TC1910 [INFINEON]

32-Bit Single-Chip Microcontroller; 32位单芯片微控制器
TC1910
型号: TC1910
厂家: Infineon    Infineon
描述:

32-Bit Single-Chip Microcontroller
32位单芯片微控制器

微控制器
文件: 总66页 (文件大小:2746K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V 1.0, Oct. 2003  
TC1910  
32-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
Edition 2003-10  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2003.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address  
list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V 1.0, Oct. 2003  
TC1910  
32-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
TC1910  
PRELIMINARY  
Revision History:  
2003-10  
V 1.0  
Previous Version:  
Page  
Subjects (major changes since last revision)  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
TC1910  
PRELIMINARY  
TC1910 Features  
The TC1910 offers a 32 bit TriCore based microcontroller/DSP, which is mainly designed  
for automotive telematics applications. Due to its high integration, this microcontroller/  
DSP offers high system performance at minimized cost. Typical telematics functions  
processed by RISC-, DSP- and speech- (CODEC) modules are now combined in one  
component. This combination of dedicated speech peripherals (CODEC) and standard  
peripherals (SSC/SPI, ASC and IIC), makes this microcontroller/DSP the engine tailored  
for a wide variety of telematics applications such as navigation, emergency call, speech  
interface or communication interface.  
• TriCore CPU/DSP with 4-Stage Pipeline:  
– 66 MHz max. CPU clock frequency, 50 MHz max. FPI Bus clock frequency.  
– 32-bit super-scalar TriCore main CPU  
– 4-GByte unified memory space support  
– Fast context-switching  
– Dual 16 x 16 Multiply-accumulate (MAC) unit  
– 64-bit Local Memory Bus (LMB)  
– 32-bit Flexible Peripheral Interface Bus (FPI)  
– 32-bit wide External Bus Unit (EBU)  
• On-chip memories:  
– 24 KByte Code Scratch-Pad RAM (CSRAM)  
– 8 KByte Instruction Cache (ICACHE)  
– 24 KByte Data Scratch-Pad RAM (DSRAM)  
– 8 KByte Data Cache (DCACHE)  
– 64 KByte fast LMB SRAM  
– 16 KByte FPI SRAM (of which 8 KByte Stand-By SRAM)  
• Product Specific Peripherals:  
– 14-bit double CODEC with flexible sample rates and FIFO support  
– 8 External Interrupt Inputs  
• Standard Peripherals:  
– 2 x asynchronous serial interface (ASC) with IrDa-support  
– 1 SPI-compatible synchronous serial interface  
– IIC module  
– 3 x 32 bit timer  
• General Peripherals:  
– Real time clock (RTC)  
– Watchdog timer (WDT)  
• Clock Generation Unit with PLL  
• Debug Support: OCDS Level 1 with JTAG interface  
• Dual voltage supply (1.8V core, 3.3V I/O)  
• Power saving features  
• -40°C to +85°C temperature range  
• LBGA-208 package  
Data Sheet  
1
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Block Diagram.  
LFI  
Bridge  
SRAM  
64 kB  
EBU  
CODEC  
(IIS)  
64-bit Local Memory Bus (LM B)  
IIC  
GPTU  
PMU  
DMU  
24KB  
D SRAM  
8KB  
ASC0  
ASC1  
SSC  
24KB  
CSRAM  
8KB  
TriCore  
(TC1.3)  
Port  
Control  
ICACHE  
DCACHE  
CPS  
OCDS  
Debug/  
JTAG  
32-bit Flexible Peripheral Interface (FPI)Bus  
SRAM  
16kB  
RTC  
STM  
SCU  
TC1910  
Figure 1  
TC1910 Device Block Diagram  
Target applications  
• Bluetooth gateway (host for BT stack e.g. for Handsfree with EC/NR or remote  
diagnostics)  
• Stand-alone speech Human Machine Interface  
• Basic communication gateway  
• Digital Audio processing (MP3 player, shock proof controller etc.)  
Data Sheet  
2
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Logic Symbol  
GPIO /EXIx,  
PLL_CTRL  
Port 0  
8-bit  
Codec Bypass  
TEST  
Port 1  
8-bit  
GPIO  
CLKOU T  
G eneral  
Control  
IIC, SSC  
Port 2  
16-bit  
HDRST  
PO RST  
ASC 0  
ASC 1  
GPTU  
Port 3  
16-bit  
NMI  
BYPASS  
XTAL1  
XTAL2  
XTAL3  
10  
CO DEC 0/1  
External Bus  
XTAL4  
VDDO SC 1  
O scillators  
PLL  
83  
VSSO S C1  
VDDO SC 2  
VSSO S C2  
VDDPLL  
TC1910  
VSSPLL  
8
O CD S/JTAG  
Control  
VD D  
VDDP  
VDD SB  
VSS  
D igital C ircuitry  
Pow er Supply  
VDD_CO D0  
VSS_CO D0  
VDD_CO D1  
VSS_CO D1  
VREF_CO D  
VG ND_CO D  
CO DEC  
Analog Power  
Supply  
Figure 2  
TC1910 Device Logic Symbol  
Data Sheet  
3
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Pin Configuration  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VDD _  
VS S  
_
VDD _  
VD D_ VS S A _  
BY  
PASS  
CLK  
OU T  
AD20  
AD 26 AD 28  
P2.3  
AD 29  
XTAL1 XT AL2  
N MI  
P2.0  
A
B
C
D
E
F
A
B
C
D
E
F
R TC  
PL L  
P LL  
C OD 0/1 C OD 0/1  
VS SA VD DP _ V SS P  
_
VD D_  
AD 25  
AD17  
AD 27  
AD 24  
AD 30  
AD 31  
AI0-  
AI1-  
AO1+ AO0- H R ST EXIN4 P2.5 P3.15  
_32K  
P LL  
P LL  
GU A RD  
T M_  
C TR L1  
IIC _  
SD A  
TM _  
C T RL0  
VS S  
_
VA GN D _  
C ODE POR S SSC _  
C _DIS  
AD13 AD 23  
XTAL4  
AI1+ AO0+  
VA RE F_  
EXIN 7  
T
M TSR  
GU A RD  
C O D  
VD D _  
VD D _ PLLC T  
VDD _ SSC _ A SC0_ ASC 1_  
AD 9  
AD 8  
AD 7  
AD 5  
AD 2  
AD 21 AD 22  
XTAL3 VD D R  
A I0+  
AO1- CE XT  
R L_A0  
SC LK  
R X  
TX  
P W R  
O S C I  
CO D  
P W R  
SSC _ ASC 0_ IIC _  
AD 18 AD 16 AD 19  
AD 15 AD 14 AD 12  
P3.11  
M RST  
P 2.8  
TX  
SC L  
P2.9  
P2.4 EXIN 5  
VD D _  
VS S _  
V SS _  
VD D_  
AD 11 AD 10  
AD 6  
AD 0  
A21  
A19  
A13  
A11  
P 2.1  
P2.2 EXIN 6 P3.10  
G
H
J
G
H
J
P W R 2  
G N D  
G N D  
P W R2  
VD D _  
VS S _  
V SS _  
GPT U . GPTU . GPTU . ASC 1_  
HS5  
HS4  
AD4  
AD1  
A22  
A18  
A14  
A9  
AD 3  
A23  
A20  
A16  
A12  
A8  
4
5
7
R X  
P W R  
G N D  
G N D  
VS S _  
V SS _  
E BU  
C LK  
SC AN  
MOD E  
GPT U .  
0
GPTU . GPTU .  
6
H S15  
3
G N D  
G N D  
VD D _  
VD D_  
BF  
CLK0  
GPTU . GPTU .  
2
H S14 H S13  
LR C K MU TE1  
K
L
K
L
1
P W R 2  
P W R2  
A17  
A15  
A10  
A7  
M UT E0  
VD DS B EXIN3 SC LK  
EXIN 2  
P1.6  
P 1.7 EXIN0 EXIN 1  
VDD _  
M
N
P
R
T
M
N
P
R
T
VD D _  
R AS  
BC0  
C S1 C SGLB A DV  
P1.4  
P1.0  
TD O  
P1.5  
P1.2  
TC K  
H S11  
H S10  
ALE  
H S7  
H S6  
H S8  
H S0  
P W R  
P W R  
BR K  
OU T  
A6  
A5  
A 1 R D /W R CS6  
C S2  
C S0  
BAA  
C KE  
TMS  
P1.3  
C S  
EMU  
B RK  
IN  
A4  
A3  
A0  
R D  
BC 1  
CS4  
MR /W  
C M  
H S2  
P1.1  
C S  
A2  
1
C AS  
2
BC 3  
3
BC 2  
4
C S5  
5
CS3  
6
W AIT  
7
O CDSE  
14  
TR ST  
16  
TD I  
15  
H S12  
10  
H S9  
11  
H S3  
12  
H S1  
13  
OVL D ELAY  
8
9
TO P VIEW  
LBG A 208  
Figure 3  
TC1910 Pinning  
Data Sheet  
4
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Pin List  
Table 0-1  
Symbol  
Pin Definitions and Functions  
BGA  
In/  
Functions  
1)  
BALL Out  
External Bus Unit Interface  
external address/data bus (multiplexed bus mode) or  
data bus (demultiplexed bus mode) for the EBU:  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
H4  
J2  
I/O,s AD0  
I/O,s AD1  
I/O,s AD2  
I/O,s AD3  
I/O,s AD4  
I/O,s AD5  
I/O,s AD6  
I/O,s AD7  
I/O,s AD8  
I/O,s AD9  
I/O,s AD10  
I/O,s AD11  
I/O,s AD12  
I/O,s AD13  
I/O,s AD14  
I/O,s AD15  
I/O,s AD16  
I/O,s AD17  
I/O,s AD18  
I/O,s AD19  
I/O,s AD20  
I/O,s AD21  
I/O,s AD22  
I/O,s AD23  
I/O,s AD24  
I/O,s AD25  
I/O,s AD26  
I/O,s AD27  
I/O,s AD28  
I/O,s AD29  
I/O,s AD30  
I/O,s AD31  
Address/data bus / Data bus line 0  
Address/data bus / Data bus line 1  
Address/data bus / Data bus line 2  
Address/data bus / Data bus line 3  
Address/data bus / Data bus line 4  
Address/data bus / Data bus line 5  
Address/data bus / Data bus line 6  
Address/data bus / Data bus line 7  
Address/data bus / Data bus line 8  
Address/data bus / Data bus line 9  
Address/data bus / Data bus line 10  
Address/data bus / Data bus line 11  
Address/data bus / Data bus line 12  
Address/data bus / Data bus line 13  
Address/data bus / Data bus line 14  
Address/data bus / Data bus line 15  
Address/data bus / Data bus line 16  
Address/data bus / Data bus line 17  
Address/data bus / Data bus line 18  
Address/data bus / Data bus line 19  
Address/data bus / Data bus line 20  
Address/data bus / Data bus line 21  
Address/data bus / Data bus line 22  
Address/data bus / Data bus line 23  
Address/data bus / Data bus line 24  
Address/data bus / Data bus line 25  
Address/data bus / Data bus line 26  
Address/data bus / Data bus line 27  
Address/data bus / Data bus line 28  
