TLD5541-1QU [INFINEON]

H-Bridge DC/DC Controller with SPI Interface;
TLD5541-1QU
型号: TLD5541-1QU
厂家: Infineon    Infineon
描述:

H-Bridge DC/DC Controller with SPI Interface

文件: 总81页 (文件大小:3396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Infineon® LITIX™ Power Flex  
Package  
Marking  
PG-VQFN-48-31  
TLD55411QV  
PG-TQFP-48-9  
TLD55411QU  
TLD5541-1QU  
Sales Name TLD5541-1QV  
1
Overview  
Features  
Single Inductor high power Buck-Boost controller  
Wide LED forward voltage Range (2 V up to 55 V)  
Wide VIN Range (IC 4.5 V to 40 V, Power 4.5 V to 55 V)  
Switching Frequency Range from 200 kHz to 700 kHz  
SPI for diagnostics and control  
Maximum Efficiency in every condition (up to 96%)  
Constant Current (LED) and Constant Voltage Regulation  
Drives Multiple Load with a single IC thanks to the Fast Output Discharge operation  
Limp Home Function (Fail Safe Mode)  
EMC optimized device: Features an auto Spread Spectrum  
LED and Input current sense with dedicated monitor Outputs  
Advanced protection features for device and load  
Enhanced Dimming features: Analog and PWM dimming  
LED current accuracy +/- 3%  
Available in a small thermally enhanced PG-VQFN-48-31 or PG-TQFP-48-9 package  
Automotive AEC Qualified  
VIN  
RIIN  
CIN2  
IVCC  
CIN1  
CIVCC  
VIN  
IIN2  
IVCC_ext  
IVCC  
Rfilter  
Cfilter  
D2  
D1  
IIN1  
SET  
COUT2  
COUT3  
BST1  
BST2  
RFB  
LIMPHOME  
FAIL SAFE Circuit  
COUT1  
CBST1 CBST2  
VDD  
M1  
M2  
M4  
LHI  
EN/INUVLO  
HSGD1  
SWN1  
LOUT  
REN  
I/O  
I/O  
INOVLO  
CCOMP  
M3  
LSGD1  
SWCS  
RCOMP  
CSOFT_START  
COMP  
SOFT_START  
FAIL SAFE Circuit  
Micro  
controller  
PWMI_LH  
RFREQ  
FREQ  
PWMI  
SGND  
PGND1  
PGND2  
LSGD2  
SWN2  
HSGD2  
VFB  
RPWMI  
RSENSE  
RSENSE  
A/D  
A/D  
IINMON  
IOUTMON  
SYNC  
RSYNC  
I/O  
VDD  
VDD  
RCSN  
CSN  
SI  
SO  
FBH  
RSI  
SPI  
RSO  
FBL  
RSCLK  
SCLK  
VSS AGND  
GND  
Figure 1  
Application Drawing - TLD5541-1 as current regulator  
Datasheet  
www.infineon.com  
1
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Overview  
Description  
The TLD5541-1 is a synchronous MOSFET H-Bridge DC/DC controller with built in protection features and SPI  
interface. This concept is beneficial for driving high power LEDs with maximum system efficiency and  
minimum number of external components. The TLD5541-1 offers both analog and digital (PWM) dimming.The  
switching frequency is adjustable in the range of 200 kHz to 700 kHz. It can be synchronized to an external  
clock source. A built in programable Spread Spectrum switching frequency modulation and the forced  
continuous current regulation mode improve the overall EMC behavior. Furthermore the current mode  
regulation scheme provides a stable regulation loop maintained by small external compensation  
components. The adjustable soft start feature limits the current peak as well as voltage overshoot at start-up.  
The TLD5541-1 is suitable for use in the harsh automotive environment.  
Table 1  
Product Summary  
Power Stage input voltage range  
Device Input supply voltage range  
VPOW  
4.5 V … 55 V  
4.5 V … 40 V  
VVIN  
Maximum output voltage (depending by the  
application conditions)  
VOUT(max)  
55 V as LED Driver Boost Mode  
50 V as LED Driver Buck Mode  
50 V as Voltage regulator  
Switching Frequency range  
fSW  
200 kHz... 700 kHz  
Typical NMOS driver on-state resistance at  
RDS(ON_PU)  
2.3  
Tj = 25°C (Gate Pull Up)  
Typical NMOS driver on-state resistance at  
Tj = 25°C (Gate Pull Down)  
RDS(ON_PD)  
fSCLK(MAX)  
1.2 Ω  
SPI clock frequency  
5 MHz  
Protective Functions  
Over load protection of external MOSFETs  
Shorted load, open load, output overvoltage protection  
Input overvoltage and undervoltage protection  
Thermal shutdown of device with autorestart behavior  
Electrostatic discharge protection (ESD)  
Diagnostic Functions  
Latched diagnostic information via SPI  
Open load detection in ON-state  
Device Overtemperature shutdown and Temperature Prewarning  
Smart monitoring and advanced functions provide ILED and IIN information  
Limp Home Function  
Limp Home activation via LHI pin  
Applications  
Especially designed for driving high power LEDs in automotive applications  
Automotive Exterior Lighting: full LED headlamp assemblies (Low Beam, High Beam, Matrix Beam, Pixel  
Light)  
General purpose current/voltage controlled DC/DC LED driver  
Datasheet  
2
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Block Diagram  
2
Block Diagram  
IVCC  
Internal Supply  
Power  
On Reset  
LDO  
VIN  
IVCC_EXT  
GATE  
DRIVER  
SYNC  
FREQ  
Oscillator  
BST1  
Auto-Spread  
Spectrum  
Generator  
HSGD1  
SWN1  
BUCK  
LOGIC  
Slope Comp.  
IVCC_EXT  
VIN  
EN/INUVLO  
INOVLO  
Voltage  
Protection  
+ Enable  
Thermal Protection  
+ Prewarning  
LSGD1  
PGND1  
PWM  
Generator  
Diagnosis Open Load + Short  
to GND  
IVCC_EXT  
Soft Start  
SOFT_START  
Limp Home Mode  
Digital Dimming  
LSGD2  
PGND2  
LHI  
PWMI  
BOOST  
LOGIC  
Analog Dimming Pin  
SET  
SWN2  
HSGD2  
BST2  
Fast Output  
Discharge  
Operation  
Mode  
Output  
current  
accuracy  
calibration  
SWCS  
SGND  
Switch Current  
Error Amplifier  
VDD  
8 Bit DAC  
Analog  
Dimming  
CSN  
SCLK  
SI  
SPI  
Voltage Loop  
Feedback  
VFB  
SO  
Input  
Current  
Monitor  
LED  
Current  
Monitor  
FBH  
FBL  
Input/diagnosis  
register  
Feedback Error Amplifier  
IIN1 IIN2  
VSS  
AGND  
COMP  
Figure 2  
Block Diagram - TLD5541-1  
Datasheet  
3
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
Figure 3  
Pin Configuration - TLD5541-1  
Datasheet  
4
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Pin Configuration  
3.2  
Pin Definitions and Functions  
1)  
Pin  
Symbol  
I/O  
-
Function  
Power Supply  
1, 12,  
n.c.  
Not connected, tie to AGND on the Layout;  
15, 21,  
32, 33,  
45, 48  
44  
31  
47  
VIN  
-
-
I
Power Supply Voltage;  
Supply for internal biasing.  
VDD  
Digital GPIO Supply Voltage;  
Connect to reverse voltage protected 5 V or 3.3 V supply.  
IVCC_EXT  
PD External LDO input;  
Input to alternatively supply internal Gate Drivers via an external LDO.  
Connect to IVCC pin to use internal LDO to supply gate drivers. Must not  
be left open.  
5, 8  
26  
40  
-
PGND1, 2  
VSS  
-
-
-
-
Power Ground;  
Ground for power potential. Connect externally close to the chip.  
Digital GPIO Ground;  
Ground for GPIO pins.  
AGND  
EP  
Analog Ground;  
Ground Reference  
Exposed Pad;  
Connect to external heatspreading Cu area (e.g. inner GND layer of  
multilayer PCB with thermal vias).  
Gate Driver Stages  
2
HSGD1  
O
O
Highside Gate Driver Output 1;  
Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT  
superimposed on the switch node voltage SWN1. Connect to gate of  
external switching MOSFET.  
11  
HSGD2  
Highside Gate Driver Output 2;  
Drives the top n-channel MOSFET with a voltage equal to VIVCC_EXT  
superimposed on the switch node voltage SWN2. Connect to gate of  
external switching MOSFET.  
6
7
LSGD1  
LSGD2  
O
O
Lowside Gate Driver Output 1;  
Drives the lowside n-channel MOSFET between GND and VIVCC_EXT  
Connect to gate of external switching MOSFET.  
.
.
Lowside Gate Driver Output 2;  
Drives the lowside n-channel MOSFET between GND and VIVCC_EXT  
Connect to gate of external switching MOSFET.  
4
9
SWN1  
SWN2  
IO  
IO  
Switch Node 1;  
SWN1 pin swings from a diode voltage drop below ground up to VIN.  
Switch Node 2;  
SWN2 pin swings from ground up to a diode voltage drop above VOUT  
.
Datasheet  
5
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Pin Configuration  
1)  
Pin  
46  
Symbol  
IVCC  
I/O  
O
Function  
Internal LDO output;  
Used for internal biasing and gate driver supply. Bypass with external  
capacitor close to the pin. Pin must not be left open.  
Inputs and Outputs  
37  
23  
25  
41  
LHI  
I
-
-
I
PD Limp Home Input Pin;  
Used to enter in Limp Home state during Fail Safe condition.  
TEST1  
TEST2  
EN/INUVLO  
Test Pin;  
Used for Infineon end of line test, connect to GND in application.  
Test Pin;  
Used for Infineon end of line test, connect to GND in application.  
PD Enable/Input Under Voltage Lock Out;  
Used to put the device in a low current consumption mode, with  
additional capability to fix an undervoltage threshold via external  
components. Pin must not be left open.  
35  
34  
FREQ  
SYNC  
I
I
Frequency Select Input;  
Connect external resistor to GND to set frequency.  
PD Synchronization Input;  
Apply external clock signal for synchronization.  
24  
13  
PWMI  
FBH  
I
I
PD Control Input; Digital input 5 V or 3.3 V.  
Output current Feedback Positive;  
Non inverting Input (+).  
14  
3
FBL  
I
Output current Feedback Negative;  
Inverting Input (-).  
BST1  
IO  
Bootstrap capacitor;  
Used for internal biasing and to drive the Highside Switch HSGD1.  
Bypass to SWN1 with external capacitor close to the pin. Pin must not be  
left open.  
10  
BST2  
IO  
Bootstrap capacitor;  
Used for internal biasing and to drive the Highside Switch HSGD2.  
Bypass to SWN2 with external capacitor close to the pin. Pin must not be  
left open.  
17  
18  
SWCS  
SGND  
I
I
Current Sense Input;  
Inductor current measurement - Non Inverting Input (+).  
Current Sense Ground;  
Inductor current sense - Inverting Input (-).  
Route as Differential net with SWCS on the Layout.  
42  
IIN1  
I
Input Current Monitor Positive;  
Non Inverting Input (+), connect to VIN if input current monitor is not  
needed.  
43  
19  
IIN2  
I
Input Current Monitor Negative;  
Inverting Input (-), connect to VIN if input current monitor is not needed.  
COMP  
O
Compensation Network Pin;  
Connect R and C network to pin for stability phase margin adjustment.  
Datasheet  
6
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Pin Configuration  
1)  
Pin  
38  
Symbol  
I/O  
O
Function  
SOFT_START  
Softstart configuration Pin;  
Connect a capacitor CSOFT_START to GND to fix a soft start ramp default  
time.  
36  
20  
INOVLO  
VFB  
I
I
Input Overvoltage Protection Pin;  
Define an upper voltage threshold and switches OFF the device in case  
of overvoltages on the VIN supply. Must not be left open.  
Voltage Loop Feedback Pin;  
VFB is intended to set output protection functions.  
22  
39  
SET  
I
Analog current sense adjustment Pin;  
IINMON  
O
Input current monitor output;  
Monitor pin that produces a voltage that is 20 times the voltage VIN1-IN2  
IINMON will be equal 1 V when VIIN1-VIIN2 = 50 mV.  
.
16  
IOUTMON  
O
Output current monitor output;  
Monitor pin that produces a voltage that is 200 mV + 8 times the voltage  
VFBH-FBL. IOUTMON will be equal 1.4 V when VFBH-FBL = 150 mV.  
SPI  
30  
29  
28  
27  
SI  
I
PD Serial data in; Digital input 5 V or 3.3 V.  
PD Serial clock; Digital input 5 V or 3.3 V.  
SCLK  
CSN  
SO  
I
I
PU SPI chip select; Digital input 5 V or 3.3 V. Active LOW.  
O
Serial data out; Digital output, referenced to VDD.  
1) O: Output, I: Input,  
PD: pull-down circuit integrated,  
PU: pull-up circuit integrated  
Datasheet  
7
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings1)  
TJ = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Supply Voltages  
VIN  
Supply Input  
VVIN  
-0.3  
-0.3  
-0.3  
60  
6
V
V
V
P_4.1.1  
P_4.1.2  
P_4.1.3  
VDD  
VVDD  
VIVCC  
Digital supply voltage  
IVCC  
6
Internal Linear Voltage Regulator  
Output voltage  
IVCC_EXT  
VIVCC_EXT -0.3  
6
V
P_4.1.4  
External Linear Voltage Regulator Input  
voltage  
Gate Driver Stages  
LSGD1,2 - PGND1,2  
Lowside Gatedriver voltage  
VLSGD1,2- -0.3  
5.5  
5.5  
60  
6
V
V
V
V
V
V
V
V
P_4.1.54  
P_4.1.55  
P_4.1.6  
P_4.1.7  
P_4.1.8  
P_4.1.9  
P_4.1.10  
P_4.1.11  
PGND1,2  
HSGD1,2 - SWN1,2  
Highside Gatedriver voltage  
VHSGD1,2- -0.3  
SWN1,2  
SWN1, SWN2  
switching node voltage  
VSWN1, 2  
-1  
(BST1-SWN1), (BST2-SWN2)  
Boostrap voltage  
VBST1,2-  
-0.3  
-0.3  
-0.3  
-0.3  
-0.5  
SWN1,2  
BST1, BST2  
Boostrap voltage related to GND  
VBST1, 2  
65  
0.3  
0.3  
0.5  
SWCS  
VSWCS  
VSGND  
Switch Current Sense Input voltage  
SGND  
Switch Current Sense GND voltage  
SWCS-SGND  
VSWCS-  
Switch Current Sense differential  
voltage  
SGND  
PGND1,2  
Power GND voltage  
VPGND1,2  
-0.3  
0.3  
60  
V
V
P_4.1.28  
P_4.1.12  
High voltage Pins  
IIN1, IIN2  
VIIN1, 2  
-0.3  
Input Current monitor voltage  
Datasheet  
8
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings1) (cont’d)  
TJ = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
P_4.1.13  
Min.  
-0.5  
Typ. Max.  
IIN1-IIN2  
VIIN1-IIN2  
0.5  
V
Input Current monitor differential  
voltage  
FBH, FBL  
Feedback Error Amplifier voltage  
VFBH, FBL -0.3  
VFBH-FBL -0.5  
60  
V
V
P_4.1.14  
P_4.1.15  
FBH-FBL  
0.5  
Feedback Error Amplifier differential  
voltage  
EN/INUVLO  
VEN/INUVLO -0.3  
60  
V
P_4.1.16  
Device enable/input undervoltage  
lockout  
Digital (I/O) Pins  
PWMI  
Digital Input voltage  
VPWMI  
VCSN  
VSCLK  
VSI  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
V
V
P_4.1.17  
P_4.1.18  
P_4.1.19  
P_4.1.20  
P_4.1.21  
P_4.1.22  
P_4.1.58  
CSN  
Voltage at Chip Select pin  
SCLK  
Voltage at Serial Clock pin  
SI  
Voltage at Serial Input pin  
SO  
VSO  
Voltage at Serial Output pin  
SYNC  
VSYNC  
VLHI  
Synchronization Input voltage  
LHI  
Limp Home Input Voltage  
Analog Pins  
VFB  
VVFB  
-0.3  
-0.3  
-0.3  
-0.3  
5.5  
5.5  
5.5  
3.6  
3.6  
3.6  
V
V
V
V
V
V
P_4.1.25  
P_4.1.26  
P_4.1.29  
P_4.1.30  
P_4.1.31  
P_4.1.32  
Loop Input voltage  
INOVLO  
Input overvoltage lockout  
VINOVLO  
VSET  
SET  
Analog dimming Input voltage  
COMP  
VCOMP  
Compensation Input voltage  
SOFT_START  
Softstart Voltage  
VSOFT_STAR -0.3  
T
FREQ  
VFREQ  
-0.3  
Voltage at frequency selection pin  
Datasheet  
9
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings1) (cont’d)  
TJ = -40°C to +150°C; all voltages with respect to AGND, (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
-0.3  
Typ. Max.  
IINMON  
Voltage at input monitor pin  
VIINMON  
3.6  
V
P_4.1.33  
P_4.1.34  
IOUTMON  
VIOUTMON -0.3  
5.5  
V
Voltage at output monitor pin  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Susceptibility  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.35  
P_4.1.36  
Tstg  
ESD Resistivity of all Pins  
ESD Resistivity to GND  
ESD Resistivity of corner Pins to GND  
VESD,HBM -2  
VESD,CDM -500  
VESD,CDM_c -750  
orner  
2
kV HBM2)  
P_4.1.37  
P_4.1.38  
P_4.1.39  
500  
750  
V
V
CDM3)  
CDM3)  
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1  
Note:  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the datasheet. Fault conditions are considered as “outside” normal operating range.  
Protection functions are not designed for continuous repetitive operation.  
4.2  
Functional Range  
Table 3  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
4.5  
Typ. Max.  
1)  
Device Extended Supply Voltage  
Range  
VVIN  
VVIN  
40  
V
P_4.2.1  
P_4.2.2  
Device Nominal Supply Voltage  
Range  
8
36  
V
1)  
Power Stage Voltage Range  
Digital Supply Voltage  
Junction Temperature  
VPOW  
VDD  
Tj  
4.5  
3
55  
V
P_4.2.5  
P_4.2.3  
P_4.2.4  
5.5  
150  
V
-40  
°C  
1) Not subject to production test, specified by design.  
Datasheet  
10  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
General Product Characteristics  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
4.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 4  
Parameter  
Symbol  
Values  
Typ.  
0.9  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1) 2)  
Junction to Case  
RthJC  
RthJA  
K/W  
K/W 3) 2s2p  
P_4.3.1  
P_4.3.2  
Junction to Ambient  
25  
1) Not subject to production test, specified by design.  
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed  
to ambient temperature). Ta = 25°C; The IC is dissipating 1 W.  
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area  
at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board has  
2 outer copper layers (2 x 70 µm Cu) and 2 inner copper layers (2 x 35 µm Cu). A thermal via (diameter = 0.3 mm and  
25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner  
layer and second outer layer (bottom) of the JEDEC PCB. Ta = 25°C; The IC is dissipating 1 W.  
Datasheet  
11  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Power Supply  
5
Power Supply  
The TLD5541-1 is supplied by the following pins:  
VIN (main supply voltage)  
VDD (digital supply voltage)  
IVCC_EXT (supply for internal gate driver stages)  
The VIN supply, in combination with the VDD supply, provides internal supply voltages for the analog and  
digital blocks. In situations where VIN voltage drops below VDD voltage, an increased current consumption  
may be observed at the VDD pin.  
The SPI and IO interfaces are supplied by the VDD pin.  
IVCC_EXT is the supply for the low side driver stages. This supply is used also to charge, through external  
Schottky diodes, the bootstrap capacitors which provide supply voltages to the high side driver stages. If no  
external voltage is available this pin must be shorted to IVCC, which is the output of an internal 5 V LDO.  
The supply pins VIN, VDD and IVCC_EXT have undervoltage detections.  
Undervoltage on VDD supply voltage prevents the activation of the gate driver stages and any SPI  
communication (the SPI registers are reset). Undervoltage on IVCC_EXT or IVCC voltages forces a deactivation  
of the driver stages, thus stopping the switching activity, but has no effect on the SPI register settings.  
Moreover the double function pin EN/INUVLO can be used as an input undervoltage protection by placing a  
resistor divider from VIN to GND (refer to Chapter 10.3).  
If EN/INUVLO undervoltage is detected, it will turn-off the IVCC voltage regulator, stop switching, stop  
communications and reset all the registers.  
Figure 4 shows a basic concept drawing of the supply domains and interactions among pins VIN, VDD and  
IVCC/IVCC_EXT.  
VIN  
VREG (5V)  
R1  
IVCC  
Internal pre-regulated  
EN/INUVLO  
voltage Supply  
Undervoltage  
detection  
R2  
IVCC_EXT  
VREG  
digital  
VREG  
analog  
LS - Drivers  
HS - Drivers  
PGND  
BSTx  
Undervoltage  
detection  
Bandgap  
Reference  
Register  
Banks  
VDD  
SPI & I/O  
LOGIC  
SWNx  
Figure 4  
Power Supply Concept Drawing  
Datasheet  
12  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Power Supply  
Usage of EN/INUVLO pin in different applications  
The pin EN/INUVLO is a double function pin and can be used to put the device into a low current consumption  
mode. An undervoltage threshold should be fixed by placing an external resistor divider (A) in order to avoid  
low voltage operating conditions. This pin can be driven by a µC-port as shown in (B) .  
A
B
Vin  
Vin  
VIN  
VIN  
R1  
R2  
R1  
R2  
EN/INUVLO  
GND  
EN/INUVLO  
GND  
µC Port  
Figure 5  
Usage of EN/INUVLO pin in different applications  
Datasheet  
13  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Power Supply  
5.1  
Different Power States  
TLD5541-1 has the following power states:  
SLEEP state  
IDLE state  
LIMP HOME state  
ACTIVE state  
The transition between the power states is determined according to these variables after a filter time of max.  
3 clock cycles:  
VIN level  
EN/INUVLO level  
IVCC level  
IVCC_EXT level  
VDD level  
LHI level  
DVCCTRL.IDLEbit state  
The state diagram including the possible transitions is shown in Figure 6.  
The Power-up condition is entered when the supply voltage VVIN exceed its minimum supply voltage threshold  
VVIN(ON)  
.
SLEEP  
When the device is powered it enters the SLEEP state, all outputs are OFF and the SPI registers are reset,  
independently from the supply voltages at the pins VIN , VDD, IVCC, and IVCC_EXT. The current consumption  
is low. Refer to parameters: IVDD(SLEEP), and IVIN(SLEEP)  
.
The transition from SLEEP to ACTIVE state requires a specified time: tACTIVE  
.
IDLE  
In IDLE state, the current consumption of the device can reach the limits given by parameter IVDD (P_5.3.4). The  
internal voltage regulator is working. Not all diagnosis functions are available (refer to Chapter 10 for  
additional informations). In this state there is no switching activity, independently from the supply voltages  
VIN, VDD, IVCC and IVCC_EXT. When VDD is available, the SPI registers are working and SPI communication is  
possible.  
Limp Home  
The Limp Home state is beneficial to fulfill system safety requirements and provides the possibility to  
maintain a defined current/voltage level on the output via a backup control circuitry. The backup control  
circuitry turns on required loads during a malfunction of the µC. For detailed info, refer to Chapter 8.  
When Limp Home state is entered, SPI registers are reset to their default values and SPI communication is  
possible but only in read mode (SPI registers can be read but cannot be written). In order to regulate the  
output current/voltage, it is necessary that VIN and IVCC_EXT are present and above their undervoltage  
threshold.  
ACTIVE  
In active state the device will start switching activity to provide power at the output only when PWMI = HIGH.  
To start the Highside gate drivers HSGD1,2 the voltage level VBST1,2 - VSWN1,2 needs to be above the threshold  
Datasheet  
14  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Power Supply  
VBST1,2 - VSWN1,2_UVth. In ACTIVE state the device current consumption via VIN and VDD is dependent on the  
external MOSFET used and the switching frequency fSW  
.
Power-up  
LHI = LOW  
EN/INUVLO = LOW  
& EN/INUVLO = HIGH  
SLEEP  
EN/INUVLO = LOW  
LHI = HIGH  
& EN/INUVLO = HIGH  
EN/INUVLO = LOW  
LHI = HIGH  
IDLE  
LIMP HOME  
VIN = LOW  
or IVCC = LOW  
VIN = HIGH  
& IVCC = HIGH  
EN/INUVLO = LOW  
or IVCC_EXT = LOW  
or VDD = LOW  
& IVCC_EXT = HIGH  
& VDD = HIGH  
or DVCCTRL.IDLE = HIGH  
& DVCCTRL.IDLE = LOW  
LHI = LOW  
LHI = HIGH  
ACTIVE  
Figure 6  
Simplified State Diagram  
5.2  
Different Possibilities to RESET the device  
There are several reset triggers implemented in the device.  
After any kind of reset, the Transmission Error Flag (TER) is set to HIGH.  
Under Voltage Reset:  
EN/INUVLO: When EN/INUVLO is below VEN/INUVLOth (P_5.3.7), the SPI interface is not working and all the  
registers are reset to their default values. In addition, the device enters SLEEP mode and the current  
consumption is minimized.  
VDD: When VVDD is below VVDD(UV) (P_5.3.6), the SPI interface is not working and all the registers are reset to their  
default values.  
Reset via SPI command:  
There is a command (DVCCTRL.SWRST= HIGH) available to RESET all writeable registers to their default  
values. Note that the result coming from the Calibration routine, which is readable by the SPI when  
DVCCTRL.ENCAL= HIGH, is not reset by the SWRST.  
Reset via Limp Home:  
When Limp Home state is detected the registers are reset to the default values.  
Datasheet  
15  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Power Supply  
5.3  
Electrical Characteristics  
Table 5  
EC Power Supply  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Power Supply VIN  
Input Voltage Startup  
VVIN(ON)  
4.7  
4.5  
V
V
VIN increasing;  
P_5.3.1  
V
V
EN/INUVLO = HIGH;  
DD = 5 V;  
IVCC = IVCC_EXT =  
10 mA;  
Input Undervoltage switch OFF VVIN(OFF)  
VIN decreasing;  
P_5.3.14  
V
V
EN/INUVLO = HIGH;  
DD = 5 V;  
IVCC = IVCC_EXT =  
10 mA;  
Device operating current  
IVIN(ACTIVE)  
4.4  
6
mA 1)ACTIVE mode;  
PWMI = 0 V;  
VEN/INUVLO = 0 V;  
CSN = VDD = 5 V;  
P_5.3.2  
P_5.3.3  
V
VIN Sleep mode supply current IVIN(SLEEP)  
1.5  
µA  
V
VIN = 13.5 V;  
VIVCC = VIVCC_EXT= 0 V;  
Digital Power Supply VDD  
Digital supply current  
IVDD  
0.5  
1.5  
mA VIN = 13.5 V;  
SCLK = 0 Hz;  
VPWMI = 0 V;  
EN =VCSN = VDD = 5 V;  
VEN/INUVLO = 0 V;  
CSN = VDD = 5 V;  
P_5.3.4  
P_5.3.5  
f
V
Digital Supply Sleep mode  
current  
IVDD(SLEEP)  
µA  
V
VIN = 13.5 V;  
VIVCC = VIVCC_EXT = 0 V;  
Undervoltage shutdown  
threshold voltage  
VVDD(UV)  
1
3
V
VCSN = VDD  
;
P_5.3.6  
VSI = VSCLK = 0 V;  
SO from LOW to HIGH  
impedance;  
EN/INUVLO Pin characteristics  
Input Undervoltage falling  
Threshold  
VEN/INUVLOth 1.6  
1.75 1.9  
90  
V
P_5.3.7  
P_5.3.8  
P_5.3.9  
1)  
EN/INUVLO Rising Hysteresis  
VEN/INUVLO(hy  
mV  
st)  
EN/INUVLO input Current LOW IEN/INUVLO(LO 0.45 0.89 1.34 µA  
VEN/INUVLO = 0.8 V;  
W)  
Datasheet  
16  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Power Supply  
Table 5  
EC Power Supply (cont’d)  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
P_5.3.10  
Min. Typ. Max.  
EN/INUVLO input Current HIGH IEN/INUVLO(HI 1.1  
2.2  
3.3  
µA  
VEN/INUVLO = 2 V;  
GH)  
LHI Pin characteristics  
LOW level  
VLHI(L)  
VLHI(H)  
ILHI(L)  
ILHI(H)  
0
-
0.8  
5.5  
18  
V
P_5.3.16  
P_5.3.17  
P_5.3.18  
P_5.3.19  
HIGH level  
2.0  
6
-
V
L-Input pull-down current  
H-Input pull-down current  
Timings  
12  
30  
μA  
μA  
VLHI = 0.8 V;  
VLHI = 2.0 V;  
15  
45  
1)  
SLEEP mode to ACTIVE time  
tACTIVE  
0.7  
ms  
P_5.3.11  
VIVCC = VIVCC_EXT  
IVCC = 10 µF;  
;
C
VIN = 13.5 V;  
VDD = 5 V;  
1) Not subject to production test, specified by design.  
Datasheet  
17  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
6
Regulator Description  
The TLD5541-1 includes all of the functions necessary to provide constant current to the output as usually  
required to drive LEDs. A voltage mode regulation can also be implemented (Refer to Chapter 6.7).  
It is designed to control 4 gate driver outputs in a H-Bridge topology by using only one inductor and 4 external  
MOSFETs. This topology is able to operate in high power BOOST, BUCK-BOOST and BUCK mode applications  
with maximum efficiency.  
The transition between the different regulation modes is done automatically by the device itself, with respect  
to the application boundary conditions.  
The transition phase between modes is seamless.  
A SPI flag provides mode feedback to the µC (refer to SPI bits REGUSETMON.REGUMODFB).  
6.1  
Regulator Diagram Description  
The TLD5541-1 includes two analog current control inputs (IIN1, IIN2) to limit the maximum Input current  
(Block A1 and A7 in Figure 7).  
A second analog current control loop (A5, A6 with complessive gain = IFBxgm) connected to the sensing pins  
FBL, FBH regulates the output current.  
The regulator function is implemented by a pulse width modulated (PWM) current mode controller. The error  
in the output current loop is used to determine the appropriate duty cycle to get a constant output current.  
An external compensation network (RCOMP, CCOMP) is used to adjust the control loop to various application  
boundary conditions.  
The inductor current for the current mode loop is sensed by the RSWCS resistor.  
RSWCS is used also to limit the maximum external switches / inductor current.  
If the Voltage across RSWCS exceeds its overcurrent threshold (VSWCS_buck or VSWCS_boost for buck or boost  
operation respectively) the device reduces the duty cycle in order to bring the switches current below the  
imposed limit.  
The current mode controller has a built-in slope compensation as well to prevent sub-harmonic oscillations.  
The control loop logic block (LOGIC) provides a PWM signal to four internal gate drivers. The gate drivers  
(HSGD1,2 and LSGD1,2) are used to drive external MOSFETs in an H-Bridge setup . Once the soft start expires  
a forced CCM regulation mode is performed.  
The control loop block diagram displayed in Figure 7 shows a typical constant current application. The voltage  
across RFB sets the output current. RIN is used to fix the maximum input current.  
The output current is fixed via the SPI parameter (LEDCURRADIM.ADIMVAL= 11110000B = default at 100%)  
plus an offset trimming (LEDCURRCAL.CALIBVAL= 0000B = default in the middle of the range). Refer to  
Chapter 8.1 for more details.  
Datasheet  
18  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
RIN  
IIN  
RFB  
IOUT  
VIN  
Rfilter  
M4  
M3  
M1  
M2  
COUT  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
FBH  
FBL  
VOUT  
Cfilter  
LOUT  
+
-
A5  
IIN1  
IIN2  
ISWCSx  
SWCS  
SGND  
BOOST  
+
-
A2  
A1  
A8  
A9  
HSGD1  
HSGD2  
RSWCS  
SLOPE SELECTION  
& Compensation  
LOGIC  
CLK  
LSGD1  
LSGD2  
A3  
BUCK  
A6  
A7  
SET  
Vi_REF  
COMP  
RCOMP  
CCOMP  
VCOMP  
Figure 7  
Regulator Block Diagram - TLD5541-1  
Datasheet  
19  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
6.2  
Adjustable Soft Start Ramp  
The soft start routine limits the current through the inductor and the external MOSFET switches during  
initialization to minimize potential overshoots at the output.  
The soft start routine is applied:  
At first turn on (first PWM rise after EN = High)  
After Output Short to GND or Open Load detection  
After Input Overvoltage detection  
The soft start rising edge gradually increases the current of the inductor (LOUT) over tSOFT_START by clamping the  
COMP voltage . The soft start ramp is defined by a capacitor placed at the SOFT_START pin.  
Selection of the SOFT_START capacitor (CSOFT_START) can be done according to the approximate formula  
described in Equation (6.1):  
Vss _ th _ eff  
(6.1)  
tSOFT _ START  
=
CSOFT _ START  
ISOFT _ START(PU )  
Note:  
Vss_th_eff is the soft start effectiveness threshold, that depends on load condition. Its value is about  
0.7 V for the buck mode and 1.4 V for the boost mode  
The SOFT START pin is also used to implement a fault mask and wait-before-retry time, on rising and falling  
edge respectively, see and chapter Chapter 10.2 for details.  
If an open load or a short on the output is detected, a pull-down current source ISOFT_START_PD (P_6.4.20) is  
activated. This current brings down the VSOFT_START until VSOFT_START_RESET (P_6.4.22) is reached, then the pull-up  
current source ISOFT_START_PU (P_6.4.19) turns on again. If the fault condition hasn’t been removed until  
VSOFT_START_LOFF (P_6.4.21) is reached, the pull-down current source turns back on again, initiating a new cycle.  
This will continue until the fault is removed.  
If an input overvoltage is detected the soft start is kept low as long as the overvoltage remains.  
At first PWMI rise after EN = High, the internal PWM is extended till one of the 2 following condition is reached:  
Until VSOFT_START exceeds VSoft_Start1,2_LOFF  
Until VFBH-FBL exceeds VFBH_FBL_OL  
Datasheet  
20  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
8 clock cycles  
VFB1  
VVFB_S2G  
SWN  
SHORT  
DETECTION  
I
SOFT_START_PU  
SOFT_START_PD  
ISOFT_START  
VSOFT_START  
I
V
soft_Start_reg  
V
soft_Start_LOFF  
Vsoft_Start_RESET  
Application  
Status  
Normal  
Operation  
Normal  
Operation  
Vout shorted to GND  
Event  
Vout short to GND  
applied  
Event  
Vout short to GND  
removed  
Figure 8  
Soft Start timing diagram on a short to ground detected by the VFB pin  
6.3  
Switching Frequency setup  
The switching frequency can be set from 200 kHz to 700 kHz by an external resistor connected from the FREQ  
pin to GND or by supplying a sync signal as specified in chapter Chapter 11.2. Select the switching frequency  
with an external resistor according to the graph in Figure 9 or the following approximate formulas.  
fSW [kHz] = 5375*(RFREQ[kΩ])0.8  
RFREQ[kΩ]= 46023*(fSW[kHz])1.25  
(6.2)  
(6.3)  
Figure 9  
Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ  
Datasheet  
21  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
6.4  
Operation of 4 switches H-Bridge architecture  
Inductor LOUT connects in an H-Bridge configuration with 4 external N channel MOSFETs (M1, M2, M3 & M4)  
Transistor M1 and M3 provides a path between VIN and ground through LOUT in one direction (Driven by top  
and bottom gate drivers HSGD1 and LSGD2)  
Transistor M2 and M4 provides a path between VOUT and ground through LOUT in the other direction  
(Driven by top and bottom gate drivers HSGD2 and LSGD1)  
Nodes SWN1, SWN2, voltage across RSWCS, input and load currents are also monitored by the TLD5541-1  
BOOST  
BUCK-BOOST  
BUCK  
MODE  
MODE  
MODE  
M1  
M2  
M3  
M4  
ON  
PWM  
PWM  
PWM  
PWM  
PWM  
PWM  
OFF  
ON  
OFF  
PWM  
PWM  
Figure 10 4 switches H-Bridge architecture Transistor Status summary  
VIN  
VOUT  
M1  
M4  
M3  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
LOUT  
SWN1  
SWN2  
M2  
RSWCS  
Figure 11 4 switches H-Bridge architecture overview  
6.4.1  
Boost mode (VIN < VOUT)  
M1 is always ON, M2 is always OFF  
Every cycle M3 turns ON first and inductor current is sensed (peak current control)  
M3 stays ON until the upper reference threshold is reached across RSWCS (Energizing)  
Datasheet  
22  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
M3 turns OFF, M4 turns ON until the end of the cycle (Recirculation)  
Switches M3 and M4 alternate, behaving like a typical synchronous boost Regulator (see Figure 12)  
VIN  
VOUT  
ON  
M1  
M4  
(2) Recirculation  
ILOUT  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
LOUT  
SWN1  
SWN2  
(1) Energizing  
OFF  
M2  
M3  
t
M1  
+
M4  
M1  
+
M4  
M1  
+
M4  
M1+M3  
M1+M3  
M1+M3  
RSWCS  
Figure 12 4 switches H-Bridge architecture in BOOST mode  
Simplified comparison of 4 switches H-Bridge architecture to traditional asynchronous Boost approach.  
M2 is always OFF in this mode (open)  
M1 is always ON in this mode (closed connection of inductor to VIN)  
M4 acts as a synchronous diode, with significantly lower conduction power losses (I2 x RDSON vs. 0.7 V x I)  
Note:  
Diode is source of losses and lower system efficiency!  
LOUT  
LOUT  
D1  
M1 (ON)  
M4  
VIN  
VOUT  
VOUT  
VIN  
M2  
(OFF)  
HSGD2  
LSGD2  
HSGD1  
M3  
M3  
LSGD1  
RSWCS  
RSWCS  
b) standard asynchronous BOOSTER  
a) 4 switch architecture BOOSTER  
Figure 13 4 switches H-Bridge architecture in BOOST mode compared to standard async Booster  
6.4.2  
Buck mode (VIN > VOUT)  
M4 is always ON, M3 is always OFF  
Every cycle M2 turns ON and inductor current is sensed (valley current control)  
M2 stays ON until the lower reference threshold is reached across RSWCS (Recirculation)  
Datasheet  
23  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
M2 turns OFF, M1 turns ON until the end of the cycle (Energizing)  
Switches M1 and M2 alternate, behaving like a typical synchronous BUCK Regulator (see Figure 14)  
VIN  
VOUT  
ILOUT  
ON  
M1  
M4  
(3) Energizing  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
LOUT  
SWN1  
SWN2  
(4) Recirculation  
t
OFF  
M1  
+
M4  
M1  
+
M4  
M1  
+
M4  
M2  
M3  
M2+M4  
M2+M4  
M2+M4  
RSWCS  
Figure 14 4 switches H-Bridge architecture in BUCK mode  
Simplified comparison of 4 switches architecture to traditional asynchronous Buck approach.  
M3 is always OFF in this mode (open).  
M4 is always ON in this mode (closed connection inductor to VOUT).  
M2 acts as a synchronous diode, with significantly lower conduction losses (I2 x RDSON vs. 0.7 V x I)  
LOUT  
M4  
(ON)  
LOUT  
M1  
M1  
VIN  
VOUT  
VIN  
VOUT  
HSGD1  
LSGD1  
M3  
(OFF)  
HSGD1  
HSGD2  
M2  
LSGD2  
D1  
RSWCS  
b) standard asynchronous BUCK  
a) 4 switch architecture BUCK  
Figure 15 4 switches H-Bridge architecture in BUCK mode compared to standard async BUCK  
6.4.3  
Buck-Boost mode (VIN ~ VOUT)  
When VIN is close to VOUT the controller is in Buck-Boost operation  
All switches are switching in buck-boost operation. The direct energy transfer from the Input to the output  
(M1+M4 = ON) is beneficial to reduce ripple current and improves the energy efficiency of the Buck-Boost  
control scheme  
The two buck boost waveforms and switching behaviors are displayed in Figure 16 below  
Datasheet  
24  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
VIN VOUT  
ILOUT  
VIN  
VOUT  
M1  
M4  
(2) Direct Transfer  
HSGD2  
LSGD2  
HSGD1  
LSGD1  
(4) Direct Transfer  
M1  
+
M3  
M1  
+
M4  
M1  
+
M4  
M1  
+
M3  
M1  
+
M4  
M1  
+
M4  
M1  
+
M3  
M1  
+
M4  
M1  
+
M4  
t
SWN1  
SWN2  
LOUT  
(3) Recirculation  
(1) Energizing  
VIN VOUT  
ILOUT  
M2  
M3  
RSWCS  
M2  
+
M1  
+
M1  
+
M2  
+
M1  
+
M1  
+
M2  
+
M1  
+
M1  
+
t
M4  
M4  
M4  
M4  
M4  
M4  
M4  
M4  
M4  
Figure 16 4 switches H-Bridge architecture in BUCK-BOOST mode  
6.5  
Fast Output Discharge Operation Mode - Multi Floating Switches Topology  
Multiple light functions can be driven by a single DC/DC converter adopting a Multi Floating Switch (MFS)  
topology. In a MFS topology, each LED Function is connected in series and can be independently turned off via  
a bypass switch. Because of the series connections, all the functions are driven with the same current .  
Different brightness can be achieved with individual PWM duty cycles.  
In order to drive different LED functions in this topology, a Buck Boost converter is probably needed. A single  
stage buck boost topology has high efficiency buts requires several µF of output capacitance (COUT). The extra  
voltage present on this capacitor, when shorting one function to turn it off, may create a current spike in the  
LEDs that have to remain on.  
The TLD5541-1 has a dedicated state machine which controls a fast discharge of the output cap to a desired  
fraction of the initial output voltage. This Fast Output Discharge feature (F.D.), if carefully configured, limits  
the current spike during load jump events preventing LED damage.  
An Example of the Multi Floating Switch topology architecture and operation are shown in Figure 17  
INITIAL CONDITION  
FAST DISCHARGE  
FINAL CONDITION  
Vout  
Disharging  
Vout  
Initial  
Vout  
Final  
COUT  
CIN  
COUT  
C
I
Disch  
OUT  
VBAT  
DC/DC  
LITIX FLEX  
DC/DC  
LITIX FLEX  
DC/DC  
LITIX FLEX  
F1  
OFF  
F1  
OFF  
To VFB  
To VFB  
To VFB  
F1  
ON  
External MOSFET  
Control via µC  
External MOSFET  
Control via µC  
External MOSFET  
Control via µC  
(A)  
(B)  
(C)  
F2  
OFF  
F2  
ON  
F2  
ON  
External MOSFET  
Control via µC  
External MOSFET  
Control via µC  
External MOSFET  
Control via µC  
Figure 17 Multi Floating Switch topology: operation sequence on 2 Functions: (F1+F2) to (F2)  
Datasheet  
25  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
The F.D. operation consists of discharging the capacitor COUT to the final load voltage (Figure 17-B) before the  
bypass switch closure. The external Microcontroller Software has to take care of the synchronization between  
the TLD5541-1 F.D. operation and the bypass Switches activation.  
The discharged energy from COUT is recovered back to the Input capacitor CIN which could cause a small  
overshoot on the CIN itself. This feature allows high efficiency designs also when PWM operation with repetitive  
Load Jumps is needed.  
The F.D. feature is needed when a negative VOUT step is performed, so when one or more LED functions are  
switched off. If additional LED functions are turned on, increasing the output voltage, the F.D. does not have  
to be used. In MFS topologies, a short interruption of the current is observed during the Load Transitions  
(either positive or negative) in all the functions, until VOUT is stable and the device control loop is able to  
provide the target output current.  
We will refer to any Voltage-Current or Load configuration just before the Load Jump as "Initial" (Figure 17-A),  
while we will refer to any value after the system is in the new Load configuration as "Final" (Figure 17-C).  
Set the Target COUT discharge voltage  
The Target output voltage (VOUTFinal) of an F.D. operation is communicated to the TLD5541-1 as a fraction of the  
VOUT at the beginning of the Jump (VOUTInitial), and not as an absolute Value.  
In order to quickly discharge the output Capacitor to a desired Ratio of the initial voltage, two SPI commands  
have to be sent to the TLD5541-1 register MFSSETUP1.  
The first is to write in the MFSSETUP1.LEDCHAIN the Ratio Denominator  
The second is to write in the MFSSETUP1 register the Ratio Numerator and the Start Of Multi Floating  
Switch, respectively in the LEDCHAIN and SOMFS bitfields  
After the second command, as soon as the Chip select is raised the F.D. begins. The final output voltage of the  
F.D. operation, after a MFS routine is correctly performed, will be approximately:  
RatioNumerator  
(6.4)  
VOUTFinal  
=
VOUTInitial  
RatioDenominator  
The MFSSETUP1.LEDCHAIN registers sets both the LED Ratio during F.D and the short circuit threshold. For  
this reason both the correct VOUT Ratio and correct short circuit protection voltage have to be set according to  
the LED Load. See Table 10 for reference.  
To have the correct short circuit protection on a F.D. operation, the first LEDCHAIN value sent via SPI (Ratio  
Denominator), should also guarantee an adequate short circuit detection for the Initial Load. The second  
LEDCHAIN value (Ratio Numerator + SOMFS) should guarantee correct Short circuit detection for the Final  
Load. For more information about short circuit protection, see Chapter 10.2.1.  
Example:  
If the VFB voltage divider for the Short circuit detection is set like in Table 10.  
In order to jump from 6LED (18 V) to 2LEDs (6 V), the Ratio is 1/3 of initial voltage.  
So the 2 SPI commands that have to be sent are:  
Spi command 1: set MFSSETUP1 to 0x06 (Ratio Denominator = 6, VShort_LED = 16.8 V)  
Spi command 2: set MFSSETUP1 to 0x22 (Ratio Numerator+SOMFS = 0x02+0x20, VShort_LED= 4.6 V )  
Preparation time tprep  
:
The TLD5541-1 enables the user to set a delay between the beginning of the Load Jump and the moment in  
which the switching activity will restart to provide output current. This delay is needed to safely close the  
Datasheet  
26  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
bypass switches (to short the LEDs) for the new Light configuration, after the Final VOUT is reached and before  
the normal switching activity would again raise the output voltage. See Figure 18.  
The Preparation time has to be sufficient for the capacitors COUT and CCOMP to be discharged to the desired  
value. The COUT discharge time depends heavily on: IDISCH, COUT size, VOUT Initial, VOUTFinal and VIN, so all those  
values have to be considered when setting the preparation time. In order to set a preparation time on the  
TLD5541-1, a SPI command has to be sent to the register MFSSETUP2.MFSDLY).  
The Equation (6.5) below describes the relationship between the switching frequency fSW and the  
MFSSETUP2.MFSDLY register value.  
1
(6.5)  
tprep  
=
[2 + (MFSDLY )dec  
]
fSW  
For SPI command details refer to Chapter 12.6.  
Fast Discharge Phase  
After programming the desired output voltage Ratio via SPI , the right Preparation Time and activating the  
state machine (MFSSETUP1.SOMFS= HIGH) the TLD5541-1 inverts the inductor current IL and keeps it at the  
switch current limit ISwLim until the VOUT reaches the desired target.  
VSWCS _ boost  
(6.6)  
ISwLim  
=
RSWCS  
Figure 18 displays the relation of inductor current IL and the output voltage VOUT during a fast output discharge  
operation mode.  
External  
Mosfet  
Closure  
I F1  
No current at the Load  
I F2  
during F.O.D.  
EOMFS  
LED N. FINAL  
+ SOMF  
LED N. INITIAL  
TPREP  
SPI COMMANDS  
SPI CSN  
Break  
Low  
IL  
TPREP  
TDISCHARGE  
ISwLim  
VOUT  
VINITIAL  
VFINAL  
Current  
Recovery  
Normal Switching  
activity F1 on  
Fast Output Discharge  
Normal Switching  
activity F1+F2 on  
Figure 18 Fast Output Discharge timing diagram  
Datasheet  
27  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
If the discharge current limit ISwLim needs to be reduced, the MFSSETUP1.ILIM_HALF_MFSbit can be used  
to cut it in half (only during the F.D. phase and not in normal operation), see SPI Chapter for further details  
Chapter 12.6.  
Setting the EA_IOUT_MFS bit will reduce (only during the F.D. phase) the saturation current of the error  
amplifier A6 that discharges the Comp capacitor.  
Once VOUT reaches the desired target, the current recovery phase brings IL from a negative value back to 0 A.  
When the current recovery phase has ended, an internal SPI flag (MFSSETUP1.EOMFS) is set to HIGH and the  
device stays in “Brake-Low condition” (both Lowside gatedrivers = ON) until the programmed preparation  
time (MFSSETUP2.MFSDLY) expires and the TLD5541-1 starts automatically switching again. Figure 18  
displays one Fast Output Discharge cycle.  
The effective COUT discharge current is smaller than the Inductor current and it depends on the application  
condition, see Equation (6.7).  
2
V
V
V
i
i
o
(6.7)  
IDISCH  
=
IswLim  
V +V  
2LfSW V +V  
o
i
i
o
Sequence of operations to perform a Fast Output Discharge  
In order to perform a F.D operation, the user has to :  
Set via SPI an adequate Preparation Time  
Send via SPI to MFSSETUP1.LEDCHAINthe Ratio Denominator.  
Send via SPI to MFSSETUP1.LEDCHAINthe Ration Numerator + SOMFS  
Wait until the preparation time is expired (so the Vout has reached the target value)  
Adjust the Floating switches to the new configuration  
6.6  
Flexible current sense  
The flexible current sense implementation enables highside and lowside current sensing.  
The Figure 19 displays the application examples for the highside and lowside current sense concept.  
VIN  
VIN  
Highside  
Sensing  
Lowside  
Sensing  
FBH  
FBL  
FBH  
FBL  
Figure 19 Highside and lowside current sensing - TLD5541-1  
Datasheet  
28  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
6.7  
Programming Output Voltage (Constant Voltage Regulation)  
For a voltage regulator, the output voltage can be set by selecting the values RFB1, RFB2 and RFB3 according to  
the following Equation (6.8):  
VFBH FBL  
VFBH FBL  
VOUT = IFBH  
+
RFB1  
+
IFBL RFB 3 + VFBH FBL  
(6.8)  
RFB 2  
RFB 2  
After the output voltage is fixed via the resistor divider, the value can be changed via the Analog Dimming bits  
ADIMVAL.  
If Analog dimming is performed, due to the variations on the IFBL (IFBL_HSS (P_6.4.9) and IFBL_LSS (P_6.4.40))  
current on the entire voltage spanning, a non linearity on the output voltage may be observed. To minimize  
this effect RFBx resistors should be properly dimensioned.  
VOUT  
RFB1  
IFBH  
FBH  
RFB2  
IFBL  
FBL  
RFB3  
Figure 20 Programming Output Voltage (Constant Voltage Regulation)  
Datasheet  
29  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
6.8  
Electrical Characteristics  
Table 6  
EC Regulator  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Regulator:  
V(FBH-FBL) threshold  
V(FBH-FBL) 145.5 150  
154.5 mV ADIM.ADIMVAL= P_6.4.1  
11110000B;  
V(FBH-FBL) threshold @ analog  
dimming 10%  
V(FBH-  
12  
15  
18  
mV ADIM.ADIMVAL= P_6.4.5  
00011000B;  
Calibration  
Procedure not  
performed  
1)  
FBL)_10  
FBH Bias current @ highside  
sensing setup  
IFBH_HSS  
IFBL_HSS  
IFBH_LSS  
IFBL_LSS  
65  
17  
-7.5  
-45  
-
110  
30  
155  
43  
-2.5  
-20  
-
µA  
µA  
µA  
µA  
V
V
= 7 V;  
P_6.4.8  
P_6.4.9  
P_6.4.39  
P_6.4.40  
P_6.9.1  
P_6.9.2  
FBL  
V
FBH - FBL = 150 mV;  
1)  
FBL Bias current @ highside  
sensing setup  
V
= 7 V;  
FBL  
V
FBH - FBL = 150 mV;  
1)  
FBH Bias current @ lowside  
sensing setup  
-4  
V
= 0 V;  
FBL  
V
FBH - FBL = 150 mV;  
1)  
FBL Bias current @ lowside  
sensing setup  
-30  
2
V
= 0 V;  
FBL  
VFBH - FBL = 150 mV;  
1)  
1)  
1)  
FBH-FBL High Side sensing  
entry threshold  
VFBH_HSS_in  
V
V
increasing;  
FBH1  
c
FBH-FBL High Side sensing exit VFBH_HSS_d  
threshold  
-
1.75  
-
V
decreasing;  
FBH  
ec  
OUT Current sense Amplifier gm IFBxgm  
890  
1.4  
91  
µS  
V
P_6.4.10  
P_6.4.11  
P_6.4.12  
Output Monitor Voltage  
VIOUTMON 1.33  
1.47  
93  
VFBH - FBL = 150 mV;  
1)  
Maximum BOOST Duty Cycle  
DBOOST_MA 89  
%
f = 300 kHZ;  
sw  
X
Input Current Sense threshold VIIN1-IIN2  
VIIN1-IIN2  
46  
50  
54  
mV  
mS  
V
P_6.4.13  
P_6.4.14  
P_6.4.15  
1)  
Input Current sense Amplifier IIN_gm  
gm  
2.12  
1
1)  
Input current Monitor Voltage VIINMON  
0.95  
1.05  
60  
V
= 50 mV;  
IIN1 - IIN2  
VIIN1 = VVIN(ON) to 55 V;  
1)  
Switch Peak Over Current  
Threshold - BOOST  
VSWCS_boost 40  
50  
mV  
mV  
P_10.8.1  
5
1)  
Switch Peak Over Current  
Threshold - BUCK  
VSWCS_buck -60  
-50  
-40  
P_10.8.1  
6
Soft Start  
Soft Start pull up current  
ISoft_Start_P 22  
26  
32  
µA  
VSoft_Start = 1 V;  
P_6.4.19  
U
Datasheet  
30  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
Table 6  
EC Regulator (cont’d)  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
2.6  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
3.2  
Soft Start pull down current  
ISoft_Start_P 2.2  
µA  
VSoft_Start = 1 V;  
P_6.4.20  
P_6.4.21  
P_6.4.22  
P_6.9.3  
D
Soft Start Latch-OFF Threshold VSoft_Start_L 1.65  
1.75  
0.2  
2
1.85  
0.3  
V
OFF  
Soft Start Reset Threshold  
VSoft_Start_R 0.1  
V
ESET  
Soft Start Voltage during  
regulation  
VSoft_Start_r 1.9  
2.1  
V
1)No Faults  
eg  
Oscillator  
Switching Frequency  
fSW  
285  
300  
315  
kHz Tj = 25°C;  
P_6.4.23  
RFREQ= 37.4 k;  
SYNC Frequency  
fSYNC  
200  
2
700  
kHz  
V
P_6.4.24  
P_6.4.25  
SYNC  
VSYNC,ON  
Turn On Threshold  
SYNC  
Turn Off Threshold  
VSYNC,OFF  
ISYNC,H  
0.8  
45  
18  
V
P_6.4.26  
P_6.4.62  
P_6.4.63  
SYNC  
High Input Current  
15  
6
30  
12  
µA  
µA  
VSYNC = 2.0 V;  
VSYNC = 0.8 V;  
SYNC  
ISYNC,L  
Low Input Current  
Gate Driver for external Switch  
Gate Driver undervoltage  
threshold VBST1,2-  
VSWN1,2_UVth  
VBST1,2  
VSWN1,2_UVt  
-
3.4  
4
V
VBST1,2 - VSWN1,2  
decreasing;  
P_6.4.64  
h
HSGD1,2 NMOS driver on-state RDS(ON_PU) 1.4  
2.3  
1.2  
2.3  
1.2  
3.7  
2.2  
3.7  
1.8  
VBST1,2 - VSWN1,2 = 5 V; P_6.4.28  
source = 100 mA;  
BST1,2 - VSWN1,2 = 5 V; P_6.4.29  
resistance (Gate Pull Up)  
I
HS  
HSGD1,2 NMOS driver on-state RDS(ON_PD) 0.6  
V
resistance (Gate Pull Down)  
Isink = 100 mA;  
HS  
LSGD1,2 NMOS driver on-state RDS(ON_PU) 1.4  
VIVCC_EXT = 5 V;  
Isource = 100 mA;  
P_6.4.30  
P_6.4.31  
P_6.4.32  
resistance (Gate Pull Up)  
LS  
LSGD1,2 NMOS driver on-state RDS(ON_PD)L 0.4  
VIVCC_EXT = 5 V;  
Isink = 100 mA;  
1)  
resistance (Gate Pull Down)  
S
HSGD1,2 Gate Driver peak  
sourcing current  
IHSGD1,2_SR 380  
mA  
VHSGD1,2 - VSWN1,2 = 1 V  
C
to 4 V;  
VBST1,2 - VSWN1,2 = 5 V  
Datasheet  
31  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Regulator Description  
Table 6  
EC Regulator (cont’d)  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
P_6.4.33  
Min.  
Max.  
1)  
HSGD1,2 Gate Driver peak  
sinking current  
IHSGD1,2_SN 410  
mA  
VHSGD1,2 - VSWN1,2 = 4 V  
K
to 1 V;  
V
BST1,2 - VSWN1,2 = 5 V  
1)  
LSGD1,2 Gate Driver peak  
sourcing current  
ILSGD1,2_SRC 370  
mA  
mA  
P_6.4.34  
P_6.4.35  
VLSGD1,2 = 1 V to 4 V;  
VIVCC_EXT = 5 V;  
1)  
LSGD1,2 Gate Driver peak  
sinking current  
ILSGD1,2_SN 550  
VLSGD1,2 = 4 V to 1 V;  
K
V
IVCC_EXT = 5 V;  
1)  
LSGD1,2 OFF to HSGD1,2 ON  
delay  
tLSOFF-  
15  
35  
30  
60  
40  
75  
ns  
ns  
P_6.4.36  
P_6.4.37  
HSON_delay  
1)  
HSGD1,2 OFF to LSGD1,2 ON  
delay  
tHSOFF-  
LSON_delay  
1) Not subject to production test, specified by design  
Datasheet  
32  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Digital Dimming Function  
7
Digital Dimming Function  
PWM dimming is adopted to vary LEDs brightness with greatly reduced chromaticity shift. PWM dimming  
achieves brightness reduction by varying the duty cycle of a constant current in the LED string.  
7.1  
Description  
A PWM signal can be transmitted to the TLD5541-1 as described below.  
PWM via direct interface  
The PWMI pin can be fed with a pulse width modulated (PWM) signals, this enables when HIGH and disables  
when LOW the gate drivers of the main switches.  
µC  
PWM  
Digital dimming  
PWMI  
+3.3V or +5V  
VDD  
CSN  
SI  
SPI  
SO  
SCLK  
VSS AGND  
Figure 21 Digital Dimming Overview  
Note:  
In Register REGUSETMON.REGUMODFB the regulation mode can be read. During PWMI = LOW the  
SPI will always deliver the Regulation mode which was present at PWMI = HIGH as actual regulation  
mode, instead of “no Regulation”.  
To avoid unwanted output overshoots due to not soft start assisted startups, PWM dimming in LOW state  
should not be used to suspend the output current for long time intervals. To stop in a safe manner  
DVCCTRL.IDLE=HIGH or EN/INUVLO=LOW can be used.  
Datasheet  
33  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Digital Dimming Function  
tACTIVE  
VEN/INUVLO  
VEN/INUVLOth  
t
t
VIVCC_EXT_RTH,d  
+VIVCCX_HYST  
tPWMI,H  
TPWMI  
VPWMI  
VPWMI,ON  
VPWMI,OFF  
t
Switching  
activity  
t
t
ILED  
VIOUTMON  
200mV  
t
Softstart  
Normal  
Gate ON  
Diag ON  
Normal  
Dim  
Normal  
Gate ON  
Diag ON  
Dim  
Dim  
Power ON  
Gate ON  
Gate OFF  
Diag OFF  
Gate OFF  
Diag OFF  
Gate OFF  
Diag OFF  
Diagnosis ON  
Figure 22 Timing Diagram LED Dimming and Start up behavior example ( VVDD and VVIN stable in the  
functional range and not during startup)  
Datasheet  
34  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Digital Dimming Function  
7.2  
Electrical Characteristics  
Table 7  
EC Digital Dimming  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test Condition Number  
Min.  
Max.  
PWMI Input:  
PWMI  
Turn On Threshold  
VPWMI,ON  
VPWMI,OFF  
IPWMI,H  
2
V
P_7.2.1  
P_7.2.2  
P_7.2.4  
P_7.2.5  
PWMI  
Turn Off Threshold  
0.8  
45  
18  
V
PWMI  
High Input Current  
15  
6
30  
12  
µA  
µA  
VPWMI = 2.0 V;  
VPWMI = 0.8 V;  
PWMI  
IPWMI,L  
Low Input Current  
Datasheet  
35  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Analog Dimming  
8
Analog Dimming  
The analog dimming feature allows further control of the output current. This approach is used to:  
Reduce the default current in a narrow range to adjust to different binning classes of the used LEDs.  
Adjust the load current to enable the usage of one hardware for several LED types where different current  
levels are required.  
Reduce the current at high temperatures (protect LEDs from overtemperature).  
Reduce the current at low input voltages (for example, cranking-pulse breakdown of the supply or power  
derating).  
8.1  
Description  
The analog dimming feature is adjusting the average load current level via the control of the feedback error  
Amplifier voltage (VFBH-FBL).  
The current adjustment is done via a 8BIT SPI parameter (LEDCURRADIM.ADIMVAL). Refer to Figure 23.  
VFBH-FBL  
150mV  
Bitcode  
b´11110000  
8 BIT SPI adjustment  
0
Figure 23 Analog Dimming Overview  
Analog dimming adjustment during Limp Home state:  
To enter in Limp Home state the LHI pin must be HIGH.  
Note:  
If the PWMI and the EN/INUVLO are not set to HIGH, it is not possible to enable switching, even during  
Limp Home state.  
In Limp Home state the analog dimming control is done via the SET pin. A Resistor divider between  
IVCC/IVCC_EXT, SET and GND is used to fix a default load current/voltage value (refer to Figure 24 below).  
Datasheet  
36  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Analog Dimming  
CIN  
> VIN(PO)  
> VIVCC_EXT_RTH,d  
IVCC  
CIVCC  
IVCC_ext  
IVCC  
VIN  
EN/INUVLO  
Current  
Regulation  
RFB  
D2  
D1  
default output  
current/voltage  
adjustment  
BST1  
BST2  
SET  
COUT  
CBST1 CBST2  
M1  
M2  
M4  
HSGD1  
SWN1  
LOUT  
LIMPHOME  
FAIL SAFE Circuit  
M3  
LHI  
HIGH  
LSGD1  
SWCS  
Load  
PWMI_LH  
FAIL SAFE Circuit  
SGND  
PGND1  
PGND2  
Set HIGH to  
activate output  
PWMI  
LSGD2  
SWN2  
HSGD2  
VFB  
CSN  
SI  
SO  
SPI Writing  
disabled during  
Limp Home state  
FBH  
FBL  
SCLK  
VSS AGND  
Figure 24 Limp Home state schematic overview  
Using the SET pin to adjust the output current:  
The SET pin is ignored if the device is not in Limp Home state.  
For the calculation of the output current IOUT the following Equation (8.1) is used:  
VFBH VFBL  
IOUT  
=
(8.1)  
RFB  
A decrease of the average output current can be achieved by controlling the voltage at the SET pin (VSET  
between 0.2 V and 1.4 V. The mathematical relation is given in the Equation (8.2) below:  
)
V SET 200 mV  
I OUT  
=
(8.2)  
R FB 8  
If VSET is 200 mV (typ.) the LED current is only determined by the internal offset voltages of the comparators.  
To assure the switching activity is stopped and IOUT = 0, VSET has to be < 100 mV, see Figure 25.  
Datasheet  
37  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Analog Dimming  
VFBH-FBL  
150mV  
100mV  
0mV  
VSET  
200mV  
1.4V 1.5V  
Analog Dimming  
Disabled  
Analog Dimming Enabled  
Figure 25 Analog Dimming Overview  
8.2  
LED current calibration procedure  
The LED current calibration procedure improves the accuracy during analog dimming. In order to be most  
effective, this routine has to be performed in the application, when the TLD5541-1 temperature and the output  
voltage are the ones in which the driver has to be accurate. The output current must be 0 during the procedure  
run. The optimum should be to re-calibrate the output periodically every time the application has PWMI=LOW  
for a sufficent long time .  
Current calibration procedure:  
Power the Load with a low analog dimming value (for example 10%)  
Set PWMI = LOW and disconnect the Load at the same time (to avoid Vout drifts from operating conditions  
and bring the output current to 0)  
Quickly (to avoid Vout drifts) µC enables the calibration routine: DVCCTRL.ENCAL= HIGH  
Quickly (to avoid Vout drifts) µC starts the calibration: LEDCURRCAL.SOCAL= HIGH  
Waiting time (needed to internally perform the calibration routine) aprox. 200 µs  
TLD5541-1 will set the FLAG: LEDCURRCAL.EOCAL= HIGH, when calibration routine has finished  
Reconnect the load  
The Output current is automatically adjusted to a low offset and more accurate analog dimming value  
Once the Calibration routine is correctly performed, the output current accuracy with analog dimming = 10%  
(LEDCURRADIM.ADIMVAL= 24) is 10%.  
The Calibration routine is not affecting the accuracy at 100% analog dimming.  
The ENCAL Bits affect both device operation and CALIBVAL reading result:  
ENCAL = HIGH: the calibration result coming from the routine is used by internal circuitry and can be read  
back from CALIBVAL  
ENCAL = LOW: SPI value written in CALIBVAL is used by internal circuitry and can be read back; calibration  
routine start is inhibited  
As a result, μC can use a stored result from a previously performed calibration to directly impose the desired  
value without waiting for a new routine to finish.  
Datasheet  
38  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Analog Dimming  
OUT H-Bridge  
Vint_supply  
FBH  
+
V_sense_in  
FBL  
RFB  
VFBH-FBL  
IOUT_sense  
V_sense_out  
-
+
Latch  
IDC_offset  
ADC out  
-
to LED  
Load  
IIN_feedback  
ADC CLK  
+
-
EA  
ADC Latch  
8 bit resolution  
4 bit calibration  
DAC  
COMP  
Vref_int  
2Bit Monitoring  
Logic  
ADC CLK  
Figure 26 LED current Accuracy Calibration Overview  
8.3  
Electrical Characteristics  
Table 8  
EC Analog Dimming  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Source current on SET Pin  
ISET_source  
1
µA  
V
= 0.2 V to 1.4 V; P_8.3.4  
SET  
1) Specified by design: not subject to production test.  
Datasheet  
39  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Linear Regulator  
9
Linear Regulator  
The TLD5541-1 features an integrated voltage regulator for the supply of the internal gate driver stages.  
Furthermore an external voltage regulator can be connected to the IVCC_EXT pin to achieve an alternative  
gate driver supply if required.  
9.1  
IVCC Description  
When the IVCC pin is connected to the IVCC_EXT pin, the internal linear voltage regulator supplies the internal  
gate drivers with a typical voltage of 5 V and current up to ILIM (P_9.2.2). An external output capacitor with low  
ESR is required on pin IVCC for stability and buffering transient load currents. During normal operation the  
external MOSFET switches will draw transient currents from the linear regulator and its output capacitor  
(Figure 27, drawing A). Proper sizing of the output capacitor must be considered to supply sufficient peak  
current to the gate of the external MOSFET switches. A minimum capacitance value is given in parameter CIVCC  
(P_9.2.4).  
Alternative IVCC_EXT Supply Concept:  
The IVCC_EXT pin can be used for an external voltage supply to alternatively supply the MOSFET Gate drivers.  
This concept is beneficial in the high input voltage range to avoid power losses in the IC (Figure 27, drawing B).  
Integrated undervoltage protection for the external switching MOSFET:  
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage. This  
undervoltage reset threshold circuit will turn OFF the gate drivers in case the IVCC or IVCC_EXT voltage falls  
below their undervoltage Reset switch OFF Thresholds VIVCC_RTH,d (P_9.2.9) and VIVCC_EXT_RTH,d (P_9.2.5).  
In Limp Home state the Undervoltage Reset switch OFF threshold for the IVCC has no impact on the switching  
activity.  
The Undervoltage Reset threshold for the IVCC and the IVCC_EXT pins help to protect the external switches  
from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of the  
external logic level N-channel MOSFETs.  
A
B
IVCC  
Power  
IVCC  
Internal  
VREG  
Internal  
VREG  
VIN  
VIN  
Power  
On Reset  
On Reset  
External  
VREG  
IVCC_EXT  
IVCC_EXT  
Gate Drivers  
Gate Drivers  
Figure 27 Voltage Regulator Configurations  
Datasheet  
40  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Linear Regulator  
9.2  
Electrical Characteristics  
Table 9  
EC Line Regulator  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test Condition Number  
Min.  
Max.  
IVCC  
Output Voltage  
VIVCC  
ILIM  
4.8  
70  
5
5.2  
V
VIN= 13.5 V;  
0.1 mA IIVCC 50 mA;  
1)  
P_9.2.1  
P_9.2.2  
P_9.2.3  
Output Current  
Limitation  
90  
200  
110  
350  
mA  
mV  
VIVCC = 4 V;  
VIN = 5 V;  
Drop out Voltage (VIN -  
VDR  
VIVCC  
)
IIVCC = 10 mA;  
1) 2)  
IVCC Buffer Capacitor  
CIVCC  
10  
µF  
V
P_9.2.4  
P_9.2.5  
3)  
IVCC_EXT Undervoltage VIVCC_EXT_R 3.7  
3.9  
4.1  
Reset switch OFF  
VIVCC_EXT decreasing;  
TH,d  
Threshold  
3)  
IVCC Undervoltage Reset VIVCC_RTH,d 3.7  
switch OFF Threshold  
3.9  
4.1  
V
V
P_9.2.9  
P_9.2.6  
VIVCC decreasing;  
VIVCC increasing;  
IVCC and IVCC_EXT  
VIVCCX_HYST 0.3  
0.33  
0.36  
Undervoltage Hysterisis  
VIVCC_EXT increasing;  
1) Not subject to production test, specified by design  
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.  
Use capacitors with LOW ESR.  
3) Selection of external switching MOSFET is crucial. VIVCC_EXT_RTH,d and VIVCC_RTH,d min. as worst case VGS must be  
considered.  
Datasheet  
41  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Protection and Diagnostic Functions  
10  
Protection and Diagnostic Functions  
10.1  
Description  
The TLD5541-1 has integrated circuits to diagnose and protect against overvoltage, open load, short circuits  
of the load and overtemperature faults. Furthermore, the device provides a 2 Bit information of ILED, IIN by the  
SPI to the µC.  
In IDLE state, only the Over temperature Shut Down, Over Temperature Warning, IVCC or IVCC_EXT  
Undervoltage Monitor, VDD or VEN/INUVLO Undervoltage Monitor are reported according to specifications.  
In Figure 28 a summary of the protection, diagnostic and monitor functions is displayed.  
Protection and Diagnostic  
SPI STD  
Diagnosis  
Overvoltages  
SPI  
Open Load  
SPI  
No output current  
OR  
Short at the Load  
SPI  
SPI  
Linear Regulators  
OFF  
(only IVCC disabled  
Device  
Overtemperature  
OR  
in case of  
Input  
overtemperature)  
Undervoltage  
Monitoring  
2BIT data  
2BIT data  
2BIT data  
IOUT  
Read-back via  
SPI  
IIN  
Mode Indication  
IOUT  
IOUTMON  
IINMON  
KILIS Factor 8  
KILIS Factor 20  
IIN  
Figure 28 Protection, Diagnostic and Monitoring Overview - TLD5541-1  
Note:  
A device Overtemperature event overrules all other fault events!  
Datasheet  
42  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Protection and Diagnostic Functions  
10.2  
Output Overvoltage, Open Load, Short circuit protection  
The VFB pin measures the voltage on the application output and in accordance with the populated resistor  
divider, short to ground, open load and output overvoltage thresholds are set. Refer to Figure 30 and Figure 29  
for more details.  
VFB  
Overvoltage  
VFB_OVTH = fixed  
Open LOAD  
VFB_OL,rise = fixed  
Normal Operation  
VFB_S2G = adjustable  
Short  
Circuit  
e.g. 50V  
VOUT  
Threshold can be  
adjusted via SPI  
Figure 29 Definition of Protection Ranges  
VIN  
CIVCC  
IVCC  
D2  
D1  
VOUT  
RFB  
BST1  
BST2  
CBST1 CBST2  
M1  
M2  
M4  
VVFB_OVTH  
VVFB_OL,rise  
RVFBH  
COUT  
HSGD1  
SWN1  
LOUT  
M3  
LSGD1  
SWCS  
RVFBL  
VVFB_S2G  
RSWCS  
SGND  
PGND  
LSGD2  
SWN2  
HSGD2  
VFB  
FBH  
FBL  
Figure 30 VFB Protection Pin - Overview  
10.2.1  
Short Circuit protection  
The device detects a short circuit at the output if this condition is verified:  
The pin VFB falls below the threshold voltage VVFB_S2G for at least 8 clock cycles  
Datasheet  
43  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Protection and Diagnostic Functions  
During the rising edge of the Soft Start the short circuit detection via VFB is ignored until VSOFT_START_LOFF (see  
Figure 8).  
After a short circuit detection, the SPI flag (SHRTLED) in the STD diagnosis register is set to HIGH and the gate  
drivers stop delivering output current (Break-Low condition, both LS MOSFETs ON). The Device will auto  
restart with the soft start routine described in Chapter 6.2. The dedicated diagnosis flag (SHRTLED) will be  
cleared after the next reading cycle of the STD diagnosis.  
A voltage divider between VOUT, VFB pin and AGND is used to adjust the application short circuit thresholds  
following Equation (10.1).  
RVFBH + RVFBL  
Vshort  
= VVFB  
(10.1)  
_ led  
_ S 2 G  
RVFBL  
The short circuit threshold voltage VVFB_S2G (P_10.8.1) is set by 4-Bits in the SPI register  
MFSSETUP1.LEDCHAINas shown in Table 10.  
The configurable short circuit threshold is especially useful in 2 types of applications:  
1) Multifloat switch applications:  
Multifloat switch applications are applications with a series connection of LEDs and parallel transistors to  
switch ON and OFF single (or multiple) LEDs in a string. The built in feature “fast output discharge operation  
mode” enables such applications but the short circuit threshold has to be adjusted in accordance to the LED  
changes. This synchronization is needed to avoid wrong short circuit detection during load step variations.  
For this reason the register MFSSETUP1.LEDCHAINselects the short circuit threshold register but is also  
related to the “fast dynamic behavior feature”. For more Info on the “fast output discharge operation mode”  
please refer to Chapter 6.5.  
2) Standard applications which require a large output voltage range:  
The adjustable short circuit threshold VVFB_S2G enables applications with a large VOUT operation range.  
The MFSSETUP1.LEDCHAIN register allows configuration of the short circuit threshold in 16 Steps.  
The step size depends on the sizing of the RVFBH and RVFBL resistors.  
In order to have proper short circuit detection MFSSETUP1.LEDCHAIN should be calculated as shown in  
Equation (10.2).  
∙ ꢐꢈꢑꢒ − 38ꢓꢈ  
75ꢓꢈ  
ꢉℎꢊꢋꢌ _ꢍꢎꢏ  
(10.2)  
ꢀꢁꢂꢃꢄꢅꢆꢇ =  
+ 1  
Where KVFB=RVFBL/(RVFBH + RVFBL) and Vshort_led is the desired short circuit threshold value at VOUT  
The Table 10 below displays the relationship between the bitcode and the short circuit threshold voltage  
VFB_S2G based on an example (resistor divider RVFBH = 59 k, RVFBL = 1.5 k).  
.
V
The application overvoltage protection is instead not dependent by LEDCHAIN and, based on the  
Equation (10.3) for this particular resistor divider is fixed to 59.3 V.  
Table 10  
Adjustable Short Circuit threshold overview  
LEDCHAIN  
VOUT_OVLO  
k = RVFBL / (RVFBH Vopen_load Vshort_led (V)  
VVFB_S2G(V)  
Default  
+ RVFBL  
0.025  
0.025  
0.025  
0.025  
0.025  
)
(VFB_S2G / k)  
Condition  
1
2
3
4
5
59.3  
59.3  
59.3  
59.3  
59.3  
54.4  
54.4  
54.4  
54.4  
54.4  
1.5  
0.038  
0.113  
0.188  
0.263  
0.338  
4.6  
7.6  
10.7  
13.7  
Datasheet  
44  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Protection and Diagnostic Functions  
Table 10  
Adjustable Short Circuit threshold overview  
LEDCHAIN  
VOUT_OVLO  
k = RVFBL / (RVFBH Vopen_load Vshort_led (V)  
VVFB_S2G(V)  
Default  
+ RVFBL  
0.025  
0.025  
0.025  
0.025  
0.025  
0.025  
0.025  
0.025  
0.025  
0.025  
0.025  
)
(VFB_S2G / k)  
Condition  
6
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
59.3  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
54.4  
16.8  
0.413  
0.488  
0.563  
0.638  
0.713  
0.788  
0.863  
0.938  
1.013  
1.088  
1.163  
7
19.8  
8
22.8  
default  
9
25.9  
10  
11  
12  
13  
14  
15  
0
28.9  
32.0  
35.0  
38.1  
41.1  
44.2  
47.2  
During Limp Home state the short circuit threshold VVFB_S2G is fixed at the default value (VVFB_S2G / VVFB_OVTH),  
approx. 1/3 of the fixed overvoltage protection circuit in the application. There is no relationship between the  
analog dimming feature at VSET pin and the VVFB_S2G threshold. The customer must take care by adjusting the  
default voltage at SET pin to program the VOUT be higher than the default short circuit threshold.  
During start-up the TLD5541-1 ignores the detection of a short circuit or an open load until the soft-start  
capacitor reaches 1.75 V. To prevent false tripping after startup, a large enough soft-start capacitor must be  
used to allow the output to get up to approximately 50% of the final value.  
Note:  
If the short circuit condition disappears, the device will re-start with the soft start routine as  
described in Chapter 6.2.  
10.2.2  
Overvoltage Protection  
A voltage divider between VOUT, VFB pin and AGND is used to adjust the overvoltage protection threshold (refer  
to Figure 30).  
To fix the overvoltage protection threshold the following Equation (10.3) is used:  
RVFBH + RVFBL  
VOUT _ OV _ protected =VVFB _ OVTH  
(10.3)  
RVFBL  
If VVFB gets higher than its overvoltage threshold VVFB_OVTH , the SPI flag (OUTOV) in the STD diagnosis set to  
HIGH and the gate drivers stop switching for output regulation (Break-Low condition both LS MOSFETs ON).  
When VVFB_OVTH- VVFB_OVTH,HYS threshold is reached the device will auto restart. The dedicated diagnosis flag  
(OUTOV) will be cleared after the next reading cycle of the STD diagnosis.  
If the SWTMOD.OUTOVLATbit is set to HIGH the overvoltage protection is changed into latched behavior and  
the µC has to set the DVCCTRL.CLRLATbit to reset the OUTOV flag and restart the switching activities.  
10.2.3  
Open Load Protection  
To reliably detect an open load event, two conditions need to be observed:  
1) Voltage threshold: VVFB > VVFB_OL,rise  
2) Output current information: V(FBH-FBL) < VFBH_FBL_OL  
During the rising edge of the Soft Start the open load detection is ignored until VSOFT_START_LOFF  
.
Datasheet  
45  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Protection and Diagnostic Functions  
After an open load detection, the SPI flag (OL) in the STD diagnosis register is set to HIGH and the gate drivers  
stop switching (Break-Low condition). The Device will auto restart with a soft start routine. The dedicated  
diagnosis flag (OL) will be cleared after the next reading cycle of the STD diagnosis.  
After an Open Load error the TLD5541-1 is autorestarting the output control accordingly to the implemented  
Softstart routine. An Open Load error causes an increase of the output voltage as well. An Overvoltage  
condition could be reported in combination with an Open Load error (in general, multiple error detection may  
happen if more error detection thresholds are reached during the autorestart funcion, as possible  
consequence of reactive behavior at the output node during open load).  
The COMP capacitor is discharged during an Open Load condition to prevent spikes if load reconnects. This  
measure could artificially generate Short Circuit detections after open loads events.  
10.3  
Input voltage monitoring, protection and power derating  
Input overvoltage and undervoltage shutdown levels can both be defined through an external resistor divider,  
as shown in Figure 31.  
Both INOVLO and EN/INUVLO pin voltages are internally compared to their respective thresholds by means of  
hysteretic comparators.  
Neglecting the hysteresis, the following equations hold:  
R1  
UVth = 1 +  
EN / INUVLO  
(10.4)  
(10.5)  
th  
R2 + R3  
R1 + R2  
OVth = 1 +  
INOVLO  
th  
R3  
VOUT IOUT  
PIN  
=
(10.6)  
η
VOUT IOUT  
I IN  
(10.7)  
(10.8)  
(10.9)  
VIN _ boundary  
=
η
V IN 1IN 2  
I IN  
=
R IN  
VFBH FBL  
IOUT  
=
RFB  
Datasheet  
46  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Protection and Diagnostic Functions  
Figure 31 Input Voltage Protection  
In case of overvoltage event at the input, the STD bit VINOVLO is set. The softstart capacitor will be discharged  
by an internal pull down switch.  
After the overvoltage event disappeared the device will auto restart with the softstart function.  
10.4  
Input current Monitoring and Limiter  
The two inputs (IIN1, IIN2) can be used to limit and monitor the Input current (Block A1 and A7 in Figure 7).  
The control loop reduces the Comp voltage when the voltage accross the pins reaches Input Current Sense  
threshold VIIN1-IIN2 to keep the input current below IINMax Equation (10.10)  
(10.10)  
VIIN1 IIN2  
IINMax = ---------------------------  
RIIN  
The input current, measured via IIN1 and IIN2 pins, can be monitored through an analog output pin and an SPI  
routine.  
The IINMON pin provides a linear indication of the current flowing through the input. The following  
Equation (10.11) is applicable:  
VIINMON = I IN RIN 20  
(10.11)  
Note:  
If the RIN value is choosen in a way that the current limitiation is much bigger than the nominal input  
current during the application the current measurement becomes inaccurate. Best results for an  
accurate current measurement via the VIINMON pin is to set the current limit only slightly above the  
specific application related nominal input current.  
Purpose of the input current monitoring routine is to verify if the system is in current limitation.  
The output of the Input Current Sense is compared to the internal precise reference voltage  
The comparator works like a 2 bit window ADC referred to the internal precise reference voltage  
To execute the current monitor routine the CURRMON.SOMON bit has to be set HIGH and the result is ready  
when CURRMON.EOMON is read HIGH.  
Datasheet  
47  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Protection and Diagnostic Functions  
The result of the input monitor routine is reported on the CURRMON.INCURR bit.  
Figure 32 Input Current Monitoring General Overview  
10.5  
Output current Monitoring  
The output current can be monitored through an analog output pin and an SPI routine.  
The IOUTMON pin provides a linear indication of the current flowing through the LEDs. The following  
Equation (10.12) is applicable:  
(10.12)  
VIOUTMON = 200 mV + IOUT RFB 8  
Purpose of the SPI current monitor routine is to verify if the system is in loop.  
The output of the Led Current Sense is compared to the output of the Analog Dimming DAC  
The comparator works like a 2 bit window ADC around 8 bit DAC output  
To execute the current monitor routine the CURRMON.SOMON bit has to be set HIGH and the result is ready  
when CURRMON.EOMON is read HIGH.  
When CURRMON.SOMON bit is set to HIGH both input and output current monitor routines are executed in  
parallel.  
The result of the monitor routine is reported on the CURRMON.LEDCURR bit.  
OUT H-Bridge  
ADC out  
2Bit Monitoring  
IOUTMON  
Vint_supply  
11b  
10b  
00b 01b  
FBH  
feedback  
Logic  
+
V_sense_in  
VFBH-FBL  
RFB  
IOUT_sense  
-
FBL  
ADC CLK  
V_sense_out  
+
Latch  
IDC_offset  
ADC in  
ADC out  
-
to LED  
Load  
IIN_feedback  
ADC CLK  
+
-
ADC Latch  
EA  
8 bit resolution  
4 bit calibration  
DAC  
COMP  
Vref_int  
Figure 33 Output Current Monitoring General Overview  
Datasheet  
48  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Protection and Diagnostic Functions  
10.6  
Device Temperature Monitoring  
A temperature sensor is integrated on the chip. The temperature monitoring circuit compares the measured  
temperature to the warning and shutdown thresholds. If the internal temperature sensor reaches the warning  
temperature, the temperature warning bit TWis set to HIGH. This bit is not latched (i.e. if the temperature falls  
below the warning threshold (with hysteresis), the TWbit is reset to LOW again).  
If the internal temperature sensor reaches the shut-down temperature, the Gate Drivers plus the IVCC  
regulator are shut down as described in Figure 34 and the temperature shut-down bit: TSDis set to HIGH. The  
TSDbit is latched while the Gate Drivers plus the IVCC regulator have an auto restart behavior.  
Note:  
The Device will start up with a soft start routine after a TSD condition disappear.  
Tj  
TjSD,hyst  
TjSD  
TjW  
TjSD_exit  
TjW_exit  
TjW,Hyst  
t
xSGDx  
Gate Drivers  
autorestart  
Operating  
OFF  
t
IVCC  
5V  
IVCC  
autorestart  
OFF  
t
TW bit  
1
NO ERROR  
NO ERROR  
TW bit is reset automatically  
0
t
t
TSD error bit  
1
0
TSD error bit latched until next reset or CLRLAT  
Figure 34 Device Overtemperature Protection Behavior  
Datasheet  
49  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Protection and Diagnostic Functions  
10.7  
Electrical Characteristics  
Table 11  
EC Protection and Diagnosis  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
0.53  
Max.  
0.59  
Short Circuit Protection  
Short to GND threshold  
VVFB_S2G  
0.563  
V
VVFB decreasing;  
MFSSETUP1.LEDCHA  
IN= 1000B  
P_10.8.1  
Temperature Protection:  
1)  
1)  
1)  
1)  
Thermal Warning  
junction temperature  
Tj,W  
125  
140  
10  
155  
°C  
°C  
°C  
°C  
P_10.8.2  
P_10.8.3  
P_10.8.4  
P_10.8.5  
Temperature warning Tj,W,hyst  
Hysteresis  
Over Temperature  
Shutdown  
Tj,SD  
160  
175  
10  
190  
Over Temperature  
Tj,SD,hyst  
Shutdown Hysteresis  
Overvoltage Protection:  
VFB Over Voltage  
Feedback Threshold  
VVFB_OVTH 1.42  
1.46  
40  
1.50  
58  
V
P_10.8.6  
P_10.8.7  
Output Over Voltage  
Feedback Hysteresis  
VVFB_OVTH, 25  
mV  
Output Voltage  
decreasing;  
HYS  
Open Load and Open Feedback Diagnostics  
Open Load rising  
Threshold  
VVFB_OL,rise 1.29  
1.34  
15  
1.39  
22.5  
1.33  
V
VFBH-FBL = 0 V;  
VFB = 1.4 V;  
P_10.8.9  
P_10.8.10  
P_10.8.11  
Open Load reference  
Voltage VFBH-FBL  
VFBH_FBL_O  
mV  
V
L
Open Load falling  
Threshold  
VVFB_OL,fall 1.23  
1.28  
VFBH-FBL = 0 V;  
Input Overvoltage protection  
Input Overvoltage rising VINOVLOth 1.9  
Threshold  
2
2.1  
62  
V
P_10.8.12  
P_10.8.13  
Input Overvoltage  
VINOVLO(hys 18  
40  
mV  
Threshold Hysteresis  
t)  
1) Specified by design; not subject to production test.  
Note:  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the datasheet. Fault conditions are considered as “outside” normal operating range.  
Protection functions are not designed for continuous repetitive operation.  
Datasheet  
50  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Infineon FLAT SPECTRUM Feature set  
11  
Infineon FLAT SPECTRUM Feature set  
11.1  
Description  
The Infineon FLAT SPECTRUM feature set has the target to minimize external additional filter circuits. The goal  
is to provide several beneficial concepts to provide easy adjustments for EMC improvements after the layout  
is already done and the HW designed.  
11.2  
Synchronization Function  
The TLD5541-1 features a SYNC input pin which can be used by a µC pin to define an oscillator switching  
frequency. The µC is responsible to synchronize with various devices by applying appropriate SYNC signals to  
the dedicated DC/DC devices in the system. Refer to Figure 35  
Note:  
The Synchronization function can not be used when the Spread Spectrum is active.  
H-Bridge DCDC  
MASTER  
BUCK-  
BOOST  
SYNC  
GATE  
LOGIC  
CONTROL  
e.g. 400kHz  
Phaseshift A  
H-Bridge DCDC  
Slave  
BUCK-  
BOOST  
GATE  
SYNC1  
SYNC2  
defined phase shift between  
Outputs of different devices  
SYNC  
µC  
LOGIC  
INPUT  
e.g. 400kHz  
Phaseshift B  
CONTROL  
Figure 35 Synchronization Overview  
Datasheet  
51  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Infineon FLAT SPECTRUM Feature set  
11.3  
Spread Spectrum  
The Spread Spectrum modulation technique significantly improves the lower frequency range of the  
spectrum (f < 30 MHz).  
By using the spread spectrum technique, it is possible to optimize the input filter only for the peak limits, and  
also pass the average limits (average emission limits are -20dB lower than the peak emission limits). By using  
spread spectrum, the need for low ESR input capacitors is relaxed because the input capacitor series resistor  
is important for the low frequency filter characteristic. This can be an economic benefit if there is a strong  
requirement for average limits.  
The TLD5541-1 features a built in Spread Spectrum function which can be enabled (SWTMOD.ENSPREAD)  
and adjusted via the SPI interface. Dedicated SPI-Bits are used to adjust the modulation frequency fFM  
,
(P_11.6.3) and (P_11.6.4) (SWTMOD.FMSPREAD) and the deviation frequency fdev, (P_11.6.1) and (P_11.6.2)  
(SWTMOD.FDEVSPREAD) accordingly to specific application needs. Refer to Figure 36 for more details.  
The following adjustments can be programmed when SWTMOD.ENSPREAD= HIGH:  
SWTMOD.FMSPREAD= LOW: 12 kHz  
SWTMOD.FMSPREAD= HIGH: 18 kHz  
SWTMOD.FDEVSPREAD= HIGH: ±8% of fSW  
SWTMOD.FDEVSPREAD= LOW: ±16% of fSW  
Note:  
The Spread Spectrum function can not be used when the synchronization pin is used.  
fSW  
fdev  
t
1
f
FM  
Figure 36 Spread Spectrum Overview  
Datasheet  
52  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Infineon FLAT SPECTRUM Feature set  
11.4  
EMC optimized schematic  
Figure 37 below displays the Application circuit with additional external components for improved EMC  
behavior.  
LPI  
CIN2  
VIN  
RIIN  
DVS  
Alternative  
external  
VREG supply  
CPI1 CPI2  
CPI3 CPI4  
IVCC_EXT  
IVCC  
CIVCC  
VIN  
IIN2  
CIN1  
D1  
D2  
LPO  
RFB  
Rfilter  
Cfilter  
RM4  
BST1  
BST2  
COUT  
DHSG1  
RM1  
CBST2  
R1  
R2  
R3  
M4  
IIN1  
EN/INUVLO  
M1  
RVFBH  
CBST1  
HSGD1  
SWN1  
CM1  
RM2  
CM4  
RM3  
CM3  
RHSG1  
CPO1 CPO2  
CPO3 CPO4  
LOUT  
RHSG2  
M3  
RVFBL  
DLSG1  
INOVLO  
COMP  
M2  
CCOMP  
RCOMP  
LSGD1  
SWCS  
CM2  
RLSG1  
CSOFT_START  
RFREQ  
DLSG2  
RLSG2  
DHSG2  
SOFT_START  
FREQ  
RSWCS  
4LED in  
series /  
1A  
SGND  
PGND1  
PGND2  
µC SYNC signal  
Digital dimminig  
SYNC  
PWMI  
LSGD2  
IINMON  
IOUTMON  
Advanced monitoring via µC  
+3.3V or +5V  
SWN2  
HSGD2  
VFB  
VDD  
CSN  
SI  
SO  
SCLK  
FBH  
FBL  
CFBH-FBL  
CFBH  
Spread Spectrum ON /OFF via SPI  
VSS AGND  
CFBL  
RSPI  
Figure 37 Application Drawing Including Additional Components for an Improved EMC Behavior  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Datasheet  
53  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Infineon FLAT SPECTRUM Feature set  
11.5  
Electrical Characteristics  
Table 12  
EC Spread Spectrum  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, all voltages with respect to AGND; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Spread Spectrum Parameters  
Frequency Deviation  
1)  
fdev  
fdev  
fFM  
fFM  
±8  
%
P_11.6.1  
P_11.6.2  
P_11.6.3  
P_11.6.4  
SWTMOD.FDEV  
SPREAD= HIGH;  
1)  
Frequency Deviation  
Frequency Modulation  
Frequency Modulation  
±16  
12  
%
SWTMOD.FDEV  
SPREAD= LOW;  
1)  
kHz  
kHz  
SWTMOD.FMSP  
READ= LOW;  
1)  
18  
SWTMOD.FMSP  
READ= HIGH;  
1) Specified by design; not subject to production test.  
Datasheet  
54  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
12  
Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines:  
SO, SI, SCLK and CSN. Data is transferred by the lines SI and SO at the rate given by SCLK. The falling edge of  
CSN indicates the beginning of an access. Data is sampled in on line SI at the falling edge of SCLK and shifted  
out on line SO at the rising edge of SCLK. Each access must be terminated by a rising edge of CSN. A modulo  
8/16 counter ensures that data is taken only when a multiple of 8 bit has been transferred after the first 16 bits.  
Otherwise, a TER (i.e. Transmission Error) bit is asserted. In this way the interface provides daisy chain  
capability with 16 bit as well as with 8 bit SPI devices.  
MSB  
MSB  
14  
14  
13  
13  
12  
12  
11  
11  
10  
10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
LSB  
LSB  
SO  
SI  
CSN  
SCLK  
time  
SPI_16bit.emf  
Figure 38 Serial Peripheral Interface  
12.1  
SPI Signal Description  
CSN - Chip Select  
The system microcontroller selects the TLD5541-1 by means of the CSN pin. Whenever the pin is in LOW state,  
data transfer can take place. When CSN is in HIGH state, any signals at the SCLK and SI pins are ignored and  
SO is forced into a high impedance state.  
CSN HIGH to LOW Transition  
The requested information is transferred into the shift register.  
SO changes from high impedance state to HIGH or LOW state depending on the signal level at pin SI.  
If the device is in SLEEP mode, the SO pin remains in high impedance state and no SPI transmission will  
occur.  
TERFlag will set the Bit number 10 in the STD diagnosis Frame. This Bit is set to HIGH after an undervoltage  
contition, reset via SPI command, on Limp Home state entering or after an incorrect SPI transmission. TER  
Flag can be read also direcly on the SO line between the falling edge of the CSN and the first rising edge of  
the SCLK according to the Figure 39.  
Datasheet  
55  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
STDDIAG.TER  
SI  
SO  
OR  
1
0
SO  
S
SI  
SPI  
CSN  
SCLK  
S
SPI_16bitTER .emf  
Figure 39  
Combinatorial Logic for TER bit  
CSN LOW to HIGH Transition  
Command decoding is only done, when after the falling edge of CSN exactly a multiple (0,1, 2, 3, …) of eight  
SCLK signals have been detected after the first 16 SCLK pulses. In case of faulty transmission, the  
transmission error bit (TER) is set and the command is ignored.  
Data from shift register is transferred into the addressed register.  
SCLK - Serial Clock  
This input pin clocks the internal shift register. The serial input (SI) transfers data into the shift register on the  
falling edge of SCLK while the serial output (SO) shifts diagnostic information out on the rising edge of the  
serial clock. It is essential that the SCLK pin is in LOW state whenever chip select CSN makes any transition,  
otherwise the command may be not accepted.  
SI - Serial Input  
Serial input data bits are shift-in at this pin, the most significant bit first. SI information is read on the falling  
edge of SCLK. The input data consists of two parts, control bits followed by data bits. Please refer to  
Chapter 12.5 for further information.  
SO Serial Output  
Data is shifted out serially at this pin, the most significant bit first. SO is in high impedance state until the CSN  
pin goes to LOW state. New data will appear at the SO pin following the rising edge of SCLK.  
Please refer to Chapter 12.5 for further information.  
12.2  
Daisy Chain Capability  
The SPI of the TLD5541-1 provides daisy chain capability. In this configuration several devices are activated by  
the same CSN signal MCSN. The SI line of one device is connected with the SO line of another device (see  
Figure 40), in order to build a chain. The end of the chain is connected to the output and input of the master  
device, MO and MI respectively. The master device provides the master clock MCLK which is connected to the  
SCLK line of each device in the chain.  
Datasheet  
56  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
device 1  
device 2  
SPI  
device 3  
SPI  
SI  
SO SI  
SO SI  
SO  
MO  
SPI  
MI  
MCSN  
MCLK  
SPI_DaisyChain_1.emf  
Figure 40 Daisy Chain Configuration  
In the SPI block of each device, there is one shift register where each bit from the SI line is shifted in with each  
SCLK. The bit shifted out occurs at the SO pin. After sixteen SCLK cycles, the data transfer for one device is  
finished. In single chip configuration, the CSN line must turn HIGH to make the device acknowledge the  
transferred data. In daisy chain configuration, the data shifted out at device 1 has been shifted in to device 2.  
When using three devices in daisy chain, several multiples of 8 bits have to be shifted through the devices  
(depending on how many devices with 8 bit SPI and how many with 16 bit SPI). After that, the MCSN line must  
turn HIGH (see Figure 41).  
SO device 3  
SI device 3  
SO device 2  
SI device 2  
SO device 1  
SI device 1  
MI  
MO  
MCSN  
MCLK  
SPI_DaisyChain_2.emf  
Figure 41 Data Transfer in Daisy Chain Configuration  
Datasheet  
57  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
12.3  
Timing Diagrams  
tCS(lead)  
tCS(lag)  
tCS(td)  
tSCLK(P )  
0.7VDD  
0.2VDD  
CSN  
SCLK  
SI  
tSCLK (H)  
tSCLK (L)  
0.7VDD  
0.2VDD  
tSI (s u)  
tSI (h)  
0.7VDD  
0.2VDD  
tSO(en)  
tSO(v )  
tSO (dis)  
0.7V  
cc  
SO  
0.2V  
cc  
SPI_Timings.emf  
Figure 42 Timing Diagram SPI Access  
Datasheet  
58  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
12.4  
Electrical Characteristics  
VIN = 8 V to 36 V, TJ = -40°C to +150°C, VDD= 3 V to 5.5 V, all voltages with respect to ground; (unless otherwise  
specified)  
Table 13  
EC Serial Peripheral Interface (SPI)  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Input Characteristics (CSN, SCLK, SI) - LOW level of pin  
Max.  
CSN  
SCLK  
SI  
VCSN(L)  
VSCLK(L)  
VSI(L)  
0
0
0
0.8  
0.8  
0.8  
V
V
V
P_12.4.1  
P_12.4.2  
P_12.4.3  
Input Characteristics (CSN, SCLK, SI) - HIGH level of pin  
CSN  
SCLK  
SI  
VCSN(H)  
VSCLK(H)  
VSI(H)  
2
VDD  
VDD  
VDD  
94  
V
P_12.4.4  
P_12.4.5  
P_12.4.6  
P_12.4.7  
2
V
2
V
L-input pull-up current at CSN pin -ICSN(L)  
H-input pull-up current at CSN pin -ICSN(H)  
L-Input Pull-Down Current at Pin  
31  
63  
μA  
VDD = 5 V;  
VCSN = 0.8 V;  
22  
45  
67  
μA  
VDD = 5 V;  
VCSN = 2 V;  
P_12.4.8  
SCLK  
ISCLK(L)  
ISI(L)  
6
6
12  
12  
18  
18  
μA  
μA  
VSCLK = 0.8 V;  
VSI = 0.8 V;  
P_12.4.9  
SI  
P_12.4.10  
H-Input Pull-Down Current at Pin  
SCLK  
ISCLK(H)  
ISI(H)  
15  
15  
30  
30  
45  
45  
μA  
μA  
VSCLK = 2 V;  
VSI = 2 V;  
P_12.4.11  
P_12.4.12  
SI  
Output Characteristics (SO)  
L level output voltage  
H level output voltage  
VSO(L)  
VSO(H)  
0
0.4  
V
V
ISO = -2 mA;  
ISO = 2 mA;  
P_12.4.13  
P_12.4.14  
VDD  
-
VDD  
0.4 V  
V
DD = 5 V;  
VCSN = VDD  
SO = 0 V or  
Output tristate leakage current  
ISO(OFF)  
-1  
1
μA  
;
P_12.4.15  
V
VSO = VDD  
;
Timings  
1)  
1)  
1)  
1)  
Enable lead time (falling CSN to tCSN(lead) 200  
rising SCLK)  
ns  
ns  
ns  
ns  
P_12.4.17  
P_12.4.18  
P_12.4.19  
P_12.4.20  
Enable lag time (falling SCLK to  
rising CSN)  
tCSN(lag)  
200  
250  
Transfer delay time (rising CSN to tCSN(td)  
falling CSN)  
Output enable time (falling CSN to tSO(en)  
200  
SO valid)  
CL = 20 pF at SO  
pin;  
Datasheet  
59  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
Table 13  
EC Serial Peripheral Interface (SPI) (cont’d)  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Max.  
200  
1)  
Output disable time (rising CSN to tSO(dis)  
ns  
P_12.4.21  
SO tristate)  
CL = 20 pF at SO  
pin;  
1)  
Serial clock frequency  
Serial clock period  
fSCLK  
5
MHz  
ns  
P_12.4.22  
P_12.4.24  
P_12.4.25  
P_12.4.26  
P_12.4.27  
1)  
1)  
1)  
1)  
tSCLK(P)  
tSCLK(H)  
tSCLK(L)  
200  
75  
75  
20  
Serial clock HIGH time  
Serial clock LOW time  
ns  
ns  
Data setup time (required time SI tSI(su)  
ns  
to falling SCLK)  
1)  
Data hold time (falling SCLK to SI) tSI(h)  
20  
ns  
ns  
P_12.4.28  
P_12.4.29  
1)  
Output data valid time with  
capacitive load  
tSO(v)  
100  
CL = 20 pF;  
1) Not subject to production test, specified by design  
Datasheet  
60  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
12.5  
SPI Protocol  
The relationship between SI and SO content during SPI communication is shown in Figure 43. The SI line  
represents the frame sent from the µC and the SO line is the answer provided by the TLD5541-1. The first SO  
response is the response from the previous command.  
SI  
frame A  
frame B  
frame C  
(previous  
response)  
response to  
frame A  
response to  
frame B  
SO  
SPI_SI2SO.emf  
Figure 43 Relationship between SI and SO during SPI communication  
The SPI protocol will provide the answer to a command frame only with the next transmission triggered by the  
µC. Although the biggest majority of commands and frames implemented in TLD5541-1 can be decoded  
without the knowledge of what happened before, it is advisable to consider what the µC sent in the previous  
transmission to decode TLD5541-1 response frame completely.  
More in detail, the sequence of commands to “read” and “write” the content of a register will look as follows:  
SI  
write register A  
read register A  
(new command)  
(previous  
response)  
Standard  
diagnostic  
register A  
content  
SO  
SPI_RWseq.emf  
Figure 44 Register content sent back to µC  
There are 3 special situations where the frame sent back to the µC doesn't depend on the previously received  
frame:  
in case an error in transmission happened during the previous frame (for instance, the clock pulses were  
not multiple of 8 with a minimum of 16 bits), shown in Figure 45  
when TLD5541-1 logic supply comes out of an Undervoltage reset condition (VDD < VDD(UV) as shown in  
Figure 46 or EN/INUVLO < VEN/INUVLOth  
)
in case of a read or write command for a “not used” or “reserved” register (in this case TLD5541-1 answers  
with Standard Diagnosis at the next SPI transmission)  
Datasheet  
61  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
frame A  
SI  
(new  
command)  
(error in trans .)  
(previous  
response)  
Standard diag +  
TER  
SO  
SPI_SO_TER.emf  
Figure 45 TLD5541-1 response after an error in transmission  
V
DD VDD(UV)  
SI  
frame A  
frame B  
frame C  
Standard diag + TER  
SO  
(SO = „Z“)  
response to frame B  
Figure 46 TLD5541-1 response after coming out of Power-On reset at VDD  
Datasheet  
62  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
12.6  
SPI Registers Overview  
15 14  
Frame W/R RB ADDR  
Write Register in bank 0  
ADDR  
Read Register in bank 0  
ADDR  
Read Standard Diagnosis  
13  
12 11 10  
9
8
7
6
5
4
3
2
1
0
Data  
SI  
SI  
SI  
1
0
Data  
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
0
x
x
x
x
x
x
x
x
Reading a register needs two SPI frames. In the first frame the read command is sent. In the second frame the  
output at SPI signal SO will contain the requested information. The MSB will be HIGH (while in case of standard  
diagnosis is LOW). A new command can be executed in the second frame.  
12.6.1  
Standard Diagnosis  
The Standard Diagnosis reports several diagnostic informations and the status of the device and the utility  
routines.  
The bits UVLORST, TER, VINOVLO, OUTOV, IVCCUVLO, OL and SHRTLED are latched and automatically cleared  
after a STD diagnosis reading (default condition if OUTOVLT is not set).  
A CLRLAT command resets the diagnostic Latched Flags and Latched protections for the OUTOV, TSD bits,  
restarting the switching activity if this was halted due the previously mentioned faults.  
The TSD bit is always latched and clearable only via explicit CLRLAT command. Note that the OUTOV has  
latched behavior only when SWTMOD.OUTOVLAT=1, see Chapter 10.2.2 for further details.  
The STD bits which are real time status monitors or mirror of internal registers are not cleared after a STD  
diagnosis reading or via explicit CLRLAT command:  
The STATE bits and TW are real time status flags  
The bits EOMON, EOMFS and EOCAL are mirror of internal register  
The SWRST_BSTUV bit is the logic OR of:  
latched SWRST flag after a DVCSTRL.SWRST command (clearable via STD Diagnosis reading )  
real time monitor of gate driver undervolage (VBSTx-VSWNx_UVth)  
In standard operating condition (active state, no Limp Home), if no special routines have been executed and  
no faults have been detected, the readout of the STD should be 1000H.  
15  
14  
13  
12 11 10  
9
8
7
6
5
4
3
2
1
0
0
SWRST_ UVLO STATE TER EO  
EOM EOC VINOV OUTOV IVCCU OL SHRTL TSD TW  
BSTUV RST MON FS  
AL  
LO  
VLO  
ED  
Datasheet  
63  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
Field  
Bits  
14  
Type  
r
Description  
SWRST_BSTUV  
SWRST OR VBSTx-VSWNx_UVth Monitor  
0B , no SWRST or undervoltage on the Gate Drivers occured  
1B , there was at least one SWRST since last readout OR an  
undervoltage condition at the gate drivers is occurring  
UVLORST  
STATE  
13  
r
r
VDD OR VEN/INUVLO Undervoltage Monitor  
0B , there was no VDD OR VEN/INUVLO undervoltage since last readout  
1B , there was at least one VDD undervoltage OR VEN/INUVLO  
undervoltage condition since last readout  
12:11  
Operative State Monitor  
00B , (reserved)  
01B , Limp Home Mode  
10B , Active Mode  
11B , Idle Mode  
TER  
10  
9
r
r
Transmission Error  
0B , Previous transmission was successful  
(modulo 16 + n*8 clocks received, where n = 0, 1, 2...)  
1B , Previous transmission failed or first transmission after reset  
EOMON  
End of LED/Input Current Monitor Routine Bit  
0B , Current monitoring routine not completed, not successfully  
performed or never run.  
1B , Current Monitor routine successfully performed (is reset to 0B  
when SOMON is set to 1B)  
EOMFS  
EOCAL  
8
7
6
r
r
r
End of MFS Routine Bit  
0B , MFS routine not completed, not successfully performed or  
never run.  
1B , MFS routine successfully performed (is reset to 0B when  
SOMOFS is set to 1B)  
End of Calibration Routine  
0B , Calibration routine not completed, not successfully  
performed or never run.  
1B , Calibration routine successfully performed (is reset to 0B  
when SOCAL is set to 1B)  
VINOVLO  
VINOVLO Voltage Monitor  
0B , VINOVLO below VINOVLOth threshold since last readout  
1B , There was at least one VINOVLO overvoltage condition since last  
readout  
OUTOV  
5
4
r
r
Output overvoltage Monitor  
0B , Output overvoltage not detected since last readout  
1B , Output overvoltage was detected since last readout  
IVCCUVLO  
IVCC or IVCC_EXT Undervoltage Lockout Monitor  
0B , IVCC and IVCC_EXT above VIVCC_RTH,d or VIVCC_EXT_RTH,d threshold  
since last readout  
1B , Undervoltage on IVCC or IVCC_EXT occurred since last  
readout  
Datasheet  
64  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
Field  
OL  
Bits  
3
Type  
r
Description  
Open Load in ON state Diagnosis  
0B , Open Load condition not detected since last readout  
1B , Open Load condition detected since last readout  
SHRTLED  
TSD  
2
1
0
r
r
r
Shorted LED Diagnosis  
0B , Short circuit condition not detected since last readout  
1B , Short circuit condition detected since last readout  
Over Temperature Shutdown  
0B , Tj below temperature shutdown threshold  
1B , Overtemperature condition detected since last readout  
TW  
Over Temperature Warning  
0B , Tj below temperature warning threshold  
1B , Tj exceeds temperature warning threshold  
Datasheet  
65  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
12.6.2  
Register structure  
Table 15 describes in detail the available registers with their bit-fields function, size and position  
Table 14 shows register addresses and summarize bit-field position inside each register  
Table 14  
Bit  
Register Bank 0  
15 14 13 12 11 10 9 8  
W/ R ADDR  
7
6
5
4
3
2
1
0
Name  
Data  
R
B
LEDCURR W/ 0  
ADIM  
LEDCURR W/ 0  
CAL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0 0 ADIMVAL  
R
1 1 x  
0 1 x  
1 0 x  
x
SOCAL EOCAL CALIBVAL  
R
SWTMOD W/ 0  
R
x
x
x
x
OUTOV  
LAT  
x
ENSP FMSP FDEVSP  
READ READ READ  
DVCCTRL W/ 0  
R
ENCAL CLRLA SWRS IDLE  
T
T
MFSSETU W/ 0  
0 1 EA_IO ILIM_ SOMFS EOMFS LEDCHAIN  
UT_MF HALF  
P1  
R
S
_MFS  
MFSSETU W/ 0  
P2  
0
0
0
0
0
0
1
1
1
0
1
1
1 0 MFSDLY  
R
CURRMON W/ 0  
R
0 0 x  
1 1 x  
x
x
SOMO EOMON INCURR  
N
LEDCURR  
x
REGUSET W/ 0  
x
REGUMODFB  
MON  
R
A write to a non existing address is ignored, a read to a non existing register is ignored and the STD Diagnosis  
Frame is send out.  
Table 15  
Register description  
Field  
Register name  
Bits Type Purpose  
LEDCURRADIM ADIMVAL  
7:0 r/w LED Current Configuration Register  
00000000B, analog dimming @ 0% of LED current fixed via  
RFB  
11110000B, (default) analog dimming @ 100% of LED  
current fixed via RFB  
Datasheet  
66  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
Table 15  
Register description (cont’d)  
Register name  
Field  
Bits Type Purpose  
LEDCURRCAL  
CALIBVAL  
3:0 r/w LED Current Accuracy Trimming Configuration Register  
LED current calibration value definition, the first bit is the  
calibration sign:  
0000B, (default) Initial state in the middle of the range  
0111B, maximum calibration value positive  
1111B, maximum calibration value negative  
EOCAL  
4
r
End of calibration routine signalling bit:  
0B , (default) calibration routine not completed, not  
successfully performed or never run.  
1B , calibration successfully performed (is reset to 0B  
when SOCALis set to 1B)  
SOCAL  
5
0
r/w Start of calibration routine signalling bit:  
0B , (default) no calibration routine started  
1B , calibration routine start (autoclear)  
SWTMOD  
FDEVSPREAD  
r/w Switching Mode Configuration Register  
Deviation Frequency fDEV definition:  
0B , (default) ±16% of fSW  
1B , ±8% of fSW  
FMSPREAD  
ENSPREAD  
OUTOVLAT  
1
2
4
r/w Frequency Modulation Frequency fFM definition:  
0B , (default) 12 kHz  
1B , 18 kHz  
r/w Enable Spread Spectrum feature:  
0B , (default) Spread Spectrum modulation disabled  
1B , Spread Spectrum modulation enabled  
r/w Output latch after overvoltage error enable Bit  
0B , (default) gate driver outputs are autorestarting  
after an overvoltage event  
1B , gate drivers are latched in brake low condition and  
bit is latched after an overvoltage event  
DVCCTRL  
IDLE  
0
r/w Device Control Register  
IDLE mode configuration bit:  
0B , ACTIVE mode (default)  
1B , IDLE mode  
SWRST  
CLRLAT  
ENCAL  
1
2
3
r/w Software reset bit:  
0B , (default) normal operation  
1B , execute reset command  
r/w Clear Latch bit:  
0B , (default) normal operation  
1B , execute CLRLAT command  
r/w Enable automatic output current calibration bit:  
0B , (default) DAC takes CALIBVAL from SPI registers  
1B , DAC takes CALIBVAL from last completed automatic  
calibration procedure; SOCAL Bit can be set.  
Datasheet  
67  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
Table 15  
Register description (cont’d)  
Register name  
Field  
Bits Type Purpose  
MFSSETUP1  
LEDCHAIN  
3:0 r/w Multifloat Switch and Short Circuit configuration Register  
Short circuit threshold and MFS ratio bits: change the  
VVFB_S2G threshold and set the MFS jump ratio  
0001B, smallest Value 1 Step  
0010B, 2 Steps  
1000B, (default) 8 Steps  
1111B, 15 Steps  
0000B, largest Value 16 Steps  
EOMFS  
4
r
End of MFS routine bit:  
0B , (default) MFS routine not completed, not  
successfully performed or never run.  
1B , MFS routine successfully performed (is reset to 0B  
when SOMFSis set to 1B).  
SOMFS  
5
6
r/w Start of MFS routine bit:  
0B , (default) MFS routine not activated  
1B , MFS routine activated  
ILIM_HALF  
r/w Adjust Current Limit (Switch Peak Over Current Threshold)  
during MFS operation:  
0B , (default) Switch Peak Over Current Threshold 100%  
1B , Switch Peak Over Current Threshold 50%  
EA_IOUT_MFS  
MFSDLY  
7
r/w Bit to decrease the saturation current of the error  
amplifier (A6) in current mode control loop only during  
MFS routine:  
0B , (default) inactive  
1B , active: error amplifier current reduced to 20%  
MFSSETUP2  
7:0 r/w Multifloatswitch configuration register 2 (delay time  
programming)  
00000000B, smallest delay time in respect to fSW  
11111111B, largest delay time in respect to fSW  
00100000B, (default) delay time in respect to fSW  
Datasheet  
68  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Serial Peripheral Interface (SPI)  
Table 15  
Register description (cont’d)  
Register name  
Field  
Bits Type Purpose  
CURRMON  
LEDCURR  
1:0  
3:2  
4
r
r
r
Current Monitor Register  
Status of the LED Current bits:  
00B , (default) LED current between Target and +25%  
01B , LED current above +25% of Target  
10B , LED current between Target and -25%  
11B , LED current below -25% of Target  
INCURR  
EOMON  
Status of the Input Current bits:  
00B , (default) Input current between 75% and 90% of  
Limit  
01B , Input current between 90% and the Limit  
10B , Input current between 60% and 75% of Limit  
11B , Input current below 60% of Limit  
End of LED/Input Current Monitoring bit:  
0B , (default) Current monitoring routine not  
completed, not successfully performed or never run.  
1B , Current Monitor routine successfully performed (is  
reset to 0B when SOMONis set to 1B)  
SOMON  
5
r/w Start of LED/Input Current Monitoring bit:  
0B , (default) Current monitor routine not started  
1B , Start of the current monitor routine  
REGUSETMON  
REGUMODFB  
3:2  
r
Regulation Setup And Monitor Register  
Feedback of Regulation Mode bits:  
01B , (default) Buck  
10B , Boost  
11B , Buck-Boost  
Datasheet  
69  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Application Information  
13  
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Figure 47 Application Drawing - TLD5541-1 as current regulator  
Table 16  
BOM - TLD5541-1 as current regulator (IOUT = 1 A, fSW = 300 kHz)  
Reference Designator  
Value  
Manufacturer  
--  
Part Number  
Type  
D1 , D2  
CIN1  
BAT46WJ  
1 µF, 100 V  
4.7 µF, 100 V  
470 nF, 100 V  
22 nF, 16 V  
22 nF, 16 V  
4.7 µF, 100 V  
100 nF, 100 V  
10 µF, 16 V  
100 nF, 16 V  
--  
BAT46WJ  
Diode  
TDK  
X7R  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
CIN2  
TDK  
X7R  
Cfilter  
TDK  
X7R  
CCOMP  
CSOFT_START  
COUT1  
TDK  
X7R  
TDK  
X7R  
TDK  
X7R  
COUT2 , COUT3  
TDK  
X7R  
CIVCC  
TDK  
X7R  
CBST1 , CBST2  
IC1  
TDK  
X7R  
Infineon  
Coilcraft  
Panasonic  
Panasonic  
TLD5541-1  
LOUT  
10 µH  
XAL1010-103MEC  
Inductor  
Resistor  
Resistor  
Rfilter  
50 Ω, 1%  
--  
--  
RFB  
0.150 Ω, 1%  
Datasheet  
70  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Application Information  
Table 16  
BOM - TLD5541-1 as current regulator (IOUT = 1 A, fSW = 300 kHz)  
Reference Designator  
Value  
Manufacturer  
Panasonic  
Part Number  
Type  
RIN  
0.003 Ω, 1%  
--  
--  
Resistor  
Resistor  
R1 , R2 , R3 , RPD , REN , RPWMI xx kΩ, 1%  
Panasonic  
, RSense1 , RSense2 , RSYNC  
RSCLK , RSI , RSO , RCSN  
,
RVFBL , RVFBH  
RCOMP  
1.5 kΩ, 56 kΩ, 1%  
0 Ω, 1%  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
--  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
--  
RFREQ  
37.4 kΩ, 1%  
0.005 Ω, 1%  
--  
RSWCS  
ERJB1CFR05U  
IPG20N10S4L-35  
M1 , M2 , M3 , M4  
Dual MOSFET:  
100 V / 35 mΩ N-ch  
VBAT  
DTVS  
MRP  
Rgate  
Voltage Regulator  
CVREG_OUT  
CIN2  
RIIN  
OUT  
VS  
Alternative external  
VREG supply  
GND  
CIN1  
IVCC  
CIVCC  
IVCC_ext  
VIN  
IIN2  
Rfilter  
IVCC  
D2  
D1  
Cfilter  
COUT2  
IIN1  
SET  
COUT3  
BST1  
BST2  
LIMPHOME  
FAIL SAFE Circuit  
COUT1  
CBST1 CBST2  
VDD  
M1  
M2  
M4  
LHI  
EN/INUVLO  
VOUT  
HSGD1  
SWN1  
LOUT  
REN  
I/O  
I/O  
INOVLO  
CCOMP  
M3  
LSGD1  
SWCS  
RCOMP  
CSOFT_START  
COMP  
PWMI_LH  
FAIL SAFE Circuit  
SOFT_START  
Micro  
controller  
RFREQ  
FREQ  
PWMI  
SGND  
PGND1  
PGND2  
RPWMI  
RSENSE  
RSENSE  
CFF  
A/D  
A/D  
IINMON  
IOUTMON  
LSGD2  
RSYNC  
SYNC  
I/O  
SWN2  
HSGD2  
VFB  
VDD  
VDD  
RCSN  
CSN  
SI  
FBH  
RSI  
SPI  
RSO  
SO  
SCLK  
FBL  
RSCLK  
VSS AGND  
GND  
Figure 48 Application Drawing - TLD5541-1 as adjustable voltage regulator  
Note:  
Max Vout set to 20V by RFB1 and RFB2, input current limiter resistor RIN can be moved at the output  
to control the output current.  
Table 17  
BOM - TLD5541-1 as voltage regulator  
Reference Designator  
Value  
Manufacturer  
Part Number  
BAT46WJ  
X7R  
Type  
D1 , D2  
CIN1  
BAT46WJ  
1 µF, 100 V  
4.7 µF, 100 V  
470 nF, 100 V  
--  
Diode  
TDK  
TDK  
TDK  
Capacitor  
Capacitor  
Capacitor  
CIN2  
X7R  
Cfilter  
X7R  
Datasheet  
71  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Application Information  
Table 17  
BOM - TLD5541-1 as voltage regulator  
Reference Designator  
Value  
Manufacturer  
TDK  
Part Number  
Type  
CCOMP  
CFF  
22 nF, 16 V  
10 nF, 50 V  
22 nF, 16 V  
4.7 µF, 100 V  
100 nF, 100 V  
10 µF, 16 V  
100 nF, 16 V  
--  
X7R  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
IC  
TDK  
X7R  
CSOFT_START  
COUT1  
OUT2 , COUT3  
TDK  
X7R  
TDK  
X7R  
C
TDK  
X7R  
CIVCC  
TDK  
X7R  
CBST1 , CBST2  
IC1  
TDK  
X7R  
Infineon  
Coilcraft  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
TLD5541-1  
LOUT  
10 µH  
XAL1010-103MEC  
Inductor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
RFF  
1.5 k, 1%  
50 Ω, 1%  
--  
--  
--  
--  
--  
Rfilter  
RFB1 , RFB2  
150Ω, 20.5kΩ, 1%  
0.005 Ω, 1%  
xx kΩ, 1%  
RIN  
R1 , R2 , R3 , RPD , REN  
,
RPWMI , RSense1 , RSense2 ,  
RSYNC , RSCLK , RSI , RSO  
,
RCSN  
RVFBL , RVFBH  
RCOMP  
1.5 kΩ, 24 kΩ, 1%  
0 Ω, 1%  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Infineon  
--  
Resistor  
Resistor  
Resistor  
Resistor  
Transistor  
--  
RFREQ  
37.4 kΩ, 1%  
0.005 Ω, 1%  
--  
RSWCS  
ERJB1CFR05U  
IPG20N10S4L-35  
M1 , M2 , M3 , M4  
Dual MOSFET:  
100 V / 35 mΩ N-ch  
Datasheet  
72  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Application Information  
13.1  
Further Application Information  
Typical Performance Characteristics of Device  
TJꢁ=ꢁ25°C,ꢁVIN=12Vꢁunlessꢁotherwiseꢁspecified  
IVCCꢁDropoutꢁvsꢁCurrentꢁ  
IVCCꢁVoltageꢁvsꢁTemperature  
5,20  
5,15  
5,10  
5,05  
5,00  
4,95  
4,90  
4,85  
4,80  
2,5  
2
IIVCC=10mA  
Tj=ꢀ40°C  
Tj=150°C  
Tj=25°C  
1,5  
1
0,5  
0
0
10  
20  
30  
40  
50  
ꢀ40  
10  
60  
110  
LDOꢁcurrentꢁ[mA]  
Temperatureꢁ[°C]  
IVCCꢁLoadꢁregulationꢁ  
V(FBHꢀFBL)ꢁThresholdꢁvsꢁVFBH  
5,2  
154  
153  
152  
151  
150  
149  
148  
147  
146  
5,15  
5,1  
AnalogꢁDim.ꢁ=ꢁ100%  
5,05  
5
4,95  
4,9  
4,85  
4,8  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
IIVCC[mA]  
VFBHꢁ[V]  
V(FBHꢀFBL)ꢁThresholdꢁvsꢁTemp  
IOUTMONꢁVoltageꢁvsꢁTemp  
1,44  
1,43  
1,42  
1,41  
1,4  
154  
153  
152  
151  
150  
149  
148  
147  
146  
AnalogꢁDim.=100%,ꢁFBH=0,15V  
AnalogꢁDim.=100%,ꢁFBH=12V  
AnalogꢁDim.=100%,ꢁFBH=60V  
V(FBHꢀFBL) =ꢁꢁ150mV  
1,39  
1,38  
1,37  
1,36  
ꢀ40  
10  
60  
110  
ꢀ40  
10  
60  
110  
Temperatureꢁ[°C]  
Temperatureꢁ[°C]  
Figure 49 Characterization Diagrams 1  
Datasheet  
73  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Application Information  
TJꢁ=ꢁ25°C,ꢁVIN=12Vꢁunlessꢁotherwiseꢁspecified  
IOUTMONꢁVoltageꢁvsꢁV(FBHꢀFBL)  
V(IIN1ꢀIIN2)ꢁThresholdꢁvsꢁTemp  
1,4  
1,2  
1
53  
52  
51  
50  
49  
48  
47  
VIIN1=8V  
VIIN1=13.5V  
VIIN1=55V  
0,8  
0,6  
0,4  
0,2  
0
0
20  
40  
60  
80  
100  
120  
140  
ꢀ40  
10  
60  
110  
V(FBHꢀFBL) [mV]  
Temperatureꢁ[°C]  
IINMONꢁVoltageꢁvsꢁTemp  
IFBH ,ꢁIFBL vsꢁVFBH  
120  
100  
80  
1,04  
1,03  
1,02  
1,01  
1
I_FBLꢁ[uA]  
I_FBHꢁ[uA]  
V(IIN1ꢀIIN2)ꢁ=ꢁ50mV  
V(FBHꢀFBL) =ꢁꢁ150mV  
60  
40  
20  
0,99  
0,98  
0,97  
0,96  
0
ꢀ20  
ꢀ40  
0
5
10 15 20 25 30 35 40 45 50 55 60  
ꢀ40  
10  
60  
110  
VFBHꢁ[V]  
Temperatureꢁ[°C]  
OscillatorꢁFrequencyꢁvsꢁTemp  
V(BSTxꢀSWNx)ꢁvsꢁTemp  
800  
700  
600  
500  
400  
300  
200  
100  
4
3,9  
3,8  
3,7  
3,6  
3,5  
3,4  
3,3  
3,2  
3,1  
R_FREQ=61.9ꢁkOhm  
R_FREQ=37.4ꢁkOhm  
R_FREQ=12.7ꢁkOhm  
VBSTxꢀVSWNx_decꢁ[V]  
VBSTxꢀVSWNx_incꢁ[V]  
ꢀ40  
10  
60  
110  
ꢀ40  
10  
60  
110  
Temperatureꢁ[°C]  
Temperatureꢁ[°C]  
Figure 50 Characterization Diagrams 2  
Datasheet  
74  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Application Information  
TJ = 25°C, VIN=12V unless otherwise specified  
LSGDx on-state resistance vs Temp  
HSGDx on resistance vs Temp  
4,5  
4
4,5  
4
HSGDx_Pull-up  
3,5  
3
3,5  
3
HSGDx_Pull-down  
LSGDx_Pull-Up  
2,5  
2
2,5  
2
LSGDx_Pull-down  
1,5  
1
1,5  
1
0,5  
0
0,5  
0
-40  
10  
60  
110  
-40  
10  
60  
110  
Temperature [°C]  
Temperature [°C]  
VCOMP Voltage vs LSGD Duty Cycle  
V(SWCS-SGND) Treshold vs Temp  
120  
100  
80  
60  
40  
20  
0
60  
40  
Boost  
Buck  
LSGD1_Buck [%]  
LSGD2_Boost [%]  
20  
V(SWCS-SGND) =0  
fsw=300kHz  
0
-20  
-40  
-60  
0,6  
0,8  
1
1,2  
1,4  
1,6  
-40  
10  
60  
110  
VCOMP [V]  
Temperature [°C]  
Figure 51 Characterization Diagrams 3  
For further information you may contact http://www.infineon.com/  
Datasheet  
75  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Package Outlines  
14  
Package Outlines  
0ꢀ9 MAXꢀ  
(0ꢀ65)  
11 x 0ꢀ5 = 5ꢀ5  
0ꢀ1  
7
A
0ꢀ5  
0ꢀ26  
0ꢀ03  
6ꢀ8  
0ꢀ1  
+0ꢀ031)  
2)  
37  
B
0ꢀ05  
36  
25  
0ꢀ13  
24  
48x  
0ꢀ08  
48  
13  
1
12  
Index Marking  
48x  
0ꢀ1  
0ꢀ4 x 45°  
0ꢀ05  
Index Marking  
0ꢀ23  
(0ꢀ35)  
M
A B C  
(0ꢀ2)  
0ꢀ05 MAXꢀ  
(5ꢀ2)  
(6)  
C
1) Vertical burr 0ꢀ03 maxꢀ, all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 52 PG-VQFN-48-31 (with LTI)  
Datasheet  
76  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Package Outlines  
H
C
0.6±0.15  
SEATING  
PLANE  
0.08  
48x  
C
COPLANARITY  
9
0.2 A-B D  
48x  
BOTTOMVIEW  
1)  
7
2)  
0.2 A-B D H  
4x  
5
EXPOSEDDIEPAD  
D
A
B
48  
1
48  
1
INDEXMARKING  
0.5  
0.22±0.05  
0.08  
A-B D C  
48x  
1)DOESNOTINCLUDEPLASTICORMETALPROTRUSIONO0F.25MAX.PERSIDE  
2)EXPOSEDPADFORSOLDERINGPURPOSE  
Figure 53 PG-TQFP-48-9  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
77  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Revision History  
15  
Revision History  
Revision  
Rev. 1.0  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Rev. 1.1  
Date  
Changes  
2016-05-20 Released Datasheet  
2018-02-08 LED number set to 0x22 on the MFS example register Chapter 6.5  
2018-02-08 Added: CCM on regulator description Chapter 6.1  
2018-02-08 Added item to Chapter 6.5  
2018-02-08 Added TQFP package  
2018-02-08 Changed RVFBH to 59 kand RVFBL to 1.5 kΩ  
2018-02-08 Corrected graph VCOMP vs DUTY  
2018-02-08 Corrected soft start behavior Chapter 6.2 “if an open load”  
2018-02-08 MFSSETUP2default value Chapter 12.6  
2018-02-08 Divided In and out overvoltage protection def. Chapter 10.2 Chapter 10.3  
2018-02-08 Modified Voltage regulator application Drawing and note, see Figure 48  
2018-02-08 Specified Complessive gain of error amp Chapter 6.1  
2018-02-08 Improved description of soft start Chapter 6.2  
2018-02-08 Improved description of calibration Routine Chapter 8.2  
2018-02-08 Added Soft Start mask in the Short circuit description Chapter 10.2  
2018-02-08 Added input current limiter description Chapter 10.4  
2018-02-08 Removed Parameter 6.4.2 covered now by updated 6.4.1 Chapter 6.7  
Datasheet  
78  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
Table of Content  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
4.3  
5
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Different Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Different Possibilities to RESET the device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1  
5.2  
5.3  
6
Regulator Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Regulator Diagram Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Adjustable Soft Start Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Switching Frequency setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Operation of 4 switches H-Bridge architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Boost mode (VIN < VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Buck mode (VIN > VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Buck-Boost mode (VIN ~ VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Fast Output Discharge Operation Mode - Multi Floating Switches Topology . . . . . . . . . . . . . . . . . . . . 25  
Flexible current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Programming Output Voltage (Constant Voltage Regulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.1  
6.2  
6.3  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.5  
6.6  
6.7  
6.8  
7
7.1  
7.2  
Digital Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8
Analog Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
LED current calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.1  
8.2  
8.3  
9
9.1  
9.2  
Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
IVCC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10  
Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Output Overvoltage, Open Load, Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Short Circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Open Load Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Input voltage monitoring, protection and power derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Input current Monitoring and Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Output current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Device Temperature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.1  
10.2  
10.2.1  
10.2.2  
10.2.3  
10.3  
10.4  
10.5  
10.6  
Datasheet  
79  
Rev. 1.1  
2018-02-08  
TLD5541-1  
H-Bridge DC/DC Controller with SPI Interface  
10.7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
11  
Infineon FLAT SPECTRUM Feature set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Synchronization Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
EMC optimized schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
11.1  
11.2  
11.3  
11.4  
11.5  
12  
Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
SPI Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Daisy Chain Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
SPI Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Standard Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Register structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.6.1  
12.6.2  
13  
13.1  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
14  
15  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Datasheet  
80  
Rev. 1.1  
2018-02-08  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-02-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
WARNINGS  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
(doc_number)  

相关型号:

TLD5541-1QV

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1_18

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD55411QUXUMA1

LED Driver,
INFINEON

TLD55411QV

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD55411QVXUMA1

LED Driver, 4-Segment, PQCC48, VQFN-48
INFINEON

TLD5S10AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S11AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S12AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S13AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S14AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S15AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC