TDA5220XUMA1 [INFINEON]

Telecom Circuit, 1-Func, PDSO28, PLASTIC, TSSOP-28;
TDA5220XUMA1
型号: TDA5220XUMA1
厂家: Infineon    Infineon
描述:

Telecom Circuit, 1-Func, PDSO28, PLASTIC, TSSOP-28

电信 光电二极管 电信集成电路
文件: 总51页 (文件大小:845K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Specification, V 1.1, October 2004  
TDA 5220  
ASK/FSK Single Conversion Receiver  
Version 1.1  
Wireless Control  
Components  
N e v e r s t o p t h i n k i n g .  
Edition 2004-10-20  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2004.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies  
Representatives worldwide (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Preliminary Specification, V 1.1, October 2004  
TDA 5220  
ASK/FSK Single Conversion Receiver  
Version 1.1  
Wireless Control  
Components  
N e v e r s t o p t h i n k i n g .  
TDA 5220  
Revision History:  
2004-10-20  
V 1.1  
Previous Version:  
none  
Page  
Subjects (major changes since last revision)  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
petra.haidn@infineon.com  
TDA 5220  
Page  
Table of Contents  
1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
1.3  
2
2.1  
2.2  
2.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Bandgap Reference Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.4  
2.4.1  
2.4.2  
2.4.3  
2.4.4  
2.4.5  
2.4.6  
2.4.7  
2.4.8  
2.4.9  
2.4.10  
3
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Crystal Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Crystal Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
ASK/FSK-Data Path Functional Description . . . . . . . . . . . . . . . . . . . . . . . 25  
FSK Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
ASK Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Principle of the Precharge Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
4.1  
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
AC/DC Characteristics at TAMB = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . 33  
AC/DC Characteristics at TAMB= -40 to 105°C . . . . . . . . . . . . . . . . . . . . 40  
Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Test Board Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.2  
4.3  
4.4  
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Preliminary Specification  
5
V 1.1, 2004-10-20  
TDA 5220  
Product Description  
1
Product Description  
1.1  
Overview  
The IC is a very low power consumption single chip FSK/ASK Superheterodyne  
Receiver (SHR) for the frequency bands 810 to 870 MHz and 400 to 440 MHz. The IC  
offers a high level of integration and needs only a few external components. The device  
contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a  
PLL synthesiser, a crystal oscillator, a limiter with RSSI generator, a PLL FSK  
demodulator, a data filter, an advanced data comparator (slicer) with selection between  
two threshold modes and a peak detector. Additionally there is a power down feature to  
save current and extend battery life, and two selectable alternatives of generating the  
data slicer threshold.  
1.2  
Features  
Low supply current (Is = 5.7/5.9 mA typ. in FSK mode, Is = 5.0/5.2 mA typ. in ASK  
mode for 434/868 MHz)  
Supply voltage range 5V ±10%  
Power down mode with very low supply current (50nA typ.)  
FSK and ASK demodulation capability  
Fully integrated VCO and PLL Synthesiser  
ASK sensitivity better than -106 dBm over specified temperature range (- 40 to  
+105°C)  
FSK sensitivity better than -100 dBm over specified temperature range (- 40 to  
+105°C)  
Selectable frequency ranges 810-870 MHz and 400-440 MHz  
Limiter with RSSI generation, operating at 10.7MHz  
2nd order low pass data filter with external capacitors  
Data slicer with selection between two threshold modes (see Section 2.4.8)  
1.3  
Application  
Keyless Entry Systems  
Remote Control Systems  
Alarm Systems  
Low Bitrate Communication Systems  
Preliminary Specification  
6
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
2
Functional Description  
2.1  
Pin Configuration  
CRST1  
VCC  
LNI  
1
2
3
4
5
6
7
8
9
28 CRST2  
27 PDWN  
26 PDO  
25 DATA  
24 3VOUT  
23 THRES  
22 FFB  
TAGC  
AGND  
LNO  
VCC  
MI  
TDA 5220  
21 OPP  
20 SLN  
MIX  
AGND 10  
FSEL 11  
IFO 12  
19 SLP  
18 LIMX  
17 LIM  
DGND 13  
VDD 14  
16 SSEL  
15 MSEL  
Figure 1  
Pin Configuration  
Preliminary Specification  
7
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
2.2  
Pin Definition and Functions  
Pin Defintion and Function  
Table 1  
Pin  
No.  
Symbol  
Equivalent I/O Schematic  
Function  
1
CRST1  
External Crystal  
Connector 1  
4.15V  
1
50uA  
2
3
VCC  
LNI  
5V Supply  
LNA Input  
57uA  
3
500uA  
4k  
1k  
Preliminary Specification  
8
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
Function  
Pin  
No.  
Symbol  
Equivalent I/O Schematic  
4
TAGC  
AGCTimeConstant  
Control  
4.3V  
3uA  
4
1k  
1.4uA  
1.7V  
5
6
AGND  
LNO  
Analogue Ground  
Return  
LNA Output  
5V  
1k  
6
7
VCC  
5V Supply  
Preliminary Specification  
9
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
Function  
Pin  
No.  
Symbol  
Equivalent I/O Schematic  
8
MI  
Mixer Input  
1.7V  
2k  
2k  
9
MIX  
Complementary  
Mixer Input  
9
8
400uA  
10  
11  
AGND  
FSEL  
Analogue Ground  
Return  
868/434 MHz  
Operating  
Frequency Selector  
750  
1.2V  
2k  
11  
12  
IFO  
10.7 MHz IF Mixer  
Output  
300uA  
2.2V  
60  
12  
4.5k  
13  
DGND  
Digital Ground  
Return  
Preliminary Specification  
10  
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
Function  
Pin  
No.  
Symbol  
VDD  
Equivalent I/O Schematic  
14  
5V Supply (PLL  
Counter Circuity)  
15  
MSEL  
ASK/FSK  
Modulation Format  
Sector  
1.2V  
40k  
15  
16  
SSEL  
Data Slicer  
Reference Level  
Sector  
1.2V  
40k  
16  
17  
18  
LIM  
Limiter Input  
2.4V  
15k  
LIMX  
Complementary  
Limiter Input  
17  
75uA  
330  
18  
15k  
Preliminary Specification  
11  
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
Function  
Pin  
No.  
Symbol  
Equivalent I/O Schematic  
19  
SLP  
Data Slicer Positive  
Input  
15uA  
100  
3k  
19  
80µA  
20  
SLN  
Data Slicer  
Negative Input  
5uA  
10k  
20  
21  
OPP  
OpAmp  
Noninverting Input  
5uA  
200  
21  
22  
FFB  
Data Filter  
Feedback Pin  
5uA  
100k  
22  
Preliminary Specification  
12  
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
Function  
Pin  
No.  
Symbol  
Equivalent I/O Schematic  
23  
THRES  
AGC Threshold  
Input  
5uA  
10k  
23  
24  
3VOUT  
3V Reference  
Output  
24  
20kΩ  
3.1V  
25  
DATA  
Data Output  
500  
25  
40k  
26  
PDO  
Peak Detector  
Output  
26  
446k  
Preliminary Specification  
13  
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
Function  
Pin  
No.  
Symbol  
Equivalent I/O Schematic  
27  
PDWN  
Power Down Input  
27  
220k  
220k  
28  
CRST2  
External Crystal  
Connector 2  
4.15V  
28  
50uA  
Preliminary Specification  
14  
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
2.3  
Functional Block Diagram  
VCC  
IF  
Filter  
MSEL  
H=ASK  
L=FSK  
MI  
FFB  
LNO  
MIX  
9
IFO  
12  
LIM  
LIMX  
18  
OPP  
SLP  
19  
SLN  
20  
22  
21  
6
8
17  
15  
16  
25  
SSEL  
DATA  
Logic  
CM  
-
LNI  
+
3
4
LNA  
RF  
CP  
+
-
-
+
-
+
FSK  
PLL Demod  
FSK  
ASK  
+
LIMITER  
DATA-  
SLICER  
OP  
-
TAGC  
TDA 5220  
PEAK  
DETECTOR  
PDO  
26  
23 THRES  
OTA  
U REF  
3VOUT  
24  
AGC  
Reference  
: 1  
: 2  
Φ
DET  
CRYSTAL  
OSC  
VCO  
: 64  
VCC  
14  
13  
Bandgap  
Reference  
Loop  
Filter  
DGND  
11  
1
28  
27  
2,7  
5,10  
VCC AGND  
PDWN  
FSEL  
Crystal  
Figure 2  
2.4  
Block Diagram  
Functional Block Description  
Low Noise Amplifier (LNA)  
2.4.1  
The LNA is an on-chip cascode amplifier with a voltage gain of 15 to 20dB. The gain  
figure is determined by the external matching networks situated ahead of LNA and  
between the LNA output LNO (Pin 6) and the Mixer Inputs MI and MIX (Pins 8 and 9).  
The noise figure of the LNA is approximately 3dB, the current consumption is 500µA.  
