SAK-TC264DC-40F200W BC [INFINEON]

SAK-TC264DC-40F200W BC 属于第一代 Aurix TC26xD 系列产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC26xD 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。;
SAK-TC264DC-40F200W BC
型号: SAK-TC264DC-40F200W BC
厂家: Infineon    Infineon
描述:

SAK-TC264DC-40F200W BC 属于第一代 Aurix TC26xD 系列产品。其创新多核心架构基于多达三个独立 32 位 TriCore CPU,专为满足极高的安全标准,同时大幅提高性能而设计。TC26xD 系列产品配备 200 MHz TriCore、5V 或 3.3V 单电压供电和强大的通用定时器模块 (GTM),旨在降低复杂度、实现同类产品中极其优秀的功耗并节省大量成本。

文件: 总318页 (文件大小:4442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
32-Bit  
Microcontroller  
TC260 / 264 / 265 / 267  
32-Bit Single-Chip Microcontroller  
BC-Step  
32-Bit Single-Chip Microcontroller  
Data Sheet  
V 1.0, 2017-06  
Microcontrollers  
Edition 2017-06  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2017 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com)  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
TC 260 / 264 / 265 / 267  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
V 1.0, 2017-06  
The history is documented in the last chapter  
Data Sheet  
3
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
2.1  
Package and Pinning Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
TC264x Pin Definition and Functions: LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
TC264 LQFP144 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
TC265x Pin Definition and Functions: LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
TC265 LQFP176 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
TC267x Pin Definition and Functions: BGA292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
TC267 BGA292 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
TC260 Bare Die Pad Definition: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
TC 260 / 264 / 265 / 267 Bare Die Pad Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
2.1.1  
2.1.2  
2.1.3  
2.2  
2.2.1  
2.2.2  
2.2.3  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.4  
2.4.1  
2.4.2  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Electrical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
5 V / 3.3 V switchable Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
3.3 V only Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
High performance LVDS Pads (LVDSH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Medium performance LVDS Pads (LVDSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
VADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
DSADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
MHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Back-up Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
EVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
JTAG Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
DAP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  
ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
3.8  
3.9  
3.10  
3.11  
3.12  
3.13  
3.14  
3.14.1  
3.15  
3.15.1  
3.15.2  
3.15.3  
3.15.4  
3.16  
3.17  
3.18  
3.19  
3.20  
3.21  
3.22  
3.23  
3.24  
3.25  
Data Sheet  
TOC-1  
V 1.0, 2017-06  
TC 260 / 264 / 265 / 267  
3.26  
3.27  
3.28  
3.29  
3.29.1  
3.29.2  
3.29.3  
3.29.4  
3.30  
3.31  
3.32  
3.33  
3.33.1  
3.33.2  
3.33.3  
3.34  
3.35  
3.36  
QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
MSC Timing 5 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
MSC Timing 3.3 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
Ethernet Interface (ETH) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281  
ETH Measurement Reference Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281  
ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) . . . . . . . . . . . . . . . . . . . . . . . . . 282  
ETH MII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
ETH RMII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284  
E-Ray Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285  
HSCT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
Inter-IC (I2C) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290  
SCR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
SSC Timing 5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
SPD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
WCAN Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
CIF Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
Flash Target Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
TC260 Carrier Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
3.36.1  
3.36.2  
3.37  
4
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
Data Sheet  
2
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,  
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,  
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,  
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,  
thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of  
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF  
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™  
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.  
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™  
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes  
Zetex Limited.  
Last Trademarks Update 2011-11-11  
Data Sheet  
3
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Summary of Features  
1
Summary of Features  
The TC26x product family has the following features:  
High Performance Microcontroller with two CPU cores  
One 32-bit super-scalar TriCore CPUs (TC1.6P), having the following features:  
Superior real-time performance  
Strong bit handling  
Fully integrated DSP capabilities  
Multiply-accumulate unit able to sustain 2 MAC operations per cycle  
up to 200 MHz operation at full temperature range  
up to 120 Kbyte Data Scratch-Pad RAM (DSPR)  
up to 32 Kbyte Instruction Scratch-Pad RAM (PSPR)  
16 Kbyte Instruction Cache (ICACHE)  
8 Kbyte Data Cache (DCACHE)  
Power Efficient scalar TriCore CPU (TC1.6E), having the following features:  
Binary code compatibility with TC1.6P  
up to 200 MHz operation at full temperature range  
up to 72 Kbyte Data Scratch-Pad RAM (DSPR)  
up to 16 Kbyte Instruction Scratch-Pad RAM (PSPR)  
8 Kbyte Instruction Cache (ICACHE)  
0.125Kbyte Data Read Buffer (DRB)  
Lockstepped shadow core for TC1.6P  
Multiple on-chip memories  
All embedded NVM and SRAM are ECC protected  
up to 2.5 Mbyte Program Flash Memory (PFLASH)  
up to 96 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation  
0 Kbyte Memory (LMU)  
BootROM (BROM)  
48-Channel DMA Controller with safe data transfer  
Sophisticated interrupt system (ECC protected)  
High performance on-chip bus structure  
64-bit Cross Bar Interconnect (SRI) giving fast parallel access between busmasters, CPUs and memories  
32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units  
One bus bridge (SFI Bridge)  
Safety Management Unit (SMU) handling safety monitor alarms  
Memory Test Unit with ECC, Memory Initialization and MBIST functions (MTU)  
Hardware I/O Monitor (IOM) for checking of digital I/O  
Versatile On-chip Peripheral Units  
Four Asynchronous/Synchronous Serial Channels (ASCLIN) with hardware LIN support (V1.3, V2.0, V2.1  
and J2602) up to 50 MBaud  
Four Queued SPI Interface Channels (QSPI) with master and slave capability upto 50 Mbit/s  
High Speed Serial Link (HSSL) for serial inter-processor communication up to 320Mbit/s  
Data Sheet  
1-1  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Summary of Features  
Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices  
One MultiCAN+ Module with 5 CAN nodes and 256 free assignable messageobjects for high efficiency data  
handling via FIFO buffering and gateway data transfer  
6 Single Edge Nibble Transmission (SENT) channels for connection to sensors  
One FlexRayTMmodule with 2 channels (E-Ray) supporting V2.1  
One Generic Timer Module (GTM) providing a powerful set of digital signal filteringand timer functionality  
to realize autonomous and complex Input/Output management  
One Capture / Compare 6 module (Two kernels CCU60 and CCU61)  
One General Purpose 12 Timer Unit (GPT120)  
Three channel Peripheral Sensor Interface conforming to V1.3 (PSI5)  
Peripheral Sensor Interface with Serial PHY (PSI5-S)  
Inter-Integrated Circuit Bus Interface (I2C) conforming to V2.1  
IEEE802.3 Ethernet MAC with RMII and MII interfaces (ETH)  
8-bit Standby Controller (TC2x_SCR)  
Two 8-bit timers  
One 16-bit timer  
Timer 2 Capture Compare Unit  
Real Time Clock  
Universal Asynchronous Receiver/Transmitter  
High Speed Synchronous Serial Interface  
Wake-up CAN Filter  
Versatile Successive Approximation ADC (VADC)  
Cluster of 4 independent ADC kernels  
Input voltage range from 0 V to 5.5V (ADC supply)  
Delta-Sigma ADC (DSADC)  
Three/Four channels  
Digital programmable I/O ports  
On-chip debug support for OCDS Level 1 (CPUs , DMA, On Chip Buses)  
Dedicated Emulation Device chip available (ED)  
multi-core debugging, real time tracing, and calibration  
Aurora Gigabit Trace Port (AGBT) on some variants (See below)  
four/five wire JTAG (IEEE 1149.1) or DAP (Device Access Port) interface  
Power Management System and on-chip regulators  
Clock Generation Unit with System PLL and Flexray PLL  
Embedded Voltage Regulator  
The support of the Feature 8-bit Standby Controller (TC2x_SCR) is discontinued.  
Data Sheet  
1-2  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Summary of Features  
Ordering Information  
The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering  
code identifies:  
The derivative itself, i.e. its function set, the temperature range, and the supply voltage  
The package and the type of delivery.  
For the available ordering codes for the TC 260 / 264 / 265 / 267 please refer to the  
AURIX™ TC2x Data Sheet Addendum, which summarizes all available variants.  
Table 1-1 Overview of TC 260 / 264 / 265 / 267 Functions  
Feature  
TC1.6P / TC1.6E  
CPU Core  
Type  
1 /  
1 /  
1 /  
0
P Cores /  
Checker Cores /  
E Cores /  
Checker Cores  
200 MHz  
yes  
Max. Freq.  
FPU  
2.5 Mbyte  
Program  
Flash  
Size  
96 Kbyte  
16 Kbyte / 8 Kbyte  
8 Kbyte / -  
Data Flash  
Cache  
Size  
Instruction  
Data  
120 Kbyte / 32 Kbyte2)  
SRAM  
Size TC1.6P  
(DPSR/PSPR)  
72 Kbyte / 16 Kbyte1) 2)  
Size TC1.6E  
(DPSR/PSPR)  
0 Kbyte  
Size LMU  
Channels  
Channels  
Converter  
Channels  
TIM  
48  
DMA  
ADC  
38 + 12  
4
3 / 4  
3
DSADC  
GTM  
2
TOM  
4 / 3  
1 / 1  
1
ATOM / MCS  
CMU / ICM  
PSM  
1
TBU  
2
SPE  
1 / 1  
0 / 1  
2
CMP / MON  
BRC / DPLL  
GPT12  
Timer  
2
CCU6  
Data Sheet  
1-3  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Summary of Features  
Table 1-1 Overview of TC 260 / 264 / 265 / 267 Functions  
Feature  
2
1
STM  
Modules  
Modules  
Channels  
Nodes  
FlexRay  
2
5
CAN  
256  
Message  
Objects  
4
QSPI  
ASCLIN  
I2C  
Channels  
Interfaces  
Interfaces  
Modules  
Channels  
Modules  
Channels  
Channels  
Channels  
Level  
4
1
6
SENT  
PSI5  
3
1
PSI5-S  
HSSL  
MSC  
1
2
1
Ethernet  
ASIL  
up to ASIL-D  
1
1
1
FCE  
Modules  
SMU  
Safety  
Support  
IOM  
ADAS  
No  
Yes  
Standby-Controller  
Feature Discontinued  
8-bit  
Yes  
Yes  
Yes  
Yes  
Embedded Voltage Regulator  
DCDC from 5 V/ 3.3 V to 1.3 V  
LDO from 5 V / 3.3 V to 1.3 V  
LDO from 5 V to 3.3 V  
Standby RAM  
Low Power Features  
Packages  
PG-LQFP-144-22 / PG-LQFP-176-  
22 / PG-LFBGA-292-6  
Type  
5 V CMOS / 3.3 V CMOS / LVDS  
I/O  
Type  
-40 ... + 150°C  
Tambient  
Range  
1) Address range starts at lowest address defined in the User’s Manual. For reference see the Memory Maps chapter of the  
User’s Manual.  
2) To ensure the processor cores are provided with a constant stream of instructions the Instruction Fetch Units will  
speculatively fetch instructions from the up to 64 bytes ahead of the current PC.  
If the current PC is within 64 bytes of the top of an instruction memory the Instruction Fetch Unit may attempt to  
speculatively fetch instruction from beyond the physical range. This may then lead to error conditions and alarms being  
triggered by the bus and memory systems.  
It is therefore recommended that the upper 64 bytes of any memory be unused for instruction storage.  
Data Sheet  
1-4  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning Definitions  
2
Package and Pinning Definitions  
This chapter gives a pinning of the different packages of the TC 260 / 264 / 265 / 267.  
Data Sheet  
2-5  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
2.1  
TC264x Pin Definition and Functions: LQFP144  
Figure 2-1 is showing the TC264x Logic Symbol for the package variant: QFP144.  
1
2
P02.0  
P02.1  
P02.2  
P02.3  
108  
P20. 14  
107  
106  
105  
104  
103  
P20. 13  
P20. 12  
P20. 11  
P20. 10  
3
4
5
6
P02.4  
P02.5  
P02.6  
P02.7  
P20. 9  
P20. 8  
P20. 7  
P20. 6  
7
8
9
102  
101  
100  
99  
P02.8  
DD/VDDSB  
P00.0  
P00.1  
10  
V
VDD  
11  
12  
13  
14  
98  
97  
96  
95  
ESR0  
PORST  
ESR1  
P00.2  
P00.3  
P00.4  
P00.5  
P00.6  
P20. 3  
P20. 2 / TESTMODE  
P20. 0  
TCK  
15  
16  
17  
18  
94  
93  
92  
91  
P00.7  
P00.8  
P00.9  
TRST  
P21. 7 / TDO  
TMS  
P21. 6 / TDI  
P21. 5  
19  
20  
21  
22  
23  
TC26x  
90  
89  
88  
87  
P00.12  
VDD  
VEXT  
AN49  
AN48  
86  
85  
84  
83  
P21. 4  
P21. 3  
P21. 2  
VDDP3  
24  
25  
26  
27  
AN47  
AN46  
AN45  
AN44  
82  
81  
80  
79  
78  
XTAL2  
XTAL1  
VSS  
28  
29  
30  
31  
AN39  
AN38  
AN37  
AN36  
VDD  
VEXT  
32  
33  
34  
35  
77  
76  
75  
74  
P22. 3  
P22. 2  
P22. 1  
AN35  
AN25  
AN24  
P22. 0  
P23. 1  
36  
73  
Figure 2-1 TC264x Logic Symbol for the package variant LQFP144.  
Data Sheet  
2-6  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
2.1.1  
TC264 LQFP144 Package Variant Pin Configuration  
Table 2-1 Port 00 Functions  
Pin  
11  
Symbol  
Ctrl  
Type  
Function  
P00.0  
TIN9  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CTRAPA  
T12HRE  
INJ00  
CCU61 input  
CCU60 input  
MSC0 input  
CIFD9  
P00.0  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I/O  
I
General-purpose output  
GTM output  
TOUT9  
ASCLK3  
ATX3  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
TXDCAN1  
CAN node 1 output  
Reserved  
COUT63  
ETHMDIOA  
CCU60 output  
ETH input/output  
General-purpose input  
GTM input  
12  
P00.1  
TIN10  
LP /  
PU1 /  
VEXT  
ARX3E  
RXDCAN1D  
PSIRX0A  
SENT0B  
CC60INB  
CC60INA  
DSCIN0A  
VADCG3.11  
CIFD10  
P00.1  
ASCLIN3 input  
CAN node 1 input  
PSI5 input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 0 input A  
VADC analog input channel 11 of group 3  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT10  
ATX3  
ASCLIN3 output  
Reserved  
DSCOUT0  
DSADC channel 0 output  
Reserved  
SPC0  
SENT output  
CC60  
CCU61 output  
Data Sheet  
2-7  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
13  
Symbol  
Ctrl  
Type  
Function  
P00.2  
TIN11  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT1B  
DSDIN0A  
VADCG3.10  
CIFD11  
P00.2  
SENT input  
DSADC channel 0 input A  
VADC analog input channel 10 of group 3 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT11  
ASCLK3  
ASCLIN3 output  
Reserved  
PSITX0  
TXDCAN3  
PSI5 output  
CAN node 3 output  
Reserved  
COUT60  
CCU61 output  
14  
P00.3  
TIN12  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDCAN3A  
PSIRX1A  
PSISRXA  
SENT2B  
CC61INB  
CC61INA  
DSCIN3A  
VADCG3.9  
CIFD12  
P00.3  
CAN node 3 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 3 input A  
VADC analog input channel 9 of group 3 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT12  
ASLSO3  
ASCLIN3 output  
Reserved  
DSCOUT3  
DSADC channel 3 output  
Reserved  
SPC2  
SENT output  
CC61  
CCU61 output  
Data Sheet  
2-8  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
15  
Symbol  
Ctrl  
Type  
Function  
P00.4  
TIN13  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
REQ7  
SCU input  
SENT3B  
DSDIN3A  
DSSGNA  
VADCG3.8  
CIFD13  
SENT input  
DSADC channel 3 input A  
DSADC input  
VADC analog input channel 8 of group 3  
CIF input  
P00.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT13  
PSISTX  
TXDCAN4  
PSITX1  
PSI5-S output  
CAN node 4 output  
PSI5 output  
VADCG2BFL0  
SPC3  
VADC output  
SENT output  
COUT61  
CCU61 output  
16  
P00.5  
TIN14  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
PSIRX2A  
SENT4B  
RXDCAN4A  
CC62INB  
CC62INA  
DSCIN2A  
VADCG3.7  
CIFD14  
PSI5 input  
SENT input  
CAN node 4 input  
CCU60 input  
CCU61 input  
DSADC channel 2 input A  
VADC analog input channel 7 of group 3  
CIF input  
P00.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT14  
DSCGPWMN  
DSADC output  
Reserved  
DSCOUT2  
VADCG2BFL1  
SPC4  
DSADC channel 2 output  
VADC output  
SENT output  
CC62  
CCU61 output  
Data Sheet  
2-9  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
17  
Symbol  
Ctrl  
Type  
Function  
P00.6  
TIN15  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT5B  
SENT input  
DSDIN2A  
VADCG3.6  
CIFD15  
DSADC channel 2 input A  
VADC analog input channel 6 of group 3  
CIF input  
P00.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT15  
DSCGPWMP  
VADCG2BFL2  
PSITX2  
DSADC output  
VADC output  
PSI5 output  
VADCEMUX10  
SPC5  
VADC output  
SENT output  
COUT62  
CCU61 output  
General-purpose input  
GTM input  
18  
P00.7  
TIN16  
LP /  
PU1 /  
VEXT  
CC60INC  
CCPOS0A  
T12HRB  
T2INA  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
VADCG3.5  
CIFCLK  
P00.7  
VADC analog input channel 5 of group 3  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT16  
Reserved  
VADCG2BFL3  
VADC output  
Reserved  
VADCEMUX11  
VADC output  
Reserved  
CC60  
CCU61 output  
Data Sheet  
2-10  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
19  
Symbol  
Ctrl  
Type  
Function  
P00.8  
TIN17  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CC61INC  
CCPOS1A  
T13HRB  
T2EUDA  
VADCG3.4  
CIFVSNC  
P00.8  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
VADC analog input channel 4 of group 3  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT17  
SLSO36  
QSPI3 output  
Reserved  
Reserved  
VADCEMUX12  
VADC output  
Reserved  
CC61  
CCU61 output  
General-purpose input  
GTM input  
20  
P00.9  
TIN18  
LP /  
PU1 /  
VEXT  
CC62INC  
CCPOS2A  
T13HRC  
T12HRC  
T4EUDA  
VADCG3.3  
DSITR3F  
CIFHSNC  
P00.9  
CCU61 input  
CCU61 input  
CCU60 input  
CCU60 input  
GPT120 input  
VADC analog input channel 3 of group 3  
DSADC channel 3 input F  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT18  
SLSO37  
ARTS3  
QSPI3 output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
CC62  
CCU61 output  
Data Sheet  
2-11  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-1 Port 00 Functions (cont’d)  
Pin  
21  
Symbol  
Ctrl  
Type  
Function  
P00.12  
TIN21  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS3A  
ASCLIN3 input  
VADC analog input channel 0 of group 3  
General-purpose output  
GTM output  
VADCG3.0  
P00.12  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT21  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
COUT63  
CCU61 output  
Table 2-2 Port 02 Functions  
Pin  
1
Symbol  
Ctrl  
Type  
Function  
P02.0  
TIN0  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX2G  
REQ6  
ASCLIN2 input  
SCU input  
CC60INA  
CC60INB  
CIFD0  
CCU60 input  
CCU61 input  
CIF input  
P02.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT0  
ATX2  
ASCLIN2 output  
QSPI3 output  
DSADC output  
CAN node 0 output  
ERAY output  
SLSO31  
DSCGPWMN  
TXDCAN0  
TXDA  
CC60  
CCU60 output  
Data Sheet  
2-12  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-2 Port 02 Functions (cont’d)  
Pin  
2
Symbol  
Ctrl  
Type  
Function  
P02.1  
TIN1  
I
LP / PU1 General-purpose input  
/ VEXT  
GTM input  
REQ14  
ARX2B  
RXDCAN0A  
RXDA2  
CIFD1  
P02.1  
SCU input  
ASCLIN2 input  
CAN node 0 input  
ERAY input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT1  
Reserved  
SLSO32  
DSCGPWMP  
QSPI3 output  
DSADC output  
Reserved  
Reserved  
COUT60  
CCU60 output  
3
P02.2  
TIN2  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CC61INA  
CC61INB  
CIFD2  
CCU60 input  
CCU61 input  
CIF input  
P02.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT2  
ATX1  
ASCLIN1 output  
QSPI3 output  
PSI5 output  
SLSO33  
PSITX0  
TXDCAN2  
TXDB  
CAN node 2 output  
ERAY output  
CC61  
CCU60 output  
Data Sheet  
2-13  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-2 Port 02 Functions (cont’d)  
Pin  
4
Symbol  
Ctrl  
Type  
Function  
P02.3  
TIN3  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX1G  
RXDCAN2B  
RXDB2  
PSIRX0B  
SDI11  
CIFD3  
P02.3  
ASCLIN1 input  
CAN node 2 input  
ERAY input  
PSI5 input  
MSC1 input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT3  
ASLSO2  
SLSO34  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
Reserved  
COUT61  
CCU60 output  
General-purpose input  
GTM input  
5
P02.4  
TIN4  
MP+ /  
PU1 /  
VEXT  
SLSI3A  
ECTT1  
QSPI3 input  
TTCAN input  
CAN node 0 input  
CCU60 input  
CCU61 input  
I2C0 input  
RXDCAN0D  
CC62INA  
CC62INB  
SDA0A  
CIFD4  
CIF input  
P02.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT4  
ASCLK2  
SLSO30  
PSISCLK  
SDA0  
ASCLIN2 output  
QSPI3 output  
PSI5-S output  
I2C0 output  
TXENA  
CC62  
ERAY output  
CCU60 output  
Data Sheet  
2-14  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-2 Port 02 Functions (cont’d)  
Pin  
6
Symbol  
Ctrl  
Type  
Function  
P02.5  
TIN5  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MRST3A  
ECTT2  
PSIRX1B  
PSISRXB  
SENT3C  
SCL0A  
CIFD5  
QSPI3 input  
TTCAN input  
PSI5 input  
PSI5-S input  
SENT input  
I2C0 input  
CIF input  
P02.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT5  
TXDCAN0  
MRST3  
CAN node 0 output  
QSPI3 output  
Reserved  
SCL0  
I2C0 output  
TXENB  
COUT62  
ERAY output  
CCU60 output  
General-purpose input  
GTM input  
7
P02.6  
TIN6  
MP /  
PU1 /  
VEXT  
MTSR3A  
SENT2C  
CC60INC  
CCPOS0A  
T12HRB  
T3INA  
QSPI3 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
CIFD6  
P02.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT6  
PSISTX  
MTSR3  
PSITX1  
VADCEMUX00  
PSI5-S output  
QSPI3 output  
PSI5 output  
VADC output  
Reserved  
CC60  
CCU60 output  
Data Sheet  
2-15  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-2 Port 02 Functions (cont’d)  
Pin  
8
Symbol  
Ctrl  
Type  
Function  
P02.7  
TIN7  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCLK3A  
PSIRX2B  
SENT1C  
CC61INC  
CCPOS1A  
T13HRB  
T3EUDA  
CIFD7  
QSPI3 input  
PSI5 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
DSCIN3B  
P02.7  
DSADC channel 3 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT7  
Reserved  
SCLK3  
QSPI3 output  
DSADC channel 3 output  
VADC output  
SENT output  
DSCOUT3  
VADCEMUX01  
SPC1  
CC61  
CCU60 output  
9
P02.8  
TIN8  
LP / PU1 General-purpose input  
/
GTM input  
VEXT  
SENT0C  
CC62INC  
CCPOS2A  
T12HRC  
T13HRC  
T4INA  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
CCU61 input  
GPT120 input  
CIF input  
CIFD8  
DSDIN3B  
DSITR3E  
P02.8  
DSADC channel 3 input B  
DSADC channel 3 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT8  
SLSO35  
QSPI3 output  
Reserved  
PSITX2  
VADCEMUX02  
ETHMDC  
CC62  
PSI5 output  
VADC output  
ETH output  
CCU60 output  
Data Sheet  
2-16  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-3 Port 10 Functions  
Pin  
140  
Symbol  
Ctrl  
Type  
Function  
P10.1  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN103  
MRST1A  
T5EUDB  
P10.1  
QSPI1 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT103  
MTSR1  
MRST1  
EN01  
QSPI1 output  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG3BFL1  
END03  
141  
P10.2  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN104  
SCLK1A  
T6INB  
QSPI1 input  
GPT120 input  
SCU input  
REQ2  
RXDCAN2E  
SDI01  
CAN node 2 input  
MSC0 input  
P10.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT104  
Reserved  
SCLK1  
EN00  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG3BFL2  
END02  
Data Sheet  
2-17  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-3 Port 10 Functions (cont’d)  
Pin  
142  
Symbol  
Ctrl  
Type  
Function  
P10.3  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN105  
MTSR1A  
REQ3  
QSPI1 input  
SCU input  
T5INB  
GPT120 input  
General-purpose output  
GTM output  
P10.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT105  
VADCG3BFL3  
MTSR1  
EN00  
VADC output  
QSPI1 output  
MSC0 output  
MSC0 output  
CAN node 2 output  
Reserved  
END02  
TXDCAN2  
143  
P10.5  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN107  
HWCFG4  
RXDCAN4B  
INJ01  
SCU input  
CAN node 4 input  
MSC0 input  
P10.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT107  
ATX2  
ASCLIN2 output  
QSPI3 output  
QSPI1 output  
GPT120 output  
ASCLIN2 output  
Reserved  
SLSO38  
SLSO19  
T6OUT  
ASLSO2  
Data Sheet  
2-18  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-3 Port 10 Functions (cont’d)  
Pin  
144  
Symbol  
Ctrl  
Type  
Function  
P10.6  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN108  
ARX2D  
ASCLIN2 input  
QSPI3 input  
MTSR3B  
HWCFG5  
P10.6  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT108  
ASCLK2  
MTSR3  
ASCLIN2 output  
QSPI3 output  
GPT120 output  
CAN node 4 output  
QSPI1 output  
VADC output  
T3OUT  
TXDCAN4  
MRST1  
VADCG3BFL0  
Table 2-4 Port 11 Functions  
Pin  
132  
Symbol  
Ctrl  
Type  
Function  
P11.2  
TIN95  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
P11.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT95  
END03  
SLSO05  
SLSO15  
EN01  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ETH output  
ETHTXD1  
COUT63  
CCU60 output  
General-purpose input  
GTM input  
133  
P11.3  
TIN96  
MPR /  
PU1 /  
VFLEX  
MRST1B  
SDI03  
P11.3  
QSPI1 input  
MSC0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT96  
Reserved  
MRST1  
TXDA  
QSPI1 output  
ERAY output  
Reserved  
ETHTXD0  
COUT62  
ETH output  
CCU60 output  
Data Sheet  
2-19  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-4 Port 11 Functions (cont’d)  
Pin  
134  
Symbol  
Ctrl  
Type  
Function  
P11.6  
TIN97  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
SCLK1B  
P11.6  
QSPI1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT97  
TXENB  
SCLK1  
ERAY output  
QSPI1 output  
ERAY output  
MSC0 output  
ETH output  
TXENA  
FCLP0  
ETHTXEN  
COUT61  
CCU60 output  
General-purpose input  
GTM input  
135  
P11.9  
TIN98  
MP+ /  
PU1 /  
VFLEX  
MTSR1B  
RXDA1  
ETHRXD1  
P11.9  
TOUT98  
QSPI1 input  
ERAY input  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MTSR1  
QSPI1 output  
Reserved  
SOP0  
MSC0 output  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
2-20  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-4 Port 11 Functions (cont’d)  
Pin  
137  
Symbol  
Ctrl  
Type  
Function  
P11.10  
TIN99  
I
LP /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
REQ12  
ARX1E  
SLSI1A  
RXDCAN3D  
RXDB1  
ETHRXD0  
SDI00  
P11.10  
TOUT99  
SCU input  
ASCLIN1 input  
QSPI1 input  
CAN node 3 input  
ERAY input  
ETH input  
MSC0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
SLSO03  
SLSO13  
QSPI0 output  
QSPI1 output  
Reserved  
Reserved  
CC62  
CCU60 output  
General-purpose input  
GTM input  
138  
P11.11  
TIN100  
MP+ /  
PU1 /  
VFLEX  
ETHCRSDVA  
P11.11  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT100  
END02  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ERAY output  
CCU60 output  
SLSO04  
SLSO14  
EN00  
TXENB  
CC61  
Data Sheet  
2-21  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-4 Port 11 Functions (cont’d)  
Pin  
139  
Symbol  
Ctrl  
Type  
Function  
P11.12  
TIN101  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
ETHREFCLK  
ETHTXCLKB  
ETH input  
ETH input  
(Not for productive purposes)  
ETHRXCLKA  
ETH input  
(Not for productive purposes)  
P11.12  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT101  
ATX1  
ASCLIN1 output  
GTM output  
GTMCLK2  
TXDB  
ERAY output  
TXDCAN3  
EXTCLK1  
CC60  
CAN node 3 output  
SCU output  
CCU60 output  
Table 2-5 Port 13 Functions  
Pin  
128  
Symbol  
Ctrl  
Type  
Function  
P13.0  
TIN91  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P13.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT91  
END03  
SCLK2N  
EN01  
MSC0 output  
QSPI2 output (LVDS)  
MSC0 output  
FCLN0  
FCLND0  
TXDCAN4  
MSC0 output (LVDS)  
MSC0 output (LVDS)  
CAN node 4 output  
Data Sheet  
2-22  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-5 Port 13 Functions (cont’d)  
Pin  
129  
Symbol  
Ctrl  
Type  
Function  
P13.1  
TIN92  
I
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCL0B  
RXDCAN4C  
P13.1  
TOUT92  
I2C0 input  
CAN node 4 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Reserved  
SCLK2P  
QSPI2 output (LVDS)  
Reserved  
FCLP0  
SCL0  
MSC0 output (LVDS)  
I2C0 output  
Reserved  
130  
P13.2  
TIN93  
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CAPINA  
SDA0B  
P13.2  
GPT120 input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT93  
Reserved  
MTSR2N  
FCLP0  
SON0  
QSPI2 output (LVDS)  
MSC0 output  
MSC0 output (LVDS)  
I2C0 output  
SDA0  
SOND0  
MSC0 output (LVDS)  
General-purpose input  
GTM input  
131  
P13.3  
TIN94  
LVDSM_P /  
PU1 /  
VEXT  
P13.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT94  
Reserved  
MTSR2P  
QSPI2 output (LVDS)  
Reserved  
SOP0  
MSC0 output (LVDS)  
Reserved  
Reserved  
Data Sheet  
2-23  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-6 Port 14 Functions  
Pin  
118  
Symbol  
Ctrl  
Type  
Function  
P14.0  
TIN80  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P14.0  
O0  
O1  
O2  
General-purpose output  
GTM output  
TOUT80  
ATX0  
ASCLIN0 output  
Recommended as Boot loader pin.  
TXDA  
O3  
O4  
O5  
ERAY output  
ERAY output  
TXDB  
TXDCAN1  
CAN node 1 output  
Used for single pin DAP (SPD) function.  
ASCLK0  
COUT62  
O6  
O7  
I
ASCLIN0 output  
CCU60 output  
General-purpose input  
GTM input  
119  
P14.1  
TIN81  
MP /  
PU1 /  
VEXT  
REQ15  
SCU input  
ARX0A  
ASCLIN0 input  
RXDCAN1B  
CAN node 1 input  
Used for single pin DAP (SPD) function.  
RXDA3  
RXDB3  
EVRWUPA  
P14.1  
ERAY input  
ERAY input  
SCU input  
O0  
O1  
O2  
General-purpose output  
GTM output  
TOUT81  
ATX0  
ASCLIN0 output  
Recommended as Boot loader pin.  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
CCU60 output  
COUT63  
Data Sheet  
2-24  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-6 Port 14 Functions (cont’d)  
Pin  
120  
Symbol  
Ctrl  
Type  
Function  
P14.2  
TIN82  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG2  
EVR13  
SCU input  
Latched at cold power on reset to decide EVR13  
activation.  
P14.2  
TOUT82  
ATX2  
SLSO21  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI2 output  
Reserved  
Reserved  
ASCLK2  
ASCLIN2 output  
Reserved  
121  
P14.3  
TIN83  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX2A  
REQ10  
HWCFG3_BMI  
SDI02  
ASCLIN2 input  
SCU input  
SCU input  
MSC0 input  
P14.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT83  
ATX2  
ASCLIN2 output  
QSPI2 output  
ASCLIN1 output  
ASCLIN3 output  
Reserved  
SLSO23  
ASLSO1  
ASLSO3  
Reserved  
Data Sheet  
2-25  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-6 Port 14 Functions (cont’d)  
Pin  
122  
Symbol  
Ctrl  
Type  
Function  
P14.4  
TIN84  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG6  
SCU input  
Latched at cold power on reset to decide default pad  
reset state (PU or HighZ).  
P14.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT84  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
123  
P14.5  
TIN85  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG1  
EVR33  
SCU input  
Latched at cold power on reset to decide EVR33  
activation.  
P14.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT85  
Reserved  
Reserved  
Reserved  
TXDB  
ERAY output  
Reserved  
124  
P14.6  
TIN86  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG0  
DCLDO  
SCU input  
If EVR13 active, latched at cold power on reset to  
decide between LDO and SMPS mode.  
P14.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT86  
SLSO22  
QSPI2 output  
Reserved  
Reserved  
TXENB  
ERAY output  
Reserved  
Data Sheet  
2-26  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-7 Port 15 Functions  
Pin  
109  
Symbol  
Ctrl  
Type  
Function  
P15.0  
TIN71  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P15.0  
TOUT71  
ATX1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
Reserved  
SLSO013  
TXDCAN2  
ASCLK1  
CAN node 2 output  
ASCLIN1 output  
Reserved  
110  
P15.1  
TIN72  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
REQ16  
SCU input  
ARX1A  
ASCLIN1 input  
CAN node 2 input  
QSPI2 input  
RXDCAN2A  
SLSI2B  
EVRWUPB  
SCU input  
P15.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT72  
ATX1  
ASCLIN1 output  
QSPI2 output  
Reserved  
SLSO25  
Reserved  
Reserved  
Reserved  
111  
P15.2  
TIN73  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI2A  
MRST2E  
HSIC2INA  
P15.2  
QSPI2 input  
QSPI2 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT73  
ATX0  
ASCLIN0 output  
QSPI2 output  
Reserved  
SLSO20  
TXDCAN1  
ASCLK0  
CAN node 1 output  
ASCLIN0 output  
Reserved  
Data Sheet  
2-27  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-7 Port 15 Functions (cont’d)  
Pin  
112  
Symbol  
Ctrl  
Type  
Function  
P15.3  
TIN74  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX0B  
SCLK2A  
RXDCAN1A  
HSIC2INB  
P15.3  
ASCLIN0 input  
QSPI2 input  
CAN node 1 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT74  
ATX0  
ASCLIN0 output  
QSPI2 output  
MSC0 output  
MSC0 output  
Reserved  
SCLK2  
END03  
EN01  
Reserved  
113  
P15.4  
TIN75  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MRST2A  
REQ0  
SCL0C  
P15.4  
TOUT75  
ATX1  
MRST2  
QSPI2 input  
SCU input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI2 output  
Reserved  
Reserved  
SCL0  
CC62  
I2C0 output  
CCU60 output  
Data Sheet  
2-28  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-7 Port 15 Functions (cont’d)  
Pin  
114  
Symbol  
Ctrl  
Type  
Function  
P15.5  
TIN76  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX1B  
MTSR2A  
SDA0C  
REQ13  
P15.5  
ASCLIN1 input  
QSPI2 input  
I2C0 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT76  
ATX1  
ASCLIN1 output  
QSPI2 output  
MSC0 output  
MSC0 output  
I2C0 output  
MTSR2  
END02  
EN00  
SDA0  
CC61  
CCU60 output  
General-purpose input  
GTM input  
115  
P15.6  
TIN77  
MP /  
PU1 /  
VEXT  
MTSR2B  
P15.6  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT77  
ATX3  
ASCLIN3 output  
QSPI2 output  
Reserved  
MTSR2  
SCLK2  
ASCLK3  
CC60  
QSPI2 output  
ASCLIN3 output  
CCU60 output  
General-purpose input  
GTM input  
116  
P15.7  
TIN78  
MP /  
PU1 /  
VEXT  
ARX3A  
MRST2B  
P15.7  
TOUT78  
ATX3  
MRST2  
ASCLIN3 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
QSPI2 output  
Reserved  
Reserved  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
2-29  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-7 Port 15 Functions (cont’d)  
Pin  
117  
Symbol  
Ctrl  
Type  
Function  
P15.8  
TIN79  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCLK2B  
REQ1  
P15.8  
TOUT79  
QSPI2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK2  
QSPI2 output  
Reserved  
Reserved  
ASCLK3  
COUT61  
ASCLIN3 output  
CCU60 output  
Table 2-8 Port 20 Functions  
Pin  
93  
Symbol  
Ctrl  
Type  
Function  
P20.0  
TIN59  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDCAN3C  
T6EUDA  
REQ9  
SYSCLK  
TGI0  
CAN node 3 input  
GPT120 input  
SCU input  
HSCT input  
OCDS input  
P20.0  
TOUT59  
ATX3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
ASCLK3  
SYSCLK  
HSCT output  
Reserved  
Reserved  
TGO0  
HWOU  
T
OCDS; ENx  
Data Sheet  
2-30  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-8 Port 20 Functions (cont’d)  
Pin  
94  
Symbol  
Ctrl  
Type  
Function  
P20.2  
I
LP /  
General-purpose input  
PU /  
VEXT  
This pin is latched at power on reset release to enter  
test mode.  
TESTMODE  
OCDS input  
P20.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
General-purpose input  
GTM input  
95  
P20.3  
TIN61  
T6INA  
ARX3C  
P20.3  
TOUT61  
ATX3  
LP /  
PU1 /  
VEXT  
GPT120 input  
ASCLIN3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN3 output  
SLSO09  
SLSO29  
TXDCAN3  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
Reserved  
Reserved  
100  
P20.6  
TIN62  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P20.6  
TOUT62  
ARTS1  
SLSO08  
SLSO28  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-31  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-8 Port 20 Functions (cont’d)  
Pin  
101  
Symbol  
Ctrl  
Type  
Function  
P20.7  
TIN63  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS1A  
ASCLIN1 input  
CAN node 0 input  
General-purpose output  
GTM output  
RXDCAN0B  
P20.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT63  
Reserved  
Reserved  
Reserved  
Reserved  
WDT1LCK  
COUT63  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
102  
P20.8  
TIN64  
MP /  
PU1 /  
VEXT  
P20.8  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT64  
ASLSO1  
SLSO00  
SLSO10  
TXDCAN0  
WDT0LCK  
CC60  
ASCLIN1 output  
QSPI0 output  
QSPI1 output  
CAN node 0 output  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
103  
P20.9  
TIN65  
LP /  
PU1 /  
VEXT  
ARX1C  
RXDCAN3E  
REQ11  
SLSI0B  
P20.9  
ASCLIN1 input  
CAN node 3 input  
SCU input  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT65  
Reserved  
SLSO01  
SLSO11  
QSPI0 output  
QSPI1 output  
Reserved  
WDTSLCK  
CC61  
SCU output  
CCU61 output  
Data Sheet  
2-32  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-8 Port 20 Functions (cont’d)  
Pin  
104  
Symbol  
Ctrl  
Type  
Function  
P20.10  
TIN66  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P20.10  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT66  
ATX1  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
ASCLIN1 output  
CCU61 output  
General-purpose input  
GTM input  
SLSO06  
SLSO27  
TXDCAN3  
ASCLK1  
CC62  
105  
P20.11  
TIN67  
MP /  
PU1 /  
VEXT  
SCLK0A  
QSPI0 input  
P20.11  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT67  
Reserved  
SCLK0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
COUT60  
CCU61 output  
General-purpose input  
GTM input  
106  
P20.12  
TIN68  
MP /  
PU1 /  
VEXT  
MRST0A  
P20.12  
TOUT68  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MRST0  
MTSR0  
QSPI0 output  
QSPI0 output  
Reserved  
Reserved  
COUT61  
CCU61 output  
Data Sheet  
2-33  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-8 Port 20 Functions (cont’d)  
Pin  
107  
Symbol  
Ctrl  
Type  
Function  
P20.13  
TIN69  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI0A  
P20.13  
TOUT69  
QSPI0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Reserved  
SLSO02  
SLSO12  
SCLK0  
QSPI0 output  
QSPI1 output  
QSPI0 output  
Reserved  
COUT62  
CCU61 output  
General-purpose input  
GTM input  
108  
P20.14  
TIN70  
MP /  
PU1 /  
VEXT  
MTSR0A  
QSPI0 input  
General-purpose output  
GTM output  
P20.14  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT70  
Reserved  
MTSR0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-34  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-9 Port 21 Functions  
Symbol  
Ctrl  
I
Type  
Pin  
84  
Function  
P21.2  
TIN53  
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
MRST2CN  
MRST3FN  
EMGSTOPB  
RXDN  
P21.2  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
SCU input  
HSCT input (LVDS)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT53  
ASLSO3  
ASCLIN3 output  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
Reserved  
85  
P21.3  
TIN54  
LVDSH_P/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
MRST2CP  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
HSCT input (LVDS)  
General-purpose output  
GTM output  
MRST3FP  
RXDP  
P21.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT54  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ETHMDIOD  
HWOU  
T
ETH input/output  
Data Sheet  
2-35  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-9 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
86  
Function  
P21.4  
TIN55  
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
P21.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O
General-purpose output  
GTM output  
TOUT55  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDN  
HSCT output (LVDS)  
General-purpose input  
GTM input  
87  
P21.5  
TIN56  
I
LVDSH_P/  
PU1 /  
VDDP3  
P21.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O
General-purpose output  
GTM output  
TOUT56  
ASCLK3  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDP  
HSCT output (LVDS)  
General-purpose input  
GTM input  
881)  
P21.6  
TIN57  
I
A2 /  
PU /  
VDDP3  
ARX3F  
TGI2  
TDI  
ASCLIN3 input  
OCDS input  
OCDS (JTAG) input  
GPT120 input  
General-purpose output  
GTM output  
T5EUDA  
P21.6  
TOUT57  
ASLSO3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
Reserved  
Reserved  
SYSCLK  
HSCT output  
Reserved  
T3OUT  
TGO2  
GPT120 output  
OCDS; ENx  
HWOU  
T
Data Sheet  
2-36  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-9 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
90  
Function  
P21.7  
TIN58  
A2 /  
PU /  
VDDP3  
General-purpose input  
GTM input  
DAP2  
OCDS (3-Pin DAP) input  
In the 3-Pin DAP mode this pin is used as DAP2.  
In the 2-PIN DAP mode this pin is used as P21.7  
and controlled by the related port control logic.  
TGI3  
ETHRXERB  
T5INA  
P21.7  
TOUT58  
ATX3  
ASCLK3  
OCDS input  
ETH input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
T6OUT  
TGO3  
TDO  
GPT120 output  
OCDS; ENx  
HWOU  
T
OCDS (JTAG); ENx  
The JTAG TDO function is overlayed with P21.7  
via a double bond.  
In JTAG mode this pin is used as TDO, after  
power-on reset it is HighZ.  
DAP2  
OCDS (DAP2); ENx  
In the 3-Pin DAP mode this pin is used as DAP2.  
1) For an Emulation Device in a non Fusion Quad package this pin is used as VDDPSB (3.3V)  
Table 2-10 Port 22 Functions  
Pin  
74  
Symbol  
Ctrl  
Type  
Function  
P22.0  
TIN47  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MTSR3E  
P22.0  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT47  
Reserved  
MTSR3  
SCLK3N  
FCLN1  
FCLND1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Data Sheet  
2-37  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-10 Port 22 Functions (cont’d)  
Pin  
75  
Symbol  
Ctrl  
Type  
Function  
P22.1  
TIN48  
I
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MRST3E  
P22.1  
TOUT48  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
MRST3  
SCLK3P  
FCLP1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Reserved  
76  
P22.2  
TIN49  
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3D  
P22.2  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT49  
Reserved  
SLSO312  
MTSR3N  
SON1  
SOND1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
77  
P22.3  
TIN50  
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCLK3E  
P22.3  
TOUT50  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK3  
MTSR3P  
SOP1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Reserved  
Data Sheet  
2-38  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-11 Port 23 Functions  
Pin  
73  
Symbol  
Ctrl  
Type  
Function  
P23.1  
TIN42  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SDI10  
P23.1  
MSC1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT42  
ARTS1  
SLSO313  
GTMCLK0  
ASCLIN1 output  
QSPI3 output  
GTM output  
Reserved  
EXTCLK0  
SCU output  
Reserved  
Table 2-12 Port 32 Functions  
Pin  
70  
Symbol  
Ctrl  
Type  
Function  
P32.0  
TIN36  
I
LP /  
PX/  
VEXT  
General-purpose input  
GTM input  
FDEST  
PMU input  
VGATE1N  
SMPS mode: analog output. External Pass Device  
gate control for EVR13  
P32.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT36  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-39  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-12 Port 32 Functions (cont’d)  
Pin  
72  
Symbol  
Ctrl  
Type  
Function  
P32.4  
TIN40  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS1B  
SDI12  
ASCLIN1 input  
MSC1 input  
P32.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT40  
Reserved  
END12  
GTMCLK1  
EN10  
MSC1 output  
GTM output  
MSC1 output  
SCU output  
EXTCLK1  
COUT63  
CCU60 output  
Table 2-13 Port 33 Functions  
Pin  
60  
Symbol  
Ctrl  
Type  
Function  
P33.4  
TIN26  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CTRAPC  
DSITR0F  
P33.4  
CCU61 input  
DSADC channel 0 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT26  
ARTS2  
ASCLIN2 output  
Reserved  
PSITX1  
VADCEMUX12  
VADCG0BFL0  
PSI5 output  
VADC output  
VADC output  
Reserved  
Data Sheet  
2-40  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
61  
Symbol  
Ctrl  
Type  
Function  
P33.5  
TIN27  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS2B  
PSIRX2C  
PSISRXC  
SENT5C  
CCPOS2C  
T4EUDB  
DSCIN0B  
P33.5  
ASCLIN2 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT27  
SLSO07  
SLSO17  
DSCOUT0  
VADCEMUX11  
VADCG0BFL1  
QSPI0 output  
QSPI1 output  
DSADC channel 0 output  
VADC output  
VADC output  
Reserved  
62  
P33.6  
TIN28  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT4C  
CCPOS1C  
T2EUDB  
DSDIN0B  
DSITR2F  
P33.6  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
DSADC channel 2 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT28  
ASLSO2  
ASCLIN2 output  
Reserved  
PSITX2  
PSI5 output  
VADCEMUX10  
VADCG0BFL2  
PSISTX  
VADC output  
VADC output  
PSI5-S output  
Data Sheet  
2-41  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
63  
Symbol  
Ctrl  
Type  
Function  
P33.7  
TIN29  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDCAN0E  
REQ8  
CAN node 0 input  
SCU input  
CCPOS0C  
T2INB  
CCU61 input  
GPT120 input  
General-purpose output  
GTM output  
P33.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT29  
ASCLK2  
SLSO37  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
VADCG0BFL3  
VADC output  
Reserved  
64  
P33.8  
TIN30  
MP /  
HighZ/  
VEXT  
General-purpose input  
GTM input  
ARX2E  
EMGSTOPA  
P33.8  
ASCLIN2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT30  
ATX2  
ASCLIN2 output  
QSPI3 output  
Reserved  
SLSO32  
TXDCAN0  
CAN node 0 output  
Reserved  
COUT62  
SMUFSP  
CCU61 output  
SMU  
HWOU  
T
65  
P33.9  
TIN31  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HSIC3INA  
P33.9  
TOUT31  
ATX2  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI3 output  
ASCLIN2 output  
Reserved  
SLSO31  
ASCLK2  
Reserved  
CC62  
CCU61 output  
Data Sheet  
2-42  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
66  
Symbol  
Ctrl  
Type  
Function  
P33.10  
TIN32  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3C  
HSIC3INB  
P33.10  
QSPI3 input  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT32  
SLSO16  
SLSO311  
ASLSO1  
PSISCLK  
QSPI1 output  
QSPI3 output  
ASCLIN1 output  
PSI5-S output  
Reserved  
COUT61  
CCU61 output  
General-purpose input  
GTM input  
67  
P33.11  
TIN33  
MP /  
PU1 /  
VEXT  
SCLK3D  
P33.11  
TOUT33  
ASCLK1  
SCLK3  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
Reserved  
Reserved  
DSCGPWMN  
CC61  
DSADC output  
CCU61 output  
General-purpose input  
GTM input  
68  
P33.12  
TIN34  
MP /  
PU1 /  
VEXT  
MTSR3D  
P33.12  
TOUT34  
ATX1  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
ASCLIN1 output  
Reserved  
MTSR3  
ASCLK1  
DSCGPWMP  
COUT60  
DSADC output  
CCU61 output  
Data Sheet  
2-43  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-13 Port 33 Functions (cont’d)  
Pin  
69  
Symbol  
Ctrl  
Type  
Function  
P33.13  
TIN35  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX1F  
MRST3D  
DSSGNB  
INJ11  
ASCLIN1 input  
QSPI3 input  
DSADC input  
MSC1 input  
P33.13  
TOUT35  
ATX1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
QSPI2 output  
Reserved  
MRST3  
SLSO26  
DCDCSYNC  
CC60  
SCU output  
CCU61 output  
Table 2-14 Port 40 Functions  
Pin  
36  
Symbol  
Ctrl  
Type  
Function  
P40.0  
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 8 of group 1  
CCU60 input  
VADCG1.8  
CCPOS0D  
SENT0A  
SENT input  
35  
33  
P40.1  
I
I
S /  
HighZ /  
VDDM  
General-purpose inpu.t  
VADC analog input channel 9 of group 1 (MD)  
CCU60 input  
VADCG1.9  
CCPOS1B  
SENT1A  
SENT input  
P40.6  
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 4 of group 2  
DSADC: positive analog input of channel 3, pin A  
CCU61 input  
VADCG2.4  
DS3PA  
CCPOS1B  
SENT2D  
SENT input  
32  
P40.7  
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 5 of group 2  
VADCG2.5  
DS3NA  
DSADC: negative analog input channel of DSADC 3,  
pin A  
CCPOS1D  
SENT3D  
CCU61 input  
SENT input  
Data Sheet  
2-44  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-14 Port 40 Functions (cont’d)  
Pin  
31  
Symbol  
Ctrl  
Type  
Function  
P40.8  
I
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG2.6  
VADC analog input channel 6 of group 2  
DSADC: positive analog input of channel 3, pin B  
CCU61 input  
DS3PB  
CCPOS2B  
SENT4A  
SENT input  
30  
P40.9  
I
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG2.7  
VADC analog input channel 7 of group 2  
DS3NB  
DSADC: negative analog input channel of DSADC 3,  
pin B  
CCPOS2D  
SENT5A  
CCU61 input  
SENT input  
Table 2-15 Analog Inputs  
Pin  
57  
Symbol  
Ctrl  
Type  
Function  
AN0  
I
D /  
Analog input 0  
HighZ /  
VDDM  
VADCG0.0  
VADC analog input channel 0 of group 0  
DSADC: positive analog input of channel 0, pin B  
Analog input 1  
DS0PB  
56  
AN1  
I
D /  
HighZ /  
VDDM  
VADCG0.1  
VADC analog input channel 1 of group 0 (MD)  
DS0NB  
DSADC: negative analog input channel of DSADC 0,  
pin B  
55  
54  
AN2  
I
I
D /  
HighZ /  
VDDM  
Analog input 2  
VADCG0.2  
VADC analog input channel 2 of group 0 (MD)  
DSADC: positive analog input of channel 0, pin A  
Analog input 3  
DS0PA  
AN3  
D /  
HighZ /  
VDDM  
VADCG0.3  
VADC analog input channel 3 of group 0  
DS0NA  
DSADC: negative analog input channel of DSADC 0,  
pin A  
53  
52  
51  
50  
AN4  
I
I
I
I
D /  
HighZ /  
VDDM  
Analog input 4  
VADCG0.4  
VADC analog input channel 4 of group 0  
AN5  
D /  
HighZ /  
VDDM  
Analog input 5  
VADCG0.5  
VADC analog input channel 5 of group 0  
AN6  
D /  
HighZ /  
VDDM  
Analog input 6  
VADCG0.6  
VADC analog input channel 6 of group 0  
AN7  
D /  
Analog input 7  
HighZ /  
VDDM  
VADCG0.7  
VADC analog input channel 7 of group 0 (with pull  
down diagnostics)  
Data Sheet  
2-45  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-15 Analog Inputs (cont’d)  
Pin  
49  
Symbol  
Ctrl  
Type  
Function  
AN8  
I
D /  
Analog input 8  
HighZ /  
VDDM  
VADCG0.8  
VADC analog input channel 8 of group 0  
48  
47  
46  
45  
40  
39  
38  
AN10  
I
I
I
I
I
I
I
D /  
HighZ /  
VDDM  
Analog input 10  
VADCG0.10  
VADC analog input channel 10 of group 0 (MD)  
AN11  
D /  
HighZ /  
VDDM  
Analog input 11  
VADCG0.11  
VADC analog input channel 11 of group 0  
AN12  
D /  
HighZ /  
VDDM  
Analog input 12  
VADCG0.12  
VADC analog input channel 12 of group 0  
AN13  
D /  
HighZ /  
VDDM  
Analog input 13  
VADCG0.13  
VADC analog input channel 13 of group 0  
AN16  
D /  
HighZ /  
VDDM  
Analog input 16  
VADCG1.0  
VADC analog input channel 0 of group 1  
AN17  
D /  
HighZ /  
VDDM  
Analog input 17  
VADCG1.1  
VADC analog input channel 1 of group 1 (MD)  
AN20  
D /  
Analog input 20  
HighZ /  
VDDM  
VADCG1.4  
VADC analog input channel 4 of group 1  
DSADC: positive analog input of channel 2, pin A  
Analog input 21  
DS2PA  
37  
AN21  
I
D /  
HighZ /  
VDDM  
VADCG1.5  
VADC analog input channel 5 of group 1  
DS2NA  
DSADC: negative analog input channel of DSADC 2,  
pin A  
36  
35  
AN24  
I
I
S /  
HighZ /  
VDDM  
Analog input 24  
VADCG1.8  
VADC analog input channel 8 of group 1  
SENT input channel 0, pin A  
Analog input 24  
SENT0A  
AN25  
S /  
HighZ /  
VDDM  
VADCG1.9  
SENT1A  
VADC analog input channel 9of group 1 (MD)  
SENT input channel 1, pin A  
Analog input 35  
34  
33  
AN35  
I
I
D /  
HighZ /  
VDDM  
VADCG2.3  
VADC analog input channel 3 of group 2 (with pull  
down diagnostics)  
AN36  
S /  
Analog input 34  
HighZ /  
VDDM  
VADCG2.4  
VADC analog input channel 4 of group 2  
DSADC: positive analog input of channel 3, pin A  
SENT input channel 2, pin D  
DS3PA  
SENT2D  
Data Sheet  
2-46  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-15 Analog Inputs (cont’d)  
Pin  
32  
Symbol  
Ctrl  
Type  
Function  
AN37  
I
S /  
Analog input 37  
HighZ /  
VDDM  
VADCG2.5  
VADC analog input channel 5 of group 2  
DS3NA  
DSADC: negative analog input channel of DSADC 3,  
pin A  
SENT3D  
SENT input channel 3, pin D  
Analog input 38  
31  
30  
AN38  
I
I
S /  
HighZ /  
VDDM  
VADCG2.6  
VADC analog input channel 6 of group 2  
DSADC: positive analog input of channel 3, pin B  
SENT input channel 4, pin A  
Analog input 39  
DS3PB  
SENT4A  
AN39  
S /  
HighZ /  
VDDM  
VADCG2.7  
VADC analog input channel 7 of group 2  
DS3NB  
DSADC: negative analog input channel of DSADC 3,  
pin B  
SENT5A  
SENT input channel 5, pin A  
29  
28  
AN44  
I
I
D /  
HighZ /  
VDDM  
Analog input 44  
VADCG2.10  
VADC analog input channel 10 of group 2 (MD)  
DSADC: positive analog input of channel 3, pin C  
Analog input 45  
DS3PC  
AN45  
D /  
HighZ /  
VDDM  
VADCG2.11  
VADC analog input channel 11 of group 2  
DS3NC  
DSADC: negative analog input channel of DSADC 3,  
pin C  
27  
26  
AN46  
I
I
D /  
HighZ /  
VDDM  
Analog input 46  
VADCG2.12  
VADC analog input channel 12 of group 24  
DSADC: positive analog input of channel 3, pin D  
Analog input 47  
DS3PD  
AN47  
D /  
HighZ /  
VDDM  
VADCG2.13  
VADC analog input channel 13 of group 2  
DS3ND  
DSADC: negative analog input channel of DSADC 3,  
pin D  
25  
24  
AN48  
I
I
D /  
HighZ /  
VDDM  
Analog input 48  
VADCG2.14  
VADC analog input channel 14 of group 2  
AN49  
D /  
Analog input 49  
HighZ /  
VDDM  
VADCG2.15  
VADC analog input channel 15 of group 2  
Data Sheet  
2-47  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-16 System I/O  
Pin  
97  
Symbol  
Ctrl  
Type  
Function  
PORST  
I
PORST /  
PD /  
Power On Reset Input  
Additional strong PD in case of power fail.  
