SP001166960 [INFINEON]

Analog Circuit,;
SP001166960
型号: SP001166960
厂家: Infineon    Infineon
描述:

Analog Circuit,

文件: 总50页 (文件大小:2427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Angle Sensor  
GMR-Based Angle Sensor  
TLE5012B  
Data Sheet  
Rev. 2.0, 2014-02  
Sense & Control  
TLE5012B  
Data Sheet  
2
Rev. 2.0, 2014-02  
TLE5012B  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Rev. 2.0, 2014-02  
All chapters revised  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,  
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,  
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,  
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,  
thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of  
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF  
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™  
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.  
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™  
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes  
Zetex Limited.  
Last Trademarks Update 2011-11-11  
Data Sheet  
3
Rev. 2.0, 2014-02  
TLE5012B  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.1  
1.2  
1.3  
2
2.1  
2.2  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Internal Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SD-ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Digital Signal Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Safety Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Sensing Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.4  
2.5  
3
Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4
4.1  
4.2  
4.3  
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Input/Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
GMR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Autocalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Clock Supply (CLK Timing Definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Synchronous Serial Communication (SSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SSC Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SSC Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Pulse Width Modulation (PWM) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Short PWM Code (SPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Unit Time Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Master Trigger Pulse Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Checksum Nibble Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Hall Switch Mode (HSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Incremental Interface (IIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Test Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
ADC Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Supply Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Internal Supply Voltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.4  
4.4.1  
4.4.1.1  
4.4.1.2  
4.4.2  
4.4.3  
4.4.3.1  
4.4.3.2  
4.4.3.3  
4.4.4  
4.4.5  
4.5  
4.5.1  
4.6  
4.6.1  
Data Sheet  
4
Rev. 2.0, 2014-02  
TLE5012B  
Table of Contents  
4.6.2  
4.6.3  
4.6.4  
V
DD Overvoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
GND - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DD - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
V
5
Pre-Configured Derivates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
IIF-type: E1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
HSM-type: E3005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
PWM-type: E5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
PWM-type: E5020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
SPC-type: E9000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.1  
5.2  
5.3  
5.4  
5.5  
6
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.1  
6.2  
6.3  
6.4  
6.5  
Data Sheet  
5
Rev. 2.0, 2014-02  
TLE5012B  
List of Figures  
List of Figures  
Figure 1-1 PG-DSO-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 2-1 TLE5012B block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 2-2 Sensitive bridges of the GMR sensor (not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 2-3 Ideal output of the GMR sensor bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 2-4 Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 3-1 Application circuit for TLE5012B with IIF interface and SSC (using internal CLK). . . . . . . . . . . . . 15  
Figure 3-2 Application circuit for TLE5012B with HS Mode and SSC (using internal CLK). . . . . . . . . . . . . . . 15  
Figure 3-3 Application circuit for TLE5012B with only PWM interface (using internal CLK) . . . . . . . . . . . . . . 16  
Figure 3-4 Application circuit for TLE5012B with only PWM interface (using internal CLK) . . . . . . . . . . . . . . 16  
Figure 3-5 Application circuit for TLE5012B with only SPC interface (using internal CLK) . . . . . . . . . . . . . . . 17  
Figure 3-6 SSC configuration in sensor-slave mode with push-pull outputs (high-speed application) . . . . . . 17  
Figure 3-7 SSC configuration in sensor-slave mode and open-drain (bus systems). . . . . . . . . . . . . . . . . . . . 18  
Figure 4-1 Allowed magnetic field range as function of junction temperature.. . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 4-2 Offset and amplitude definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 4-3 Additional angle error for temperature changes above 5 Kelvin within 1.5 revolutions . . . . . . . . . 25  
Figure 4-4 Signal path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 4-5 Delay of sensor output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 4-6 External CLK timing definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 4-7 SSC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 4-8 SSC data transfer (data-read example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 4-9 SSC data transfer (data-write example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 4-10 SSC bit ordering (read example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 4-11 Update of update registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 4-12 Fast CRC polynomial division circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 4-13 Typical example of a PWM signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 4-14 SPC frame example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 4-15 SPC pause timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 4-16 SPC Master pulse timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 4-17 Hall Switch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 4-18 HS hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 4-19 Incremental interface with A/B mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 4-20 Incremental interface with Step/Direction mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 4-21 ADC test vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 4-22 Overvoltage comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 4-23 GND - off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 4-24 VDD - off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 6-1 PG-DSO-8 package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 6-2 Position of sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 6-3 Footprint of PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 6-4 Tape and Reel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Data Sheet  
6
Rev. 2.0, 2014-02  
TLE5012B  
List of Tables  
List of Tables  
Table 1-1 Derivate Ordering codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2-1 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 4-1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 4-2 Operating range and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 4-3 Input voltage and output currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 4-4 Driver strength characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 4-5 Electrical parameters for 4.5 V < VDD < 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 4-6 Electrical parameters for 3.0 V < VDD < 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 4-7 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 4-8 Basic GMR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 4-9 Angle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 4-10 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 4-11 Internal clock timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 4-12 External Clock Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 4-13 SSC push-pull timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 4-14 SSC open-drain timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 4-15 Structure of the Command Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 4-16 Structure of the Safety Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 4-17 Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 4-18 PWM interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 4-19 Frame configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 4-20 Structure of status nibble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 4-21 Predivider setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 4-22 Master pulse parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 4-23 Hall Switch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 4-24 Incremental Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 4-25 ADC test vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 4-26 Test comparator threshold voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 6-1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 6-2 Sensor IC placement tolerances in package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Data Sheet  
7
Rev. 2.0, 2014-02  
TLE5012B  
Product Description  
1
Product Description  
Figure 1-1 PG-DSO-8 package  
1.1  
Overview  
The TLE5012B is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by  
measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR)  
elements. These raw signals (sine and cosine) are digitally processed internally to calculate the angle orientation  
of the magnetic field (magnet).  
The TLE5012B is a pre-calibrated sensor. The calibration parameters are stored in laser fuses. At start-up the  
values of the fuses are written into flip-flops, where these values can be changed by the application-specific  
parameters. Further precision of the angle measurement over a wide temperature range and a long lifetime can  
be improved by enabling an optional internal autocalibration algorithm.  
Data communications are accomplished with a bi-directional Synchronous Serial Communication (SSC) that is  
SPI-compatible. The sensor configuration is stored in registers, which are accessible by the SSC interface.  
Additionally four other interfaces are available with the TLE5012B: Pulse-Width-Modulation (PWM) Protocol,  
Short-PWM-Code (SPC) Protocol, Hall Switch Mode (HSM) and Incremental Interface (IIF). These interfaces can  
be used in parallel with SSC or alone. Pre-configured sensor derivates with different interface settings are  
available (see Table 1-1 and Chapter 5)  
Online diagnostic functions are provided to ensure reliable operation.  
Table 1-1 Derivate Ordering codes  
Product Type  
Marking  
Ordering Code  
SP001166960  
SP001166964  
SP001166968  
SP001166972  
SP001166998  
Package  
TLE5012B E1000  
TLE5012B E3005  
TLE5012B E5000  
TLE5012B E5020  
TLE5012B E9000  
012B1000  
012B3005  
012B5000  
012B5020  
012B9000  
PG-DSO-8  
PG-DSO-8  
PG-DSO-8  
PG-DSO-8  
PG-DSO-8  
Note:See Chapter 5 for description of derivates.  
Data Sheet  
8
Rev. 2.0, 2014-02  
TLE5012B  
Product Description  
1.2  
Features  
Giant Magneto Resistance (GMR)-based principle  
Integrated magnetic field sensing for angle measurement  
360° angle measurement with revolution counter and angle speed measurement  
Two separate highly accurate single bit SD-ADC  
15 bit representation of absolute angle value on the output (resolution of 0.01°)  
16 bit representation of sine / cosine values on the interface  
Max. 1.0° angle error over lifetime and temperature-range with activated auto-calibration  
Bi-directional SSC Interface up to 8Mbit/s  
Supports Safety Integrity Level (SIL) with diagnostic functions and status information  
Interfaces: SSC, PWM, Incremental Interface (IIF), Hall Switch Mode (HSM), Short PWM Code (SPC, based  
on SENT protocol defined in SAE J2716)  
Output pins can be configured (programmed or pre-configured) as push-pull or open-drain  
Bus mode operation of multiple sensors on one line is possible with SSC or SPC interface in open-drain  
configuration  
0.25 μm CMOS technology  
Automotive qualified: -40°C to 150°C (junction temperature)  
ESD > 4kV (HBM)  
RoHS compliant (Pb-free package)  
Halogen-free  
1.3  
Application Example  
The TLE5012B GMR-based angle sensor is designed for angular position sensing in automotive applications such  
as:  
Electrical commutated motor (e.g. used in Electric Power Steering (EPS))  
Rotary switches  
Steering angle measurements  
General angular sensing  
Data Sheet  
9
Rev. 2.0, 2014-02  
TLE5012B  
Functional Description  
2
Functional Description  
2.1  
Block Diagram  
TLE5012B  
VDD  
VRG  
VRA  
VRD  
GND  
CSQ  
SCK  
DATA  
IFA  
X
GMR  
SD-  
ADC  
Digital  
Signal  
Processing  
SSC Interface  
Unit  
ISM  
CORDIC  
CCU  
Y
GMR  
SD-  
ADC  
Incremental IF  
PWM  
IFB  
SD-  
ADC  
HSM  
SPC  
RAM  
Temp  
IFC  
Fuses  
Osc  
PLL  
Figure 2-1 TLE5012B block diagram  
2.2  
Functional Block Description  
2.2.1  
Internal Power Supply  
The internal stages of the TLE5012B are supplied with several voltage regulators:  
GMR Voltage Regulator, VRG  
Analog Voltage Regulator, VRA  
Digital Voltage Regulator, VRD (derived from VRA)  
These regulators are directly connected to the supply voltage VDD  
.
2.2.2  
Oscillator and PLL  
The digital clock of the TLE5012B is given by the Phase-Locked Loop (PLL), which is by default fed by an internal  
oscillator. In order to synchronize the TLE5012B with other ICs in a system, the TLE5012B can be configured via  
Data Sheet  
10  
Rev. 2.0, 2014-02  
TLE5012B  
Functional Description  
SSC interface to use an external clock signal supplied on the IFC pin as source for the PLL, instead of the internal  
clock. External clock mode is only available in PWM or SPC interface configuration.  
2.2.3  
SD-ADC  
The Sigma-Delta Analog-Digital-Converters (SD-ADC) transform the analog GMR voltages and temperature  
voltage into the digital domain.  
2.2.4  
Digital Signal Processing Unit  
The Digital Signal Processing Unit (DSPU) contains the:  
Intelligent State Machine (ISM), which does error compensation of offset, offset temperature drift, amplitude  
synchronicity and orthogonality of the raw signals from the GMR bridges, and performs additional features  
such as auto-calibration, prediction and angle speed calculation  
COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle  
calculation  
Capture Compare Unit (CCU), which is used to generate the PWM and SPC signals  
Random Access Memory (RAM), which contains the configuration registers  
Laser Fuses, which contain the calibration parameters for the error-compensation and the IC default  
configuration, which is loaded into the RAM at startup  
2.2.5  
Interfaces  
Bi-directional communication with the TLE5012B is enabled by a three-wire SSC interface. In parallel to the SSC  
interface, one secondary interface can be selected, which is available on the IFA, IFB, IFC pins:  
PWM  
Incremental Interface  
Hall Switch Mode  
Short PWM Code  
By using pre-configured derivates (see Chapter 5), the TLE5012B can also be operated with the secondary  
interface only, without SSC communication.  
2.2.6  
Safety Features  
The TLE5012B offers a multiplicity of safety features to support the Safety Integrity Level (SIL) and it is a PRO-  
SILTM product.  
Safety features are:  
Test vectors switchable to ADC input (activated via SSC interface)  
Inversion or combination of filter input streams (activated via SSC interface)  
Data transmission check via 8-bit Cyclic Redundancy Check (CRC) for SSC communcation and 4-bit CRC  
nibble for SPC interface  
Built-in Self-test (BIST) routines for ISM, CORDIC, CCU, ADCs run at startup  
Two independent active interfaces possible  
Overvoltage and undervoltage detection  
Disclaimer  
PRO-SIL™ is a Registered Trademark of Infineon Technologies AG.  
The PRO-SIL™ Trademark designates Infineon products which contain SIL Supporting Features.  
SIL Supporting Features are intended to support the overall System Design to reach the desired SIL (according  
to IEC61508) or A-SIL (according to ISO26262) level for the Safety System with high efficiency.  
Data Sheet  
11  
Rev. 2.0, 2014-02  
TLE5012B  
Functional Description  
SIL respectively A-SIL certification for such a System has to be reached on system level by the System  
Responsible at an accredited Certification Authority.  
SIL stands for Safety Integrity Level (according to IEC 61508)  
A-SIL stands for Automotive-Safety Integrity Level (according to ISO 26262)  
2.3  
Sensing Principle  
The Giant Magneto Resistance (GMR) sensor is implemented using vertical integration. This means that the  
GMR-sensitive areas are integrated above the logic part of the TLE5012B device. These GMR elements change  
their resistance depending on the direction of the magnetic field.  
Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense one  
of two components of the applied magnetic field:  
X component, Vx (cosine) or the  
Y component, Vy (sine)  
With this full-bridge structure the maximum GMR signal is available and temperature effects cancel out each other.  
GMR Resistors  
VX  
VY  
0°  
S
N
ADCX+  
ADCX-  
GND  
ADCY+  
ADCY-  
VDD  
90°  
Figure 2-2 Sensitive bridges of the GMR sensor (not to scale)  
Attention: Due to the rotational placement inaccuracy of the sensor IC in the package, the sensors 0°  
position may deviate by up to 3° from the package edge direction indicated in Figure 2-2.  
In Figure 2-2, the arrows in the resistors represent the magnetic direction which is fixed in the reference layer. If  
the external magnetic field is parallel to the direction of the Reference Layer, the resistance is minimal. If they are  
anti-parallel, resistance is maximal.  
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are  
oriented orthogonally to each other to measure 360°.  
With the trigonometric function ARCTAN2, the true 360° angle value is calculated out of the raw X and Y signals  
from the sensor bridges.  
Data Sheet  
12  
Rev. 2.0, 2014-02  
TLE5012B  
Functional Description  
Y Component (SIN)  
VY  
X Component (COS)  
VX  
V
VX (COS)  
360°  
0°  
90°  
180°  
270°  
Angle α  
VY (SIN)  
Figure 2-3 Ideal output of the GMR sensor bridges  
Data Sheet  
13  
Rev. 2.0, 2014-02  
TLE5012B  