The gain can be reduced by approximately 18dB. The switching point of this AGC action  
can be determined externally by applying a threshold voltage at the THRES pin (Pin 23).  
This voltage is compared internally with the received signal (RSSI) level generated by  
the limiter circuitry. In case that the RSSI level is higher than the threshold voltage the  
LNA gain is reduced and vice versa. The threshold voltage can be generated by  
attaching a voltage divider between the 3VOUT pin (Pin 24) which provides a  
temperature stable 3V output generated from the internal bandgap voltage and the  
THRES pin as described in Section 3.1. The time constant of the AGC action can be  
determined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen  
along with the appropriate threshold voltage according to the intended operating case  
and interference scenario to be expected during operation. The optimum choice of AGC  
time constant and the threshold voltage is described in Section 3.1.  
Preliminary Specification  
15  
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
2.4.2  
Mixer  
The Double Balanced Mixer downconverts the input frequency (RF) in the range of 400-  
440MHz/810-870MHz to the intermediate frequency (IF) at 10.7MHz with a vol-tage gain  
of approximately 21dB by utilising either high- or low-side injection of the local oscillator  
signal. In case the mixer is interfaced only single-ended, the unused mixer input has to  
be tied to ground via a capacitor. The mixer is followed by a low pass filter with a corner  
frequency of 20MHz in order to suppress RF signals to appear at the IF output (IFO pin).  
The IF output is internally consisting of an emitter follower that has a source impedance  
of approximately 330to facilitate interfacing the pin directly to a standard 10.7MHz  
ceramic filter without additional matching circuitry.  
2.4.3  
PLL Synthesizer  
The Phase Locked Loop synthesizer consists of a VCO, an asynchronous divider chain,  
a phase detector with charge pump and a loop filter and is fully implemented on-chip.  
The VCO is including spiral inductors and varactor diodes. The tuning range of the VCO  
guarantee over production spread and the specified temperature range is 820 and  
860MHz. The oscillator signal is fed both to the synthesiser divider chain and to the  
downconverting mixer. In case of operation in the 400 to 440MHz range the signal is  
divided by two before it is fed to the Mixer. Depending on whether high- or low-side  
injection of the local oscillator is used, the receiving frequency ranges are 810 to  
840MHz and 840 to 870MHz or 400 to 420MHz and 420 to 440MHz - see also Section  
3.4. To be able to switch between two different frequency channels a divider ratio of  
either 32 or 32.25 can be selected via the FSEL-Pin.  
Table 2  
FSEL-Pin Operating States  
FSEL  
Open  
GND  
RF  
400-440MHz  
810-870MHz  
2.4.4  
Crystal Oscillator  
The calculation of the value of the necessary crystal load capacitance is shown in  
Section 3.3, the crystal frequency calculation is explained in Section 3.4.  
2.4.5  
Limiter  
The Limiter is an AC coupled multistage amplifier with a cumulative gain of  
approximately 80 dB that has a bandpass-characteristic centred around 10.7 MHz. It  
has a typical input impedance of 330 to allow for easy interfacing to a 10.7 MHz  
ceramic IF filter. The limiter circuit also acts as a Receive Signal Strength Indicator  
(RSSI) generator which produces a DC voltage that is directly proportional to the input  
Preliminary Specification  
16  
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
signal level as can be seen in Figure 4. This signal is used to demodulate ASK-  
modulated receive signals in the subsequent baseband circuitry. The RSSI output is  
applied to the modulation format switch, to the Peak Detector input and to the AGC  
circuitry.  
In order to demodulate ASK signals the MSEL pin has to be in its ‘High‘-state as  
described in the next chapter.  
2.4.6  
FSK Demodulator  
To demodulate frequency shift keyed (FSK) signals a PLL circuit is used that is  
contained fully on chip. The Limiter output differential signal is fed to the linear phase  
detector as is the output of the 10.7 MHz center frequency VCO. The demodulator gain  
is typically 200µV/kHz. The passive loop filter output that is comprised fully on chip is fed  
to both the VCO and the modulation format switch described in more detail below. This  
signal is representing the demodulated signal with low frequencies applied to the  
demodulator demodulated to logic zero and high frequencies demodulated to logic ones.  
However this is only valid in case the local oscillator is low-side injected to the mixer  
which is applicable to receive frequencies above 840 or 420MHz. In case of receive  
frequencies below 840 or 420MHz high frequencies are demodulated as logical zeroes  
due to a sign inversion in the downconversion mixing process as the L0 is high-side  
injected to the mixer. See also Section 3.4.  
The modulation format switch is actually a switchable amplifier with an AC gain of 11 that  
is controlled by the MSEL pin (Pin 15) as shown in the following table. This gain was  
chosen to facilitate detection in the subsequent circuits. The DC gain is 1 in order not to  
saturate the subsequent Data Filter wih the DC offset produced by the demodulator in  
case of large frequency offsets of the IF signal. The resulting frequency characteristic  
and details on the principle of operation of the switch are described in Section 3.6.  
Table 3  
MSEL Pin Operating States  
MSEL  
Modulation Format  
Open  
ASK  
FSK  
Shorted to ground  
The demodulator circuit is switched off in case of reception of ASK signals.  
2.4.7 Data Filter  
The data filter comprises an OP-Amp with a bandwidth of 100kHz used as a voltage  
follower and two 100kon-chip resistors. Along with two external capacitors a 2nd order  
Preliminary Specification  
17  
V 1.1, 2004-10-20  
TDA 5220  
Functional Description  
Sallen-Key low pass filter is formed. The selection of the capacitor values is described  
in Section 3.2.  
2.4.8  
Data Slicer  
The data slicer is a fast comparator with a bandwidth of 100 kHz. This allows for a  
maximum receive data rate of up to 100kBaud. The maximum achievable data rate also  
depends on the IF Filter bandwidth and the local oscillator tolerance values. Both inputs  
are accessible. The output delivers a digital data signal (CMOS-like levels) for  
subsequent circuits. A self-adjusting slicer-threshold on pin 20 its generated by a RC-  
term. In ASK-mode alternatively a scaled value of the voltage at the PDO-output (approx.  
87%) can be used as the slicer-threshold as shown in Table 4. The data slicer threshold  
generation alternatives are described in more detail in Section 3.5.  
Table 4  
SSEL Pin Operating States  
SSEL  
X
MSEL  
Low  
Selected Slicing Level (SL)  
external SL on Pin 20 (RC-term, e.g.)  
external SL on Pin 20 (RC-term, e.g.)  
87% of PDO-output (approx.)  
High  
Low  
High  
High  
2.4.9  
Peak Detector  
The peak detector generates a DC voltage which is proportional to the peak value of the  
receive data signal. A capacitor is necessary. The input is connected to the output of the  
RSSI-output of the Limiter, the output is connected to the PDO pin (Pin 26). This output  
can be used as an indicator for the received signal strength to use in wake-up circuits  
and as a reference for the data slicer in ASK mode. Note that the RSSI level is also  
output in case of FSK mode.  
2.4.10  
Bandgap Reference Circuitry  
A Bandgap Reference Circuit provides a temperature stable reference voltage for the  
device. A power down mode is available to switch off all subcircuits which is controlled  
by the PWDN pin (Pin 27) as shown in the following table. The supply current drawn in  
this case is typically 50nA.  
Table 5  
PDWN  
PDWN Pin Operating States  
Operating State  
Powerdown Mode  
Receiver On  
Open or tied to ground  
Tied to Vs  
Preliminary Specification  
18  
V 1.1, 2004-10-20  
 