VEXT  
98  
ESR0  
I/O  
MP / OD /  
VEXT  
External System Request Reset 0  
Default configuration during and after reset is open-  
drain driver. The driver drives low during power-on  
reset. This is valid additionally after deactivation of  
PORST until the internal reset phase has finished.  
See also SCU chapter for details.  
Default after power-on can be different. See also  
SCU chapter ´Reset Control Unit´ and SCU_IOCR  
register description.  
EVRWUP  
ESR1  
I
EVR Wakeup Pin  
96  
I/O  
MP /  
External System Request Reset 1  
PU1 /  
VEXT  
Default NMI function. See also SCU chapter ´Reset  
Control Unit´ and SCU_IOCR register description.  
EVRWUP  
I
EVR Wakeup Pin  
71  
89  
91  
92  
VGATE1P  
O
VGATE1P / External Pass Device gate control for EVR13  
- /  
VEXT  
TMS  
I
A2 /  
PD /  
VDDP3  
JTAG Module State Machine Control Input  
Device Access Port Line 1  
DAP1  
I/O  
TRST  
I
A2 /  
JTAG Module Reset/Enable Input  
PD /  
VDDP3  
TCK  
I
I
A2 /  
PD /  
VDDP3  
JTAG Module Clock Input  
Device Access Port Line 0  
DAP0  
81  
82  
XTAL1  
XTAL2  
I
XTAL1 /  
- / -  
Main Oscillator/PLL/Clock Generator Input  
Main Oscillator/PLL/Clock Generator Output  
O
XTAL2 /  
- / -  
Table 2-17 Supply  
Pin  
42  
Symbol  
Ctrl  
Type  
Vx  
Function  
VAREF1  
I
Positive Analog Reference Voltage 1  
41  
44  
VAGND1  
VDDM  
I
I
Vx  
Vx  
Negative Analog Reference Voltage 1  
ADC Analog Power Supply (3.3V / 5V)  
Data Sheet  
2-48  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Table 2-17 Supply (cont’d)  
Pin  
10  
Symbol  
Ctrl  
Type  
Vx  
Function  
VDD / VDDSB  
I
Emulation Device: Emulation SRAM Standby Power  
Supply (1.3V) (Emulation Device only).  
Production Device: VDD (1.3V).  
99, 58, 22 VDD  
I
I
Vx  
Vx  
Digital Core Power Supply (1.3V)  
79  
VDD  
Digital Core Power Supply (1.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (1.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
125, 78,  
59, 23  
VEXT  
I
I
I
Vx  
Vx  
Vx  
External Supply (5V / 3.3V)  
126  
83  
VDDP3  
VDDP3  
Digital Power Supply for Flash (3.3V).  
Can be also used as external 3.3V Power Supply for  
VFLEX.  
Digital Power Supply for Oscillator, LVDSH and A2  
pads (3.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (3.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
127  
136  
VDDFL3  
VFLEX  
I
I
Vx  
Vx  
Flash Power Supply (3.3V)  
Digital Power Supply for Flex Port Pads  
(5V / 3.3V)  
80  
43  
VSS  
I
I
Vx  
Vx  
Digital Ground  
VSSM  
Analog Ground for VDDM  
Legend:  
Column “Ctrl.”:  
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)  
O = Output  
O0 = Output with IOCR bit field selection PCx = 1X000B  
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)  
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)  
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)  
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)  
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)  
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)  
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)  
Column “Type”:  
LP = Pad class LP (5V/3.3V, LVTTL)  
MP = Pad class MP (5V/3.3V, LVTTL)  
MP+ = Pad class MP (5V/3.3V, LVTTL)  
A2 = Pad class A2 (3.3V, LVTTL)  
Data Sheet  
2-49  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)  
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)  
S = Pad class S (ADC overlay with General Purpose Input)  
D = Pad class D (ADC)  
PU = with pull-up device connected during reset (PORST = 0)  
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)  
PD = with pull-down device connected during reset (PORST = 0)  
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)  
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode  
OD = open drain during reset (PORST = 0)  
HighZ = tri-state during reset (PORST = 0)  
PORST = PORST input pad  
XTAL1 = XTAL1 input pad  
XTAL2 = XTAL2 input pad  
VGATE1P = VGATE1P  
VGATE3P = VGATE3P  
Vx = Supply (the Exposed Pad is also considered as VSS and shall be connected to ground)  
NC = These pins are reserved for future extensions and shall not be connected externally  
NC1 = These pins are not connected on package level and will not be used for future extensions  
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
2.1.2  
Emergency Stop Function  
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input  
signal (EMGSTOPA or EMGSTOPB) into a defined state:  
Input state and  
PU or High-Z depending on HWCFG[6] level latched during PORST active  
Control of the Emergency Stop function:  
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop  
Control”)  
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see  
chapter “SCU”, “Emergency Stop Control”)  
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x  
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O  
Lines”, “Emergency Stop Register”).  
The Emergency Stop function is available for all GPIO Ports with the following exceptions:  
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)  
Not available for P40.x (analoge input ANx overlayed with GPI)  
Not available for P32.0 EVR13 SMPS mode.  
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a  
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,  
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.  
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active  
during and after reset.  
3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset.  
Data Sheet  
2-50  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC264x Pin Definition and Functions:  
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)  
The Emergency Stop function can be overruled on the following GPIO Ports:  
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.  
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O  
Ports and Peripheral I/O Lines”, P00 / P01)  
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register  
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)  
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).  
No Overruling in the DXCM (Debug over can message) mode  
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI  
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode  
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI  
2.1.3  
Pull-Up/Pull-Down Reset Behavior of the Pins  
Table 2-18 List of Pull-Up/Pull-Down Reset Behavior of the Pins  
Pins  
PORST = 0  
PORST = 1  
all GPIOs  
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0  
Pull-up  
TDI, TESTMODE  
PORST1)  
Pull-down with IPORST relevant  
Pull-down with IPDLI relevant  
TRST, TCK, TMS  
ESR0  
Pull-down  
The open-drain driver is used to  
drive low.2)  
Pull-up3)  
ESR1  
TDO  
Pull-up3)  
Pull-up  
High-Z/Pull-up4)  
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.  
2) Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.  
3) See the SCU_IOCR register description.  
4) Depends on JTAG/DAP selection with TRST.  
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case  
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.  
Data Sheet  
2-51  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
2.2  
TC265x Pin Definition and Functions: LQFP176  
Figure 2-1 is showing the TC265x Logic Symbol for the package variant: QFP176.  
P02.0  
1
132  
131  
130  
129  
P20. 14  
P20. 13  
P20. 12  
P20. 11  
P02.1  
P02.2  
P02.3  
P02.4  
2
3
4
5
128  
127  
126  
125  
P20. 10  
P20. 9  
P20. 8  
P20. 7  
P02.5  
P02.6  
P02.7  
P02.8  
6
7
8
9
124  
123  
122  
121  
P20. 6  
VDD  
ESR0  
PORST  
V
DD/VDDSB  
P00.0  
P00.1  
P00.2  
10  
11  
12  
13  
120  
119  
118  
117  
ESR1  
P20. 3  
P20. 2 / TESTMODE  
P20. 1  
P20. 0  
P00.3  
P00.4  
P00.5  
P00.6  
14  
15  
16  
17  
116  
115  
114  
113  
P00.7  
P00.8  
P00.9  
18  
19  
20  
21  
TCK  
TRST  
P21. 7 / TDO  
TMS  
P00.10  
112  
111  
110  
109  
P00.11  
P00.12  
VDD  
VEXT  
AN49  
22  
23  
24  
25  
26  
P21. 6 / TDI  
P21. 5  
P21. 4  
TC26x  
P21. 3  
108  
107  
106  
105  
104  
P21. 2  
P21. 1  
P21. 0  
AN48  
AN47  
AN46  
AN45  
27  
28  
29  
30  
VDDP  
3
103  
102  
101  
100  
XTAL2  
XTAL1  
VSS  
AN44  
AN39  
AN38  
AN37  
31  
32  
33  
34  
VDD  
99  
98  
97  
96  
VEXT  
AN36  
AN35  
AN33  
AN32  
35  
36  
37  
38  
P22. 3  
P22. 2  
P22. 1  
95  
94  
93  
92  
P22. 0  
P23. 5  
P23. 4  
P23. 3  
P23. 2  
AN29  
AN28  
AN27  
AN26  
39  
40  
41  
42  
91  
90  
89  
AN25  
AN24  
43  
44  
P23. 1  
P23. 0  
Figure 2-2 TC265x Logic Symbol for the package variant LQFP176.  
Data Sheet  
2-52  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
2.2.1  
TC265 LQFP176 Package Variant Pin Configuration  
Table 2-19 Port 00 Functions  
Pin  
11  
Symbol  
Ctrl  
Type  
Function  
P00.0  
TIN9  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CTRAPA  
T12HRE  
INJ00  
CCU61 input  
CCU60 input  
MSC0 input  
CIFD9  
P00.0  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I/O  
I
General-purpose output  
GTM output  
TOUT9  
ASCLK3  
ATX3  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
TXDCAN1  
CAN node 1 output  
Reserved  
COUT63  
ETHMDIOA  
CCU60 output  
ETH input/output  
General-purpose input  
GTM input  
12  
P00.1  
TIN10  
LP /  
PU1 /  
VEXT  
ARX3E  
RXDCAN1D  
PSIRX0A  
SENT0B  
CC60INB  
CC60INA  
DSCIN0A  
VADCG3.11  
CIFD10  
P00.1  
ASCLIN3 input  
CAN node 1 input  
PSI5 input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 0 input A  
VADC analog input channel 11 of group 3  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT10  
ATX3  
ASCLIN3 output  
Reserved  
DSCOUT0  
DSADC channel 0 output  
Reserved  
SPC0  
SENT output  
CC60  
CCU61 output  
Data Sheet  
2-53  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
13  
Symbol  
Ctrl  
Type  
Function  
P00.2  
TIN11  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT1B  
DSDIN0A  
VADCG3.10  
CIFD11  
P00.2  
SENT input  
DSADC channel 0 input A  
VADC analog input channel 10 of group 3 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT11  
ASCLK3  
ASCLIN3 output  
Reserved  
PSITX0  
TXDCAN3  
PSI5 output  
CAN node 3 output  
Reserved  
COUT60  
CCU61 output  
14  
P00.3  
TIN12  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDCAN3A  
PSIRX1A  
PSISRXA  
SENT2B  
CC61INB  
CC61INA  
DSCIN3A  
VADCG3.9  
CIFD12  
P00.3  
CAN node 3 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 3 input A  
VADC analog input channel 9 of group 3 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT12  
ASLSO3  
ASCLIN3 output  
Reserved  
DSCOUT3  
DSADC channel 3 output  
Reserved  
SPC2  
SENT output  
CC61  
CCU61 output  
Data Sheet  
2-54  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
15  
Symbol  
Ctrl  
Type  
Function  
P00.4  
TIN13  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
REQ7  
SCU input  
SENT3B  
DSDIN3A  
DSSGNA  
VADCG3.8  
CIFD13  
SENT input  
DSADC channel 3 input A  
DSADC input  
VADC analog input channel 8 of group 3  
CIF input  
P00.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT13  
PSISTX  
TXDCAN4  
PSITX1  
PSI5-S output  
CAN node 4 output  
PSI5 output  
VADCG2BFL0  
SPC3  
VADC output  
SENT output  
COUT61  
CCU61 output  
16  
P00.5  
TIN14  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
PSIRX2A  
SENT4B  
RXDCAN4A  
CC62INB  
CC62INA  
DSCIN2A  
VADCG3.7  
CIFD14  
PSI5 input  
SENT input  
CAN node 4 input  
CCU60 input  
CCU61 input  
DSADC channel 2 input A  
VADC analog input channel 7 of group 3  
CIF input  
P00.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT14  
DSCGPWMN  
DSADC output  
Reserved  
DSCOUT2  
VADCG2BFL1  
SPC4  
DSADC channel 2 output  
VADC output  
SENT output  
CC62  
CCU61 output  
Data Sheet  
2-55  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
17  
Symbol  
Ctrl  
Type  
Function  
P00.6  
TIN15  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT5B  
SENT input  
DSDIN2A  
VADCG3.6  
CIFD15  
DSADC channel 2 input A  
VADC analog input channel 6 of group 3  
CIF input  
P00.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT15  
DSCGPWMP  
VADCG2BFL2  
PSITX2  
DSADC output  
VADC output  
PSI5 output  
VADCEMUX10  
SPC5  
VADC output  
SENT output  
COUT62  
CCU61 output  
General-purpose input  
GTM input  
18  
P00.7  
TIN16  
LP /  
PU1 /  
VEXT  
CC60INC  
CCPOS0A  
T12HRB  
T2INA  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
VADCG3.5  
CIFCLK  
P00.7  
VADC analog input channel 5 of group 3  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT16  
Reserved  
VADCG2BFL3  
VADC output  
Reserved  
VADCEMUX11  
VADC output  
Reserved  
CC60  
CCU61 output  
Data Sheet  
2-56  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
19  
Symbol  
Ctrl  
Type  
Function  
P00.8  
TIN17  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CC61INC  
CCPOS1A  
T13HRB  
T2EUDA  
VADCG3.4  
CIFVSNC  
P00.8  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
VADC analog input channel 4 of group 3  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT17  
SLSO36  
QSPI3 output  
Reserved  
Reserved  
VADCEMUX12  
VADC output  
Reserved  
CC61  
CCU61 output  
General-purpose input  
GTM input  
20  
P00.9  
TIN18  
LP /  
PU1 /  
VEXT  
CC62INC  
CCPOS2A  
T13HRC  
T12HRC  
T4EUDA  
VADCG3.3  
DSITR3F  
CIFHSNC  
P00.9  
CCU61 input  
CCU61 input  
CCU60 input  
CCU60 input  
GPT120 input  
VADC analog input channel 3 of group 3  
DSADC channel 3 input F  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT18  
SLSO37  
ARTS3  
QSPI3 output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
CC62  
CCU61 output  
Data Sheet  
2-57  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-19 Port 00 Functions (cont’d)  
Pin  
21  
Symbol  
Ctrl  
Type  
Function  
P00.10  
TIN19  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
VADCG3.2  
VADC analog input channel 2 of group 3 (MD)  
General-purpose output  
GTM output  
P00.10  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT19  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
COUT63  
CCU61 output  
General-purpose input  
GTM input  
22  
P00.11  
TIN20  
LP /  
PU1 /  
VEXT  
CTRAPA  
CCU60 input  
T12HRE  
CCU61 input  
VADCG3.1  
VADC analog input channel of group 3  
General-purpose output  
GTM output  
P00.11  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT20  
Reserved  
Reserved  
DSCOUT0  
DSADC channel 0 output  
Reserved  
Reserved  
Reserved  
23  
P00.12  
TIN21  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS3A  
ASCLIN3 input  
VADC analog input channel 0 of group 3  
General-purpose output  
GTM output  
VADCG3.0  
P00.12  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT21  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
COUT63  
CCU61 output  
Data Sheet  
2-58  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-20 Port 02 Functions  
Pin  
1
Symbol  
Ctrl  
Type  
Function  
P02.0  
TIN0  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX2G  
REQ6  
ASCLIN2 input  
SCU input  
CC60INA  
CC60INB  
CIFD0  
CCU60 input  
CCU61 input  
CIF input  
P02.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT0  
ATX2  
ASCLIN2 output  
QSPI3 output  
DSADC output  
CAN node 0 output  
ERAY output  
SLSO31  
DSCGPWMN  
TXDCAN0  
TXDA  
CC60  
CCU60 output  
2
P02.1  
TIN1  
LP / PU1 General-purpose input  
/ VEXT  
GTM input  
REQ14  
ARX2B  
RXDCAN0A  
RXDA2  
CIFD1  
P02.1  
SCU input  
ASCLIN2 input  
CAN node 0 input  
ERAY input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT1  
Reserved  
SLSO32  
DSCGPWMP  
QSPI3 output  
DSADC output  
Reserved  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
2-59  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-20 Port 02 Functions (cont’d)  
Pin  
3
Symbol  
Ctrl  
Type  
Function  
P02.2  
TIN2  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CC61INA  
CC61INB  
CIFD2  
CCU60 input  
CCU61 input  
CIF input  
P02.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT2  
ATX1  
ASCLIN1 output  
QSPI3 output  
PSI5 output  
SLSO33  
PSITX0  
TXDCAN2  
TXDB  
CAN node 2 output  
ERAY output  
CCU60 output  
General-purpose input  
GTM input  
CC61  
4
P02.3  
TIN3  
LP /  
PU1 /  
VEXT  
ARX1G  
RXDCAN2B  
RXDB2  
PSIRX0B  
SDI11  
CIFD3  
P02.3  
ASCLIN1 input  
CAN node 2 input  
ERAY input  
PSI5 input  
MSC1 input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT3  
ASLSO2  
SLSO34  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
Reserved  
COUT61  
CCU60 output  
Data Sheet  
2-60  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-20 Port 02 Functions (cont’d)  
Pin  
5
Symbol  
Ctrl  
Type  
Function  
P02.4  
TIN4  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3A  
ECTT1  
QSPI3 input  
TTCAN input  
CAN node 0 input  
CCU60 input  
CCU61 input  
I2C0 input  
RXDCAN0D  
CC62INA  
CC62INB  
SDA0A  
CIFD4  
CIF input  
P02.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT4  
ASCLK2  
SLSO30  
PSISCLK  
SDA0  
ASCLIN2 output  
QSPI3 output  
PSI5-S output  
I2C0 output  
TXENA  
CC62  
ERAY output  
CCU60 output  
General-purpose input  
GTM input  
6
P02.5  
TIN5  
MP+ /  
PU1 /  
VEXT  
MRST3A  
ECTT2  
PSIRX1B  
PSISRXB  
SENT3C  
SCL0A  
CIFD5  
QSPI3 input  
TTCAN input  
PSI5 input  
PSI5-S input  
SENT input  
I2C0 input  
CIF input  
P02.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT5  
TXDCAN0  
MRST3  
CAN node 0 output  
QSPI3 output  
Reserved  
SCL0  
I2C0 output  
TXENB  
COUT62  
ERAY output  
CCU60 output  
Data Sheet  
2-61  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-20 Port 02 Functions (cont’d)  
Pin  
7
Symbol  
Ctrl  
Type  
Function  
P02.6  
TIN6  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MTSR3A  
SENT2C  
CC60INC  
CCPOS0A  
T12HRB  
T3INA  
QSPI3 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
CIFD6  
P02.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT6  
PSISTX  
MTSR3  
PSITX1  
VADCEMUX00  
PSI5-S output  
QSPI3 output  
PSI5 output  
VADC output  
Reserved  
CC60  
CCU60 output  
General-purpose input  
GTM input  
8
P02.7  
TIN7  
MP /  
PU1 /  
VEXT  
SCLK3A  
PSIRX2B  
SENT1C  
CC61INC  
CCPOS1A  
T13HRB  
T3EUDA  
CIFD7  
QSPI3 input  
PSI5 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
DSCIN3B  
P02.7  
DSADC channel 3 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT7  
Reserved  
SCLK3  
QSPI3 output  
DSADC channel 3 output  
VADC output  
SENT output  
CCU60 output  
DSCOUT3  
VADCEMUX01  
SPC1  
CC61  
Data Sheet  
2-62  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-20 Port 02 Functions (cont’d)  
Pin  
9
Symbol  
Ctrl  
Type  
Function  
P02.8  
TIN8  
I
LP / PU1 General-purpose input  
/
VEXT  
GTM input  
SENT0C  
CC62INC  
CCPOS2A  
T12HRC  
T13HRC  
T4INA  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
CCU61 input  
GPT120 input  
CIF input  
CIFD8  
DSDIN3B  
DSITR3E  
P02.8  
DSADC channel 3 input B  
DSADC channel 3 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT8  
SLSO35  
QSPI3 output  
Reserved  
PSITX2  
VADCEMUX02  
ETHMDC  
CC62  
PSI5 output  
VADC output  
ETH output  
CCU60 output  
Table 2-21 Port 10 Functions  
Pin  
168  
Symbol  
Ctrl  
Type  
Function  
P10.0  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN102  
T6EUDB  
GPT120 input  
General-purpose output  
GTM output  
P10.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT102  
Reserved  
SLSO110  
QSPI1 output  
Reserved  
VADCG3BFL0  
VADC output  
Reserved  
Reserved  
Data Sheet  
2-63  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-21 Port 10 Functions (cont’d)  
Pin  
169  
Symbol  
Ctrl  
Type  
Function  
P10.1  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN103  
MRST1A  
T5EUDB  
P10.1  
QSPI1 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT103  
MTSR1  
MRST1  
EN01  
QSPI1 output  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG3BFL1  
END03  
170  
P10.2  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN104  
SCLK1A  
T6INB  
QSPI1 input  
GPT120 input  
SCU input  
REQ2  
RXDCAN2E  
SDI01  
CAN node 2 input  
MSC0 input  
P10.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT104  
Reserved  
SCLK1  
EN00  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG3BFL2  
END02  
Data Sheet  
2-64  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-21 Port 10 Functions (cont’d)  
Pin  
171  
Symbol  
Ctrl  
Type  
Function  
P10.3  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN105  
MTSR1A  
REQ3  
QSPI1 input  
SCU input  
T5INB  
GPT120 input  
General-purpose output  
GTM output  
P10.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT105  
VADCG3BFL3  
MTSR1  
EN00  
VADC output  
QSPI1 output  
MSC0 output  
MSC0 output  
CAN node 2 output  
Reserved  
END02  
TXDCAN2  
172  
P10.4  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN106  
MTSR1C  
CCPOS0C  
T3INB  
P10.4  
QSPI1 input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT106  
Reserved  
SLSO18  
MTSR1  
EN00  
QSPI1 output  
QSPI1 output  
MSC0 output  
MSC0 output  
Reserved  
END02  
Data Sheet  
2-65  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-21 Port 10 Functions (cont’d)  
Pin  
173  
Symbol  
Ctrl  
Type  
Function  
P10.5  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN107  
HWCFG4  
RXDCAN4B  
INJ01  
SCU input  
CAN node 4 input  
MSC0 input  
P10.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT107  
ATX2  
ASCLIN2 output  
QSPI3 output  
QSPI1 output  
GPT120 output  
ASCLIN2 output  
Reserved  
SLSO38  
SLSO19  
T6OUT  
ASLSO2  
174  
P10.6  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN108  
ARX2D  
ASCLIN2 input  
QSPI3 input  
MTSR3B  
HWCFG5  
P10.6  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT108  
ASCLK2  
MTSR3  
ASCLIN2 output  
QSPI3 output  
GPT120 output  
CAN node 4 output  
QSPI1 output  
VADC output  
T3OUT  
TXDCAN4  
MRST1  
VADCG3BFL0  
Data Sheet  
2-66  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-21 Port 10 Functions (cont’d)  
Pin  
175  
Symbol  
Ctrl  
Type  
Function  
P10.7  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN109  
ACTS2A  
MRST3B  
REQ4  
CCPOS1C  
T3EUDB  
P10.7  
ASCLIN2 input  
QSPI3 input  
SCU input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT109  
Reserved  
MRST3  
VADCG3BFL1  
QSPI3 output  
VADC output  
Reserved  
Reserved  
Reserved  
176  
P10.8  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN110  
SCLK3B  
REQ5  
CCPOS2C  
T4INB  
P10.8  
TOUT110  
ARTS2  
SCLK3  
QSPI3 input  
SCU input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-67  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-22 Port 11 Functions  
Pin  
160  
Symbol  
Ctrl  
Type  
Function  
P11.2  
TIN95  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
P11.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT95  
END03  
SLSO05  
SLSO15  
EN01  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ETH output  
ETHTXD1  
COUT63  
CCU60 output  
General-purpose input  
GTM input  
161  
P11.3  
TIN96  
MPR /  
PU1 /  
VFLEX  
MRST1B  
SDI03  
P11.3  
QSPI1 input  
MSC0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT96  
Reserved  
MRST1  
TXDA  
QSPI1 output  
ERAY output  
Reserved  
ETHTXD0  
COUT62  
ETH output  
CCU60 output  
General-purpose input  
GTM input  
162  
P11.6  
TIN97  
MPR /  
PU1 /  
VFLEX  
SCLK1B  
P11.6  
QSPI1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT97  
TXENB  
SCLK1  
ERAY output  
QSPI1 output  
ERAY output  
MSC0 output  
ETH output  
TXENA  
FCLP0  
ETHTXEN  
COUT61  
CCU60 output  
Data Sheet  
2-68  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-22 Port 11 Functions (cont’d)  
Pin  
163  
Symbol  
Ctrl  
Type  
Function  
P11.9  
TIN98  
I
MP+ /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
MTSR1B  
RXDA1  
ETHRXD1  
P11.9  
TOUT98  
QSPI1 input  
ERAY input  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
MTSR1  
QSPI1 output  
Reserved  
SOP0  
MSC0 output  
Reserved  
COUT60  
CCU60 output  
General-purpose input  
GTM input  
165  
P11.10  
TIN99  
LP /  
PU1 /  
VFLEX  
REQ12  
ARX1E  
SLSI1A  
RXDCAN3D  
RXDB1  
ETHRXD0  
SDI00  
P11.10  
TOUT99  
SCU input  
ASCLIN1 input  
QSPI1 input  
CAN node 3 input  
ERAY input  
ETH input  
MSC0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SLSO03  
SLSO13  
QSPI0 output  
QSPI1 output  
Reserved  
Reserved  
CC62  
CCU60 output  
Data Sheet  
2-69  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-22 Port 11 Functions (cont’d)  
Pin  
166  
Symbol  
Ctrl  
Type  
Function  
P11.11  
TIN100  
I
MP+ /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
ETHCRSDVA  
P11.11  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT100  
END02  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ERAY output  
CCU60 output  
General-purpose input  
GTM input  
SLSO04  
SLSO14  
EN00  
TXENB  
CC61  
167  
P11.12  
TIN101  
MPR /  
PU1 /  
VFLEX  
ETHREFCLK  
ETHTXCLKB  
ETH input  
ETH input  
(Not for productive purposes)  
ETHRXCLKA  
ETH input  
(Not for productive purposes)  
P11.12  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT101  
ATX1  
ASCLIN1 output  
GTM output  
GTMCLK2  
TXDB  
ERAY output  
TXDCAN3  
EXTCLK1  
CC60  
CAN node 3 output  
SCU output  
CCU60 output  
Table 2-23 Port 13 Functions  
Pin  
156  
Symbol  
Ctrl  
Type  
Function  
P13.0  
TIN91  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P13.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT91  
END03  
SCLK2N  
EN01  
MSC0 output  
QSPI2 output (LVDS)  
MSC0 output  
FCLN0  
FCLND0  
TXDCAN4  
MSC0 output (LVDS)  
MSC0 output (LVDS)  
CAN node 4 output  
Data Sheet  
2-70  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-23 Port 13 Functions (cont’d)  
Pin  
157  
Symbol  
Ctrl  
Type  
Function  
P13.1  
TIN92  
I
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCL0B  
RXDCAN4C  
P13.1  
TOUT92  
I2C0 input  
CAN node 4 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Reserved  
SCLK2P  
QSPI2 output (LVDS)  
Reserved  
FCLP0  
SCL0  
MSC0 output (LVDS)  
I2C0 output  
Reserved  
158  
P13.2  
TIN93  
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CAPINA  
SDA0B  
P13.2  
GPT120 input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT93  
Reserved  
MTSR2N  
FCLP0  
SON0  
QSPI2 output (LVDS)  
MSC0 output  
MSC0 output (LVDS)  
I2C0 output  
SDA0  
SOND0  
MSC0 output (LVDS)  
General-purpose input  
GTM input  
159  
P13.3  
TIN94  
LVDSM_P /  
PU1 /  
VEXT  
P13.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT94  
Reserved  
MTSR2P  
QSPI2 output (LVDS)  
Reserved  
SOP0  
MSC0 output (LVDS)  
Reserved  
Reserved  
Data Sheet  
2-71  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-24 Port 14 Functions  
Pin  
142  
Symbol  
Ctrl  
Type  
Function  
P14.0  
TIN80  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P14.0  
O0  
O1  
O2  
General-purpose output  
GTM output  
TOUT80  
ATX0  
ASCLIN0 output  
Recommended as Boot loader pin.  
TXDA  
O3  
O4  
O5  
ERAY output  
ERAY output  
TXDB  
TXDCAN1  
CAN node 1 output  
Used for single pin DAP (SPD) function.  
ASCLK0  
COUT62  
O6  
O7  
I
ASCLIN0 output  
CCU60 output  
General-purpose input  
GTM input  
143  
P14.1  
TIN81  
MP /  
PU1 /  
VEXT  
REQ15  
SCU input  
ARX0A  
ASCLIN0 input  
RXDCAN1B  
CAN node 1 input  
Used for single pin DAP (SPD) function.  
RXDA3  
RXDB3  
EVRWUPA  
P14.1  
ERAY input  
ERAY input  
SCU input  
O0  
O1  
O2  
General-purpose output  
GTM output  
TOUT81  
ATX0  
ASCLIN0 output  
Recommended as Boot loader pin.  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
CCU60 output  
COUT63  
Data Sheet  
2-72  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-24 Port 14 Functions (cont’d)  
Pin  
144  
Symbol  
Ctrl  
Type  
Function  
P14.2  
TIN82  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG2  
EVR13  
SCU input  
Latched at cold power on reset to decide EVR13  
activation.  
P14.2  
TOUT82  
ATX2  
SLSO21  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI2 output  
Reserved  
Reserved  
ASCLK2  
ASCLIN2 output  
Reserved  
145  
P14.3  
TIN83  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX2A  
REQ10  
HWCFG3_BMI  
SDI02  
ASCLIN2 input  
SCU input  
SCU input  
MSC0 input  
P14.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT83  
ATX2  
ASCLIN2 output  
QSPI2 output  
ASCLIN1 output  
ASCLIN3 output  
Reserved  
SLSO23  
ASLSO1  
ASLSO3  
Reserved  
Data Sheet  
2-73  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-24 Port 14 Functions (cont’d)  
Pin  
146  
Symbol  
Ctrl  
Type  
Function  
P14.4  
TIN84  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG6  
SCU input  
Latched at cold power on reset to decide default pad  
reset state (PU or HighZ).  
P14.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT84  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
147  
P14.5  
TIN85  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG1  
EVR33  
SCU input  
Latched at cold power on reset to decide EVR33  
activation.  
P14.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT85  
Reserved  
Reserved  
Reserved  
TXDB  
ERAY output  
Reserved  
148  
P14.6  
TIN86  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG0  
DCLDO  
SCU input  
If EVR13 active, latched at cold power on reset to  
decide between LDO and SMPS mode.  
P14.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT86  
SLSO22  
QSPI2 output  
Reserved  
Reserved  
TXENB  
ERAY output  
Reserved  
Data Sheet  
2-74  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-24 Port 14 Functions (cont’d)  
Pin  
149  
Symbol  
Ctrl  
Type  
Function  
P14.7  
TIN87  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDB0  
ERAY input  
P14.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT87  
ARTS0  
ASCLIN0 output  
QSPI2 output  
Reserved  
SLSO24  
Reserved  
Reserved  
Reserved  
150  
P14.8  
TIN88  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX1D  
ASCLIN1 input  
CAN node 2 input  
ERAY input  
RXDCAN2D  
RXDA0  
P14.8  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT88  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
151  
P14.9  
TIN89  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS0A  
P14.9  
TOUT89  
END03  
EN01  
ASCLIN0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
MSC0 output  
MSC0 output  
Reserved  
TXENB  
TXENA  
ERAY output  
ERAY output  
Reserved  
Data Sheet  
2-75  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-24 Port 14 Functions (cont’d)  
Pin  
152  
Symbol  
Ctrl  
Type  
Function  
P14.10  
TIN90  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P14.10  
TOUT90  
END02  
EN00  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
MSC0 output  
MSC0 output  
ATX1  
ASCLIN1 output  
CAN node 2 output  
ERAY output  
TXDCAN2  
TXDA  
Reserved  
Table 2-25 Port 15 Functions  
Pin  
133  
Symbol  
Ctrl  
Type  
Function  
P15.0  
TIN71  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P15.0  
TOUT71  
ATX1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
Reserved  
SLSO013  
TXDCAN2  
ASCLK1  
CAN node 2 output  
ASCLIN1 output  
Reserved  
134  
P15.1  
TIN72  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
REQ16  
SCU input  
ARX1A  
ASCLIN1 input  
CAN node 2 input  
QSPI2 input  
RXDCAN2A  
SLSI2B  
EVRWUPB  
SCU input  
P15.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT72  
ATX1  
ASCLIN1 output  
QSPI2 output  
Reserved  
SLSO25  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-76  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-25 Port 15 Functions (cont’d)  
Pin  
135  
Symbol  
Ctrl  
Type  
Function  
P15.2  
TIN73  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI2A  
MRST2E  
HSIC2INA  
P15.2  
QSPI2 input  
QSPI2 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT73  
ATX0  
ASCLIN0 output  
QSPI2 output  
Reserved  
SLSO20  
TXDCAN1  
ASCLK0  
CAN node 1 output  
ASCLIN0 output  
Reserved  
136  
P15.3  
TIN74  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX0B  
SCLK2A  
RXDCAN1A  
HSIC2INB  
P15.3  
ASCLIN0 input  
QSPI2 input  
CAN node 1 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT74  
ATX0  
ASCLIN0 output  
QSPI2 output  
MSC0 output  
MSC0 output  
Reserved  
SCLK2  
END03  
EN01  
Reserved  
Data Sheet  
2-77  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-25 Port 15 Functions (cont’d)  
Pin  
137  
Symbol  
Ctrl  
Type  
Function  
P15.4  
TIN75  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MRST2A  
REQ0  
SCL0C  
P15.4  
TOUT75  
ATX1  
MRST2  
QSPI2 input  
SCU input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI2 output  
Reserved  
Reserved  
SCL0  
CC62  
I2C0 output  
CCU60 output  
General-purpose input  
GTM input  
138  
P15.5  
TIN76  
MP /  
PU1 /  
VEXT  
ARX1B  
MTSR2A  
SDA0C  
REQ13  
P15.5  
ASCLIN1 input  
QSPI2 input  
I2C0 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT76  
ATX1  
ASCLIN1 output  
QSPI2 output  
MSC0 output  
MSC0 output  
I2C0 output  
MTSR2  
END02  
EN00  
SDA0  
CC61  
CCU60 output  
General-purpose input  
GTM input  
139  
P15.6  
TIN77  
MP /  
PU1 /  
VEXT  
MTSR2B  
P15.6  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT77  
ATX3  
ASCLIN3 output  
QSPI2 output  
Reserved  
MTSR2  
SCLK2  
ASCLK3  
CC60  
QSPI2 output  
ASCLIN3 output  
CCU60 output  
Data Sheet  
2-78  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-25 Port 15 Functions (cont’d)  
Pin  
140  
Symbol  
Ctrl  
Type  
Function  
P15.7  
TIN78  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX3A  
MRST2B  
P15.7  
TOUT78  
ATX3  
MRST2  
ASCLIN3 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN3 output  
QSPI2 output  
Reserved  
Reserved  
Reserved  
COUT60  
CCU60 output  
General-purpose input  
GTM input  
141  
P15.8  
TIN79  
MP /  
PU1 /  
VEXT  
SCLK2B  
REQ1  
P15.8  
TOUT79  
QSPI2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK2  
QSPI2 output  
Reserved  
Reserved  
ASCLK3  
COUT61  
ASCLIN3 output  
CCU60 output  
Data Sheet  
2-79  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-26 Port 20 Functions  
Pin  
116  
Symbol  
Ctrl  
Type  
Function  
P20.0  
TIN59  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDCAN3C  
T6EUDA  
REQ9  
SYSCLK  
TGI0  
CAN node 3 input  
GPT120 input  
SCU input  
HSCT input  
OCDS input  
P20.0  
TOUT59  
ATX3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
ASCLK3  
SYSCLK  
HSCT output  
Reserved  
Reserved  
TGO0  
HWOU  
T
OCDS; ENx  
117  
P20.1  
TIN60  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TGI1  
OCDS input  
General-purpose output  
GTM output  
Reserved  
P20.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT60  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TGO1  
HWOU  
T
OCDS; ENx  
Data Sheet  
2-80  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-26 Port 20 Functions (cont’d)  
Pin  
118  
Symbol  
Ctrl  
Type  
Function  
P20.2  
I
LP /  
General-purpose input  
PU /  
VEXT  
This pin is latched at power on reset release to enter  
test mode.  
TESTMODE  
OCDS input  
P20.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
General-purpose input  
GTM input  
119  
P20.3  
TIN61  
T6INA  
ARX3C  
P20.3  
TOUT61  
ATX3  
LP /  
PU1 /  
VEXT  
GPT120 input  
ASCLIN3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN3 output  
SLSO09  
SLSO29  
TXDCAN3  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
Reserved  
Reserved  
124  
P20.6  
TIN62  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P20.6  
TOUT62  
ARTS1  
SLSO08  
SLSO28  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-81  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-26 Port 20 Functions (cont’d)  
Pin  
125  
Symbol  
Ctrl  
Type  
Function  
P20.7  
TIN63  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS1A  
ASCLIN1 input  
CAN node 0 input  
General-purpose output  
GTM output  
RXDCAN0B  
P20.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT63  
Reserved  
Reserved  
Reserved  
Reserved  
WDT1LCK  
COUT63  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
126  
P20.8  
TIN64  
MP /  
PU1 /  
VEXT  
P20.8  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT64  
ASLSO1  
SLSO00  
SLSO10  
TXDCAN0  
WDT0LCK  
CC60  
ASCLIN1 output  
QSPI0 output  
QSPI1 output  
CAN node 0 output  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
127  
P20.9  
TIN65  
LP /  
PU1 /  
VEXT  
ARX1C  
RXDCAN3E  
REQ11  
SLSI0B  
P20.9  
ASCLIN1 input  
CAN node 3 input  
SCU input  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT65  
Reserved  
SLSO01  
SLSO11  
QSPI0 output  
QSPI1 output  
Reserved  
WDTSLCK  
CC61  
SCU output  
CCU61 output  
Data Sheet  
2-82  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-26 Port 20 Functions (cont’d)  
Pin  
128  
Symbol  
Ctrl  
Type  
Function  
P20.10  
TIN66  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P20.10  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT66  
ATX1  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
ASCLIN1 output  
CCU61 output  
General-purpose input  
GTM input  
SLSO06  
SLSO27  
TXDCAN3  
ASCLK1  
CC62  
129  
P20.11  
TIN67  
MP /  
PU1 /  
VEXT  
SCLK0A  
QSPI0 input  
P20.11  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT67  
Reserved  
SCLK0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
COUT60  
CCU61 output  
General-purpose input  
GTM input  
130  
P20.12  
TIN68  
MP /  
PU1 /  
VEXT  
MRST0A  
P20.12  
TOUT68  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MRST0  
MTSR0  
QSPI0 output  
QSPI0 output  
Reserved  
Reserved  
COUT61  
CCU61 output  
Data Sheet  
2-83  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-26 Port 20 Functions (cont’d)  
Pin  
131  
Symbol  
Ctrl  
Type  
Function  
P20.13  
TIN69  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI0A  
P20.13  
TOUT69  
QSPI0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Reserved  
SLSO02  
SLSO12  
SCLK0  
QSPI0 output  
QSPI1 output  
QSPI0 output  
Reserved  
COUT62  
CCU61 output  
General-purpose input  
GTM input  
132  
P20.14  
TIN70  
MP /  
PU1 /  
VEXT  
MTSR0A  
QSPI0 input  
General-purpose output  
GTM output  
P20.14  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT70  
Reserved  
MTSR0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
Reserved  
Table 2-27 Port 21 Functions  
Symbol  
Ctrl  
Type  
Pin  
105  
Function  
P21.0  
TIN51  
I
A2 /  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
P21.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT51  
Reserved  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
Data Sheet  
2-84  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-27 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
106  
Function  
P21.1  
TIN52  
A2 /  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
ETHMDIOB  
ETH input  
(Not for production purposes)  
P21.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
General-purpose output  
GTM output  
Reserved  
TOUT52  
Reserved  
Reserved  
Reserved  
ETHMDIO  
ETH output  
(Not for production purposes)  
O7  
I
Reserved  
107  
P21.2  
TIN53  
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
MRST2CN  
MRST3FN  
EMGSTOPB  
RXDN  
P21.2  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
SCU input  
HSCT input (LVDS)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT53  
ASLSO3  
ASCLIN3 output  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
Reserved  
Data Sheet  
2-85  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-27 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
108  
Function  
P21.3  
TIN54  
LVDSH_P/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
MRST2CP  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
HSCT input (LVDS)  
General-purpose output  
GTM output  
MRST3FP  
RXDP  
P21.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT54  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ETHMDIOD  
HWOU  
T
ETH input/output  
109  
P21.4  
TIN55  
I
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
P21.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O
General-purpose output  
GTM output  
TOUT55  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDN  
HSCT output (LVDS)  
General-purpose input  
GTM input  
110  
P21.5  
TIN56  
I
LVDSH_P/  
PU1 /  
VDDP3  
P21.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O
General-purpose output  
GTM output  
TOUT56  
ASCLK3  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDP  
HSCT output (LVDS)  
Data Sheet  
2-86  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-27 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
1111)  
Function  
P21.6  
TIN57  
A2 /  
PU /  
VDDP3  
General-purpose input  
GTM input  
ARX3F  
TGI2  
TDI  
ASCLIN3 input  
OCDS input  
OCDS (JTAG) input  
GPT120 input  
General-purpose output  
GTM output  
T5EUDA  
P21.6  
TOUT57  
ASLSO3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
Reserved  
Reserved  
SYSCLK  
HSCT output  
Reserved  
T3OUT  
TGO2  
GPT120 output  
OCDS; ENx  
HWOU  
T
Data Sheet  
2-87  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-27 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
113  
Function  
P21.7  
TIN58  
A2 /  
PU /  
VDDP3  
General-purpose input  
GTM input  
DAP2  
OCDS (3-Pin DAP) input  
In the 3-Pin DAP mode this pin is used as DAP2.  
In the 2-PIN DAP mode this pin is used as P21.7  
and controlled by the related port control logic.  
TGI3  
ETHRXERB  
T5INA  
P21.7  
TOUT58  
ATX3  
ASCLK3  
OCDS input  
ETH input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
T6OUT  
TGO3  
TDO  
GPT120 output  
OCDS; ENx  
HWOU  
T
OCDS (JTAG); ENx  
The JTAG TDO function is overlayed with P21.7  
via a double bond.  
In JTAG mode this pin is used as TDO, after  
power-on reset it is HighZ.  
DAP2  
OCDS (DAP2); ENx  
In the 3-Pin DAP mode this pin is used as DAP2.  