Functional Description  
2.4  
Pin Configuration  
8
7
6
5
Center of Sensitive  
Area  
1
2
3
4
Figure 2-4 Pin configuration (top view)  
2.5  
Pin Description  
Table 2-1 Pin Description  
Pin No.  
Symbol  
IFC  
In/Out  
Function  
1
I/O  
Interface C:  
(CLK / IIF_IDX / HS3)  
External Clock1) / IIF Index / Hall Switch  
Signal 3  
2
3
4
5
SCK  
I
SSC Clock  
CSQ  
DATA  
I
SSC Chip Select  
SSC Data  
I/O  
I/O  
IFA  
Interface A:  
(IIF_A / HS1 / PWM / SPC)  
IIF Phase A / Hall Switch Signal 1 /  
PWM / SPC output (input for SPC trigger  
only)  
6
7
8
VDD  
-
Supply Voltage  
Ground  
GND  
-
IFB  
O
Interface B:  
(IIF_B / HS2)  
IIF Phase B / Hall Switch Signal 2  
1) External clock feature is not available in IIF or HSM interface mode  
Data Sheet  
14  
Rev. 2.0, 2014-02  
TLE5012B  
Application Circuits  
3
Application Circuits  
The application circuits in this chapter show the various communication possibilities of the TLE5012B. The pin  
output mode configuration is device-specific and it can be either push-pull or open-drain. The bit IFAB_OD  
(register IFAB, 0DH) indicates the output mode for the IFA, IFB and IFC pins. The SSC pins are by default push-  
pull (bit SSC_OD, register MOD_3, 09H).  
Figure 3-1 shows a basic block diagram of a TLE5012B with Incremental Interface and SSC configuration. The  
derivate TLE5012B - E1000 is by default configured with push-pull IFA (IIF_A), IFB (IIF_ B) and IFC (IIF_IDX) pins.  
VDD (3.0 – 5.5V)  
TLE5012B  
100nF  
VRG  
VRA  
VRD  
*)  
CSQ  
Digital  
Signal  
Processing  
X
GMR  
SD-  
ADC  
*)  
SCK  
SSC  
SSC Interface  
Unit  
**)  
DATA  
ISM  
CORDIC  
CCU  
Y
GMR  
SD-  
ADC  
IFA (IIF _A)  
IFB (IIF _B)  
Incremental IF  
PWM  
HSM  
IIF  
SD-  
ADC  
RAM  
Temp  
IFC (IIF_IDX)  
GND  
Fuses  
Osc  
PLL  
*) recommended , e.g. 100  
**) recommended , e.g. 470Ω  
Figure 3-1 Application circuit for TLE5012B with IIF interface and SSC (using internal CLK)  
In case that the IFA, IFB and IFC pins are configurated via the SSC interface as open-drain pins, three resistors  
(one for each line) between output line and VDD would be recommended (e.g. 2.2kΩ).  
Figure 3-2 shows a basic block diagram of the TLE5012B with HS Mode and SSC configuration. The derivate  
TLE5012B - E3005 is by default configurated with push-pull IFA (HS1), IFB (HS2) and IFC (HS3) pins.  
VDD (3.0 – 5.5V)  
TLE5012B  
100nF  
VRG  
VRA  
VRD  
*)  
CSQ  
Digital  
Signal  
Processing  
X
GMR  
SD-  
ADC  
*)  
SCK  
SSC  
SSC Interface  
Unit  
**)  
DATA  
ISM  
CORDIC  
CCU  
Y
GMR  
SD-  
ADC  
IFA (HS1)  
IFB (HS2)  
Incremental IF  
PWM  
HSM  
HSM  
SD-  
ADC  
RAM  
Temp  
IFC (HS3)  
GND  
Fuses  
Osc  
PLL  
*) recommended , e.g. 100  
**) recommended , e.g. 470Ω  
Figure 3-2 Application circuit for TLE5012B with HS Mode and SSC (using internal CLK)  
Data Sheet 15 Rev. 2.0, 2014-02  
TLE5012B  
Application Circuits  
In case that the IFA, IFB and IFC pins are configurated via the SSC interface as open drain pins, three resistors  
(one for each line) between the output line and VDD would be recommended (e.g. 2.2kΩ).  
The TLE5012B can be configured with PWM only (Figure 3-3). The derivate TLE5012B - E5000 is by default  
configurated with push-pull IFA (PWM) pin. Therefore the following configuration is recommended:  
VDD (3.0 – 5.5V)  
TLE5012B  
100 nF  
VRG  
VRA  
VRD  
CSQ  
Digital  
Signal  
Processing  
X
GMR  
SD-  
ADC  
SCK  
SSC Interface  
Unit  
*)  
DATA  
ISM  
CORDIC  
CCU  
Y
GMR  
SD-  
ADC  
IFA (PWM)  
IFB  
Incremental IF  
PWM  
HSM  
SD-  
ADC  
RAM  
Temp  
IFC  
Fuses  
GND  
Osc  
PLL  
*) recommended , e.g. 10.0k  
Figure 3-3 Application circuit for TLE5012B with only PWM interface (using internal CLK)  
The TLE5012B - E5020 is also a PWM derivate but with open drain IFA (PWM) pin. A pull-up resistor (e.g. 2.2kΩ)  
should then be added between the IFA line and VDD, as shown in Figure 3-4.  
VDD (3.0 – 5.5V)  
TLE5012B  
100nF  
VRG  
VRA  
VRD  
*)  
CSQ  
Digital  
Signal  
Processing  
X
GMR  
SD-  
ADC  
SCK  
SSC Interface  
Unit  
**)  
DATA  
ISM  
CORDIC  
CCU  
Y
GMR  
SD-  
ADC  
IFA (PWM)  
IFB  
Incremental IF  
PWM  
HSM  
SD-  
ADC  
RAM  
Temp  
IFC  
Fuses  
GND  
Osc  
PLL  
*) recommended , e.g. 2.2k  
**) recommended , e.g. 10.0kΩ  
Figure 3-4 Application circuit for TLE5012B with only PWM interface (using internal CLK)  
For safety reasons it is better that the non-used pins are connected to ground, rather than floating. A resistor  
between he DATA line pin and ground is recommended to avoid shortcuts if DATA generates any unexpected  
output. The CSQ line has to be connected to VDD to avoid unintentional activation of the SSC interface.  
Data Sheet  
16  
Rev. 2.0, 2014-02  
TLE5012B  
Application Circuits  
The TLE5012B can be configured with SPC only (Figure 3-5). This is only possible with the TLE5012B - E9000  
derivate, which is by default configurated with an open-drain IFA (SPC) pin.  
VDD (3.0 – 5.5V)  
TLE5012B  
100nF  
VRG  
VRA  
VRD  
*)  
CSQ  
Digital  
Signal  
Processing  
X
GMR  
SD-  
ADC  
SCK (S_NR[0])  
SSC Interface  
Unit  
**)  
DATA  
ISM  
CORDIC  
CCU  
Y
GMR  
SD-  
ADC  
IFA (SPC )  
IFB  
Incremental IF  
PWM  
HSM  
SD-  
ADC  
RAM  
Temp  
IFC (S_NR[1])  
GND  
Fuses  
Osc  
PLL  
*) recommended , e.g. 2.2k  
**) recommended , e.g. 10.0kΩ  
Figure 3-5 Application circuit for TLE5012B with only SPC interface (using internal CLK)  
In Figure 3-5 the IFC (S_NR[1]) and SCK (S_NR[0]) pins are set to ground to generate the slave number (S_NR)  
0D (or 00B). For safety reasons it is better that the non-used pins are connected to ground, rather than floating. A  
resistor between the DATA line pin and ground is recommended to avoid shortcuts if DATA generates any  
unexpected output. The CSQ line has to be connected to VDD to avoid unintentional activation of the SSC interface.  
Synchronous Serial Communication (SSC) configuration  
In Figure 3-1 and Figure 3-2 the SSC interface has the default push-pull configuration (see details in Figure 3-6).  
Series resistors on the DATA, SCK (serial clock signal) and CSQ (chip select) lines are recommended to limit the  
current in the erroneous case that either the sensor pushes high and the microcontroller pulls low at the same time  
or vice versa. The resistors in the SCK and CSQ lines are only necessary in case of disturbances or noise.  
(SSC Slave) TLE 5012B  
µC (SSC Master)  
**)  
MTSR  
DATA  
Shift Reg.  
Shift Reg.  
EN  
EN  
MRST  
SCK  
*)  
SCK  
Clock Gen.  
*)  
CSQ  
CSQ  
*) optional , e.g. 100  
**) optional , e.g. 470 Ω  
Figure 3-6 SSC configuration in sensor-slave mode with push-pull outputs (high-speed application)  
Data Sheet  
17  
Rev. 2.0, 2014-02  
TLE5012B  
Application Circuits  
It is also possible to use an open-drain setup for the DATA, SCK and CSQ lines. This setup is designed to  
communicate with a microcontroller in a bus system, together with other SSC slaves (e.g. two TLE5012B devices  
for redundancy reasons). This mode can be activated using the bit SSC_OD.  
The open-drain configuration can be seen in Figure 3-7. Series resistors on the DATA, SCK, and CSQ lines are  
recommended to limit the current in case either the microcontroller or the sensor are accidentally switched to push-  
pull. A pull-up resistor of typ. 1 kΩ is required on the DATA line.  
(SSC Slave) TLE 5012B  
µC (SSC Master)  
typ. 1k  
*)  
*)  
MRST  
DATA  
Shift Reg.  
Shift Reg.  
MTSR  
SCK  
*)  
SCK  
Clock Gen.  
*)  
CSQ  
CSQ  
*) optional , e.g. 100 Ω  
Figure 3-7 SSC configuration in sensor-slave mode and open-drain (bus systems)  
Data Sheet  
18  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4
Specification  
4.1  
Absolute Maximum Ratings  
Table 4-1 Absolute maximum ratings  
Parameter Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
-0.5  
Max.  
6.5 V  
Voltage on VDD pin with respect to VDD  
ground (VSS)  
Max 40 h/Lifetime  
Voltage on any pin with respect to VIN  
ground (VSS)  
-0.5  
-40  
6.5 V  
V
DD + V  
0.5  
Junction temperature  
Magnetic field induction  
Storage temperature  
TJ  
B
150 °C  
150 °C  
For 1000 h, not additive  
200 mT Max. 5 min @ TA = 25°C  
150 mT Max. 5 h @ TA = 25°C  
TST  
-40  
150 °C  
Without magnetic field  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the device.  
4.2  
Operating Range  
The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5012B.  
All parameters specified in the following sections refer to these operating conditions, unless otherwise noted.  
Table 4-2 is valid for -40°C < TJ < 150°C unless otherwise noted.  
Table 4-2 Operating range and parameters  
Parameter  
Symbol  
Values  
Typ.  
5.0  
Unit Note / Test Condition  
Min.  
3.0  
Max.  
5.5 V  
1)  
Supply voltage  
Supply current  
VDD  
IDD  
14  
16 mA  
Magnetic induction at TJ =  
25°C2)3)  
BXY  
30  
30  
30  
25  
50 mT -40°C < TJ < 150°C  
60 mT -40°C < TJ < 100°C  
70 mT -40°C < TJ < 85°C  
30 mT Additional angle error of 0.1°  
Extended magnetic induction  
range at TJ = 25°C2)3)  
BXY  
Angle range  
POR level  
Ang  
0
360 °  
VPOR  
VPORhy  
2.0  
2.9 V  
mV  
Power-on reset  
POR hysteresis  
30  
Data Sheet  
19  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Table 4-2 Operating range (cont’d)and parameters  
Parameter  
Symbol  
Values  
Typ.  
5
Unit Note / Test Condition  
Min.  
Max.  
Power-on time4)  
Fast Reset time5)  
tPon  
7 ms VDD > VDDmin;  
tRfast  