TDA 5220  
Applications  
3
Applications  
3.1  
Application Circuit  
C 1 8  
R 4  
R 5  
U
th r e s h  
o ld  
3 V O U T  
2 4  
T H R E S  
2 3  
R S S I ( 0 . 8  
- 2 . 8 V )  
2 0 k Ω  
O
T A  
V C C  
+ 3 . 1  
V
I lo  
a
d
L N A  
G
a in c o n tr o l  
v o lta g e  
R S S I  
R S S I  
>
<
U
U
: Ilo d = 4 . 2 µ A  
a
th re  
s
h
o
ld  
ld  
:
Ilo =  
a d  
-1 .5 µ A  
th r e s h  
o
4
T A G  
C 5  
C
U
U
c :< 2 . 6 V  
c :> 2 . 6 V  
:
:
G
G
a in h ig h  
a in lo w  
U
C
U
U
=
=
V
-
0 . 7 V  
c
c
m
m
a x  
1 .C6C7 V  
in  
Figure 3  
LNA Automatic Gain Control Circuity  
The LNA automatic gain control circuitry consists of an operational transimpedance  
amplifier that is used to compare the received signal strength signal (RSSI) generated  
by the Limiter with an externally provided threshold voltage Uthres. As shown in the  
following figure the threshold voltage can have any value between approximately 0.8 and  
2.8V to provide a switching point within the receive signal dynamic range.  
This voltage Uthres is applied to the THRES pin (Pin 23) The threshold voltage can be  
generated by attaching a voltage divider between the 3VOUT pin  
(Pin 24) which provides a temperature stable 3V output generated from the internal  
bandgap voltage and the THRES pin. If the RSSI level generated by the Limiter is higher  
than Uthres, the OTA generates a positive current Iload. This yields a voltage rise on the  
TAGC pin (Pin 4). Otherwise, the OTA generates a negative current. These currents do  
not have the same values in order to achieve a fast-attack and slow-release action of the  
Preliminary Specification  
19  
V 1.1, 2004-10-20  
TDA 5220  
Applications  
AGC and are used to charge an external capacitor which finally generates the LNA gain  
control voltage.  
3
2.5  
2
RSSI Level  
1.5  
1
0.5  
0
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
Input Level at LNA Input [dBm]  
Figure 4  
RSSI Level and Permissive AGC Threshold Levels  
The switching point should be chosen according to the intended operating scenario. The  
determination of the optimum point is described in the accompanying Application Note,  
a threshold voltage level of 1.8V is apparently a viable choice. It should be noted that the  
output of the 3VOUT pin is capable of driving up to 50µA, but that the THRES pin input  
current is only in the region of 40nA. As the current drawn out of the 3VOUT pin is directly  
related to the receiver power consumption, the power divider resistors should have high  
impedance values. The sum of R1 and R2 has to be 600kin order to yield 3V at the  
3VOUT pin. R1 can thus be chosen as 240k, R2 as 360kto yield an overall 3VOUT  
output current of 5µA1) and a threshold voltage of 1.8V  
Note: If the LNA gain shall be kept in either high or low gain mode this has to be  
accomplished by tying the THRES pin to a fixed voltage. In order to achieve high gain  
mode operation, a voltage higher than 2.8V shall be applied to the THRES pin, such as  
a short to the 3VOLT pin. In order to achieve low gain mode operation THRES has to be  
connected to GND.  
As stated above the capacitor connected to the TAGC pin is generating the gain control  
voltage of the LNA due to the charging and discharging currents of the OTA and thus is  
also responsible for the AGC time constant. As the charging and discharging currents  
are not equal two different time constants will result. The time constant corresponding to  
the charging process of the capacitor shall be chosen according to the data rate.  
According to measurements performed at Infineon the capacitor value should be greater  
than 47nF.  
1) note the 20kresistor in series with the 3.1V internal voltage source  
Preliminary Specification  
20  
V 1.1, 2004-10-20  
TDA 5220  
Applications  
3.2  
Data Filter Design  
Utilising the on-board voltage follower and the two 100kon-chip resistors a 2nd order  
Sallen-Key low pass data filter can be constructed by adding 2 external capacitors  
between pins 19 (SLP) and 22 (FFB) and to pin 21 (OPP) as depicted in the following  
figure and described in the following formulas1).  
C14  
C12  
FFB  
OPP  
SLP  
22  
21  
19  
RF1 int  
100k  
RF2 int  
100k  
Figure 5  
Data Filter Design  
with RF1int=RF2int=R  
2Q b  
b
C14=  
C12 =  
R2πf3dB  
4QRπf3dB  
with  
b
a
Q =  
Q is the qualify factor of the poles where, in case of a Bessel filter a=1.3617, b=0.618  
and thus Q=0.577  
and in case of a Butter worth filter a=1.414, b=1  
and thus Q=0.71  
Example: Butter worth filter with f3dB=5kHz and R=100kΩ:  
C14=450pF, C12=225pF  
1) taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999  
Preliminary Specification  
21  
V 1.1, 2004-10-20  
TDA 5220  
Applications  
3.3  
Crystal Load Capacitance Calculation  
The value of the capacitor necessary to achieve that the crystal oscillator is operating at  
the intended frequency is determined by the reactive part of the negative resistance of  
the oscillator circuit as shown in Section 4.1.3 and by the crystal specifications given by  
the crystal manufacturer.  
CS  
CRST2  
28  
Input  
Crystal  
impedance  
TDA521X  
Z1-28  
1
CRST1  
Figure 6  
Determination of Series Capacitance Vale for the Quartz Oscillator  
The required series capacitor for a crystal with specified load capacitance CL can be  
calculated as  
1
CS  
=
1
+2π f X L  
CL  
CL is the nominal load capacitance specified by the crystal manufacturer.  
Example:  
13.4 MHz: CL = 12 pF  
XL=1010 Ω  
CS = 5.9 pF  
This value may be obtained by putting two capacitors in series to the crystal, such as  
22pF and 8.2pF for 13.4MHz.  
But please note that the calculated CS-value includes all parasitic.  
3.4  
Crystal Frequency Calculation  
As described in Section 2.4.3 the operating range of the on-chip VCO is wide enough to  
guarantee a receive frequency range between 810 and 870MHz or between 400 and  
440MHz. The VCO signal is divided by 2 before applied to the mixer in case of operation  
at 434MHz. This local oscillator signal can be used to downconvert the RF signals both  
Preliminary Specification  
22  
V 1.1, 2004-10-20  
TDA 5220  
Applications  
with high- or low-side injection at the mixer. High-side injection of the local oscillator has  
to be used for receive frequencies between 810 and 840MHz or beteween 400 and  
420MHz. In this case the local oscillator frequency is calculated by adding the IF  
frequency (10.7 MHz) to the RF frequency. Thus the higher frequency of a FSK-  
modulated signal is demodulated as a logical zero (low).  
Low-side injection has to be used for receive frequencies above 840 MHz or above  
420 MHz. The local oscillator frequency is calculated by subtracting the IF frequency  
(10.7 MHz) from the RF frequency then. In this case no sign-inversion occurs and the  
higher frequency of a FSK-modulated signal is demodulated as a logical one (high). The  
overall division ratios in the PLL are 32 or 64 depending on whether the FSEL-pin is left  
open or tied to ground.  
Therefore the crystal frequency may be calculated by using the following formula:  
fRF ±10.7  
fQU  
=
r
with  
ƒRF receive frequency  
ƒLO local oscillator (PLL) frequency (ƒRF ± 10.7)  
ƒQU quartz crystal oscillator frequency  
r ratio of local oscillator (PLL) frequency and crystal frequency as  
shown in the subsequent table  
Table 6  
Dependence of PLL Overall Division Ratio on FSEL  
FSEL  
open  
GND  
Ratio r=(fLO/fQU)  
32  
64  
This yields the following examples:  
FSEL is „Low“:  
868 .4MHz 10.7MHz  
fQU  
=
= 13.4015625 MHz  
= 13.234375 MHz  
64  
FSEL is „High“:  
434 .2MHz 10.7MHz  
fQU  
=
32  
Preliminary Specification  
23  
V 1.1, 2004-10-20  
TDA 5220  
Applications  
3.5  
Data Slicer Threshold Generation  
The threshold of the data slicer can be generated using an external R-C integrator as  
shown in Figure 7.  
The time constant TA of this circuit including also the internal resistors RF3int and RF4int  
(see Figure 9) has to be significantly larger than the longest period of no signal change  
TL within the data sequence.  
In order to keep distortion low, the minimum value for R is 20k.  
TA has to be calculated as  
R1 (RF3int + RF 4int  
)
TA =  
and  
C13  
C13  
= R1II(RF3int + RF 4int ) C13  
... for ASK  
... for FSK  
R1+ RF3int + RF 4int  
R1 RF 4int  
R1II(RF3int + RF4int )  
TA =  
=
C13  
R1+ RF3int + RF 4int  
v
R1, RF3 int, RF4 int and C13 see also Figure 7 and .Figure 9  
19  
20  
U
threshold  
25  
CM  
data slicer  
data  
filter  
Figure 7  
Data Slicer Threshold Generation with External R-C Integrator  
In case of ASK operation another possibility for threshold generation is to use the peak  
detector in connection with an internal resistive divider and one capacitor as shown in  
the following Figure 8. For selecting the peak detector as reference for the slicing level  
a logic low as to be applied on the SSEL pin.  
In case of MSEL is high (or open), which means that ASK-Mode is selected, a logic low  
on the SSEL pin yields a logic high on the AND-output and thus the peak-detector is  
selected (see Figure 9).  
In case of FSK the MSEL-pin and furthermore the one input of the AND-gate is low, so  
the peak detector can not be selected.  
The capacitor value is depending on the coding scheme and the protocol used.  
Preliminary Specification  
24  
V 1.1, 2004-10-20  
 
 
TDA 5220  
Applications  
C
Pins:  
26  
25  
peak detector  
56k  
390k  
data slicer  
CP  
U
threshold  
Figure 8  
3.6  
Data Slicer Threshold Generation Utilising the Peak Detector  
ASK/FSK-Data Path Functional Description  
The TDA5220 is containing an ASK/FSK switch which can be controlled via Pin 15  
(MSEL). This switch is actually consisting of 2 operational amplifiers that are having a  
gain of 1 in case of the ASK amplifier and a gain of 11 in case of the FSK amplifier in  
order to achieve an appropriate demodulation gain characteristic. In order to  
compensate for the DC-offset generated especially in case of the FSK PLL demodulator  
there is a feedback connection between the threshold voltage of the bit slicer comparator  
(Pin 20) to the negative input of the FSK switch amplifier.  
In ASK-mode alternatively to the voltage at Pin 20 (SLN) a value of approx. 87% of the  
peak-detector output-voltage at Pin 26 (PDO) can be used as the slicer-reference level.  
The slicing reference level is generated by an internal voltage divider (RT1int, RT2int),  
which is applied on the peak detector output.  
The selection between these modes is controlled by Pin 16 (SSEL), as described in  
Section 3.5.  
This is shown in the following Figure 9.  
Preliminary Specification  
25  
V 1.1, 2004-10-20  
TDA 5220  
Applications  
MSEL  
15  
H=ASK  
L=FSK  
PEAK  
DETECTOR  
PDO  
from RSSI Gen  
(ASK signal)  
26  
C15  
R
56k  
T1 int  
ASK/FSK Switch  
100nF  
R
390k  
T2  
Data Filter  
v = 1  
Comp  
-
+
-
RF2 int  
100k  
R
F1 int  
FSK PLL Demodulator  
0.18 mV/kHz  
+
CP  
CM  
ASK  
FSK  
25  
DATA Out  
+
-
+
-
100k  
H=CP  
L=CM  
R
F3 int  
300k  
R
F4 int  
typ. 2 V  
1.5 V......2.5 V  
30k  
22  
21  
19  
20  
16  
ASK mode: v=1  
FSK mode: v=11  
FFB  
C12  
OOP  
SLP  
SLN  
SSEL  
R1  
C14  
C13  
Figure 9  
3.7  
ASK/FSK mode datapath  
FSK Mode  
The FSK datapath has a bandpass characterisitc due to the feedback shown above  
(highpass) and the data filter (lowpass). The lower cutoff frequency f2 is determined by  
the external RC-combination. The upper cutoff frequency f3 is determined by the data  
filter bandwidth.  
The demodulation gain of the FSK PLL demodulator is 200µV/kHz. This gain is  
increased by the gain v of the FSK switch, which is 11. Therefore the resulting dynamic  
gain of this circuit is 2.2mV/kHz within the bandpass. The gain for the DC content of FSK  
signal remains at 200µV/kHz. The cut-off frequencies of the bandpass have to be chosen  
such that the spectrum of the data signal is influenced in an acceptable amount.  
In case that the user data is containing long sequences of logical zeroes the effect of the  
drift-off of the bit slicer threshold voltage can be lowered if the offset voltage inherent at  
the negative input of the slicer comparator (Pin20) is used. The comparator has no  
hysteresis built in.  
This offset voltage is generated by the bias current of the negative input of the  
comparator (i.e. 20nA) running over the external resistor R. This voltage raises the  
voltage appearing at pin 20 (e.g. 1mV with R = 100k). In order to obtain benefit of this  
Preliminary Specification  
26  
V 1.1, 2004-10-20  
TDA 5220  
Applications  
asymmetrical offset for the demodulation of long zeros the lower of the two FSK  
frequencies should be chosen in the transmitter as the zero-symbol frequency.  
In the following figure the shape of the above mentioned bandpass is shown.  
gain (pin19)  
v
v-3dB  
20dB/dec  
-40dB/dec  
3dB  
0dB  
f
DC  
f1  
f2  
f3  
0.18mV/kHz  
2mV/kHz  
Figure 10  
Frequency characteristic in case of FSK mode  
The cutoff frequencies are calculated with the following formulas:  
1
f1 =  
R1×330kΩ  
2π  
×C13  
R1+ 330kΩ  
f2 = v× f1 =11× f1  
f3 = f3dB  
f3 is the 3dB cutoff frequency of the data filter - see Section 3.2.  
Example:  
R1 = 100kΩ, C13 = 47nF  
This leads tof1 = 44Hz and f2 = 485Hz  
Preliminary Specification  
27  
V 1.1, 2004-10-20  
 
TDA 5220  
Applications  
3.8  
ASK Mode  
In case the receiver is operated in ASK mode the datapath frequency charactersitic is  
dominated by the data filter alone, thus it is lowpass shaped.The cutoff frequency is  
determined by the external capacitors C12 and C14 and the internal 100k resistors as  
described in Section 3.2  
0dB  
-3dB  
-40dB/dec  
f
f3dB  
Figure 11  
3.9  
Frequency characteristic in case of ASK mode  
Principle of the Precharge Circuit  
In case the data slicer threshold shall be generated with an external RC network as  
described in Section 3.5 it is necessary to use large values for the capacitor C attached  
to the SLN pin (pin 20) in order to achieve long time constants. This results also from the  
fact that the choice of the value for R1 connected between the SLP and SLN pins (pins  
19 and 20) is limited by the 330kresistor appearing in parallel to R1 as can be seen in  
Figure 9. Apart from this a resistor value of 100kleads to a voltage offset of 1mv at the  
comparator input. The resulting startup time constant τ1 can be calculated with:  
τ1 =  
(
R1|| 330kΩ ×C13  
)
In case R1 is chosen to be 100kand C13 is chosen as 47nF this leads to  
τ1 = 100k|| 330k×47nF = 77k×47nF = 3.6ms  
(
)
When the device is turned on this time constant dominates the time necessary for the  
device to be able to demodulate data properly. In the powerdown mode the capacitor is  
only discharged by leakage currents.  
Preliminary Specification  
28  
V 1.1, 2004-10-20  
TDA 5220  
Applications  
In order to reduce the turn-on time in the presence of large values of C a precharge  
circuit was included in the TDA5220 as shown in the following figure.  
C18  
R4+R5=600k  
R5  
R4  
C13  
R1  
Uthreshold  
24  
23  
Uc>Us  
19  
20  
Uc  
ASK/FSK Switch  
Iload  
Data Filter  
Uc<Us  
-
U2  
+
0 / 240uA  
OTA  
Us  
U2<2.4V : I=240uA  
U2>2.4V : I=0  
-
20k  
+2.4V  
+3.1V  
Figure 12  
Principle of the precharge circuit  
This circuit charges the capacitor C13 with an inrush current Iload of typically 220µA for a  
duration of T2 until the voltage Uc appearing on the capacitor is equal to the voltage Us  
at the input of the data filter. This voltage is limited to 2.5V. As soon as these voltages  
are equal or the duration T2 is exceeded the precharge circuit is disabled.  
τ2 is the time constant of the charging process of C18 which can be calculated as  
τ 2 20k×C2  
as the sum of R4 and R5 is sufficiently large and thus can be neglected. T2 can then be  
calculated according to the following formula:  
1
2.4V  
3V  
T2 =τ 2 ln  
τ 2 ×1.6  
1−  
Preliminary Specification  
29  
V 1.1, 2004-10-20  
 
TDA 5220  
Applications  
The voltage transient during the charging of C2 is shown in the following figure:  
U2  
3V  
2.4V  
T2  
2
Figure 13  
Voltage appearing on C18 during precharging process  
The voltage appearing on the capacitor C13 connected to pin 20 is shown in the following  
figure. It can be seen that due to the fact that it is charged by a constant current source  
it exhibits is a linear increase in voltage which is limited to USmax = 2.5V which is also the  
approximate operating point of the data filter input. The time constant appearing in this  
case can be denoted as T3, which can be calculated with:  
U
Smax×C13  
220µA  
2.5V  
T3 =  
=
×C13  
220µA  
Preliminary Specification  
30  
V 1.1, 2004-10-20  
 
TDA 5220  
Applications  
Uc  
Us  
T3  
Figure 14  
Voltage transient on capacitor C13 attached to pin 20  
As an example the choice of C18 = 22nF and C13 = 47nF yields  
τ2 = 0.44ms  
T2 = 0.71ms  
T3 = 0.53ms  
This means that in this case the inrush current could flow for a duration of 0.64ms but  
stops already after 0.49ms when the USmax limit has been reached. T3 should always be  
chosen to be shorter than T2.  
It has to be noted finally that during the turn-on duration T2 the overall device power  
consumption is increased by the 220µA needed to charge C13.  
The precharge circuit may be disabled if C18 is not equipped. This yields a T2 close to  
zero. Note that the sum of R4 and R5 has to be 600kin order to produce 3V at the  
THRES pin as this voltage is internally used also as the reference for the FSK  
demodulator.  
Preliminary Specification  
31  
V 1.1, 2004-10-20  
 
TDA 5220  
Reference  
4
Reference  
4.1  
Electrical Data  
4.1.1  
Absolute Maximum Ratings  
Attention: The maximum ratings may not be exceeded under any circumstances,  
not even momentarily and individually, as permanent damage to the IC  
may result. The AC/DC characteristic limits are not guaranteed.  
Table 7  
Absolute Maximum Ratings, Tamb = -40 °C … +105 °C  
#
Parameter  
Symbol  
Limit Values  
Unit Remarks  
min.  
max.  
5.5  
1
Supply Voltage  
Vs  
Tj  
-0.3  
-40  
-40  
V
°C  
2
3
4
5
Junction Temperature  
Storage Temperature  
Thermal Resistance  
+125  
+150  
114  
Ts  
°C  
RthJA  
VESD  
K/W  
ESD integrity, all pins  
excl. Pins 1,3, 6, 28  
ESD integrity Pins  
1,3,6,28  
+2  
kV  
HBM according to  
MIL STD 883D,  
method 3015.7  
+1.5  
kV  
4.1.2  
Operating Range  
Within the operational range the IC operates as explained in the circuit description.  
Currents flowing into the device are denoted as positive currents and vice versa. The  
device parameters with are not part of the production test, but either verified by design  
or measured in the Infineon Evalboard as described in Section 4.2.  
Supply voltage: VCC = 4.5V .. 5.5V  
Preliminary Specification  
32  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
Table 8  
Operating Range, Tamb = -40 °C … +105 °C  
#
Parameter  
Symbol Limit Values Unit  
Test Conditions/  
Notes  
L
min.  
max.  
1
Supply Current  
ISF868  
ISF434  
3.9  
3.7  
3.2  
3.0  
7.9  
7.7  
7.2  
7.0  
mA  
mA  
mA  
mA  
f
RF=868MHz, FSK Mode  
fRF=434MHz, FSK Mode  
fRF=868MHz, ASK Mode  
I
SA868  
ISA434  
fRF=434MHz, ASK Mode  
2
Receiver Input Level  
ASK  
FSK, frequ. dev. ± 50kHz  
@source impedance  
50Ω  
BER 2E-3, average  
power level, Manchester  
encoded datarate 4kBit,  
280KHz IF Bandwidth  
RFin  
-106  
-100  
-13  
-13  
dBm  
dBm  
3
4
5
LNI Input Frequency  
MI/X Input Frequency  
fRF  
fMI  
400/810 440/870 MHz  
400/810 440/870 MHz  
3dB IF Frequency Range  
ASK  
FSK  
fIF -3dB  
5
23  
11  
MHz  
10.4  
6
7
8
Powerdown Mode On  
Powerdown Mode Off  
PWDNON  
PWDNOFF  
VTHRES  
2
VS  
0.8  
VS  
V
V
V
0
Gain Control Voltage,  
LNA high gain state  
2.8  
9
Gain Control Voltage,  
LNA low gain state  
VTHRES  
0
0.7  
V
Not part of the production test - either verified by design or measured in the Infineon  
Evalboard as described in Section 4.2.  
4.1.3  
AC/DC Characteristics at TAMB = 25°C  
AC/DC characteristics involve the spread of values guaranteed within the specified  
voltage and ambient temperature range. Typical characteristics are the median of the  
production. Currents flowing into the device are denoted as po-sitive currents and vice  
versa. The device performance parameters marked with are not part of the production  
test - either verified by design or measured in the Infineon Evalboard as described in  
Section 4.2.  
Preliminary Specification  
33  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
Table 9  
AC/DC Characteristics with TA 25°C, VVCC=4.5 ... 5.5 V  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions/  
L
Notes  
min. typ. max.  
SUPPLY  
Supply Current  
1
Supply current,  
standby mode  
IS PDWN  
50  
100  
6.7  
nA  
Pin 27 (PDWN)  
open or tied to 0 V  
2
Supply current, device ISF 868  
operating in 868 MHz  
range, FSK mode  
5.1  
4.9  
4.4  
4.2  
5.9  
mA  
Pin 11 (FSEL) tied to  
GND, Pin 15 (MSEL)  
tied to GND  
3
4
5
Supply current, device ISA 434  
operating in 434 MHz  
range, FSK mode  
5.7  
5.2  
5.  
6.5  
6
mA  
mA  
mA  
Pin 11 (FSEL) open,  
Pin 15 (MSEL) tied  
to GND  
Supply current, device ISA 868  
operating in 868 MHz  
range, ASK mode  
Pin 11 (FSEL) tied to  
GND, Pin 15  
(MSEL) open  
Supply current, device ISA 434  
operating in 434 MHz  
range, ASK mode  
5.8  
Pin 11 (FSEL) open,  
Pin 15 (MSEL) open  
LNA  
Signal Input LNI (PIN 3), VTHRES>2.8V, high gain mode  
1
Average Power Level RFin  
at BER = 2E-3  
(Sensitivity)  
-110  
dBm Manchester  
encoded datarate  
4kBit, 280kHz IF  
Bandwidth  
2
Average Power Level RFin  
at BER = 2E-3  
-103  
dBm Manchester enc.  
datarate 4kBit,  
(Sensitivity) FSK  
280kHz IF Bandw., ±  
50kHz pk. dev.  
3
4
5
Input impedance,  
= 434 MHz  
S
S
0.873 / -34.7 deg  
0.738 / -73.5 deg  
-15  
11 LNA  
f
RF  
Input impedance,  
= 869 MHz  
11 LNA  
f
RF  
Input level @ 1dB  
compression  
P1dB  
dBm  
LNA  
Preliminary Specification  
34  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
#
Parameter  
Symbol  
Limit Values  
min. typ. max.  
-10  
Unit Test Conditions/  
L
Notes  
6
Input3rd orderintercept IIP3  
dBm matched input  
LNA  
LNA  
point f = 434 MHz  
RF  
7
8
Input3rd orderintercept IIP3  
-14  
dBm matched input  
dBm  
point f = 869 MHz  
RF  
LO signal feedthrough LO  
-73  
LNI  
at antenna port  
Signal Output LNO (PIN 6), VTHRES>2.8V, high gain mode  
1
2
3
Gain f = 434 MHz  
RF  
S
S
S
1.509/ 138.2 deg  
1.419/ 101.7 deg  
0.886 / -12.9 deg  
21 LNA  
21 LNA  
22 LNA  
Gain f = 869 MHz  
RF  
Output impedance,  
f
= 434 MHz  
RF  
4
5
6
Output impedance,  
= 869 MHz  
S
0.866 / -24.2 deg  
22 LNA  
f
RF  
Voltage Gain Antenna  
G
42  
40  
dB  
dB  
AntMI  
AntMI  
to MI f = 434 MHz  
RF  
Voltage Gain Antenna  
G
to MI f = 869 MHz  
RF  
Signal Input LNI, VTHRES=GND, lwo gain mode  
1
2
3
4
5
6
Input impedance,  
= 434 MHz  
S
0.873 / -34.7 deg  
11 LNA  
f
RF  
Input impedance,  
= 869 MHz  
S
0.738 / -73.5 deg  
11 LNA  
f
RF  
Input level @ 1dB C. P. P1dB  
-18  
-6  
dBm matched input  
dBm matched input  
dBm matched input  
dBm matched input  
LNA  
LNA  
f
= 434 MHz  
RF  
Input level @ 1dB C. P. P1dB  
= 869 MHz  
f
RF  
Input3rd orderintercept IIP3  
-10  
-5  
LNA  
point f = 434 MHz  
RF  
Input3rd orderintercept IIP3  
LNA  
point f = 869 MHz  
RF  
Signal Output LNO, VTHRES=GND, lwo gain mode  
1
2
3
Gain f = 434 MHz  
RF  
S
S
S
0.183 / 140.6 deg  
0.179 / 109.1 deg  
0.897 / -13.6 deg  
21 LNA  
21 LNA  
22 LNA  
Gain f = 869 MHz  
RF  
Output impedance,  
f
= 434 MHz  
RF  
Preliminary Specification  
35  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
#
Parameter  
Symbol  
Limit Values  
min. typ. max.  
0.868 / -26.3 deg  
Unit Test Conditions/  
L
Notes  
4
Output impedance,  
S
22 LNA  
f
= 869 MHz  
RF  
5
6
Voltage Gain Antenna  
G
22  
19  
dB  
dB  
AntMI  
to MI f = 434 MHz  
RF  
Voltage Gain Antenna  
G
AntMI  
to MI f = 869 MHz  
RF  
Signal 3VOUT (PIN 24)  
1
2
Output voltage  
Current out  
V3VOUT  
I3VOUT  
2.9  
-3  
3.1  
-5  
3.3  
-10  
V
3VOUT Pin open  
see Section 4.1  
µA  
Signal THRES (PIN 23)  
1
2
3
4
Input Voltage range  
LNA low gain mode  
LNA high gain mode  
Current in  
VTHRES  
VTHRES  
VTHRES  
ITHRES_in  
0
3
V -1  
S
V
see Section 4.1  
0
V
V -1  
S
V
or shorted to Pin 24  
5
nA  
Signal TAGC (PIN 4)  
1
Current out,  
LNA low gain state  
ITAGC_out  
-3.6  
1
-4.2  
1.6  
-5.5  
2.2  
µA  
µA  
RSSI > V  
THRES  
2
Current in,  
I
RSSI < V  
THRES  
TAGC_in  
LNA high gain state  
MIXER  
Signal Input MI/MIX (PINS 8/9)  
1
2
3
4
Input impedance,  
= 434 MHz  
S
0.942 / -14.4 deg  
11 MIX  
f
RF  
Input impedance,  
= 869 MHz  
S
0.918 / -28.1 deg  
11 MIX  
f
RF  
Input3rd orderintercept IIP3  
-28  
-26  
dBm  
dBm  
MIX  
MIX  
point f = 434 MHz  
RF  
Input3rd orderintercept IIP3  
point f = 869 MHz  
RF  
Signal Output IFO (PIN 12)  
1
2
Output impedance  
Z
330  
19  
IFO  
Conversion Voltage  
G
dB  
MIX  
Gain f = 434 MHz  
RF  
Preliminary Specification  
36  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
#
Parameter  
Symbol  
Limit Values  
min. typ. max.  
18  
Unit Test Conditions/  
L
Notes  
3
Conversion Voltage  
G
dB  
MIX  
Gain f = 869 MHz  
RF  
LIMITER  
Signal Input LIM/X (PINS 17/18)  
1
2
3
4
Input Impedance  
RSSI dynamic range  
RSSI linearity  
Z
264  
5
330  
70  
396  
23  
LIM  
DR  
dB  
dB  
MHz  
RSSI  
LIN  
f
±1  
10.7  
RSSI  
Operating frequency  
(3dB points)  
LIM  
DATA FILTER  
1
Useable bandwidth  
BW  
100  
kHz  
V
BB  
FILT  
2
RSSI Level at Data  
Filter Output SLP,  
RSSI  
1.1  
LNA in high gain  
mode at 868 MHz  
low  
RF =-103dBm  
IN  
3
RSSI Level at Data  
Filter Output SLP,  
RSSI  
2.65  
V
LNA in high gain  
mode at 868 MHz  
high  
RF =-30dBm  
IN  
SLICER  
Signal Output DATA (PIN 25)  
1
Maximum Datarate  
DR  
100  
0.1  
kBps NRZ, 20pF  
capacitive loading  
max  
2
3
LOW output voltage  
HIGH output voltage  
V
0
V
V
SLIC_L  
SLIC_H  
V
V -  
S
V -1  
S
V -  
S
output  
1.3  
0.7  
current=200µA  
Slicer, Negative Input (PIN 20)  
Precharge Current Out  
1
I
-100  
-220  
-300  
µA  
see Section 4.2.  
PCH_SLN  
Preliminary Specification  
37  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions/  
L
Notes  
min. typ. max.  
PEAK DETECTOR  
Signal Output PDO (PIN 26)  
1
Load current  
I
-500  
µA  
static load current  
must not exceed  
-500µA  
load  
2
Internal resistive load  
R
357  
446  
535  
kΩ  
CRYSTAL OSCILLATOR  
Signals CRSTL 1, CRSTL 2 (PINS 1/28)  
1
2
3
Operating frequency  
f
6
14  
MHz fundamental mode,  
series resonance  
CRSTL  
Input Impedance  
@ ~13MHz  
Z
-600 +  
j 1010  
1-28  
Serial Capacity  
C
=C1  
5.9  
pF  
S10  
@ ~13MHz  
ASK/FSK Signal Switch  
Signal MSEL (PIN 15)  
1
2
3
ASK Mode  
FSK Mode  
V
1.4  
0
4
V
or open  
MSEL  
MSEL  
V
I
0.2  
19  
V
Input Bias Current  
MSEL  
-11  
µA  
MSEL tied to GND  
MSEL  
FSK DEMODULATOR  
1
Demodulation Gain  
G
200  
µV/  
FMDEM  
kHz  
2
Useable IF Bandwidth BW  
10.2  
10.7  
11.2  
MHz  
IFPLL  
POWER DOWN MODE  
Signal PDWN (PIN 27)  
1
2
Powerdown Mode On PWDN  
2.8  
0
V
S
V
V
ON  
Off  
Powerdown Mode Off PWDN  
0.8  
Preliminary Specification  
38  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
#
Parameter  
Symbol  
Limit Values  
min. typ. max.  
19  
Unit Test Conditions/ L  
Notes  
3
Input bias current  
PDWN  
I
µA  
ms  
Power On Mode  
PDWN  
4
Start-up Time until  
valid IF signal is  
detected  
T
<1  
depends on the  
used crystal  
SU  
VCO MULTIPLEXER  
Signal FSEL (PIN 11)  
1
2
f
RF range 434 MHz  
V
1.4  
0
4
V
V
or open  
FSEL  
fRF range 869 MHz  
V
0.2  
FSEL  
3
Input bias current  
FSEL  
I
-160 -200 -240 µA  
FSEL tied to GND  
FSEL  
DATA-SLICER REFERENCE-LEVEL  
Signal SSEL (PIN 16), ASK-Mode  
1
Slicer-Reference is  
voltage at Pin 20 (SLN)  
V
1.4  
4
V
V
or open  
SSEL  
2
Slicer-Reference is  
approx. 87% of the  
voltage at Pin 26  
(PDO)  
V
0
0.2  
SSEL  
3
Input bias current  
SSEL  
I
-10  
-19  
µA  
SSEL tied to GND  
SSEL  
Not part of the production test - either verified by design or measured in the Infineon  
Evalboard as described in Section 4.2.  
Preliminary Specification  
39  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
4.1.4  
AC/DC Characteristics at TAMB= -40 to 105°C  
Currents flowing into the device are denoted as positive currents and vice versa.  
Table 10  
AC/DC Characteristics with TAMB = -40°C ...+105°C, VVCC=4.5 ... 5.5 V  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions/  
Notes  
min. typ. max.  
SUPPLY  
Supply Current  
1
Supply current,  
standby mode  
IS PDWN  
ISF 868  
50  
400  
7.9  
nA  
Pin 27 (PDWN) open  
or tied to 0 V  
2
Supply current,  
device operating in  
868 MHz range, FSK  
mode  
3.9  
3.7  
3.2  
3
5.9  
mA  
Pin 11 (FSEL) tied to  
GND, Pin 15 (MSEL)  
tied to GND  
3
4
5
Supply current,  
device operating in  
434 MHz range, FSK  
mode  
ISA 434  
ISA 868  
ISA 434  
5.7  
5.2  
5.  
7.7  
7.2  
7
mA  
mA  
mA  
Pin 11 (FSEL) open,  
Pin 15 (MSEL) tied  
to GND  
Supply current,  
device operating in  
868 MHz range, ASK  
mode  
Pin 11 (FSEL) tied to  
GND, Pin 15  
(MSEL) open  
Supply current,  
device operating in  
434 MHz range, ASK  
mode  
Pin 11 (FSEL) open,  
Pin 15 (MSEL) open  
Signal Input 3VOUT (PIN 24)  
1
2
Output voltage  
Current out  
V
I
2.9  
-3  
3.1  
-5  
3.3  
-10  
V
3VOUT Pin open  
see Section 4.1  
3VOUT  
µA  
3VOUT  
Signal THRES (PIN 23)  
1
2
3
4
Input Voltage range  
LNA low gain mode  
LNA high gain mode  
Current in  
V
0
3
V -1  
S
V
see Section 4.1  
THRES  
THRES  
THRES  
V
V
0
V
V -1  
S
V
or shorted to Pin 24  
ITHRES_in  
5
nA  
Signal TAGC (PIN 4)  
1
Current out,  
ITAGC_out  
-1  
-4.2  
-8  
µA  
RSSI > V  
THRES  
LNA low gain state  
Preliminary Specification  
40  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions/  
Notes  
min. typ. max.  
2
Current in, LNA high  
gain state  
V
0.5  
1.5  
5
µA  
RSSI < V  
TAGC_in  
THRES  
MIXER  
1
Conversion Voltage  
G
+19  
+18  
dB  
dB  
MIX  
Gain f = 434 MHz  
RF  
2
Conversion Voltage  
G
MIX  
Gain f = 868 MHz  
RF  
LIMITER  
Signal Input LIM/X (PINS 17/18)  
1
2
RSSI dynamic range DR  
70  
dB  
V
RSSI  
low  
RSSI Level at Data  
Filter Output SLP,  
RSSI  
1.1  
LNA in high gain  
mode at 868 MHz  
RF = -103dBm  
IN  
3
RSSI Level at Data  
Filter Output SLP,  
RSSI  
2.65  
V
LNA in high gain  
mode at 868 MHz  
high  
RF = -30dBm  
IN  
DATA FILTER  
Slicer, Signal Output DATA (PIN 25)  
1
Maximum Datarate  
DR  
100  
0.1  
kBps NRZ, 20pF  
capacitive loading  
max  
2
3
LOW output voltage  
HIGH output voltage  
V
0
V
V
SLIC_L  
SLIC_H  
V
V -  
S
V -1  
S
V -  
S
output  
1.5  
0.5  
current=200µA  
Slicer, Negative Input (PIN 20)  
1
Precharge Current  
Out  
I
-100  
-220  
-300  
µA  
see Section 4.2  
PCH_SLN  
Preliminary Specification  
41  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
#
Parameter  
Symbol  
Limit Values  
Unit Test Conditions/  
Notes  
min. typ. max.  
PEAK DETECTOR  
Signal Output PDO (PIN 26)  
1
Load current  
I
-400  
µA  
static load current  
must not exceed  
-500µA  
load  
2
Internal resistive load  
R
356  
446  
575  
kΩ  
CRYSTAL OSCILLATOR  
Signals CRSTL 1, CRSTL 2 (PINS 1/28)  
Operating frequency  
1
f
6
14  
MHz fundamental mode,  
series resonance  
CRSTL  
ASK/FSK Signal Switch  
Signal MSEL (PIN 15)  
1
2
3
ASK Mode  
FSK Mode  
V
V
I
1.4  
0
4
V
V
or open  
MSEL  
0.2  
-20  
MSEL  
Input bias current  
MSEL  
-11  
µA MSEL tied to GND  
MSEL  
FSK DEMODULATOR  
1
Demodulation Gain  
G
200  
µV/  
FMDEM  
kHz  
2
Useable IF  
Bandwidth  
BW  
10.2  
10.7  
11.2  
MHz  
IFPLL  
POWER DOWN MODE  
Signal PDWN (PIN 27)  
1
2
Powerdown Mode On PWDN  
Powerdown Mode Off PWDN  
2.8  
0
V
S
V
V
ON  
Off  
0.8  
Preliminary Specification  
42  
V 1.1, 2004-10-20  
TDA 5220  
Reference  
#
Parameter  
Symbol  
Limit Values  
min. typ. max.  
<1  
Unit Test Conditions/  
Notes  
3
Start-up Time until  
valid signal is  
T
ms  
depends on the used  
crystal  
SU  
detected at IF  
VCO MULTIPLEXER  
Signal FSEL (PIN 11)  
1
2
f
RF range 434 MHz  
V
1.4  
0
4
V
V
or open  
FSEL  
fRF range 869 MHz  
V
0.2  
FSEL  
3
Input bias current  
FSEL  
I
-110  
-200  
-340  
µA  
FSEL tied to GND  
FSEL  
DATA-SLICER REFERENCE-LEVEL  
Signal SSEL (PIN 16), ASK-Mode  
1
Slicer-Reference is  
voltage at Pin 20  
(SLN)  
V
1.4  
4
V
V
or open  
SSEL  
2
Slicer-Reference is  
approx. 87% of the  
voltage at Pin 26  
(PDO)  
V
0
0.2  
SSEL  
3
Input bias current  
SSEL  
I
-11  
-20  
µA  
SSEL tied to GND  
SSEL  
Not part of the production test - either verified by design or measured in the Infineon  
Evalboard as described in Section 4.2.  
4.2  
Test Circuit  
The device performance parameters marked with in Section 4.1 were either verified  
by design or measured on an Infineon evaluation board. This evaluation board can be  
obtained together with evaluation boards of the accompanying transmitter device  
TDK5110 in an evaluation kit that may be ordered on the INFINEON Webpage  
www.infineon.com/Products. More information on the kit is available on request.  
Preliminary Specification  
43  
V 1.1, 2004-10-20  
 
TDA 5220  
Reference  
Figure 15  
4.3  
Schematic of the Evaluation Board  
Test Board Layouts  
Figure 16  
Top Side of the Evaluation Board  
Preliminary Specification  
44  
V 1.1, 2004-10-20  
 
 
TDA 5220  
Reference  
Figure 17  
Bottom Side of the Evaluation Board  
Figure 18  
Component Placement on the Evaluation Board  
Preliminary Specification  
45  
V 1.1, 2004-10-20  
 
 
TDA 5220  
Reference  
4.4  
Bill of Materials  
The following components are necessary for evaluation of the TDA5220.  
Table 11  
Bill of Materials (cont’d)  
Ref.  
C1  
Value 434MHz  
1pF  
Value 868MHz  
1pF  
Specification  
0805, COG, +/-0.1pF  
0805, COG, +/-0.1pF  
0805, COG, +/-0.1pF  
0805, COG, +/-5%  
1206, X7R, +/-10%  
Toko, PTL2012-F10N0G  
0805, COG, +/-5%  
0805, COG, +/-5%  
0805, COG, +/-5%  
0805, X7R, +/-10%  
0805, X7R, +/-10%  
0805, COG, +/-5%  
0805, X7R, +/-10%  
0805, COG, +/-5%  
0805, COG, +/-5%  
0805, COG, +/-0.1pF  
0805, COG, +/-1%  
0805, X7R, +/-5%  
1206, X7R, +/-10%  
Infineon  
C2  
4.7pF  
3.9pF  
C3  
6.8pF  
5.6pF  
C4  
100pF  
47nF  
100pF  
C5  
47nF  
C6  
10nH  
3.9pF  
C7  
100pF  
33pF  
100pF  
C8  
22pF  
C9  
100pF  
10nF  
100pF  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C21  
IC1  
L1  
10nF  
10nF  
10nF  
220pF  
47nF  
220pF  
47nF  
470pF  
47nF  
470pF  
47nF  
8.2pF  
8.2pF  
18pF  
18pF  
22nF  
22nF  
100nF  
TDA5220  
15nH  
100nF  
TDA5220  
3.3nH  
Toko, PTL2012-F15N0G  
0805, COG, +/-0.1pF  
1053-922  
L2  
8.2pF  
3.9pF  
Q1  
13.234375 MHz  
SFE_10.7MA5-A  
100kΩ  
240kΩ  
360kΩ  
13.4015625 MHz  
SFE_10.7MA5-A  
100kΩ  
240kΩ  
360kΩ  
Q2  
Murata  
R1  
0805, +/-5%  
R4  
0805, +/-5%  
R5  
0805, +/-5%  
Preliminary Specification  
46  
V 1.1, 2004-10-20  
 
TDA 5220  
Reference  
Ref.  
R6  
S1  
S2  
S3  
S6  
X1  
X2  
Value 434MHz  
10kΩ  
Value 868MHz  
10kΩ  
Specification  
0805, +/-5%  
2-pole pin connector  
SOL_JUMP  
STL_2POL  
SOL_JUMP  
SOL_JUMP  
SOL_JUMP  
STL_2POL  
STL_2POL  
SOL_JUMP  
SOL_JUMP  
SOL_JUMP  
STL_2POL  
SOL_JUMP  
SOL_JUMP  
2-pole pin connector  
A107-900A (1.6mm  
gold plated)  
A107-900A (1.6mm  
gold plated)  
INPUT OUTPUT  
ENTERPRISE CORP  
X3  
A107-900A (1.6mm  
gold plated)  
A107-900A (1.6mm  
gold plated)  
INPUT OUTPUT  
ENTERPRISE CORP  
Please note that in case of operation at 434MHz a capacitor has to be soldered in place  
L2 and an inductor in place C6.  
Preliminary Specification  
47  
V 1.1, 2004-10-20  
TDA 5220  
Package Outlines  
5
Package Outlines  
P_TSSOP_28.eps  
Figure 19  
Table 12  
<Dev_Package1>  
Order Information  
Type  
Ordering Code  
Package  
<Dev_Package1>  
TDA 5220  
Q67100-H2049  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
V 1.1, 2004-10-20  
SMD = Surface Mounted Device  
Preliminary Specification  
48  
 
 
TDA 5220  
Page  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Pin Defintion and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
FSEL-Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
MSEL Pin Operating States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PDWN Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Dependence of PLL Overall Division Ratio on FSEL. . . . . . . . . . . . . . 23  
Absolute Maximum Ratings, Tamb = -40 °C … +105 °C . . . . . . . . . . . . 32  
Operating Range, Tamb = -40 °C … +105 °C . . . . . . . . . . . . . . . . . . . . 33  
AC/DC Characteristics with TA 25°C, VVCC=8.5V /. . . . . . . . . . . . . . . . 34  
AC/DC Characteristics with TAMB = -40°C ...+105°C, VVCC=5.5V . . . . 40  
Bill of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Order Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Preliminary Specification  
49  
V 1.1, 2004-10-20  
TDA 5220  
Page  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
LNA Automatic Gain Control Circuity. . . . . . . . . . . . . . . . . . . . . . . . . . 19  
RSSI Level and Permissive AGC Threshold Levels . . . . . . . . . . . . . . 20  
Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Determination of Series Capacitance Vale for the Quartz Oscillator . . 22  
Data Slicer Threshold Generation with External R-C Integrator . . . . . 24  
Data Slicer Threshold Generation Utilising the Peak Detector . . . . . . 25  
ASK/FSK mode datapath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Frequency characteristic in case of FSK mode . . . . . . . . . . . . . . . . . . 27  
Frequency characteristic in case of ASK mode . . . . . . . . . . . . . . . . . . 28  
Principle of the precharge circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Voltage appearing on C18 during precharging process. . . . . . . . . . . . 30  
Voltage transient on capacitor C13 attached to pin 20 . . . . . . . . . . . . 31  
Schematic of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Top Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Bottom Side of the Evaluation Board. . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Component Placement on the Evaluation Board. . . . . . . . . . . . . . . . . 45  
P-TSSOP-28-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Preliminary Specification  
50  
V 1.1, 2004-10-20  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TDA5220_15

Material Content Data Sheet
INFINEON

TDA5221

ASK/FSK Single Conversion Receiver
INFINEON

TDA5221XUMA1

Telecom Circuit, 1-Func, PDSO28, PLASTIC, TSSOP-28
INFINEON

TDA5225

Telecom Circuit, 1-Func, CMOS, PDSO28, GREEN, PLASTIC, TSSOP-28
INFINEON

TDA5230

Universal Low Power ASK/FSK Single Conversion Multi-Channel Image-Reject Receiver
INFINEON

TDA5231

Universal Low Power ASK/FSK Single Conversion Multi-Channel Image-Reject Receiver
INFINEON

TDA5231XT

暂无描述
INFINEON

TDA5235

Enhanced Sensitivity Double-Configuration Receiver with Digital Baseband Processing
INFINEON

TDA5240

Brushless DC motor drive circuit
NXP

TDA5240

看似矛盾的组合正是接收器设计所面临的日益严苛的要求:远距离、低能耗、灵活适应客户要求。您认为这需要投入大量开发精力,在设计中额外增加昂贵的器件?全新高灵敏度、低功率接收器系列 SmartLEWIS RX+ 帮您解决这一难题。SmartLEWIS RX+ 系列产品包括 TDA5240、TDA5235 和 TDA5225,需要极少外部器件即可满足所有要求。
INFINEON

TDA5240T

Brushless DC motor drive circuit
NXP

TDA5241

Brushless DC motor drive circuit
NXP