1) For an Emulation Device in a non Fusion Quad package this pin is used as VDDPSB (3.3V)  
Table 2-28 Port 22 Functions  
Pin  
95  
Symbol  
Ctrl  
Type  
Function  
P22.0  
TIN47  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MTSR3E  
P22.0  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT47  
Reserved  
MTSR3  
SCLK3N  
FCLN1  
FCLND1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Data Sheet  
2-88  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-28 Port 22 Functions (cont’d)  
Pin  
96  
Symbol  
Ctrl  
Type  
Function  
P22.1  
TIN48  
I
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MRST3E  
P22.1  
TOUT48  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
MRST3  
SCLK3P  
FCLP1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Reserved  
97  
P22.2  
TIN49  
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3D  
P22.2  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT49  
Reserved  
SLSO312  
MTSR3N  
SON1  
SOND1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
98  
P22.3  
TIN50  
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCLK3E  
P22.3  
TOUT50  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK3  
MTSR3P  
SOP1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Reserved  
Data Sheet  
2-89  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-29 Port 23 Functions  
Pin  
89  
Symbol  
Ctrl  
Type  
Function  
P23.0  
TIN41  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P23.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT41  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
90  
P23.1  
TIN42  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SDI10  
P23.1  
MSC1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
GTM output  
Reserved  
TOUT42  
ARTS1  
SLSO313  
GTMCLK0  
EXTCLK0  
SCU output  
Reserved  
91  
P23.2  
TIN43  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P23.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT43  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-90  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-29 Port 23 Functions (cont’d)  
Pin  
92  
Symbol  
Ctrl  
Type  
Function  
P23.3  
TIN44  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
INJ10  
MSC1 input  
P23.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT44  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
93  
P23.4  
TIN45  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P23.4  
TOUT45  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
SLSO35  
END12  
EN10  
QSPI3 output  
MSC1 output  
MSC1 output  
Reserved  
Reserved  
94  
P23.5  
TIN46  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P23.5  
TOUT46  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SLSO34  
END13  
EN11  
QSPI3 output  
MSC1 output  
MSC1 output  
Reserved  
Reserved  
Data Sheet  
2-91  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-30 Port 32 Functions  
Pin  
84  
Symbol  
Ctrl  
Type  
Function  
P32.0  
TIN36  
I
LP /  
PX/  
VEXT  
General-purpose input  
GTM input  
FDEST  
PMU input  
VGATE1N  
SMPS mode: analog output. External Pass Device  
gate control for EVR13  
P32.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT36  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
86  
P32.2  
TIN38  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX3D  
ASCLIN3 input  
CAN node 3 input  
General-purpose output  
GTM output  
RXDCAN3B  
P32.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT38  
ATX3  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
DCDCSYNC  
SCU output  
Reserved  
87  
P32.3  
TIN39  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P32.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT39  
ATX3  
ASCLIN3 output  
Reserved  
ASCLK3  
ASCLIN3 output  
CAN node 3 output  
Reserved  
TXDCAN3  
Reserved  
Data Sheet  
2-92  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-30 Port 32 Functions (cont’d)  
Pin  
88  
Symbol  
Ctrl  
Type  
Function  
P32.4  
TIN40  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS1B  
SDI12  
ASCLIN1 input  
MSC1 input  
P32.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT40  
Reserved  
END12  
GTMCLK1  
EN10  
MSC1 output  
GTM output  
MSC1 output  
SCU output  
EXTCLK1  
COUT63  
CCU60 output  
Table 2-31 Port 33 Functions  
Pin  
70  
Symbol  
Ctrl  
Type  
Function  
P33.0  
TIN22  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
DSITR0E  
DSADC channel 0 input E  
General-purpose output  
GTM output  
P33.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT22  
Reserved  
Reserved  
Reserved  
Reserved  
VADCG1BFL0  
VADC output  
Reserved  
71  
P33.1  
TIN23  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
PSIRX0C  
DSCIN2B  
P33.1  
PSI5 input  
DSADC channel 2 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT23  
ASLSO3  
ASCLIN3 output  
Reserved  
DSCOUT2  
VADCEMUX02  
VADCG1BFL1  
DSADC channel 2 output  
VADC output  
VADC output  
Reserved  
Data Sheet  
2-93  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-31 Port 33 Functions (cont’d)  
Pin  
72  
Symbol  
Ctrl  
Type  
Function  
P33.2  
TIN24  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
DSDIN2B  
DSITR2E  
P33.2  
DSADC channel 2 input B  
DSADC channel 2 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT24  
ASCLK3  
ASCLIN3 output  
Reserved  
PSITX0  
VADCEMUX01  
VADCG1BFL2  
PSI5 output  
VADC output  
VADC output  
Reserved  
73  
P33.3  
TIN25  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
PSIRX1C  
PSI5 input  
P33.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT25  
Reserved  
Reserved  
Reserved  
VADCEMUX00  
VADCG1BFL3  
VADC output  
VADC output  
Reserved  
74  
P33.4  
TIN26  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CTRAPC  
DSITR0F  
P33.4  
CCU61 input  
DSADC channel 0 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT26  
ARTS2  
ASCLIN2 output  
Reserved  
PSITX1  
VADCEMUX12  
VADCG0BFL0  
PSI5 output  
VADC output  
VADC output  
Reserved  
Data Sheet  
2-94  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-31 Port 33 Functions (cont’d)  
Pin  
75  
Symbol  
Ctrl  
Type  
Function  
P33.5  
TIN27  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS2B  
PSIRX2C  
PSISRXC  
SENT5C  
CCPOS2C  
T4EUDB  
DSCIN0B  
P33.5  
ASCLIN2 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT27  
SLSO07  
SLSO17  
DSCOUT0  
VADCEMUX11  
VADCG0BFL1  
QSPI0 output  
QSPI1 output  
DSADC channel 0 output  
VADC output  
VADC output  
Reserved  
76  
P33.6  
TIN28  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT4C  
CCPOS1C  
T2EUDB  
DSDIN0B  
DSITR2F  
P33.6  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
DSADC channel 2 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT28  
ASLSO2  
ASCLIN2 output  
Reserved  
PSITX2  
PSI5 output  
VADCEMUX10  
VADCG0BFL2  
PSISTX  
VADC output  
VADC output  
PSI5-S output  
Data Sheet  
2-95  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-31 Port 33 Functions (cont’d)  
Pin  
77  
Symbol  
Ctrl  
Type  
Function  
P33.7  
TIN29  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDCAN0E  
REQ8  
CAN node 0 input  
SCU input  
CCPOS0C  
T2INB  
CCU61 input  
GPT120 input  
General-purpose output  
GTM output  
P33.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT29  
ASCLK2  
SLSO37  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
VADCG0BFL3  
VADC output  
Reserved  
78  
P33.8  
TIN30  
MP /  
HighZ/  
VEXT  
General-purpose input  
GTM input  
ARX2E  
EMGSTOPA  
P33.8  
ASCLIN2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT30  
ATX2  
ASCLIN2 output  
QSPI3 output  
Reserved  
SLSO32  
TXDCAN0  
CAN node 0 output  
Reserved  
COUT62  
SMUFSP  
CCU61 output  
SMU  
HWOU  
T
79  
P33.9  
TIN31  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HSIC3INA  
P33.9  
TOUT31  
ATX2  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI3 output  
ASCLIN2 output  
Reserved  
SLSO31  
ASCLK2  
Reserved  
CC62  
CCU61 output  
Data Sheet  
2-96  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-31 Port 33 Functions (cont’d)  
Pin  
80  
Symbol  
Ctrl  
Type  
Function  
P33.10  
TIN32  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3C  
HSIC3INB  
P33.10  
QSPI3 input  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT32  
SLSO16  
SLSO311  
ASLSO1  
PSISCLK  
QSPI1 output  
QSPI3 output  
ASCLIN1 output  
PSI5-S output  
Reserved  
COUT61  
CCU61 output  
General-purpose input  
GTM input  
81  
P33.11  
TIN33  
MP /  
PU1 /  
VEXT  
SCLK3D  
P33.11  
TOUT33  
ASCLK1  
SCLK3  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
Reserved  
Reserved  
DSCGPWMN  
CC61  
DSADC output  
CCU61 output  
General-purpose input  
GTM input  
82  
P33.12  
TIN34  
MP /  
PU1 /  
VEXT  
MTSR3D  
P33.12  
TOUT34  
ATX1  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
ASCLIN1 output  
Reserved  
MTSR3  
ASCLK1  
DSCGPWMP  
COUT60  
DSADC output  
CCU61 output  
Data Sheet  
2-97  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-31 Port 33 Functions (cont’d)  
Pin  
83  
Symbol  
Ctrl  
Type  
Function  
P33.13  
TIN35  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX1F  
MRST3D  
DSSGNB  
INJ11  
ASCLIN1 input  
QSPI3 input  
DSADC input  
MSC1 input  
P33.13  
TOUT35  
ATX1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
QSPI2 output  
Reserved  
MRST3  
SLSO26  
DCDCSYNC  
CC60  
SCU output  
CCU61 output  
Table 2-32 Port 40 Functions  
Pin  
44  
Symbol  
Ctrl  
Type  
Function  
P40.0  
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 8 of group 1  
CCU60 input  
VADCG1.8  
CCPOS0D  
SENT0A  
SENT input  
43  
42  
41  
35  
P40.1  
I
I
I
I
S /  
HighZ /  
VDDM  
General-purpose inpu.t  
VADC analog input channel 9 of group 1 (MD)  
CCU60 input  
VADCG1.9  
CCPOS1B  
SENT1A  
SENT input  
P40.2  
S /  
HighZ /  
VDDM  
General-purpose inpu.t  
VADC analog input channel 10 of group 1 (MD)  
CCU60 input  
VADCG1.10  
CCPOS1D  
SENT2A  
SENT input  
P40.3  
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 11 of group 1  
CCU60 input  
VADCG1.11  
CCPOS2B  
SENT3A  
SENT input  
P40.6  
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 4 of group 2  
DSADC: positive analog input of channel 3, pin A  
CCU61 input  
VADCG2.4  
DS3PA  
CCPOS1B  
SENT2D  
SENT input  
Data Sheet  
2-98  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-32 Port 40 Functions (cont’d)  
Pin  
34  
Symbol  
Ctrl  
Type  
Function  
P40.7  
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 5 of group 2  
VADCG2.5  
DS3NA  
DSADC: negative analog input channel of DSADC 3,  
pin A  
CCPOS1D  
SENT3D  
CCU61 input  
SENT input  
33  
32  
P40.8  
I
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADCG2.6  
VADC analog input channel 6 of group 2  
DSADC: positive analog input of channel 3, pin B  
CCU61 input  
DS3PB  
CCPOS2B  
SENT4A  
SENT input  
P40.9  
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG2.7  
VADC analog input channel 7 of group 2  
DS3NB  
DSADC: negative analog input channel of DSADC 3,  
pin B  
CCPOS2D  
SENT5A  
CCU61 input  
SENT input  
Table 2-33 Analog Inputs  
Pin  
67  
Symbol  
Ctrl  
Type  
Function  
AN0  
I
D /  
Analog input 0  
HighZ /  
VDDM  
VADCG0.0  
VADC analog input channel 0 of group 0  
DSADC: positive analog input of channel 0, pin B  
Analog input 1  
DS0PB  
66  
AN1  
I
D /  
HighZ /  
VDDM  
VADCG0.1  
VADC analog input channel 1 of group 0 (MD)  
DS0NB  
DSADC: negative analog input channel of DSADC 0,  
pin B  
65  
64  
AN2  
I
I
D /  
HighZ /  
VDDM  
Analog input 2  
VADCG0.2  
VADC analog input channel 2 of group 0 (MD)  
DSADC: positive analog input of channel 0, pin A  
Analog input 3  
DS0PA  
AN3  
D /  
HighZ /  
VDDM  
VADCG0.3  
VADC analog input channel 3 of group 0  
DS0NA  
DSADC: negative analog input channel of DSADC 0,  
pin A  
63  
62  
AN4  
I
I
D /  
HighZ /  
VDDM  
Analog input 4  
VADCG0.4  
VADC analog input channel 4 of group 0  
AN5  
D /  
Analog input 5  
HighZ /  
VDDM  
VADCG0.5  
VADC analog input channel 5 of group 0  
Data Sheet  
2-99  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-33 Analog Inputs (cont’d)  
Pin  
61  
Symbol  
Ctrl  
Type  
Function  
AN6  
I
D /  
Analog input 6  
HighZ /  
VDDM  
VADCG0.6  
VADC analog input channel 6 of group 0  
60  
AN7  
I
D /  
Analog input 7  
HighZ /  
VDDM  
VADCG0.7  
VADC analog input channel 7 of group 0 (with pull  
down diagnostics)  
59  
58  
57  
56  
55  
50  
49  
48  
47  
AN8  
I
I
I
I
I
I
I
I
I
D /  
HighZ /  
VDDM  
Analog input 8  
VADCG0.8  
VADC analog input channel 8 of group 0  
AN10  
D /  
HighZ /  
VDDM  
Analog input 10  
VADCG0.10  
VADC analog input channel 10 of group 0 (MD)  
AN11  
D /  
HighZ /  
VDDM  
Analog input 11  
VADCG0.11  
VADC analog input channel 11 of group 0  
AN12  
D /  
HighZ /  
VDDM  
Analog input 12  
VADCG0.12  
VADC analog input channel 12 of group 0  
AN13  
D /  
HighZ /  
VDDM  
Analog input 13  
VADCG0.13  
VADC analog input channel 13 of group 0  
AN16  
D /  
HighZ /  
VDDM  
Analog input 16  
VADCG1.0  
VADC analog input channel 0 of group 1  
AN17  
D /  
HighZ /  
VDDM  
Analog input 17  
VADCG1.1  
VADC analog input channel 1 of group 1 (MD)  
AN18  
D /  
HighZ /  
VDDM  
Analog input 18  
VADCG1.2  
VADC analog input channel 2 of group 1 (MD)  
AN19  
D /  
Analog input 19  
HighZ /  
VDDM  
VADCG1.3  
VADC analog input channel 3 of group 1 (with pull  
down diagnostics)  
46  
45  
AN20  
I
I
D /  
HighZ /  
VDDM  
Analog input 20  
VADCG1.4  
VADC analog input channel 4 of group 1  
DSADC: positive analog input of channel 2, pin A  
Analog input 21  
DS2PA  
AN21  
D /  
HighZ /  
VDDM  
VADCG1.5  
VADC analog input channel 5 of group 1  
DS2NA  
DSADC: negative analog input channel of DSADC 2,  
pin A  
44  
AN24  
I
S /  
Analog input 24  
HighZ /  
VDDM  
VADCG1.8  
VADC analog input channel 8 of group 1  
SENT input channel 0, pin A  
SENT0A  
Data Sheet  
2-100  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-33 Analog Inputs (cont’d)  
Pin  
43  
Symbol  
AN25  
Ctrl  
Type  
Function  
I
S /  
Analog input 24  
HighZ /  
VDDM  
VADCG1.9  
SENT1A  
VADC analog input channel 9of group 1 (MD)  
SENT input channel 1, pin A  
Analog input 26  
42  
41  
AN26  
I
I
S /  
HighZ /  
VDDM  
VADCG1.10  
VADC analog input channel 10 of group 1 (MD)  
SENT input channel 2, pin A  
Analog input 27  
SENT2A  
AN27  
S /  
HighZ /  
VDDM  
VADCG1.11  
VADC analog input channel 11 of group 1  
SENT input channel 3, pin A  
Analog input 28  
SENT3A  
40  
39  
38  
37  
36  
AN28  
I
I
I
I
I
D /  
HighZ /  
VDDM  
VADCG1.12  
VADC analog input channel 12 of group 1  
AN29  
D /  
HighZ /  
VDDM  
Analog input 29  
VADCG1.13  
VADC analog input channel 13 of group 1  
AN32  
D /  
HighZ /  
VDDM  
Analog input 32  
VADCG2.0  
VADC analog input channel 0 of group 2  
AN33  
D /  
HighZ /  
VDDM  
Analog input 33  
VADCG2.1  
VADC analog input channel 1 of group 2 (MD)  
AN35  
D /  
Analog input 35  
HighZ /  
VDDM  
VADCG2.3  
VADC analog input channel 3 of group 2 (with pull  
down diagnostics)  
35  
34  
AN36  
I
I
S /  
HighZ /  
VDDM  
Analog input 34  
VADCG2.4  
VADC analog input channel 4 of group 2  
DSADC: positive analog input of channel 3, pin A  
SENT input channel 2, pin D  
DS3PA  
SENT2D  
AN37  
S /  
Analog input 37  
HighZ /  
VDDM  
VADCG2.5  
VADC analog input channel 5 of group 2  
DS3NA  
DSADC: negative analog input channel of DSADC 3,  
pin A  
SENT3D  
SENT input channel 3, pin D  
33  
AN38  
I
S /  
Analog input 38  
HighZ /  
VDDM  
VADCG2.6  
VADC analog input channel 6 of group 2  
DSADC: positive analog input of channel 3, pin B  
SENT input channel 4, pin A  
DS3PB  
SENT4A  
Data Sheet  
2-101  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-33 Analog Inputs (cont’d)  
Pin  
32  
Symbol  
Ctrl  
Type  
Function  
AN39  
I
S /  
Analog input 39  
HighZ /  
VDDM  
VADCG2.7  
VADC analog input channel 7 of group 2  
DS3NB  
DSADC: negative analog input channel of DSADC 3,  
pin B  
SENT5A  
SENT input channel 5, pin A  
31  
30  
AN44  
I
I
D /  
HighZ /  
VDDM  
Analog input 44  
VADCG2.10  
VADC analog input channel 10 of group 2 (MD)  
DSADC: positive analog input of channel 3, pin C  
Analog input 45  
DS3PC  
AN45  
D /  
HighZ /  
VDDM  
VADCG2.11  
VADC analog input channel 11 of group 2  
DS3NC  
DSADC: negative analog input channel of DSADC 3,  
pin C  
29  
28  
AN46  
I
I
D /  
HighZ /  
VDDM  
Analog input 46  
VADCG2.12  
VADC analog input channel 12 of group 24  
DSADC: positive analog input of channel 3, pin D  
Analog input 47  
DS3PD  
AN47  
D /  
HighZ /  
VDDM  
VADCG2.13  
VADC analog input channel 13 of group 2  
DS3ND  
DSADC: negative analog input channel of DSADC 3,  
pin D  
27  
26  
AN48  
I
I
D /  
HighZ /  
VDDM  
Analog input 48  
VADCG2.14  
VADC analog input channel 14 of group 2  
AN49  
D /  
Analog input 49  
HighZ /  
VDDM  
VADCG2.15  
VADC analog input channel 15 of group 2  
Table 2-34 System I/O  
Pin  
121  
Symbol  
Ctrl  
Type  
Function  
PORST  
I
PORST /  
PD /  
Power On Reset Input  
Additional strong PD in case of power fail.  
VEXT  
122  
ESR0  
I/O  
MP / OD /  
VEXT  
External System Request Reset 0  
Default configuration during and after reset is open-  
drain driver. The driver drives low during power-on  
reset. This is valid additionally after deactivation of  
PORST until the internal reset phase has finished.  
See also SCU chapter for details.  
Default after power-on can be different. See also  
SCU chapter ´Reset Control Unit´ and SCU_IOCR  
register description.  
EVRWUP  
I
EVR Wakeup Pin  
Data Sheet  
2-102  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-34 System I/O (cont’d)  
Pin  
120  
Symbol  
Ctrl  
Type  
Function  
ESR1  
I/O  
MP /  
External System Request Reset 1  
PU1 /  
VEXT  
Default NMI function. See also SCU chapter ´Reset  
Control Unit´ and SCU_IOCR register description.  
EVRWUP  
I
EVR Wakeup Pin  
85  
VGATE1P  
O
VGATE1P / External Pass Device gate control for EVR13  
- /  
VEXT  
112  
114  
115  
TMS  
I
A2 /  
PD /  
VDDP3  
JTAG Module State Machine Control Input  
Device Access Port Line 1  
DAP1  
I/O  
TRST  
I
A2 /  
PD /  
VDDP3  
JTAG Module Reset/Enable Input  
TCK  
I
I
A2 /  
PD /  
VDDP3  
JTAG Module Clock Input  
Device Access Port Line 0  
DAP0  
102  
103  
XTAL1  
XTAL2  
I
XTAL1 /  
- / -  
Main Oscillator/PLL/Clock Generator Input  
Main Oscillator/PLL/Clock Generator Output  
O
XTAL2 /  
- / -  
Table 2-35 Supply  
Pin  
52  
Symbol  
Ctrl  
Type  
Vx  
Function  
VAREF1  
I
Positive Analog Reference Voltage 1  
51  
54  
10  
VAGND1  
VDDM  
I
I
I
Vx  
Vx  
Vx  
Negative Analog Reference Voltage 1  
ADC Analog Power Supply (3.3V / 5V)  
VDD / VDDSB  
Emulation Device: Emulation SRAM Standby Power  
Supply (1.3V) (Emulation Device only).  
Production Device: VDD (1.3V).  
123, 68,  
24  
VDD  
VDD  
I
I
Vx  
Vx  
Digital Core Power Supply (1.3V)  
100  
Digital Core Power Supply (1.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (1.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
153, 99,  
69, 25  
VEXT  
I
Vx  
External Supply (5V / 3.3V)  
Data Sheet  
2-103  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
Table 2-35 Supply (cont’d)  
Pin  
154  
Symbol  
Ctrl  
Type  
Vx  
Function  
VDDP3  
I
Digital Power Supply for Flash (3.3V).  
Can be also used as external 3.3V Power Supply for  
VFLEX.  
104  
VDDP3  
I
Vx  
Digital Power Supply for Oscillator, LVDSH and A2  
pads (3.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (3.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
155  
164  
101  
53  
VDDFL3  
VFLEX  
VSS  
I
I
I
I
Vx  
Vx  
Vx  
Vx  
Flash Power Supply (3.3V)  
Digital Power Supply for Flex Port Pads  
(5V / 3.3V)  
Digital Ground  
VSSM  
Analog Ground for VDDM  
Legend:  
Column “Ctrl.”:  
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)  
O = Output  
O0 = Output with IOCR bit field selection PCx = 1X000B  
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)  
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)  
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)  
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)  
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)  
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)  
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)  
Column “Type”:  
LP = Pad class LP (5V/3.3V, LVTTL)  
MP = Pad class MP (5V/3.3V, LVTTL)  
MP+ = Pad class MP (5V/3.3V, LVTTL)  
A2 = Pad class A2 (3.3V, LVTTL)  
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)  
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)  
S = Pad class S (ADC overlayed with General Purpose Input)  
D = Pad class D (ADC)  
PU = with pull-up device connected during reset (PORST = 0)  
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)  
PD = with pull-down device connected during reset (PORST = 0)  
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a  
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,  
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.  
Data Sheet  
2-104  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)  
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode  
OD = open drain during reset (PORST = 0)  
HighZ = tri-state during reset (PORST = 0)  
PORST = PORST input pad  
XTAL1 = XTAL1 input pad  
XTAL2 = XTAL2 input pad  
VGATE1P = VGATE1P  
VGATE3P = VGATE3P  
Vx = Supply (the Exposed Pad is also considered as VSS and shall be connected to ground)  
NC = These pins are reserved for future extensions and shall not be connected externally  
NC1 = These pins are not connected on package level and will not be used for future extensions  
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
2.2.2  
Emergency Stop Function  
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input  
signal (EMGSTOPA or EMGSTOPB) into a defined state:  
Input state and  
PU or High-Z depending on HWCFG[6] level latched during PORST active  
Control of the Emergency Stop function:  
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop  
Control”)  
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see  
chapter “SCU”, “Emergency Stop Control”)  
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x  
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O  
Lines”, “Emergency Stop Register”).  
The Emergency Stop function is available for all GPIO Ports with the following exceptions:  
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)  
Not available for P40.x (analoge input ANx overlayed with GPI)  
Not available for P32.0 EVR13 SMPS mode.  
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)  
The Emergency Stop function can be overruled on the following GPIO Ports:  
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.  
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O  
Ports and Peripheral I/O Lines”, P00 / P01)  
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register  
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)  
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).  
No Overruling in the DXCM (Debug over can message) mode  
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active  
during and after reset.  
3) If HWCFG[6] is connected to ground, the PD1/PU1 pins are predominantly in HighZ during and after reset.  
Data Sheet  
2-105  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC265x Pin Definition and Functions:  
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI  
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode  
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI  
2.2.3  
Pull-Up/Pull-Down Reset Behavior of the Pins  
Table 2-36 List of Pull-Up/Pull-Down Reset Behavior of the Pins  
Pins  
PORST = 0  
PORST = 1  
all GPIOs  
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0  
Pull-up  
TDI, TESTMODE  
PORST1)  
Pull-down with IPORST relevant  
Pull-down with IPDLI relevant  
TRST, TCK, TMS  
ESR0  
Pull-down  
The open-drain driver is used to  
drive low.2)  
Pull-up3)  
ESR1  
TDO  
Pull-up3)  
Pull-up  
High-Z/Pull-up4)  
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.  
2) Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.  
3) See the SCU_IOCR register description.  
4) Depends on JTAG/DAP selection with TRST.  
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case  
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.  
Data Sheet  
2-106  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
2.3  
TC267x Pin Definition and Functions: BGA292  
Figure 2-3 is showing the TC267x Logic Symbol for the package variant: BGA292.  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Y
W
V
U
T
VSS  
P32.3  
P32.2  
P32.0 P33.13 P33.11  
P33.9  
P33.7  
P33.5  
P33.3  
P33.1  
AN5  
AN10 VAGND1 VAREF1 VDDM VSSM  
AN20  
AN21  
NC  
Y
W
V
U
T
VGATE1  
VEXT  
P23.0  
P23.2  
P23.4  
P22.2  
P22.0  
VDDP3  
VSS  
VEXT  
P23.1  
P23.3  
P22.3  
P22.1  
VDD  
P32.4  
P33.12 P33.10  
P
P33.8  
P33.6  
P33.4  
P33.2  
P33.0  
AN2  
AN8  
AN11  
AN13  
AN16  
AN18  
AN19  
AN24  
AN26  
AN28  
AN25  
AN27  
AN29  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
VSS  
P32.7  
P32.6  
P33.15  
P34.5  
P34.3  
P34.1  
AN1  
AN3  
AN7  
AN9  
AN14  
AN17  
NC  
U
T
U
P23.5  
P23.6  
P22.5  
P22.7  
P22.9  
VSS  
P32.5  
P33.14  
P34.4  
VDD  
P34.2 VEVRSB AN0  
AN4  
AN6  
AN12  
AN15  
AN22  
AN23  
AN34  
AN38  
AN40  
AN42  
AN30  
AN31  
AN32  
AN36  
AN41  
AN43  
VAGND2 VAREF2  
T
R
P
N
M
L
P23.7  
P22.4  
P22.6  
P22.8  
Top-View  
AN35  
AN37  
AN45  
AN47  
AN33  
AN39  
AN44  
AN46  
R
P
N
M
L
R
P
N
M
L
R
P
N
M
L
VSS  
(AGBT (AGBT  
TX0P)  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
TX0N)  
VSS  
VDD  
VSS  
VDD  
VSS  
XTAL1 XTAL2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
(AGBT  
ERR)  
VSS  
(AGBT  
CLKN)  
VSS  
TRST  
P21.2  
P21.3  
P20.2  
P20.1  
P20.7  
P22.11 P22.10  
VSS  
VSS  
VSS  
VSS  
P00.12 P00.11  
VSS  
(AGBT  
CLKP)  
NC  
(VDDPSB)  
K
J
P21.4  
P21.5  
P20.0  
P20.3  
P20.8  
P21.0  
P21.1  
P21.6  
TMS  
TCK  
P00.10 P00.8  
P00.9  
P00.5  
P00.3  
P00.1  
P02.7  
P02.5  
P02.3  
P02.1  
VSS  
P00.7  
P00.4  
P00.2  
P00.0  
P02.8  
P02.6  
P02.4  
P02.2  
P02.0  
K
J
K
J
K
J
VSS  
VDD  
VSS  
P01.7  
P01.5  
P01.3  
P00.6  
P01.6  
P01.4  
VDD  
(VDDSB)  
H
G
F
H
G
F
P21.7  
VSS  
VSS  
VSS  
VSS  
H
G
F
H
G
F
VDD  
(VDDSB)  
PORST ESR1  
VDD  
P20.6  
P20.9  
ESR0  
P02.10 P02.11  
E
D
C
B
A
P20.11 P20.10  
P20.13 P20.12  
E
D
VSS VDDFL3 P15.5  
P14.2  
P12.0  
P12.1  
P11.0  
P11.1  
P11.7  
P11.8  
P11.13  
VSS  
P02.9  
E
D
E
D
C
B
A
VSS VDDFL3 P15.7  
P15.8  
14  
P14.7  
13  
P14.9 P14.10 P11.4  
P11.6  
9
P11.5 P11.14 P11.15 VFLEX  
VSS  
4
17  
16  
15  
12  
11  
10  
8
7
6
5
P20.14  
P15.0  
P15.2  
VSS  
VDDP3 P15.3  
P14.0  
P14.4  
P14.3  
P14.6  
P13.0  
P13.2  
P11.3 P11.10 P11.12 P10.1  
P10.4  
P10.5  
P10.8  
VEXT  
VSS  
VDDP3 P15.1  
19 18  
P15.4  
P15.6  
P14.1  
P14.5  
P14.8  
P13.1  
P13.3  
P11.2  
P11.9 P11.11 P10.0  
P10.3  
P10.2  
P10.6  
P10.7  
VEXT  
NC  
20  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Figure 2-3 TC267x Logic Symbol for the package variant BGA292.  
Data Sheet  
2-107  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
2.3.1  
TC267 BGA292 Package Variant Pin Configuration  
Table 2-37 Port 00 Functions  
Pin  
G1  
Symbol  
Ctrl  
Type  
Function  
P00.0  
TIN9  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CTRAPA  
T12HRE  
INJ00  
CCU61 input  
CCU60 input  
MSC0 input  
CIFD9  
P00.0  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I/O  
I
General-purpose output  
GTM output  
TOUT9  
ASCLK3  
ATX3  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
TXDCAN1  
CAN node 1 output  
Reserved  
COUT63  
ETHMDIOA  
CCU60 output  
ETH input/output  
General-purpose input  
GTM input  
G2  
P00.1  
TIN10  
LP /  
PU1 /  
VEXT  
ARX3E  
RXDCAN1D  
PSIRX0A  
SENT0B  
CC60INB  
CC60INA  
DSCIN0A  
VADCG3.11  
CIFD10  
P00.1  
ASCLIN3 input  
CAN node 1 input  
PSI5 input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 0 input A  
VADC analog input channel 11 of group 3  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT10  
ATX3  
ASCLIN3 output  
Reserved  
DSCOUT0  
DSADC channel 0 output  
Reserved  
SPC0  
SENT output  
CC60  
CCU61 output  
Data Sheet  
2-108  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-37 Port 00 Functions (cont’d)  
Pin  
H1  
Symbol  
Ctrl  
Type  
Function  
P00.2  
TIN11  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT1B  
DSDIN0A  
VADCG3.10  
CIFD11  
P00.2  
SENT input  
DSADC channel 0 input A  
VADC analog input channel 10 of group 3 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT11  
ASCLK3  
ASCLIN3 output  
Reserved  
PSITX0  
TXDCAN3  
PSI5 output  
CAN node 3 output  
Reserved  
COUT60  
CCU61 output  
H2  
P00.3  
TIN12  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDCAN3A  
PSIRX1A  
PSISRXA  
SENT2B  
CC61INB  
CC61INA  
DSCIN3A  
VADCG3.9  
CIFD12  
P00.3  
CAN node 3 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU60 input  
CCU61 input  
DSADC channel 3 input A  
VADC analog input channel 9 of group 3 (MD)  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT12  
ASLSO3  
ASCLIN3 output  
Reserved  
DSCOUT3  
DSADC channel 3 output  
Reserved  
SPC2  
SENT output  
CC61  
CCU61 output  
Data Sheet  
2-109  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-37 Port 00 Functions (cont’d)  
Pin  
J1  
Symbol  
Ctrl  
Type  
Function  
P00.4  
TIN13  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
REQ7  
SCU input  
SENT3B  
DSDIN3A  
DSSGNA  
VADCG3.8  
CIFD13  
SENT input  
DSADC channel 3 input A  
DSADC input  
VADC analog input channel 8 of group 3  
CIF input  
P00.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT13  
PSISTX  
TXDCAN4  
PSITX1  
PSI5-S output  
CAN node 4 output  
PSI5 output  
VADCG2BFL0  
SPC3  
VADC output  
SENT output  
COUT61  
CCU61 output  
J2  
P00.5  
TIN14  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
PSIRX2A  
SENT4B  
RXDCAN4A  
CC62INB  
CC62INA  
DSCIN2A  
VADCG3.7  
CIFD14  
PSI5 input  
SENT input  
CAN node 4 input  
CCU60 input  
CCU61 input  
DSADC channel 2 input A  
VADC analog input channel 7 of group 3  
CIF input  
P00.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT14  
DSCGPWMN  
DSADC output  
Reserved  
DSCOUT2  
VADCG2BFL1  
SPC4  
DSADC channel 2 output  
VADC output  
SENT output  
CC62  
CCU61 output  
Data Sheet  
2-110  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-37 Port 00 Functions (cont’d)  
Pin  
J4  
Symbol  
Ctrl  
Type  
Function  
P00.6  
TIN15  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT5B  
SENT input  
DSDIN2A  
VADCG3.6  
CIFD15  
DSADC channel 2 input A  
VADC analog input channel 6 of group 3  
CIF input  
P00.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT15  
DSCGPWMP  
VADCG2BFL2  
PSITX2  
DSADC output  
VADC output  
PSI5 output  
VADCEMUX10  
SPC5  
VADC output  
SENT output  
COUT62  
CCU61 output  
General-purpose input  
GTM input  
K1  
P00.7  
TIN16  
LP /  
PU1 /  
VEXT  
CC60INC  
CCPOS0A  
T12HRB  
T2INA  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
VADCG3.5  
CIFCLK  
P00.7  
VADC analog input channel 5 of group 3  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT16  
Reserved  
VADCG2BFL3  
VADC output  
Reserved  
VADCEMUX11  
VADC output  
Reserved  
CC60  
CCU61 output  
Data Sheet  
2-111  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-37 Port 00 Functions (cont’d)  
Pin  
K4  
Symbol  
Ctrl  
Type  
Function  
P00.8  
TIN17  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CC61INC  
CCPOS1A  
T13HRB  
T2EUDA  
VADCG3.4  
CIFVSNC  
P00.8  
CCU61 input  
CCU61 input  
CCU60 input  
GPT120 input  
VADC analog input channel 4 of group 3  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT17  
SLSO36  
QSPI3 output  
Reserved  
Reserved  
VADCEMUX12  
VADC output  
Reserved  
CC61  
CCU61 output  
General-purpose input  
GTM input  
K2  
P00.9  
TIN18  
LP /  
PU1 /  
VEXT  
CC62INC  
CCPOS2A  
T13HRC  
T12HRC  
T4EUDA  
VADCG3.3  
DSITR3F  
CIFHSNC  
P00.9  
CCU61 input  
CCU61 input  
CCU60 input  
CCU60 input  
GPT120 input  
VADC analog input channel 3 of group 3  
DSADC channel 3 input F  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT18  
SLSO37  
ARTS3  
QSPI3 output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
CC62  
CCU61 output  
Data Sheet  
2-112  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-37 Port 00 Functions (cont’d)  
Pin  
K5  
Symbol  
Ctrl  
Type  
Function  
P00.10  
TIN19  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
VADCG3.2  
VADC analog input channel 2 of group 3 (MD)  
General-purpose output  
GTM output  
P00.10  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT19  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
COUT63  
CCU61 output  
General-purpose input  
GTM input  
L1  
P00.11  
TIN20  
LP /  
PU1 /  
VEXT  
CTRAPA  
CCU60 input  
T12HRE  
CCU61 input  
VADCG3.1  
VADC analog input channel of group 3  
General-purpose output  
GTM output  
P00.11  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT20  
Reserved  
Reserved  
DSCOUT0  
DSADC channel 0 output  
Reserved  
Reserved  
Reserved  
L2  
P00.12  
TIN21  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS3A  
ASCLIN3 input  
VADC analog input channel 0 of group 3  
General-purpose output  
GTM output  
VADCG3.0  
P00.12  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT21  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
COUT63  
CCU61 output  
Data Sheet  
2-113  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-38 Port 02 Functions  
Pin  
B1  
Symbol  
Ctrl  
Type  
Function  
P02.0  
TIN0  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX2G  
REQ6  
ASCLIN2 input  
SCU input  
CC60INA  
CC60INB  
CIFD0  
CCU60 input  
CCU61 input  
CIF input  
P02.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT0  
ATX2  
ASCLIN2 output  
QSPI3 output  
DSADC output  
CAN node 0 output  
ERAY output  
SLSO31  
DSCGPWMN  
TXDCAN0  
TXDA  
CC60  
CCU60 output  
C2  
P02.1  
TIN1  
LP / PU1 General-purpose input  
/ VEXT  
GTM input  
REQ14  
ARX2B  
RXDCAN0A  
RXDA2  
CIFD1  
P02.1  
SCU input  
ASCLIN2 input  
CAN node 0 input  
ERAY input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT1  
Reserved  
SLSO32  
DSCGPWMP  
QSPI3 output  
DSADC output  
Reserved  
Reserved  
COUT60  
CCU60 output  
Data Sheet  
2-114  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-38 Port 02 Functions (cont’d)  
Pin  
C1  
Symbol  
Ctrl  
Type  
Function  
P02.2  
TIN2  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CC61INA  
CC61INB  
CIFD2  
CCU60 input  
CCU61 input  
CIF input  
P02.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT2  
ATX1  
ASCLIN1 output  
QSPI3 output  
PSI5 output  
SLSO33  
PSITX0  
TXDCAN2  
TXDB  
CAN node 2 output  
ERAY output  
CCU60 output  
General-purpose input  
GTM input  
CC61  
D2  
P02.3  
TIN3  
LP /  
PU1 /  
VEXT  
ARX1G  
RXDCAN2B  
RXDB2  
PSIRX0B  
SDI11  
CIFD3  
P02.3  
ASCLIN1 input  
CAN node 2 input  
ERAY input  
PSI5 input  
MSC1 input  
CIF input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT3  
ASLSO2  
SLSO34  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
Reserved  
COUT61  
CCU60 output  
Data Sheet  
2-115  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-38 Port 02 Functions (cont’d)  
Pin  
D1  
Symbol  
Ctrl  
Type  
Function  
P02.4  
TIN4  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3A  
ECTT1  
QSPI3 input  
TTCAN input  
CAN node 0 input  
CCU60 input  
CCU61 input  
I2C0 input  
RXDCAN0D  
CC62INA  
CC62INB  
SDA0A  
CIFD4  
CIF input  
P02.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT4  
ASCLK2  
SLSO30  
PSISCLK  
SDA0  
ASCLIN2 output  
QSPI3 output  
PSI5-S output  
I2C0 output  
TXENA  
CC62  
ERAY output  
CCU60 output  
General-purpose input  
GTM input  
E2  
P02.5  
TIN5  
MP+ /  
PU1 /  
VEXT  
MRST3A  
ECTT2  
PSIRX1B  
PSISRXB  
SENT3C  
SCL0A  
CIFD5  
QSPI3 input  
TTCAN input  
PSI5 input  
PSI5-S input  
SENT input  
I2C0 input  
CIF input  
P02.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT5  
TXDCAN0  
MRST3  
CAN node 0 output  
QSPI3 output  
Reserved  
SCL0  
I2C0 output  
TXENB  
COUT62  
ERAY output  
CCU60 output  
Data Sheet  
2-116  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-38 Port 02 Functions (cont’d)  
Pin  
E1  
Symbol  
Ctrl  
Type  
Function  
P02.6  
TIN6  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MTSR3A  
SENT2C  
CC60INC  
CCPOS0A  
T12HRB  
T3INA  
QSPI3 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
CIFD6  
P02.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT6  
PSISTX  
MTSR3  
PSITX1  
VADCEMUX00  
PSI5-S output  
QSPI3 output  
PSI5 output  
VADC output  
Reserved  
CC60  
CCU60 output  
General-purpose input  
GTM input  
F2  
P02.7  
TIN7  
MP /  
PU1 /  
VEXT  
SCLK3A  
PSIRX2B  
SENT1C  
CC61INC  
CCPOS1A  
T13HRB  
T3EUDA  
CIFD7  
QSPI3 input  
PSI5 input  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
GPT120 input  
CIF input  
DSCIN3B  
P02.7  
DSADC channel 3 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT7  
Reserved  
SCLK3  
QSPI3 output  
DSADC channel 3 output  
VADC output  
SENT output  
CCU60 output  
DSCOUT3  
VADCEMUX01  
SPC1  
CC61  
Data Sheet  
2-117  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-38 Port 02 Functions (cont’d)  
Pin  
F1  
Symbol  
Ctrl  
Type  
Function  
P02.8  
TIN8  
I
LP / PU1 General-purpose input  
/
VEXT  
GTM input  
SENT0C  
CC62INC  
CCPOS2A  
T12HRC  
T13HRC  
T4INA  
SENT input  
CCU60 input  
CCU60 input  
CCU61 input  
CCU61 input  
GPT120 input  
CIF input  
CIFD8  
DSDIN3B  
DSITR3E  
P02.8  
DSADC channel 3 input B  
DSADC channel 3 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT8  
SLSO35  
QSPI3 output  
Reserved  
PSITX2  
VADCEMUX02  
ETHMDC  
CC62  
PSI5 output  
VADC output  
ETH output  
CCU60 output  
Table 2-39 Port 10 Functions  
Pin  
A7  
Symbol  
Ctrl  
Type  
Function  
P10.0  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN102  
T6EUDB  
GPT120 input  
General-purpose output  
GTM output  
P10.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT102  
Reserved  
SLSO110  
QSPI1 output  
Reserved  
VADCG3BFL0  
VADC output  
Reserved  
Reserved  
Data Sheet  
2-118  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-39 Port 10 Functions (cont’d)  
Pin  
B7  
Symbol  
Ctrl  
Type  
Function  
P10.1  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN103  
MRST1A  
T5EUDB  
P10.1  
QSPI1 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT103  
MTSR1  
MRST1  
EN01  
QSPI1 output  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG3BFL1  
END03  
A5  
P10.2  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN104  
SCLK1A  
T6INB  
QSPI1 input  
GPT120 input  
SCU input  
REQ2  
RXDCAN2E  
SDI01  
CAN node 2 input  
MSC0 input  
P10.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT104  
Reserved  
SCLK1  
EN00  
QSPI1 output  
MSC0 output  
VADC output  
MSC0 output  
Reserved  
VADCG3BFL2  
END02  
Data Sheet  
2-119  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-39 Port 10 Functions (cont’d)  
Pin  
A6  
Symbol  
Ctrl  
Type  
Function  
P10.3  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN105  
MTSR1A  
REQ3  
QSPI1 input  
SCU input  
T5INB  
GPT120 input  
General-purpose output  
GTM output  
P10.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT105  
VADCG3BFL3  
MTSR1  
EN00  
VADC output  
QSPI1 output  
MSC0 output  
MSC0 output  
CAN node 2 output  
Reserved  
END02  
TXDCAN2  
B6  
P10.4  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN106  
MTSR1C  
CCPOS0C  
T3INB  
P10.4  
QSPI1 input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT106  
Reserved  
SLSO18  
MTSR1  
EN00  
QSPI1 output  
QSPI1 output  
MSC0 output  
MSC0 output  
Reserved  
END02  
Data Sheet  
2-120  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-39 Port 10 Functions (cont’d)  
Pin  
B5  
Symbol  
Ctrl  
Type  
Function  
P10.5  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN107  
HWCFG4  
RXDCAN4B  
INJ01  
SCU input  
CAN node 4 input  
MSC0 input  
P10.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT107  
ATX2  
ASCLIN2 output  
QSPI3 output  
QSPI1 output  
GPT120 output  
ASCLIN2 output  
Reserved  
SLSO38  
SLSO19  
T6OUT  
ASLSO2  
A4  
P10.6  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN108  
ARX2D  
ASCLIN2 input  
QSPI3 input  
MTSR3B  
HWCFG5  
P10.6  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT108  
ASCLK2  
MTSR3  
ASCLIN2 output  
QSPI3 output  
GPT120 output  
CAN node 4 output  
QSPI1 output  
VADC output  
T3OUT  
TXDCAN4  
MRST1  
VADCG3BFL0  
Data Sheet  
2-121  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-39 Port 10 Functions (cont’d)  
Pin  
A3  
Symbol  
Ctrl  
Type  
Function  
P10.7  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN109  
ACTS2A  
MRST3B  
REQ4  
CCPOS1C  
T3EUDB  
P10.7  
ASCLIN2 input  
QSPI3 input  
SCU input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT109  
Reserved  
MRST3  
VADCG3BFL1  
QSPI3 output  
VADC output  
Reserved  
Reserved  
Reserved  
B4  
P10.8  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TIN110  
SCLK3B  
REQ5  
CCPOS2C  
T4INB  
P10.8  
TOUT110  
ARTS2  
SCLK3  
QSPI3 input  
SCU input  
CCU60 input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-122  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-40 Port 11 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
A10  
P11.2  
TIN95  
I
MPR /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
P11.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT95  
END03  
SLSO05  
SLSO15  
EN01  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ETH output  
ETHTXD1  
COUT63  
CCU60 output  
General-purpose input  
GTM input  
B10  
P11.3  
TIN96  
MPR /  
PU1 /  
VFLEX  
MRST1B  
SDI03  
P11.3  
QSPI1 input  
MSC0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT96  
Reserved  
MRST1  
TXDA  
QSPI1 output  
ERAY output  
Reserved  
ETHTXD0  
COUT62  
ETH output  
CCU60 output  
General-purpose input  
GTM input  
D9  
P11.6  
TIN97  
MPR /  
PU1 /  
VFLEX  
SCLK1B  
P11.6  
QSPI1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT97  
TXENB  
SCLK1  
ERAY output  
QSPI1 output  
ERAY output  
MSC0 output  
ETH output  
TXENA  
FCLP0  
ETHTXEN  
COUT61  
CCU60 output  
Data Sheet  
2-123  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-40 Port 11 Functions (cont’d)  
Pin  
A9  
Symbol  
Ctrl  
Type  
Function  
P11.9  
TIN98  
I
MP+ /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
MTSR1B  
RXDA1  
ETHRXD1  
P11.9  
TOUT98  
QSPI1 input  
ERAY input  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
MTSR1  
QSPI1 output  
Reserved  
SOP0  
MSC0 output  
Reserved  
COUT60  
CCU60 output  
General-purpose input  
GTM input  
B9  
P11.10  
TIN99  
LP /  
PU1 /  
VFLEX  
REQ12  
ARX1E  
SLSI1A  
RXDCAN3D  
RXDB1  
ETHRXD0  
SDI00  
P11.10  
TOUT99  
SCU input  
ASCLIN1 input  
QSPI1 input  
CAN node 3 input  
ERAY input  
ETH input  
MSC0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SLSO03  
SLSO13  
QSPI0 output  
QSPI1 output  
Reserved  
Reserved  
CC62  
CCU60 output  
Data Sheet  
2-124  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-40 Port 11 Functions (cont’d)  
Pin  
A8  
Symbol  
Ctrl  
Type  
Function  
P11.11  
TIN100  
I
MP+ /  
PU1 /  
VFLEX  
General-purpose input  
GTM input  
ETHCRSDVA  
P11.11  
ETH input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT100  
END02  
MSC0 output  
QSPI0 output  
QSPI1 output  
MSC0 output  
ERAY output  
CCU60 output  
General-purpose input  
GTM input  
SLSO04  
SLSO14  
EN00  
TXENB  
CC61  
B8  
P11.12  
TIN101  
MPR /  
PU1 /  
VFLEX  
ETHREFCLK  
ETHTXCLKB  
ETH input  
ETH input  
(Not for productive purposes)  
ETHRXCLKA  
ETH input  
(Not for productive purposes)  
P11.12  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT101  
ATX1  
ASCLIN1 output  
GTM output  
GTMCLK2  
TXDB  
ERAY output  
TXDCAN3  
EXTCLK1  
CC60  
CAN node 3 output  
SCU output  
CCU60 output  
Table 2-41 Port 13 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
B12  
P13.0  
TIN91  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P13.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT91  
END03  
SCLK2N  
EN01  
MSC0 output  
QSPI2 output (LVDS)  
MSC0 output  
FCLN0  
FCLND0  
TXDCAN4  
MSC0 output (LVDS)  
MSC0 output (LVDS)  
CAN node 4 output  
Data Sheet  
2-125  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-41 Port 13 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
A12  
P13.1  
TIN92  
I
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCL0B  
RXDCAN4C  
P13.1  
TOUT92  
I2C0 input  
CAN node 4 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Reserved  
SCLK2P  
QSPI2 output (LVDS)  
Reserved  
FCLP0  
SCL0  
MSC0 output (LVDS)  
I2C0 output  
Reserved  
B11  
P13.2  
TIN93  
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CAPINA  
SDA0B  
P13.2  
GPT120 input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT93  
Reserved  
MTSR2N  
FCLP0  
SON0  
QSPI2 output (LVDS)  
MSC0 output  
MSC0 output (LVDS)  
I2C0 output  
SDA0  
SOND0  
MSC0 output (LVDS)  
General-purpose input  
GTM input  
A11  
P13.3  
TIN94  
LVDSM_P /  
PU1 /  
VEXT  
P13.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT94  
Reserved  
MTSR2P  
QSPI2 output (LVDS)  
Reserved  
SOP0  
MSC0 output (LVDS)  
Reserved  
Reserved  
Data Sheet  
2-126  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-42 Port 14 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
B16  
P14.0  
TIN80  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P14.0  
O0  
O1  
O2  
General-purpose output  
GTM output  
TOUT80  
ATX0  
ASCLIN0 output  
Recommended as Boot loader pin.  
TXDA  
O3  
O4  
O5  
ERAY output  
ERAY output  
TXDB  
TXDCAN1  
CAN node 1 output  
Used for single pin DAP (SPD) function.  
ASCLK0  
COUT62  
O6  
O7  
I
ASCLIN0 output  
CCU60 output  
General-purpose input  
GTM input  
A15  
P14.1  
TIN81  
MP /  
PU1 /  
VEXT  
REQ15  
SCU input  
ARX0A  
ASCLIN0 input  
RXDCAN1B  
CAN node 1 input  
Used for single pin DAP (SPD) function.  
RXDA3  
RXDB3  
EVRWUPA  
P14.1  
ERAY input  
ERAY input  
SCU input  
O0  
O1  
O2  
General-purpose output  
GTM output  
TOUT81  
ATX0  
ASCLIN0 output  
Recommended as Boot loader pin.  
O3  
O4  
O5  
O6  
O7  
Reserved  
Reserved  
Reserved  
Reserved  
CCU60 output  
COUT63  
Data Sheet  
2-127  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-42 Port 14 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
E13  
P14.2  
TIN82  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG2  
EVR13  
SCU input  
Latched at cold power on reset to decide EVR13  
activation.  
P14.2  
TOUT82  
ATX2  
SLSO21  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI2 output  
Reserved  
Reserved  
ASCLK2  
ASCLIN2 output  
Reserved  
B14  
P14.3  
TIN83  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX2A  
REQ10  
HWCFG3_BMI  
SDI02  
ASCLIN2 input  
SCU input  
SCU input  
MSC0 input  
P14.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT83  
ATX2  
ASCLIN2 output  
QSPI2 output  
ASCLIN1 output  
ASCLIN3 output  
Reserved  
SLSO23  
ASLSO1  
ASLSO3  
Reserved  
Data Sheet  
2-128  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-42 Port 14 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
B15  
P14.4  
TIN84  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG6  
SCU input  
Latched at cold power on reset to decide default pad  
reset state (PU or HighZ).  
P14.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT84  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
A14  
P14.5  
TIN85  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG1  
EVR33  
SCU input  
Latched at cold power on reset to decide EVR33  
activation.  
P14.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT85  
Reserved  
Reserved  
Reserved  
TXDB  
ERAY output  
Reserved  
B13  
P14.6  
TIN86  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HWCFG0  
DCLDO  
SCU input  
If EVR13 active, latched at cold power on reset to  
decide between LDO and SMPS mode.  
P14.6  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT86  
SLSO22  
QSPI2 output  
Reserved  
Reserved  
TXENB  
ERAY output  
Reserved  
Data Sheet  
2-129  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-42 Port 14 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
D13  
P14.7  
TIN87  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDB0  
ERAY input  
P14.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT87  
ARTS0  
ASCLIN0 output  
QSPI2 output  
Reserved  
SLSO24  
Reserved  
Reserved  
Reserved  
A13  
P14.8  
TIN88  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX1D  
ASCLIN1 input  
CAN node 2 input  
ERAY input  
RXDCAN2D  
RXDA0  
P14.8  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT88  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D12  
P14.9  
TIN89  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS0A  
P14.9  
TOUT89  
END03  
EN01  
ASCLIN0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
MSC0 output  
MSC0 output  
Reserved  
TXENB  
TXENA  
ERAY output  
ERAY output  
Reserved  
Data Sheet  
2-130  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-42 Port 14 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
D11  
P14.10  
TIN90  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P14.10  
TOUT90  
END02  
EN00  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
MSC0 output  
MSC0 output  
ATX1  
ASCLIN1 output  
CAN node 2 output  
ERAY output  
TXDCAN2  
TXDA  
Reserved  
Table 2-43 Port 15 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
B20  
P15.0  
TIN71  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P15.0  
TOUT71  
ATX1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
Reserved  
SLSO013  
TXDCAN2  
ASCLK1  
CAN node 2 output  
ASCLIN1 output  
Reserved  
A18  
P15.1  
TIN72  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
REQ16  
SCU input  
ARX1A  
ASCLIN1 input  
CAN node 2 input  
QSPI2 input  
RXDCAN2A  
SLSI2B  
EVRWUPB  
SCU input  
P15.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT72  
ATX1  
ASCLIN1 output  
QSPI2 output  
Reserved  
SLSO25  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-131  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-43 Port 15 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
C19  
P15.2  
TIN73  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI2A  
MRST2E  
HSIC2INA  
P15.2  
QSPI2 input  
QSPI2 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT73  
ATX0  
ASCLIN0 output  
QSPI2 output  
Reserved  
SLSO20  
TXDCAN1  
ASCLK0  
CAN node 1 output  
ASCLIN0 output  
Reserved  
B17  
P15.3  
TIN74  
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX0B  
SCLK2A  
RXDCAN1A  
HSIC2INB  
P15.3  
ASCLIN0 input  
QSPI2 input  
CAN node 1 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT74  
ATX0  
ASCLIN0 output  
QSPI2 output  
MSC0 output  
MSC0 output  
Reserved  
SCLK2  
END03  
EN01  
Reserved  
Data Sheet  
2-132  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-43 Port 15 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
A17  
P15.4  
TIN75  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MRST2A  
REQ0  
SCL0C  
P15.4  
TOUT75  
ATX1  
MRST2  
QSPI2 input  
SCU input  
I2C0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI2 output  
Reserved  
Reserved  
SCL0  
CC62  
I2C0 output  
CCU60 output  
General-purpose input  
GTM input  
E14  
P15.5  
TIN76  
MP /  
PU1 /  
VEXT  
ARX1B  
MTSR2A  
SDA0C  
REQ13  
P15.5  
ASCLIN1 input  
QSPI2 input  
I2C0 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT76  
ATX1  
ASCLIN1 output  
QSPI2 output  
MSC0 output  
MSC0 output  
I2C0 output  
MTSR2  
END02  
EN00  
SDA0  
CC61  
CCU60 output  
General-purpose input  
GTM input  
A16  
P15.6  
TIN77  
MP /  
PU1 /  
VEXT  
MTSR2B  
P15.6  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT77  
ATX3  
ASCLIN3 output  
QSPI2 output  
Reserved  
MTSR2  
SCLK2  
ASCLK3  
CC60  
QSPI2 output  
ASCLIN3 output  
CCU60 output  
Data Sheet  
2-133  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-43 Port 15 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
D15  
P15.7  
TIN78  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX3A  
MRST2B  
P15.7  
TOUT78  
ATX3  
MRST2  
ASCLIN3 input  
QSPI2 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN3 output  
QSPI2 output  
Reserved  
Reserved  
Reserved  
COUT60  
CCU60 output  
General-purpose input  
GTM input  
D14  
P15.8  
TIN79  
MP /  
PU1 /  
VEXT  
SCLK2B  
REQ1  
P15.8  
TOUT79  
QSPI2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK2  
QSPI2 output  
Reserved  
Reserved  
ASCLK3  
COUT61  
ASCLIN3 output  
CCU60 output  
Data Sheet  
2-134  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-44 Port 20 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
H20  
P20.0  
TIN59  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDCAN3C  
T6EUDA  
REQ9  
SYSCLK  
TGI0  
CAN node 3 input  
GPT120 input  
SCU input  
HSCT input  
OCDS input  
P20.0  
TOUT59  
ATX3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
ASCLK3  
SYSCLK  
HSCT output  
Reserved  
Reserved  
TGO0  
HWOU  
T
OCDS; ENx  
G19  
P20.1  
TIN60  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
TGI1  
OCDS input  
General-purpose output  
GTM output  
Reserved  
P20.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT60  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TGO1  
HWOU  
T
OCDS; ENx  
Data Sheet  
2-135  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-44 Port 20 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
H19  
P20.2  
I
LP /  
General-purpose input  
PU /  
VEXT  
This pin is latched at power on reset release to enter  
test mode.  