Address/data bus / Data bus line 29  
Address/data bus / Data bus line 30  
Address/data bus / Data bus line 31  
H1  
H3  
H2  
G1  
G4  
F1  
E1  
D1  
G3  
G2  
F4  
C1  
F3  
F2  
E3  
B1  
E2  
E4  
A1  
D2  
D3  
C2  
C3  
B2  
A2  
B3  
A3  
A4  
B4  
C4  
AD8  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
Data Sheet  
5
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Table 0-1  
Symbol  
Pin Definitions and Functions  
BGA  
In/  
Functions  
1)  
BALL Out  
External Bus Unit Interface (continued)  
external address bus for the EBU or chip select  
output lines.  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
R3  
P4  
T1  
R2  
R1  
P3  
P2  
P1  
N3  
N2  
N1  
M4  
M3  
L4  
I/O,s A0  
I/O,s A1  
I/O,s A2  
I/O,s A3  
I/O,s A4  
I/O,s A5  
I/O,s A6  
I/O,s A7  
I/O,s A8  
I/O,s A9  
I/O,s A10  
I/O,s A11  
I/O,s A12  
I/O,s A13  
I/O,s A14  
I/O,s A15  
I/O,s A16  
I/O,s A17  
I/O,s A18  
I/O,s A19  
I/O,s A20  
I/O,s A21  
I/O,s A22  
I/O,s A23  
Address bus line 0  
Address bus line 1  
Address bus line 2  
Address bus line 3  
Address bus line 4  
Address bus line 5  
Address bus line 6  
Address bus line 7  
Address bus line 8  
Address bus line 9  
Address bus line 10  
Address bus line 11  
Address bus line 12  
Address bus line 13  
Address bus line 14  
Address bus line 15  
Address bus line 16  
Address bus line 17  
Address bus line 18  
Address bus line 19  
Address bus line 20  
Address bus line 21  
Address bus line 22  
Address bus line 23  
Chip select output 0  
Chip select output 1  
Chip select output 2  
Chip select output 3  
Chip select output 4  
Chip select output 5  
Chip select output 6  
Chip select for emulator region  
Chip select for emulator overlay  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
CS0  
CS1  
CS2  
CS3  
CS4  
CS5  
CS6  
CSEMU  
CSOVL  
M2  
M1  
L3  
L1  
L2  
K4  
K3  
J4  
K2  
J3  
R7  
N7  
P7  
T6  
R6  
T5  
P6  
R8  
T8  
O,u  
O,u  
O,u  
O,u  
O,u  
O,u  
O,u  
O,u  
O,u  
CS0  
CS1  
CS2  
CS3  
CS4  
CS5  
CS6  
CSEMU  
CSOVL  
memory  
Data Sheet  
6
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Table 0-1  
Symbol  
Pin Definitions and Functions  
BGA  
In/  
Functions  
1)  
BALL Out  
External Bus Unit Interface (continued)  
control bus for the EBU control lines.  
RD  
RD/WR  
ALE  
ADV  
BC0  
BC1  
BC2  
BC3  
WAIT  
BAA  
EBUCLK  
BFCLK0  
CSGLB  
CMDELAY  
MR/W  
CKE  
R4  
P5  
R10  
N9  
N6  
R5  
T4  
T3  
T7  
P8  
J1  
K1  
N8  
T9  
R9  
P9  
N5  
T2  
I/O,u RD  
I/O,u RD/WR  
Read control line  
Write control line  
O,d  
O,u  
ALE  
ADV  
Address latch enable  
Address valid output  
Byte control line 0  
Byte control line 1  
Byte control line 2  
Byte control line 3  
Wait input  
Burst address advance output  
External Bus Clock  
Additional clock  
I/O,u BC0  
I/O,u BC1  
I/O,u BC2  
I/O,u BC3  
I/O,u WAIT  
O,u  
O,u  
O,u  
O,u  
I,u  
BAA  
EBUCLK  
BFCLK0  
CSGLB  
Chip Select Global  
CMDELAY Command Delay  
O,u  
O,u  
O,u  
O,u  
MR/W  
CKE  
RAS  
CAS  
Motorola-style Read/Write  
Clock Enable  
Row Address Strobe  
Column Address Strobe  
RAS  
CAS  
P0  
Port 0  
Port 0 is an 8-bit general purpose I/O port, overlaid  
with codec digital signals and external interrupt  
inputs (P0.[3:0]).  
P0.0  
P0.1  
P0.2  
M14  
M15  
M16  
I/O  
I/O  
I/O  
EXI0IN  
EXI1IN  
EXI2IN  
External Interrupt Input 0  
External Interrupt Input 1 or DATA_IN  
External Interrupt Input 2 or  
DATA_OUT  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
L14  
L15  
K13  
L16  
K14  
I/O  
I/O  
I/O  
I/O  
I/O  
EXI3IN  
SCLK  
LRCK  
MUTE0  
MUTE1  
External Interrupt Input 3 or MCLK  
Data Sheet  
7
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Table 0-1  
Symbol  
Pin Definitions and Functions  
BGA  
In/  
Functions  
1)  
BALL Out  
P1  
Port 1  
Port 1 is a 8-bit bidirectional General Purpose I/O  
port  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P14  
R16  
P15  
P16  
N14  
N15  
N16  
M13  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO only  
GPIO only  
GPIO only  
GPIO only  
GPIO only  
GPIO only  
GPIO only  
GPIO only  
P2  
Port 2  
Port 2 is a 16-bit bidirectional general purpose I/O  
port and input/output for serial interfaces (IIC, ASC0,  
SSC)  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
A16  
G13  
G14  
A15  
F15  
B15  
E15  
C15  
F13  
F14  
D15  
E14  
D14  
E13  
C14  
B14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO only  
GPIO only  
GPIO only  
GPIO only  
GPIO only  
GPIO only  
SCL  
SDA  
Open Drain GPIO  
Open Drain GPIO  
RXD0  
TXD0  
SCLK  
MRST  
MTSR  
IIC Serial Port Clock  
IIC Serial Port Data  
P2.8  
P2.9  
P2.10  
P2.11  
P2.12  
P2.13  
P2.14  
P2.15  
ASC0 receiver input/output  
ASC0 transmitter output  
SSC clock line  
SSC Master Receive / Slave Transmit  
SSC Master Transmit / Slave Receive  
GPIO/EXI4IN/PLL_CLC.LOCK Monitoring of the  
PLL_CLC.LOCK  
Data Sheet  
8
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Table 0-1  
Symbol  
Pin Definitions and Functions  
BGA  
In/  
Functions  
1)  
BALL Out  
P3  
Port 3  
Port 3 is a 16-bit bidirectional general purpose I/O  
port which is also used as input/output for serial  
interfaces (ASC1) and timer (GPTU)  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
J13  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPTU.0  
GPTU.1  
GPTU.2  
GPTU.3  
GPTU.4  
GPTU.5  
GPTU.6  
GPTU.7  
RXD1  
GPTU I/O line 0  
GPTU I/O line 1  
GPTU I/O line 2  
GPTU I/O line 3  
GPTU I/O line 4  
GPTU I/O line 5  
GPTU I/O line 6  
GPTU I/O line 7  
K16  
K15  
J16  
H13  
H14  
J15  
H15  
H16  
D16  
G16  
E16  
F16  
G15  
C16  
B16  
P3.8  
P3.9  
ASC1 receiver input/output  
ASC1 transmitter output  
TXD1  
GPIO only  
P3.10  
P3.11  
P3.12  
P3.13  
P3.14  
P3.15  
GPIO only / OSCBYP Latch-In Input Pin  
EXI5IN/ HWCFG0 Latch-InExternal Interrupt Input 5  
EXI6IN/ HWCFG1 Latch-InExternal Interrupt Input 6  
EXI7IN/ HWCFG2 Latch-InExternal Interrupt Input 7  
GPIO only  
CODEC  
CODEC  
AI0+  
AI0-  
D9  
B9  
I
I
CODEC 0 Non-Inverting Input  
CODEC 0 Inverting Input  
AO0+  
AO0-  
AI1+  
AI1-  
AO1+  
AO1-  
C11  
B12  
C10  
B10  
B11  
D11  
D12  
C12  
O
O
I
CODEC 0 Non-Inverting Output  
CODEC 0 Inverting Output  
CODEC 1 Non-Inverting Input  
CODEC 1 Inverting Input  
CODEC 1 Non-Inverting Output  
CODEC 1 Inverting Output  
Codec External Clock Input  
Codec Disable (power saving)  
I
O
O
I
CEXT  
CODEC_DIS  
I
Data Sheet  
9
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Table 0-1  
Symbol  
Pin Definitions and Functions  
BGA  
In/  
Functions  
1)  
BALL Out  
DEBUG  
DEBUG (OCDS/JTAG Control)  
TRST  
TCK  
TDI  
TDO  
TMS  
OCDSE  
BRKIN  
BRKOUT  
T16  
R15  
T15  
R14  
P13  
T14  
R13  
P12  
I,d  
I,u  
I,u  
O
I,u  
I,u  
I,u  
O
Reset/module enable  
JTAG clock input  
Serial data input  
Serial data output  
State machine control signal  
OCDS enable input  
OCDS break input  
OCDS break output  
Test  
Test Pins  
SCAN_MODE J14  
PLLCTRL_AO D8  
I
I
I
I
Scan Mode  
Control current of different analog stages  
Test Mode Control 0  
Test Mode Control 1  
TM_CTRL0  
TM_CTRL1  
C7  
C5  
Reserved Pins  
Reserved Internal Test and Heat Sink Pins.  
Must be routed as isolated pads on the PCB.  
Heat Sink 0  
Heat Sink 1  
Heat Sink 2  
Heat Sink 3  
Heat Sink 4  
Heat Sink 5  
Heat Sink 6  
Heat Sink 7  
HS0  
HS1  
HS2  
HS3  
HS4  
HS5  
HS6  
HS7  
N12  
T13  
R12  
T12  
J10  
H10  
P11  
N11  
R11  
T11  
P10  
N10  
T10  
K9  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
HS8  
HS9  
Heat Sink 8  
Heat Sink 9  
HS10  
HS11  
HS12  
HS13  
HS14  
HS15  
Heat Sink 10  
Heat Sink 11  
Heat Sink 12  
Heat Sink 13  
Heat Sink 14  
Heat Sink 15  
K8  
J7  
BYPASS  
NMI  
A12  
A13  
B13  
I,d  
I,u  
PLL Bypass Control Input  
Non-Maskable Interrupt Input  
HRST  
I/O,u Bidirectional Hardware Reset  
Data Sheet  
10  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Table 0-1  
Symbol  
Pin Definitions and Functions  
BGA  
In/  
Functions  
1)  
BALL Out  
PORST  
C13  
A14  
I,u  
O
Power-on Reset Input (must be active during power  
up)  
CLKOUT  
CPU Clock Output  
XTAL1  
XTAL2  
A6  
A7  
I
O