0.5 ms Fast reset is triggered by  
disabling startup BIST  
(S_BIST = 0), then enabling  
chip reset (AS_RST = 1)  
1) Directly blocked with 100-nF ceramic capacitor  
2) Values refer to a homogeneous magnetic field (BXY) without vertical magnetic induction (BZ = 0mT).  
3) See Figure 4-1  
4) During “Power-on time,” write access is not permitted (except for the switch to External Clock which requires a readout as  
a confirmation that external clock is selected)  
5) Not subject to production test - verified by design/characterization  
The field strength of a magnet can be selected within the colored area of Figure 4-1. By limitation of the junction  
temperature, a higher magnetic field can be applied. In case of a maximum temperature TJ=100°C, a magnet with  
up to 60mT at TJ = 25°C is allowed.  
It is also possible to widen the magnetic field range for higher temperatures. In that case, additional angle errors  
have to be considered.  
Figure 4-1 Allowed magnetic field range as function of junction temperature.  
Data Sheet  
20  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.3  
Characteristics  
4.3.1  
Input/Output characteristics  
The indicated parameters apply to the full operating range, unless otherwise specified. The typical values  
correspond to a supply voltage VDD = 5.0 V and 25 °C, unless individually specified. All other values correspond  
to -40 °C < TJ < 150°C.  
Within the register MOD_3, the driver strength and the slope for push-pull communication can be varied depending  
on the sensor output. The driver strength is specified in Table 4-3 and the slope fall and rise time in Table 4-4.  
Table 4-3 Input voltage and output currents  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note / Test Condition  
Max.  
5.5 V  
DD+ 0.3 V  
-25 mA PAD_DRV =’0x’, sink current1)2)  
Input voltage  
VIN  
-0.3  
V
Output current (DATA-Pad)  
IQ  
-5 mA PAD_DRV =’10’, sink current1)2)  
-0.4 mA PAD_DRV =’11’, sink current1)2)  
-15 mA PAD_DRV =’0x’, sink current1)2)  
-5 mA PAD_DRV =’1x’, sink current1)2)  
Output current (IFA / IFB / IFC - IQ  
Pad)  
1) Max. current to GND over open-drain output  
2) At VDD = 5 V  
Table 4-4 Driver strength characteristic  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Output rise/fall time  
tfall, trise  
8 ns  
DATA, 50 pF,  
PAD_DRV=’00’1)2)  
28 ns  
45 ns  
DATA, 50 pF,  
PAD_DRV=’01’1)2)  
DATA, 50 pF,  
PAD_DRV=’10’1)2)  
130 ns  
15 ns  
30 ns  
DATA, 50 pF,  
PAD_DRV=’11’1)2)  
IFA/IFB, 20 pF,  
PAD_DRV=’0x’1)2)  
IFA/IFB, 20 pF,  
PAD_DRV=’1x’1)2)  
1) Valid for push-pull output  
2) Not subject to production test - verified by design/characterization  
Data Sheet  
21  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Table 4-5 Electrical parameters for 4.5 V < VDD < 5.5 V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input signal low-level  
Input signal high level  
Output signal low-level  
VL5  
0.3 VDD  
V
V
VH5  
VOL5  
0.7 VDD  
1 V  
DATA; IQ = -25 mA (PAD_DRV=’0x’),  
IQ = -5 mA (PAD_DRV=’10’), IQ = -0.4  
mA (PAD_DRV=’11’)  
1 V  
IFA,B,C; IQ = -15 mA (PAD_DRV=’0x’),  
IQ = -5 mA (PAD_DRV=’1x’)  
Pull-up current1)  
IPU  
-10  
-10  
10  
-225 μA  
-150 μA  
225 μA  
150 μA  
CSQ  
DATA  
Pull-down current2)  
IPD  
SCK  
10  
IFA, IFB, IFC  
1) Internal pull-ups on CSQ and DATA pin are always enabled.  
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on SCK is  
always enabled.  
Table 4-6 Electrical parameters for 3.0 V < VDD < 3.6 V  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Input signal low-level  
Input signal high level  
Output signal low-level  
VL3  
0.3 VDD  
V
V
VH3  
VOL3  
0.7 VDD  
0.9 V  
DATA; IQ = -15 mA  
(PAD_DRV=’0x’), IQ = -3 mA  
(PAD_DRV=’10’), IQ = -0.24 mA  
(PAD_DRV=’11’)  
0.9 V  
IFA,IFB; IQ = - 10 mA  
(PAD_DRV=’0x’), IQ = -3 mA  
(PAD_DRV=’1x’)  
Pull-up current1)  
IPU  
-3  
-3  
3
-225 μA  
-150 μA  
225 μA  
150 μA  
CSQ  
DATA  
Pull-down current2)  
IPD  
SCK  
3
IFA, IFB, IFC  
1) Internal pull-ups on CSQ and DATA pin are always enabled.  
2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on SCK is  
always enabled.  
Data Sheet  
22  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.3.2  
ESD Protection  
Table 4-7 ESD protection  
Parameter  
Symbol  
Values  
Unit  
Notes  
Min.  
Max.  
±4.0 kV  
±0.5 kV  
ESD voltage  
VHBM  
VSDM  
Human Body Model1)  
Socketed Device Model2)  
1) Human Body Model (HBM) according to: AEC-Q100-002  
2) Socketed Device Model (SDM) according to: ESDA/ANSI/ESD SP5.3.2-2008  
4.3.3  
GMR Parameters  
All parameters apply over BXY = 30mT and TA = 25°C, unless otherwise specified.  
Table 4-8 Basic GMR parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
X, Y output range  
X, Y amplitude2)  
RGADC  
AX, AY  
±23230 digits Operating range1)  
15781 digits At ambient temperature  
20620 digits Operating range  
112.49 %  
6000 9500  
3922  
X, Y synchronicity3)  
X, Y offset4)  
k
87.5  
-2048  
-11.25  
100  
0
OX, OY  
ϕ
+2047 digits  
X, Y orthogonality error  
X, Y amplitude without magnet  
0
+11.24 °  
+4096 digits Operating range1)  
X0, Y0  
1) Not subject to production test - verified by design/characterization  
2) See Figure 4-2  
3) k = 100*(AX/AY)  
4) OY=(YMAX + YMIN) / 2; OX = (XMAX + XMIN) / 2  
VY  
+A  
Offset  
0
0°  
90°  
180°  
270°  
360°  
Angle  
-A  
Figure 4-2 Offset and amplitude definition  
Data Sheet  
23  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.3.4  
Angle Performance  
After internal calculation, the sensor has a remaining error, as shown in Table 4-9. The error value refers to BZ=  
0mT and the operating conditions given in Table 4-2 “Operating range and parameters” on Page 19.  
The overall angle error represents the relative angle error. This error describes the deviation from the reference  
line after zero-angle definition. It is valid for a static magnetic field.  
If the magnetic field is rotating during the measurement, an additional propagation error is caused by the angle  
delay time (see Table 4-10 “Signal processing” on Page 27), which the sensor needs to calculate the angle  
from the raw sine and cosine values from the MR bridges. In fast-turning applications, prediction can be enabled  
to reduce this propagation error.  
Table 4-9 Angle performance  
Parameter  
Symbol  
Values  
Typ.  
0.61)  
Unit  
Note / Test Condition  
Min.  
Max.  
1.0 °  
Overall angle error (with auto-  
calibration)  
αErr  
Including lifetime and  
temperature drift2)3)4). Note:  
in case of temperature  
changes above 5 Kelvin  
within 1.5 revolutions refer  
to Figure 4-3 for additional  
angle error.  
Overall angle error (without auto- αErr  
calibration)  
0.61)  
1.3 °  
1.9 °  
Including temperature  
drift2)3)5)  
Including lifetime and  
temperature drift2)3)4)  
1) At 25°C, B = 30mT  
2) Including hysteresis error, caused by revolution direction change  
3) Relative error after zero angle definition  
4) Not subject to production test - verified by design/characterization  
5) 0h  
If autocalibration (see Chapter 4.3.5) is enabled and the temperature changes by more than 5 Kelvin during 1.5  
revolutions an additional error has to be added to the specified angle error in Table 4-9. This error depends on the  
temperature change (Delta Temperature) as well as from the initial temperature (Tstart) as shown in Figure 4-3.  
Once the temperature stabilizes and the application completes 1.5 revolutions, then the angle error is as specified  
in Table 4-9.  
For negative Delta Temperature changes (from higher to lower temperatures) the additional angle error will be  
smaller than the corresponding positive Delta Temperature changes (from lower to higher temperatures) shown  
in Figure 4-3. The Figure 4-3 applies to the worst case.  
Data Sheet  
24  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
3.5  
3
2.5  
2
Tstart -40°C  
1.5  
1
Tstart 25°C  
Tstart 85°C  
Tstart 105°C  
Tstart 125°C  
Tstart 135°C  
Tstart >135°C  
0.5  
0
0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190  
Delta Temperature (Kelvin) within 1.5 revolutions  
Figure 4-3 Additional angle error for temperature changes above 5 Kelvin within 1.5 revolutions  
4.3.5  
Autocalibration  
The autocalibration enables online parameter calculation and therefore reduces the angle error due to  
temperature and lifetime drifts.  
The TLE5012B is a pre-calibrated sensor, so autocalibration is only enabled in some devices by default. The  
update mode can be chosen with the AUTOCAL setting in the MOD_2 register. The TLE5012B needs 1.5  
revolutions to generate new autocalibration parameters. These parameters are continuously updated. The  
parameters are updated in a smooth way (one Least-Significant Bit within the chosen range or time) to avoid an  
angle jump on the output.  
AUTOCAL Modes:  
00: No autocalibration  
01: Autocalibration Mode 1. One LSB to final values within the update time tupd (depending on FIR_MD setting).  
10: Autocalibration Mode 2. Only one LSB update over one full parameter generation (1.5 revolutions). After  
update of one LSB, the autocalibration will calculate the parameters again.  
11: Autocalibration Mode 3. One LSB to final values within an angle range of 11.25°  
Data Sheet  
25  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.3.6  
Signal Processing  
TLE5012B  
Microcontroller  
X
GMR  
SD-  
ADC  
Filter  
Angle  
Calculation  
IF  
Y
GMR  
SD-  
ADC  
Filter  
tdelIF  
tadelSSC  