TESTMODE  
OCDS input  
P20.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
Output function not available  
General-purpose input  
GTM input  
G20  
P20.3  
TIN61  
T6INA  
ARX3C  
P20.3  
TOUT61  
ATX3  
LP /  
PU1 /  
VEXT  
GPT120 input  
ASCLIN3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN3 output  
SLSO09  
SLSO29  
TXDCAN3  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
Reserved  
Reserved  
F17  
P20.6  
TIN62  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P20.6  
TOUT62  
ARTS1  
SLSO08  
SLSO28  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-136  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-44 Port 20 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
F19  
P20.7  
TIN63  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS1A  
ASCLIN1 input  
CAN node 0 input  
General-purpose output  
GTM output  
RXDCAN0B  
P20.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT63  
Reserved  
Reserved  
Reserved  
Reserved  
WDT1LCK  
COUT63  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
F20  
P20.8  
TIN64  
MP /  
PU1 /  
VEXT  
P20.8  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT64  
ASLSO1  
SLSO00  
SLSO10  
TXDCAN0  
WDT0LCK  
CC60  
ASCLIN1 output  
QSPI0 output  
QSPI1 output  
CAN node 0 output  
SCU output  
CCU61 output  
General-purpose input  
GTM input  
E17  
P20.9  
TIN65  
LP /  
PU1 /  
VEXT  
ARX1C  
RXDCAN3E  
REQ11  
SLSI0B  
P20.9  
ASCLIN1 input  
CAN node 3 input  
SCU input  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT65  
Reserved  
SLSO01  
SLSO11  
QSPI0 output  
QSPI1 output  
Reserved  
WDTSLCK  
CC61  
SCU output  
CCU61 output  
Data Sheet  
2-137  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-44 Port 20 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
E19  
P20.10  
TIN66  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P20.10  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT66  
ATX1  
ASCLIN1 output  
QSPI0 output  
QSPI2 output  
CAN node 3 output  
ASCLIN1 output  
CCU61 output  
General-purpose input  
GTM input  
SLSO06  
SLSO27  
TXDCAN3  
ASCLK1  
CC62  
E20  
P20.11  
TIN67  
MP /  
PU1 /  
VEXT  
SCLK0A  
QSPI0 input  
P20.11  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT67  
Reserved  
SCLK0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
COUT60  
CCU61 output  
General-purpose input  
GTM input  
D19  
P20.12  
TIN68  
MP /  
PU1 /  
VEXT  
MRST0A  
P20.12  
TOUT68  
QSPI0 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
MRST0  
MTSR0  
QSPI0 output  
QSPI0 output  
Reserved  
Reserved  
COUT61  
CCU61 output  
Data Sheet  
2-138  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-44 Port 20 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
D20  
P20.13  
TIN69  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI0A  
P20.13  
TOUT69  
QSPI0 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
Reserved  
SLSO02  
SLSO12  
SCLK0  
QSPI0 output  
QSPI1 output  
QSPI0 output  
Reserved  
COUT62  
CCU61 output  
General-purpose input  
GTM input  
C20  
P20.14  
TIN70  
MP /  
PU1 /  
VEXT  
MTSR0A  
QSPI0 input  
General-purpose output  
GTM output  
P20.14  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT70  
Reserved  
MTSR0  
QSPI0 output  
Reserved  
Reserved  
Reserved  
Reserved  
Table 2-45 Port 21 Functions  
Symbol  
Ctrl  
Type  
Pin  
Function  
K17  
P21.0  
TIN51  
I
A2 /  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
P21.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT51  
Reserved  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
Data Sheet  
2-139  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-45 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
J17  
Function  
P21.1  
TIN52  
A2 /  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
ETHMDIOB  
ETH input  
(Not for production purposes)  
P21.1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
General-purpose output  
GTM output  
Reserved  
TOUT52  
Reserved  
Reserved  
Reserved  
ETHMDIO  
ETH output  
(Not for production purposes)  
O7  
I
Reserved  
K19  
P21.2  
TIN53  
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
MRST2CN  
MRST3FN  
EMGSTOPB  
RXDN  
P21.2  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
SCU input  
HSCT input (LVDS)  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT53  
ASLSO3  
ASCLIN3 output  
Reserved  
Reserved  
ETHMDC  
ETH output  
Reserved  
Reserved  
Data Sheet  
2-140  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-45 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
J19  
Function  
P21.3  
TIN54  
LVDSH_P/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
MRST2CP  
QSPI2 input (LVDS)  
QSPI3 input (LVDS)  
HSCT input (LVDS)  
General-purpose output  
GTM output  
MRST3FP  
RXDP  
P21.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT54  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ETHMDIOD  
HWOU  
T
ETH input/output  
K20  
P21.4  
TIN55  
I
LVDSH_N/  
PU1 /  
VDDP3  
General-purpose input  
GTM input  
P21.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O
General-purpose output  
GTM output  
TOUT55  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDN  
HSCT output (LVDS)  
General-purpose input  
GTM input  
J20  
P21.5  
TIN56  
I
LVDSH_P/  
PU1 /  
VDDP3  
P21.5  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O
General-purpose output  
GTM output  
TOUT56  
ASCLK3  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TXDP  
HSCT output (LVDS)  
Data Sheet  
2-141  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-45 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
Function  
H17  
P21.6  
TIN57  
A2 /  
PU /  
VDDP3  
General-purpose input  
GTM input  
ARX3F  
TGI2  
TDI  
ASCLIN3 input  
OCDS input  
OCDS (JTAG) input  
GPT120 input  
General-purpose output  
GTM output  
T5EUDA  
P21.6  
TOUT57  
ASLSO3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
Reserved  
Reserved  
SYSCLK  
HSCT output  
Reserved  
T3OUT  
TGO2  
GPT120 output  
OCDS; ENx  
HWOU  
T
Data Sheet  
2-142  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-45 Port 21 Functions (cont’d)  
Symbol  
Ctrl  
I
Type  
Pin  
Function  
H16  
P21.7  
TIN58  
A2 /  
PU /  
VDDP3  
General-purpose input  
GTM input  
DAP2  
OCDS (3-Pin DAP) input  
In the 3-Pin DAP mode this pin is used as DAP2.  
In the 2-PIN DAP mode this pin is used as P21.7  
and controlled by the related port control logic.  
TGI3  
ETHRXERB  
T5INA  
P21.7  
TOUT58  
ATX3  
ASCLK3  
OCDS input  
ETH input  
GPT120 input  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
ASCLIN3 output  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
T6OUT  
TGO3  
TDO  
GPT120 output  
OCDS; ENx  
HWOU  
T
OCDS (JTAG); ENx  
The JTAG TDO function is overlayed with P21.7  
via a double bond.  
In JTAG mode this pin is used as TDO, after  
power-on reset it is HighZ.  
DAP2  
OCDS (DAP2); ENx  
In the 3-Pin DAP mode this pin is used as DAP2.  
Table 2-46 Port 22 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
P20  
P22.0  
TIN47  
I
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MTSR3E  
P22.0  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT47  
Reserved  
MTSR3  
SCLK3N  
FCLN1  
FCLND1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Data Sheet  
2-143  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-46 Port 22 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
P19  
P22.1  
TIN48  
I
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
MRST3E  
P22.1  
TOUT48  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
MRST3  
SCLK3P  
FCLP1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Reserved  
R20  
P22.2  
TIN49  
LVDSM_N /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3D  
P22.2  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT49  
Reserved  
SLSO312  
MTSR3N  
SON1  
SOND1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
R19  
P22.3  
TIN50  
LVDSM_P /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SCLK3E  
P22.3  
TOUT50  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SCLK3  
MTSR3P  
SOP1  
QSPI3 output  
QSPI3 output (LVDS)  
MSC1 output (LVDS)  
Reserved  
Reserved  
Data Sheet  
2-144  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-47 Port 23 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
V20  
P23.0  
TIN41  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P23.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
TOUT41  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
U19  
P23.1  
TIN42  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SDI10  
P23.1  
MSC1 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
GTM output  
Reserved  
TOUT42  
ARTS1  
SLSO313  
GTMCLK0  
EXTCLK0  
SCU output  
Reserved  
U20  
P23.2  
TIN43  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P23.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
TOUT43  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Data Sheet  
2-145  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-47 Port 23 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
T19  
P23.3  
TIN44  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
INJ10  
MSC1 input  
P23.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT44  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
T20  
P23.4  
TIN45  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P23.4  
TOUT45  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
Reserved  
SLSO35  
END12  
EN10  
QSPI3 output  
MSC1 output  
MSC1 output  
Reserved  
Reserved  
T17  
P23.5  
TIN46  
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P23.5  
TOUT46  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
Reserved  
SLSO34  
END13  
EN11  
QSPI3 output  
MSC1 output  
MSC1 output  
Reserved  
Reserved  
Data Sheet  
2-146  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-48 Port 32 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
Y17  
P32.0  
TIN36  
I
LP /  
PX/  
VEXT  
General-purpose input  
GTM input  
FDEST  
PMU input  
VGATE1N  
SMPS mode: analog output. External Pass Device  
gate control for EVR13  
P32.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT36  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Y18  
P32.2  
TIN38  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX3D  
ASCLIN3 input  
CAN node 3 input  
General-purpose output  
GTM output  
RXDCAN3B  
P32.2  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT38  
ATX3  
ASCLIN3 output  
Reserved  
Reserved  
Reserved  
DCDCSYNC  
SCU output  
Reserved  
Y19  
P32.3  
TIN39  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
P32.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT39  
ATX3  
ASCLIN3 output  
Reserved  
ASCLK3  
ASCLIN3 output  
CAN node 3 output  
Reserved  
TXDCAN3  
Reserved  
Data Sheet  
2-147  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-48 Port 32 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
W18  
P32.4  
TIN40  
I
MP+ /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS1B  
SDI12  
ASCLIN1 input  
MSC1 input  
P32.4  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT40  
Reserved  
END12  
GTMCLK1  
EN10  
MSC1 output  
GTM output  
MSC1 output  
SCU output  
EXTCLK1  
COUT63  
CCU60 output  
Table 2-49 Port 33 Functions  
Pin  
Symbol  
Ctrl  
Type  
Function  
W10  
P33.0  
TIN22  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
DSITR0E  
DSADC channel 0 input E  
General-purpose output  
GTM output  
P33.0  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT22  
Reserved  
Reserved  
Reserved  
Reserved  
VADCG1BFL0  
VADC output  
Reserved  
Y10  
P33.1  
TIN23  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
PSIRX0C  
DSCIN2B  
P33.1  
PSI5 input  
DSADC channel 2 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT23  
ASLSO3  
ASCLIN3 output  
Reserved  
DSCOUT2  
VADCEMUX02  
VADCG1BFL1  
DSADC channel 2 output  
VADC output  
VADC output  
Reserved  
Data Sheet  
2-148  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-49 Port 33 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
W11  
P33.2  
TIN24  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
DSDIN2B  
DSITR2E  
P33.2  
DSADC channel 2 input B  
DSADC channel 2 input E  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT24  
ASCLK3  
ASCLIN3 output  
Reserved  
PSITX0  
VADCEMUX01  
VADCG1BFL2  
PSI5 output  
VADC output  
VADC output  
Reserved  
Y11  
P33.3  
TIN25  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
PSIRX1C  
PSI5 input  
P33.3  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT25  
Reserved  
Reserved  
Reserved  
VADCEMUX00  
VADCG1BFL3  
VADC output  
VADC output  
Reserved  
W12  
P33.4  
TIN26  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
CTRAPC  
DSITR0F  
P33.4  
CCU61 input  
DSADC channel 0 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT26  
ARTS2  
ASCLIN2 output  
Reserved  
PSITX1  
VADCEMUX12  
VADCG0BFL0  
PSI5 output  
VADC output  
VADC output  
Reserved  
Data Sheet  
2-149  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-49 Port 33 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
Y12  
P33.5  
TIN27  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ACTS2B  
PSIRX2C  
PSISRXC  
SENT5C  
CCPOS2C  
T4EUDB  
DSCIN0B  
P33.5  
ASCLIN2 input  
PSI5 input  
PSI5-S input  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT27  
SLSO07  
SLSO17  
DSCOUT0  
VADCEMUX11  
VADCG0BFL1  
QSPI0 output  
QSPI1 output  
DSADC channel 0 output  
VADC output  
VADC output  
Reserved  
W13  
P33.6  
TIN28  
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SENT4C  
CCPOS1C  
T2EUDB  
DSDIN0B  
DSITR2F  
P33.6  
SENT input  
CCU61 input  
GPT120 input  
DSADC channel 0 input B  
DSADC channel 2 input F  
General-purpose output  
GTM output  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
TOUT28  
ASLSO2  
ASCLIN2 output  
Reserved  
PSITX2  
PSI5 output  
VADCEMUX10  
VADCG0BFL2  
PSISTX  
VADC output  
VADC output  
PSI5-S output  
Data Sheet  
2-150  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-49 Port 33 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
Y13  
P33.7  
TIN29  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
RXDCAN0E  
REQ8  
CAN node 0 input  
SCU input  
CCPOS0C  
T2INB  
CCU61 input  
GPT120 input  
General-purpose output  
GTM output  
P33.7  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
TOUT29  
ASCLK2  
SLSO37  
ASCLIN2 output  
QSPI3 output  
Reserved  
Reserved  
VADCG0BFL3  
VADC output  
Reserved  
W14  
P33.8  
TIN30  
MP /  
HighZ/  
VEXT  
General-purpose input  
GTM input  
ARX2E  
EMGSTOPA  
P33.8  
ASCLIN2 input  
SCU input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
TOUT30  
ATX2  
ASCLIN2 output  
QSPI3 output  
Reserved  
SLSO32  
TXDCAN0  
CAN node 0 output  
Reserved  
COUT62  
SMUFSP  
CCU61 output  
SMU  
HWOU  
T
Y14  
P33.9  
TIN31  
I
LP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
HSIC3INA  
P33.9  
TOUT31  
ATX2  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN2 output  
QSPI3 output  
ASCLIN2 output  
Reserved  
SLSO31  
ASCLK2  
Reserved  
CC62  
CCU61 output  
Data Sheet  
2-151  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-49 Port 33 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
W15  
P33.10  
TIN32  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
SLSI3C  
HSIC3INB  
P33.10  
QSPI3 input  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
TOUT32  
SLSO16  
SLSO311  
ASLSO1  
PSISCLK  
QSPI1 output  
QSPI3 output  
ASCLIN1 output  
PSI5-S output  
Reserved  
COUT61  
CCU61 output  
General-purpose input  
GTM input  
Y15  
P33.11  
TIN33  
MP /  
PU1 /  
VEXT  
SCLK3D  
P33.11  
TOUT33  
ASCLK1  
SCLK3  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
I
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
Reserved  
Reserved  
DSCGPWMN  
CC61  
DSADC output  
CCU61 output  
General-purpose input  
GTM input  
W16  
P33.12  
TIN34  
MP /  
PU1 /  
VEXT  
MTSR3D  
P33.12  
TOUT34  
ATX1  
QSPI3 input  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
ASCLIN1 output  
Reserved  
MTSR3  
ASCLK1  
DSCGPWMP  
COUT60  
DSADC output  
CCU61 output  
Data Sheet  
2-152  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-49 Port 33 Functions (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
Y16  
P33.13  
TIN35  
I
MP /  
PU1 /  
VEXT  
General-purpose input  
GTM input  
ARX1F  
MRST3D  
DSSGNB  
INJ11  
ASCLIN1 input  
QSPI3 input  
DSADC input  
MSC1 input  
P33.13  
TOUT35  
ATX1  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
General-purpose output  
GTM output  
ASCLIN1 output  
QSPI3 output  
QSPI2 output  
Reserved  
MRST3  
SLSO26  
DCDCSYNC  
CC60  
SCU output  
CCU61 output  
Table 2-50 Port 40 Functions  
Pin  
W2  
Symbol  
Ctrl  
Type  
Function  
P40.0  
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 8 of group 1  
CCU60 input  
VADCG1.8  
CCPOS0D  
SENT0A  
SENT input  
W1  
V2  
V1  
N4  
P40.1  
I
I
I
I
S /  
HighZ /  
VDDM  
General-purpose inpu.t  
VADC analog input channel 9 of group 1 (MD)  
CCU60 input  
VADCG1.9  
CCPOS1B  
SENT1A  
SENT input  
P40.2  
S /  
HighZ /  
VDDM  
General-purpose inpu.t  
VADC analog input channel 10 of group 1 (MD)  
CCU60 input  
VADCG1.10  
CCPOS1D  
SENT2A  
SENT input  
P40.3  
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 11 of group 1  
CCU60 input  
VADCG1.11  
CCPOS2B  
SENT3A  
SENT input  
P40.6  
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 4 of group 2  
DSADC: positive analog input of channel 3, pin A  
CCU61 input  
VADCG2.4  
DS3PA  
CCPOS1B  
SENT2D  
SENT input  
Data Sheet  
2-153  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-50 Port 40 Functions (cont’d)  
Pin  
P2  
Symbol  
Ctrl  
Type  
Function  
P40.7  
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADC analog input channel 5 of group 2  
VADCG2.5  
DS3NA  
DSADC: negative analog input channel of DSADC 3,  
pin A  
CCPOS1D  
SENT3D  
CCU61 input  
SENT input  
N5  
P1  
P40.8  
I
I
S /  
HighZ /  
VDDM  
General-purpose input  
VADCG2.6  
VADC analog input channel 6 of group 2  
DSADC: positive analog input of channel 3, pin B  
CCU61 input  
DS3PB  
CCPOS2B  
SENT4A  
SENT input  
P40.9  
S /  
General-purpose input  
HighZ /  
VDDM  
VADCG2.7  
VADC analog input channel 7 of group 2  
DS3NB  
DSADC: negative analog input channel of DSADC 3,  
pin B  
CCPOS2D  
SENT5A  
CCU61 input  
SENT input  
Table 2-51 Analog Inputs  
Pin  
Symbol  
Ctrl  
Type  
Function  
T10  
AN0  
I
D /  
Analog input 0  
HighZ /  
VDDM  
VADCG0.0  
VADC analog input channel 0 of group 0  
DSADC: positive analog input of channel 0, pin B  
Analog input 1  
DS0PB  
U10  
AN1  
I
D /  
HighZ /  
VDDM  
VADCG0.1  
VADC analog input channel 1 of group 0 (MD)  
DS0NB  
DSADC: negative analog input channel of DSADC 0,  
pin B  
W9  
U9  
AN2  
I
I
D /  
HighZ /  
VDDM  
Analog input 2  
VADCG0.2  
VADC analog input channel 2 of group 0 (MD)  
DSADC: positive analog input of channel 0, pin A  
Analog input 3  
DS0PA  
AN3  
D /  
HighZ /  
VDDM  
VADCG0.3  
VADC analog input channel 3 of group 0  
DS0NA  
DSADC: negative analog input channel of DSADC 0,  
pin A  
T9  
Y9  
AN4  
I
I
D /  
HighZ /  
VDDM  
Analog input 4  
VADCG0.4  
VADC analog input channel 4 of group 0  
AN5  
D /  
Analog input 5  
HighZ /  
VDDM  
VADCG0.5  
VADC analog input channel 5 of group 0  
Data Sheet  
2-154  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-51 Analog Inputs (cont’d)  
Pin  
T8  
Symbol  
Ctrl  
Type  
Function  
AN6  
I
D /  
Analog input 6  
HighZ /  
VDDM  
VADCG0.6  
VADC analog input channel 6 of group 0  
U8  
AN7  
I
D /  
Analog input 7  
HighZ /  
VDDM  
VADCG0.7  
VADC analog input channel 7 of group 0 (with pull  
down diagnostics)  
W8  
Y8  
AN8  
I
I
I
I
I
I
I
I
I
D /  
HighZ /  
VDDM  
Analog input 8  
VADCG0.8  
VADC analog input channel 8 of group 0  
AN10  
D /  
HighZ /  
VDDM  
Analog input 10  
VADCG0.10  
VADC analog input channel 10 of group 0 (MD)  
W7  
T7  
AN11  
D /  
HighZ /  
VDDM  
Analog input 11  
VADCG0.11  
VADC analog input channel 11 of group 0  
AN12  
D /  
HighZ /  
VDDM  
Analog input 12  
VADCG0.12  
VADC analog input channel 12 of group 0  
W6  
W5  
U5  
AN13  
D /  
HighZ /  
VDDM  
Analog input 13  
VADCG0.13  
VADC analog input channel 13 of group 0  
AN16  
D /  
HighZ /  
VDDM  
Analog input 16  
VADCG1.0  
VADC analog input channel 0 of group 1  
AN17  
D /  
HighZ /  
VDDM  
Analog input 17  
VADCG1.1  
VADC analog input channel 1 of group 1 (MD)  
W4  
W3  
AN18  
D /  
HighZ /  
VDDM  
Analog input 18  
VADCG1.2  
VADC analog input channel 2 of group 1 (MD)  
AN19  
D /  
Analog input 19  
HighZ /  
VDDM  
VADCG1.3  
VADC analog input channel 3 of group 1 (with pull  
down diagnostics)  
Y3  
Y2  
AN20  
I
I
D /  
HighZ /  
VDDM  
Analog input 20  
VADCG1.4  
VADC analog input channel 4 of group 1  
DSADC: positive analog input of channel 2, pin A  
Analog input 21  
DS2PA  
AN21  
D /  
HighZ /  
VDDM  
VADCG1.5  
VADC analog input channel 5 of group 1  
DS2NA  
DSADC: negative analog input channel of DSADC 2,  
pin A  
W2  
AN24  
I
S /  
Analog input 24  
HighZ /  
VDDM  
VADCG1.8  
VADC analog input channel 8 of group 1  
SENT input channel 0, pin A  
SENT0A  
Data Sheet  
2-155  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-51 Analog Inputs (cont’d)  
Pin  
W1  
Symbol  
AN25  
Ctrl  
Type  
Function  
I
S /  
Analog input 24  
HighZ /  
VDDM  
VADCG1.9  
SENT1A  
VADC analog input channel 9of group 1 (MD)  
SENT input channel 1, pin A  
Analog input 26  
V2  
V1  
AN26  
I
I
S /  
HighZ /  
VDDM  
VADCG1.10  
VADC analog input channel 10 of group 1 (MD)  
SENT input channel 2, pin A  
Analog input 27  
SENT2A  
AN27  
S /  
HighZ /  
VDDM  
VADCG1.11  
VADC analog input channel 11 of group 1  
SENT input channel 3, pin A  
Analog input 28  
SENT3A  
U2  
U1  
P4  
R1  
R2  
AN28  
I
I
I
I
I
D /  
HighZ /  
VDDM  
VADCG1.12  
VADC analog input channel 12 of group 1  
AN29  
D /  
HighZ /  
VDDM  
Analog input 29  
VADCG1.13  
VADC analog input channel 13 of group 1  
AN32  
D /  
HighZ /  
VDDM  
Analog input 32  
VADCG2.0  
VADC analog input channel 0 of group 2  
AN33  
D /  
HighZ /  
VDDM  
Analog input 33  
VADCG2.1  
VADC analog input channel 1 of group 2 (MD)  
AN35  
D /  
Analog input 35  
HighZ /  
VDDM  
VADCG2.3  
VADC analog input channel 3 of group 2 (with pull  
down diagnostics)  
N4  
P2  
AN36  
I
I
S /  
HighZ /  
VDDM  
Analog input 34  
VADCG2.4  
VADC analog input channel 4 of group 2  
DSADC: positive analog input of channel 3, pin A  
SENT input channel 2, pin D  
DS3PA  
SENT2D  
AN37  
S /  
Analog input 37  
HighZ /  
VDDM  
VADCG2.5  
VADC analog input channel 5 of group 2  
DS3NA  
DSADC: negative analog input channel of DSADC 3,  
pin A  
SENT3D  
SENT input channel 3, pin D  
N5  
AN38  
I
S /  
Analog input 38  
HighZ /  
VDDM  
VADCG2.6  
VADC analog input channel 6 of group 2  
DSADC: positive analog input of channel 3, pin B  
SENT input channel 4, pin A  
DS3PB  
SENT4A  
Data Sheet  
2-156  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-51 Analog Inputs (cont’d)  
Pin  
P1  
Symbol  
Ctrl  
Type  
Function  
AN39  
I
S /  
Analog input 39  
HighZ /  
VDDM  
VADCG2.7  
VADC analog input channel 7 of group 2  
DS3NB  
DSADC: negative analog input channel of DSADC 3,  
pin B  
SENT5A  
SENT input channel 5, pin A  
N1  
N2  
AN44  
I
I
D /  
HighZ /  
VDDM  
Analog input 44  
VADCG2.10  
VADC analog input channel 10 of group 2 (MD)  
DSADC: positive analog input of channel 3, pin C  
Analog input 45  
DS3PC  
AN45  
D /  
HighZ /  
VDDM  
VADCG2.11  
VADC analog input channel 11 of group 2  
DS3NC  
DSADC: negative analog input channel of DSADC 3,  
pin C  
M1  
M2  
AN46  
I
I
D /  
HighZ /  
VDDM  
Analog input 46  
VADCG2.12  
VADC analog input channel 12 of group 24  
DSADC: positive analog input of channel 3, pin D  
Analog input 47  
DS3PD  
AN47  
D /  
HighZ /  
VDDM  
VADCG2.13  
VADC analog input channel 13 of group 2  
DS3ND  
DSADC: negative analog input channel of DSADC 3,  
pin D  
M4  
M5  
AN48  
I
I
D /  
HighZ /  
VDDM  
Analog input 48  
VADCG2.14  
VADC analog input channel 14 of group 2  
AN49  
D /  
Analog input 49  
HighZ /  
VDDM  
VADCG2.15  
VADC analog input channel 15 of group 2  
Table 2-52 System I/O  
Pin  
Symbol  
Ctrl  
Type  
Function  
G17  
PORST  
I
PORST /  
PD /  
Power On Reset Input  
Additional strong PD in case of power fail.  
VEXT  
F16  
ESR0  
I/O  
MP / OD /  
VEXT  
External System Request Reset 0  
Default configuration during and after reset is open-  
drain driver. The driver drives low during power-on  
reset. This is valid additionally after deactivation of  
PORST until the internal reset phase has finished.  
See also SCU chapter for details.  
Default after power-on can be different. See also  
SCU chapter ´Reset Control Unit´ and SCU_IOCR  
register description.  
EVRWUP  
I
EVR Wakeup Pin  
Data Sheet  
2-157  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-52 System I/O (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Function  
G16  
ESR1  
I/O  
MP /  
External System Request Reset 1  
PU1 /  
VEXT  
Default NMI function. See also SCU chapter ´Reset  
Control Unit´ and SCU_IOCR register description.  
EVRWUP  
I
EVR Wakeup Pin  
W17  
K16  
L19  
J16  
VGATE1P  
O
VGATE1P / External Pass Device gate control for EVR13  
- /  
VEXT  
TMS  
I
A2 /  
PD /  
VDDP3  
JTAG Module State Machine Control Input  
Device Access Port Line 1  
DAP1  
I/O  
TRST  
I
A2 /  
JTAG Module Reset/Enable Input  
PD /  
VDDP3  
TCK  
I
I
A2 /  
PD /  
VDDP3  
JTAG Module Clock Input  
Device Access Port Line 0  
DAP0  
M20  
M19  
XTAL1  
XTAL2  
I
XTAL1 /  
- / -  
Main Oscillator/PLL/Clock Generator Input  
Main Oscillator/PLL/Clock Generator Output  
O
XTAL2 /  
- / -  
Table 2-53 Supply  
Pin  
Y6  
Symbol  
Ctrl  
Type  
Vx  
Function  
VAREF1  
I
Positive Analog Reference Voltage 1  
Y7  
VAGND1  
VDDM  
I
I
I
Vx  
Vx  
Vx  
Negative Analog Reference Voltage 1  
ADC Analog Power Supply (3.3V / 5V)  
Y5  
G8, H7  
VDD / VDDSB  
Emulation Device: Emulation SRAM Standby Power  
Supply (1.3V) (Emulation Device only).  
Production Device: VDD (1.3V).  
P8, P13,  
N7, N14,  
H14, G13  
VDD  
VDD  
I
I
Vx  
Vx  
Digital Core Power Supply (1.3V)  
N19  
Digital Core Power Supply (1.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (1.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
A2, B3,  
VEXT  
I
Vx  
External Power Supply (5V / 3.3V)  
V19, W20  
Data Sheet  
2-158  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-53 Supply (cont’d)  
Pin Symbol  
B18, A19 VDDP3  
Ctrl  
Type  
Vx  
Function  
I
Digital Power Supply for Flash (3.3V).  
Can be also used as external 3.3V Power Supply for  
VFLEX.  
N20  
VDDP3  
I
Vx  
Digital Power Supply for Oscillator, LVDSH and A2  
pads (3.3V).  
The supply pin inturn supplies the main XTAL  
Oscillator/PLL (3.3V) . A higher decoupling capacitor is  
therefore recommended to the VSS pin for better noise  
immunity.  
E15, D16 VDDFL3  
I
I
I
I
Vx  
Vx  
Vx  
Vx  
Flash Power Supply (3.3V)  
D5  
VFLEX  
VSSM  
Digital Power Supply for Flex Port Pads  
(5V / 3.3V)  
Y4  
Analog Ground for VDDM  
T11  
VEVRSB  
Standby Power Supply (3.3V/5V) for the Standby  
SRAM (CPU0.DSPR).  
If Standby mode is not used: To be handled like VEXT  
(3.3V/5V).  
B2, D4,  
VSS  
I
Vx  
Digital Ground  
E5, L20,  
T16, U17,  
W19, Y20  
E16, D17, VSS  
B19, A20  
I
I
Vx  
Vx  
Digital Ground (outer balls)  
Digital Ground (center balls)  
P9, P12,  
N9, N10,  
N11, N12  
VSS  
VSS  
VSS  
VSS  
VSS  
M7, M8,  
M10, M11,  
M13, M14  
I
I
I
I
I
Vx  
Vx  
Vx  
Vx  
Vx  
Digital Ground (center balls)  
Digital Ground (center balls)  
Digital Ground (center balls)  
Digital Ground (center balls)  
Digital Ground (center balls)  
L8, L9,  
L10, L11,  
L12, L13  
K8, K9,  
K10, K11,  
K12, K13  
J7, J8,  
J10, J11,  
J13, J14  
H9, H10, VSS  
H11, H12,  
G9, G10,  
G11, G12  
Data Sheet  
2-159  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-53 Supply (cont’d)  
Pin  
Symbol  
Ctrl  
Type  
Vx  
Function  
P10  
VSS  
I
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT TX0N  
P11  
L7  
VSS  
I
I
I
I
I
Vx  
Vx  
Vx  
Vx  
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT TX0P  
VSS  
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT CLKN  
K7  
VSS  
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT CLKP  
L14  
K14  
VSS  
Digital Ground (center balls)  
This ball is used in the Emulation Device as  
AGBT ERR  
NC / VDDPSB  
NCVDDP Emulation Device: Power Supply (3.3V) for DAP/JTAG  
SB  
pad group.  
Production Device: Not Connected.  
U16, U15, NC  
U14, U13,  
U12, U11,  
U7, U6  
I
I
I
NC  
Not Connected. These pins are reserved for future  
extensions and shall not be connected externally.  
T15, T14, NC  
T13, T12,  
T6,T5,T4,  
T2, T1  
NC  
NC  
Not Connected. These pins are reserved for future  
extensions and shall not be connected externally.  
E12, E11, NC  
E10, E9,  
E8, E7,  
Not Connected. These pins are reserved for future  
extensions and shall not be connected externally.  
E6, E4,  
D10, D8,  
D7, D6  
R5, R4,  
P5, L5,  
L4, J5,  
H5, H4,  
G5, G4,  
F5, F4  
NC  
I
NC  
Not Connected. These pins are reserved for future  
extensions and shall not be connected externally.  
Data Sheet  
2-160  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
Table 2-53 Supply (cont’d)  
Pin Symbol  
Ctrl  
Type  
NC  
Function  
R17, R16, NC  
P17, P16,  
I
Not Connected. These pins are reserved for future  
extensions and shall not be connected externally.  
N17, N16,  
M17, M16,  
L17, L16  
A1, Y1, U4 NC  
I
NC1  
Not Connected.  
These pins are not connected on package level and  
will not be used for future extensions.  
Legend:  
Column “Ctrl.”:  
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)  
O = Output  
O0 = Output with IOCR bit field selection PCx = 1X000B  
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)  
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)  
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)  
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)  
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)  
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)  
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)  
Column “Type”:  
LP = Pad class LP (5V/3.3V, LVTTL)  
MP = Pad class MP (5V/3.3V, LVTTL)  
MP+ = Pad class MP (5V/3.3V, LVTTL)  
A2 = Pad class A2 (3.3V, LVTTL)  
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)  
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)  
S = Pad class S (ADC overlayed with General Purpose Input)  
D = Pad class D (ADC)  
PU = with pull-up device connected during reset (PORST = 0)  
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)  
PD = with pull-down device connected during reset (PORST = 0)  
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)  
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode  
OD = open drain during reset (PORST = 0)  
HighZ = tri-state during reset (PORST = 0)  
PORST = PORST input pad  
XTAL1 = XTAL1 input pad  
XTAL2 = XTAL2 input pad  
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a  
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,  
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.  
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active  
during and after reset.  
3) If HWCFG[6] is connected to ground, the PD1/PU1 pins are predominantly in HighZ during and after reset.  
Data Sheet  
2-161  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC267x Pin Definition and Functions:  
VGATE1P = VGATE1P  
VGATE3P = VGATE3P  
Vx = Supply  
NC = These pins are reserved for future extensions and shall not be connected externally  
NC1 = These pins are not connected on package level and will not be used for future extensions  
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details  
pls. see Pin/Ball description of this pin.  
2.3.2  
Emergency Stop Function  
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input  
signal (EMGSTOPA or EMGSTOPB) into a defined state:  
Input state and  
PU or High-Z depending on HWCFG[6] level latched during PORST active  
Control of the Emergency Stop function:  
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop  
Control”)  
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see  
chapter “SCU”, “Emergency Stop Control”)  
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x  
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O  
Lines”, “Emergency Stop Register”).  
The Emergency Stop function is available for all GPIO Ports with the following exceptions:  
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)  
Not available for P40.x (analoge input ANx overlayed with GPI)  
Not available for P32.0 EVR13 SMPS mode.  
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)  
The Emergency Stop function can be overruled on the following GPIO Ports:  
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.  
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O  
Ports and Peripheral I/O Lines”, P00 / P01)  
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register  
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)  
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).  
No Overruling in the DXCM (Debug over can message) mode  
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI  
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode  
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI  
2.3.3  
Pull-Up/Pull-Down Reset Behavior of the Pins  
Data Sheet  
2-162  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-54 List of Pull-Up/Pull-Down Reset Behavior of the Pins  
Pins  
PORST = 0  
PORST = 1  
all GPIOs  
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0  
Pull-up  
TDI, TESTMODE  
PORST1)  
Pull-down with IPORST relevant  
Pull-down with IPDLI relevant  
TRST, TCK, TMS  
ESR0  
Pull-down  
The open-drain driver is used to  
drive low.2)  
Pull-up3)  
ESR1  
TDO  
Pull-up3)  
Pull-up  
High-Z/Pull-up4)  
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.  
2) Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.  
3) See the SCU_IOCR register description.  
4) Depends on JTAG/DAP selection with TRST.  
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case  
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.  
2.4  
TC260 Bare Die Pad Definition:  
List of the TC260x Bare Die Pads describes the pads of the TC260 bare die. It describes also the mapping of  
VADC / DS-ADC channels to the analog inputs (ANx) and the mapping of Port functions to the pads.  
The detailed description of the port functions (Px.y) can be found in the User’s Manual chapter “General Purpose  
I/O Ports and Peripheral I/O LInes (Ports)“.  
Data Sheet  
2-163  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Pad 132  
Pad 65  
Pad 64  
Pad 133  
Y
0.0  
X
Pad 1  
Pad 197  
Pad 260  
Pad 198  
Figure 2-4 TC 260 / 264 / 265 / 267 Logic Symbol for the Bare Die.  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
Pad Name  
P10.8  
Pad Type  
X
Y
Comment  
GPIO  
1
2
LP / PU1 / VEXT 2756500  
-2951000  
-2861000  
P02.0  
MP+ / PU1 /  
VEXT  
2865000  
GPIO  
3
4
5
P02.1  
VSS  
LP / PU1 / VEXT 2756500  
-2671000  
-2581000  
-2446000  
GPIO  
Vx  
2865000  
2756500  
Must be bonded to VSS  
GPIO  
P02.2  
MP+ / PU1 /  
VEXT  
6
7
8
VEXT  
P02.3  
P02.4  
Vx  
2865000  
-2311000  
-2256000  
-2166000  
Must be bonded to VEXT  
LP / PU1 / VEXT 2756500  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
2865000  
9
P02.5  
MP+ / PU1 /  
VEXT  
2756500  
-1976000  
GPIO  
Data Sheet  
2-164  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
10  
Pad Name  
VSS  
Pad Type  
X
Y
Comment  
Vx  
2865000  
-1891000  
-1826000  
-1746000  
-1681000  
-1616000  
-1229000  
-1099000  
Must be bonded to VSS  
GPIO  
11  
P02.6  
P02.7  
VEXT  
P02.8  
VDD  
MP / PU1 / VEXT 2756500  
MP / PU1 / VEXT 2865000  
12  
GPIO  
13  
Vx  
2756500  
Must be bonded to VEXT  
GPIO  
14  
LP / PU1 / VEXT 2865000  
15  
Vx  
Vx  
2865000  
2865000  
Must be bonded to VDD  
16  
VSS  
Must be bonded to VSS.  
Double Pad (Elephant Pad),  
shared with Pad Nr. 17.  
17  
VSS  
Vx  
2865000  
-1059000  
Must be bonded to VSS.  
Double Pad (Elephant Pad),  
shared with Pad Nr. 16.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
VDD  
Vx  
2865000  
-929000  
-814000  
-714000  
-443000  
-383000  
-263000  
-208000  
-153000  
-93000  
Must be bonded to VDD  
GPIO  
P00.0  
VSS  
MP / PU1 / VEXT 2865000  
Vx 2865000  
Must be bonded to VSS  
GPIO  
P00.1  
P00.2  
P00.3  
VSS  
LP / PU1 / VEXT 2756500  
LP / PU1 / VEXT 2865000  
LP / PU1 / VEXT 2756500  
GPIO  
GPIO  
Vx  
2865000  
Must be bonded to VSS  
GPIO  
P00.4  
P00.5  
P00.6  
VEXT  
P00.7  
P00.8  
P00.9  
P00.10  
P00.11  
VSS  
LP / PU1 / VEXT 2756500  
LP / PU1 / VEXT 2865000  
LP / PU1 / VEXT 2756500  
GPIO  
27000  
GPIO  
Vx  
2865000  
82000  
Must be bonded to VEXT  
GPIO  
LP / PU1 / VEXT 2756500  
LP / PU1 / VEXT 2865000  
LP / PU1 / VEXT 2756500  
LP / PU1 / VEXT 2865000  
LP / PU1 / VEXT 2756500  
147000  
217000  
297000  
377000  
442000  
497000  
552000  
607000  
707000  
807000  
907000  
1007000  
1107000  
1227000  
GPIO  
GPIO  
GPIO  
GPIO  
Vx  
2865000  
Must be bonded to VSS  
GPIO  
P00.12  
VDD  
LP / PU1 / VEXT 2756500  
Vx  
Vx  
Vx  
Vx  
Vx  
Vx  
D
2865000  
2865000  
2865000  
2865000  
2865000  
2865000  
2865000  
Must be bonded to VDD  
Must be bonded to VSS  
Must be bonded to VSS  
Must be bonded to VDD  
Must be bonded to VEXT  
Must be bonded to VSS  
Analog input  
VSS  
VSS  
VDD  
VEXT  
VSS  
AN49  
(VADCG2.15)  
43  
AN48  
(VADCG2.14)  
D
2756500  
2-165  
1287000  
Analog input  
Data Sheet  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
44  
Pad Name  
Pad Type  
X
Y
Comment  
VDDM  
Vx  
2865000  
2756500  
1347000  
1407000  
ADC external supply  
45  
AN47 (VADCG2.13 D  
/ DS3.N3)  
Analog input, GPI (SENT,  
CCU6)  
46  
47  
48  
49  
AN46 (VADCG2.12 D  
/ DS3.P3)  
2865000  
2756500  
2865000  
2756500  
1470000  
1530000  
1605000  
1665000  
Analog input, GPI (SENT,  
CCU6)  
AN45 (VADCG2.11 D  
/ DS3.N2)  
Analog input, GPI (SENT,  
CCU6)  
AN44 (VADCG2.10 D  
/ DS3.P2)  
Analog input, GPI (SENT,  
CCU6)  
AN39 (VADCG2.7 / S  
DS3.N1), P40.9  
(SENT5A)  
Analog input, GPI (SENT,  
CCU6)  
50  
51  
AN38 (VADCG2.6 / S  
DS3.P1), P40.8  
(SENT4A)  
2865000  
2756500  
1754000  
1816000  
Analog input, GPI (SENT,  
CCU6)  
AN37 (VADCG2.5 / S  
DS3.N0), P40.7  
(SENT3D)  
Analog input, GPI (SENT,  
CCU6)  
52  
53  
VDDM  
Vx  
2865000  
2756500  
1876000  
1936000  
ADC external supply  
AN36 (VADCG2.4 / S  
DS3.P0), P40.6  
(SENT2D)  
Analog input, GPI (SENT,  
CCU6)  
54  
55  
VSSM  
Vx  
2865000  
2865000  
1996000  
2096000  
ADC ground  
AN35 (VADCG2.3) D  
Analog input (mtm) (with  
pull down diagnostics)  
56  
57  
58  
AN33 (VADCG2.1) D  
AN32 (VADCG2.0) D  
2865000  
2865000  
2865000  
2196000  
2296000  
2396000  
Analog input  
Analog input  
Analog input  
AN29  
(VADCG1.13)  
D
D
S
59  
60  
AN28  
(VADCG1.12)  
2865000  
2865000  
2496000  
2596000  
Analog input  
AN27  
Analog input, GPI (SENT,  
CCU6)  
(VADCG1.11),  
P40.3 (SENT3A)  
61  
AN26  
(VADCG1.10),  
P40.2 (SENT2A)  
S
2865000  
2696000  
Analog input, GPI (SENT,  
CCU6)  
62  
63  
AN25(VADCG1.9), S  
P40.1 (SENT1A)  
2865000  
2865000  
2796000  
2896000  
Analog input, GPI (SENT,  
CCU6)  
AN24(VADCG1.8), S  
P40.0 (SENT0A)  
Analog input, GPI (SENT,  
CCU6)  
64  
65  
VDDM  
VSSM  
Vx  
Vx  
2756500  
2685000  
2956000  
3136000  
ADC external supply  
ADC ground  
Data Sheet  
2-166  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
Pad Name  
Pad Type  
X
Y
Comment  
66  
AN21 (VADCG1.5 / D  
DS2NA)  
2625000  
3027500  
Analog input  
67  
68  
AN20 (VADCG1.4 / D  
DS2PA)  
2525000  
2425000  
3027500  
3027500  
Analog input  
AN19 (VADCG1.3) D  
Analog input (with pull down  
diagnostics)  
69  
70  
71  
72  
AN18 (VADCG1.2) D  
AN17 (VADCG1.1) D  
AN16 (VADCG1.0) D  
2325000  
2225000  
2165000  
2105000  
3027500  
3027500  
3136000  
3027500  
Analog input  
Analog input  
Analog input  
VAGND1  
VAGND0  
VAREF1  
VAREF0  
Vx  
Negative Analog Reference  
Voltage 1  
73  
74  
75  
Vx  
Vx  
Vx  
2045000  
1985000  
1925000  
3136000  
3027500  
3136000  
Negative Analog Reference  
Voltage 0  
Positive Analog Reference  
Voltage 1  
Positive Analog Reference  
Voltage 0  
76  
77  
78  
VSSM  
Vx  
Vx  
Vx  
1865000  
1805000  
1745000  
3027500  
3136000  
3027500  
ADC ground  
VSSMREF  
VSSM_DS  
ADC reference ground.  
DS-ADC ground. Must be  
bonded with VSSM.  
79  
80  
VDDM  
Vx  
Vx  
1675000  
1585000  
3136000  
3027500  
ADC external supply  
VDDM_DS  
DS-ADC external supply.  
Must be bonded with  
VDDM.  
81  
82  
83  
84  
AN13  
(VADCG0.13)  
D
D
D
D
1525000  
1465000  
1405000  
1345000  
3136000  
3027500  
3136000  
3027500  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
AN12  
(VADCG0.12)  
AN11  
(VADCG0.11)  
AN10  
(VADCG0.10)  
85  
86  
AN8 (VADCG0.8)  
AN7 (VADCG0.7)  
D
D
1285000  
1225000  
3136000  
3027500  
Analog input (with pull down  
diagnostics)  
87  
88  
89  
90  
AN6 (VADCG0.6)  
AN5 (VADCG0.5)  
AN4 (VADCG0.4)  
D
D
D
D
1165000  
1105000  
1043000  
983000  
3136000  
3027500  
3136000  
3027500  
Analog input  
Analog input  
Analog input  
Analog input  
AN3 (VADCG0.3 /  
DS0NA)  
91  
VSSM  
Vx  
923000  
2-167  
3136000  
ADC ground  
Data Sheet  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
Pad Name  
Pad Type  
X
Y
Comment  
92  
AN2 (VADCG0.2 /  
DS0PA)  
D
863000  
3027500  
Analog input  
93  
94  
VDDM  
Vx  
D
803000  
743000  
3136000  
3027500  
ADC external supply  
Analog input  
AN1 (VADCG0.1 /  
DS0NB)  
95  
AN0 (VADCG0.0 /  
DS0PB)  
D
656000  
3136000  
Analog input  
96  
97  
98  
99  
VSS  
VEXT  
VDD  
VSS  
Vx  
Vx  
Vx  
Vx  
536000  
486000  
436000  
306000  
3136000  
3027500  
3136000  
3136000  
Must be bonded to VSS  
Must be bonded to VEXT  
Must be bonded to VDD  
Must be bonded to VSS.  
Double Pad (Elephant Pad),  
shared with Pad Nr. 98.  
100  
VSS  
Vx  
266000  
3136000  
Must be bonded to VSS.  
Double Pad (Elephant Pad),  
shared with Pad Nr. 97.  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
VDD  
Vx  
Vx  
Vx  
Vx  
136000  
-250000  
-315000  
-415000  
3136000  
3027500  
3136000  
3136000  
3027500  
3136000  
3027500  
3136000  
3027500  
3136000  
3027500  
3136000  
3027500  
3136000  
Must be bonded to VDD  
VEXT  
VEXT  
EVR_OFF  
P33.0  
P33.1  
P33.2  
P33.3  
P33.4  
VSS  
Must be bonded to VEXT  
Must be bonded to VEXT  
Must be bonded to VSS  
LP / PU1 / VEXT -470000  
LP / PU1 / VEXT -540000  
LP / PU1 / VEXT -600000  
LP / PU1 / VEXT -710000  
LP / PU1 / VEXT -770000  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Vx  
-825000  
Must be bonded to VSS  
P33.5  
P33.6  
P33.7  
P33.8  
LP / PU1 / VEXT -880000  
LP / PU1 / VEXT -1000000  
LP / PU1 / VEXT -1060000  
GPIO  
GPIO  
GPIO  
GPIO  
MP / HighZ /  
VEXT  
-1190000  
115  
116  
117  
118  
119  
120  
121  
122  
123  
P33.9  
VEXT  
P33.10  
P33.11  
P33.12  
VSS  
LP / PU1 / VEXT -1260000  
Vx -1315000  
3027500  
3136000  
3027500  
3136000  
3027500  
3136000  
3027500  
3136000  
3136000  
GPIO  
Must be bonded to VEXT  
GPIO  
MP / PU1 / VEXT -1380000  
MP / PU1 / VEXT -1520000  
MP / PU1 / VEXT -1600000  
GPIO  
GPIO  
Vx  
-1665000  
Must be bonded to VSS  
GPIO  
P33.13  
VSS  
MP / PU1 / VEXT -1730000  
Vx  
Vx  
-1795000  
-1895000  
Must be bonded to VSS  
Must be bonded to VDD  
VDD  
Data Sheet  
2-168  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
Pad Name  
Pad Type  
X
Y
Comment  
124  
P32.0  
LP / EVR13  
SMPS -> PD,  
GPIO -> PU1 /  
VEXT  
-1950000  
3027500  
GPIO  
125  
126  
VGATE1N (SMPS) VGATE1N  
-2005000  
-2055000  
3136000  
3027500  
Must be bonded to VSS if  
EVR13 SMPS is not used.  
Must be bonded to NMOS  
gate if EVR13 SMPS is  
used.  
VGATE1P (SMPS) VGATE1P  
Must be bonded to VEXT if  
EVR13 SMPS is not used.  
Must be bonded to PMOS  
gate if EVR13 SMPS is  
used.  
127  
128  
VGATE3P (LDO)  
VGATE1P (LDO)  
VGATE3P  
VGATE1P  
-2105000  
-2155000  
3136000  
3027500  
Must be bonded to VSS  
Must be bonded to VSS if  
no external P channel  
MOSFET is used for EVR13  
LDO generation. Must be  
bonded to external P  
channnel MOSFET if  
external LDO pass device is  
used.  
129  
130  
131  
132  
133  
VEXT  
P32.2  
P32.3  
VSS  
Vx  
-2205000  
3136000  
3027500  
3027500  
3136000  
3027500  
Must be bonded to VEXT  
LP / PU1 / VEXT -2260000  
LP / PU1 / VEXT -2360000  
GPIO  
GPIO  
Vx  
-2415000  
-2570000  
Must be bonded to VSS  
GPIO  
P32.4  
MP+ / PU1 /  
VEXT  
134  
135  
P23.0  
P23.1  
LP / PU1 / VEXT -2670000  
3027500  
2921000  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
-2865000  
136  
137  
138  
139  
VEXT  
P23.2  
P23.3  
P23.4  
Vx  
-2756500  
2846000  
2791000  
2689000  
2589000  
Must be bonded to VEXT  
LP / PU1 / VEXT -2865000  
LP / PU1 / VEXT -2865000  
GPIO  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
-2865000  
-2756500  
-2865000  
140  
P23.5  
MP+ / PU1 /  
VEXT  
2489000  
GPIO  
141  
142  
VSS  
Vx  
2414000  
2349000  
Must be bonded to VSS  
GPIO  
P22.0  
MP / LVDSM_N / -2756500  
PU1 / VEXT  
Data Sheet  
2-169  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
Pad Name  
Pad Type  
X
Y
Comment  
143  
P22.1  
MP / LVDS_P /  
PU1 / VEXT  
-2756500  
1999000  
GPIO  
144  
145  
P22.2  
P22.3  
MP / LVDSM_N / -2756500  
PU1 / VEXT  
1899000  
1549000  
GPIO  
GPIO  
MP / LVDS_P /  
PU1 / VEXT  
-2756500  
146  
147  
148  
149  
150  
151  
152  
153  
154  
VEXT  
VEXT  
VDD  
Vx  
-2865000  
-2756500  
-2865000  
-2865000  
-2865000  
-2865000  
-2865000  
-2865000  
-2756500  
1484000  
1434000  
1384000  
1284000  
1184000  
1084000  
818000  
Must be bonded to VEXT  
Must be bonded to VEXT  
Must be bonded to VDD  
Must be bonded to VSS  
Must be bonded to VSS  
Must be bonded to VDD  
Must be bonded to VDD  
Must be bonded to VSS  
Vx  
Vx  
VSS  
Vx  
VSS  
Vx  
VDD  
Vx  
VDDOSC  
VSSOSC  
XTAL1  
Vx  
Vx  
718000  
XTAL1  
610500  
Main Oscillator/PLL/Clock  
Generator Input. Must be  
bonded to external quartz or  
resonator.  
155  
XTAL2  
XTAL2  
-2756500  
510500  
Main Oscillator/PLL/Clock  
Generator Input. Must be  
bonded to external quartz or  
resonator.  
156  
157  
158  
159  
160  
161  
162  
163  
VSSOSC  
VDDOSC3  
VDDP3  
VSSP  
Vx  
Vx  
Vx  
Vx  
-2865000  
-2756500  
-2756500  
-2865000  
403000  
353000  
253000  
203000  
153000  
53000  
Must be bonded to VSS  
Must be bonded to VDDP3  
Must be bonded to VDDP3  
Must be bonded to VSS  
GPIO  
P21.0  
A2 / PU1 / VDDP3 -2756500  
A2 / PU1 / VDDP3 -2756500  
P21.1  
GPIO  
VSSP  
Vx  
-2865000  
3000  
Must be bonded to VSS  
GPIO  
P21.2  
LVDSH_N / PU1 / -2756500  
VDDP3  
-59500  
164  
P21.3  
LVDSH_P / PU1 / -2756500  
VDDP3  
-159500  
GPIO  
165  
166  
VDDP3  
P21.4  
Vx  
-2865000  
-222000  
-296500  
Must be bonded to VDDP3  
GPIO  
LVDSH_N / PU1 / -2756500  
VDDP3  
167  
P21.5  
LVDSH_P / PU1 / -2756500  
VDDP3  
-447500  
GPIO  
168  
169  
170  
P21.6  
VDDP3  
VSSP  
A2 / PU / VDDP3 -2756500  
-547000  
-597000  
-812000  
GPIO, TDI  
Vx  
Vx  
-2865000  
-2865000  
Must be bonded to VDDP3  
Must be bonded to VSS  
Data Sheet  
2-170  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
Pad Name  
Pad Type  
X
Y
Comment  
171  
TMS /DAP1  
A2 / PD / VDDP3 -2756500  
-862000  
JTAG Module TMS Input /  
Device Access Port Line 1  
172  
173  
P21.7  
A2 / PU / VDDP3 -2865000  
A2 / PD / VDDP3 -2756500  
-912000  
-982000  
GPIO, TDO  
TRST (N)  
JTAGModuleReset/Enable  
Input  
174  
TCK /DAP0  
A2 / PD / VDDP3 -2865000  
-1032000  
JTAG Module Clock Input /  
Device Access Port Line 0  
175  
176  
177  
P20.0  
P20.1  
P20.2  
MP / PU1 / VEXT -2756500  
LP / PU1 / VEXT -2865000  
-1167000  
-1237000  
-1292000  
GPIO  
GPIO  
LP / PU / VEXT  
-2756500  
Testmode pin must be  
bonded  
178  
179  
180  
VSS  
Vx  
-2865000  
-1342000  
-1397000  
-1472000  
Must be bonded to VSS  
GPIO  
P20.3  
LP / PU1 / VEXT -2756500  
ESR1 (N)  
/EVRWUP  
MP / PU1  
-2865000  
-2756500  
-2865000  
External System Request  
Reset 1. Default NMI  
function. / EVR Wakeup Pin  
181  
182  
PORST (N)  
PORST / PD /  
VEXT  
-1554500  
-1642000  
Power On Reset Input.  
Additional strong PD in case  
of power fail.  
ESR0 (N)  
/EVRWUP  
MP / OD  
External System Request  
Reset 0. Default  
configuration during and  
after reset is open-drain  
driver. The driver drives low  
during power-on reset.  
/EVR Wakeup Pin  
183  
184  
185  
VEXT  
VDD  
VSS  
Vx  
Vx  
Vx  
-2756500  
-2865000  
-2865000  
-1707000  
-1757000  
-1887000  
Must be bonded to VEXT  
Must be bonded to VDD  
Must be bonded to VSS.  
Double Pad (Elephant Pad),  
shared with Pad Nr. 184.  
186  
VSS  
Vx  
-2865000  
-1927000  
Must be bonded to VSS.  
Double Pad (Elephant Pad),  
shared with Pad Nr. 183.  
187  
188  
189  
190  
191  
192  
193  
194  
VDD  
Vx  
-2865000  
-2057000  
-2112000  
-2167000  
-2222000  
-2317000  
-2387000  
-2497000  
-2562000  
Must be bonded to VDD  
P20.6  
VSS  
LP / PU1 / VEXT -2756500  
Vx -2865000  
GPIO  
Must be bonded to VSS  
P20.7  
P20.8  
P20.9  
P20.10  
VEXT  
LP / PU1 / VEXT -2756500  
MP / PU1 / VEXT -2865000  
LP / PU1 / VEXT -2756500  
MP / PU1 / VEXT -2865000  
GPIO  
GPIO  
GPIO  
GPIO  
Vx  
-2756500  
Must be bonded to VEXT  
Data Sheet  
2-171  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
Pad Name  
P20.11  
P20.12  
VSS  
Pad Type  
X
Y
Comment  
MP / PU1 / VEXT -2865000  
MP / PU1 / VEXT -2756500  
-2627000  
-2707000  
-2772000  
-2837000  
-2937000  
-3027500  
-3027500  
-3136000  
-3136000  
-3027500  
-3136000  
-3136000  
-3027500  
-3136000  
-3027500  
-3136000  
-3027500  
GPIO  
GPIO  
Vx  
-2865000  
Must be bonded to VSS  
P20.13  
P20.14  
P15.0  
P15.1  
P15.2  
P15.3  
VEXT  
P15.4  
P15.5  
P15.6  
VSS  
MP / PU1 / VEXT -2756500  
MP / PU1 / VEXT -2756500  
LP / PU1 / VEXT -2680000  
LP / PU1 / VEXT -2580000  
MP / PU1 / VEXT -2510000  
MP / PU1 / VEXT -2410000  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Vx  
-2345000  
Must be bonded to VEXT  
MP / PU1 / VEXT -2280000  
MP / PU1 / VEXT -2180000  
MP / PU1 / VEXT -2059000  
GPIO  
GPIO  
GPIO  
Vx  
-1994000  
Must be bonded to VSS  
P15.7  
P15.8  
P14.0  
MP / PU1 / VEXT -1929000  
MP / PU1 / VEXT -1849000  
GPIO  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
-1741000  
212  
213  
214  
P14.1  
VEXT  
P14.2  
MP / PU1 / VEXT -1641000  
Vx -1576000  
-3027500  
-3136000  
-3027500  
GPIO  
Must be bonded to VEXT  
LP / PU1 / VEXT -1521000  
Must be bonded to VEXT if  
EVR13 active. Must be  
bonded to VSS if EVR13  
inactive.  
215  
216  
217  
218  
P14.3  
P14.4  
VSS  
LP / PU1 / VEXT -1461000  
LP / PU1 / VEXT -1386000  
-3136000  
-3027500  
-3136000  
-3027500  
GPIO  
GPIO  
Vx  
-1331000  
-1256000  
Must be bonded to VSS  
GPIO  
P14.5  
MP+ / PU1 /  
VEXT  
219  
P14.6  
MP+ / PU1 /  
VEXT  
-1156000  
-3136000  
GPIO  
220  
221  
222  
P14.7  
P14.8  
P14.9  
LP / PU1 / VEXT -1076000  
LP / PU1 / VEXT -1016000  
-3027500  
-3136000  
-3027500  
GPIO  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
-936000  
223  
P14.10  
MP+ / PU1 /  
VEXT  
-836000  
-3027500  
GPIO  
224  
225  
226  
Reserved  
VEXT  
Vx  
Vx  
Vx  
-761000  
-711000  
-661000  
-3136000  
-3027500  
-3136000  
Must be bonded to VSS  
Must be bonded to VEXT  
Must be bonded to VSS  
VSS  
Data Sheet  
2-172  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
227  
Pad Name  
VEXT  
Pad Type  
X
Y
Comment  
Vx  
Vx  
-611000  
-531000  
-3027500  
-3136000  
Must be bonded to VEXT  
228  
VSS  
Must be bonded to VSS.  
Double Pad (Elephant Pad),  
shared with Pad Nr. 228.  
229  
230  
VDDP3  
VSS  
Vx  
Vx  
-508500  
-486000  
-3027500  
-3136000  
Must be bonded to VDDP3  
Must be bonded to VSS.  
Double Pad (Elephant Pad),  
shared with Pad Nr. 226.  
231  
232  
233  
234  
235  
236  
VDDP3  
VDDFL3  
VDDFL3  
VDDFL3  
VSS  
Vx  
Vx  
Vx  
Vx  
Vx  
-391000  
-311000  
-211000  
-143500  
-91000  
-3027500  
-3136000  
-3136000  
-3027500  
-3136000  
-3027500  
Must be bonded to VDDP3  
Must be bonded to VDDP3  
Must be bonded to VDDP3  
Must be bonded to VDDP3  
Must be bonded to VSS  
GPIO  
P13.0  
MP / LVDSM_N / -26000  
PU1 / VEXT  
237  
P13.1  
MP / LVDSM_P / 324000  
PU1 / VEXT  
-3027500  
GPIO  
238  
239  
VEXT  
P13.2  
Vx  
389000  
-3136000  
-3027500  
Must be bonded to VEXT  
GPIO  
MP / LVDSM_N / 454000  
PU1 / VEXT  
240  
241  
242  
243  
244  
P13.3  
P11.2  
P11.3  
P11.6  
P11.9  
MP / LVDSM_P / 804000  
PU1 / VEXT  
-3027500  
-3027500  
-3027500  
-3027500  
-3027500  
GPIO  
MPR / PU1 /  
VFLEX  
964000  
GPIO  
MPR / PU1 /  
VFLEX  
1064000  
1164000  
1264000  
GPIO  
MPR / PU1 /  
VFLEX  
GPIO  
MP+ / PU1 /  
VFLEX  
GPIO  
245  
246  
VSSFLEX  
VDDFLEX  
Vx  
Vx  
1339000  
1389000  
-3136000  
-3027500  
Must be bonded to VSS  
Must be bonded to VEXT or  
VDDP3  
247  
248  
249  
250  
VDD  
Vx  
Vx  
1439000  
1539000  
-3136000  
-3136000  
-3027500  
-3136000  
Must be bonded to VDD  
Must be bonded to VSS  
GPIO  
VSS  
P11.10  
P11.11  
LP / PU1 / VFLEX 1594000  
MP+ / PU1 /  
VFLEX  
1682000  
GPIO  
251  
252  
P11.12  
P10.0  
MPR / PU1 /  
VFLEX  
1782000  
-3027500  
-3136000  
GPIO  
GPIO  
LP / PU1 /VEXT 1932000  
Data Sheet  
2-173  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
Table 2-55 List of the TC260x Bare Die Pads  
Number  
Pad Name  
Pad Type  
X
Y
Comment  
253  
P10.1  
MP+ / PU1 /  
VEXT  
2012000  
-3027500  
GPIO  
254  
255  
256  
257  
P10.2  
VSS  
MP / PU1 / VEXT 2112000  
Vx 2177000  
MP / PU1 / VEXT 2242000  
-3027500  
-3136000  
-3027500  
-3136000  
GPIO  
Must be bonded to VSS  
P10.3  
P10.4  
GPIO  
GPIO  
MP+ / PU1 /  
VEXT  
2360000  
258  
259  
260  
261  
262  
P10.5  
VEXT  
P10.6  
P10.7  
VSS  
LP / PU1 / VEXT 2460000  
Vx 2515000  
-3136000  
-3027500  
-3136000  
-3027500  
-3136000  
GPIO  
Must be bonded to VEXT  
GPIO  
LP / PU1 / VEXT 2570000  
LP / PU1 / VEXT 2630000  
GPIO  
Vx  
2685000  
Must be bonded to VSS  
Data Sheet  
2-174  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
2.4.1  
TC 260 / 264 / 265 / 267 Bare Die Pad Description  
Legend:  
Column “Number”:  
Running number of pads in the pad frame  
Column “Name”:  
Symbolic name of the pad.  
The functions mapped on GPIO pads “Px.y” are described in the User’s Manual chapter ”General Purpose I/O  
Ports and Peripheral I/O LInes (Ports)”  
Column “Type”:  
LP = Pad class LP (5V/3.3V, LVTTL)  
MP = Pad class MP (5V/3.3V, LVTTL)  
MP+ = Pad class MP (5V/3.3V, LVTTL)  
A2 = Pad class A2 (3.3V, LVTTL)  
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)  
LVDSH = Pad class LVDSM (LVDS/CMOS 3.3V)  
S = Pad class D (ADC)  
D = Pad class D (ADC)  
PU = with pull-up device connected during reset (PORST = 0)1)  
PD = with pull-down device connected during reset (PORST = 0)  
OD = open drain during reset (PORST = 0)  
High-Z = tri-state during reset (PORST = 0)  
Column “X” / “Y”:  
Pad opening center coordinates  
2.4.2  
Pull-Up/Pull-Down Reset Behavior of the Pins  
Table 2-56 List of Pull-Up/Pull-Down Reset Behavior of the Pins  
Pins  
PORST = 0  
PORST = 1  
all GPIOs  
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0  
Pull-up  
TDI, TESTMODE  
PORST1)  
Pull-down with IPORST relevant  
Pull-down with IPDLI relevant  
TRST, TCK, TMS  
ESR0  
Pull-down  
The open-drain driver is used to  
drive low.2)  
Pull-up3)  
ESR1  
TDO  
Pull-up3)  
Pull-up  
High-Z/Pull-up4)  
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.  
2) Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.  
3) See the SCU_IOCR register description.  
4) Depends on JTAG/DAP selection with TRST.  
1) The default pad reset state (PU or High-Z) can be controlled via HWCFG6 (P14.4).  
Data Sheet  
2-175  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:  
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case  
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.  
Data Sheet  
2-176  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationParameter Interpretation  
3
Electrical Specification  
3.1  
Parameter Interpretation  
The parameters listed in this section partly represent the characteristics of the TC 260 / 264 / 265 / 267 and partly  
its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they  
are marked with an two-letter abbreviation in column “Symbol”:  
CC  
Such parameters indicate Controller Characteristics which are a distinctive feature of the TC 260 / 264 / 265 /  
267 and must be regarded for a system design.  
SR  
Such parameters indicate System Requirements which must provided by the microcontroller system in which  
the TC 260 / 264 / 265 / 267 designed in.  
Data Sheet  
4-177  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationAbsolute Maximum Ratings  
3.2  
Absolute Maximum Ratings  
Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any other conditions above those  
indicated in the Operational Conditions of this specification is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Table 3-1 Absolute Maximum Ratings  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Storage Temperature  
T
ST SR  
-65  
-
170  
°C  
upto 65h @ TJ =  
150°C; upto 15h @ TJ  
= 170°C  
Voltage at VDD power supply  
pins with respect to VSS  
V
V
DD SR  
-
-
-
-
1.9  
V
V
1)  
Voltage at VDDP3 and VDDFL3  
DDP3 SR  
4.43  
power supply pins with respect  
1)  
to VSS  
Voltage at VDDM, VEXT and  
V
DDM SR  
-
-
-
7.0  
V
V
V
FLEX power supply pins with  
1)  
respect to VSS  
Voltage on any class A2 and  
LVDSH input pin with respect  
VIN SR  
-0.5  
min(  
VDDP3  
0.6 , 4.23  
Whatever is lower  
+
1)2)  
to VSS  
)
Voltage on all other input pins VIN SR  
with respect to VSS  
-0.5  
-10  
-
-
-
7.0  
10  
V
1)2)  
Input current on any pin during IIN SR  
mA  
mA  
overload condition 3)  
Absolute maximum sum of all ΣIIN SR  
input circuit currents during  
overload condition 3)  
-100  
100  
1) Valid for cumulated for up to 2.8h and pulse forms following a power supply switch on phase, where the rise and fall times  
are releated to the system capacities and coils.  
2) Voltages below VINmin have no Impact to the device reliabiltiy as Long as the times and currents defined in section Pin  
Reliability in Overload for the affected pad(s) are not violated.  
3) This parameter is an Absolute Maximum Rating. Exposure to Absolute Maximum Ratings for extended periods of time may  
damage the device.  
Data Sheet  
4-178  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPin Reliability in Overload  
3.3  
Pin Reliability in Overload  
When receiving signals from higher voltage devices, low-voltage devices experience overload currents and  
voltages that go beyond their own IO power supplies specification.  
The following table defines overload conditions that will not cause any negative reliability impact if all the following  
conditions are met:  
full operation life-time is not exceeded  
Operating Conditions are met for  
pad supply levels  
temperature  
If a pin current is out of the Operating Conditions but within the overload parameters, then the parameters  
functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still  
possible in most cases but with relaxed parameters.  
Note:An overload condition on one or more pins does not require a reset.  
Table 3-2 Overload Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-5  
-15 1)  
Max.  
5
15 1)  
Input current on any digital pin IIN  
during overload condition  
-
-
mA  
mA  
except LVDS pins  
except LVDS pins;  
limited to max. 20  
pulses with 1ms pulse  
length  
Input current on LVDS pin  
during overload condition  
IINLVDS  
-3  
-
-
3
mA  
mA  
Absolute maximum sum of all IING  
input circuit currents during  
overload condition  
-50  
50  
Input current on analog input  
pin during overload condition  
IINANA  
-3  
-5  
-
-
3
5
mA  
mA  
limited to 60h over  
lifetime  
Absolute sum of all ADC inputs IINSCA  
during overload condition  
-20  
-
-
20  
mA  
mA  
Absolute maximum sum of all ΣIINS  
input circuit currents during  
overload condition  
-100  
100  
Signal voltage over/undershoot VOUS  
at GPIOs  
V
SS - 2  
-
VEXT/FLEX  
+ 2  
V
limited to 60h over  
lifetime; Valid for LP,  
MP, MP+, and MPR  
pads  
Inactive device pin current  
during overload condtion 2)  
IID  
-1  
-
-
1
mA  
mA  
All power supply  
voltages VDDx = 0  
Sum of all inactive device pin IIDS  
-100  
100  
currents 2)  
Data Sheet  
4-179  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPin Reliability in Overload  
Table 3-2 Overload Parameters (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Overload coupling factor for  
digital inputs, negative 3)  
KOVDN CC  
-
2*10-4  
6*10-4  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
LP and A2 pads; -2mA  
< IIN < 0mA  
-
-
-
-
1*10-2  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
LP and A2 pads; -5mA  
< IIN < -2mA  
1.7*10-3  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
MP, MP+, and MPR  
pads; -2mA < IIN <  
0mA  
-
-
-
-
2*10-2  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
MP, MP+, and MPR  
pads; -5mA < IIN < -  
2mA  
0.3  
Overload injected on  
LVDS pad and  
affecting neighbor  
LVDS pads  
-
-
-
-
0.93  
couplingbetweenpads  
21.2 and 21.3  
Overload coupling factor for  
digital inputs, positive 3)  
KOVDP CC  
1*10-5  
Overload injected on  
GPIO non LVDS pad  
and affecting neighbor  
GPIO non LVDS pads  
-
-
-
-
1*10-4  
5*10-4  
Overload injected on  
GPIO pad and  
affecting neighbor  
P32.0 pad  
Overload injected on  
LVDS pad and  
affecting neighbor  
LVDS pads  
Data Sheet  
4-180  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPin Reliability in Overload  
Table 3-2 Overload Parameters (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Overload coupling factor for  
analog inputs, negative  
KOVAN CC  
-
-
6*10-4 4)  
Analog Inputs overlaid  
with class LP pads or  
pull down diagnostics;  
-1mA < IIN < 0mA  
-
-
1*10-2  
Analog Inputs overlaid  
with class LP pads or  
pull down diagnostics;  
-5mA < IIN < -1mA  
-
-
-
-
1*10-4  
1*10-5  
else; -5mA < IIN < 0mA  
5mA < IIN < 0mA  
Overload coupling factor for  
analog inputs, positive  
KOVAP CC  
1) Reduced VADC / DSADC result accuracy and / or GPIO input levels (VIL and VIH) can differ from specified parameters.  
2) Limitations for time and supply levels specified in this section are not valid for this parameter.  
3) Overload is measured as increase of pad leakage caused by injection on neighbor pad.  
4) For analogue inputs overlaid with DSADC function the VCM holdbuffer shall be enabled, in case DSADCs are enabled.  
Note:DSADC input pins count as analog pins as they are overlaid with VADC pins.  
Table 3-3 PN-Junction Characteristics for positive Overload  
Pad Type  
IIN = 3 mA  
IIN = 5 mA  
F / A2  
UIN = VDDP3 + 0.5 V  
UIN = VEXT / FLEX + 0.75 V  
UIN = VEXT + 0.75 V  
UIN = VDDP3 + 0.5 V  
UIN = VDDM + 0.75 V  
UIN = VDDP3 + 0.6 V  
LP / MP / MP+ / MPR  
UIN = VEXT / FLEX + 0.8 V  
LVDSM  
LVDSH  
D
-
-
-
Table 3-4 PN-Junction Characteristics for negative Overload  
Pad Type  
IIN = -3 mA  
IIN = -5 mA  
F / A2  
UIN = VSS - 0.5 V  
UIN = VSS - 0.75 V  
UIN = VSS - 0.75 V  
UIN = VSS - 0.5 V  
UIN = VSS - 0.75 V  
UIN = VSS - 0.6 V  
LP / MP / MP+ / MPR  
UIN = VSS - 0.8 V  
LVDSM  
LVDSH  
D
-
-
-
Data Sheet  
4-181  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationOperating Conditions  
3.4  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the  
TC 260 / 264 / 265 / 267. All parameters specified in the following tables refer to these operating conditions, unless  
otherwise noticed.  
Digital supply voltages applied to the TC 260 / 264 / 265 / 267 must be static regulated voltages.  
All parameters specified in the following tables refer to these operating conditions (see table below), unless  
otherwise noticed in the Note / Test Condition column.  
Table 3-5 Operating Conditions  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
200  
200  
200  
200  
200  
400  
100  
200  
100  
200  
100  
200  
100  
100  
100  
80  
SRI frequency  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
SRI SR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
mA  
Max System Frequency  
CPU0 Frequency  
CPU1 Frequency  
PLL output frequency  
PLL_ERAY output frequency  
SPB frequency  
MAX SR  
CPU0 SR  
CPU1 SR  
PLL SR  
-
-
-
20  
PLLERAY SR 20  
SPB SR  
-
-
-
-
-
-
-
-
-
-
-
-
-
ASCLIN fast frequency  
ASCLIN slow frequency  
Baud2 frequency  
Baud1 frequency  
FSI2 frequency  
ASCLINF SR  
ASCLINS SR  
BAUD2 SR  
BAUD1 SR  
FSI2 SR  
FSI frequency  
FSI SR  
GTM frequency  
GTM SR  
STM SR  
STM frequency  
ERAY frequency  
ERAY SR  
BBB SR  
BBB frequency  
100  
100  
100  
MultiCAN frequency  
CAN SR  
Absolute sum of short circuit  
currents of the device  
ΣISC_D SR  
Ambient Temperature  
TA SR  
-40  
-40  
-40  
-
-
-
125  
150  
170  
°C  
°C  
°C  
valid for all SAK  
products  
valid for all SAL  
products  
valid for all SAL  
products without  
package  
Junction Temperature  
TJ SR  
-40  
-40  
-
-
150  
170  
°C  
°C  
valid for all SAK  
products  
valid for all SAL  
products  
Data Sheet  
4-182  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationOperating Conditions  
Table 3-5 Operating Conditions (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Core Supply Voltage 1)  
V
DD SR  
1.17  
1.3  
1.43 2)  
V
Only required if  
externally supplied  
ADC analog supply voltage  
V
V
DDM SR  
EXT SR  
2.97  
2.97  
5.0  
-
5.5 3)  
4.5  
V
V
Digital external supply voltage  
for LP, MP, MP+ and LVDSM  
pads and EVR 4)  
3.3V pad parameters  
are valid  
4.5  
5.0  
-
5.5 3)  
4.5  
V
V
V
V
5V pad parameters are  
valid  
Digital supply voltage for Flex  
port  
V
FLEX SR  
2.97  
4.5  
3.3V pad parameters  
are valid  
5.0  
3.3  
5.5 3)  
3.63 6)  
5V pad parameters are  
valid  
Digital supply voltage for  
LVDSH and A2 pads 5)  
V
V
DDP3 SR  
2.97  
3.3V pad parameters  
are valid; only required  
if externally supplied  
Flash supply voltage 3.3V 1)  
DDFL3 SR 2.97  
3.3  
3.63  
V
Only required if  
externally supplied  
Digital ground voltage  
V
V
SS SR  
0
-
-
V
V
V
V
Analog ground voltage for VDDM  
SSM CC  
-0.1  
0
-
0.1  
Voltage to ensure defined pad VDDPPA CC 0.72  
-
-
A2 and LVDSH  
states 7)  
1.4  
-
LP, MP, MP+, MPR  
and LVDSM  
Digital supply voltage for GPIO VDDP3 SR  
2.97  
3.3  
3.63  
V
pads and EVR 5)  
SCR CCLK frequency  
SCR PCLK frequency  
SCR RTC frequency  
SCR WDT frequency  
f
f
f
f
CCLK SR  
PCLK SR  
RTC SR  
0.07  
-
-
-
-
20  
20  
20  
20  
MHz  
MHz  
MHz  
MHz  
0.07  
0.0002  
WDTCLK SR 0.00078  
1) No external inductive load permissible if EVR is used. All VDD pins shall be connected together externally on the PCB.  
2) Voltage overshoot to 1.69V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and  
leakage is increased.  
3) Voltage overshoot to 6.5V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and  
leakage is increased.  
4) All VEXT pins shall be connected together externally on the PCB.  
5) All VDDP3 pins shall be connected together externally on the PCB.  
6) Voltage overshoot to 4.29V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and  
leakage is increased.  
7) This parameter is valid under the assumption the PORST signal is constantly at low level during the power-up/power-down  
of VDDP3  
.
Data Sheet  
4-183  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
3.5  
5 V / 3.3 V switchable Pads  
Pad classes LP, MP, MP+, and MPR support both Automotive Level (AL) or TTL level (TTL) operation. Parameters  
are defined for AL operation and degrade in TTL operation.  
Table 3-6 Standard_Pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Pin capacitance (digital  
inputs/outputs)  
CIO CC  
-
6
10  
pF  
ns  
Spike filter always blocked  
pulse duration  
t
SF1 CC  
-
-
80  
-
PORST only  
PORST only  
Spike filter pass-through pulse tSF2 CC  
220  
-
ns  
duration  
PORST pad output current 1)  
I
PORST CC 11  
13  
-
-
mA  
mA  
V
EXT = 3.0V; VPORST  
0.9V; TJ = 165°C  
EXT = 4.5V; VPORST  
1.0V  
=
=
-
-
V
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.  
Table 3-7 Class LP 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL  
150  
-
Input Hysteresis for LP pad 1) HYSLP CC 0.09 *  
VEXT/FLEX  
0.075 *  
VEXT/FLEX  
-
-
-
V
TTL  
Input Leakage current for LP  
pad  
I
OZLP CC  
-150  
150  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-350  
-
-
350  
nA  
nA  
else  
Input leakage current for P32.0 IOZP320 CC -4900  
4900  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-9400  
-
9400  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); for TJ >  
150°C  
-5800  
-
-
-
-
-
5800  
nA  
nA  
µA  
µA  
µA  
else  
-12000  
12000  
else; for TJ > 150°C  
Pull-up current for LP pad  
I
PUHLP CC  
|30|  
|43|  
-
-
V
V
V
IHmin; AL  
-
IHmin; TTL  
|107|  
ILmax; AL and TTL  
Data Sheet  
4-184  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-7 Class LP 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-
Max.  
|100|  
-
Pull-down current for LP pad  
I
PDLLP CC  
-
µA  
V
V
V
IHmin; AL and TTL  
ILmax; AL  
|46|  
|21|  
200  
-
µA  
-
-
µA  
ILmax; TTL  
On-Resistance for LP pad,  
weak driver 2)  
RDSONLPW  
CC  
620  
1040  
Ohm  
PMOS/NMOS ;  
I
OH=0.5mA; IOL=0.5mA  
On-Resistance for LP pad,  
medium driver 2)  
Rise / fall time for LP pad 3)  
RDSONLPM  
CC  
50  
-
155  
260  
Ohm  
PMOS/NMOS ;  
I
OH=2mA; IOL=2mA  
t
LP CC  
-
-
-
-
-
95+2.1 * ns  
CL  
CL50pF; pin out  
driver=weak  
-
200+2.9 * ns  
( CL - 50 )  
CL50pF; CL200pF;  
pin out driver=weak  
-
25+0.5 * ns  
CL  
CL50pF; pin out  
driver=medium  
-
50+0.75 * ns  
( CL - 50 )  
CL50pF; CL200pF;  
pin out driver=medium  
Input high voltage for LP pad  
Input low voltage for LP pad  
V
V
V
IHLP SR  
ILLP SR  
ILHLP CC  
(0.73*VEX  
T/FLEX)-  
0.25  
2.03 4)  
-
V
Hysteresis active, AL  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
-
(0.52*VEX  
T/FLEX)-  
0.25  
0.8 5)  
-
-
-
V
V
Hysteresis active, TTL  
Input low / high voltage for LP  
pad  
1.85  
3.0  
Hysteresis inactive;  
not available for P14.2,  
P14.4, and P15.1  
Pad set-up time for LP pad  
t
SET_LP CC  
-
-
-
100  
ns  
Input leakage current for P02.1 IOZ021 CC  
-150  
1030  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); TJ >  
150°C  
-150  
-
340  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); TJ =  
150°C  
-420  
-350  
-
-
-
-
-
-
-
-
1100  
nA  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
else; TJ > 150°C  
else; TJ = 150°C  
380  
Pull down current for P32_0 pin IPDLP320 CC -  
|41|  
|105|  
V
V
V
V
V
V
IHmin; AL and TTL  
ILmax; AL  
-
|16|  
-
ILmax; TTL  
Pull Up Current for P32_0 pin  
I
PUHP320 CC |25|  
-
IHmin; AL  
|38|  
-
-
IHmin; TTL  
|112|  
ILmax; AL and TTL  
Data Sheet  
4-185  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-7 Class LP 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Short Circuit current for LP pad ISC SR  
-10  
-
10  
mA  
%
absolute max value  
(PSI5)  
6)  
Deviation of symmetry for rising SYM CC  
-
-
20  
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-8 Class LP 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL and TTL  
100  
-
Input Hysteresis for LP pad 1) HYSLP CC 0.05 *  
VEXT/FLEX  
Input Leakage current for LP  
pad  
I
OZLP CC  
-150  
-
150  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-350  
-
-
350  
nA  
nA  
else  
Input leakage current for P32.0 IOZP320 CC -4900  
4900  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-9400  
-
9400  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); for TJ >  
150 °C  
-5800  
-
5900  
nA  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
else  
-12000  
-
12000  
else; for TJ > 150°C  
Pull-up current for LP pad  
I
I
PUHLP CC  
|17|  
|19|  
-
-
-
V
V
V
V
V
V
IHmin; AL  
-
-
IHmin; TTL  
-
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for LP pad  
PDLLP CC  
-
-
|22|  
|11|  
250  
-
-
-
ILmax; TTL  
On-Resistance for LP pad,  
weak driver 2)  
RDSONLPW  
CC  
875  
1500  
; NMOS/PMOS ;  
I
OH=0.25mA;  
IOL=0.25mA  
On-Resistance for LP pad,  
medium driver 2)  
RDSONLPM  
CC  
70  
235  
400  
Ohm  
; NMOS/PMOS ;  
IOH=1mA; IOL=1mA  
Data Sheet  
4-186  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-8 Class LP 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise / fall time for LP pad 3)  
t
LP CC  
-
-
-
-
-
-
150+3.4 * ns  
CL  
CL50pF; pin out  
driver=weak  
-
-
-
320+4.5 * ns  
( CL - 50 )  
CL50pF; CL200pF;  
pin out driver=weak  
30+0.8*C ns  
CL50pF; pin out  
driver=medium  
L
70+1.1 * ( ns  
CL - 50 )  
CL50pF; CL200pF;  
pin out driver=medium  
Input high voltage for LP pad  
Input low voltage for LP pad  
V
V
V
IHLP SR  
ILLP SR  
ILHLP CC  
(0.73*VEX  
T/FLEX)-  
0.25  
1.6 4)  
-
V
Hysteresis active, AL  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.5 5)  
V
V
Hysteresis active, TTL  
Input low / high voltage for LP  
pad  
1.1  
1.9  
Hysteresis inactive;  
not available for P14.2,  
P14.4, and P15.1  
Pad set-up time for LP pad  
t
SET_LP CC  
-
-
-
100  
920  
ns  
Input leakage current for P02.1 IOZ021 CC  
-150  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); TJ >  
150°C  
-150  
-
330  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX); TJ =  
150°C  
-360  
-350  
-
-
-
-
-
-
-
-
-
1000  
nA  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
else; TJ > 150°C  
else; TJ = 150°C  
375  
Pull down current for P32_0 pin IPDLP320 CC -  
|17|  
|80|  
V
V
V
V
V
V
IHmin; AL and TTL  
ILmax; AL  
-
|6|  
-
ILmax; TTL  
Pull Up Current for P32_0 pin  
I
PUHP320 CC |12|  
-
IHmin; AL  
|14|  
-
-
IHmin; TTL  
|80|  
10  
ILmax; AL and TTL  
Short Circuit current for LP pad ISC SR  
-10  
absolute max value  
(PSI5)  
6)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
Data Sheet  
4-187  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-9 Class MP 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL  
150  
-
Input Hysteresis for MP pad 1) HYSMP CC 0.09 *  
VEXT/FLEX  
0.075 *  
VEXT/FLEX  
-
-
-
V
TTL  
Input Leakage current for MP  
pad  
I
I
OZMP CC  
-500  
500  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1000  
-
1000  
nA  
else  
Pull-up current for MP pad  
PUHMP CC |30|  
-
-
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
V
V
V
V
V
V
IHmin; AL  
|43|  
-
-
-
IHmin; TTL  
-
|107|  
|100|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for MP pad  
I
PDLMP CC  
-
-
|46|  
|21|  
-
-
-
ILmax; TTL  
On-Resistance for MP pad,  
weak driver 2)  
RDSONMPW 200  
CC  
620  
1040  
PMOS/NMOS ;  
I
OH=0.5mA; IOL=0.5mA  
On-Resistance for MP pad,  
medium driver 2)  
RDSONMPM  
CC  
50  
20  
155  
75  
260  
130  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=2mA; IOL=2mA  
On-Resistance for MP pad,  
strong driver 2)  
RDSONMPS  
CC  
PMOS/NMOS ;  
IOH=8mA; IOL=8mA  
Data Sheet  
4-188  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-9 Class MP 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise / fall time for MP pad 3)  
t
MP CC  
-
-
-
-
-
95+2.1*C ns  
CL50pF; pin out  
driver=weak  
L
-
-
-
200+2.9*( ns  
CL-50)  
CL50pF; CL200pF;  
pin out driver=weak  
25+0.5*C ns  
CL50pF; pin out  
driver=medium  
L
50 + 0.75 ns  
CL50pF; CL200pF;  
* ( CL - 50  
)
pin out driver=medium  
-
-
-
-
17.5+0.25 ns  
*CL  
CL50pF;  
edge=medium ; pin out  
driver=strong  
30+0.3*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
7+0.2*CL ns  
CL50pF; edge=sharp  
; pin out driver=strong  
17+0.3*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=sharp ; pin out  
driver=strong  
Input high voltage for MP pad  
Input low voltage for MP pad  
V
V
IHMP SR  
(0.73*VEX  
T/FLEX)-  
0.25  
2.03 4)  
-
-
V
Hysteresis active, AL  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
ILMP SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.8 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage for MP VILHMP CC 1.85  
3.0  
pad  
Pad set-up time for MP pad  
t
SET_MP CC  
-
-
-
100  
10  
ns  
Short Circuit current for MP pad ISC SR  
-10  
mA  
absolute max value  
(PSI5)  
6)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Data Sheet  
4-189  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-10 Class MP 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL and TTL  
100  
-
Input Hysteresis for MP pad 1) HYSMP CC 0.05 *  
VEXT/FLEX  
Input Leakage current for MP  
pad  
I
OZMP CC  
-500  
-
500  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1000  
-
1000  
nA  
else  
Pull-up current for MP pad  
I
PUHMP CC |17|  
-
-
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
V
V
V
V
V
V
IHmin; AL  
|19|  
-
-
-
IHmin; TTL  
-
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for MP pad  
I
PDLMP CC  
-
-
|22|  
|11|  
-
-
-
ILmax; TTL  
On-Resistance for MP pad,  
weak driver 2)  
RDSONMPW 250  
CC  
875  
1500  
; NMOS/PMOS ;  
I
OH=0.25mA;  
IOL=0.25mA  
On-Resistance for MP pad,  
medium driver 2)  
RDSONMPM  
CC  
70  
20  
-
235  
400  
200  
Ohm  
Ohm  
; NMOS/PMOS ;  
I
OH=1mA; IOL=1mA  
On-Resistance for MP pad,  
strong driver 2)  
Rise / fall time for MP pad 3)  
RDSONMPS  
CC  
110  
PMOS/NMOS ;  
I
OH=4mA; IOL=4mA  
t
MP CC  
-
-
-
-
-
150+3.4* ns  
CL  
CL50pF; pin out  
driver=weak  
-
320+4.5*( ns  
CL-50)  
CL50pF; CL200pF;  
pin out driver=weak  
-
30+0.8*C ns  
CL50pF; pin out  
driver=medium  
L
-
70+1.1*( ns  
CL-50)  
CL50pF; CL200pF;  
pin out driver=medium  
-
32.5+0.35 ns  
CL50pF;  
*CL  
edge=medium ; pin out  
driver=strong  
-
-
50+0.45*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
14.5+0.35 ns  
*CL  
CL50pF; edge=sharp  
; pin out driver=strong  
32+0.5*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=sharp ; pin out  
driver=strong  
Data Sheet  
4-190  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-10 Class MP 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input high voltage for MP pad  
V
V
IHMP SR  
(0.73*VEX  
T/FLEX)-  
0.25  
1.6 4)  
-
-
V
Hysteresis active, AL  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage for MP pad  
ILMP SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.5 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage for MP VILHMP CC 1.1  
1.9  
pad  
Pad set-up time for MP pad  
t
SET_MP CC  
-
-
-
100  
10  
ns  
Short Circuit current for MP pad ISC SR  
-10  
mA  
absolute max value  
(PSI5)  
6)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-11 Class MP+ 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL  
150  
-
Input hysteresis for MP+ pad 1) HYSMPP  
0.09 *  
CC  
VEXT/FLEX  
0.075 *  
VEXT/FLEX  
-
-
-
V
TTL  
Input leakage current for MP+  
pad  
I
I
OZMPP CC -750  
750  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1500  
PUHMPP CC |30|  
-
-
-
-
-
-
-
1500  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
else  
Pull-up current for MP+ pad  
-
V
V
V
V
V
V
IHmin; AL  
|43|  
-
-
IHmin; TTL  
|107|  
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for MP+ pad IPDLMPP CC  
-
|100|  
|46|  
|21|  
-
-
ILmax; TTL  
Data Sheet  
4-191  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-11 Class MP+ 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
On-resistance for MP+ pad,  
weak driver 2)  
RDSONMPPW 200  
CC  
620  
1040  
Ohm  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=0.5mA; IOL=0.5mA  
On-resistance for MP+ pad,  
medium driver 2)  
RDSONMPPM 50  
CC  
155  
260  
90  
PMOS/NMOS ;  
I
OH=2mA; IOL=2mA  
On-resistance for MP+ pad,  
strong driver 2)  
Rise/fall time for MP+ pad 3)  
RDSONMPPS 20  
CC  
55  
-
PMOS/NMOS ;  
I
OH=8mA; IOL=8mA  
t
MPP CC  
-
-
-
-
-
95+2.1*C ns  
CL50pF; pin out  
driver=weak  
L
-
200+2.9*( ns  
CL-50)  
CL50pF; CL200pF;  
pin out driver=weak  
-
25+0.5*C ns  
CL50pF; pin out  
driver=medium  
L
-
50+0.75*( ns  
CL-50)  
CL50pF; CL200pF;  
pin out driver=medium  
-
9+0.16*C ns  
CL50pF;  
edge=medium ; pin out  
L
driver=strong  
-
-
17+0.2*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
4+0.16*C ns  
CL50pF; edge=sharp  
; pin out driver=strong  
L
12+0.21*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=sharp ; pin out  
driver=strong  
-
-
-
5
ns  
from 0.8V to 2.0V  
(RMII) ; CL=25pF;  
edge=sharp ; pin out  
driver=strong  
-
-
4.5  
-
ns  
V
CL=15pF; edge=sharp  
; pin out driver=strong  
Input high voltage for MP+ pad VIHMPP SR (0.73*VEX  
Hysteresis active, AL  
T/FLEX)-  
0.25  
2.03 4)  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage for MP+ pad  
V
ILMPP SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.8 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage for MP+ VILHMPP CC 1.85  
3.0  
pad  
Pad set-up time for MP+ pad  
t
SET_MPP CC -  
-
100  
ns  
Data Sheet  
4-192  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-11 Class MP+ 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Short circuit current for MP+  
pad 6)  
I
SCMPP SR -10  
-
10  
mA  
%
absolute max value  
(PSI5)  
Deviation of symmetry for rising SYM CC  
-
-
20  
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-12 Class MP+ 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL and TTL  
100  
-
Input hysteresis for MP+ pad 1) HYSMPP  
0.05 *  
CC  
VEXT/FLEX  
Input leakage current for MP+  
pad  
I
OZMPP CC -750  
-
750  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1500  
PUHMPP CC |17|  
-
1500  
nA  
else  
Pull-up current for MP+ pad  
I
-
-
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
V
V
V
V
V
V
IHmin; AL  
|19|  
-
-
-
IHmin; TTL  
-
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for MP+ pad IPDLMPP CC  
-
-
|22|  
|11|  
-
-
-
ILmax; TTL  
On-resistance for MP+ pad,  
weak driver 2)  
RDSONMPPW 250  
CC  
875  
1500  
; NMOS/PMOS ;  
I
OH=0.25mA;  
IOL=0.25mA  
On-resistance for MP+ pad,  
medium driver 2)  
RDSONMPPM 70  
CC  
235  
75  
400  
130  
Ohm  
Ohm  
; NMOS/PMOS ;  
I
OH=1mA; IOL=1mA  
PMOS/NMOS ;  
IOH=4mA; IOL=4mA  
On-resistance for MP+ pad,  
strong driver 2)  
RDSONMPPS 20  
CC  
Data Sheet  
4-193  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-12 Class MP+ 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise/fall time for MP+ pad 3)  
t
MPP CC  
-
-
-
-
-
-
150+3.4* ns  
CL  
CL50pF; pin out  
driver=weak  
-
-
-
-
320+4.5*( ns  
CL-50)  
CL50pF; CL200pF;  
pin out driver=weak  
30+0.8*C ns  
CL50pF; pin out  
driver=medium  
L
70+1.1*( ns  
CL-50)  
CL50pF; CL200pF;  
pin out driver=medium  
20+0.2*C ns  
CL50pF;  
edge=medium ; pin out  
L
driver=strong  
-
-
30+0.3*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
13+0.2*C ns  
CL50pF; edge=sharp  
; pin out driver=strong  
L
7.65  
5.42  
7.36  
5.32  
5.9  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 15pF; VEXT/FLEX  
3.135V; V = 0V to  
=
2.0V; edge=sharp ; pin  
out driver=strong  
-
-
-
-
-
-
-
-
-
-
-
CL = 15pF; VEXT/FLEX =  
3.135V; V = 3.135V to  
0.8V; edge=sharp ; pin  
out driver=strong  
CL = 15pF; VEXT/FLEX  
3.201V; V = 0V to  
=
2.0V; edge=sharp ; pin  
out driver=strong  
CL = 15pF; VEXT/FLEX  
=
3.201V; V = 3.201V to  
0.8V; edge=sharp ; pin  
out driver=strong  
CL = 15pF; VEXT/FLEX  
=
3.63V; V = 0V to 2.0V;  
edge=sharp ; pin out  
driver=strong  
4.8  
CL = 15pF; VEXT/FLEX  
3.63V; V = 3.63V to  
=
0.8V; edge=sharp ; pin  
out driver=strong  
-
-
23+0.3*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=sharp ; pin out  
driver=strong  
-
5
ns  
ns  
from 0.8V to 2.0V  
(RMII) ; CL=25pF;  
V 1.0 2017-06  
edge=sharp ; pin out  
Data Sheet  
4-194  
driver=strong  
-
-
4.5  
from 0.2 * VEXT/FLEX to  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-12 Class MP+ 3.3V (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input high voltage for MP+ pad VIHMPP SR (0.73*VEX  
-
-
V
Hysteresis active, AL  
T/FLEX)-  
0.25  
1.6 4)  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage for MP+ pad  
V
ILMPP SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.5 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage for MP+ VILHMPP CC 1.1  
1.9  
pad  
Pad set-up time for MP+ pad  
t
SET_MPP CC -  
SCMPP SR -10  
-
-
100  
10  
ns  
Short circuit current for MP+  
pad 6)  
I
mA  
absolute max value  
(PSI5)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.  
Table 3-13 Class MPR 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL  
150  
-
Input Hysteresis for MPR pads HYSMPR  
0.09 *  
VEXT/FLEX  
1)  
CC  
0.075*  
VEXT/FLEX  
-
-
-
V
TTL  
Input leakage current class  
MPR  
I
I
OZMPR CC -750  
750  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1500  
PUHMPR CC |30|  
-
-
-
-
-
-
-
1500  
nA  
µA  
µA  
µA  
µA  
µA  
µA  
else  
Pull-up current  
-
V
V
V
V
V
V
IHmin; AL  
|43|  
-
-
IHmin; TTL  
|107|  
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current  
I
PDLMPR CC -  
|100|  
|46|  
|21|  
-
-
ILmax; TTL  
Data Sheet  
4-195  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-13 Class MPR 5V (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
On-resistance of the MPR pad, RDSONMPRW 200  
weak driver 2)  
CC  
On-resistance of the MPR pad, RDSONMPRM 50  
medium driver 2)  
CC  
Max.  
620  
1040  
Ohm  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=0.5mA; IOL=0.5mA  
155  
260  
90  
PMOS/NMOS ;  
I
OH=2mA; IOL=2mA  
On-resistance of the MPR pad, RDSONMPRS 20  
55  
-
PMOS/NMOS ;  
strong driver 2)  
Rise/fall time 3)  
CC  
I
OH=8mA; IOL=8mA  
t
MPR CC  
-
-
-
-
-
95+2.1*C ns  
CL50pF; pin out  
driver=weak  
L
-
200+2.9*( ns  
CL50pF; CL200pF;  
pin out driver=weak  
CL-50)  
-
25+0.5*C ns  
CL50pF; pin out  
driver=medium  
L
-
50+0.75*( ns  
CL50pF; CL200pF;  
pin out driver=medium  
CL-50)  
-
9+0.16*C ns  
CL0pF; CL50pF;  
edge=medium ; pin out  
driver=strong  
L
-
-
17+0.2*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
4+0.16*C ns  
CL50pF; edge=sharp  
; pin out driver=strong  
L
12+0.21*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=sharp ; pin out  
driver=strong  
-
-
-
-
-
5
ns  
ns  
V
from 0.8V to 2.0V  
(RMII) ; CL=25pF;  
edge=sharp ; pin out  
driver=strong  
4.5  
from 0.2 * VEXT/FLEX to  
0.8 * VEXT/FLEX  
;
CL=15pF; edge=sharp  
; pin out driver=strong  
Input high voltage, class MPR  
pads  
V
V
V
IHMPR SR (0.73*VEX  
-
-
Hysteresis active, AL  
T/FLEX)-  
0.25  
2.03 4)  
-
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage, class MPR  
pads  
ILMPR SR  
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.8 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage, class  
MPR pads  
ILHMPR SR 1.2  
2.3  
Data Sheet  
4-196  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-13 Class MPR 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
100  
10  
Pad set-up time  
t
SET_MPR CC -  
-
-
ns  
Short circuit current Class MPR ISC SR  
-10  
mA  
absolute max value  
(PSI5)  
Deviation of symmetry for rising SYM CC  
-
-
20  
%
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
Table 3-14 Class MPR 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
fIN SR  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
AL and TTL  
100  
-
Input Hysteresis for MPR pads HYSMPR  
0.05 *  
VEXT/FLEX  
1)  
CC  
Input leakage current class  
MPR  
I
OZMPR CC -750  
-
750  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-1500  
PUHMPR CC |17|  
-
1500  
nA  
else  
Pull-up current  
I
-
-
µA  
µA  
µA  
µA  
µA  
µA  
Ohm  
V
V
V
V
V
V
IHmin; AL  
|19|  
-
-
-
IHmin; TTL  
-
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current  
I
PDLMPR CC -  
-
|22|  
|11|  
-
-
-
ILmax; TTL  
On-resistance of the MPR pad, RDSONMPRW 250  
weak driver 2)  
CC  
875  
1500  
; NMOS/PMOS ;  
I
OH=0.25mA;  
IOL=0.25mA  
On-resistance of the MPR pad, RDSONMPRM 70  
medium driver 2)  
CC  
On-resistance of the MPR pad, RDSONMPRS 20  
strong driver 2)  
CC  
235  
75  
400  
130  
Ohm  
Ohm  
; NMOS/PMOS ;  
I
OH=1mA; IOL=1mA  
PMOS/NMOS ;  
OH=4mA; IOL=4mA  
I
Data Sheet  
4-197  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-14 Class MPR 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise/fall time 3)  
t
MPR CC  
-
-
-
-
-
-
150+3.4* ns  
CL  
CL50pF; pin out  
driver=weak  
-
-
-
-
320+4.5*( ns  
CL-50)  
CL50pF; CL200pF;  
pin out driver=weak  
30+0.8*C ns  
CL50pF; pin out  
driver=medium  
L
70+1.1*( ns  
CL-50)  
CL50pF; CL200pF;  
pin out driver=medium  
20+0.2*C ns  
CL0pF; CL50pF;  
edge=medium ; pin out  
driver=strong  
L
-
-
30+0.3*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
13+0.2*C ns  
CL50pF; edge=sharp  
; pin out driver=strong  
L
23+0.3*( ns  
CL-50)  
CL50pF; CL200pF;  
edge=sharp ; pin out  
driver=strong  
-
-
-
-
-
5
ns  
ns  
V
from 0.8V to 2.0V  
(RMII) ; CL=25pF;  
edge=sharp ; pin out  
driver=strong  
4.5  
from 0.2 * VEXT/FLEX to  
0.8 * VEXT/FLEX  
;
CL=15pF; edge=sharp  
; pin out driver=strong  
Input high voltage, class MPR  
pads  
V
V
V
IHMPR SR (0.73*VEX  
-
-
Hysteresis active, AL  
T/FLEX)-  
0.25  
1.6 4)  
-
-
V
V
Hysteresis active, TTL  
Hysteresis active, AL  
Input low voltage, class MPR  
pads  
ILMPR SR  
-
(0.52*VEX  
T/FLEX)-  
0.25  
-
-
-
0.5 5)  
V
V
Hysteresis active, TTL  
Hysteresis inactive  
Input low / high voltage, class  
MPR pads  
ILHMPR SR 0.8  
1.7  
Pad set-up time  
t
SET_MPR CC -  
-10  
-
-
100  
10  
ns  
Short circuit current Class MPR ISC SR  
mA  
absolute max value  
(PSI5)  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
Data Sheet  
4-198  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX  
4) VIHx = 0.27 * VEXT/FLEX + 0.545V  
5) VILx = 0.17 * VEXT/FLEX  
.
Table 3-15 Class S  
Parameter  
Symbol  
fIN SR  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-
Max.  