PLL/Oscillator Input/Output  
XTAL3  
XTAL4  
D5  
C6  
I
O
Real Time Clock Oscillator input/output (32 KHz)  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
D10  
C9  
A10  
A11  
B8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Codec 0,1 Reference Voltage  
Codec 0,1 Reference Ground  
Codec Pad and Analog Power Supply (3.3V)  
Codec Pad and Analog Ground  
Guard Ring Supply (1.8V)  
AREF_COD  
AGND_COD  
DD_COD0/1  
SSA_COD0/1  
DD_GUARD  
SS_GUARD  
DD_OSCI  
DD_RTC  
SSA_32K  
DDP_PLL  
SSP_PLL  
DDPLL  
C8  
D7  
A5  
Guard Ring Ground (1.8V)  
Main Oscilator Power Supply (1.8V)  
RTC Oscilator Core Supply (1.8V)  
RTC and Main Osc. Core Ground (1.8V)  
RTC and Main Osc. Supply (3.3V)  
RTC and Main Osc. Ground (3.3V)  
PLL Supply (1.8V)  
B5  
B6  
B7  
A9  
A8  
PLL Ground (1.8V)  
SSPLL  
D6  
L13  
SRAM Power Supply (1.8V)  
SRAM Stand-By Power Supply (1.8V)  
3.3V Power Supply  
DDR  
DDSB  
D4  
D13  
H7  
N4  
N13  
-
-
-
-
-
DD_PWR  
V
G7  
G10  
K7  
-
-
-
-
1.8V Power Supply  
DD_PWR2  
K10  
Data Sheet  
11  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Table 0-1  
Symbol  
Pin Definitions and Functions  
BGA  
In/  
Functions  
1)  
BALL Out  
V
G8  
G9  
H8  
H9  
J8  
-
-
-
-
-
-
Digital Power Ground  
SS_GND  
J9  
1)  
The notification ’,u’ after the input/output type defines an internal pull-up resistor. An internal pull-down resistor  
is indicated by ’,d’. For the lines AD[31:0] and A[23:0], the type of the pull device can be selected ’s’.  
Data Sheet  
12  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
System Architecture and Control  
32-Bit TriCore CPU  
• 32-bit architecture with 4-GByte unified data, program and input/output address space  
• Fast automatic context-switch  
• Dual 16 x 16 Multiply-accumulate (MAC) unit  
• Saturating integer arithmetic  
• Register based design with multiple variable register banks  
• Bit handling  
• Packed data operations  
• Zero overhead loop  
• Precise exceptions  
• Flexible power management  
Instruction Set with High Efficiency:  
• 16/32-bit instructions for reduced code size  
• Little endian byte ordering with support for big and little endian byte ordering at bus  
interface  
• Boolean, array of bits, character, signed and unsigned integer, integer with saturation,  
signed fraction, double word integers and IEEE-754 single precision floating-point  
data types  
• Bit, 8-bit byte, 16-bit half word, 32-bit word and 64-bit double word data formats  
• Powerful instruction set  
• Flexible and efficient addressing mode for high code density  
Data Sheet  
13  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
On-chip Code Memories  
Local Memory Bus Memory (LMBRAM):  
Address range of the 64 KByte Local Memory Bus Memory:  
• C000 0000 - C000 FFFF (in segment 12 for cached operation)  
H
H
• E800 0000 - E800 FFFF (in segment 14 for non-cached operation)  
H
H
PMU Scratch-Pad SRAM (CSRAM):  
The Program Memory Unit (PMU) memory consists of 24-KByte Code Scratchpad RAM  
(CSRAM) and 8-KByte Instruction Cache (ICACHE).  
Address range of the CSRAM:  
• D400 0000 - D400 5FFF  
H
H
On-chip Data Memories  
DMU Scratch-Pad SRAM (DSRAM):  
The Data Memory Unit (DMU) memory consists of 24-KByte Data Scratchpad RAM  
(DSRAM) and 8-KByte Data Cache (DCACHE).  
Address range of the DSRAM:  
• D000 0000 - D000 5FFF  
H
H
FPI-Bus Data Memory (FPIDRAM):  
The FPI-Bus Data Memory (FPIDRAM) is a 16-KByte static RAM located on the FPI-  
Bus. It contains two parts: FPIDRAM0 and FPIDRAM1. One half of it (FPIDRAM1) can  
be used for standby power operation.  
Address range of the FPI Data Memory:  
• 9FFF 8000 - 9FFF BFFF (in segment 9 for cached operation)  
H
H
• BFFF 8000 - BFFF BFFF (in segment 11 for non-cached operation)  
H
H
Data Sheet  
14  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
System Control Unit (SCU)  
The System Control Unit of the TC1910 basically handles all system control tasks. All  
these system functions are tightly coupled and therefore they are handled physically by  
one unit, the SCU. The system tasks of the SCU are:  
• Clock Generation and Control  
• Reset control  
• Power Management control and wake-up  
• Watchdog timer  
• Device identification  
• Standby SRAM control  
• External interrupt capability (8 sources)  
System timer (STM)  
The System Timer is designed for global system timing applications requiring both high  
precision and long range. It is used by the CPU for software operating system issues.  
Features:  
• Free-running 56-bit counter  
• All 56 bits can be read synchronously  
• Different 32-bit portions of the 56-bit counter can be read synchronously  
• Driven by clock, f  
(normally identical with the system clock).  
STM  
• Counting begins at power-on reset  
• Continuous operation is not affected by any reset condition except power-on reset  
External Bus Interface (EBU_LMB)  
EBU_LMB is connected to the Local Memory Bus (LMB) of the TC1910 and also to the  
FPI Bus. EBU_LMB is always a slave on the LMB and a master/slave on the FPI bus.  
Any LMB masters thus can access external memories or devices through EBU_LMB.  
Currently the maximum length of the bursts are according to the size of program and  
data cache lines, i.e. 8 x 32-bit words. Single transfers (non-burst) are supported for 8-  
bit, 16-bit and 32-bit wide access.  
Data Sheet  
15  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
EBU_LM B  
XBC  
LM B Bus 64-bit  
Buffer  
SDRAM  
Slower  
Devices  
50 M Hz  
DM E  
XM I  
FPI Bus 32-bit  
External  
M aster  
External Bus Unit  
EBUL3045_L  
Figure 4  
EBU_LMB block diagram  
Features supported in EBU_LMB:  
• Local Memory Bus (LMB 64-bit) support.  
• External bus frequency: LMB frequency = 1:1 or 1:2 or 1:4.  
• Highly programmable access parameters.  
• Intel-style and Motorola-style peripheral/device support.  
• SDRAM support (burst access, multibanking, precharge, refresh).  
• 16- and 32-bit SDRAM data bus and support of 64, 128 and 256MBit devices.  
• Burst flash support.  
• Multiplexed access (address & data on the same bus) when DRAM is not present on  
the External Bus.  
• Data Buffering: Code Prefetch Buffer, Read/Write Buffer.  
• External master arbitration (compatible to C166 and other TriCore devices).  
• 8 programmable address regions (1 dedicated for emulator).  
• Little-Endian and Big-Endian support.  
• CSglb signal, dedicated pin, bit programmable to combine one or more CS lines, for  
buffer control.  
• RMW signal reflecting a read-modify-write action.  
• Signal for controlling data flow of slow-memory buffer.  
• Slave unit for external (off-chip) master to access devices on the FPI bus.  
• Master unit for FPI master to access external (off-chip) devices.  
• Data Mover Engine.  
Data Sheet  
16  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Interrupt System  
• Flexible interrupt prioritizing scheme with 256 interrupt priority levels  
• Fast interrupt response  
C PU Interrupt  
Arbitration Bus  
Module A  
n Service  
M odule  
Request  
Nodes  
Kernel  
M ain Interrupt Control  
CPU  
Interrupt  
C ontrol  
Unit  
Module B  
n Service  
M odule  
Kernel  
CPU  
Core  
(ICU)  
Request  
Nodes  
4 Service  
Request  
Nodes  
4
Module C  
n Service  
Request  
Nodes  
M odule  
Kernel  
Figure 5  
Block Diagram Interrupt System  
Data Sheet  
17  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
FPI-Bus  
The Flexible Peripheral Interconnect Bus is designed with the requirements of high-  
performance Systems-on-Chip in mind.  
Key Features:  
• Core independent  
• Multi-master capability  
• Demultiplexed operation  
• Clock synchronous  
• Peak transfer rate of up to 200 MBytes/s (@ 50 MHz bus clock)  
• Address and data bus scalable (32 bit address bus, 32 bit data bus )  
• 8-/16- and 32 bit data transfers  
• Broad range of transfer types from single to multiple data transfers  
• Burst transfer capability  
• EMI and power consumption minimized  
LMB-Bus  
The Local Memory Bus is a synchronous, pipelined, split bus with variable block size  
transfer support. All signals relate to the positive clock edge.  
The protocol supports 8,16,32 & 64 bits single beat transactions and variable length 64  
bits block transfers.  
Key Features:  
The LMB provides the following features:  
• Optimized for high speed and high performance  
• 32 bit address, 64 bit data busses  
• Central simple per cycle arbitration  
• Slave controlled wait state insertion  
• Address pipelining (max depth - 2)  
• Split transactions  
• Variable block length - 2, 4 or 8 beats of 64 bit data  
Data Sheet  
18  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
On-Chip Debug System (OCDS)  
The TC1910 architecture is supporting OCDS Level 1. This means access to FPI Bus  
and the whole FPI address space via the JTAG interface pins.  
On-Chip Peripheral Units  
The TC1910 offers several on-chip peripheral units such as serial controllers, timer units,  
and Codec module. Within the TC1910 all these peripheral units are connected to the  
TriCore CPU/system via the FPI (Flexible Peripheral Interconnect) Bus. Several IO lines  
on the TC1910 ports are reserved for these peripheral units to communicate with the  
external world.  
Peripheral Units of the TC1910:  
• Three Asynchronous/Synchronous Serial Channels with baudrate generator, parity,  
framing and overrun error detection, IrDA mode, FIFO buffers.  
• One High Speed Synchronous Serial Channels with programmable data length and  
shift direction  
• IIC module  
• One multi-functional General Purpose Timer Units with three 32-bit timer/counter  
• Dual channel Codec interface  
• GPIO blocks  
Table 1  
Module  
Peripheral Modules  
Address Range  
I/O Lines  
Interrupt Nodes  
Asynchronous  
Serial Channel 0  
(ASC0)  
F000 0A00 -  
RDX0, TDX0  
ASC0_TSRC  
ASC0_RSRC  
ASC0_ESRC  
ASC0_TBSRC  
H
F000 0AFF  
H
Asynchronous  
Serial Channel 1  
(ASC1)  
F000 0B00 -  
RDX1, TDX1  
ASC1_TSRC  
ASC1_RSRC  
ASC1_ESRC  
ASC1_TBSRC  
H
F000 0BFF  
H
Synchronous Serial F000 0800 -  
SCLK, MRST,  
MTSR  
SSC_TSRC  
SSC_RSRC  
SSC_ESRC  
H
Channel (SSC)  
F000 08FF  
H
Inter-IC Bus (IIC)  
F000 0500 -  
SCL,  
SDA  
IIC_XP0SRC  
IIC_XP1SRC  
IIC_XP2SRC  
H
F000 05FF  
H
Real Time Clock  
(RTC)  
F000 0100 -  
-
RTC_SRC  
H
F000 01FF  
H
Data Sheet  
19  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Table 1  
Module  
Peripheral Modules (cont’d)  
Address Range  
I/O Lines  
Interrupt Nodes  
System Timer Unit F000 0300 -  
-
-
H
(STM)  
F000 03FF  
H
General Purpose  
Timer (GPTU)  
F000 0700 -  
GPTU  
GPTU_SRC0..7  
H
F000 07FF  
H
Speech Interface  
(Codec)  
F000 2400 -  
2*2 analog IN,  
2*2 analog OUT,  
CEXT,  
CODEC_SRC0..5  
H
F000 24FF  
H
CODEC_DIS  
Data Sheet  
20  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Asynchronous/Synchronous Serial Interfaces (ASC 0/1)  
The Asynchronous/Synchronous Serial Interface ASC provides serial communication  
between the TriCore and other microcontrollers, microprocessors or external  
peripherals.  
Features:  
• Full duplex asynchronous operating modes  
– 8- or 9-bit data frames, LSB first  
– Parity bit generation/checking  
– One or two stop bits  
– Baudrate from 3.125 MBaud to 0.74 Baud (@ 50 MHz module clock)  
– Multiprocessor mode for automatic address/data byte detection  
– Loop-back capability  
• Half-duplex 8-bit synchronous operating mode  
– Baudrate from 6.25 MBaud to 637 Baud (@ 50 MHz module clock)  
• Double buffered transmitter/receiver  
• Interrupt generation  
– on a transmitter buffer empty condition  
– on a transmit last bit of a frame condition  
– on a receiver buffer full condition  
– on an error condition (frame, parity, overrun error)  
• Support for IrDA  
• Automatic Baudrate Detection  
• 8 Byte FIFO  
fhw _clk  
C lock  
C ontrol  
Address  
Decoder  
RXD  
RXD  
TXD  
ASC  
M odule  
(Kernel)  
Port  
Control  
TXD  
TIR  
TBIR  
R IR  
Interrupt  
C ontrol  
EIR  
ABSTIR  
ABDETIR  
M CA 05253  
Figure 6  
General Block Diagram of the ASC Interface  
Data Sheet  
21  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
High-Speed Synchronous Serial Interface (SSC)  
The High Speed Synchronous Serial Interface SSC provides serial communication  
between microcontrollers, microprocessors or external peripherals. The SSC supports  
full-duplex and half-duplex synchronous communication up to 25 MBaud (@ 50 MHz  
module clock). The serial clock signal can be generated by the SSC itself (master mode)  
or be received from an external master (slave mode). Data width, shift direction, clock  
polarity and phase are programmable. This allows communication with SPI-compatible  
devices. Transmission and reception of data are double-buffered. A 16-bit baud rate  
generator provides the SSC with a separate serial clock signal.  
Features:  
• Master and slave mode operation  
– Full-duplex or half-duplex operation  
• Flexible data format  
– Programmable number of data bits : 2 to 16 bit  
– Programmable shift direction : LSB or MSB shift first  
– Programmable clock polarity : idle low or high state for the shift clock  
– Programmable clock/data phase : data shift with leading or trailing edge of SCLK  
• Maximum baudrate: 25 MBaud in Master, 12.5 in Slave mode (@ 50 MHz module  
clock)  
Interrupt generation  
– on a transmitter empty condition  
– on a receiver full condition  
– on an error condition (receive, phase, baudrate, transmit error)  
• Three pin interface  
fhw_clk  
C lock  
C ontrol  
R XD  
M TSR  
M R ST  
SCLK  
TXD  
Address  
Decoder  
SSC  
M odule  
(Kernel)  
R XD  
TXD  
Port  
Control  
EIR  
R IR  
TIR  
Slave  
M aster  
Interrupt  
C ontrol  
M C B04505_m od  
Figure 7  
General Block Diagram of the SSC Interface  
Data Sheet  
22  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Inter-IC Interface (IIC)  
IIC supports a certain protocol to allow devices to communicate directly with each other  
via two wires. One line is responsible for clock transfer and synchronization (SCL), the  
other is responsible for the data transfer (SDA).  
The on-chip IIC Bus module connects the platform buses to other external controllers  
and/or peripherals via the two-line serial IIC interface. The IIC Bus module provides  
communication at data rates of up to 400 kBit/s and features 7-bit addressing as well as  
10-bit addressing. This module is fully compatible to the IIC bus protocol.  
The module can operate in three different modes:  
Master mode, where the IIC controls the bus transactions and provides the clock signal.  
Slave mode, where an external master controls the bus transactions and provides the  
clock signal.  
Multimaster mode, where several masters can be connected to the bus, i.e. the IIC can  
be master or slave.  
The on-chip IIC bus module allows efficient communication via the common IIC bus. The  
module unloads the CPU of low level tasks like:  
• (De)Serialization of bus data.  
• Generation of start and stop conditions.  
• Monitoring the bus lines in slave mode.  
• Evaluation of the device address in slave mode.  
• Bus access arbitration in multimaster mode.  
IIC Features:  
• Extended buffer allows up to 4 send/receive data bytes to be stored.  
• Selectable baud rate generation.  
• Support of standard 100 kBaud and extended 400 kBaud data rates.  
• Operation in 7-bit addressing mode or 10-bit addressing mode.  
• Flexible control via interrupt service routines or by polling.  
Data Sheet  
23  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Timer Unit (GPTU)  
Figure 8 shows a global view of all functional blocks of the GPTU module.  
IN0  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
IO 0  
IO 1  
IO 2  
IO 3  
IO 4  
IO 5  
IO 6  
IO 7  
P0.0 / G PT0  
fG PTU  
C lock  
C ontrol  
P0.1 / G PT1  
P0.2 / G PT2  
P0.3 / G PT3  
P0.4 / G PT4  
P0.5 / G PT5  
P0.6 / G PT6  
Address  
Decoder  
G PTU  
M odule  
(Kernel)  
Port  
C ontrol  
SR0  
SR1  
SR2  
SR3  
SR4  
SR5  
SR6  
SR7  
O U T0  
O U T1  
O U T2  
O U T3  
O U T4  
O U T5  
O U T6  
O U T7  
Interrupt  
C ontrol  
P0.7 / G PT7  
M CB05052_m odified  
Figure 8  
General Block Diagram of the GPTU Interface  
The GPTU consists of three 32-bit timers designed to solve such application tasks as  
event timing, event counting, and event recording. The GPTU communicates with the  
external world via eight inputs and eight outputs.  
The three timers of the GPTU module T0, T1, and T2, can operate independently from  
each other, or can be combined:  
General Features:  
• All timers are 32-bit precision timers with a maximum input frequency of f  
• Events generated in T0 or T1 can be used to trigger actions in T2  
• Timer overflow or underflow in T2 can be used to clock either T0 or T1  
• T0 and T1 can be concatenated to form one 64-bit timer  
/2.  
GPTU  
Features of T0 and T1:  
• Each timer has a dedicated 32-bit reload register with automatic reload on overflow  
• Timers can be split into individual 8-, 16-, or 24-bit timers with individual reload  
registers  
• Overflow signals can be selected to generate service requests, pin output signals, and  
T2 trigger events  
• Two input pins can determine a count option  
Data Sheet  
24  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Features of T2:  
• Optionally count up or down  
• Operating modes:  
– Timer  
– Counter  
– Incremental Interface Mode  
• Options:  
– External start/stop, one-shot operation, timer clear on external event  
– Count direction control through software or an external event  
– Two 32-bit reload/capture registers  
• Reload modes:  
– Reload on overflow or underflow  
– Reload on external event: positive transition, negative transition, or both transitions  
• Capture modes:  
– Capture on external event: positive transition, negative transition, or both  
transitions  
– Capture and clear timer on external event: positive transition, negative transition, or  
both transitions  
• Can be split into two 16-bit counter/timers  
• Timer count, reload, capture, and trigger functions can be assigned to input pins. T0  
and T1 overflow events can also be assigned to these functions.  
• Overflow and underflow signals can be used to trigger T0 and/or T1 and to toggle  
output pins  
• T2 events are freely assignable to the service request nodes.  
Real Time Clock Unit RTC  
The Real Time Clock (RTC) module is basically an independent timer chain and counts  
clock ticks. The base frequency of the RTC can be programmed via a reload counter.  
The RTC can work fully asynchronous to the system frequency and is optimized on low  
power consumption.  
Features:  
The RTC serves different purposes:  
• Absolute system clock to determine the current time and date  
• Cyclic time based interrupt  
• Alarm interrupt for wake up on a defined time  
• 48-bit timer for long term measurements  
Data Sheet  
25  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Codec Interface  
The speech A/D and D/A converters (called codec) is designed for telephone and  
speech recognition quality. They can be used for microphone / earpiece applications.  
The TC1910 configuration implements a dual channel speech codec connected to the  
FPI bus.  
VDD VS S  
VDD VSS  
CO D0  
COD0  
CO D1 CO D1  
ch0 non-inv. input  
ch0 inv. input  
AI0+  
fper  
Clock  
Control  
AI0-  
ch0 non-inv. output  
ch0 inv. output  
AO0+  
AO0-  
Address  
Decoder  
ch1 non-inv. input  
ch1 inv. input  
AI1+  
AI1-  
SR0  
SR1  
SR2  
SR3  
CO DEC  
M odule  
Kernel  
ch1 non-inv. output  
ch1 inv. output  
AO1+  
AO1-  
Interrupt  
Control  
clock disable  
SR4  
SR5  
CO DEC_DIS  
CEXT  
external clock input  
m ute channel 0  
m ute channel 1  
VRE F  
M UTE0  
M UTE1  
COD  
VG ND  
COD  
Codec bypass  
5
IIS  
signals  
Figure 9  
General Codec Overview  
General Purpose I/Os (GPIO)  
• Push/pull output drivers  
• 3.3 Volt operation for GPIO  
• Programmable pull-up/-down devices at all pins  
• Optional Open Drain Output Mode  
Data Sheet  
26  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
ID Register Table  
Table 2  
List of TC1910 ID registers  
Short Name Description  
Address  
Reset Value  
0019 C002  
SCU_ID  
MANID  
CHIPID  
RTID  
SCU Identification Register  
F000 0008  
F000 0070  
F000 0074  
H
H
H
H
H
H
H
H
Manufacturer Identification Register  
Chip Identification Register  
0000 1820  
0000 8902  
0000 0000  
H
H
H
Redesign Tracing Identification Register F000 0078  
RTC_ID  
BCU_ID  
STM_ID  
RTC Module Identification Register  
BCU Identification Register  
F000 0108  
F000 0208  
F000 0308  
0000 5A04  
0000 6A06  
H
H
System Timer Module Identification  
Register  
0000 C002  
H
JDP_ID  
JTAG/OCDS Module Identification  
Register  
F000 0408  
0000 6305  
0000 4604  
H
H
IIC_ID  
IIC Module Identification Register  
GPTU Module Identification Register  
SSC Module Identification Register  
ASC Module Identification Register  
ASC Module Identification Register  
F000 0508  
F000 0708  
F000 0808  
H
H
H
H
GPTU_ID  
SSC_ID  
ASC0_ID  
ASC1_ID  
0001 C002  
H
0000 4503  
H
F000 0A08  
F000 0B08  
0000 44E1  
0000 44E1  
H
H
H
H
H
CODEC_ID Codec Identification Register  
F000 2408  
001C C002  
H
CPS_ID  
CPU_ID  
EBU_ID  
CPU Module Identification Register  
CPU Identification Register  
F7E0 FF08  
0015 C004  
H
H
F7E1 FE18  
000A C003  
H
H
H
EBU_LMB Module Identification  
Register  
F800 0008  
0014 C003  
H
DMU_ID  
PMU_ID  
LCU_ID  
LFI_ID  
DMU Identification Register  
PMU Module Identification Register  
LCU Identification Register  
LFI Identification Register  
F87F FC08  
F87F FD08  
0008 C002  
H
H
H
H
H
000B C002  
H
H
F87F FE08  
F87F FF08  
000F C003  
000C C003  
H
Data Sheet  
27  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Power Supply  
Figure 10 shows the TC1910 power supply concept, where certain logic modules are  
individually supplied with power. In this way, the noise margin is improved in the  
especially sensitive modules, like the A/D converter and the CODEC.  
VD DA  
VSS A  
VD DA  
VSSA  
VDD A  
VSSA  
VDD A  
VSSA  
VD DA  
VSS A  
VDD A  
VSSA  
RTC  
OSC  
PLL  
(analog)  
ADC  
(analog)  
CO DEC 0  
(analog)  
CO DEC 1  
(analog)  
M AIN  
O SC  
VD DP  
VSS P  
B attery  
ALL DIG ITAL CORE  
CO MPO NENTS  
B acked  
S tand- By  
S RAM  
X
VD DP  
VSS P  
Y
VD D_SB  
VD DR  
VSS  
VDD  
VSS  
VD D  
VSS  
Figure 10  
TC1910 Power Supply Concept  
Data Sheet  
28  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Power-Up Sequence  
During Power-Up reset pin PORST has to be held active until both power supply  
voltages have reached at least their minimum values.  
During the Power-Up time (rising of the supply voltages from 0 to their regular operating  
values) it has to be ensured, that the core V power supply reaches its operating value  
DD  
first, and then the GPIO V  
power supply. During the rising time of the core voltage it  
DDP  
must be ensured that 0< V -V  
<0.5 V.  
DD DDP  
During power-down, the core and GPIO power supplies V  
and V  
respectively,  
DDP  
DD  
have to be switched off until all capacitances are discharged to zero, before the next  
power-up.  
Note: The states of the pins are undefined when only the port voltage V  
is on.  
DDP  
Data Sheet  
29  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Electrical characteristics  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the TC1910  
and partly its demands on the system. To aid in interpreting the parameters right, when  
evaluating them for a design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the TC1910 will provide signals with the respective characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective characteristics to the  
TC1910.  
Data Sheet  
30  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Notes  
Ambient temperature  
Storage temperature  
Junction temperature  
TA  
-40  
-65  
85  
°C  
°C  
°C  
V
under bias  
under bias  
TST  
TJ  
150  
125  
4.2  
Voltage on I/O Supply pins with VDDP  
respect to ground (VSS)  
-0.5  
Voltage on Core Supply pins  
with respect to ground (VSS)  
VDD  
-0.3  
-0.3  
2.1  
2.1  
2.1  
4.2  
10  
V
Voltage on PLL Supply pins  
with respect to ground (VSS)  
VDDPLL  
V
PLL  
Voltage between Oscillator  
Supply Pins and ground (VSS).  
VDDOSC -0.3  
V
Voltage on any pin with respect VIN  
to ground (VSS)  
-0.5  
-10  
V
Input current on any pin during I  
overload condition  
mA  
mA  
W
OV  
Absolute sum of all input  
currents at overload condition  
ΣI  
|100|  
1.0  
OV  
Power dissipation  
PDISS  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN>VDD or VIN<VSS) the  
voltage on VDD pins with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
31  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Package Parameters (P-LBGA-208)  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
max.  
1.0  
Power dissipation  
Thermal resistance  
PDISS  
RTHA  
W
30  
K/W Chip to ambient  
Operating Conditions  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the TC1910. All parameters specified in the following sections refer to these  
operating conditions, unless otherwise noted.  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit Notes  
1)  
Supply voltage  
VDDP  
VDD  
3.0  
3.6  
V
I/O supply  
2)  
1.71  
1.71  
1.89  
1.89  
1.89  
V
Core supply  
PLL supply  
VDDPLL  
V
VDDOSC 1.71  
V
Oscillator supply  
Ground voltage  
VSS  
0
V
Input current on any pin  
during overload  
condition  
I
-5  
5
mA  
V
V
> VDDP + 0.3V  
< VSS - 0.3V  
OV  
OV  
OV  
Absolute sum of all input Σ| I  
currents at overload  
condition  
|
|50|  
85  
mA  
°C  
OV  
Ambient temperature  
under bias  
TA  
-40  
CPU clock  
fCPU  
CL  
66  
50  
MHz  
pF  
External Load  
Capacitance  
1)  
Voltage overshoot to 4 V is permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h  
2)  
Voltage overshoot to 2 V is permissible, provided the pulse duration is less than 100 µs and the cumulated  
summary of the pulses does not exceed 1 h  
Data Sheet  
32  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
DC Characteristics  
GPIO pins  
Parameter  
Symbol  
Limit values  
Unit Test  
Conditions  
min.  
max.  
Output low voltage  
(strong driver)  
V
V
V
V
V
V
-
1
0.4  
V
V
V
V
V
V
I
I
= 10 mA  
= 2.5 mA  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OL  
Output high voltage  
(strong driver)  
2.4  
-
-
I
I
I
I
I
= - 2.5 mA  
OH  
OL  
OH  
OL  
OH  
Output low voltage  
0.4  
-
= 1 mA  
1)  
(medium driver)  
Output high voltage  
2.4  
-
= - 1 mA  
= 100 µA  
= - 100 µA  
1)  
(medium driver)  
Output low voltage  
0.4  
-
1)  
(weak driver)  
Output high voltage  
2.4  
1)  
(weak driver)  
Input low voltage  
Input high voltage  
V
V
-0.3  
2.0  
0.8  
V
LVTTL  
IL  
V
+0.3 V  
whatever is  
lower  
IH  
DDP  
or  
3.7V  
Input leakage current  
I
-
±500  
nA  
0V< V <  
in  
OZ1  
V
V
V
V
V
DDP  
OUT  
OUT  
OUT  
OUT  
2)  
Pull-up current  
|I  
|I  
|I  
|I  
|
-
1
µA  
µA  
µA  
µA  
pF  
= 2.0V  
= 0.8V  
= 0.8V  
= 2.0V  
PUH  
3)  
Pull-up current  
|
20  
-
-
PUL  
PDL  
Pull-down current  
Pull-down current  
|
0.8  
-
|
20  
-
PDH  
1)  
Pin capacitance  
C
10  
f = 1MHz @  
IO  
o
T = 25 C  
A
1)  
Not subject to production test, verified by design/characterization.  
2)  
3)  
The maximum current that may be drawn while the respective signal line remains inactive.  
The minimum current that must be drawn in order to drive the respective signal line active.  
Data Sheet  
33  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
NMI Pin  
NMI Pin is an input pin with different Pull-Up characteristics than other pins. The related  
characteristics are given in the following table  
Parameter  
Symbol  
Limit values  
Unit Test  
Conditions  
min.  
max.  
Max. current allowed  
through the Pull-Up  
device while pin (input)  
voltage remains still at the  
high level  
|I  
|I  
|
-
4
uA  
V
=2.0V  
PUH  
PUL  
OUT  
Min. current needed  
|
100  
-
uA  
V
=0.8V  
OUT  
through the Pull-Up  
device so that pin voltage  
is driven to the low level.  
Note: NMI Pin does not have a Pull-Down device.  
Oscillator Pins  
Parameter  
Symbol Limit values  
min.  
Unit Test  
Conditions  
max.  
Input leakage current  
(analog input) at  
XTAL1  
I
-
±200  
nA  
0V< V < V  
OZ1  
in  
DDP  
CC  
1)  
Input low voltage  
XTAL1  
V
SR  
-
0.3  
V
V
-
ILX  
Input high voltage  
V
0.8  
V
V
V
V
-0.3  
-0.35  
-0.4  
f
f
f
f
=4MHz  
=8MHz  
=12MHz  
=16MHz  
IHX  
DD  
DD  
DD  
DD  
OSC  
OSC  
OSC  
OSC  
2)  
XTAL1  
SR  
-0.43  
XTAL1 input current  
I
-
-
± 20  
µA  
µA  
0V < V < V  
IN  
IX1  
DD  
CC  
2)  
XTAL3 input current  
I
± 0.5  
0V < V < V  
IN  
IX3  
DD  
CC  
1)  
Only applicable in deep sleep mode  
2)  
Not subject to production test, verified by design/characterization.  
Data Sheet  
34  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
IIC Pins  
Each IIC Pin is an open drain output pin with different characteristics than other pins. The  
related characteristics are given in the following table  
Parameter  
Symbol  
Limit values  
Unit Test  
Conditions  
min.  
max.  
Output low voltage  
V
CC  
-
0.4  
0.6  
V
3 mA  
6 mA  
OL  
1)  
Input high voltage  
V
0.7V  
3.6  
V
-
IH  
DDP  
SR  
1)  
Input low voltage  
V
-0.3  
0.3V  
V
-
IL  
DDP  
SR  
Input leakage current  
I
-
-
+ - 500  
10  
nA  
pF  
OZ2  
CC  
1)  
Pin capacitance  
C
f=1MHz@  
IO  
o
CC  
T =25 C  
A
1)  
Not subject to production test, verified by design/characterization.  
Note: No 5 V IIC interface is supported with these pads. Only voltages lower than 3.60  
V must be applied to these pads.  
Note: IIC pins have no Pull-Up and Pull-Down devices.  
Data Sheet  
35  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Codec Electrical Characteristics  
Parameter  
Symbol Limit values  
min. typ.  
Unit  
Test  
Conditions  
max.  
1.89  
3.6  
Digital supply voltage  
Analog supply voltage  
Analog supply ground  
V
V
V
1.71  
3.0  
1.8  
3.3  
0.0  
1.2  
V
V
V
V
V
DD  
DDA  
SSA  
AREF  
-0.1  
1.14  
+0.1  
+1.26  
1)  
2)  
External reference voltage V  
Analog reference ground  
V
V
V
V
0.05  
- V  
V
+
AGND  
AIN  
SSA  
SSA  
SSA  
0.05  
3)  
Analog input voltage  
(RMS)  
0.775  
0.775  
-
V
V
rms  
rms  
Analog output voltage  
(RMS)  
AOUT  
Input Resistace of the  
Analog Inputs  
Rain  
-
30  
15  
60  
30  
1.2  
kOhm differential  
input, gain:  
4)  
-12,-6, 0 dB  
-
-
kOhm single-ended  
input, gain:  
-12,-6, 0 dB  
-
-
kOhm differential  
input, gain:  
6 to 30 dB  
-
-
kOhm single-ended  
input, gain:  
6 to 30 dB  
Internal Reference  
V
1.1  
1.3  
V
AGCCR.  
BGPSEL[1,0]  
=00  
BGP  
Voltage Vref (Bandgap  
5)  
Voltage)  
1)  
Reference voltage outside the nominal range causes reduced dynamic range, decreased distortion/clipping  
margins, increased/decreased gain.  
2)  
3)  
4)  
5)  
VSSA=VAGND=0V  
Please take the gain settings of the analog preamplifier into account, therefore Vimaxreal=Vimax/gain  
Simulation value.  
For external usage, Bandgap reference voltage is strongly dependent on the external load (<500 MOhm). In  
this case, high impedance buffer must be used.  
Data Sheet  
36  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Codec ADC and DAC path characteristics  
Test conditions1)  
Parameters  
min.  
typ.  
max.  
Unit  
0
< 0.025  
Attenuation distortion  
(ref. freq. 1014 Hz)  
(ref. level 0dBm0)2)  
dB  
dB  
dB  
dB  
dB  
-0.25  
-0.25  
-0.25  
0
0.025-0.0375  
0.0375-0.3  
0.3-0.425  
> 0.425  
0.25  
0.45  
-55  
-45  
dB  
at 0dBm0  
Signal to total distor-  
tion  
-0.3  
-0.6  
-1.6  
0.3  
0.6  
1.6  
dB  
dB  
dB  
+3 to -40 dBm0  
-40 to -50 dBm0  
-50 to -55 dBm0  
Gain tracking  
(ref. freq. 1014 Hz)  
(ref. level 0dBm0)2)  
-80  
-75  
dBm  
0
receive &transmit  
Idle channel noise  
-80  
-60  
0
-75  
-50  
0.8  
dB  
dB  
dB  
Cross talk  
at 0dBm0  
Harmonic distortion  
-0.8  
-
receive &transmit  
Gain  
(ref. freq. 1014 Hz)  
(ref. level 0dBm0)2)  
3)  
-60  
-40  
-35  
-35  
dB  
dB  
Receive (0.0375-0.425)  
Transmit(0.0375-0.425)  
Power supply  
3)  
rejection ratio (PSRR)  
1)  
2)  
3)  
Values given in this table are valid for all sampling frequencies.  
0dBm0 is equivalent to -12dBm is equal to 194.7 mVRMS.  
Supply ripple 70 mV.  
Note: Numbers without units in the test conditions column are relative frequency values  
to the chosen sampling frequency. e.g. 0.425 equals 3.4 kHz @ 8 kHz sampling  
frequency.  
Data Sheet  
37  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Power Supply Current  
Parameter  
Symbol  
Limit values  
Unit  
Test Conditions  
1)  
typ.  
max.  
Active mode supply  
current  
IDD  
180  
mA  
Sum of all IDD.  
Idle mode supply current IID  
90  
mA  
mA  
at 1.8V Core Supply  
at 1.8V Core Supply  
Deep sleep mode supply IDS  
0.25  
current  
1)  
Typical values are measured at 25°C, CPU clock at 66 MHz and nominal supply voltage, i.e. 3.3V for VDDP  
and 1.8V for VDD, VDDPLL, VDDOSC  
Note: The Power Supply Current values refer to the total current at 1.8V power supply,  
at LMB/FPI bus frequency ratio of 2:1, while running an average application.  
These numbers are estimation based on average device measurements.  
Data Sheet  
38  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
AC Characteristics  
Operating Conditions apply.  
Output Rise/Fall Times  
GPIO pins  
Rise/fall time measurements are made between 10% and 90%.  
The following table is valid for the GPIO pins pad drivers. Output pad characteristics are  
controllable via DRVCTRx registers.  
Pad Modus  
Symbol  
Limit values  
Temp Unit Test  
rise / fall time  
Comp  
Conditions  
min.  
max.  
Strong driver  
• sharp edge  
• medium edge  
SF  
SM  
SS  
-
-
-
3
6
12  
yes  
yes  
yes  
ns  
ns  
ns  
@50pF  
@50pF  
@50pF  
1)  
1)  
• soft edge  
1)  
Not subject to production test, verified by design/characterization.  
Data Sheet  
39  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Timing Characteristics  
(Operating Conditions apply)  
Note: Timing parameters are not subject to production test, they are verified by design/  
characterization.  
2.4V  
2.0V  
0.8V  
2.0V  
0.8V  
Test Points  
0.4V  
M CT04880  
AC inputs during testing are driven at 2.4V for a logic “1” and 0.4V for a logic “0”.  
Timing measurements are made at V for a logic “1” and V for a logic “0”.  
IHmin  
ILmax  
Figure 11  
Input/Output Waveforms for AC Tests  
- for GPIO, Dedicated and EBU pins  
Data Sheet  
40  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
External Oscillator at XTAL1 Timing Requirements  
(Operating Conditions apply)  
Parameter  
Symbol  
Limits  
min. max.  
Unit  
1)  
Main Oscillator XTAL frequency  
with/without  
PLL  
fOSC SR  
4
16  
MHz  
MHz  
3)  
Frequency of an external oscillator with PLL  
fOSCDD  
4
-
25  
25  
2)  
4)  
driving at XTAL1  
without PLL  
SR  
Input Clock high time  
Input Clock low time  
Input Clock rise time  
t1  
t2  
t3  
t4  
SR 16  
7
7
ns  
ns  
ns  
ns  
SR 16  
SR −  
SR −  
Input Clock fall time  
1)  
Oscillator Bypass Pin P3.11 latch-in value high. Internal oscillator provides the input clock signal.  
2)  
Oscillator Bypass Pin P3.11 latch-in value low. Internal oscillator disabled. External oscillator provides the input  
clock signal.  
3)  
4)  
Internal PLL provides the system clock. BYPASS pin latch-in value low. PLL prescaler value P=1.  
Internal PLL bypassed. BYPASS pin latch-in value high. External oscillator provides the system clock directly.  
When CODEC modules is active its frequency limitations must be taken into consideration. Otherwise,  
minimum frequency in this mode can go as low as zero.  
tOSC  
VIH X  
Input C lock  
at XTAL1  
0.5 VDD OSC  
VILX  
t4  
t3  
t1  
t2  
M CT04882  
Figure 12  
External Clock at XTAL1 Requirements  
, V and V are defined in the Oscillator Pins DC Characteristics  
Note: V  
DDOSC  
IHX  
IHL  
Chapter.  
Note: It is strongly recommended to measure the oscillation allowance (negative  
resistance) in the final target system (layout) to determine the optimal parameters  
for the oscillator operation. Please refer to the limits specified by the crystal  
supplier.  
Data Sheet  
41  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
CPU Clock Timing  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
CLKOUT period  
tCLKOUT 15  
ns  
CC  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
t1 CC 6  
t2 CC 6  
t3 CC −  
t4 CC −  
3
3
ns  
ns  
ns  
ns  
tCPUCLK  
0.9 V DD  
0.1 V DD  
0.5 VDD  
CLKOUT  
t4  
t3  
t1  
t2  
M CT04883  
Figure 13  
CLKOUT Timing  
Data Sheet  
42  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
PLL Parameters  
1)  
Parameter  
Symbol  
Limit Values  
min. max.  
Unit  
Accumulated jitter  
DN  
see Figure 14  
2)  
VCO frequency range  
fVCO  
100  
150  
200  
250  
300  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
µs  
3)  
4)  
5)  
150  
200  
250  
20  
2)  
PLL base frequency  
fPLLBASE  
80  
3)  
20  
130  
180  
230  
200  
4)  
5)  
20  
20  
PLL lock-in time  
tL  
1)  
Not subject to production test, verified by design/characterization.  
2)  
3)  
4)  
5)  
@ vcosel = ’00’  
@ vcosel = ’01’  
@ vcosel = ’10’  
@ vcosel = ’11’  
Note: When TC1910 starts-up with the PLL not bypassed, first user instructions are  
executed with the frequency defined by the VCO free-running frequency  
(fPLLBASE) and by the reset value of the PLL_CLC register (the K-divider and  
VCOSEL bitfields). It is software responsibility to initialize its own appropriate  
values in the bitfields in this register, before giving the command for the VCO to  
lock to the input frequency. For more information, see the Users Manual, System  
Units, System Control Unit chapter.  
Data Sheet  
43  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
TC191x_pll_jitter  
±5.0  
ns  
DN  
±4.0  
±3.0  
±2.0  
±1.0  
fSYS = 66 MHz(K = 4)  
fSYS = 60 MHz (K = 5)  
fSYS = 50 MHz (K = 6)  
fSYS = 40 MHz (K = 7)  
fSYS = 33 MHz (K = 8)  
±0.0  
0
5
10  
15  
20  
25  
30  
35  
P
DN = Max. jitter  
P = Number of consecutive fSYS periods  
K
= K-divider of PLL  
Figure 14  
Approximated Maximum Accumulated PLL Jitter  
The following two formulas define the (absolute) approximate maximum value of jitter DN  
in [ns] dependent on the K-factor, the system clock frequency fSYS in [MHz], and the  
number P of consecutive fSYS periods.  
P
×
735  
[1]  
+ 0.5 ]  
DN [ns] = ± [(  
+ 0.9)  
×
for P <  
0.25× fSYS  
fSYS  
0.25  
fSYS  
×
K
735  
for P >  
[2]  
DN [ns] = ±  
[
0.25× fSYS  
+ 1.4 ]  
fSYS  
×
K
With rising number P of clock cycles the maximum jitter increases linearly up to a specific  
value of P. Beyond this value of P the maximum accumulated jitter remains at a constant  
value.  
Data Sheet  
44  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Timing for EBU_LMB Clock Outputs  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
EBUCLK period  
EBUCLK high time  
EBUCLK low time  
EBUCLK rise time  
EBUCLK fall time  
BFCLK0 period  
t1 CC 15  
t2 CC 6  
t3 CC 6  
t4 CC −  
t5 CC −  
t6 CC 20  
t7 CC 9  
t8 CC 9  
t9 CC −  
t10 CC −  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.5  
2.5  
BFCLK0 high time  
BFCLK0 low time  
BFCLK0 rise time  
BFCLK0 fall time  
3.5  
2.5  
t1(t6)  
0.9 V DD  
0.1 V DD  
EBUCLK/  
0.5 V DD  
BFCLK0  
t2(t7)  
t3(t8)  
t5(t10)  
t4(t9)  
M CT04884  
Figure 15  
EBU_LMB Clock Output Timing  
Data Sheet  
45  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Timing for SDRAM Access Signals  
(Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
CKE high from EBUCLK  
t1 CC -  
7.0  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKE low from EBUCLK  
t2 CC 2.0  
t3 CC -  
A(23:0) output valid from EBUCLK  
A(23:0) output hold from EBUCLK  
CS(6:0) low from EBUCLK  
CS(6:0) high from EBUCLK  
RAS low from EBUCLK  
7.0  
-
t4 CC 2.0  
t5 CC -  
7.0  
-
t6 CC 2.0  
t7 CC -  
7.0  
-
RAS high from EBUCLK  
t8 CC 2.0  
t9 CC -  
CAS low from EBUCLK  
7.0  
-
CAS high from EBUCLK  
t10 CC 2.0  
t11 CC -  
RD/WR low from EBUCLK  
RD/WR high from EBUCLK  
BC(3:0) low from EBUCLK  
BC(3:0) high from EBUCLK  
AD(31:0) output valid from EBUCLK  
AD(31:0) output hold from EBUCLK  
AD(31:0) input setup to EBUCLK  
7.0  
-
t12 CC 2.0  
t13 CC -  
7.0  
-
t14 CC 2.0  
t15 CC -  
7.7  
-
t16 CC 2.0  
t17 SR 2.0  
-
AD(31:0) input hold from EBUCLK  
t18 SR 4.0  
-
ns  
Data Sheet  
46  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Write Access:  
EBUCLK  
t1  
CKE  
t3  
t5  
t4  
Row  
Column  
A(23:0)  
t6  
CSx  
t8  
RAS  
t7  
t10  
CAS  
t9  
t12  
RD/WR  
BC(3:0)  
AD(31:0)  
t11  
t13  
t14  
Data  
(0)  
Data  
(n-1)  
t15  
t16  
Read Access:  
EBUCLK  
t2  
CKE  
t3  
t4  
Row  
Column  
A(23:0)  
t6  
CSx  
RAS  
t10  
t9  
CAS  
RD/WR  
BC(3:0)  
t13  
t14  
t18  
t17  
Data  
(0)  
Data  
(n-1)  
AD(31:0)  
MCT05319  
Figure 16  
SDRAM Access Timing  
Data Sheet  
47  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Timing for Burst Flash Access Signals  
Operating Conditions apply; C = 50 pF)  
L
Parameter  
Symbol  
Limits  
min. max.  
Unit  
A(23:0) output valid from BFCLK0  
A(23:0) output hold from BFCLK0  
CS(6:0) low from BFCLK0  
ADV low from BFCLK0  
t1 CC −  
11.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t2 CC 0.0  
t3 CC −  
t5 CC −  
t6 CC 3.0  
t7 CC −  
t8 CC 3.0  
t9 CC −  
t11 SR 6.0  
t12 SR 3.0  
9.0  
10.0  
ADV high from BFCLK0  
BAA low from BFCLK0  
10.0  
BAA high from BFCLK0  
RD low from BFCLK0  
10.0  
AD(31:0) input setup to BFCLK0  
AD(31:0) input hold from BFCLK0  
Data Sheet  
48  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
BFCLK0  
A[23:0]  
ADV  
t1  
t5  
t3  
t2  
Address Valid  
t6  
CSx  
RD  
t9  
t7  
t8  
BAA  
t11  
t12  
Valid  
Valid  
D[31:0]  
Note: Between the end of the Address Phase (ADV goes high) and the beginning of the Command  
Phase (RD goes low) several cycles of Command Delay Phase can be inserted.  
mct04889_mod_la  
Figure 17  
Burst Flash Access Timing (Instruction Read)  
Data Sheet  
49  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
1)  
Timing for Demultiplexed Access Signals  
(Operating Conditions apply; CL = 50 pF)  
Parameter  
Symbol  
Limits  
min. max.  
Unit  
ALE low from EBUCLK  
t1 CC −  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALE high from EBUCLK  
t2 CC 2.0  
t3 CC −  
A(23:0) output valid from EBUCLK  
A(23:0) output hold from EBUCLK  
CS(6:0) low from EBUCLK  
CS(6:0) high from EBUCLK  
MR/W low from EBUCLK  
8.0  
t4 CC 2.0  
t5 CC −  
8.0  
t6 CC 2.0  
t7 CC −  
8.0  
MR/W high from EBUCLK  
RMW low from EBUCLK  
t8 CC 2.0  
t9 CC −  
8.0  
RMW high from EBUCLK  
t10 CC 1.0  
t11 CC −  
RD low from EBUCLK  
8.0  
RD high from EBUCLK  
t12 CC 0.0  
t13 CC −  
RD/WR low from EBUCLK  
RD/WR high from EBUCLK  
CMDELAY input setup to EBUCLK  
CMDELAY hold from EBUCLK  
WAIT input setup to EBUCLK  
WAIT hold from EBUCLK  
8.0  
t14 CC 2.0  
t15 SR 4.0  
t16 SR 3.0  
t17 SR 4.0  
t18 SR 3.0  
t19 CC −  
BC(3:0) low from EBUCLK  
BC(3:0) high from EBUCLK  
AD(31:0) output valid from EBUCLK  
AD(31:0) output hold from EBUCLK  
AD(31:0) input setup to EBUCLK  
AD(31:0) input hold from EBUCLK  
8.0  
t20 CC 2.0  
t21 CC −  
8.0  
t22 CC 0.0  
t23 SR 4.0  
t24 SR 4.0  
1)  
It is user responsibility to program an appropriate whole number of clock cycles to generate the correct phase  
length according to the particular asynchronous memory/peripheral device specification.  
Data Sheet  
50  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
EBUCLK  
ALE  
t1  
t2  
t3  
t4  
Address  
A(23:0)  
CSx  
t5  
t6  
t7  
MR/W  
t14  
RD/WR  
CMDELAY  
t16  
t15  
t13  
t18  
t17  
WAIT  
t20  
t19  
t19  
t20  
BC(3:0)  
AD(31:0)  
t21  
t22  
Data Out  
MCT05320  
Figure 18  
Demultiplexed Write Access  
Data Sheet  
51  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
EBUCLK  
ALE  
t1  
t2  
t3  
t4  
Address  
A(23:0)  
CSx  
t6  
t5  
MR/W  
RMW  
t8  
t10  
t9  
t12  
RD  
t16  
t15  
t11  
CMDELAY  
t18  
t17  
WAIT  
t19  
t19  
t20  
BC(3:0)  
AD(31:0)  
t23  
t24  
Data  
Note: RMW signal is available only during Read-Modify-Write Access.  
MCT05321  
Figure 19  
Demultiplexed Read Access  
Data Sheet  
52  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
1)  
Timing for Multiplexed Access Signals  
(Operating Conditions apply; CL = 50 pF)  
Parameter  
Symbol  
Limits  
min. max.  
Unit  
ALE high from EBUCLK  
t1 CC −  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALE low from EBUCLK  
t2 CC 2.0  
t3 CC −  
AD(31:0) output valid from EBUCLK  
AD(31:0) output hold from EBUCLK  
AD(31:0) input setup to EBUCLK  
AD(31:0) input hold from EBUCLK  
CS(6:0) low from EBUCLK  
CS(6:0) high from EBUCLK  
MR/W low from EBUCLK  
8.0  
t4 CC 0.0  
t5 SR 4.0  
t6 SR 4.0  
t7 CC −  
8.0  
t8 CC 1.0  
t9 CC −  
8.0  
MR/W high from EBUCLK  
RMW low from EBUCLK  
t10 CC 2.0  
t11 CC −  
8.0  
RMW high from EBUCLK  
t12 CC 1.0  
t13 CC −  
RD/WR low from EBUCLK  
RD/WR high from EBUCLK  
RD low from EBUCLK  
8.0  
t14 CC 2.0  
t15 CC −  
8.0  
RD high from EBUCLK  
t16 CC 0.0  
t17 SR 4.0  
t18 SR 3.0  
t19 SR 4.0  
t20 SR 3.0  
t21 CC −  
CMDELAY input setup to EBUCLK  
CMDELAY hold from EBUCLK  
WAIT input setup to EBUCLK  
WAIT hold from EBUCLK  
BC(3:0) low from EBUCLK  
BC(3:0) high from EBUCLK  
8.0  
t22 CC 2.0  
1)  
It is user responsibility to program an appropriate whole number of clock cycles to generate the correct phase  
length according to the particular asynchronous memory/peripheral device specification.  
Data Sheet  
53  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
EBUCLK  
ALE  
t1  
t2  
t3  
t4  
Address  
Data  
AD(31:0)  
CSx  
t7  
t4  
t8  
t3  
t9  
MR/W  
t14  
RD/WR  
CMDELAY  
WAIT  
t18  
t17  
t13  
t20  
t19  
t22  
t21  
t21  
t22  
BC(3:0)  
MCT05322  
Figure 20  
Multiplexed Write Access  
Data Sheet  
54  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
EBUCLK  
ALE  
t1  
t2  
t5  
t3  
t6  
Address  
Data  
AD(31:0)  
CSx  
t4  
t8  
t7  
t10  
t11  
MR/W  
RMW  
t12  
t16  
RD  
t18  
t17  
t15  
CMDELAY  
t20  
t19  
WAIT  
t21  
t21  
t22  
BC(3:0)  
Note: RMW signal is only available during Read-Modify-Write Access.  
MCT05323  
Figure 21  
Multiplexed Read Access  
Data Sheet  
55  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Timing for External Bus Arbitration Signals  
(Operating Conditions apply; CL = 50 pF)  
Parameter  
Symbol  
Limits  
min. max.  
Unit  
HOLD input setup to EBUCLK  
HOLD input hold from EBUCLK  
HLDA low from EBUCLK  
t1 SR 6.0  
t2 SR 8.0  
t3 CC −  
t4 CC −  
t5 SR 8.0  
t6 SR 8.0  
t7 CC −  
t8 CC −  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10.0  
9.0  
HLDA high from EBUCLK  
HLDA input setup to EBUCLK  
HLDA input hold from EBUCLK  
BREQ low from EBUCLK  
10.0  
9.0  
BREQ high from EBUCLK  
Note: The signals HOLD, HLDA and BREQ are alternate function of the CS5, CS6 and  
CSOVL Pins.  
Data Sheet  
56  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
External Master Mode  
EBU C LK  
t1  
t2  
H OLD  
t4  
H LDA  
t3  
t8  
BR EQ  
t7  
External Slave Mode  
EBU C LK  
t7  
t8  
BR EQ  
H LDA  
H OLD  
t5  
t6  
t1  
t2  
M CT05324_m od  
Figure 22  
External Bus Arbitration Timing  
Data Sheet  
57  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
SSC Master Mode Timing  
(Operating Conditions apply; CL = 50 pF)  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
CC 40  
CC  
SCLK period  
t
t
t
t
ns  
ns  
ns  
ns  
SCLK  
MTSR low/high from SCLK edge  
MRST setup to SCLK edge  
MRST hold from SCLK edge  
-
2.0  
5
6
7
SR 15  
SR 15  
-
-
tSCLK  
0.9 VDD  
SCLK  
0.5 VDD  
(CON.PO,CON.PH=00 or 11)  
0.1 VDD  
t2  
t2  
t4  
t3  
0.9 VDD  
0.1 VDD  
SCLK  
0.5 VDD  
(CON.PO,CON.PH=01 or 10)  
t3  
t4  
t5  
MTSR  
MRST  
State n-1  
State n  
State n+1  
t6  
t7  
Data valid  
Data valid  
MCT04885  
Figure 23  
SSC Master Mode Timing  
Data Sheet  
58  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Package Outlines  
Figure 24  
P-LBGA-208 Package  
You can find all of our packages, sorts of packing and other in our Infineon Internet Page  
“Products”: http://www.infineon.com/products  
Data Sheet  
59  
V 1.0, 2003-10  
TC1910  
PRELIMINARY  
Data Sheet  
60  
V 1.0, 2003-10  
((49))  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TC1912

32-Bit Single-Chip Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TC1920

32-Bit Single-Chip Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TC19230200J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL

TC19232000J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL

TC19232200J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL

TC19233100J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL

TC19233200J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL

TC19234200J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL

TC19236200J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL

TC19238000J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL

TC19239100J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL

TC19239200J0G

Barrier Strip Terminal Block

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AMPHENOL