.  
SSC_Tmg_1.vsd  
Figure 4-19 SSC Master Mode Timing  
Data Sheet  
105  
V1.0, 2008-04  
TC1762  
Preliminary  
Packaging  
5
Packaging  
Chapter 5 provides the information of the TC1762 package and reliability section.  
5.1  
Package Parameters  
Table 5-1 provides the characteristics of the package parameters.  
Table 5-1  
Package Parameters (PG-LQFP-176-2)  
Symbol Limit Values  
Parameter  
Unit Notes  
Min.  
Max.  
Thermal resistance junction RTJCT CC  
5.4  
K/W –  
K/W –  
case top1)  
Thermal resistance junction RTJL CC  
21.5  
leads1)  
1) The thermal resistances between the case top and the ambient (RTCAT), the leads and the ambient (RTLA) are  
to be combined with the thermal resistances between the junction and the case top (RTJCT ), the junction and  
the leads (RTJL) given above, in order to calculate the total thermal resistance between the junction and the  
ambient (RTJA). The thermal resistances between the case top and the ambient (RTCAT ), the leads and the  
ambient (RTLA) depend on the external system (PCB, case) characteristics, and are under user responsibility.  
The junction temperature can be calculated using the following equation: TJ=TA+RTJA × PD, where the RTJA is  
the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA  
can be obtained from the upper four partial thermal resistances.  
Data Sheet  
106  
V1.0, 2008-04  
TC1762  
Preliminary  
Packaging  
5.2  
Package Outline  
Figure 5-1 shows the package outlines of the TC1762.  
PG-LQFP-176-2  
Plastic Low Profile Quad Flat Package  
Figure 5-1  
Package Outlines PG-LQFP-176-2  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
V1.0, 2008-04  
SMD = Surface Mounted Device  
Data Sheet  
107  
TC1762  
Preliminary  
Packaging  
5.3  
Flash Memory Parameters  
The data retention time of the TC1762’s Flash memory (i.e. the time after which stored  
data can still be retrieved) depends on the number of times the Flash memory has been  
erased and programmed.  
Table 5-2  
Flash Parameters  
Symbol  
Parameter  
Limit Values  
Unit  
Notes  
Min.  
Max.  
Program Flash  
tRET  
20  
years Max. 1000  
erase/program cycles  
Retention Time,  
Physical Sector1) 2)  
Program Flash  
Retention Time,  
Logical Sector1)2)  
tRETL  
20  
years Max. 50  
erase/program cycles  
Data Flash Endurance  
(32 Kbyte)  
NE  
15 000  
Max. data retention  
time 5 years  
Data Flash Endurance, NE8  
EEPROM Emulation  
(8 × 4 Kbyte)  
120 000  
Max. data retention  
time 5 years  
Programming Time per tPR  
5
5
ms  
s
Page3)  
Program Flash Erase  
Time per 256-Kbyte  
sector  
tERP  
f
CPU = 80 MHz  
CPU = 80 MHz  
Data Flash Erase Time tERD  
0.625 s  
f
per 16-Kbyte sector  
Wake-up time  
tWU  
4300 × 1/fCPU + 40µs  
1) Storage and inactive time included.  
2) At average weighted junction temperature TJ = 100 °C, or  
the retention time at average weighted temperature of TJ = 110 °C is minimum 10 years, or  
the retention time at average weighted temperature of TJ = 150 °C is minimum 0.7 years.  
3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The  
reprogramming takes additional 5ms.  
Data Sheet  
108  
V1.0, 2008-04  
TC1762  
Preliminary  
Packaging  
5.4  
Quality Declaration  
Table 5-3 shows the characteristics of the quality parameters in the TC1762.  
Table 5-3  
Quality Parameters  
Symbol  
Parameter  
Limit Values Unit  
Min. Max.  
24000 hours At average  
weighted junction  
Notes  
Operation Lifetime1)2)  
tOP  
temperature  
TJ = 127°C  
66000 hours At average  
weighted junction  
temperature  
TJ = 100°C  
20  
years At average  
weighted junction  
temperature  
TJ = 85°C  
ESD susceptibility  
accordingtoHumanBody  
Model (HBM)  
VHBM  
2000  
V
Conforming to  
EIA/JESD22-  
A114-B  
ESD susceptibility of the VHBM1  
LVDS pins  
500  
500  
V
V
ESD susceptibility  
VCDM  
Conforming to  
according to Charged  
Device Model (CDM) pins  
JESD22-C101-C  
Moisture Sensitivity Level -  
(MSL)  
3
V
Conforming to  
J-STD-020C for  
240°C  
1) This lifetime refers only to the time when the device is powered-on.  
2) An example of a detailed temperature profile is as below:  
2000 hours at TJ = 150oC  
16000 hours at TJ = 125oC  
6000 hours at TJ = 110oC  
This example is equivalent to the operation lifetime and average temperatures given in Table 5-3.  
Note: Information about soldering can be found on the “package” information page  
under: http://www.infineon.com/products.  
Data Sheet  
109  
V1.0, 2008-04  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SAK-TC1764-128F80HL

SK-TC176x Family Starter Kit
INFINEON

SAK-TC1764M-192F80HL

Microcontroller, 32-Bit, FLASH, 80MHz, CMOS, PQFP176, PLASTIC, LQFP-176
INFINEON

SAK-TC1765N-L40EB

Microcontroller, 32-Bit, MROM, 40MHz, CMOS, PBGA260, PLASTIC, LBGA-260
INFINEON

SAK-TC1765T-L40EB

Microcontroller, 32-Bit, MROM, 40MHz, CMOS, PBGA260, PLASTIC, LBGA-260
INFINEON

SAK-TC1766-192F80HL

SK-TC176x Family Starter Kit
INFINEON

SAK-TC1766-192F80HLBD

Microcontroller, 32-Bit, FLASH, 80MHz, CMOS, PQFP176, GREEN, PLASTIC, LQFP-176
INFINEON

SAK-TC1766-192F80HLBDTR

Microcontroller, 32-Bit, FLASH, 80MHz, CMOS, PQFP176, LQFP-176
INFINEON

SAK-TC1767-256F133HL

32-Bit Single-Chip Microcontroller
INFINEON

SAK-TC1767-256F133HLAB

Microcontroller,
INFINEON

SAK-TC1767-256F133HLAD

Microcontroller, 32-Bit, FLASH, 133MHz, CMOS, PQFP176, GREEN, PLASTIC, LQFP-176
INFINEON

SAK-TC1767-256F133HR

RISC Microcontroller, CMOS
INFINEON

SAK-TC1767-256F133HR AD

THE TC1767 IS THE VALUE OPTIMIZED MEMBER of the AUDO FUTURE product family designed for automotive applications.
INFINEON