tadelIIF  
Figure 4-4 Signal path  
The signal path of the TLE5012B is depicted in Figure 4-4. It consists of the GMR-bridge, ADC, filter and angle  
calculation. The delay time between a physical change in the GMR elements and a signal on the output depends  
on the filter and interface configurations. In fast turning applications, this delay causes an additional rotation speed  
dependent angle error.  
The TLE5012B has an optional prediction feature, which serves to reduce the speed dependent angle error in  
applications where the rotation speed does not change abruptly. Prediction uses the difference between current  
and last two angle values to approximate the angle value which will be present after the delay time (see  
Figure 4-5). The output value is calculated by adding this difference to the measured value, according to  
Equation (4.1).  
(4.1)  
α (t +1) = α (t) + α (t 1) α (t 2)  
Sensor output  
Angle  
With  
Without  
Prediction  
Prediction  
Magnetic field  
direction  
time  
tadel  
tupd  
Figure 4-5 Delay of sensor output  
Data Sheet  
26  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Table 4-10 Signal processing  
Parameter  
Symbol  
Values  
Typ.  
42.7  
85.3  
170.6  
85  
Unit  
Note / Test Condition  
Min.  
Max.  
Filter update period  
tupd  
μs  
μs  
μs  
FIR_MD = 1 (default)1)  
FIR_MD = 21)  
FIR_MD = 31)  
FIR_MD = 11)  
FIR_MD = 21)  
FIR_MD = 31)  
FIR_MD = 11)  
FIR_MD = 21)  
FIR_MD = 31)  
Angle delay time without  
prediction2)  
tadelSSC  
95 μs  
150  
165 μs  
300 μs  
135 μs  
200 μs  
330 μs  
50 μs  
275  
tadelIIF  
120  
180  
305  
Angle delay time with prediction2) tadelSSC  
45  
FIR_MD = 1; PREDICT =  
11)  
65  
105  
75  
70 μs  
115 μs  
90 µs  
FIR_MD = 2; PREDICT =  
11)  
FIR_MD = 3; PREDICT = 1  
1)  
tadelIIF  
FIR_MD = 1; PREDICT =  
11)  
95  
110 µs  
150 µs  
FIR_MD = 2; PREDICT =  
11)  
135  
FIR_MD = 3; PREDICT = 1  
1)  
Angle noise (RMS)  
NAngle  
0.08  
0.05  
0.04  
°
°
°
FIR_MD = 11)  
FIR_MD = 21)(default)  
FIR_MD = 31)  
1) Not subject to production test - verified by design/characterization  
2) Valid at constant rotation speed  
All delay times specified in Table 4-10 are valid for an ideal internal oscillator frequency of 24 MHz. For the exact  
timing, the variation of the internal oscillator frequency has to be taken into account (see Chapter 4.3.7)  
Data Sheet  
27  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.3.7  
Clock Supply (CLK Timing Definition)  
The internal clock supply of the TLE5012B is subject to production-specific variations, which have to be considered  
for all timing specifications.  
Table 4-11 Internal clock timing specification  
Parameter  
Symbol  
Values  
Typ.  
24  
Unit  
Note / Test Condition  
Min.  
22.8  
3.8  
Max.  
Digital clock  
fDIG  
fCLK  
25.8 MHz  
4.3 MHz  
Internal oscillator frequency  
4.0  
In order to fix the IC timing and synchronize the TLE5012B with other ICs in a system, it can be switched to operate  
with an external clock signal supplied to the IFC pin. The clock input signal must fulfill certain requirements:  
The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse  
width and must be spike-filtered.  
The duty cycle factor should typically be 50%, but it can vary between 30% and 70%.  
The PLL is triggered at the positive edge of the clock. If more than 2 edges are missing, a chip reset is  
generated automatically and the sensor restarts with the internal clock. This is indicated by the S_RST, and  
CLK_SEL bits, and additionally by the Safety Word (see Chapter 4.4.1.2).  
tCLK  
tCLKh  
tCLKl  
VH  
VL  
t
Figure 4-6 External CLK timing definition  
Table 4-12 External Clock Specification  
Parameter  
Symbol  
Values  
Typ.  
4.0  
50  
Unit  
Note / Test Condition  
Min.  
3.8  
30  
Max.  
Input frequency  
CLK duty cycle1)2)  
CLK rise time  
fCLK  
4.3 MHz  
70 %  
CLKDUTY  
tCLKr  
30 ns  
From VL to VH  
From VH to VL  
CLK fall time  
tCLKf  
30 ns  
1) Minimum duty cycle factor: tCLKh(min) / tCLK with tCLK= 1 / fCLK  
2) Maximum duty cycle factor: tCLKh(max) / tCLK with tCLK= 1 / fCLK  
Data Sheet  
28  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.4  
Interfaces  
4.4.1  
Synchronous Serial Communication (SSC)  
The 3-pin SSC interface consists of a bi-directional push-pull (tri-state on receive) or open-drain data pin  
(configurable with SSC_OD bit) and the serial clock and chip-select input pins. The SSC Interface is designed to  
communicate with a microcontroller peer-to-peer for fast applications.  
4.4.1.1  
SSC Timing Definition  
tCSs  
tCSh  
tCSoff  
tSCKp  
CSQ  
tSCKh  
tSCKl  
SCK  
DATA  
tDATAs tDATAh  
Figure 4-7 SSC timing  
SSC Inactive Time (CSoff)  
The SSC inactive time defines the delay time after a transfer before the TLE5012B can be selected again.  
Table 4-13 SSC push-pull timing specification  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
1)  
1)  
1)  
SSC baud rate  
CSQ setup time  
CSQ hold time  
CSQ off  
fSSC  
8.0  
Mbit/s  
ns  
tCSs  
105  
tCSh  
105  
600  
120  
40  
ns  
tCSoff  
ns  
SSC inactive time1)  
1)  
SCK period  
tSCKp  
tSCKh  
tSCKl  
125  
ns  
1)  
1)  
1)  
1)  
1)  
SCK high  
ns  
SCK low  
30  
ns  
DATA setup time  
DATA hold time  
Write read delay  
Update time  
SCK off  
tDATAs  
tDATAh  
twr_delay  
tCSupdate  
tSCKoff  
25  
ns  
40  
ns  
130  
1
ns  
μs  
See Figure 4-111)  
1)  
170  
ns  
1) Not subject to production test - verified by design/characterization  
Data Sheet  
29  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Table 4-14 SSC open-drain timing specification  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
SSC baud rate  
CSQ setup time  
CSQ hold time  
CSQ off  
fSSC  
2.0  
Mbit/s Pull-up Resistor = 1k1)  
1)  
tCSs  
300  
ns  
1)  
tCSh  
400  
600  
500  
ns  
tCSoff  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
SSC inactive time1)  
1)  
SCK period  
tSCKp  
tSCKh  
tSCKl  
1)  
1)  
1)  
1)  
1)  
SCK high  
190  
190  
SCK low  
DATA setup time  
DATA hold time  
Write read delay  
Update time  
SCK off  
tDATAs  
tDATAh  
twr_delay  
tCSupdate  
tSCKoff  
25  
40  
130  
1
See Figure 4-111)  
1)  
170  
1) Not subject to production test - verified by design/characterization  
Data Sheet  
30  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.4.1.2  
SSC Data Transfer  
The SSC data transfer is word-aligned. The following transfer words are possible:  
Command Word (to access and change operating modes of the TLE5012B)  
Data words (any data transferred in any direction)  
Safety Word (confirms the data transfer and provides status information)  
twr_delay  
SAFETY-WORD  
COMMAND  
READ Data 1  
READ Data2  
SSC-Master is driving DATA  
SSC-Slave is driving DATA  
Figure 4-8 SSC data transfer (data-read example)  
twr_delay  
SAFETY-WORD  
COMMAND  
WRITE Data 1  
SSC-Master is driving DATA  
SSC-Slave is driving DATA  
Figure 4-9 SSC data transfer (data-write example)  
Command Word  
SSC Communication between the TLE5012B and a microcontroller is generally initiated by a command word. The  
structure of the command word is shown in Table 4-15. If an update is triggered by shortly pulling low CSQ without  
a clock on SCK a snapshot of all system values is stored in the update registers simultaneously. A read command  
with the UPD bit set then allows to readout this consistent set of values instead of the current values. Bits with an  
update buffer are marked by an “u” in the Type column in register descriptions. The initialization of such an update  
is described on page 33.  
Table 4-15 Structure of the Command Word  
Name  
Bits  
Description  
RW  
[15]  
Read - Write  
0: Write  
1: Read  
Lock  
[14..11]  
4-bit Lock Value  
0000B: Default operating access for addresses 0x00:0x04  
1010B: Configuration access for addresses 0x05:0x11  
Data Sheet  
31  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Table 4-15 Structure of the Command Word (cont’d)  
Name  
Bits  
Description  
UPD  
[10]  
Update-Register Access  
0: Access to current values  
1: Access to values in update buffer  
ADDR  
ND  
[9..4]  
[3..0]  
6-bit Address  
4-bit Number of Data Words  
Safety Word  
The safety word consists of the following bits:  
Table 4-16 Structure of the Safety Word  
Name  
Bits  
Description  
STAT1)  
Chip and Interface Status  
[15]  
[14]  
Indication of chip reset or watchdog overflow (resets after readout) via SSC  
0: Reset occurred  
1: No reset  
System error (e.g. overvoltage; undervoltage; VDD-, GND- off; ROM;...)  
0: Error occurred (S_VR; S_DSPU; S_OV; S_XYOL: S_MAGOL; S_FUSE;  
S_ROM; S_ADCT)  
1: No error  
[13]  
[12]  
Interface access error (access to wrong address; wrong lock)  
0: Error occurred  
1: No error  
Valid angle value (NO_GMR_A = 0; NO_GMR_XY = 0)  
0: Angle value invalid  
1: Angle value valid  
RESP  
CRC  
[11..8]  
[7..0]  
Sensor number response indicator  
The sensor number bit is pulled low and the other bits are high  
Cyclic Redundancy Check (CRC)  
1) When an error occurs, the corresponding status bit in the safety word remains “low” until the STAT register (address 00H)  
is read via SSC interface.  
Bit Types  
The types of bits used in the registers are listed here:  
Table 4-17 Bit Types  
Abbreviation  
Function  
Read  
Description  
r
Read-only registers  
Read and write registers  
w
u
Write  
Update  
Update buffer for this bit is present. If an update is issued and the Update-  
Register Access bit (UPD in Command Word) is set, the immediate values  
are stored in this update buffer simultaneously. This allows a snapshot of all  
necessary system parameters at the same time.  
Data Sheet  
32  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Data communication via SSC  
SSC Transfer  
twr_delay  
Command Word  
Data Word (s)  
SCK  
DATA  
CSQ  
MSB 14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
LSB  
MSB  
1
LSB  
RW  
LOCK  
UPD  
ADDR  
LENGTH  
SSC -Master is driving DAT A  
SSC -Slave is driving DAT A  
Figure 4-10 SSC bit ordering (read example)  
Update -Signal  
Update -Event  
Command Word  
MSB  
Data Word (s)  
SCK  
DATA  
CSQ  
LSB  
LSB  
tCSupdate  
SSC -Master is driving DAT A  
SSC-Slave is driving DAT A  
Figure 4-11 Update of update registers  
The data communication via SSC interface has the following characteristics:  
The data transmission order is Most-Significant Bit (MSB) first, Last-Significant Bit (LSB) last.  
Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK.  
The SSC Interface is word-aligned. All functions are activated after each transmitted word.  
After every data transfer with ND 1, the 16-bit Safety Word is appended by the TLE5012B.  
A “high” condition on the Chip Select pin (CSQ) of the selected TLE5012B interrupts the transfer immediately.  
The CRC calculator is automatically reset.  
After changing the data direction, a delay twr_delay (see Table 4-14) has to be implemented before continuing  
the data transfer. This is necessary for internal register access.  
If in the Command Word the number of data is greater than 1 (ND > 1), then a corresponding number of  
consecutive registers is read, starting at the address given by ADDR.  
In case an overflow occurs at address 3FH, the transfer continues at address 00H.  
If in the Command Word the number of data is zero (ND = 0), the register at the address given by ADDR is  
read, but no Safety Word is sent by the TLE5012B. This allows a fast readout of one register.  
At a rising edge of CSQ without a preceding data transfer (no SCK pulse, see Figure 4-11), the content of all  
registers which have an update buffer is saved into the buffer. This procedure serves to take a snapshot of all  
relevant sensor parameters at a given time. The content of the update buffer can then be read by sending a  
read command for the desired register and setting the UPD bit of the Command Word to “1”.  
After sending the Safety Word, the transfer ends. To start another data transfer, the CSQ has to be deselected  
once for at least tCSoff  
.
By default, the SSC interface is set to push-pull. The push-pull driver is active only if the TLE5012B has to send  
data, otherwise the DATA pin is set to high-impedance.  
Data Sheet  
33  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Cyclic Redundancy Check (CRC)  
This CRC is according to the J1850 Bus Specification.  
Every new transfer restarts the CRC generation.  
Every Byte of a transfer will be taken into account to generate the CRC (also the sent command(s)).  
Generator polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast-CRC generation circuit is used  
(see Figure 4-12)  
The seed value of the fast CRC circuit is ’11111111B’.  
The remainder is inverted before transmission.  
Serial  
CRC  
X7  
X6  
X5  
X4  
X3  
X2  
X1  
X0  
xor  
&
xor  
1
1
1
1
1
1
1
xor  
xor  
1
Input  
output  
TX_CRC  
parallel  
Remainder  
Figure 4-12 Fast CRC polynomial division circuit  
4.4.2  
Pulse Width Modulation (PWM) Interface  
The Pulse Width Modulation (PWM) interface can be selected via SSC (IF_MD = ‘01’).  
The PWM update rate can be programmed within the register 0EH (IFAB_RES) in the following steps:  
~0.25 kHz with 12-bit resolution  
~0.5 kHz with 12-bit resolution  
~1.0 kHz with 12-bit resolution  
~2.0 kHz with 12-bit resolution  
PWM uses a square wave with constant frequency whose duty cycle is modulated according to the last measured  
angle value (AVAL register).  
Figure 4-13 shows the principal behavior of a PWM with various duty cycles and the definition of timing values.  
The duty cycle of a PWM is defined by the following general formulas:  
ton  
Duty Cycle =  
tPWM  
tPWM = ton + toff  
1
fPWM  
=
tPWM  
(4.2)  
The duty cycle range between 0 - 6.25% and 93.75 - 100% is used only for diagnostic purposes. In case the sensor  
detects an error, the corresponding error bit in the Status register is set and the PWM duty cycle goes to the lower  
(0 - 6.25%) or upper (93.75 - 100%) diagnostic range, depending on the kind of error (see “Output duty cycle  
range” in Table 4-18). Except for an S_ADCT error, an error is only indicated by the corresponding diagnostic  
duty-cycle as long as it persists, but at least once. However the value in the status register will remain until a read-  
out via the SSC interface or a chip reset is performed. An S_ADCT error on the other side will be transmitted until  
the next chip reset. This fail-safe diagnostic function can be disabled via the MOD_4 register.  
Sensors with preset PWM are available as TLE5012B E50x0.  
Data Sheet  
34  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
tON  
ON = High level  
OFF = Low level  
UIFA  
tPWM  
Duty cycle = 6.25%  
Vdd  
tOFF  
‚0'  
UIFA  
Duty cycle = 50%  
t
t
Vdd  
‚0'  
UIFA  
Duty cycle = 93.75%  
Vdd  
‚0'  
t
Figure 4-13 Typical example of a PWM signal  
Table 4-18 PWM interface  
Parameter  
Symbol  
Values  
Typ.  
244  
Unit  
Note / Test Condition  
Min.  
232  
Max.  
1)  
1)  
1)  
1)  
PWM output frequencies  
(Selectable by IFAB_RES)  
fPWM1  
fPWM2  
fPWM3  
fPWM4  
DYPWM  
262 Hz  
464  
929  
488  
525 Hz  
1050 Hz  
2099 Hz  
93.75 %  
%
977  
1855 1953  
Output duty cycle range  
6.25  
Absolute angle1)  
2
Electrical Error (S_RST;  
S_VR)1)  
98  
%
System error (S_FUSE;  
S_OV; S_XYOL;  
S_MAGOL; S_ADCT)1)  
0
1 %  
Short to GND1)  
99  
100 %  
Short to VDD, power loss1)  
1) Not subject to production test - verified by design/characterization  
The PWM frequency is derived from the digital clock via  
(4.3)  
f DIG * 2 IFAB_RES  
f PWM  
=
24 * 4096  
The min/max values given in Table 4-18 take into account the internal digital clock variation specified in  
Chapter 4.3.7. If external clock is used, the variation of the PWM frequency can be derived from the variation of  
the external clock using Equation (4.3).  
Data Sheet  
35  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.4.3  
Short PWM Code (SPC)  
The Short PWM Code (SPC) is a synchronized data transmission based on the SENT protocol (Single Edge  
Nibble Transmission) defined by SAE J2716. As opposed to SENT, which implies a continuous transmission of  
data, the SPC protocol transmits data only after receiving a specific trigger pulse from the microcontroller. The  
required length of the trigger pulse depends on the sensor number, which is configurable. Thereby, SPC allows  
the operation of up to four sensors on one bus line.  
SPC enables the use of enhanced protocol functionality due to the ability to select between various sensor slaves  
(ID selection). The slave number (S_NR) can be given by the external circuit of SCK and IFC pin. In case of VDD  
on SCK, the S_NR[0] can be set to 1 and in the case of GND on SCK the S_NR[0] is equal to 0. S_NR[1] can be  
adjusted in the same way by the IFC pin.  
As in SENT, the time between two consecutive falling edges defines the value of a 4-bit nibble, thus representing  
numbers between 0 and 15. The transmission time therefore depends on the transmitted data values. The single  
edge is defined by a 3 Unit Time (UT, see Chapter 4.4.3.1) low pulse on the output, followed by the high time  
defined in the protocol (nominal values, may vary depending on the tolerance of the internal oscillator and the  
influence of external circuitry). All values are multiples of a unit time frame concept. A transfer consists of the  
following parts (Figure 4-14):  
A trigger pulse by the master, which initiates the data transmission  
A synchronization period of 56 UT (in parallel, a new sample is calculated)  
A status nibble of 12-27 UT  
Between 3 and 6 data nibbles of 12-27 UT  
A CRC nibble of 12-27 UT  
An end pulse to terminate the SPC transmission  
Data-Nibble 1  
Bit 11-8  
Data-Nibble 2  
Bit 7-4  
Data-Nibble 3  
Bit 3-0  
Trigger Nibble  
24,34,51,78 tck  
Synchronisation Frame  
Status -Nibble  
12..27 tck  
CRC  
End -Pulse  
56 tck  
12..27 tck  
12.. 27 tck  
12..27 tck  
12..27 tck  
12 tck  
Time-Base: 1 tck (3µs+/-dtck )  
Nibble-Encoding : ( 12+x)*tck  
µC Activity  
Sensor Activity  
Figure 4-14 SPC frame example  
The CRC checksum includes the status nibble and the data nibbles, and can be used to check the validity of the  
decoded data. The sensor is available for the next trigger pulse 90μs after the falling edge of the end pulse (see  
Figure 4-15).  
Trigger Nibble  
Synchronisation Frame  
End-Pulse  
Trigger Nibble  
Synchronisation Frame  
End-Pulse  
...  
...  
µC Activity  
Sensor Activity  
> 90 µs  
Figure 4-15 SPC pause timing diagram  
In SPC mode, the sensor does not continuously calculate an angle from the raw data. Instead, the angle  
calculation is started by the trigger nibble from the master. In this mode, the AVAL register, which stores the angle  
value and can be read via SSC, contains the angle which was calculated after the last SPC trigger nibble.  
Data Sheet  
36  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
In parallel to SPC, the SSC interface can be used for individual configuration. The number of transmitted SPC  
nibbles can be changed to customize the amount of information sent by the sensor. The frame contains a 16-bit  
angle value and an 8-bit temperature value in the full configuration (Table 4-19).  
Sensors with preset SPC are available as TLE5012B E9000  
Table 4-19 Frame configuration  
Frame type  
IFAB_RES  
Data nibbles  
12-bit angle  
00  
01  
10  
11  
3 nibbles  
4 nibbles  
5 nibbles  
6 nibbles  
16-bit angle  
12-bit angle, 8-bit temperature  
16-bit angle, 8-bit temperature  
The status nibble, which is sent with each SPC data frame, provides an error indication similar to the Safety Word  
of the SSC protocol. In case the sensor detects an error, the corresponding error bit in the Status register is set  
and either the bit SYS_ERR or the bit ELEC_ERR of the status nibble will be “high”, depending on the kind of error  
(see Table 4-20). Except for an S_ADCT error, an error is only indicated by the corresponding error bit in the  
status nibble as long as it persists, but at least once. However the value in the status register will remain until a  
read-out via the SSC interface or a chip reset is performed. An S_ADCT error on the other side will be transmitted  
until the next chip reset. The fail-safe diagnostic function can be disabled via the MOD_4 register.  
Table 4-20 Structure of status nibble  
Name  
Bits  
Description  
SYS_ERR  
[3]  
Indication of system error (S_FUSE, S_OV, S_XYOL, S_MAGOL, S_ADCT)  
0: No system error  
1: System error occurred  
ELEC_ERR  
S_NR  
[2]  
Indication of electrical error (S_RST, S_VR)  
0: No electrical error  
1: Electrical error occurred  
[1]  
[0]  
Slave number bit 1 (level on IFC)  
Slave number bit 0 (level on SCK)  
4.4.3.1  
Unit Time Setup  
The basic SPC protocol unit time granularity is defined as 3 μs. Every timing is a multiple of this basic time unit.To  
achieve more flexibility, trimming of the unit time can be done within IFAB_HYST. This enables a setup of different  
unit times.  
Table 4-21 Predivider setting  
Parameter  
Symbol  
Values  
Typ.  
3.0  
Unit  
Note / Test Condition  
Min.  
Max.  
Unit time  
tUnit  
μs  
IFAB_HYST = 001)  
IFAB_HYST = 011)  
IFAB_HYST = 101)  
IFAB_HYST = 111)  
2.5  
2.0  
1.5  
1) Not subject to production test - verified by design/characterization  
Data Sheet  
37  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.4.3.2  
Master Trigger Pulse Requirements  
An SPC transmission is initiated by a master trigger pulse on the IFA pin. To detect a low-level on the IFA pin, the  
voltage must be below a threshold Vth. The sensor detects that the IFA line has been released as soon as Vth is  
crossed. Figure 4-16 shows the timing definitions for the master pulse. The master low time tmlow as well as the  
total trigger time tmtr are given in Table 4-22.  
If the master low time exceeds the maximum low time, the sensor does not respond and is available for a next  
triggering 30 μs after the master pulse crosses Vthr. tmd,tot is the delay between internal triggering of the falling edge  
in the sensor and the triggering of the ECU.  
tmtr  
SPC  
ECU trigger  
Vth  
level  
tmd,tot  
tmlow  
Figure 4-16 SPC Master pulse timing  
Table 4-22 Master pulse parameters  
Parameter  
Symbol  
Values  
Typ.  
50  
Unit  
Note / Test Condition  
Min.  
Max.  
1)  
Threshold  
Vth  
% of  
VDD  
Threshold hysteresis  
Vthhyst  
8
3
% of  
VDD  
UT  
VDD = 5 V1)  
VDD = 3 V1)  
SPC_Trigger = 0;1)2)  
SP_Trigger = 11)  
Total trigger time  
Master low time  
tmtr  
90  
tmlow  
+12  
UT  
tmlow  
8
12  
22  
14 UT  
S_NR =001)  
S_NR =011)  
S_NR =101)  
16  
29  
50  
27  
48  
81  
39  
66  
S_NR =111)  
1)  
Master delay time  
tmd,tot  
5.8  
μs  
1) Not subject to production test - verified by design/characterization  
2) Trigger time in the sensor is fixed to the number of units specified in the “typ.” column, but the effective trigger time varies  
due to the sensor’s clock variation  
4.4.3.3  
Checksum Nibble Details  
The checksum nibble is a 4-bit CRC of the data nibbles including the status nibble. The CRC is calculated using  
a polynomial x4+x3+x2+1 with a seed value of 0101B. The remainder after the last data nibble is transmitted as  
CRC.  
Data Sheet  
38  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.4.4  
Hall Switch Mode (HSM)  
The Hall Switch Mode (HSM) within the TLE5012B makes it possible to emulate the output of 3 Hall switches. Hall  
switches are often used in electrical commutated motors to determine the rotor position. With these 3 output  
signals, the motor will be commutated in the right way. Depending on which pole pairs of the rotor are used, various  
electrical periods have to be controlled. This is selectable within 0EH (HSM_PLP). Figure 4-17 depicts the three  
output signals with the relationship between electrical angle and mechanical angle. The mechanical 0° point is  
always used as reference.  
The HSM is generally used with push-pull output, but it can be changed to open-drain within the register IFAB_OD.  
Sensors with preset HSM are available as TLE5012B E3005.  
Hall-Switch-Mode: 3phase Generation  
Electrical Angle  
0°  
60°  
120°  
180°  
240°  
300°  
360°  
HS1  
HS2  
HS3  
Angle  
Mech. Angle with  
5 Pole Pairs  
0°  
0°  
12°  
20°  
24°  
40°  
36°  
60°  
48°  
80°  
60°  
72°  
Mech. Angle with  
3 Pole Pairs  
100°  
120°  
Figure 4-17 Hall Switch Mode  
The HSM Interface can be selected via SSC (IF_MD = 010).  
Table 4-23 Hall Switch Mode  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
10000 rpm  
Rotation speed  
n
Mechanical2)  
Data Sheet  
39  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Table 4-23 Hall Switch Mode (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Electrical angle accuracy  
αelect  
0.6  
1 °  
1 pole pair with  
autocalibration1)2)  
1.2  
1.8  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
6.0  
2 °  
3 °  
4 °  
5 °  
6 °  
7 °  
8 °  
9 °  
10 °  
2 pole pairs with autocal.1)2)  
3 pole pairs with autocal.1)2)  
4 pole pairs with autocal.1)2)  
5 pole pairs with autocal.1)2)  
6 pole pairs with autocal.1)2)  
7 pole pairs with autocal.1)2)  
8 pole pairs with autocal.1)2)  
9 pole pairs with autocal.1)2)  
10 pole pairs with  
autocal.1)2)  
6.6  
7.2  
7.8  
8.4  
9.0  
9.6  
11 °  
12 °  
13 °  
14 °  
15 °  
16 °  
11 pole pairs with  
autocal.1)2)  
12 pole pairs with  
autocal.1)2)  
13 pole pairs with  
autocal.1)2)  
14 pole pairs with  
autocal.1)2)  
15 pole pairs with  
autocal.1)2)  
16 pole pairs with  
autocal.1)2)  
Mechanical angle switching  
hysteresis  
αHShystm  
0
0.703 °  
Selectable by  
IFAB_HYST2)3)4)  
Data Sheet  
40  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Table 4-23 Hall Switch Mode (cont’d)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Electrical angle switching  
hysteresis5)  
αHShystel  
0.70  
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
1 pole pair;  
IFAB_HYST=111)2)  
1.41  
2.11  
2.81  
3.52  
4.22  
4.92  
5.62  
6.33  
7.03  
7.73  
8.44  
9.14  
9.84  
10.55  
11.25  
2 pole pairs;  
IFAB_HYST=111)2)  
3 pole pairs;  
IFAB_HYST=111)2)  
4 pole pairs;  
IFAB_HYST=111)2)  
5 pole pairs;  
IFAB_HYST=111)2)  
6 pole pairs;  
IFAB_HYST=111)2)  
7 pole pairs;  
IFAB_HYST=111)2)  
8 pole pairs;  
IFAB_HYST=111)2)  
9 pole pairs;  
IFAB_HYST=111)2)  
10 pole pairs;  
IFAB_HYST=111)2)  
11 pole pairs;  
IFAB_HYST=111)2)  
12 pole pairs;  
IFAB_HYST=111)2)  
13 pole pairs;  
IFAB_HYST=111)2)  
14 pole pairs;  
IFAB_HYST=111)2)  
15 pole pairs;  
IFAB_HYST=111)2)  
16 pole pairs;  
IFAB_HYST=111)2)  
Fall time  
tHSfall  
0.02  
0.4  
1 μs  
1 μs  
RL = 2.2k; CL < 50pF2)  
RL = 2.2k; CL < 50pF2)  
Rise time  
tHSrise  
1) Depends on internal oscillator frequency variation (Section 4.3.7)  
2) Not subject to production test - verified by design/characterization  
3) GMR hysteresis not considered  
4) Minimum hysteresis without switching  
5) The hysteresis has to be considered only at change of rotation direction  
To avoid switching due to mechanical vibrations of the rotor, an artificial hysteresis is recommended (Figure 4-18).  
Data Sheet  
41  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Ideal Switching Point  
αHShystel αHShystel  
αelect  
αelect  
0°  
Figure 4-18 HS hysteresis  
4.4.5  
Incremental Interface (IIF)  
The Incremental Interface (IIF) emulates the operation of an optical quadrature encoder with a 50% duty cycle. It  
transmits a square pulse per angle step, where the width of the steps can be configured from 9bit (512 steps per  
full rotation) to 12bit (4096 steps per full rotation) within the register MOD_4 (IFAB_RES). The rotation direction is  
given either by the phase shift between the two channels IFA and IFB (A/B mode) or by the level of the IFB channel  
(Step/Direction mode), as shown in Figure 4-19 and Figure 4-20. The incremental interface can be configured for  
A/B mode or Step/Direction mode in register MOD_1 (IIF_MOD).  
Using the Incremental Interface requires an up/down counter on the microcontroller, which counts the pulses and  
thus keeps track of the absolute position. The counter can be synchronized periodically by using the SSC interface  
in parallel. The angle value (AVAL register) read out by the SSC interface can be compared to the stored counter  
value. In case of a non-synchronization, the microcontroller adds the difference to the actual counter value to  
synchronize the TLE5012B with the microcontroller.  
After startup, the IIF transmits a number of pulses which correspond to the actual absolute angle value. Thus, the  
microcontroller gets the information about the absolute position. The Index Signal that indicates the zero crossing  
is available on the IFC pin.  
Sensors with preset IIF are available as TLE5012B E1000.  
A/B Mode  
The phase shift between phases A and B indicates either a clockwise (A follows B) or a counterclockwise (B  
follows A) rotation of the magnet.  
Incremental Interface  
(A/B Mode)  
90° el . Phase shift  
VH  
Phase A  
VL  
VH  
Phase B  
VL  
Counter  
0
1
2
3
4
5
6
7
6
5
4
3
2
1
Figure 4-19 Incremental interface with A/B mode  
Data Sheet  
42  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Step/Direction Mode  
Phase A pulses out the increments and phase B indicates the direction.  
Incremental Interface  
(Step/Direction Mode)  
VH  
Step  
VL  
VH  
Direction  
VL  
Counter  
0
1
2
3
4
5
6
7
6
5
4
3
2
1
Figure 4-20 Incremental interface with Step/Direction mode  
Table 4-24 Incremental Interface  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Incremental output frequency  
Index pulse width  
fInc  
t0°  
1.0 MHz  
Frequency of phase A and  
phase B1)  
1)  
5
μs  
1) Not subject to production test - verified by design/characterization  
4.5  
Test Mechanisms  
4.5.1  
ADC Test Vectors  
In order to test the correct functionality of the ADCs, the ADC inputs can be switched from the GMR bridge outputs  
to a chain of fixed resitors which act as a voltage divider. The ADCs are then fed with test vectors of fixed voltages  
to simulate a set of magnet positions. The functionality of the ADCs is verified by checking the angle value (AVAL  
register) for each test vector. This test is activated via SSC command within the SIL register (ADCTV_EN).  
Registers ADCTV_Y and ADCTV_X are used to select the test vector, as shown in Figure 4-21.  
The following X/Y ADC values can be programmed:  
4 points, circle amplitude = 70% (0°,90°, 180°, 270°)  
8 points, circle amplitude = 100% (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°)  
8 points, circle amplitude = 122.1% (35.3°, 54.7°, 125.3°, 144.7°, 215.3°, 234.7°, 305.3°, 324.7°)  
4 points, circle amplitude = 141.4% (45°, 135°, 225°, 315°)  
Note:The 100% values typically correspond to 21700 digits and the 70% values to 15500 digits.  
Table 4-25 ADC test vectors  
Register bits  
X/Y values (decimal)  
Min.  
Typ.  
0
Max.  
000  
001  
010  
011  
1001)  
101  
15500  
21700  
32767  
0
-15500  
Data Sheet  
43  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
Table 4-25 ADC test vectors (cont’d)  
Register bits  
X/Y values (decimal)  
Min.  
Typ.  
Max.  
110  
-21700  
-32768  
111  
1) Not allowed to use  
ADCTV_Y  
122.1%  
141.4%  
100.0%  
70%  
0%  
ADCTV_X  
Figure 4-21 ADC test vectors  
4.6  
Supply Monitoring  
The internal voltage nodes of the TLE5012B are monitored by a set of comparators in order to ensure error-free  
operation. An over- or undervoltage condition must be active at least 256 periods of the digital clock to set the  
corresponding error bits in the Status register. This works as digital spike suppression.  
Over- or undervoltage errors trigger the S_VR bit of Status register. This error condition is signaled via the in the  
Safety Word of the SSC protocol, the status nibble of the SPC interface or the lower diagnostic range of the PWM  
interface.  
Table 4-26 Test comparator threshold voltages  
Parameter  
Symbol  
Values  
Typ.  
2.80  
2.80  
2.80  
6.05  
2.70  
-0.55  
0.55  
10  
Unit  
Note / Test Condition  
Min.  
Max.  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
Overvoltage detection  
VOVG  
VOVA  
V
V
V
V
V
V
V
μs  
VOVD  
VDD overvoltage  
VDD undervoltage  
GND - off voltage  
VDD - off voltage  
Spike filter delay  
VDDOV  
VDDUV  
VGNDoff  
VVDDoff  
tDEL  
1) Not subject to production test - verified by design/characterization  
Data Sheet  
44  
Rev. 2.0, 2014-02  
TLE5012B  
Specification  
4.6.1  
Internal Supply Voltage Comparators  
Every voltage regulator has an overvoltage (OV) comparator to detect malfunctions. If the nominal output voltage  
of 2.5 V is larger than VOVG, VOVA and VOVD, then this overvoltage comparator is activated.  
4.6.2  
VDD Overvoltage Detection  
The overvoltage detection comparator monitors the external supply voltage at the VDD pin.  
VDDA  
REF  
-
10µs  
Spike  
VDD  
VRG  
VRA  
VRD  
xxx_OV  
Filter  
+
GND  
Figure 4-22 Overvoltage comparator  
GND  
4.6.3  
GND - Off Comparator  
The GND - Off comparator is used to detect a voltage difference between the GND pin and SCK. This circuit can  
detect a disconnection of the supply GND Pin.  
VDD  
VDDA  
Diode-  
reference  
SCK  
GND  
+dV  
-
1µs  
Mono  
Flop  
10µs  
Spike  
Filter  
GND_OFF  
+
GND  
Figure 4-23 GND - off comparator  
4.6.4  
VDD - Off Comparator  
The VDD - Off comparator detects a disconnection of the VDD pin supply voltage. In this case, the TLE5012B is  
supplied by the SCK and CSQ input pins via the ESD structures.  
VDDA  
VDD  
-
1µs  
Mono  
Flop  
10µs  
Spike  
Filter  
VVDDoff  
-dV  
VDD_OFF  
CSQ  
SCK  
+
GND  
GND  
Figure 4-24 VDD - off comparator  
Data Sheet  
45  
Rev. 2.0, 2014-02  
TLE5012B  
Pre-Configured Derivates  
5
Pre-Configured Derivates  
Derivates of the 5012B are available with different pre-configured register settings for specific applications. The  
configuration of all derivates can be changed via SSC interface.  
5.1  
IIF-type: E1000  
The TLE5012B-E1000 is preconfigured for Incremental Interface and fast angle update period (42.7 μs). It is most  
suitable for BLDC motor commutation.  
Autocalibration mode 1 enabled.  
Prediction enabled.  
Hysteresis is set to 0.703°.  
12bit mode, one count per 0.088° angle step.  
Incremental Interface A/B mode.  
5.2  
HSM-type: E3005  
The TLE5012B-E3005 is preconfigured for Hall-Switch-Mode and fast angle update period (42.7 μs). It is most  
suitable as a replacement for three Hall switches for BLDC motor commutation.  
Number of pole pairs is set to 5.  
Autocalibration mode 1 enabled.  
Prediction enabled.  
Hysteresis is set to 0.703°.  
5.3  
PWM-type: E5000  
The TLE5012B-E5000 is preconfigured for Pulse-Width-Modulation interface. It is most suitable for steering angle  
and actuator position sensing.  
Filter update period is 85.4 μs.  
PWM frequency is 244 Hz.  
Autocalibration, Prediction, and Hysteresis are disabled.  
5.4  
PWM-type: E5020  
The TLE5012B-E5020 is preconfigured for Pulse-Width-Modulation interface with high frequency. It is most  
suitable for steering angle and actuator position sensing.  
Filter update period is 42.7 μs.  
PWM frequency is 1953 Hz.  
Autocalibration mode 2 enabled.  
Prediction and Hysteresis are disabled.  
PWM interface is set to open-drain output.  
5.5  
SPC-type: E9000  
The TLE5012B-E9000 is preconfigured for Short-PWM-Code interface. It is most suitable for steering angle and  
actuator position sensing.  
Filter update period is 85.4 μs.  
Autocalibration, Prediction, and Hysteresis are disabled.  
SPC unit time is 3 μs.  
SPC interface is set to open-drain output.  
Data Sheet  
46  
Rev. 2.0, 2014-02  
TLE5012B  
Package Information  
6
Package Information  
6.1  
Package Parameters  
Table 6-1 Package Parameters  
Parameter  
Symbol Limit Values  
Min. Typ. Max.  
Unit  
Notes  
Thermal resistance  
RthJA  
RthJC  
RthJL  
150  
200 K/W  
75 K/W  
85 K/W  
Junction to air1)  
Junction to case  
Junction to lead  
260°C  
Soldering moisture level  
Lead Frame  
MSL 3  
Cu  
Sn 100%  
Plating  
> 7 μm  
1) according to Jedec JESD51-7  
6.2  
Package Outline  
Figure 6-1 PG-DSO-8 package dimension  
Data Sheet  
47  
Rev. 2.0, 2014-02  
TLE5012B  
Package Information  
Figure 6-2 Position of sensing element  
Table 6-2 Sensor IC placement tolerances in package  
Parameter  
Values  
Unit  
Notes  
Min.  
-200  
Max.  
200 µm  
position eccentricity  
in X- and Y-direction  
rotation  
tilt  
-3  
-3  
3 °  
3 °  
affects zero position offset of sensor  
6.3  
Footprint  
0.65  
1.27  
Figure 6-3 Footprint of PG-DSO-8  
Data Sheet  
48  
Rev. 2.0, 2014-02  
TLE5012B  
Package Information  
6.4  
Packing  
0.3  
8
1.75  
2.1  
6.4  
Figure 6-4 Tape and Reel  
6.5  
Marking  
Position  
1st Line  
2nd Line  
3rd Line  
Marking  
012Bxxxx  
xxx  
Description  
See ordering table on Page 8  
Lot code  
Gxxxx  
G..green, 4-digit..date code  
Processing  
Note: For processing recommendations, please refer to Infineon’s Notes on processing  
Data Sheet  
49  
Rev. 2.0, 2014-02  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

SP001166964

Analog Circuit
INFINEON

SP001166998

Analog Circuit
INFINEON

SP001172564

Power Field-Effect Transistor,
INFINEON

SP001179608

Rectifier Diode,
INFINEON

SP001194252

Rectifier Diode,
INFINEON

SP001195394

Fixed Positive LDO Regulator,
INFINEON

SP001197126

Insulated Gate Bipolar Transistor,
INFINEON

SP001216864

Analog Circuit,
INFINEON

SP001217660

RISC Microcontroller,
INFINEON

SP001227884

Analog Circuit, 1 Func, PDSO16, TDSO-16
INFINEON

SP001231806

Giant Magneto Resistance (GMR)-based principle
INFINEON

SP001231814

Giant Magneto Resistance (GMR)-based principle
INFINEON