75  
Input frequency  
-
-
-
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
-
150  
-
Hysteresis inactive  
Input Hysteresis for S pad 1)  
Pull-up current for S pad  
HYSS CC  
0.3  
|30|  
-
I
PUHS CC  
-
µA  
VIHmin  
VILmax  
VIHmin  
VILmax  
|107|  
|100|  
-
µA  
Pull-down current for S pad  
I
PDLS CC  
-
µA  
|46|  
-350  
µA  
Input Leakage current Class S IOZS CC  
350  
nA  
Analog Inputs with pull  
down diagnostics  
-150  
-
-
-
150  
nA  
V
else  
Input voltage high for S pad  
Input voltage low for S pad  
V
V
IHS SR  
ILS SR  
(0.73*VDD  
M)-0.25  
Hysteresis active  
(0.52*VDD  
M)-0.25  
-
-
-
V
Hysteresis active  
Input low threshold variation for VILSD SR  
-50  
50  
mV  
max. variation of 1ms;  
VDDM=constant  
S pad 2)  
Input capacitance for S pad  
Pad set-up time for S pad  
C
INS CC  
-
-
-
-
10  
pF  
ns  
t
SETS CC  
100  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) VILSD is implemented to ensure J2716 specification. For details of dedicated pins please see AP32286 for details.  
Table 3-16 Class I 5V  
Parameter  
Symbol  
fIN SR  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
Input frequency  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
PORST pad only  
150  
-
Input Hysteresis for I pad 1)  
HYSI CC  
0.07 *  
VEXT/FLEX  
0.09 *  
VEXT/FLEX  
-
-
-
-
V
V
AL  
0.075 *  
TTL  
VEXT/FLEX  
Pull-up current for I pad  
Data Sheet  
I
PUHI CC  
|30|  
|43|  
-
-
-
-
-
µA  
µA  
µA  
V
V
V
IHmin; AL  
-
IHmin; TTL  
|107|  
ILmax; AL and TTL  
4-199  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-16 Class I 5V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-
Max.  
|100|  
-
Pull-down current for I pad  
I
PDLI CC  
-
-
-
-
µA  
µA  
µA  
nA  
V
V
V
IHmin; AL and TTL  
ILmax; AL  
|46|  
|21|  
-150  
-
ILmax; TTL  
Input Leakage Current for I pad IOZI CC  
150  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-350  
2.03 2)  
-
-
-
350  
nA  
V
else  
Input high voltage for I pad  
Input low voltage for I pad  
V
V
IHI SR  
-
-
Hysteresis active, TTL  
(0.73*VEX  
T/FLEX)-  
0.25  
V
Hysteresis active; AL;  
not available for the  
PORST pad  
ILI SR  
-
-
-
-
0.8 3)  
V
V
Hysteresis active, TTL  
(0.52*VEX  
T/FLEX)-  
0.25  
Hysteresis active; AL;  
not available for the  
PORST pad  
Input low / high voltage for I pad VILHI CC  
Pad set-up time for I pad SETI CC  
1.85  
-
-
-
3.0  
V
Hysteresis inactive  
t
100  
ns  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) VIHx = 0.27 * VEXT/FLEX + 0.545V  
3) VILx = 0.17 * VEXT/FLEX  
Table 3-17 Class I 3.3V  
Parameter  
Symbol  
fIN SR  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
50  
Input frequency  
-
-
-
-
-
MHz  
MHz  
V
Hysteresis active  
Hysteresis inactive  
PORST pad only  
100  
-
Input Hysteresis for I pad 1)  
HYSI CC  
0.045 *  
VEXT/FLEX  
0.05 *  
-
-
V
AL and TTL  
VEXT/FLEX  
Pull-up current for I pad  
I
I
PUHI CC  
|17|  
|19|  
-
-
-
-
-
-
-
-
-
µA  
µA  
µA  
µA  
µA  
µA  
nA  
V
V
V
V
V
V
IHmin; AL  
-
IHmin; TTL  
|75|  
|75|  
-
ILmax; AL and TTL  
IHmin; AL and TTL  
ILmax; AL  
Pull-down current for I pad  
PDLI CC  
-
|22|  
|11|  
-150  
-
ILmax; TTL  
Input Leakage Current for I pad IOZI CC  
150  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-350  
-
350  
nA  
else  
Data Sheet  
4-200  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification5 V / 3.3 V switchable Pads  
Table 3-17 Class I 3.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input high voltage for I pad  
V
V
IHI SR  
1.6 2)  
-
-
-
-
V
V
Hysteresis active, TTL  
(0.73*VEX  
T/FLEX)-  
0.25  
Hysteresis active; AL;  
not available for the  
PORST pad  
Input low voltage for I pad  
ILI SR  
-
-
-
-
0.5 3)  
V
V
Hysteresis active, TTL  
(0.52*VEX  
T/FLEX)-  
0.25  
Hysteresis active; AL;  
not available for the  
PORST pad  
Input low / high voltage for I pad VILHI CC  
Pad set-up time for I pad SETI CC  
1.1  
-
-
-
1.9  
V
Hysteresis inactive  
t
100  
ns  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) VIHx = 0.27 * VEXT/FLEX + 0.545V  
3) VILx = 0.17 * VEXT/FLEX  
Table 3-18 Driver Mode Selection for LP Pads  
PDx.2  
PDx.1  
PDx.0  
Port Functionality  
Speed grade 1  
Speed grade 2  
Driver Setting  
medium (LPm)  
weak (LPw)  
X
X
X
X
0
1
Table 3-19 Driver Mode Selection for MP / MP+ Pads  
PDx.2  
PDx.1  
PDx.0  
Port Functionality  
Driver Setting  
X
0
0
Speed grade 1  
Strong sharp edge  
(MPss / MP+ss / MPRss)  
X
0
1
Speed grade 2  
Strong medium edge  
(MPsm / MP+sm / MPRsm)  
X
X
1
1
0
1
Speed grade 3  
Speed grade 4  
medium (MPm / MP+m / MPRm)  
weak (MPw / MP+w / MPRw)  
Data Sheet  
4-201  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification3.3 V only Pads  
3.6  
3.3 V only Pads  
Pad classes LP, MP and MP+ support both Automotive Level (AL) or TTL level (TTL) operation. Parameters are  
defined for AL operation and degrade in TTL operation.  
Table 3-20 Class A2  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
160  
-
Input frequency  
Input Hysteresis for A2 pad 1) HYSA2 CC 0.1 *  
fIN SR  
-
-
-
MHz  
V
TTL;else  
VDDP3  
0.06 *  
VDDP3  
-
-
-
V
valid for P21.6 and  
P21.7  
Input Leakage current for A2  
pad  
I
OZA2 CC  
-300  
300  
nA  
(0.1*VEXT/FLEX) < VIN <  
(0.9*VEXT/FLEX  
)
-800  
-
-
500  
|100|  
-
nA  
else  
Pull-up current for A2 pad  
I
I
PUHA2 CC  
-
µA  
VIHmin  
|25|  
|23|  
-
-
µA  
VILmax  
Pull-down current for A2 pad  
PDLA2 CC  
-
-
µA  
VIHmin  
-
|100|  
325  
µA  
VILmax  
On-Resistance for A2 pad,  
weak driver 2)  
RDSONA2W  
CC  
100  
200  
Ohm  
PMOS/NMOS ;  
I
OH=0.5mA; IOL=0.5mA  
On-Resistance for A2 pad,  
medium driver 2)  
RDSONA2M  
CC  
40  
20  
-
70  
35  
-
100  
50  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=2mA; IOL=2mA  
On-Resistance for A2 pad,  
strong driver 2)  
Rise/fall time for A2 pad 3)  
RDSONA2S  
CC  
PMOS/NMOS ;  
I
OH=8mA; IOL=8mA  
t
A2 CC  
20+0.8*C ns  
CL50pF; pin out  
driver=weak  
L
-
-
17.5+0.85 ns  
CL50pF; CL200pF;  
*CL  
pin out driver=weak  
-
-
12+0.16* ns  
CL50pF; pin out  
CL  
driver=medium  
-
-
11.5+0.17 ns  
CL50pF; CL200pF;  
*CL  
pin out driver=medium  
-
-
6+0.06*C ns  
CL50pF;  
edge=medium ; pin out  
L
driver=strong  
-
-
5.5+0.07* ns  
CL  
CL50pF; CL200pF;  
edge=medium ; pin out  
driver=strong  
-
-
-
-
0.0+0.12* ns  
CL  
CL50pF; edge=sharp  
; pin out driver=strong  
0.0+0.12* ns  
CL  
CL50pF; CL200pF;  
edge=sharp ; pin out  
driver=strong  
Data Sheet  
4-202  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical Specification3.3 V only Pads  
Table 3-20 Class A2 (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input high voltage for A2 pad  
Input low voltage for A2 pad  
Pad set-up time for A2 pad  
V
IHA2 SR  
2.04 4)  
-
-
V
TTL;valid for all A2  
pads except  
TMS/DAP1, TRST,  
and TCK/DAP0  
0.7 *  
VDDP3  
-
-
-
V
V
valid for TMS/DAP1,  
TRST, and TCK/DAP0  
V
ILA2 SR  
-
0.8 5)  
TTL;valid for all A2  
pads except  
TMS/DAP1, TRST,  
and TCK/DAP0  
-
-
0.3 *  
VDDP3  
V
valid for TMS/DAP1,  
TRST, and TCK/DAP0  
t
SETA2 CC  
-
-
-
-
100  
20  
ns  
%
Deviation of symmetry for rising SYM CC  
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VDDP3  
4) VIHx = 0.57 * VDDP3 - 0.03V  
.
5) VILx = 0.25 * VDDP3 + 0.058V  
Table 3-21 Driver Mode Selection for A2 Pads  
PDx.2  
PDx.1  
PDx.0  
Port Functionality  
Speed grade 1  
Speed grade 2  
Speed grade 3  
Speed grade 4  
Driver Setting  
Strong sharp edge  
Strong medium edge  
medium  
X
X
X
X
0
0
1
1
0
1
0
1
weak  
Table 3-22 Driver Mode Selection for F Pads  
PDx.2  
PDx.1  
PDx.0  
Port Functionality  
Speed grade 1  
Speed grade 2  
Speed grade 3  
Speed grade 4  
Driver Setting  
X
X
X
X
0
0
1
1
0
1
0
1
Reduced Strong sharp edge  
Reduced Strong medium edge  
medium  
weak  
Data Sheet  
4-203  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationHigh performance LVDS Pads (LVDSH)  
3.7  
High performance LVDS Pads (LVDSH)  
This LVDS pad type is used for the high speed chip to chip communication inferface of the new TC 260 / 264 / 265  
/ 267. It compose out of a LVDSH pad and a Class F pad.  
This pad combination is always supplied by the 3.3V supply rail.  
Table 3-23 Class F  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
75  
-
Input frequency  
Input Hysteresis for F pad 1)  
fIN SR  
-
-
-
MHz  
V
HYSF CC 0.1 *  
TTL  
VDDP3  
Input Leakage Current for F  
pad  
I
OZF CC  
-1000  
-1500  
-300  
-
-
-
1000  
1500  
300  
nA  
nA  
nA  
(0.1*VDDP3) < VIN <  
(0.9*VDDP3); valid for  
P21.2 and P21.3; TJ =  
150°C  
(0.1*VDDP3) < VIN <  
(0.9*VDDP3); valid for  
P21.2 and P21.3; TJ =  
170°C  
(0.1*VDDP3) < VIN <  
(0.9*VDDP3); valid for  
P21.4 and P21.5  
-2000  
-3000  
-600  
-
-
-
2000  
3000  
600  
nA  
nA  
nA  
else; valid for P21.2  
and P21.3; TJ = 150°C  
else; valid for P21.2  
and P21.3; TJ = 170°C  
else; valid for P21.4  
and P21.5  
Pull-up current for F pad  
I
I
PUHF CC  
PDLF CC  
|25|  
-
-
-
µA  
VIHmin  
-
|100|  
|100|  
-
µA  
VILmax  
Pull-down current for class F  
pads  
-
-
µA  
VIHmin  
|25|  
100  
-
µA  
VILmax  
On resistance for F pad, weak RDSONFW  
200  
325  
Ohm  
PMOS/NMOS ;  
driver 2)  
CC  
I
OH=0.5mA; IOL=0.5mA  
On resistance for F pad,  
medium driver 2)  
RDSONFM  
CC  
40  
70  
50  
100  
80  
Ohm  
Ohm  
PMOS/NMOS ;  
I
OH=2mA; IOL=2mA  
On resistance for F pad, strong RDSONFS CC 20  
PMOS/NMOS ;  
IOH=4mA; IOL=4mA  
driver 2)  
Data Sheet  
4-204  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationHigh performance LVDS Pads (LVDSH)  
Table 3-23 Class F (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise/fall time for F pad 3)  
t
rfF CC  
-
-
-
-
-
-
20+0.8*C ns  
CL50pF; pin out  
driver=weak  
L
-
-
-
-
17.5+0.85 ns  
*CL  
CL50pF; CL200pF;  
pin out driver=weak  
12+0.16* ns  
CL  
CL50pF; pin out  
driver=medium  
11.5+0.17 ns  
*CL  
CL50pF; CL200pF;  
pin out driver=medium  
7+0.16*C ns  
CL50pF;  
edge=medium ; pin out  
L
driver=reduced strong  
-
-
-
-
-
-
6.5+0.17* ns  
CL  
CL50pF; CL200pF;  
edge=meduim ; pin out  
driver>reduced strong  
4+0.16*C ns  
CL50pF; edge=sharp  
; pin out  
driver=reduced strong  
L
3.5+0.17* ns  
CL  
CL50pF; CL200pF;  
edge=sharp ; pin out  
driver=reduced strong  
Input high voltage for F pad  
Input low voltage for F pad  
Pad set-up time for F pad  
V
V
IHF SR  
ILF SR  
2.04 4)  
-
-
-
-
-
V
TTL  
TTL  
-
-
-
0.8 5)  
100  
20  
V
t
SETF CC  
ns  
%
Deviation of symmetry for rising SYM CC  
and falling edges  
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed  
that it suppresses switching due to external system noise.  
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.  
3) Rise / fall times are defined 10% - 90% of VDDP3  
4) VIHx = 0.57 * VDDP3 - 0.03V  
.
5) VILx = 0.25 * VDDP3 + 0.058V  
CL = 2.5 pF for all LVDSH parameters.  
Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
-
Max.  
140  
0.5  
Output impedance  
Rise time 1)  
R0 CC  
-
-
Ohm  
ns  
Vcm = 1.0 V and 1.4 V  
t
rise20 CC  
ZL = 100 Ohm ±5%  
@2 pF  
Fall time 1)  
t
fall20 CC  
-
-
0.5  
ns  
ZL = 100 Ohm ±5% @  
2 pF  
Output differential voltage  
Data Sheet  
V
OD CC  
250  
-
400  
mV  
RT = 100 Ohm ±5%  
4-205  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationHigh performance LVDS Pads (LVDSH)  
Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Output voltage high  
Output voltage low  
V
V
OH CC  
OL CC  
-
-
1475  
mV  
RT = 100 Ohm ±5%  
(400 mV/2) + 1275 mV  
925  
-
-
-
mV  
mV  
RT = 100 Ohm ±5%  
RT = 100 Ohm ±5%  
Output offset (Common mode) VOS CC  
1125  
1275  
voltage  
Input voltage range  
VI SR  
0
0
-
-
1600  
2000  
mV  
mV  
Driver ground potential  
difference < 925 mV;  
RT = 100 Ohm ±10%  
Driver ground potential  
difference < 925 mV;  
RT = 100 Ohm ±20%  
Input differential threshold  
Delta output impedance  
V
idth SR  
-100  
-
-
-
-
-
100  
10  
25  
25  
55  
mV  
%
Driver ground potential  
difference < 925 mV  
dR0 SR  
-
Vcm = 1.0 V and 1.4 V  
(mismatch Pd and Pn)  
Change in VOS between 0 and dVOS CC  
1
-
mV  
mV  
%
RT = 100 Ohm ±5%  
Change in Vod between 0 and dVod CC  
1
-
RT = 100 Ohm ±5%  
Duty cycle  
t
duty CC  
45  
1) Rise / fall times are defined for 20% - 80% of VOD  
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
140  
250  
1375  
-
Output impedance  
R0 CC  
-
-
-
-
-
Ohm  
mV  
mV  
mV  
mV  
Vcm = 1.0 V and 1.4 V  
RT = 100 Ohm ±5%  
RT = 100 Ohm ±5%  
RT = 100 Ohm ±5%  
RT = 100 Ohm ±5%  
Output differential voltage  
Output voltage high  
Output voltage low  
V
V
V
OD CC  
OH CC  
OL CC  
150  
-
1025  
1125  
Output offset (Common mode) VOS CC  
1275  
voltage  
Input voltage range  
VI SR  
idth SR  
825  
-100  
-
-
-
-
-
-
1575  
100  
25  
mV  
mV  
mV  
mV  
%
Driver ground potential  
difference < 50 mV  
Input differential threshold  
V
Driver ground potential  
difference < 50 mV  
Change in VOS between 0 and dVOS CC  
1
RT = 100 Ohm ±5%  
Change in Vod between 0 and dVod CC  
1
-
25  
RT = 100 Ohm ±5%  
Duty cycle  
t
duty CC  
45  
55  
Data Sheet  
4-206  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationHigh performance LVDS Pads (LVDSH)  
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL) (cont’d)  
Parameter Symbol Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
1)  
V
OD Fall time  
t
fall10 CC  
-
-
0.5  
ns  
ns  
ZL = 100 Ohm ±5% @  
2pF  
1)  
VOD Rise time  
t
rise10 CC  
-
-
0.5  
ZL = 100 Ohm ±5% @  
2pF  
1) Rise / fall times are defined for 10% - 90% of VOD  
default after start-up = CMOS function  
P
Htotal=5nH  
Ctotal=3.5pF  
Cext=2pF  
LVDSH  
Rin  
IN  
RT=100Ohm  
Htotal=5nH  
Cext=2pF  
N
Ctotal=3.5pF  
LVDSH _Input _Pad _Model .vsd  
Figure 3-1 LVDSH pad Input model  
Data Sheet  
4-207  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMedium performance LVDS Pads (LVDSM)  
3.8  
Medium performance LVDS Pads (LVDSM)  
This LVDS pad type is used for the medium speed chip to chip communication inferface of the new TC 260 / 264  
/ 265 / 267. It compose out of a LVDSM pad and a MP pad.  
This pad combination is always supplied by the 5V or 3.3V.  
For the parameters of the MP pad please see Chapter 3.5.  
Table 3-26 LVDSM  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
-
Max.  
140  
2.5  
Output impedance  
Fall time  
RO CC  
tF CC  
100  
-
Ohm  
ns  
Zload = 100 Ohm;  
termination 100 Ohm  
±1%  
Rise time  
tR CC  
-
-
2.5  
ns  
Zload = 100 Ohm;  
termination 100 Ohm  
±1%  
Pad set-up time  
tSET_LVDS  
CC  
-
10  
-
13  
µs  
Output Differential Voltage  
Output voltage high  
Output voltage low  
Output Offset Voltage  
V
V
V
V
OD CC  
OH CC  
OL CC  
OS CC  
250  
-
400  
1475  
-
mV  
mV  
mV  
mV  
termination 100 Ohm  
±1%  
-
termination 100 Ohm  
±1%  
925  
1125  
-
termination 100 Ohm  
±1%  
-
1275  
termination 100 Ohm  
±1%  
default after start-up = CMOS function  
Data Sheet  
4-208  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationVADC Parameters  
3.9  
VADC Parameters  
VADC parameter are valid for VDDM = 4.5 V to 5.5 V.  
This tables also covers the parameters for Class D pads.  
Table 3-27 VADC  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Analog reference voltage 1)  
Analog reference ground  
V
V
V
AREF SR  
VAGND  
1.0  
+
-
VDDM  
0.05  
+
+
V
V
AGND SR VSSM  
-
-
VSSM  
0.05  
0.05  
Analog input voltage range  
Converter reference clock  
AIN SR  
VAGND  
-
VAREF  
20  
V
f
ADCI SR  
CONV CC  
2
-
-
MHz  
pC  
Charge consumption per  
conversion 2) 3)  
Q
50  
75  
VAIN = 5 V, charge  
consumed from  
reference pin,  
precharging disabled  
-
-
-
-
-
10  
22  
-
pC  
VAIN = 5 V, charge  
consumed from  
reference pin,  
precharging enabled  
Conversion time for 12-bit  
result  
t
t
C12 CC  
(16 +  
Includes sample time  
and post calibration  
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for 10-bit  
result  
C10 CC  
(14 +  
-
Includes sample time  
Includes sample time  
Includes sample time  
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for 8-bit result tC8 CC  
(12 +  
-
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for fast  
compare mode  
t
CF CC  
(4 + STC) -  
x tADCI + 2  
x tVADC  
Broken wire detection delay  
against VAGND  
t
t
BWG CC  
BWR CC  
-
-
-
-
120  
cycles Result below 10%  
cycles Result above 80%  
4)  
Broken wire detection delay  
-
60  
5)  
against VAREF  
Input leakage at analog inputs IOZ1 CC  
-350  
350  
nA  
Analog Inputs overlaid  
with class LP pads or  
pull down diagnostics  
-150  
-4 6)  
-
-
150  
4 6)  
nA  
else  
Total Unadjusted Error 1)  
Data Sheet  
TUE CC  
LSB  
12-bit resolution  
4-209  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationVADC Parameters  
Table 3-27 VADC (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
3
INL Error  
EAINL CC  
-3  
-
-
-
-
-
LSB  
LSB  
LSB  
LSB  
pF  
12-bit resolution  
12-bit resolution  
12-bit resolution  
12-bit resolution  
Gain Error 1)  
DNL error 1)  
Offset Error 1)  
EAGAIN CC -3.5  
EADNL CC -3  
EAOFF CC -4  
3.5  
3
4
Total capacitance of an analog CAINT CC  
-
30  
input  
Switched capacitance of an  
analog input  
CAINS CC  
2
4
7
pF  
Resistance of the analog input RAIN CC  
path  
-
-
-
-
1.5  
1.8  
kOhm else  
kOhm valid for analog inputs  
mapped to GPIOs  
Switched capacitance of a  
reference input  
CAREFS CC  
-
-
30  
pF  
RMS Noise 7)  
ENRMS CC  
OZ2 CC  
-
0.5  
-
0.8 6)8)  
2
LSB  
Positive reference VAREFx pin  
I
-2  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
AREFx = VAREF1  
AREFVDDMV;  
;
;
;
;
leakage  
TJ150°C  
-3  
-
-
-
-
-
-
-
3
V
V
AREFx = VAREF1  
AREFVDDMV;  
TJ>150°C  
-4  
4
V
V
AREFx = VAREF1  
AREF>VDDMV;  
TJ150°C  
-7  
7
V
V
AREFx = VAREF1  
AREF>VDDMV;  
TJ>150°C  
AGNDx = VAGND1  
AGND < VSSM ; TJ > 150  
°C  
AGNDx = VAGND1  
AGND < VSSM ; TJ 150  
°C  
AGNDx = VAGND1  
AGND VSSM ; TJ > 150  
°C  
AGNDx = VAGND1  
AGND VSSM ; TJ 150  
°C  
Negative reference VAGNDx pin IOZ3 CC  
leakage  
-13  
-7  
13  
7
V
V
;
V
V
;
-3  
3
V
V
;
-2.5  
2.5  
V
V
;
Resistance of the reference  
input path  
CSD resistance 9)  
R
R
AREF CC  
CSD CC  
-
-
-
-
1
kOhm  
kOhm  
28  
Data Sheet  
4-210  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationVADC Parameters  
Table 3-27 VADC (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
35 + 8*VIN kOhm 0 V VIN 2.5 V  
Resistance of the multiplexer  
diagnostics pull-down device  
R
R
R
MDD CC  
MDU CC  
PDD CC  
25 + 1*VIN  
-
-
-5 +  
13*VIN  
15 +  
16*VIN  
kOhm 2.5 V VIN VDDM  
Resistance of the multiplexer  
diagnostics pull-up device  
45 - 6*VIN  
-
90 -  
16*VIN  
kOhm 0 V VIN 2.5 V  
40 - 4*VIN  
-
-
65 - 6*VIN kOhm 2.5 V VIN VDDM  
Resistance of the pull-down  
test device 10)  
-
0.3  
kOhm  
CSD voltage accuracy 11) 12)  
dVCSD CC -  
WU CC  
-
-
10  
12  
%
Wakeup time  
t
-
µs  
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor  
1/k. VAREF must be decoupled with an external capacitor.  
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx  
.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.  
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion  
rate higher than 1 conversion per 500 ms.  
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion  
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.  
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS  
.
7) This parameter is valid for soldered devices and requires careful analog board design.  
8) Value is defined for one sigma Gauss distribution.  
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS  
.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad  
itself adds another 200-Ohm series resistance, when measuring through the pin.  
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.  
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current  
of max. VAREF / 45 kOhm.  
The following VADC parameter are valid for VDDM = 2.97 V to 4.5 V.  
Table 3-28 VADC_33V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Analog reference voltage 1)  
Analog reference ground  
V
V
V
AREF SR  
VAGND  
1.0  
+
-
VDDM  
0.05  
+
+
V
V
AGND SR VSSM  
-
-
VSSM  
0.05  
0.05  
Analog input voltage range  
Converter reference clock  
AIN SR  
VAGND  
-
-
VAREF  
V
f
ADCI SR  
2
20  
MHz  
Data Sheet  
4-211  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationVADC Parameters  
Table 3-28 VADC_33V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Charge consumption per  
conversion 2) 3)  
QCONV CC  
-
35  
50  
pC  
VAIN = 3.3 V, charge  
consumed from  
reference pin,  
precharging disabled  
-
-
-
-
-
8
17  
-
pC  
VAIN = 3.3 V, charge  
consumed from  
reference pin,  
precharging enabled  
Conversion time for 12-bit  
result  
t
t
C12 CC  
(16 +  
Includes sample time  
and post calibration  
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for 10-bit  
result  
C10 CC  
(14 +  
-
Includes sample time  
Includes sample time  
Includes sample time  
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for 8-bit result tC8 CC  
(12 +  
-
STC) x  
tADCI + 2 x  
tVADC  
Conversion time for fast  
compare mode  
t
CF CC  
(4 + STC) -  
x tADCI + 2  
x tVADC  
Broken wire detection delay  
against VAGND  
t
t
BWG CC  
BWR CC  
-
-
-
-
120  
cycles Result below 10%  
cycles Result above 80%  
4)  
Broken wire detection delay  
-
60  
5)  
against VAREF  
Input leakage at analog inputs IOZ1 CC  
-350  
350  
nA  
Analog Inputs overlaid  
with class LP pads or  
pull down diagnostics  
-150  
-12 6)  
-
-
150  
12 6)  
nA  
else  
Total Unadjusted Error 1)  
TUE CC  
EAINL CC  
LSB  
12-bit Resolution; TJ >  
150 °C  
-6 6)  
-12  
-5  
-
-
-
-
-
6 6)  
12  
5
LSB  
LSB  
LSB  
LSB  
LSB  
12-bit Resolution; TJ ≤  
150 °C  
INL Error  
12-bit Resolution; TJ >  
150 °C  
12-bit Resolution; TJ ≤  
150 °C  
Gain Error 1)  
EAGAIN CC -6  
-5.5  
6
12-bit Resolution; TJ >  
150 °C  
5.5  
12-bit Resolution; TJ ≤  
150 °C  
Data Sheet  
4-212  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationVADC Parameters  
Table 3-28 VADC_33V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
DNL error 1)  
Offset Error 1)  
EADNL CC -4  
EAOFF CC -6  
-
-
4
6
LSB  
LSB  
12-bit resolution  
12-bit Resolution; TJ >  
150 °C  
-5  
-
5
LSB  
pF  
12-bit Resolution; TJ ≤  
150 °C  
Total capacitance of an analog CAINT CC  
input  
-
-
30  
7
Switched capacitance of an  
analog input  
CAINS CC  
2
-
4
-
pF  
Resistance of the analog input RAIN CC  
path  
4.5  
30  
kOhm  
pF  
Switched capacitance of a  
reference input  
CAREFS CC  
-
-
RMS Noise 7)  
ENRMS CC  
OZ2 CC  
-
-
-
1.7 6)8)  
6
LSB  
µA  
Positive reference VAREFx pin  
I
-6  
V
V
AREFx = VAREF1  
AREF>VDDMV;  
;
;
;
;
leakage  
TJ>150°C  
-3.5  
-3  
-
-
-
-
-
-
-
3.5  
3
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
AREFx = VAREF1  
AREF>VDDMV;  
TJ150°C  
V
V
AREFx = VAREF1  
AREFVDDMV;  
TJ>150°C  
-2  
2
V
V
AREFx = VAREF1  
AREFVDDMV;  
TJ150°C  
AGNDx = VAGND1  
AGND < VSSM ; TJ > 150  
°C  
AGNDx = VAGND1  
AGND < VSSM ; TJ 150  
°C  
AGNDx = VAGND1  
AGND VSSM ; TJ > 150  
°C  
AGNDx = VAGND1  
AGND VSSM ; TJ 150  
°C  
Negative reference VAGNDx pin IOZ3 CC  
leakage  
-12  
-6.5  
-3  
12  
6.5  
3
V
V
;
V
V
;
V
V
;
-2  
2
V
V
;
Resistance of the reference  
input path  
CSD resistance 9)  
R
R
AREF CC  
CSD CC  
-
-
-
-
3
kOhm  
kOhm  
28  
Data Sheet  
4-213  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationVADC Parameters  
Table 3-28 VADC_33V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Resistance of the multiplexer  
diagnostics pull-down device  
R
MDD CC  
25 + 3*VIN  
-
40 +  
12*VIN  
kOhm 0 V VIN 1.667 V  
0 + 18*VIN  
-
-
0 + 18*VIN kOhm 1.667 V VIN VDDM  
Resistance of the multiplexer  
diagnostics pull-up device  
R
R
MDU CC  
60 -  
12*VIN  
120 -  
kOhm 0 V VIN 1.667 V  
kOhm 1.667 V VIN VDDM  
kOhm  
30*VIN  
55 - 9*VIN  
-
-
95 -  
15*VIN  
Resistance of the pull-down  
test device 10)  
PDD CC  
-
0.9  
CSD voltage accuracy 11) 12)  
dVCSD CC -  
WU CC  
-
-
10  
12  
%
Wakeup time  
t
-
µs  
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor  
1/k. VAREF must be decoupled with an external capacitor.  
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx  
.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.  
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion  
rate higher than 1 conversion per 500 ms.  
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion  
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.  
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS  
.
7) This parameter is valid for soldered devices and requires careful analog board design.  
8) Value is defined for one sigma Gauss distribution.  
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS  
.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad  
itself adds another 200-Ohm series resistance, when measuring through the pin.  
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.  
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current  
of max. VAREF / 45 kOhm.  
A/D Converter  
RSource  
RAIN, On  
VAIN  
-
CExt  
CAINT CAINS  
CAINS  
MCS05570  
Figure 3-2 Equivalent Circuitry for Analog Inputs  
Data Sheet  
4-214  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationDSADC Parameters  
3.10  
DSADC Parameters  
The following DSADC parameter are valid for VDDM = 4.5 V to 5.5 V.  
Table 3-29 DSADC  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
5
Analog input voltage range 1)  
V
DSIN SR  
0
0
-
-
V
V
single ended  
10  
differential;VDSxP -  
VDSxN  
Reference load current  
I
REF SR  
-
4.52)  
7.8 2)  
µA  
per twin-modulator (1  
or 2 channels)  
Modulator clock frequency 3)  
Gain error  
f
MOD SR  
10  
-
-
-
-
20  
1 4)  
3.5 5)  
0.2 6)  
MHz  
%
EDGAIN CC -1  
-3.5 5)  
-0.2  
Calibrated once  
Uncalibrated  
%
%
calibrated; GAIN = 1;  
MODCFG.INCFGx=01  
DC offset error  
EDOFF CC -5  
-
5 6)  
50  
100 5)  
mV  
mV  
mV  
calibrated  
-50  
-100 5)7)  
-
calibrated once  
gain = 1; uncalibrated  
05)7)  
500  
130  
Common Mode Rejection Ratio EDCM CC  
Input impedance 8)  
200  
-
R
DAIN CC  
100  
170  
kOhm Exact value (±1%)  
available in UCB  
Signal-Noise Ratio 9) 10) 11) 12) SNR CC  
80  
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
kHz  
fPB = 30 kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
78  
-
fPB = 50 kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
70  
-
fPB = 100 kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
74  
-
fPB = 100 kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
76  
-
fPB = 30 kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
74  
-
fPB = 50 kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
Pass band  
f
PB CC  
10 13)  
100  
Output data rate fD =  
f
PB * 3  
Pass band ripple 10)  
Output sampling rate  
dfPB CC  
fD CC  
-1  
-
-
1
%
30  
330  
kHz  
Data Sheet  
4-215  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationDSADC Parameters  
Table 3-29 DSADC (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-3  
Max.  
DC compensation factor  
DCF CC  
-
-
-
dB  
µA  
10-5 fD  
Positive reference VAREF1 pin  
I
OZ5 CC  
-2  
2
V
VAREFx = VVAREF1  
VAREF VDDM ; TJ ≤  
150 °C  
VAREFx = VVAREF1  
VAREF VDDM ; TJ >  
150 °C  
VAREFx = VVAREF1  
VAREF > VDDM ; TJ ≤  
150 °C  
VAREFx = VVAREF1  
VAREF > VDDM ; TJ >  
150 °C  
AGNDx = VAGND1  
AGND > VSSM ; TJ 150  
°C  
AGNDx = VAGND1  
AGND > VSSM ; TJ > 150  
°C  
AGNDx = VAGND1  
AGND < VSSM ; TJ 150  
°C  
AGNDx = VAGND1  
AGND < VSSM ; TJ > 150  
;
leakage  
V
-3  
-
-
-
-
-
-
-
3
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
;
-4  
4
V
V
;
-7  
7
V
V
;
Negative reference VAGND1 pin IOZ6 CC  
leakage  
-2.5  
-3  
2.5  
3
V
V
;
V
V
;
-7  
7
V
V
;
-13  
13  
V
V
;
°C  
Stop band attenuation 10)  
SBA CC  
40  
45  
50  
55  
60  
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
V
0.5 ... 1 fD  
1 ... 1.5 fD  
1.5 ... 2 fD  
2 ... 2.5 fD  
2.5 ... OSR/2 fD  
Reference ground voltage  
Positive reference voltage  
V
V
AGND SR VSSM  
-
VSSM  
0.05  
+
+
0.05  
AREF SR  
V
DDMnom * -  
VDDM  
V
0.9  
0.05  
Common mode voltage  
accuracy  
dVCM CC  
-100  
-
-
100  
200  
mV  
mV  
from selected voltage  
Common mode hold voltage  
deviation 14)  
dVCMH CC -200  
From common mode  
voltage  
Analog filter settling time  
Modulator recovery time  
t
t
AFSET CC  
MREC CC  
-
-
2
4
µs  
µs  
If enabled  
3.5  
5.5  
After leaving overdrive  
state  
Data Sheet  
4-216  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationDSADC Parameters  
Table 3-29 DSADC (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Modulator settling time 15)  
t
MSET CC  
-
1
-
µs  
After switching on,  
voltage regulator  
already running  
Spurious Free Dynamic Range SFDR CC 60  
-
-
dB  
V
CM = 2.2 V, DC  
9)16)  
coupled; VDDM = ±10%  
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external  
common mode voltage. In this case the Amplitude is limited to VCM * 2.  
2) When measuring at pin VAREF1, leakage/operating currents of the VADC must be added to IREF  
3) All modulators must run on the same frequency.  
.
4) The calibration sequence must be executed once after an Application Reset  
5) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF  
6) Recalibration needed in case of a temperature change > 20ºC  
7) Systematic offset shift  
8) The variation of the impedance between different channels is < 1.5%.  
9) Derating factors:  
-2 dB in standard-performance mode.  
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.  
10) CIC3, FIR0, FIR1 filters enabled.  
11) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM  
(GAIN = 2).  
12) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM  
.
13) 10 kHz only reachable with 10 MHz modulator clock frequency.  
14) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM  
.
15) The modulator needs to settle after being switched on and after leaving the overdrive state.  
16) SFDR = 20 * log(INL / 2N); N = amount of bits  
The following DSADC parameter are valid for VDDM = 2.97 V to 3.63 V.  
Table 3-30 DSADC_33V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
3.3  
Analog input voltage range 1)  
V
DSIN SR  
0
0
-
-
V
V
single ended  
6.6  
differential;VDSxP -  
VDSxN  
Reference load current  
I
REF SR  
-
4.52)  
6.9 2)  
µA  
per twin-modulator (1  
or 2 channels)  
Modulator clock frequency 3)  
Gain error  
f
MOD SR  
10  
-
-
-
-
20  
MHz  
%
EDGAIN CC -1.5  
-10 5)  
-0.3  
1.5 4)  
10 5)  
0.3 6)  
Calibrated once  
Uncalibrated  
%
%
calibrated; GAIN = 1;  
MODCFG.INCFGx=01  
DC offset error  
Data Sheet  
EDOFF CC -5  
-
5 6)  
mV  
mV  
mV  
calibrated  
-50  
-100 5)  
-
05)  
50  
100 5)  
calibrated once  
gain = 1; uncalibrated  
4-217  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationDSADC Parameters  
Table 3-30 DSADC_33V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
100  
Max.  
-
Common Mode Rejection Ratio EDCM CC  
Input impedance 7)  
500  
130  
R
DAIN CC  
170  
kOhm Exact value (±1%)  
available in UCB  
Signal-Noise Ratio 8) 9) 10) 11)  
SNR CC  
45  
63  
69  
68  
74  
66  
72  
-
-
dB  
dB  
dB  
dB  
dB  
dB  
kHz  
fPB = 100kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
60  
-
fPB = 100kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
60  
-
fPB = 30kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
69  
-
fPB = 30kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
55  
-
fPB = 50kHz; VDDM =  
±10%; fMOD = 20 MHz;  
GAIN = 1  
65  
-
fPB = 50kHz; VDDM =  
±5%; fMOD = 20 MHz;  
GAIN = 1  
Pass band  
f
PB CC  
10 12)  
100  
Output data rate fD =  
f
PB * 3  
Pass band ripple 9)  
dfPB CC  
fD CC  
-1  
30  
-3  
-6  
-
-
-
-
1
%
Output sampling rate  
DC compensation factor  
330  
kHz  
dB  
µA  
DCF CC  
-
10-5 fD  
AREFx = VAREF1 ; VAREF  
> VDDM ; TJ > 150 °C  
AREFx = VAREF1 ; VAREF  
> VDDM ; TJ 150 °C  
AREFx = VAREF1 ; VAREF  
VDDM ; TJ > 150 °C  
AREFx = VAREF1 ; VAREF  
Positive reference VAREF1 pin  
I
OZ5 CC  
6
V
leakage  
-3.5  
-3  
-
-
-
3.5  
3
µA  
µA  
µA  
V
V
-2  
2
V
VDDM ; TJ 150 °C  
Data Sheet  
4-218  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationDSADC Parameters  
Table 3-30 DSADC_33V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Negative reference VAGND1 pin IOZ6 CC  
leakage  
-2  
-
-
-
-
2
µA  
V
V
AGNDx = VAGND1  
AGND VSSM ; TJ 150  
°C  
AGNDx = VAGND1  
AGND VSSM ; TJ > 150  
°C  
AGNDx = VAGND1  
AGND < VSSM ; TJ 150  
°C  
AGNDx = VAGND1  
AGND < VSSM ; TJ > 150  
;
-3  
3
µA  
µA  
µA  
V
V
;
-6.5  
-12  
6.5  
12  
V
V
;
V
V
;
°C  
Stop band attenuation 9)  
SBA CC  
40  
45  
50  
55  
60  
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
V
0.5 ... 1 fD  
1 ... 1.5 fD  
1.5 ... 2 fD  
2 ... 2.5 fD  
2.5 ... OSR/2 fD  
Reference ground voltage  
Positive reference voltage  
V
V
AGND SR VSSM  
-
VSSM  
0.05  
+
+
0.05  
AREF SR  
V
DDMnom * -  
VDDM  
V
0.9  
0.05  
Common mode voltage  
accuracy  
dVCM CC  
-100  
-
-
100  
200  
mV  
mV  
from selected voltage  
Common mode hold voltage  
deviation 13)  
dVCMH CC -200  
From common mode  
voltage  
Analog filter settling time  
Modulator recovery time  
t
t
AFSET CC  
MREC CC  
-
-
2
4
-
µs  
µs  
If enabled  
3.5  
After leaving overdrive  
state  
Modulator settling time 14)  
t
MSET CC  
-
1
-
µs  
After switching on,  
voltage regulator  
already running  
Spurious Free Dynamic Range SFDR CC 52  
-
-
-
-
dB  
dB  
V
CM = 2.2 V, DC  
coupled; VDDM = ±10%  
CM = 2.2 V, DC  
coupled; VDDM = ±5%  
8)15)  
60  
V
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external  
common mode voltage. In this case the Amplitude is limited to VCM * 2.  
2) When measuring at pin VAREF1, leakage/operating currents of the VADC must be added to IREF  
3) All modulators must run on the same frequency.  
.
4) The calibration sequence must be executed once after an Application Reset  
5) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF  
6) Recalibration needed in case of a temperature change > 20ºC.  
7) The variation of the impedance between different channels is < 1.5%.  
Data Sheet  
4-219  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationDSADC Parameters  
8) Derating factors:  
-2 dB in standard-performance mode.  
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.  
9) CIC3, FIR0, FIR1 filters enabled.  
10) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM  
(GAIN = 2).  
11) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM  
.
12) 10 kHz bandwidth only with 10Mhz modulator clock frequency reachable  
13) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM  
.
14) The modulator needs to settle after being switched on and after leaving the overdrive state.  
15) SFDR = 20 * log(INL / 2N); N = amount of bits  
VCM  
Gain  
VOFFSET  
130 kΩ  
130 kΩ  
=
Modu-  
lator  
Gain  
MC_DSADC_MODULATORBLOCK  
Figure 3-3 DSADC Analog Inputs  
Data Sheet  
4-220  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMHz Oscillator  
3.11  
MHz Oscillator  
OSC_XTAL is used as accurate and exact clock source. OSC_XTAL supports 8 MHz to 40 MHz crystals external  
outside of the device. Support of ceramic resonators is also provided.  
Table 3-31 OSC_XTAL  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-25  
4
Max.  
25  
Input current at XTAL1  
Oscillator frequency  
I
IX1 CC  
-
-
µA  
VIN>0V; VIN<VDDP3V  
f
OSC SR  
40  
MHz  
Direct Input Mode  
selected  
8
-
40  
MHz  
External Crystal Mode  
selected  
Oscillator start-up time 1)  
t
OSCS CC  
-
-
-
5 2)  
ms  
V
Input high voltage at XTAL1  
V
IHBX SR  
0.8  
VDDP3  
+
If shaper is bypassed  
If shaper is bypassed  
0.5  
Input low voltage at XTAL1  
Input voltage at XTAL1  
V
ILBX SR  
-0.5  
-0.5  
-
-
0.4  
V
V
VIX SR  
VDDP3  
0.5  
+
+
If shaper is not  
bypassed  
Input amplitude (peak to peak) VPPX SR  
at XTAL1  
0.3 *  
VDDP3  
-
-
VDDP3  
1.0  
V
V
If shaper is not  
bypassed; fOSC  
>
25MHz  
0.4 *  
VDDP3  
VDDP3  
1.0  
+
If shaper is not  
bypassed; fOSC  
25MHz  
Internal load capacitor  
Internal load capacitor  
Internal load capacitor  
Internal load capacitor  
CL0 CC  
CL1 CC  
CL2 CC  
CL3 CC  
2
2.35  
2.35  
3.5  
2.7  
2.7  
4
pF  
pF  
pF  
pF  
2
3
5.1  
5.9  
6.6  
1) tOSCS is defined from the moment when VDDP3 = 3.13V until the oscillations reach an amplitude at XTAL1 of 0.3 * VDDP3  
.
The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended  
and specified by crystal suppliers.  
2) This value depends on the frequency of the used external crystal. For faster crystal frequencies this value decrease.  
Note:It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target  
system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits  
specified by the crystal or ceramic resonator supplier.  
Data Sheet  
4-221  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationBack-up Clock  
3.12  
Back-up Clock  
The back-up clock provides an alternative clock source.  
Table 3-32 Back-up Clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Back-up clock before trimming fBACKUT CC 75  
Max.  
125  
100  
100  
100  
MHz  
kHz  
V
V
V
EXT2.97V  
EXT2.97V  
EXT2.97V  
Slow speed Back-up clock  
Back-up clock after trimming  
f
f
BACKSS CC 75  
BACKT CC 97.5  
125  
102.5  
MHz  
Data Sheet  
4-222  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationTemperature Sensor  
3.13  
Temperature Sensor  
Table 3-33 DTS  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
100  
1
Measurement time  
tM CC  
-
-
-
µs  
°C  
Calibration reference accuracy TCALACC CC -1  
calibration points @  
TJ=-40°C and  
TJ=127°C  
Non-linearity accuracy over  
temperature range  
T
T
NL CC  
SR SR  
-2  
-
2
°C  
Temperature sensor range  
-40  
-
-
-
170  
20  
°C  
µs  
Start-up time after resets  
inactive  
tTSST SR  
The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the  
DTSSTAT register.  
(3.1)  
DTSSTATRESULT (607)  
Tj = ---------------------------------------------------------------------------  
2, 13  
Data Sheet  
4-223  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower Supply Current  
3.14  
Power Supply Current  
The total power supply current defined below consists of leakage and switching component.  
Application relevant values are typically lower than those given in the following table and depend on the customer's  
system operating conditions (e.g. thermal connection or used application configurations).  
The operating conditions for the parameters in the following table are:  
The real (realisic) power pattern defines the following conditions:  
TJ = 150 °C  
f
f
f
CPU0 = 80 MHz  
SRI = fMAX = fCPU1 = 160 MHz  
SPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 40 MHz  
V
V
V
DD = 1.326 V  
DDP3 = 3.366 V  
EXT / FLEX = VDDM = 5.1 V  
all cores are active including one lockstep core  
the following peripherals are inactive: HSM, HSCT, Ethernet, PSI5, I2C, FCE, MTU, and 50% of the DSADC  
channels  
The max power pattern defines the following conditions:  
TJ = 150 °C  
f
f
SRI = fMAX = fCPU0 = 200 MHz  
SPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 100 MHz  
V
V
V
DD = 1.43 V  
DDP3 = 3.63 V  
EXT / FLEX = VDDM = 5.5 V  
all cores and lockstep cores are active  
all peripherals are active  
Table 3-34 Power Supply  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Sum of IDD 1.3 V core and  
peripheral supply currents  
I
DD CC  
-
-
-
-
-
380 1)  
mA  
valid for Feature  
Package D and DC;  
max power pattern  
-
-
-
198 1)  
432  
mA  
mA  
mA  
valid for Feature  
Package D and DC;  
real power pattern  
valid for Feature  
Package DA; max  
power pattern  
250  
valid for Feature  
Package DA; real  
power pattern  
Data Sheet  
4-224  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower Supply Current  
Table 3-34 Power Supply (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
I
DD core current during active IDDPORST  
-
-
-
-
-
-
-
-
60  
mA  
valid for Feature  
Package D and DC;  
TJ=125°C  
power-on reset (PORST held CC  
low)  
-
-
-
-
-
-
112  
103  
160  
154  
216  
38  
mA  
mA  
mA  
mA  
mA  
mA  
valid for Feature  
Package D and DC;  
TJ=150°C  
valid for Feature  
Package DA;  
TJ=125°C  
valid for Feature  
Package D and DC;  
TJ=165°C  
valid for Feature  
Package DA;  
TJ=150°C  
valid for Feature  
Package DA;  
TJ=165°C  
I
DD core current of CPU1 main IDDC10 CC  
real power pattern  
core with CPU1 lockstep core  
inactive  
I
DD core current of CPU1 main IDDC11 CC  
core with lockstep core active  
DD core current added by FFT IDDFFT CC  
-
-
-
-
-
IDDC10  
32  
+
mA  
mA  
mA  
real power pattern  
I
40  
FFT running at  
200MHz  
Sum of 3.3 V supply currents IDDx3RAIL CC -  
46 2)  
real power pattern  
without pad activity  
I
DDFL3 Flash memory current  
I
DDFL3 CC  
-
-
-
-
33 3)  
33 4)  
mA  
mA  
flash read current  
flash read current  
while programming  
Dflash  
I
DDP3 supply current without  
I
DDP3 CC  
-
-
-
-
13 3)  
27 5)  
mA  
mA  
real power pattern;  
incl. OSC & flash read  
current  
pad activity  
incl. OSC current and  
flash 3.3V  
programming current  
when using external  
5V supply  
-
-
31 4)  
mA  
incl. OSC current and  
flash programming  
current when using  
3.3V supply only  
Data Sheet  
4-225  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower Supply Current  
Table 3-34 Power Supply (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
I
DDP3 supply current for LVDSH IDDP3LVDSH  
-
-
16  
mA  
mA  
pads in LVDS mode  
CC  
Σ Sum of external and ADC  
supply currents (incl.  
I
I
EXTRAIL CC -  
-
31  
11  
real power pattern  
EXTFLEX+IDDM+IEXTLVDSM)  
Sum of IEXT and IFLEX supply  
I
EXT/FLEX CC -  
-
mA  
real power pattern;  
PORST output  
inactive.  
current without pad activity  
I
EXT supply current for LVDSM IEXTLVDSM  
pads in LVDS mode CC  
DDM supply current DDM CC  
-
-
-
-
6 6)  
14  
mA  
mA  
real power pattern  
I
I
real power pattern;  
sum of currents of  
DSADC and VADC  
modules  
-
-
-
-
12  
mA  
mA  
current for DSADC  
module only; 50%  
DSADC channels  
active.  
32 7)  
max power pattern; All  
DSADC channels  
active 100% time.  
-
-
-
-
2
mA  
mA  
real pattern; current for  
VADC only  
7 8)  
max power pattern; All  
VADC converters are  
active 100% time  
Σ Sum of all currents (incl.  
EXTRAIL+IDDx3RAIL+IDD)  
I
DDTOT CC  
-
-
-
-
275  
327  
mA  
mA  
valid for Feature  
Package D and DC;  
real power pattern  
I
valid for Feature  
Package DA; real  
power pattern  
Σ Sum of all currents with DC- IDDTOTDC3  
-
-
-
-
-
-
180  
mA  
mA  
µA  
real power pattern;  
9)  
DC EVR13 regulator active  
CC  
V
EXT = 3.3V  
real power pattern;  
EXT = 5V  
Σ Sum of all currents with DC- IDDTOTDC5  
150  
9)  
DC EVR13 regulator active  
CC  
EVRSB CC  
V
Sum of all currents  
I
150 10)  
Standby RAM is  
active. Power to  
remaining domains  
switched off. TJ =  
25°C; VEVRSB = 5V  
(STANDBY mode)  
Data Sheet  
4-226  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower Supply Current  
Table 3-34 Power Supply (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Sum of all currents (SLEEP  
mode)  
I
SLEEP CC  
-
-
15  
mA  
All CPUs in idle, All  
peripherals in sleep,  
f
SRI/SPB = 1 MHz via  
LPDIV divider; TJ =  
25°C; valid for Feature  
Package D and DC  
-
-
19  
mA  
All CPUs in idle, All  
peripherals in sleep,  
f
SRI/SPB = 1 MHz via  
LPDIV divider; TJ =  
25°C; valid for Feature  
Package DA  
Maximum power dissipation  
PD CC  
-
-
-
-
-
-
-
-
1090  
614  
mW  
mW  
mW  
mW  
valid for Feature  
Package D and DC;  
max power pattern  
valid for Feature  
Package D and DC;  
real power pattern  
1145  
669  
valid for Feature  
Package DA; max  
power pattern  
valid for Feature  
Package DA; real  
power pattern  
SCR 8-bit Standby Controller in ISCRSB CC  
STANDBY Mode  
-
-
25  
-
-
µA  
f
SYS_SCR = 100KHz;  
TJ=25°C  
SYS_SCR = 20MHz;  
TJ=25°C  
4
1
mA  
mA  
f
SCR 8-bit Standby Controller  
CPU in IDLE mode  
I
SCRIDLE CC -  
-
1) The real pattern usecase is limited to 160 MHz in TC26x to limit the IDD current to less than 200 mA to ensure that internal  
pass devices of EVR13 LDO can deliver the required IDD current. The max pattern IDD current can only be met with EVR13  
LDO using external pass devices or EVR13 SMPS mode.  
2) In case EVR33 is not used, Injection current into 3.3V VDDP3 supply rail with active sink on 5V VEXT rail should be limited  
to 500 mA if during power sequencing 3.3V is supplied before 5V by external regulator.  
3) Realistic Pflash read pattern with 70% Pflash bandwidth utlilization and a code mix of 50% 0s and 50% 1s. Dynamic Flash  
Idle via FCON.IDLE is activated bringing a benefit of 8 mA. A common decoupling capacitor of atleast 100nF for  
(VDDFL3+VDDP3) is used. Dflash read current is also included. Flash read current is predominantly drawn from VDDFL3 pin and  
a minor part drawn from the neighbouring VDDP3 pin.  
4) Continuous Dflash programming in burst mode with 3.3 V supply and realistic Pflash read access in parallel. Dynamic Flash  
Idle via FCON.IDLE is activated bringing a benefit of 8 mA. Erase currents of the corresponding flash modules are less  
than the respective programming currents at VDDP3 pin. Programming and erasing flash may generate transient current  
spikes of up to x mA for maximum x us which is handled by the decoupling and buffer capacitors. This parameter is relevant  
for external power supply dimensioning and not for thermal considerations.  
5) In addition to the current specified, upto 4 mA is additionally drawn at VEXT supply in burst programming mode with 5V  
external supply. Erase currents of the corresponding flash modules are less than the respective programming currents at  
V
DDP3 supply. This parameter is relevant for external power supply dimensioning and not for thermal considerations.  
Data Sheet  
4-227  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower Supply Current  
6) The current consumption is for 1 pair of LVDSM differential pads (4 pins).  
7) The current consumption is for 6 DS channels with standard performance (MCFG=11b). A single DS channel instance  
consumes 6-8 mA.  
8) A single converter instance of VADC unit consumes 2 mA.  
9) The total current drawn from external regulator is estimated with 72% EVR13 SMPS regulator Efficiency. IDDTOTDCx is  
calculated from IDDTOT using the scaled core current [(IDD x VDD)/(VinxEfficiency)] and constitutes all other rail currents and  
IDDM  
.
10) Current at VEVRSB supply pin during normal RUN mode is less than 5 mA at TJ =150 °C. The transition between RUN mode  
to STANDBY mode has a duration of less than 100us during which the current is higher but is less than 8 mA at TJ =150  
°C. Once STANDBY mode is entered with only Standby RAM active the current is less than 5mA at TJ = 150 °C. It is  
recommended to have atleast 100 nF decoupling capacitor at this pin. The standby current indicated is solely drawn from  
VEVRSB pin.  
3.14.1  
Calculating the 1.3 V Current Consumption  
The current consumption of the 1.3 V rail compose out of two parts:  
Static current consumption  
Dynamic current consumption  
The static current consumption is related to the device temperature TJ and the dynamic current consumption  
depends of the configured clocking frequencies and the software application executed. These two parts needs to  
be added in order to get the rail current consumption.  
Valid for Feature Package D and DC products:  
(3.2)  
mA  
0, 0255 × T  
--------  
C
I
= 0, 741  
= 2, 86  
× e  
[C]  
J
0
(3.3)  
mA  
--------  
0, 0244 × T  
I
× e  
[C]  
J
0
C
Valid for Feature Package DA products:  
(3.4)  
(3.5)  
mA  
--------  
0, 02483 × T  
I
= 0, 99  
× e  
[C]  
J
0
C
mA  
--------  
0, 02308 × T  
I
= 4, 8  
× e  
[C]  
J
0
C
Function 2 defines the typical static current consumption and Function 3 defines the maximum static current  
consumption. Both functions are valid for VDD = 1.326 V.  
Data Sheet  
4-228  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower-up and Power-down  
3.15  
Power-up and Power-down  
External Supply Mode  
3.15.1  
5 V & 1.3 V supplies are externally supplied. 3.3V is generated internally by EVR33.  
External supplies VEXT and VDD may ramp-up or ramp-down independent of each other with regards to start,  
rise and fall time(s). Voltage Ramp-up from a residual threshold (Eg : up to 1 V) should also lead to a normal  
startup of the device.  
The rate at which current is drawn from the external regulator (dIEXT /dt or dIDD /dt) is limited in the Start-up  
phase to a maximum of 50 mA/100 us.  
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.  
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It  
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary  
reset thresholds.  
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus  
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among  
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The  
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the  
basic supply and clock infrastructure is available.  
The power sequence as shown in Figure 3-4 is enumerated below  
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supplies  
ramp up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of  
EVR33 regulator is initiated.  
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR33 regulator  
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.  
Firmware execution is initiated.  
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a  
default frequency of 100 MHz.  
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or  
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset  
thresholds.  
Please note that there is no special requirements for PORST slew rates.  
Data Sheet  
4-229  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower-up and Power-down  
VEXT  
(externally supplied )  
0
1
2
3
4
5.5 V  
5.0 V  
4.5 V  
2. 97 V  
Primary Reset Threshold  
0 V  
VDD (externally supplied )  
1. 33 V  
1.30  
1. 17 V  
V
Primary Reset Threshold  
0 V  
PORST (output )  
PORST (input)  
VDDP3 (internally generated  
by EVR33)  
3. 63 V  
3.30 V  
2. 97 V  
Primary Reset Threshold  
0 V  
T2  
T0  
T1  
T3  
T4  
Basic Supply & Clock  
Infrastructure  
EVR33 Ramp-up Phase  
Firmware Execution  
User Code Execution  
fCPU=100MHz default  
on firmware exit  
Power Ramp-down phase  
Startup_Diag_1 v 0.1  
Figure 3-4 External Supply Mode - 5 V and 1.3 V externally supplied  
Data Sheet  
4-230  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower-up and Power-down  
3.15.2  
Single Supply Mode  
5 V single supply mode. 1.3 V & 3.3 V are generated internally by EVR13 & EVR33.  
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a  
maximum of 50 mA/100 us.  
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.  
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It  
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary  
reset threshold.  
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus  
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among  
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The  
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the  
basic supply and clock infrastructure is available.  
The power sequence as shown in Figure 3-5 is enumerated below  
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply  
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of  
EVR13 and EVR33 regulators are initiated.  
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 and EVR33  
regulators have ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST  
rising edge. Firmware execution is initiated.  
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a  
default frequency of 100 MHz.  
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or  
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset  
thresholds.  
Please note that there is no special requirements for PORST slew rates.  
Data Sheet  
4-231  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower-up and Power-down  
VEXT  
(externally supplied )  
0
1
2
3
4
5.5 V  
5.0 V  
4.5 V  
2. 97 V  
Primary Reset Threshold  
0 V  
PORST (output )  
PORST (input)  
VDD  
(internally generated  
by EVR13)  
1. 33 V  
1.30  
V
1. 17 V  
Primary Reset Threshold  
0 V  
VDDP3  
(internally generated  
by EVR33)  
3. 63 V  
3.30 V  
2. 97 V  
Primary Reset Threshold  
0 V  
T2  
T0  
T1  
T3  
T4  
EVR13 & EVR 33 Ramp-up  
Basic Supply & Clock  
Infrastructure  
User Code Execution  
Firmware Execution  
Power Ramp-down phase  
Phase  
fCPU=100MHz default  
on firmware exit  
Startup_Diag_2 v 0.1  
Figure 3-5 Single Supply Mode - 5 V single supply  
Data Sheet  
4-232  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower-up and Power-down  
3.15.3  
External Supply Mode  
All supplies, namely 5 V, 3.3 V & 1.3 V, are externally supplied.  
External supplies VEXT ,, VDDP3 & VDD may ramp-up or ramp-down independent of each other with regards  
to start, rise and fall time(s).  
The rate at which current is drawn from the external regulator (dIEXT /dt, dIDD /dt or dIDDP3 /dt) is limited in  
the Start-up phase to a maximum of 50 mA/100 us.  
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.  
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It  
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary  
reset thresholds.  
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus  
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among  
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The  
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the  
basic supply and clock infrastructure is available.  
The power sequence as shown in Figure 3-6 is enumerated below  
T1 refers to the point in time when all supplies are above their primary reset thresholds and basic clock  
infrastructure is available. The supply mode is evaluated based on the HWCFG [0:2] pins. PORST (output)  
is deasserted and HWCFG [0:7] pins are latched on PORST rising edge. Firmware execution is initiated.  
T2 refers to the point in time when Firmware execution is completed. User code execution starts with a  
default frequency of 100 MHz.  
T3 refers to the point in time during the Ramp-down phase when atleast one of the externally provided  
supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset thresholds.  
Please note that there is no special requirements for PORST slew rates.  
Data Sheet  
4-233  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower-up and Power-down  
VEXT  
(externally supplied )  
0
1
2
3
5.5 V  
5.0 V  
4.5 V  
2. 97 V  
Primary Reset Threshold  
0 V  
VDD (externally supplied )  
1. 33 V  
1.30  
1. 17 V  
V
Primary Reset Threshold  
0 V  
VDDP3  
(externally supplied)  
3. 63 V  
3.30 V  
2. 97 V  
Primary Reset Threshold  
0 V  
PORST (output )  
PORST (input)  
T0  
T1  
T2  
T3  
Basic Supply & Clock  
Infrastructure  
User Code Execution  
fCPU=100 MHz default  
on firmware exit  
Firmware Execution  
Power Ramp-down phase  
Startup_Diag_3 v 0.1  
Figure 3-6 External Supply Mode - 5 V, 3.3 V & 1.3 V externally supplied  
Data Sheet  
4-234  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower-up and Power-down  
3.15.4  
Single Supply Mode  
3.3 V single supply mode. 1.3 V is generated internally by EVR13.  
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a  
maximum of 50 mA/100 us.  
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.  
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It  
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary  
reset threshold.  
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus  
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among  
the three supply domains (1.3 V or 3.3 V) violate their primary under-voltage reset thresholds.The  
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the  
basic supply and clock infrastructure is available.  
The power sequence as shown in Figure 3-7 is enumerated below  
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply  
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of  
EVR13 regulator is initiated.  
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 regulator  
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.  
Firmware execution is initiated.  
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a  
default frequency of 100 MHz.  
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or  
generated supplies (1.3 V or 3.3 V) drop below their respective primary under-voltage reset thresholds.  
Please note that there is no special requirements for PORST slew rates.  
Data Sheet  
4-235  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPower-up and Power-down  
VEXT  
0
1
2
3
4
(externally supplied )  
&
VDDP3 (externally  
supplied )  
3. 63 V  
3.30 V  
2. 97 V  
Primary Reset Threshold  
0 V  
PORST (output )  
PORST (input)  
VDD (internally generated  
by EVR 13)  
1. 33 V  
1.30  
1. 17 V  
V
Primary Reset Threshold  
0 V  
T2  
T0  
T1  
T3  
T4  
Basic Supply & Clock  
Infrastructure  
User Code Execution  
fCPU=100MHz default  
on firmware exit  
EVR13 Ramp-up Phase  
Firmware Execution  
Power Ramp-down phase  
Startup_Diag_4 v 0.1  
Figure 3-7 Single Supply Mode - 3.3 V single supply  
Data Sheet  
4-236  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationReset Timing  
3.16  
Reset Timing  
Table 3-35 Reset Timings  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Application Reset Boot Time 1) tB CC  
-
-
350 2)  
µs  
operating with max.  
frequencies.  
System Reset Boot Time  
Power on Reset Boot Time 3)  
t
t
BS CC  
BP CC  
-
-
-
-
1 2)  
2.5  
ms  
ms  
dV/dT=1V/ms.  
including EVR ramp-  
up and Firmware  
execution time  
-
-
-
1.1 2)  
ms  
µs  
Firmware execution  
time; without EVR  
operation (external  
supply only)  
Minimum PORST hold time  
incase of power fail event  
issued by EVR primary monitor  
t
EVRPOR CC 10  
-
EVR start-up or ramp-up time tEVRstartup  
-
-
-
1
-
ms  
ms  
dV/dT=1V/ms. EVR13  
and EVR33 active  
CC  
Minimum PORST active hold  
time after power supplies are  
stable at operating levels 4)  
t
POA CC  
1
Configurable PORST digital  
filter delay in addition to analog  
pad filter delay  
t
PORSTDF CC 600  
-
1200  
ns  
HWCFG pins hold time from  
ESR0 rising edge  
t
t
HDH CC  
HDS CC  
16 / fSPB  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
HWCFG pins setup time to  
ESR0 rising edge  
0
-
Ports inactive after ESR0 reset tPI CC  
active  
-
8/fSPB  
Ports inactive after PORST  
reset active 5)  
t
t
t
t
PIP CC  
POH SR  
POS SR  
SCR CC  
-
150  
Hold time from PORST rising  
edge  
150  
0
-
-
Setup time to PORST rising  
edge  
SCR reset boot time  
-
-
-
-
300  
300  
-
µs  
µs  
µs  
User Mode 0  
User Mode 1  
-
13.3  
WDT double bit ECC,  
soft reset  
Data Sheet  
4-237  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationReset Timing  
1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock cycle when  
the first user instruction has entered the CPU pipeline and its processing starts.  
2) The timing values assumes programmed BMI with ESR0CNT inactive.  
3) The duration of the boot time is defined by all external supply voltages are inside there operation condictions and the clock  
cycle when the first user instruction has entered the CPU pipeline and its processing starts.  
4) The regulator that supplies VEXT should ensure that VEXT is in the operational region before PORST is externally released  
by the regulator. Incase of 5V nominal supply, it should be ensured that VEXT > 4V before PORST is released. Incase of  
3.3V nominal supply , it should be ensured that VEXT > 3V before PORST is released. The additional minimum PORST hold  
time is required as an additional mechanism to avoid consecutive PORST toggling owing to slow supply slopes or residual  
supply ramp-ups. It is also required to activate external PORST atleast 100us before power-fail is recognised to avoid  
consecutive PORST toggling on a power fail event.  
5) This parameter includes the delay of the analog spike filter in the PORST pad.  
VDDPPA  
VDDPPA  
VDDP  
VDD  
VDDPR  
tPOA  
tPOA  
Warm  
PORST  
ESR0  
Cold  
t PI  
tPI  
tPIP  
Tristate Z / pullup H  
Programmed  
Z / H  
Programmed  
Z / H  
Programmed  
Pads  
Pad-  
state  
undefined  
Pad-  
state  
undefined  
tPOS  
tPOS  
tPOH  
tPOH  
TRST  
TESTMODE  
tHDH  
tHDH  
config  
tHDA  
tHDH  
config  
tHDA  
HWCFG  
power -on config  
reset_beh_aurix  
Figure 3-8 Power, Pad and Reset Timing  
Data Sheet  
4-238  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEVR  
3.17  
EVR  
Table 3-36 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
4
Max.  
5.50  
3.63  
Input voltage range 1)  
VIN SR  
-
V
V
pass device=on chip  
pass device=on chip  
Output voltage operational  
range including load/line  
regulation and aging incase of  
LDO regulator  
V
V
OUT CC  
2.97  
3.3  
Output VDDx3 static voltage  
accuracy after trimming and  
aging without dynamic load/line  
Regulation incase of LDO  
regulator.  
OUTT CC  
3.225  
3.3  
3.375  
V
pass device=on chip  
Output buffer capacitance on  
VOUT  
C
OUT CC  
-
-
1
-
-
µF  
V
pass device=on chip  
2)  
Primary Undervoltage Reset  
V
RST33 CC  
3.0  
by reset release before  
EVR trimming on  
supply ramp-up.  
3)  
threshold for VDDx3  
Startup time  
External VIN supply ramp 4)  
t
STR CC  
-
-
-
1000  
50  
µs  
pass device=on chip  
dVin/dT  
1
V/ms pass device=on chip  
SR  
Load step response  
Line step response  
dVout/dIout -  
CC  
-
-
-
240  
-
mV  
mV  
mV  
dI=-70mA/20ns;  
Tsettle=20us; pass  
device=on chip  
-240  
dI=50mA/20ns;  
Tsettle=100us; pass  
device=on chip  
dVout/dVin -20  
20  
dV/dT=1V/ms; pass  
CC  
device=on chip  
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device  
operation.  
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the  
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.  
3) The reset release on supply ramp-up is delayed by a time duration 20-40 us after reaching undervoltage reset threshold.  
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to  
voltage drop/current jumps when reset is released. The reset limit of 2,97V at pin is for the case with 3.3V generated  
internally from EVR33. In case the 3.3V supply is provided externally, the bondwire drop will cause a reset at a higher  
voltage of 3.0V at the VDDP3 pin.  
4) EVR robust against residual voltage ramp-up starting between 0-1 V.  
Data Sheet  
4-239  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEVR  
Table 3-37 1.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input voltage range 1)  
VIN SR  
2.97  
-
5.5  
V
VIN; pass device=on  
chip  
2.97  
1.17  
-
5.5  
V
V
pass device=off chip  
Output voltage operational  
range including load/line  
regulation and aging incase of  
LDO regulator  
V
V
OUT CC  
1.3  
1.43  
VIN; pass device=on  
chip  
1.17  
1.3  
1.3  
1.43  
V
V
pass device=off chip  
Output VDD static voltage  
accuracy after trimming without  
dynamic load/line regulation  
with aging incase of LDO  
regulator.  
OUTT CC  
1.275  
1.325  
VIN; pass device=on  
chip  
1.275  
1.4  
1.3  
2.2  
1.325  
3
V
pass device=off chip  
Output buffer capacitance on  
C
OUT CC  
µF  
On chip pass device  
usage restricted to IDD  
2)  
VOUT  
< 200mA. If IDD  
>
200mA, off chip pass  
device to be used.;  
VIN; pass device=on  
chip  
3
-
4.7  
-
6.3  
µF  
V
pass device=off chip  
Primary undervoltage reset  
threshold for VDD  
V
RST13 CC  
1.17  
VIN; pass device=on  
chip  
3)  
-
-
1.17  
V
by reset release before  
EVR trimming on  
supply ramp-up. pass  
device=off chip  
Startup time  
t
STR CC  
-
-
1000  
µs  
µs  
VIN; pass device=on  
chip  
-
-
-
1000  
50  
pass device=off chip  
External VIN supply ramp 4)  
dVin/dT  
1
V/ms VIN; pass device=on  
SR  
chip  
-
1
50  
V/ms pass device=off chip  
Data Sheet  
4-240  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEVR  
Table 3-37 1.3V (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Load step response  
dVout/dIout -  
CC  
-
-
-
-
100  
mV  
mV  
mV  
mV  
dI=-125mA;  
Tsettle=20µs; VIN;  
pass device=on chip  
-
100  
dI=-150mA;  
Tsettle=20µs; pass  
device=off chip  
-100  
-
-
dI=100mA;  
Tsettle=20µs; pass  
device=off chip  
-100  
dI=75mA;  
Tsettle=20µs; VIN;  
pass device=on chip  
Line step response  
dVout/dVin -10  
CC  
-
-
10  
10  
mV  
mV  
dV/dT=1V/ms; VIN;  
pass device=on chip  
-10  
dV/dT=1V/ms; pass  
device=off chip  
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device  
operation.  
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the  
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.  
3) The reset release on supply ramp-up is delayed by a time duration 30-60 µs after reaching undervoltage reset threshold.  
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to  
voltage drop/current jumps when reset is released.The reset limit of 1,17V at pin is for the case with 1.3V generated  
internally from EVR13. In case the 1.3V supply is provided externally, the bondwire drop will cause a reset at a higher  
voltage of 1.18V at the VDD pin.  
4) EVR robust against residual voltage ramp-up starting between 0-1 V.  
Table 3-38 Supply Monitoring  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
V
EXT primary undervoltage  
VEXTPRIUV  
SR  
2.86  
2.92  
2.90  
1.15  
5.0  
2.97  
V
V
EXT = Undervoltage  
monitor accuracy after  
trimming 1)  
Reset Threshold  
VDDP3 primary undervoltage  
VDDP3PRIUV 2.86  
SR  
2.97  
1.17  
5.1  
V
V
V
V
DDP3 = Undervoltage  
monitor accuracy after  
trimming  
Reset Threshold  
1)  
VDD primary undervoltage  
VDDPRIUV  
SR  
1.13  
VDD = Undervoltage  
Reset Threshold  
monitor accuracy after  
trimming  
1)  
VEXT secondary supply monitor VEXTMON CC 4.9  
SWDxxVAL VEXT  
monitoring  
accuracy  
threshold=5V=DBh  
Data Sheet  
4-241  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEVR  
Table 3-38 Supply Monitoring (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
V
DDP3 secondary supply  
VDDP3MON  
CC  
3.23  
3.30  
1.30  
-
3.37  
V
EVR33xxVAL VDDP3  
monitoring  
threshold=3.3V=91h  
monitor accuracy  
VDD secondary supply monitor VDDMON CC 1.27  
1.33  
1.8  
V
EVR13xxVAL VDD  
monitoring  
threshold=1.3V=E4h  
accuracy  
EVR primary and secondary  
monitor measurement latency  
for a new supply value  
t
EVRMON CC -  
µs  
after trimming  
1) The monitor tolerances constitute the inherent variation of the bandgap and ADC over process, voltage and temperature  
operational ranges. The xxxPRIUV parameters are device individually tested in production with ±1% tolerance about the  
min and max xxxPRIUV limits. In TQFP100 and QFP80 pin packages, VDDPRIUV is not tested as HWCFG2 pin is absent.  
Table 3-39 EVR13 SMPS External components  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
29.7  
13.5  
50  
External output capacitor value COUTDC SR 15.4  
22  
10  
-
µF  
µF  
I
I
DDDC=1A  
1)  
6.5  
DDDC=400mA  
External output capacitor ESR CDC_ESR SR -  
mOhm f0.5MHz; f10MHz  
-
-
100  
13.5  
9.18  
50  
Ohm  
µF  
f=10Hz  
External input capacitor value 1) CIN SR  
6.5  
4.42  
-
10  
6.8  
-
I
I
DDDC=1A  
µF  
DDDC=400mA  
External input capacitor ESR  
External inductor value 2)  
External inductor ESR  
C
IN_ESR SR  
mOhm f0.5MHz; f10MHz  
-
-
100  
4.29  
6.11  
0.2  
Ohm  
µH  
f=100Hz  
L
DC SR  
2.31  
3.29  
3.3  
4.7  
-
f
f
DCDC=1.5MHz  
DCDC=1MHz  
µH  
L
DC_ESR SR -  
LL SR  
Ohm  
V
P + N-channel MOSFET logic  
level  
V
-
-
2.5  
P + N-channel MOSFET drain |VBR_DS| SR -  
-
7
V
source breakdown voltage  
P + N-channel MOSFET drain RON SR  
source ON-state resistance  
-
-
-
-
-
150  
mOhm IDDDC=1A;VGS=2.5V ;  
TA=25°C  
-
200  
mOhm IDDDC=400mA;VGS=2.5  
V ; TA=25°C  
P + N-channel MOSFET Gate Qac SR  
Charge  
4
8
-
-
nC  
I
DDDC=1A; MOS-  
VGS=5V  
DDDC=400mA; MOS-  
VGS=5V  
nC  
I
Data Sheet  
4-242  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEVR  
Table 3-39 EVR13 SMPS External components (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
External MOSFET  
commutation time  
tc SR  
10  
30  
40  
ns  
V
configurable  
N-channel MOSFET reverse  
diode forward voltage  
V
RDN SR  
-
0.8  
-
1) Capacitor min-max range represent typical ±35% tolerance including DC bias effect. The trace resistance from the  
capacitor to the supply or ground rail should be limited to 25 mOhm.  
2) External inductor min-max range represent typical ±30% tolerance at a DC bias current of 100mA.  
Table 3-40 EVR13 SMPS  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2.97  
1.17  
Max.  
5.5  
Input VEXT Voltage range  
VIN SR  
-
-
V
V
SMPS regulator output voltage VDDDC CC  
range including load/line  
regulation and aging 1)  
1.43  
V
DD2.97V; VDD5.5V;  
I
DDDC1mA; IDDDC1A  
SMPS regulator static voltage  
output accuracy after trimming  
without dynamic load/line  
Regulation with aging. 2)  
V
DDDCT CC 1.275  
1.3  
1.325  
V
V
DD2.97V; VDD5.5V;  
I
DDDC1mA; IDDDC1A  
Programmable switching  
frequency  
f
DCDC CC  
0.4  
-
-
-
2.0  
2%  
15  
MHz  
MHz  
mV  
Switching frequency  
modulation spread  
fDCSPR CC -  
Maximum ripple at IMAX (peak- VDDDC CC -  
VDD2.97V; VDD5.5V;  
to-peak) 3)  
I
I
DDDC300mA;  
DDDC1A  
No load current consumption of IDCNL CC  
SMPS regulator  
-
5
-
10  
25  
mA  
mV  
fDCDC=1MHz  
SMPS regulator load transient dVout/dIout -25  
response CC  
dI < 200mA ;  
DCDC=1MHz; tr=0.1us;  
f
tf=0.1us; VDDDC=1.3V  
-65  
-
-
-
65  
1
mV  
A
dI < 400mA ;  
f
DCDC=1MHz; tr=0.1us;  
tf=0.1us; VDDDC=1.3V  
Maximum output current of the IMAX SR  
regulator  
limited by thermal  
constraints and  
component choice  
Data Sheet  
4-243  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEVR  
Table 3-40 EVR13 SMPS (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
SMPS regulator efficiency  
n
DC CC  
-
85  
-
%
VIN=3.3V;  
I
f
DDDC=300mA;  
DCDC=1MHz  
VIN=5V; IDDDC=400mA;  
DCDC=1.5MHz  
VIN=5V; IDDDC=400mA;  
DCDC=1MHz  
-
-
75  
80  
-
-
%
%
f
f
1) Incase of SMPS mode, It shall be ensured that the VDD output pin shall be connected on PCB level to all other VDD Input  
pins.  
2) Incase of fSRI running with max frequency, it shall be ensured that the VDD operating range is limited to 1.235V upto 1.430V.  
The DCDC may be configured in this case with a nominal voltage of 1.33V±7.5%. The static accuracy and regulation  
parameter ranges remain also valid for this case.  
3) If frequency spreading (SDFREQSPRD = 1) is activated, an additional ripple of 1% need to be considered.  
Data Sheet  
4-244  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPhase Locked Loop (PLL)  
3.18  
Phase Locked Loop (PLL)  
Table 3-41 PLL  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
PLLBASE CC 80  
Max.  
360  
800  
24  
PLL base frequency  
VCO frequency range  
VCO Input frequency range  
Modulation Amplitude  
Peak Period jitter  
f
f
f
150  
MHz  
MHz  
MHz  
%
VCO SR  
REF CC  
400  
8
-
-
-
-
-
-
MA CC  
DP CC  
0
2
-200  
-5  
200  
5
ps  
Peak Accumulated Jitter  
Total long term jitter  
DPP CC  
ns  
without modulation  
JTOT CC  
-
11.5  
ns  
including modulation;  
MA 1%  
System frequency deviation  
f
SYSD CC  
-
-
0.01  
5.4  
%
with active modulation  
Modulation variation frequency fMV CC  
PLL lock-in time tL CC  
2
3.6  
-
MHz  
µs  
11.5  
200  
Note:The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the  
maximum driver and sharp edge.  
Note:The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of  
V
PP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.  
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the  
supply pins and using PCB supply and ground planes.  
Data Sheet  
4-245  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationERAY Phase Locked Loop (ERAY_PLL)  
3.19  
ERAY Phase Locked Loop (ERAY_PLL)  
Table 3-42 PLL_ERAY  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
PLL Base Frequency of the  
ERAY PLL  
fPLLBASE_ERA 50  
Y CC  
200  
320  
MHz  
MHz  
MHz  
VCO frequency range of the  
ERAY PLL  
fVCO_ERAY  
400  
-
-
480  
24  
SR  
VCO input frequency of the  
ERAY PLL  
f
REF SR  
16  
Accumulated_Jitter  
DP CC  
DPP CC  
-0.5  
-0.8  
-
-
0.5  
0.8  
ns  
ns  
Accumulated jitter at SYSCLK  
pin  
PLL lock-in time  
tL CC  
5.6  
-
200  
µs  
Note:The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the  
maximum driver and sharp edge.  
Note:The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of  
V
PP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.  
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the  
supply pins and using PCB supply and ground planes.  
Data Sheet  
4-246  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationAC Specifications  
3.20  
AC Specifications  
All AC parameters are specified for the complette operating range defined in Chapter 3.4 unless otherwise noted  
in colum Note / test Condition.  
Unless otherwise noted in the figures the timings are defined with the following guidelines:  
VEXT/FLEX / VDDP3  
90%  
90%  
10%  
10%  
VSS  
tr  
tf  
rise_fall  
Figure 3-9 Definition of rise / fall times  
VEXT/FLEX / VDDP3  
Timing  
Reference  
Points  
VEXT/FLEX /VDDP3  
V
EXT /FLEX / VDDP3  
2
2
VSS  
timing_reference  
Figure 3-10 Time Reference Point Definition  
Data Sheet  
4-247  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationJTAG Parameters  
3.21  
JTAG Parameters  
The following parameters are applicable for communication through the JTAG debug interface. The JTAG module  
is fully compliant with IEEE1149.1-2000.  
Table 3-43 JTAG  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
25  
10  
10  
-
Max.  
TCK clock period  
TCK high time  
t1 SR  
t2 SR  
t3 SR  
t4 SR  
t5 SR  
t6 SR  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
TCK low time  
-
TCK clock rise time  
TCK clock fall time  
4
4
-
-
TDI/TMS setup to TCK rising  
edge  
6.0  
TDI/TMS hold after TCK rising t7 SR  
6.0  
-
-
ns  
edge  
TDO valid after TCK falling  
edge (propagation delay) 1)  
t8 CC  
3.0  
-
-
-
-
-
ns  
ns  
ns  
CL20pF  
CL50pF  
16  
-
TDO hold after TCK falling  
edge 1)  
t
18 CC  
2
TDO high impedance to valid t9 CC  
-
-
-
-
17.5  
17  
ns  
ns  
CL50pF  
CL50pF  
from TCK falling edge 1)2)  
TDO valid output to high  
impedance from TCK falling  
edge 1)  
t10 CC  
1) The falling edge on TCK is used to generate the TDO timing.  
2) The setup time for TDO is given implicitly by the TCK cycle time.  
t1  
0.9 VDDP  
0.1 VDDP  
0.5 VDDP  
t5  
t4  
t2  
t3  
MC_JTAG_TCK  
Figure 3-11 Test Clock Timing (TCK)  
Data Sheet  
4-248  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationJTAG Parameters  
TCK  
TMS  
TDI  
t6  
t7  
t6  
t7  
t9  
t8  
t10  
TDO  
t18  
MC_JTAG  
Figure 3-12 JTAG Timing  
Data Sheet  
4-249  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationDAP Parameters  
3.22  
DAP Parameters  
The following parameters are applicable for communication through the DAP debug interface.  
Table 3-44 DAP  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
DAP0 clock period  
DAP0 high time  
t
t
t
t
11 SR  
12 SR  
13 SR  
14 SR  
6.25  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
-
-
DAP0 low time  
-
DAP0 clock rise time  
1
2
1
2
-
f=160MHz  
f=80MHz  
f=160MHz  
f=80MHz  
-
DAP0 clock fall time  
t
15 SR  
-
-
DAP1 setup to DAP0 rising  
edge  
t
t
t
16 SR  
17 SR  
19 CC  
4
DAP1 hold after DAP0 rising  
edge  
2
-
-
ns  
DAP1 valid per DAP0 clock  
period 1)  
3
-
-
-
-
-
-
ns  
ns  
ns  
CL=20pF; f=160MHz  
CL=20pF; f=80MHz  
CL=50pF; f=40MHz  
8
10  
1) The Host has to find a suitable sampling point by analyzing the sync telegram response.  
t11  
0.9 VDDP  
0.1 VDDP  
0.5 VDDP  
t15  
t14  
t12  
t13  
MC_DAP0  
Figure 3-13 Test Clock Timing (DAP0)  
DAP0  
t16  
t17  
DAP1  
MC_DAP1_RX  
Figure 3-14 DAP Timing Host to Device  
Data Sheet  
4-250  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationDAP Parameters  
t11  
DAP1  
t19  
MC_DAP1_TX  
Figure 3-15 DAP Timing Device to Host (DAP1 and DAP2 pins)  
Note:The DAP1 and DAP2 device to host timing is individual for both pins. There is no guaranteed max. signal  
skew.  
Data Sheet  
4-251  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationASCLIN SPI Master Timing  
3.23  
ASCLIN SPI Master Timing  
This section defines the timings for the ASCLIN in the TC 260 / 264 / 265 / 267, for 5V power supply.  
Note:Pad asymmetry is already included in the following timings.  
Table 3-45 Master Mode MP+ss/MPRss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
Deviation from ideal duty cycle t500 CC  
-3  
3
0 < CL < 50pF  
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-7  
5
-
-
-
-
6
35  
-
ns  
ns  
ns  
ns  
CL=25pF  
ASLSOn delay from the first  
ASCLKO edge  
CL=25pF; pad used =  
LPm  
MRST setup to ASCLKO  
latching edge  
28  
-6  
CL=25pF  
MRST hold from ASCLKO  
latching edge  
-
CL=25pF  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-46 Master Mode MPss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=25pF  
Deviation from ideal duty cycle t500 CC  
-2  
3.5+0.035 ns  
0 < CL < 200pF  
2)  
* CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
51 CC  
510 CC  
52 SR  
-7  
-7  
-
-
6
ns  
ns  
CL=25pF  
ASLSOn delay from the first  
ASCLKO edge  
6
CL=25pF  
MRST setup to ASCLKO  
latching edge  
30  
33 3)  
-
-
-
-
ns  
ns  
CL=25pF, else  
CL=25pF, for P14.2,  
P14.4, and P15.1  
MRST hold from ASCLKO  
latching edge  
t
53 SR  
-5  
-
-
ns  
CL=25pF  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
3) Please note that these pins didn't support the hystereses inactive feature.  
Data Sheet  
4-252  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-47 Master Mode MPsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
100  
-3  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
4+0.04 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-11  
-11  
60  
-
-
-
-
10  
10  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-10  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-48 Master Mode medium output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
-8  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
4+0.04 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-20  
-20  
70  
-
-
-
-
15  
20  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-10  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-49 Master Mode weak output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
1000  
-30  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
30+0.15 * ns  
0 < CL < 200pF  
2)  
CL  
Data Sheet  
4-253  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-49 Master Mode weak output pads (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-75  
-
-
-
-
75  
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
-65  
510  
-50  
65  
-
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
t50  
ASCLKO  
t51  
t51  
t500  
MTSR  
t52  
t53  
MRST  
Data valid  
Data valid  
t510  
ASLSO  
ASCLIN_TmgMM.vsd  
Figure 3-16 ASCLIN SPI Master Timing  
Data Sheet  
4-254  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationASCLIN SPI Master Timing  
3.24  
ASCLIN SPI Master Timing  
This section defines the timings for the ASCLIN in the TC 260 / 264 / 265 / 267, for 3.3V power supply, Medium  
Performance pads, strong sharp edge (MPss), CL=25pF.  
Note:Pad asymmetry is already included in the following timings.  
Table 3-50 Master Mode MP+ss/MPRss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
Deviation from ideal duty cycle t500 CC  
-5  
5
0 < CL < 50pF  
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-12  
0
-
-
-
-
12  
60  
-
ns  
ns  
ns  
ns  
CL=25pF  
ASLSOn delay from the first  
ASCLKO edge  
CL=25pF; pad used =  
LPm  
MRST setup to ASCLKO  
latching edge  
50  
-5  
CL=25pF  
MRST hold from ASCLKO  
latching edge  
-
CL=25pF  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-51 Master Mode MPss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=25pF  
Deviation from ideal duty cycle t500 CC  
-5  
7+0.07 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-12  
-12  
50  
-5  
-
-
-
-
12  
12  
-
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
4-255  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-52 Master Mode MPsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
-5  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
9+0.06 * ns  
0 < CL < 200pF  
2)  
CL  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-19  
-19  
100  
-13  
-
-
-
-
17  
17  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-53 Master Mode medium output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
ASCLKO clock period 1)  
t
50 CC  
400  
-
-
-
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
-6-0.07 *  
CL  
6+0.07 * ns  
CL  
0 < CL < 200pF  
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-33  
-35  
120  
-13  
-
-
-
-
25  
35  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-54 Master Mode weak output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2000  
-110  
Max.  
-
ASCLKO clock period 1)  
t
50 CC  
-
-
ns  
ns  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
150  
0 < CL < 200pF  
2)  
Data Sheet  
4-256  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-54 Master Mode weak output pads (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-170  
-
-
-
-
170  
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
-170  
510  
-40  
170  
MRST setup to ASCLKO  
latching edge  
-
-
MRST hold from ASCLKO  
latching edge  
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-55 Master Mode A2ss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
ns  
CL=50pF  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
-3  
3
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
t
t
51 CC  
510 CC  
52 SR  
53 SR  
-4  
-5  
17  
0
-
-
-
-
4
4
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
MRST setup to ASCLKO  
latching edge  
MRST hold from ASCLKO  
latching edge  
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Table 3-56 Master Mode A2sm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
ASCLKO clock period 1)  
t
50 CC  
-
-
-
ns  
ns  
CL=50pF  
CL=50pF  
Deviation from ideal duty cycle t500 CC  
-4  
4
2)  
MTSR delay from ASCLKO  
shifting edge  
t
t
51 CC  
-8  
-8  
-
-
6
9
ns  
ns  
CL=50pF  
CL=50pF  
ASLSOn delay from the first  
ASCLKO edge  
510 CC  
Data Sheet  
4-257  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationASCLIN SPI Master Timing  
Table 3-56 Master Mode A2sm output pads (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
MRST setup to ASCLKO  
latching edge  
t
t
52 SR  
53 SR  
26  
-
-
ns  
ns  
CL=50pF  
CL=50pF  
MRST hold from ASCLKO  
latching edge  
0
-
-
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be  
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX  
.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
t50  
ASCLKO  
t51  
t51  
t500  
MTSR  
t52  
t53  
MRST  
Data valid  
Data valid  
t510  
ASLSO  
ASCLIN_TmgMM.vsd  
Figure 3-17 ASCLIN SPI Master Timing  
Data Sheet  
4-258  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
3.25  
QSPI Timings, Master and Slave Mode  
This section defines the timings for the QSPI in the TC 260 / 264 / 265 / 267, for 5V pad power supply.  
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:  
LVDSM output pads,LVDSH input pad, master mode, CL=25pF  
Medium Performance Plus Pads (MP+):  
strong sharp edge (MP+ss), CL=25pF  
strong medium edge (MP+sm), CL=50pF  
medium edge (MP+m), CL=50pF  
weak edge (MP+w), CL=50pF  
Medium Performance Pads (MP):  
strong sharp edge (MPss), CL=25pF  
strong medium edge (MPsm), CL=50pF  
Medium and Low Performance Pads (MP/LP), the identical output strength settings:  
medium edge (LP/MPm), CL=50pF  
weak edge (MPw), CL=50pF  
Note:Pad asymmetry is already included in the following timings.  
Table 3-57 Master Mode Timing, LVDSM output pads for data and clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20 2)  
-1  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
CL=25pF  
Deviation from the ideal duty  
cycle 3) 4)  
500 CC  
1
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-3  
-
3
ns  
CL=25pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
0
-
-
-
-
-
30  
7
ns  
ns  
ns  
ns  
ns  
CL=25pF; MPsm  
CL=25pF; MPss  
MP+ss; CL=25pF  
MP+sm; CL=25pF  
-5  
-4  
7
-1  
19 5)  
15  
-
MRST setup to SCLK latching  
edge 5)  
t
52 SR  
CL=25pF; LVDSM 5V  
output and LVDSH  
3.3V input  
MRST hold from SCLK latching t53 SR  
edge  
-6 5)  
-
-
ns  
CL=25pF; LVDSM 5V  
output and LVDSH  
3.3V input  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.  
3) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
4) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
5) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
Data Sheet  
4-259  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
Table 3-58 Master Mode MP+ss/MPRss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-3  
3
0 < CL < 50pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-7  
-
-
-
-
6
6
-
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-7  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
27 4)5)  
-6 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-59 Master Mode MP+sm/MPRsm output pads for data and clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
50  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-2  
3+0.01 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-10  
-
10  
ns  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-10  
-13  
0
-
-
-
10  
1
ns  
ns  
ns  
MP+sm; CL=50pF  
MPss; CL=50pF  
40  
MP+m, MPm, LPm;  
CL=50pF  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
50 4)5)  
-
-
-
-
ns  
ns  
CL=50pF  
MRST hold from SCLK latching t53 SR  
-10 4)5)  
CL=50pF  
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
4-260  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-60 Master Mode timing MPss output pads for data and clock, CL=50pF  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-2  
3.5+0.035 ns  
0 < CL < 200pF  
* CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-8  
-
8
ns  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-8  
-1  
0
-
-
-
8
ns  
ns  
ns  
MPss; CL=50pF  
15  
50  
MP+sm; CL=50pF  
MP+m, MPm, LPm;  
CL=50pF  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
40 4)5)  
-5 4)5)  
-
-
-
-
ns  
ns  
CL=50pF  
MRST hold from SCLK latching t53 SR  
CL=50pF  
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-61 Master Mode timing MPsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
100  
-3  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
4+0.04 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-11  
-
-
-
-
10  
10  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-11  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
60 4)5)  
-10 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
Data Sheet  
4-261  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-62 Master Mode timing MPRm/MP+m/MPm/LPm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
-10  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
4+0.04 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-15  
-
-
-
-
17  
20  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-20  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
70 4)5)  
-10 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-63 Master Mode Weak output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
1000  
-30  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
30+0.15 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-65  
-
-
-
-
65  
65  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-65  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
300 4)5)  
-40 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
Data Sheet  
4-262  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-64 Slave mode timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
SCLK clock period  
SCLK duty cycle  
t
t
t
54 SR  
4 x TMAX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
%
55/t54 SR  
56 SR  
40  
4
60  
-
MTSR setup to SCLK latching  
edge  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hystheresis Inactive  
Input Level AL  
5
-
5
-
Input Level TTL  
Hystheresis Inactive  
Input Level AL  
MTSR hold from SCLK latching t57 SR  
edge  
3
-
6
-
9
-
Input Level TTL  
Hystheresis Inactive  
Input Level AL  
SLSI setup to first SCLK shift  
edge  
t
58 SR  
5 1)  
4 1)  
8
-
-
-
Input Level TTL  
Only for pin 15.1, AL  
Hystheresis Inactive  
Input Level AL  
6
-
SLSI hold from last SCLK  
latching edge  
t
t
59 SR  
60 CC  
3
-
4
-
8
-
Input Level TTL  
MRST delay from SCLK shift  
edge  
10  
70  
MP+m/MPRm;  
CL=50pF  
10  
5
-
-
-
50  
ns  
ns  
ns  
MP+sm/MPRsm;  
CL=50pF  
30  
MP+ss/MPRss;  
CL=25pF  
40  
300  
MP+w/MPRw;  
CL=50pF  
10  
10  
5
-
-
-
-
-
70  
55  
30  
300  
5
ns  
ns  
ns  
ns  
ns  
MPm/LPm; CL=50pF  
MPsm; CL=50pF  
MPss; CL=25pF  
40  
-
MPw/LPw; CL=50pF  
SLSI to valid data on MRST  
1) Except pin P15.1.  
t
61 SR  
Data Sheet  
4-263  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
t50  
t500  
0.5 VEXT/FLEX  
SCLK1)2)  
MTSR1)  
t51  
SAMPLING POINT  
0.5 VEXT/FLEX  
t52  
t53  
MRST1)  
Data valid  
Data valid  
t510  
SLSOn2)  
0.5 VEXT/FLEX  
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).  
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.  
QSPI_TmgMM.vsd  
Figure 3-18 Master Mode Timing  
t54  
Last latching  
SCLK edge  
First latching  
SCLK edge  
SCLKI1)  
First shift  
SCLK edge  
0.5 VEXT/FLEX  
t55  
t55  
t56  
t56  
t57  
t57  
Data  
valid  
Data  
valid  
MTSR1)  
MRST1)  
SLSI  
t60  
t60  
0.5 VEXT/FLEX  
t58  
t59  
t61  
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0.  
QSPI_TmgSM.vsd  
Figure 3-19 Slave Mode Timing  
Data Sheet  
4-264  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
3.26  
QSPI Timings, Master and Slave Mode  
This section defines the timings for the QSPI in the TC 260 / 264 / 265 / 267, for 3.3V pad power supply.  
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:  
LVDSM output pads, LVDSH input pad, master mode, CL=25pF  
Medium Performance Plus Pads (MP+):  
strong sharp edge (MP+ss), CL=25pF  
strong medium edge (MP+sm), CL=50pF  
medium edge (MP+m), CL=50pF  
weak edge (MP+w), CL=50pF  
Medium Performance Pads (MP):  
strong sharp edge (MPss), CL=25pF  
strong medium edge (MPsm), CL=50pF  
Medium and Low Performance Pads (MP/LP), the identical output strength settings:  
medium edge (LP/MPm), CL=50pF  
weak edge (MPw), CL=50pF  
Note:Pad asymmetry is already included in the following timings.  
Table 3-65 Master Mode Timing, LVDSM output pads for data and clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
20  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
CL=25pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-2  
2
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-5  
-
5
ns  
CL=25pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-2  
-9  
-7  
-2  
20  
-
-
-
-
-
55  
12  
12  
26  
-
ns  
ns  
ns  
ns  
ns  
CL=25pF; MPsm  
CL=25pF; MPss  
MP+ss; CL=25pF  
MP+sm; CL=25pF  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
CL=25pF; LVDSM 5V  
output and LVDSH  
3.3V input  
MRST hold from SCLK latching t53 SR  
edge  
-6  
-
-
ns  
CL=25pF; LVDSM 5V  
output and LVDSH  
3.3V input  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
Data Sheet  
4-265  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
Table 3-66 Master Mode MP+ss/MPRss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=25pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-5  
5
0 < CL < 50pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-12  
-
-
-
-
12  
12  
-
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-12  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
50 4)5)  
-6 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-67 Master Mode MP+sm/MPRsm output pads for data and clock  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
100  
-3  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
7
0 < CL < 200pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-17  
-
17  
ns  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-17  
-22  
0
-
-
-
17  
2
ns  
ns  
ns  
MP+sm; CL=50pF  
MPss; CL=50pF  
70  
MP+m; MPm; LPm;  
CL=50pF  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
85 4)5)  
-
-
-
-
ns  
ns  
CL=50pF  
MRST hold from SCLK latching t53 SR  
-10 4)5)  
CL=50pF  
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
4-266  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-68 Master Mode timing MPss output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=25pF  
CL=25pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-5  
7+0.07 * ns  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-10  
-
-
-
-
10  
10  
-
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-10  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
50 4)5)  
-6 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-69 Master Mode timing MPsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
-5  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
9+0.06 * ns  
0 < CL < 200pF  
CL  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-19  
-
-
-
-
19  
17  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-19  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
100 4)5)  
-13 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
4-267  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-70 Master Mode timing MPRm/MP+m/MPm/LPm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
SCLKO clock period 1)  
t
t
50 CC  
400  
-
-
-
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
-6-0.07 *  
CL  
6+0.07 * ns  
CL  
0 < CL < 200pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-25  
-
-
-
-
33  
35  
-
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-35  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
120 4)5)  
-13 4)5)  
MRST hold from SCLK latching t53 SR  
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-71 Master Mode Weak output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2000  
-110  
Max.  
-
SCLKO clock period 1)  
t
t
50 CC  
-
-
ns  
ns  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
110  
0 < CL < 200pF  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-170  
-
-
-
-
170  
ns  
ns  
ns  
ns  
CL=50pF  
CL=50pF  
CL=50pF  
CL=50pF  
SLSOn deviation from the ideal t510 CC  
programmed position  
-170  
170  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
510 4)5)  
-40 4)5)  
-
-
MRST hold from SCLK latching t53 SR  
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
4-268  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-72 Slave mode timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
4 x TMAX  
40  
7
Max.  
SCLK clock period  
SCLK duty cycle  
t
t
t
54 SR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
%
55/t54 SR  
56 SR  
60  
MTSR setup to SCLK latching  
edge  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hystheresis inactive  
Input Level AL  
9
-
7
-
Input Level TTL  
Hystheresis inactive  
Input Level AL  
MTSR hold from SCLK latching t57 SR  
edge  
5
-
11  
16  
7 1)  
7 1)  
14  
11  
5
-
-
Input Level TTL  
Hystheresis inactive  
Input Level AL  
SLSI setup to first SCLK shift  
edge  
t
58 SR  
-
-
-
Input Level TTL  
Only for pin P15.1, AL  
Hystheresis inactive  
Input Level AL  
-
SLSI hold from last SCLK  
latching edge  
t
t
59 SR  
60 CC  
-
7
-
14  
13  
-
Input Level TTL  
MRST delay from SCLK shift  
edge  
120  
MP+m/MPRm;  
CL=50pF  
13  
6
-
-
-
85  
ns  
ns  
ns  
MP+sm/MPRsm;  
CL=50pF  
50  
MP+ss/MPRss;  
CL=25pF  
70  
500  
MP+w/MPRw;  
CL=50pF  
13  
13  
6
-
-
-
-
-
120  
100  
52  
ns  
ns  
ns  
ns  
ns  
MPm/LPm; CL=50pF  
MPsm; CL=50pF  
MPss; CL=25pF  
70  
-
500  
9
MPw/LPw; CL=50pF  
SLSI to valid data on MRST  
1) Except pin P15.1  
t
61 SR  
Data Sheet  
4-269  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQSPI Timings, Master and Slave Mode  
t50  
t500  
0.5 VEXT/FLEX  
SCLK1)2)  
MTSR1)  
t51  
SAMPLING POINT  
0.5 VEXT/FLEX  
t52  
t53  
MRST1)  
Data valid  
Data valid  
t510  
SLSOn2)  
0.5 VEXT/FLEX  
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).  
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.  
QSPI_TmgMM.vsd  
Figure 3-20 Master Mode Timing  
t54  
Last latching  
SCLK edge  
First latching  
SCLK edge  
SCLKI1)  
First shift  
SCLK edge  
0.5 VEXT/FLEX  
t55  
t55  
t56  
t56  
t57  
t57  
Data  
valid  
Data  
valid  
MTSR1)  
MRST1)  
SLSI  
t60  
t60  
0.5 VEXT/FLEX  
t58  
t59  
t61  
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0.  
QSPI_TmgSM.vsd  
Figure 3-21 Slave Mode Timing  
Data Sheet  
4-270  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 5 V Operation  
3.27  
MSC Timing 5 V Operation  
The following section defines the timings for 5V pad power supply.  
Note:Pad asymmetry is already included in the following timings.  
Note:Load for LVDS pads are defined as differential loads in the following timings.  
Table 3-73 LVDS clock/data (LVDS pads in LVDS mode)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2 * TA  
-1  
Max.  
FCLPx clock period 1)  
t
40 CC  
-
-
-
ns  
ns  
LVDSM; CL=50pF  
2) 3)  
Deviation from ideal duty cycle t400 CC  
1
LVDSM; 0 < CL < 50pF  
4) 5)  
SOPx output delay 6)  
t
t
44 CC  
-3  
-4  
-4  
-3  
-3  
-
-
-
-
-
4
ns  
ns  
ns  
ns  
ns  
LVDSM; CL=50pF;  
option EN01  
4.5  
5
LVDSM; CL=50pF;  
option EN01D  
ENx output delay 6)  
45 CC  
MP+ss/MPRss; option  
EN01; CL=25pF  
7
MP+ss/MPRss; option  
EN01; CL=50pF  
11  
MP+sm/MPRsm;  
option EN01D;  
CL=50pF  
-2  
-2  
-3  
-7  
-5  
-4  
-7  
-
-
-
-
-
-
-
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MP+ss/MPRss; option  
EN23; CL=25pF  
10  
11  
2
MP+ss/MPRss; option  
EN23; CL=50pF  
MPss; option EN01;  
CL=50pF  
MP+ss/MPRss; option  
EN01; CL=0pF  
3
MP+sm/MPRsm;  
option EN01D; CL=0pF  
5
MP+ss/MPRss; option  
EN23; CL=0pF  
4
MPss; option EN01;  
CL=0pF  
SDI bit time  
t
t
t
46 CC  
48 SR  
49 SR  
8 * tMSC  
-
-
-
-
ns  
ns  
ns  
Upstream Timing  
Upstream Timing  
Upstream Timing  
SDI rise time 7)  
SDI fall time 7)  
-
-
200  
200  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.  
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.  
Data Sheet  
4-271  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 5 V Operation  
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
6) From FCLP rising edge.  
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care  
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in  
the middle of the bit are not violated.  
Data Sheet  
4-272  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 5 V Operation  
Timing Options for t45  
The wiring shown in the Figure 3-22 provides three useful timing options for t45. depending on the signals selected  
with the alternate output lines (ALT1 to ALT7) in the ports:  
EN01 - FCLN, SON, EN0, EN1  
EN01D - FCLND, SOND, EN0, EN1 - t45 window shifted to the left  
EN23 - FCLN, SON, EN2, EN3 - t45 window shifted to the right  
- t45 reference timing  
The timings corresponding to EN01, EN01D, and EN23 are defined in the LVDS mode. In order to use the EN23  
timings, the application should use the EN2 and EN3 outputs of the MSC module.  
ALT1  
FCLN ALTx  
ALTy  
LVDSM  
FCLP  
FCLN  
FCLND  
ALT7  
PAD  
ALT1  
SON ALTx  
ALTy  
LVDSM  
SOP  
SON  
SOND  
ALT7  
PAD  
ALT1  
ALTx  
ALTy  
EN0  
EN1  
CMOS  
ALT7  
PAD  
EN2  
EN3  
ALT1  
ALTx  
ALTy  
CMOS  
MSC  
ALT7  
PAD  
_DoublePath_4a.vsd  
Figure 3-22 Timing Options for t45  
Table 3-74 MPss clock/data (LVDS pads in CMOS mode, option EN01)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2 * TA  
-2  
Max.  
FCLPx clock period 1)  
t
40 CC  
-
-
-
ns  
MPss; CL=50pF  
2) 3)  
Deviation from ideal duty cycle t400 CC  
3+0.035 * ns  
MPss; 0 < CL < 100pF  
4) 5)  
CL  
SOPx output delay 6)  
t
44 CC  
-4  
-
7
ns  
MPss; CL=50pF  
Data Sheet  
4-273  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 5 V Operation  
Table 3-74 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
ENx output delay 6)  
t
45 CC  
-5  
-
7
ns  
ns  
MP+ss/MPRss;  
CL=50pF  
-2  
-
15  
MP+sm/MPRsm;  
CL=50pF  
-4  
0
-
-
10  
30  
ns  
ns  
MPss; CL=50pF  
MPsm; CL=50pF;  
except pin P13.0  
0
-
-
-
-
31  
45  
2
ns  
ns  
ns  
ns  
MPsm; CL=50pF; pin  
P13.0  
6
MPm/MP+m/MPRm;  
CL=50pF  
-11  
-4  
MP+ss/MPRss;  
CL=0pF  
7
MP+sm/MPRsm;  
CL=0pF  
-10  
-1  
-
-
-
2
ns  
ns  
ns  
MPss; CL=0pF  
MPsm; CL=0pF  
16  
18  
-2  
MP+m/MPm/MPRm;  
CL=0pF  
SDI bit time  
t
t
t
46 CC  
48 SR  
49 SR  
8 * tMSC  
-
-
-
-
ns  
ns  
ns  
Upstream Timing  
Upstream Timing  
Upstream Timing  
SDI rise time 7)  
SDI fall time 7)  
-
-
200  
200  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.  
3) FCLP signal high and low can be minimum 1 * TMSC  
.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
6) From FCLP rising edge.  
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care  
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in  
the middle of the bit are not violated.  
Table 3-75 MP+sm/MPRsm clock/data  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
FCLPx clock period 1)  
t
40 CC  
2 * TA  
-
-
-
-
ns  
MP+sm/MPRsm;  
CL=50pF  
Deviation from ideal duty cycle t400 CC  
-2  
-5  
3+0.01 * ns  
CL  
MP+sm/MPRsm; 0 <  
CL < 200pF  
2) 3)  
SOPx output delay 4)  
Data Sheet  
t
44 CC  
7
ns  
MP+sm; CL=50pF  
4-274  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 5 V Operation  
Table 3-75 MP+sm/MPRsm clock/data (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-13  
-5  
Max.  
2 5)  
ENx output delay 4)  
t
45 CC  
-
-
ns  
ns  
MPss; CL=50pF  
11  
MP+sm/MPRsm;  
CL=50pF  
1
4
-
-
24  
37  
ns  
ns  
MPsm; CL=50pF  
MP+m/MPm/MPRm;  
CL=50pF  
-19  
-13  
-5  
-
-
-
-
-1  
2
ns  
ns  
ns  
ns  
MPss; CL=0pF  
MP+sm; CL=0pF  
MPsm; CL=0pF  
8
-5  
10  
MPm/MP+m/MPRm;  
CL=0pF  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) From FCLP rising edge.  
5) If EN1 is configured to P13.0 the max limt is increased by 0.5ns to 2.5ns.  
Table 3-76 MPm/MP+m/MPRm clock/data  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
FCLPx clock period 1)  
t
40 CC  
2 * TA  
-
-
ns  
MPm/MP+m/MPRm;  
CL=50pF  
Deviation from ideal duty cycle t400 CC  
-8  
-
4+0.04 * ns  
CL  
MPm/MP+m; 0 < CL <  
200pF  
2) 3)  
SOPx output delay 4)  
ENx output delay 4)  
t
t
44 CC  
45 CC  
-11  
-13  
-
-
9
ns  
ns  
MPm/MP+m; CL=50pF  
11  
MPm/MP+m/MPRm;  
CL=50pF  
-33  
-
-4  
ns  
MPm/MP+m/MPRm;  
CL=0pF  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) From FCLP rising edge.  
Data Sheet  
4-275  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 3.3 V Operation  
t40  
t400  
FCLP  
SOP  
t44  
t44  
t45  
t45  
0.5 VEXT/FLEX  
EN  
t48  
t49  
0.9 VEXT/FLEX  
0.1 VEXT/FLEX  
SDI  
t46  
t46  
MSC_Timing_A.vsd  
Figure 3-23 MSC Interface Timing  
Note:The SOP data signal is sampled with the falling edge of FCLP in the target device.  
3.28  
MSC Timing 3.3 V Operation  
The following section defines the timings for 3.3V pad power supply.  
Note:Pad asymmetry is already included in the following timings.  
Note:Load for LVDS pads are defined as differential loads in the following timings.  
Mapping A, Combo Pads in LVDS Mode or CMOS Mode  
The timing applies for the LVDS pads in LVDS operating mode:  
The LVDSM output pads for clock and data signals set in LVDS mode  
The CMOS MP pads for enable signals, with strong driver sharp edge (MPss) or strong driver medium edge  
(MPsm).  
Table 3-77 LVDS clock/data (LVDS pads in LVDS mode)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2 * TA  
-2  
Max.  
FCLPx clock period 1)  
t
40 CC  
-
-
-
ns  
ns  
LVDSM; CL=50pF  
2) 3)  
Deviation from ideal duty cycle t400 CC  
2
LVDSM; 0 < CL < 50pF  
4) 5)  
SOPx output delay 6)  
t
44 CC  
-5  
-7  
-
-
5
7
ns  
ns  
LVDSM; CL=50pF;  
option EN01  
LVDSM; CL=50pF;  
option EN01D  
Data Sheet  
4-276  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 3.3 V Operation  
Table 3-77 LVDS clock/data (LVDS pads in LVDS mode) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
ENx output delay 6)  
t
45 CC  
-7  
-
-
-
9
ns  
ns  
ns  
MP+ss/MPRss; option  
EN01; CL=25pF  
-5  
-5  
13  
26  
MP+ss/MPRss; option  
EN01; CL=50pF  
MP+sm/MPRsm;  
option EN01D;  
CL=50pF  
-4  
-
-
-
-
-
-
-
16  
17  
19  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MP+ss/MPRss; option  
EN23; CL=25pF  
-4  
MP+ss/MPRss; option  
EN23; CL=50pF  
-5  
MPss; option EN01;  
CL=50pF  
-12  
-9  
MP+ss/MPRss; option  
EN01; CL=0pF  
11  
9
MP+sm/MPRsm;  
option EN01D; CL=0pF  
-7  
MP+ss/MPRss; option  
EN23; CL=0pF  
-12  
7
MPss; option EN01;  
CL=0pF  
SDI bit time  
t
t
t
46 CC  
48 SR  
49 SR  
8 * tMSC  
-
-
-
-
ns  
ns  
ns  
Upstream Timing  
Upstream Timing  
Upstream Timing  
SDI rise time 7)  
SDI fall time 7)  
-
-
200  
200  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns  
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.  
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
6) From FCLP rising edge.  
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care  
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in  
the middle of the bit are not violated.  
Table 3-78 MPss clock/data (LVDS pads in CMOS mode, option EN01)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
2 * TA  
-5  
Max.  
FCLPx clock period 1)  
t
40 CC  
-
-
-
ns  
MPss; CL=50pF  
2) 3)  
Deviation from ideal duty cycle t400 CC  
7+0.07 * ns  
MPss; 0 < CL < 100pF  
4) 5)  
CL  
Data Sheet  
4-277  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 3.3 V Operation  
Table 3-78 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-7  
Max.  
12  
SOPx output delay 6)  
ENx output delay 6)  
t
t
44 CC  
45 CC  
-
-
ns  
ns  
MPss; CL=50pF  
-9  
12  
MP+ss/MPRss;  
CL=50pF  
-4  
-
26  
ns  
MP+sm/MPRsm;  
CL=50pF  
-7  
0
-
-
17  
54  
ns  
ns  
MPss; CL=50pF  
MPsm; CL=50pF;  
except pin P13.0  
0
-
-
-
-
58  
77  
4
ns  
ns  
ns  
ns  
MPsm; CL=50pF; pin  
P13.0  
4
MPm/MP+m/MPRm;  
CL=50pF  
-19  
-7  
MP+ss/MPRss;  
CL=0pF  
12  
MP+sm/MPRsm;  
CL=0pF  
-17  
-2  
-
-
-
4
ns  
ns  
ns  
MPss; CL=0pF  
MPsm; CL=0pF  
28  
31  
-4  
MP+m/MPm/MPRm;  
CL=0pF  
SDI bit time  
t
t
t
46 CC  
48 SR  
49 SR  
8 * tMSC  
-
-
-
-
ns  
ns  
ns  
Upstream Timing  
Upstream Timing  
Upstream Timing  
SDI rise time 7)  
SDI fall time 7)  
-
-
200  
200  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns  
3) FCLP signal high and low can be minimum 1 * TMSC  
.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
6) From FCLP rising edge.  
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care  
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in  
the middle of the bit are not violated.  
Mapping B, CMOS MP Pads  
This timing applies for the dedicated CMOS pads, pin Mapping B:  
MP strong sharp (MPss) output pads for the clock and the data signals  
MP strong sharp or strong medium (MPss or MPsm) output pads for enable signals  
Data Sheet  
4-278  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 3.3 V Operation  
Table 3-79 MP+sm/MPRsm clock/data  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
FCLPx clock period 1)  
t
40 CC  
2 * TA  
-
-
ns  
ns  
MP+sm/MPRsm;  
CL=50pF  
Deviation from ideal duty cycle t400 CC  
-3  
-
7
MP+sm/MPRsm; 0 <  
CL < 200pF  
2) 3)  
SOPx output delay 4)  
ENx output delay 4)  
t
t
44 CC  
45 CC  
-9  
-
-
-
12  
4
ns  
ns  
ns  
MP+sm; CL=50pF  
MPss; CL=50pF  
-20  
-9  
19  
MP+sm/MPRsm;  
CL=50pF  
0
0
-
-
44  
63  
ns  
ns  
MPsm; CL=50pF  
MP+m/MPm/MPRm;  
CL=50pF  
-33  
-23  
-
-
0
4
ns  
ns  
MPss; CL=0pF  
MP+sm/MPRsm;  
CL=0pF  
-9  
-9  
-
-
14  
17  
ns  
ns  
MPsm; CL=0pF  
MPm/MP+m/MPRm;  
CL=0pF  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) From FCLP rising edge.  
Table 3-80 MPm/MP+m/MPRm clock/data  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
FCLPx clock period 1)  
t
40 CC  
2 * TA  
-
-
ns  
MPm/MP+m/MPRm;  
CL=50pF  
Deviation from ideal duty cycle t400 CC  
-6-0.07 *  
CL  
-
6+0.07 * ns  
CL  
MPm/MP+m/MPRm; 0  
< CL < 200pF  
2) 3)  
SOPx output delay 4)  
ENx output delay 4)  
t
t
44 CC  
45 CC  
-19  
-19  
-
-
16  
20  
ns  
ns  
MPm/MP+m; CL=50pF  
MPm/MP+m/MPRm;  
CL=50pF  
-57  
-
0
ns  
MPm/MP+m/MPRm;  
CL=0pF  
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted if the ABRA block is used.  
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
Data Sheet  
4-279  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationMSC Timing 3.3 V Operation  
4) From FCLP rising edge.  
t40  
t400  
FCLP  
t44  
t44  
SOP  
EN  
t45  
t45  
0.5 VEXT/FLEX  
t48  
t49  
0.9 VEXT/FLEX  
0.1 VEXT/FLEX  
SDI  
t46  
t46  
MSC_Timing_A.vsd  
Figure 3-24 MSC Interface Timing  
Note:The SOP data signal is sampled with the falling edge of FCLP in the target device.  
Data Sheet  
4-280  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEthernet Interface (ETH) Characteristics  
3.29  
Ethernet Interface (ETH) Characteristics  
3.29.1  
ETH Measurement Reference Points  
ETH Clock  
ETH I/O  
1.4  
2.0  
V
1.4 V  
V
2.0  
V
0.8  
V
0.8  
V
tR  
tF  
ETH_Testpoints.vsd  
Figure 3-25 ETH Measurement Reference Points  
Data Sheet  
4-281  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEthernet Interface (ETH) Characteristics  
3.29.2  
ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)  
Table 3-81 ETH Management Signal Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
400  
160  
160  
10  
Max.  
ETH_MDC period  
ETH_MDC high time  
ETH_MDC low time  
t1 CC  
t2 CC  
t3 CC  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
CL=25pF  
-
-
ETH_MDIO setup time (output) t4 CC  
ETH_MDIO hold time (output) t5 CC  
ETH_MDIO data valid (input) t6 SR  
-
10  
-
0
300  
t1  
t3  
t2  
ETH_MDC  
ETH_MDIO  
sourced by controller :  
ETH_MDC  
t4  
t5  
ETH_MDIO  
(output )  
Valid Data  
ETH_MDIO sourced by PHY:  
ETH_MDC  
t6  
ETH_MDIO  
(input )  
Valid Data  
ETH_Timing-Mgmt.vsd  
Figure 3-26 ETH Management Signal Timing  
Data Sheet  
4-282  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEthernet Interface (ETH) Characteristics  
3.29.3  
ETH MII Parameters  
In the following, the parameters of the MII (Media Independent Interface) are described.  
Table 3-82 ETH MII Signal Timing Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Clock period  
t7 SR  
40  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
CL=25pF;  
baudrate=100Mbps  
400  
14  
-
CL=25pF;  
baudrate=10Mbps  
Clock high time  
Clock low time  
t8 SR  
t9 SR  
26  
CL=25pF;  
baudrate=100Mbps  
140 1)  
14  
260 2)  
26  
CL=25pF;  
baudrate=10Mbps  
CL=25pF;  
baudrate=100Mbps  
140 1)  
260 2)  
CL=25pF;  
baudrate=10Mbps  
Input setup time  
Input hold time  
t
t
t
10 SR  
11 SR  
12 CC  
10  
10  
0
-
-
-
-
ns  
ns  
ns  
CL=25pF  
CL=25pF  
CL=25pF  
-
Output valid time  
25  
1) Defined by 35% of clock period.  
2) Defined by 65% of clock period.  
t7  
t9  
t8  
ETH_MII_RX_CLK  
ETH_MII_TX_CLK  
ETH_MII_RX_CLK  
t10  
t11  
ETH_MII_RXD[3:0]  
ETH_MII_RX_DV  
ETH_MII_RX_ER  
(sourced by PHY )  
Valid Data  
ETH_MII_TX_CLK  
t12  
ETH_MII_TXD[3:0]  
ETH_MII_TXEN  
Valid Data  
(sourced by controller )  
ETH_Timing-MII.vsd  
Figure 3-27 ETH MII Signal Timing  
Data Sheet  
4-283  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationEthernet Interface (ETH) Characteristics  
3.29.4  
ETH RMII Parameters  
In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.  
Table 3-83 ETH RMII Signal Timing Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
ETH_RMII_REF_CL clock  
period  
t
13 CC  
20  
-
-
-
-
-
ns  
ns  
ns  
ns  
CL=25pF; 50ppm  
CL=25pF  
ETH_RMII_REF_CL clock high t14 CC  
time  
7 1)  
7 1)  
4
13 2)  
13 2)  
-
ETH_RMII_REF_CL clock low t15 CC  
time  
CL=25pF  
ETHTXEN, ETHTXD[1:0],  
ETHRXD[1:0], ETHCRSDV,  
ETHRXER; setup time  
t
t
16 CC  
17 CC  
CL=25pF  
ETHTXEN, ETHTXD[1:0],  
ETHRXD[1:0], ETHCRSDV,  
ETHRXER; hold time  
2
-
-
ns  
CL=25pF  
1) Defined by 35% of clock period.  
2) Defined by 65% of clock period.  
t13  
t15  
t14  
ETH_RMII_REF_CL  
ETH_RMII_REF_CL  
t16  
t17  
ETHTXEN,  
ETHTXD[1:0],  
ETHRXD[1:0],  
ETHCRSDV,  
ETHRXER  
Valid Data  
ETH_Timing-RMII.vsd  
Figure 3-28 ETH RMII Signal Timing  
Data Sheet  
4-284  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationE-Ray Parameters  
3.30  
E-Ray Parameters  
The timings of this section are valid for the strong driver and either sharp edge settings of the output drivers with  
CL = 25 pF. For the inputs the hysteresis has to be configured to inactive.  
Table 3-84 Transmit Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Rise time of TxEN  
Fall time of TxEN  
tdCCTxENRise2  
5 CC  
-
-
-
-
9
ns  
ns  
ns  
CL=25pF  
tdCCTxENFall25  
CC  
-
-
9
9
CL=25pF  
Sum of rise and fall time  
tdCCTxRise25+  
20% - 80%; CL=25pF  
dCCTxFall25  
CC  
Sum of delay between TP1_FF tdCCTxEN01  
-
-
-
-
25  
25  
ns  
ns  
and TP1_CC and delays  
derived from TP1_FFi, rising  
edge of TxEN  
CC  
Sum of delay between TP1_FF tdCCTxEN10  
and TP1_CC and delays  
derived from TP1_FFi, falling  
edge of TxEN  
CC  
Asymmetry of sending  
t
tx_asym CC -2.45  
-
-
2.45  
25  
ns  
ns  
CL=25pF  
Sum of delay between TP1_FF tdCCTxD01  
-
-
-
and TP1_CC and delays  
derived from TP1_FFi, rising  
edge of TxD  
CC  
Sum of delay between TP1_FF tdCCTxD10  
-
-
25  
9
ns  
ns  
and TP1_CC and delays  
derived from TP1_FFi, falling  
edge of TxD  
CC  
TxD signal sum of rise and fall ttxd_sum CC  
time at TP1_BD  
Table 3-85 Receive Parameters  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
Acceptance of asymmetry at  
receiving part  
tdCCTxAsymAcc -30.5  
ept25 SR  
-
43.0  
ns  
ns  
%
%
CL=25pF  
CL=15pF  
Acceptance of asymmetry at  
receiving part  
tdCCTxAsymAcc -31.5  
ept15 SR  
-
-
-
44.0  
70  
Threshold for detecting logical TuCCLogic1  
high SR  
Threshold for detecting logical TuCCLogic0  
35  
30  
65  
low  
SR  
Data Sheet  
4-285  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationE-Ray Parameters  
Table 3-85 Receive Parameters (cont’d)  
Parameter Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Sum of delay between TP4_CC tdCCRxD01  
-
-
10  
ns  
and TP4_FF and delays  
derived from TP4_FFi, rising  
edge of RxD  
CC  
Sum of delay between TP1_CC tdCCRxD10  
-
-
10  
ns  
and TP1_CC and delays  
derived from TP4_FFi, falling  
edge of RxD  
CC  
Data Sheet  
4-286  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationHSCT Parameters  
3.31  
HSCT Parameters  
Table 3-86 HSCT - Rx/Tx setup timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
40  
-
Max.  
60  
RX o/p duty cycle  
Bias startup time  
DCrx CC  
-
%
t
bias CC  
5
10  
µs  
Bias distributor waking  
up from power down  
and provide stable  
Bias.  
RX startup time  
TX startup time  
trxi CC  
ttx CC  
-
-
5
5
-
-
µs  
µs  
Wake-up RX from  
power down.  
Wake-up TX from  
power down.  
Table 3-87 HSCT - Rx parasitics and loads  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
Capacitance total budget  
Ctotal CC  
-
3.5  
5
pF  
Total Budget for  
complete receiver  
including silicon,  
package, pins and  
bond wire  
Parasitic inductance budget  
Htotal CC  
-
5
-
nH  
Table 3-88 LVDSH - Reduced TX and RX (RED)  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
Output differential voltage  
V
OD CC  
150  
200  
285  
mV  
Rt = 100 Ohm ±20%  
@2pF  
Output voltage high  
Output voltage low  
V
V
OH CC  
OL CC  
-
-
1463  
-
mV  
mV  
V
Rt = 100 Ohm ±20%  
Rt = 100 Ohm ±20%  
937  
1.08  
-
Output offset (Common mode) VOS CC  
voltage  
1.2  
1.32  
Rt = 100 Ohm ±20%  
@2pF  
Input voltage range  
VI SR  
-
-
-
-
1.6  
-
V
Absolute max = 1.6 V +  
(285mV/2) = 1.743  
0.15  
-100  
V
Absolute min = 0.15 V -  
(285 mV /2) = 0 V  
Input differential threshold  
Data frequency  
V
idth SR  
100  
mV  
100 mV for 55% of bit  
period; Note Absolute  
Value (Vidth - Vidthl)  
DR CC  
5
-
320  
Mbps  
Data Sheet  
4-287  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationHSCT Parameters  
Table 3-88 LVDSH - Reduced TX and RX (RED) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
90  
80  
-
Max.  
110  
120  
2
Receiver differential input  
impedance  
Rin CC  
100  
Ohm  
Ohm  
V/ns  
mV  
0 V < VI < 1.6V  
100  
1.6 V < VI < 2.0V  
Slew rate  
SRtx CC  
-
-
Change in VOS between 0 and dVOS CC  
1
-
50  
Peak to peak  
(including DC  
transients).  
Change in Vod between 0 and dVod CC  
1
-
-
50  
mV  
Peak to peak  
(including DC  
transients)  
Fall time 1)  
Rise time 1)  
t
t
fall CC  
rise CC  
0.26  
0.26  
-
-
1.2  
1.2  
ns  
ns  
Rt = 100 Ohm ±20%  
@2pF  
Rt = 100 Ohm ±20%  
@2pF  
1) Rise / fall times are defined for 10% - 90% of VOD  
Table 3-89 HSCT PLL  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
12.5  
10  
-
Typ.  
Max.  
320  
PLL frequency range  
PLL input frequency  
PLL lock-in time  
f
f
t
PLL CC  
REF CC  
LOCK CC  
320  
MHz  
MHz  
µs  
-
-
-
20  
50  
Bit Error Rate based on 10 MHz BER10 CC  
reference clock at Slave PLL  
side  
-
10EXP-9  
-
Bit Error Rate based  
on Slave interface  
reference clock at 10  
MHz  
Bit Error Rate based on 20 MHz BER20 CC  
reference clock at Slave PLL  
side  
-
-
-
-
10EXP-  
12  
-
Bit Error Rate based  
on Slave interface  
reference clock at 20  
MHz  
Absolute RMS Jitter (TX out)  
JABS10 CC  
-125  
-85  
125  
85  
ps  
ps  
Measured at link TX  
out; valid for  
Reference frequency  
at 10 MHz  
Absolute RMS Jitter (TX out)  
JABS20 CC  
Measured at link TX  
out; valid for  
Reference frequency  
at 20 MHz  
Data Sheet  
4-288  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationHSCT Parameters  
Table 3-89 HSCT PLL (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Accumulated RMS Jitter (RX  
side)  
J
ACC10 CC  
-
-
-
-
145  
ps  
Measured at link RX  
input, based on 5000  
measures, each 300  
clock cycles; valid for  
Reference frequency  
at 10 MHz  
Accumulated RMS Jitter (link  
RX side)  
JACC20 CC  
-
-
115  
ps  
Measured at link RX  
input, based on 5000  
measures, each 300  
clock cycles; valid for  
Reference frequency  
at 20 MHz  
Total Jitter peak to peak  
TJpp CC  
2083  
ps  
Total Jitter as sum of  
deterministic jitter and  
random jitter  
Table 3-90 HSCT Sysclk  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
20  
1
Frequency  
f
SYSCLK CC 10  
-
-
-
-
-
-
MHz  
%
Frequency error  
Duty Cycle  
dfERR CC -1  
DCsys CC 45  
55  
-
%
Load impedance  
Load capacitance  
Integrated phase noise  
R
LOAD CC  
LOAD CC  
PN CC  
10  
-
kOhm  
pF  
C
10  
-58  
I
-
dB  
single sideband phase  
noise in 10 kHz to 10  
Mhz at 20 MHz SysClk  
Data Sheet  
4-289  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationInter-IC (I2C) Interface Timing  
3.32  
Inter-IC (I2C) Interface Timing  
This section defines the timings for I2C in the TC 260 / 264 / 265 / 267.  
All I2C timing parameter are SR for Master Mode and CC for Slave Mode.  
Table 3-91 I2C Standard Mode Timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Fall time of both SDA and SCL t1  
-
-
300  
ns  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Capacitive load for each bus  
line  
Cb SR  
-
-
-
400  
-
pF  
µs  
Bus free time between a STOP t10  
4.7  
Measured with a pull-  
up resistor of 4.7  
and ATART condition  
kohms at each of the  
SCL and SDA line  
Rise time of both SDA and SCL t2  
-
-
-
-
-
-
-
1000  
ns  
µs  
ns  
µs  
µs  
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data hold time  
t3  
t4  
t5  
t6  
t7  
0
-
-
-
-
-
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data set-up time  
250  
4.7  
4
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Low period of SCL clock  
High period of SCL clock  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Hold time for the (repeated)  
START condition  
4
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data Sheet  
4-290  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationInter-IC (I2C) Interface Timing  
Table 3-91 I2C Standard Mode Timing (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Set-up time for (repeated)  
START condition  
t8  
4.7  
-
-
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Set-up time for STOP condition t9  
4
-
-
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Table 3-92 I2C Fast Mode Timing  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Fall time of both SDA and SCL t1  
20+0.1*C -  
300  
ns  
Measured with a pull-  
up resistor of 4.7  
b
kohms at each of the  
SCL and SDA line  
Capacitive load for each bus  
line  
Cb SR  
-
-
-
400  
-
pF  
µs  
Bus free time between a STOP t10  
1.3  
Measured with a pull-  
up resistor of 4.7  
and ATART condition  
kohms at each of the  
SCL and SDA line  
Rise time of both SDA and SCL t2  
20+0.1*C -  
300  
ns  
µs  
ns  
µs  
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
b
Data hold time  
t3  
t4  
t5  
t6  
0
-
-
-
-
-
-
-
-
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data set-up time  
100  
1.3  
0.6  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Low period of SCL clock  
High period of SCL clock  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data Sheet  
4-291  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationInter-IC (I2C) Interface Timing  
Table 3-92 I2C Fast Mode Timing (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Hold time for the (repeated)  
START condition  
t7  
0.6  
-
-
-
-
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Set-up time for (repeated)  
START condition  
t8  
0.6  
0.6  
-
-
µs  
µs  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Set-up time for STOP condition t9  
Measured with a pull-  
up resistor of 4.7  
kohms at each of the  
SCL and SDA line  
Data Sheet  
4-292  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationSCR Parameters  
3.33  
SCR Parameters  
SSC Timing 5V  
3.33.1  
It is assumed that SCLKO and MTSR pads have the same pad settings:  
Medium Performance Plus Pads (MP+):  
strong sharp edge (MP+ss), CL=25pF  
strong medium edge (MP+sm), CL=50pF  
medium edge (MP+m), CL=50pF  
weak edge (MP+w), CL=50pF  
Medium Performance Pads (MP):  
strong sharp edge (MPss), CL=25pF  
strong medium edge (MPsm), CL=50pF  
Medium and Low Performance Pads (MP/LP), the identical output strength settings:  
medium edge (LP/MPm), CL=50pF  
weak edge (MPw), CL=50pF  
Table 3-93 Master Mode timing MPsm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
100  
-10  
Max.  
-
SCLKO clock period 1)  
t
t
50 CC  
-
-
ns  
ns  
CL=50pF  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
10  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-10  
-
-
10  
-
ns  
ns  
CL=50pF  
CL=50pF  
MRST hold from SCLK latching t53 SR  
-10 4) 5)  
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-94 Master Mode timing MP+m/MPm/LPm output pads  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
200  
-15  
Max.  
-
SCLKO clock period 1)  
t
t
50 CC  
-
-
ns  
ns  
CL=50pF  
CL=50pF  
Deviation from the ideal duty  
cycle 2) 3)  
500 CC  
15  
MTSR delay from SCLKO  
shifting edge  
t
51 CC  
-15  
-
15  
ns  
CL=50pF  
Data Sheet  
4-293  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationSCR Parameters  
Table 3-94 Master Mode timing MP+m/MPm/LPm output pads (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
MRST setup to SCLK latching  
edge 4)  
t
52 SR  
-70 4)5)  
-
-
ns  
ns  
CL=50pF  
CL=50pF  
MRST hold from SCLK latching t53 SR  
-10 4)5)  
-
-
edge  
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has  
to be taken into account.  
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can  
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX  
.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the  
opposite.  
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.  
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Table 3-95 Slave mode timing  
Parameter  
Symbol  
Values  
Typ.  
4 x TSSC -  
Unit  
Note / Test Condition  
Min.  
Max.  
SCLK clock period  
SCLK duty cycle  
t
t
t
54 SR  
-
ns  
%
55/t54 SR  
56 SR  
40  
-
-
60  
-
MTSR setup to SCLK latching  
edge  
40 1)  
ns  
MTSR hold from SCLK latching t57 SR  
edge  
3
-
-
-
-
ns  
ns  
SLSI setup to first SCLK shift  
edge  
t
t
58 SR  
60 CC  
3 1)  
MRST delay from SCLK shift  
edge  
10  
10  
5
-
-
-
-
-
-
-
-
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MP+m; CL=50pF  
MP+sm; CL=50pF  
MP+ss; CL=25pF  
MP+w; CL=50pF  
MPm/LPm; CL=50pF  
MPsm; CL=50pF  
MPss; CL=25pF  
50  
30  
100  
10  
10  
5
300  
70  
50  
30  
100  
300  
MPw/LPw; CL=50pF  
1) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.  
Data Sheet  
4-294  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationSCR Parameters  
t0  
SCLK1)  
t1  
t1  
t00  
1)  
MTSR  
t2  
t3  
Data  
valid  
Data  
valid  
1)  
MRST  
t1  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_TmgMM.vsd  
Figure 3-29 Master Mode Timing  
t4  
Last latching  
SCLK edge  
First latching  
SCLK edge  
First shift  
SCLK edge  
SCLK1)  
t5  
t5  
t6  
t6  
t7  
t7  
1)  
Data  
valid  
Data  
valid  
MTSR  
t8  
t8  
1)  
MRST  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_TmgSM.vsd  
Figure 3-30 Slave Mode Timing  
3.33.2  
SPD Timing  
The SPD interface will work with standard SPD tools having a sample/output clock frequency deviation of +/- 5%  
or less. For further details please refer to application note AP24004 in section SPD Timing Requirements.  
3.33.3  
WCAN Timing  
The following table defines the timing parameter for the WCAN filter.  
Data Sheet  
4-295  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationSCR Parameters  
Table 3-96 WCAN  
Parameter  
Symbol  
Values  
Typ.  
0.75  
Unit  
Note / Test Condition  
Min.  
SILENCE SR 0.6  
Max.  
Timeout for bus inactivity  
t
1.2  
s
Data Sheet  
4-296  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationCIF Parameters  
3.34  
CIF Parameters  
Table 3-97 Timings for 5V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
10.42  
2.5  
Max.  
Pixel clock period  
t
t
70 SR  
71 SR  
-
-
-
-
ns  
ns  
96 MHz  
HSYNC, VSYNC set up time  
AL input level,  
hysteresis bypass  
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TTL input level,  
hysteresis bypass  
6.5  
4
TTL input level,  
hysteresis on  
AL input level,  
hysteresis on  
HSYNC, VSYNC hold time  
Pixel data set up time  
Pixel data hold time  
t
t
t
72 SR  
73 SR  
74 SR  
2.5  
2.5  
7
AL input level,  
hysteresis bypass  
TTL input level,  
hysteresis bypass  
TTL input level,  
hysteresis on  
4
AL input level,  
hysteresis on  
2.5  
2
AL input level,  
hysteresis bypass  
TTL input level,  
hysteresis bypass  
6.5  
4
TTL input level,  
hysteresis on  
AL input level,  
hysteresis on  
2.5  
2.5  
7
AL input level,  
hysteresis bypass  
TTL input level,  
hysteresis bypass  
TTL input level,  
hysteresis on  
4
AL input level,  
hysteresis on  
Data Sheet  
4-297  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationCIF Parameters  
Table 3-98 Timings for 3.3V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
10.42  
3.5  
Max.  
Pixel clock period  
t
t
70 SR  
71 SR  
-
-
-
-
ns  
ns  
HSYNC, VSYNC set up time  
AL input level,  
hysteresis bypass  
4.5  
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AL input level,  
hysteresis on  
TTL input level,  
hysteresis on  
3
TTL input level,  
hysteresis bypass  
HSYNC, VSYNC hold time  
Pixel data set up time  
Pixel data hold time  
t
t
t
72 SR  
73 SR  
74 SR  
4
AL input level,  
hysteresis bypass  
5
AL input level,  
hysteresis on  
10  
3.5  
3.5  
4.5  
9
TTL input level,  
hysteresis on  
TTL input level,  
hysteresis bypass  
AL input level,  
hysteresis bypass  
AL input level,  
hysteresis on  
TTL input level,  
hysteresis on  
3
TTL input level,  
hysteresis bypass  
4
AL input level,  
hysteresis bypass  
5
AL input level,  
hysteresis on  
10  
3.5  
TTL input level,  
hysteresis on  
TTL input level,  
hysteresis bypass  
Table 3-99 Timings for 0.4V to 2.4V input signals (2.8V imager)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Pixel clock period  
t
70 SR  
10.42  
-
-
ns  
Data Sheet  
4-298  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationCIF Parameters  
Table 3-99 Timings for 0.4V to 2.4V input signals (2.8V imager) (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
HSYNC, VSYNC set up time  
t
t
t
t
71 SR  
72 SR  
73 SR  
74 SR  
3
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hysteresis Bypass,  
3.3V±10%  
9
-
-
-
-
-
-
-
-
-
-
-
TTL Input Levels,  
3.3V±10%  
4.5  
3.5  
10  
5
TTL Input Levels,  
5V±10%  
HSYNC, VSYNC hold time  
Pixel data set up time  
Pixel data hold time  
Hysteresis Bypass,  
3.3V±10%  
TTL Input Levels,  
3.3V±10%  
TTL Input Levels,  
5V±10%  
3
Hysteresis Bypass,  
3.3V±10%  
9
TTL Input Levels,  
3.3V±10%  
4.5  
3.5  
10  
5
TTL Input Levels,  
5V±10%  
Hysteresis Bypass,  
3.3V±10%  
TTL Input Levels,  
3.3V±10%  
TTL Input Levels,  
5V±10%  
Table 3-100 Timings for 0.4V to 2.4V input signals (2.8V imager), ± 5% pad power supply  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
10.42  
3
Max.  
Pixel clock period  
t
t
70 SR  
71 SR  
-
-
-
-
ns  
ns  
HSYNC, VSYNC set up time  
Hysteresis Bypass,  
3.3V±5%  
9
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
TTL Input Levels,  
3.3V±5%  
4.5  
3.5  
10  
5
TTL Input Levels,  
5V±5%  
HSYNC, VSYNC hold time  
t
72 SR  
Hysteresis Bypass,  
3.3V±5%  
TTL Input Levels,  
3.3V±5%  
TTL Input Levels,  
5V±5%  
Data Sheet  
4-299  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationCIF Parameters  
Table 3-100 Timings for 0.4V to 2.4V input signals (2.8V imager), ± 5% pad power supply (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Pixel data set up time  
t
73 SR  
3
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
Hysteresis Bypass,  
3.3V±5%  
9
-
-
-
-
-
TTL Input Levels,  
3.3V±5%  
4.5  
3.5  
10  
5
TTL Input Levels,  
5V±5%  
Pixel data hold time  
t
74 SR  
Hysteresis Bypass,  
3.3V±5%  
TTL Input Levels,  
3.3V±5%  
TTL Input Levels,  
5V±5%  
Table 3-101 Timings for 1.8V imager, TTL input level  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
10.42  
3
Typ.  
Max.  
Pixel clock period  
t
t
70 SR  
71 SR  
-
-
-
-
ns  
ns  
HSYNC, VSYNC set up time  
Input signal 0.1V to  
1.7V  
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input signal 0.2V to  
1.6V  
4.5  
3.5  
3.5  
10  
5
Input signal 0.3V to  
1.5V  
Input signal 0.4V to  
1.4V  
HSYNC, VSYNC hold time  
t
72 SR  
Input signal 0.1V to  
1.7V  
Input signal 0.2V to  
1.6V  
Input signal 0.3V to  
1.5V  
4
Input signal 0.4V to  
1.4V  
Pixel data set up time  
t
73 SR  
3
Input signal 0.1V to  
1.7V  
9
Input signal 0.2V to  
1.6V  
4.5  
3.5  
Input signal 0.3V to  
1.5V  
Input signal 0.4V to  
1.4V  
Data Sheet  
4-300  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationCIF Parameters  
Table 3-101 Timings for 1.8V imager, TTL input level (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Pixel data hold time  
t
74 SR  
3.5  
-
-
-
-
-
ns  
ns  
ns  
ns  
Input signal 0.1V to  
1.7V  
10  
5
-
-
-
Input signal 0.2V to  
1.6V  
Input signal 0.3V to  
1.5V  
4
Input signal 0.4V to  
1.4V  
Table 3-102 Timings for 1.8V imager, 3.3V ± 5% pad power supply, TTL input level  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
10.42  
3
Max.  
Pixel clock period  
t
t
70 SR  
71 SR  
-
-
-
-
ns  
ns  
HSYNC, VSYNC set up time  
Input signal 0.1V to  
1.7V  
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input signal 0.2V to  
1.6V  
4.5  
3.5  
3.5  
10  
5
Input signal 0.3V to  
1.5V  
Input signal 0.4V to  
1.4V  
HSYNC, VSYNC hold time  
t
72 SR  
Input signal 0.1V to  
1.7V  
Input signal 0.2V to  
1.6V  
Input signal 0.3V to  
1.5V  
4
Input signal 0.4V to  
1.4V  
Pixel data set up time  
t
73 SR  
3
Input signal 0.1V to  
1.7V  
9
Input signal 0.2V to  
1.6V  
4.5  
3.5  
Input signal 0.3V to  
1.5V  
Input signal 0.4V to  
1.4V  
Data Sheet  
4-301  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationCIF Parameters  
Table 3-102 Timings for 1.8V imager, 3.3V ± 5% pad power supply, TTL input level (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Pixel data hold time  
t
74 SR  
3.5  
-
-
-
-
-
ns  
ns  
ns  
ns  
Input signal 0.1V to  
1.7V  
10  
5
-
-
-
Input signal 0.2V to  
1.6V  
Input signal 0.3V to  
1.5V  
4
Input signal 0.4V to  
1.4V  
Data Sheet  
4-302  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationFlash Target Parameters  
3.35  
Flash Target Parameters  
Program Flash program and erase operation is only allowed up the TJ = 150°C.  
Table 3-103 FLASH  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Program Flash Erase Time per tERP CC  
logical sector  
-
-
-
1
-
s
s
cycle count < 1000  
0.207 +  
0.003 * (S  
[KByte]) /  
(fFSI  
cycle count < 1000, for  
sector of size S  
[MHz])1)  
Program Flash Erase Time per tMERP CC  
Multi-Sector Command  
-
-
-
1
-
s
s
Forconsecutivelogical  
sectors in a physical  
sector, cycle count <  
1000  
0.207 +  
0.003 * (S  
[KByte]) /  
(fFSI  
Forconsecutivelogical  
sector range of size S  
in a physical sector,  
cycle count < 1000  
[MHz])1)  
Program Flash program time  
per page in 5 V mode  
t
t
t
t
PRP5 CC  
PRP3 CC  
PRPB5 CC  
PRPB3 CC  
-
-
-
-
-
-
-
-
-
-
50 +  
3000/(fFSI  
[MHz])  
µs  
µs  
µs  
µs  
s
32 Byte  
32 Byte  
256 Byte  
256 Byte  
Program Flash program time  
per page in 3.3 V mode  
81 +  
3400/(fFSI  
[MHz])  
Program Flash program time  
per burst in 5 V mode  
125 +  
9500/(fFSI  
[MHz])  
Program Flash program time  
per burst in 3.3 V mode  
410 +  
12000/(fF  
SI [MHz])  
Program Flash program time  
for 1 MByte with burst  
programming in 3 V mode  
excluding communication  
tPRPB3_1MB  
CC  
2.2  
0.9  
2.3  
Derived value for  
documentation  
purpose, valid for fFSI  
=
=
=
100MHz  
Program Flash program time  
for 1 MByte with burst  
programming in 5 V mode  
excluding communication  
tPRPB5_1MB  
CC  
-
-
-
-
s
s
Derived value for  
documentation  
purpose, valid for fFSI  
100MHz  
Program Flash program time  
for complete PFlash with burst CC  
programming in 5 V mode  
tPRPB5_PF  
Derived value for  
documentation  
purpose, valid for fFSI  
100MHz  
excluding communication  
Data Sheet  
4-303  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationFlash Target Parameters  
Table 3-103 FLASH (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Write Page Once adder  
t
ADD CC  
-
-
15 +  
500/(fFSI  
[MHz])  
µs  
Adder to Program  
Time when using Write  
Page Once  
Program Flash suspend to read tSPNDP CC  
latency  
-
-
12000/(fF µs  
SI [MHz])  
For Write Burst, Verify  
Erased and for multi-  
(logical) sector erase  
commands  
Data Flash Erase Time per  
Sector 2)  
t
t
ERD CC  
-
-
-
0.12 +  
0.08/(fFSI  
[MHz])1)  
-
s
s
s
cycle count < 1000  
0.57 +  
0.928 +  
cycle count < 125000  
0.15/(fFSI 0.15/(fFSI  
[MHz])1)  
[MHz])  
Data Flash Erase Time per  
Multi-Sector Command 2)  
MERD CC  
0.12 +  
-
Forconsecutivelogical  
sector range of size S,  
cycle count < 1000  
0.01 * (S  
[KByte]) /  
(fFSI  
[MHz])1)  
-
0.57 +  
0.019 * (S 0.019 * (S  
[KByte]) / [KByte]) /  
0.928 +  
s
Forconsecutivelogical  
sector range of size S,  
cycle count < 125000  
(fFSI  
(fFSI  
[MHz])  
[MHz])1)  
Data Flash erase disturb limit  
N
DFD CC  
-
-
-
-
50  
cycles  
µs  
Program time data flash per  
page 3)  
t
PRD CC  
50 +  
2500/(fFSI  
[MHz]) 3)  
8 Byte  
Complete Device Flash Erase  
Time PFlash and DFlash 4)  
t
ER_Dev CC  
-
-
-
-
6
s
Derived value for  
documentation  
purpose, valid for fFSI  
=
100MHz  
Data Flash program time per  
burst 3)  
t
t
PRDB CC  
96 +  
4400/(fFSI  
[MHz]) 3)  
µs  
32 Bytes  
Data Flash suspend to read  
latency  
SPNDD CC  
-
-
-
-
-
12000/(fF µs  
SI [MHz])  
Wait time after margin change tFL_MarginDel  
-
10  
-
µs  
CC  
Program Flash Retention Time, tRET CC  
Sector  
20  
years  
Max. 1000  
erase/program cycles  
Data Flash Endurance per  
EEPROMx sector 5)  
NE_EEP10  
CC  
125000  
-
cycles Max. data retention  
time 10 years  
Data Sheet  
4-304  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationFlash Target Parameters  
Table 3-103 FLASH (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
E_HSM CC 125000  
Max.  
Data Flash Endurance per  
HSMx sector 5)  
N
-
-
cycles Max. data retention  
time 10 years  
UCB Retention Time  
t
RTU CC  
20  
-
-
years  
Max. 100  
erase/program cycles  
per UCB, max 400  
erase/program cycles  
in total  
Data Flash access delay  
Data Flash ECC Delay  
t
t
t
t
DF CC  
-
-
-
-
-
-
-
-
100  
20  
ns  
ns  
ns  
ns  
see  
PMU_FCON.WSDFLA  
SH  
DFECC CC  
see  
PMU_FCON.WSECD  
F
Program Flash access delay  
Program Flash ECC delay  
PF CC  
30  
see  
PMU_FCON.WSPFLA  
SH  
PFECC CC  
10  
see  
PMU_FCON.WSECP  
F
Number of erase operations on NERD0 CC  
DF0 over lifetime  
-
-
-
-
750000  
150  
cycles  
°C  
Junction temperature limit for  
PFlash program/erase  
operations  
TJPFlash SR  
1) All typical values were characterised, but are not tested. Typical values are safe median values at room temperature  
2) Under out-of-spec conditions (e.g. over-cycling) or in case of activation of WL oriented defects, the duration of erase  
processes may be increased by up to 50%.  
3) Time is not dependent on program mode (5V or 3.3V).  
4) Using 512 KByte erase commands.  
5) Only valid when a robust EEPROM emulation algorithm is used. For more details see the Users Manual.  
Data Sheet  
4-305  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPackage Outline  
3.36  
Package Outline  
Figure 3-31 Package Outlines PG-LQFP-144-22  
Table 3-104 Exposed Pad Dimensions  
Ax; vaild for Feature Package D and DC (nominal EPad size)  
Ay; vaild for Feature Package D and DC (nominal EPad size)  
Ex; vaild for Feature Package D and DC (solder able EPad size)  
Ey; vaild for Feature Package D and DC (solder able EPad size)  
Ax; vaild for Feature Package DA (nominal EPad size)  
Ay; vaild for Feature Package DA (nominal EPad size)  
Ex; vaild for Feature Package DA (solder able EPad size)  
Ey; vaild for Feature Package DA (solder able EPad size)  
7.5 mm ± 50 µm  
7.5 mm ± 50 µm  
6.7 mm ± 50 µm  
6.7 mm ± 50 µm  
7.7 mm ± 50 µm  
9.2 mm ± 50 µm  
6.9 mm ± 50 µm  
8.4 mm ± 50 µm  
Note:It is recommended to use dimensions Ex and Ey for board layout considerations. Solder wetting between  
Ex / Ey and Ax / Ay and lead between Ex / Ey and Ax / Ay will not case any harm.  
Data Sheet  
4-306  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPackage Outline  
Figure 3-32 Package Outlines PG-LQFP-176-22  
Table 3-105 Exposed Pad Dimensions  
Ax; vaild for Feature Package D and DC (nominal EPad size)  
Ay; vaild for Feature Package D and DC (nominal EPad size)  
Ex; vaild for Feature Package D and DC (solder able EPad size)  
Ey; vaild for Feature Package D and DC (solder able EPad size)  
Ax; vaild for Feature Package DA (nominal EPad size)  
Ay; vaild for Feature Package DA (nominal EPad size)  
Ex; vaild for Feature Package DA (solder able EPad size)  
Ey; vaild for Feature Package DA (solder able EPad size)  
7.5 mm ± 50 µm  
7.5 mm ± 50 µm  
6.7 mm ± 50 µm  
6.7 mm ± 50 µm  
7.7 mm ± 50 µm  
9.2 mm ± 50 µm  
6.9 mm ± 50 µm  
8.4 mm ± 50 µm  
Note:It is recommended to use dimensions Ex and Ey for board layout considerations. Solder wetting between  
Ex / Ey and Ax / Ay and lead between Ex / Ey and Ax / Ay will not case any harm.  
Data Sheet  
4-307  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPackage Outline  
292x  
0.5 ±0 .0 5  
M
M
0.15  
0.08  
C
C
A B  
1.7 MAX  
0.1 C  
17 ±0.1  
B
A
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
CODE  
8
7
292x  
0.15  
6
5
4
3
COPLANARITY  
2
1
Y W V U T R P N M L K J HG F E D C B  
19 x 0.8 = 15.2  
A
INDEX  
INDEX MARKING  
(LASERED )  
0.8  
MARKING  
C
0.33 MIN  
STANDOFF  
Figure 3-33 Package Outlines PG-LFBGA-292-6  
You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:  
http://www.infineon.com/products.  
3.36.1  
Package Parameters  
Table 3-106 Thermal Characteristics of the Package  
Device  
Package  
RQJCT1)  
RQJCB1) RQJA  
Unit  
Note  
TC264  
PG-LQFP-144-22PG-  
LFBGA-292-6  
13,3  
3,3  
18,62)  
19,42)  
24,93)  
K/W  
with soldered  
exposed pad  
TC265  
PG-LQFP-176-22PG-  
LFBGA-292-6  
11,7  
3,5  
K/W  
with soldered  
exposed pad  
TC267  
PG-LFBGA-292-6  
11,1  
15,0  
K/W  
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the  
thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal  
resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT  
,
R
TCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility.  
The junction temperature can be calculated using the following equation: TJ = TA + RTJA * PD, where the RTJA is the total  
thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from  
the upper four partial thermal resistances.  
Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1).  
2) Value is defined in accordance with JEDEC JESD51-3, JESD51-5, and JESD51-7.  
3) Value is defined in accordance with JEDEC JESD51-1.  
3.36.2  
TC260 Carrier Tape  
Data Sheet  
4-308  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationPackage Outline  
Figure 3-34 Carrier Tape Dimenions  
Table 3-107 TC260 Chip Dimenions  
Device  
A
B
T
TC260  
5,910 mm  
6,453 mm  
0,3 mm  
Data Sheet  
4-309  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
Electrical SpecificationQuality Declarations  
3.37  
Quality Declarations  
Table 3-108 Quality Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
24500  
2000  
Operation Lifetime  
tOP  
-
-
-
-
hour  
V
ESD susceptibility according to VHBM  
Conforming to  
Human Body Model (HBM)  
JESD22-A114-B  
ESD susceptibility of the LVDS VHBM1  
pins  
-
-
-
-
500  
500  
V
V
ESD susceptibility according to VCDM  
for all other balls/pins;  
conforming to  
Charged Device Model (CDM)  
JESD22-C101-C  
-
-
-
-
750  
3
V
for corner balls/pins;  
conforming to  
JESD22-C101-C  
Moisture Sensitivity Level  
MSL  
Conforming to Jedec  
J-STD--020C for 240C  
Data Sheet  
4-310  
V 1.0 2017-06  
TC 260 / 264 / 265 / 267  
History  
4
History  
Version 1.0 is the first version of this document.  
VADC  
Add parameter tWU  
Add parameter RMDU  
Add parameter RMDD  
Calculating the 1.3 V Current Consumption  
Add formula 3.4  
Add furmula 3.5  
Changes in table 'Master Mode timing MPRm/MP+m/MPm/LPm output pads' of QSPI/5V  
Change max value of t51 from '15 ns' to '17 ns'  
EVR/Supply Monitoring  
Change note of tEVRMON from '' to 'after trimming'  
Data Sheet  
5-311  
V 1.0 2017-06  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY