TLE4955C E4 [INFINEON]

The Infineon XENSIV differential Hall sensor IC from Infineon detects the motion of tooth and magnet encoder applications. To detect the motion of ferromagnetic objects, the magnetic field must be provided by a back biasing permanent magnet. Either south or north pole of the magnet can be attached to the rear unmarked side of the IC package.The magnetic measurement is based on three equally spaced Hall elements, integrated on the IC. Both magnetic and mechanical offsets are cancelled by a self calibration algorithm. The sensor includes a current output PWM protocol. The magnetic sensor provides high magnetic sensitivity. TLE4955C-E4 includes a sophisticated algorithm which actively suppresses vibration while keeping excellent air-gap performance.;
TLE4955C E4
型号: TLE4955C E4
厂家: Infineon    Infineon
描述:

The Infineon XENSIV differential Hall sensor IC from Infineon detects the motion of tooth and magnet encoder applications. To detect the motion of ferromagnetic objects, the magnetic field must be provided by a back biasing permanent magnet. Either south or north pole of the magnet can be attached to the rear unmarked side of the IC package.The magnetic measurement is based on three equally spaced Hall elements, integrated on the IC. Both magnetic and mechanical offsets are cancelled by a self calibration algorithm. The sensor includes a current output PWM protocol. The magnetic sensor provides high magnetic sensitivity. TLE4955C-E4 includes a sophisticated algorithm which actively suppresses vibration while keeping excellent air-gap performance.

文件: 总21页 (文件大小:980K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Differential Hall Effect  
Transmission Speed Sensors  
TLE4955C-E4  
Features  
High magnetic sensitivity  
Large operating airgap  
Two wire PWM current interface  
Fast start-up  
Dynamic self calibration principle  
Adaptive hysteresis  
Detection of rotation direction  
High vibration suppression capability  
From zero speed up to 12 kHz1)  
Wide operating temperature ranges  
High resistance to piezo effects  
Single chip solution  
Magnetic encoder and ferromagnetic wheel application  
South and north pole pre-induction possible  
Green package with lead-free plating  
Module style package with integrated overmolded capacitor 2)  
1.8 nF between VDD and GND  
AEC-Q100 qualified  
Green Product (RoHS compliant)  
Applications  
The TLE4955C-E4 is an integrated differential Hall effect sensor for transmission applications with two wire  
PWM output current interface. Its basic function is to provide information about rotational speed and  
direction of rotation to the transmission control unit. TLE4955C-E4 includes a sophisticated algorithm which  
actively suppresses vibration while keeping excellent air gap performance.  
Description  
Product Name  
Ordering Code  
Marking  
Package  
TLE4955C-E4  
SP001963088  
55BIC3  
PG-SSO-2-53  
1) Magnetic parameters are valid and characterized for f > 1 Hz  
2) Value of capacitor: 1.8 nF +/-10% (excluded drift because of temperature and over lifetime); ceramic: X8R; maximum voltage: 50 V.  
Data Sheet  
www.infineon.com/sensors  
Version 1.01  
2018-03-25  
TLE4955C-E4  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1
1.1  
1.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Sensor Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
Operating Modes and States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Uncalibrated and Calibrated Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Adaptive Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Direction Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Vibration Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Undervoltage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
3
4
5
6
7
8
9
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
ESD Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electromagnetic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data Sheet  
2
Version1.01  
2018-03-25  
TLE4955C-E4  
Functional Description  
1
Functional Description  
The differential Hall sensor IC detects the motion of tooth and magnet encoder applications. To detect the  
motion of ferromagnetic objects, the magnetic field must be provided by a back biasing permanent magnet.  
Either south or north pole of the magnet can be attached to the rear unmarked side of the IC package.  
The magnetic measurement is based on three equally spaced Hall elements, integrated on the IC.  
Both magnetic and mechanical offsets are cancelled by a self calibration algorithm.  
The sensor includes a current output PWM protocol.  
1.1  
Sensor Assembly  
The output signals for a south biased sensor with a magnetic encoder and ferromagnetic tooth wheel will be  
issued in the following way.  
The tooth wheel is rotating in clockwise above the sensor. The output pulse will be issued by reaching the  
hysteresis levels after the pre low time. For a tooth wheel with ideal pitch (tooth to tooth) of 5 mm the  
direction signal achieves a phase shift of 90° compared to the speed signal.  
Sensor and back bias magnet can be applied in the following ways:  
S
N
N
S
S
N
N
S
S
CCW  
CCW  
CW  
CW  
CW  
CCW  
N
GYYWW  
123456  
GYYWW  
GYYWW  
123456  
123456  
S
S
N
N
N
S
N
S
VDD  
GND  
VDD  
GND  
VDD  
GND  
Figure 1  
Sensor Assembly and Definition of Rotating Directions  
Data Sheet  
3
Version1.01  
2018-03-25  
TLE4955C-E4  
Functional Description  
notch  
tooth  
tooth  
notch  
notch  
IDD  
IHigh  
ILow  
t
Bspeed  
Hysteresis  
high level  
t
Hysteresis  
low level  
Bdir  
t
Figure 2  
Tooth Wheel vs. Sensor Output Signal in Clockwise Rotation; South Biased Sensor  
Data Sheet  
4
Version1.01  
2018-03-25  
TLE4955C-E4  
Functional Description  
1.2  
Block Diagram  
Supply Voltage Generation  
Supply  
Comparator  
Bandgap  
Oscillator  
Offset DAC  
B2  
B3  
B1  
Offset  
Calculation  
2 (right)  
3 (center )  
1 (left)  
Amplifier Speed Path  
VDD  
Bspeed  
gs1  
Output  
Protocol  
LPF  
Tracking  
ADC  
Algorithm  
speed signal: Bspeed=B2-B1  
GND  
Direction  
Detection  
Current  
Modulator  
multiplexed  
ADC  
Pre-Amplifier with dB dir calculation  
Adaptive  
Hysteresis  
Comparator  
Bdir  
dir  
calc  
gd  
ESD  
LPF  
Vibration  
Detection  
direction signal: Bdir=B3-(B2+B1)/2  
Figure 3  
Block Diagram  
The speed signal calculated out of B2-B1, is amplified, low pass filtered and digitized. An algorithm in the digital  
core for peak detection and offset calculation will be executed. The offset is fed back into the speed signal path  
with a digital to analog converter for offset correction. The adaptive hysteresis comparator compares the  
speed signal to the hysteresis value. During uncalibrated mode, the output of the speed pulse is triggered in  
the digital core by exceeding a certain threshold.  
The direction signal is calculated out of the three Hall signals. The direction signal is amplified, filtered, and  
digitized. In the digital core the direction and the vibration detection information is determined and the data  
protocol is issued. The direction information is converted to a current modulated signal.  
Data Sheet  
5
Version1.01  
2018-03-25  
TLE4955C-E4  
Operating Modes and States  
2
Operating Modes and States  
2.1  
Uncalibrated and Calibrated Mode  
After power on the differential magnetic speed signal is tracked by an analog to digital converter (Tracking  
ADC) and monitored within the digital core. If the signal slope is identified as a rising edge, the first output  
pulse is triggered. A second trigger pulse is issued as soon as the next rising edge is detected (see Figure 4 ). In  
uncalibrated mode, the output protocols are triggered by the DNC (detection noise constant) in the speed  
path. After start up the first DNC value is set to 2xΔBspeed- limit and after that the DNC is adapted to the magnetic  
input signal amplitude (ΔBspeed) with a minimum of 2xΔBspeed-limit  
.
The offset update starts if two valid extrema values are found and the direction of the update has the same  
orientation as the magnetic signal. For example, a positive offset update is being issued on a rising magnetic  
edge only. The offset update is done independent from the output switching. After a successful offset  
correction, the sensor is in calibrated mode. Switching occurs at the adaptive hysteresis threshold level.  
In calibrated mode, the DNC is adapted to magnetic input signal amplitude (as ΔBspeed /2) with a minimum of  
2xΔBspeed-limit. The output pulses are then triggered with adaptative hysteresis.  
In uncalibrated mode (after start-up or reset) for signals with amplitude smaller than 2*ΔBlimit (either for  
direction or speed signal), the sensor always provides the first two pulses and could suppress the third one.  
The pulse corresponding to the fourth magnetic period is calibrated, thus including the direction information.  
Data Sheet  
6
Version1.01  
2018-03-25  
TLE4955C-E4  
Operating Modes and States  
Vibration Suppression  
via Hysteresis  
IDD  
Vibration Suppression  
via Direction Detection  
IHigh  
ILow  
t
Phase shift change  
uncalibrated mode  
vs. calibrated mode  
B
speed  
Hysteresis high level  
DNC:  
2xdBspeed-limit  
max1  
t
DNC=(min1+ max1)/2  
Hysteresis low level  
min1  
DNC=( min2+max1)/2  
min2  
Uncalibrated Speed Signal  
with negative offset  
Uncalibrated Speed Signal  
with positive offset  
Calibrated Speed Signal  
Figure 4  
Example for Startup Behavior and Transition from Uncalibrated into Calibrated Mode  
2.2  
Adaptive Hysteresis  
The adaptive hysteresis is linked to the input signal. Therefore, the system is able to suppress switching if  
vibration or noise signals are smaller than the adaptive hysteresis levels. The typical value for the hysteresis  
level is 1/8 of the magnetic input signal amplitude, the minimum hysteresis level is ΔBspeed-limit (amplitude).  
The visible hysteresis keeps the excellent performance in large pitch transmission application wheels .  
Bspeed  
Input signal  
Input signal  
Adaptive hysteresis  
Adaptive hysteresis  
Hysteresis high level  
t
Hysteresis low level  
Figure 5  
Adaptive Hysteresis  
Data Sheet  
7
Version1.01  
2018-03-25  
TLE4955C-E4  
Operating Modes and States  
2.3  
Direction Detection  
The difference between the Hall element signal B3 and the mean value of the outer Hall elements B2 and B1 will  
be calculated in the direction input amplifier. This signal is digitized by an analog to digital converter  
(direction ADC) and fed into the digital core.  
Depending upon the rotation direction of the target wheel, the signal of the center probe anticipates or lags  
behind for 90°. This phase relationship is evaluated and converted into rotation direction information by  
sampling the signal of the center probe in the proximity of the zero crossing of the “speed” bridge signal.  
The first pulse after power on is a speed pulse, as there is no valid direction information available.  
2.4  
Vibration Suppression  
The magnetic signal amplitude and the direction information are used for detection of parasitic magnetic  
signals. Unwanted magnetic signal can be caused by angular or air gap vibrations. If an input signal is  
identified as a vibration the output pulse will be suppressed.  
TLE4955C-E4 offers two different kinds of vibration suppression:  
Vibration suppression via hysteresis. This is available after power on  
Vibration suppression via direction detection. This is available after start up calibration is performed.  
2.5  
Undervoltage Behavior  
At the first switching events after power on the undervoltage detection is activated.  
If the supply voltage drops below the values specified in operating range, an active output (defined state) will  
be generated. The output level is switched to high current (IHigh) and it remains at this level until the supply  
voltage reaches again the functional level.  
VDD  
on IC leads  
VDD voltage drops due to  
increased current throught R  
M
VReset  
The sensor starts with  
power on process  
1st switching enables  
VDD reset  
switches to Ihigh  
due to undervoltage  
IDD  
IHigh  
Release  
ILow  
pre-low bit  
Startup  
Mode  
Operating Mode  
Undervoltage  
Operating Mode  
Figure 6  
Undervoltage Behavior  
If the supply voltage is below 2.3 V typical the sensor will reset and initiate a new calibration.  
Data Sheet  
8
Version1.01  
2018-03-25  
TLE4955C-E4  
Absolute Maximum Ratings  
3
Absolute Maximum Ratings  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolutes ratings; exceeding only one of these values may  
cause irreversible damage to the integrated circuit  
Table 1  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Values  
Unit  
Note or Test Condition  
Typ. Max.  
Supply voltage  
VDD  
-0.3  
V
Tj < 80 °C  
16.5  
20  
V
Tj = 170 °C  
V
Tj = 150 °C  
22  
V
t = 10x5 min.  
t = 10x5 min.; RM > 75 Ω  
t = 400ms, RM > 75 Ω,  
RM = 75 Ω, t < 1 h  
12500 h  
24  
V
27  
V
-22  
V
Junction  
TJ; Either -40  
110  
125  
150  
160  
170  
190  
°C  
°C  
°C  
°C  
°C  
°C  
mA  
temperature  
or  
10000 h  
or  
5000 h  
or  
2500 h  
or  
500 h  
additional  
4 h, VDD < 16.5 V  
Reverse polarity  
current  
I DD  
-200  
External current limitation  
required, t < 4 h  
-300  
-200  
mA  
External current limitation  
required, t < 1 h  
mA  
External current limitation  
required, t < 10 h, Tj = 25 °C  
Thermal resistance RthJA  
(PG-SSO-2-53)  
190  
K/W  
cycles  
Lower values are possible with  
overmolded devices  
Number of power on n  
cycles  
500000  
4
ESD Robustness  
Characterized according to Human Body Model (HBM) test in compliance with standard EIA/JESD22-A114-B  
HBM (covers MIL STD 883D)  
Table 2  
ESD Protection  
Symbol  
Parameter  
Test Result  
Unit  
Note  
ESD-Protection  
VESD  
± 12  
kV  
R = 1.5 kΩ, C = 100 pF  
Data Sheet  
9
Version1.01  
2018-03-25  
TLE4955C-E4  
Operating Range  
5
Operating Range  
All parameters specified in the following sections refer to these operating conditions unless otherwise  
noticed. For further details please refer also to any relevant Application Notes.  
Table 3  
Operating Range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min. Typ. Max.  
Supply voltage  
VDDIC  
4
20  
6
V
V
Directly on the IC leads  
VDD = 13 V; 0< fmod < 150 kHz1) peak-to-  
Supply voltage modulation VAC  
peak  
Operating junction  
temperature  
Tj  
either  
or  
-40  
110 °C  
125 °C  
150 °C  
160 °C  
170 °C  
12500 h  
10000 h  
5000 h  
2500 h  
500 h  
or  
or  
or  
Junction temperature  
variation between two  
consecutive magnetic  
edges3)  
Tj_var  
-60  
60  
K
Values apply for ΔBspeed and ΔBdir > 2.5mT  
(amplitude) in calibrated mode. In case of  
uncalibrated sensor, values apply for  
ΔBspeed and ΔBdir > 7.5mT (amplitude).  
Frequency range of  
f
0
12  
kHz  
magnetic input signal2)  
Bias-induction3)  
Bo  
-500  
-30  
+500 mT Magnetic bias induction at the position of  
each sensing element (B1, B2, B3)  
Differential bias-induction3) ΔBstat l/r  
+30 mT Difference of the magnetic bias induction  
between left (B1) and right (B2) sensing  
element  
Differential bias-induction ΔBstat m/o  
between mean value at left,  
right and center sensing  
elements3)  
-30  
+30 mT Difference of the magnetic bias induction  
between (B2+B1)/2 and B3  
Speed signal range  
ΔBspeed,range -120  
ΔBspeed- limit 0.6 1.1 2.0 mT Amplitude value, 99% criteria4)  
120 mT  
Minimum speed signal  
Minimum direction signal ΔBdir-limit  
1) Sine wave.  
0.45 1.1 mT Amplitude value, 99% criteria4)  
2) No time based watchdog.  
3) Not subject to production test, verified by design/characterization.  
4) 99% criterion stands for 1 out of 100 pulses is missing.  
Note:  
Magnetic parameters are valid for sinusoidal signals and characterized for f > 1 Hz.  
Data Sheet  
10  
Version1.01  
2018-03-25  
TLE4955C-E4  
Electrical Characteristics  
6
Electrical Characteristics  
All values specified at constant amplitude and offset of input signal, over operating range, unless otherwise  
specified. Typical values correspond to VDD = 12 V and Tj = 25 °C.  
Table 4  
Electrical Characteristics  
Symbol  
Parameter  
Values  
Unit  
Note or Test Condition  
Min. Typ. Max.  
Supply current low  
ILow  
6
7
8
mA  
mA  
Supply current high  
Supply current ratio  
Output rise/fall slew rate  
IHigh  
12 14  
1.9  
16  
2.2  
26  
IHigh/ILow  
SRr, SRf  
8
17  
mA/μs  
Valid for tr and tf, between  
10% and 90% value RM=75 Ω,  
Tj<175 °C  
Reset voltage  
Power on time1)  
VDD Reset  
tON  
3.7  
4
1
2
V
ms  
VDD > 4 V  
Magnetic edges required for nstart  
magn. edge No vibration, pulse occurs  
only on rising magnetic edge  
first output pulse1)  
Number of output pulse  
until active vibration  
nVH-Startup  
0
2
pulse  
Active after power on  
suppression via hysteresis1)  
Number of output pulse  
until active vibration  
suppression via direction  
detection1)  
nVD-Startup  
pulse  
vibration suppression  
activated with complete 3rd  
magnetic signal period  
Number of magnetic periods nDR-Start  
generating missing output  
pulses or pulse without  
1
1
pulse  
pulse  
ΔBdir > 2*ΔBdir-limit and  
ΔBspeed > 2*ΔBspeed-limit  
ΔBdir > 1.25*ΔBdir-limit and  
ΔBspeed > 1.25*ΔBspeed-limit and  
f 2.5 kHz 2)  
direction information1)  
3
1
pulse  
pulse  
ΔBdir-limit < ΔBdir < 2*ΔBdir-limit  
or ΔBspeed-limit < ΔBspeed  
2*ΔBspeed-limit  
<
3)  
Invalid direction after  
change of direction1)  
nIAC  
2nd pulse correct if ΔBdir  
ΔBdir-limit  
>
Period Jitter1), f 2500 Hz  
SJit-far, Tj150 °C  
± 1.6  
± 2.4  
± 2.7  
± 4.0  
±2.0  
%
%
%
%
%
1σ value4), VDD=12 V, ΔBspeed  
>2 mT (amplitude)  
SJit-far, Tj170 °C  
Period Jitter1), 2500Hz< f < SJit-far, Tj150 °C  
12 kHz  
1σ value5), VDD=12 V,  
ΔBspeed>2 mT (amplitude)  
SJit-far, Tj170 °C  
Period Jitter at board net  
ripple1)  
SJit-AC  
VCC= 13 V + 3 Vpp;  
1σ; 0< fmod<150 kHz;  
ΔBspeed=7.5 mT  
1) Not subject to production test, verified by design/characterization.  
2) All conditions must be applied simultaneously.  
3) Either condition or both simultaneously need to be applied.  
Data Sheet  
11  
Version1.01  
2018-03-25  
TLE4955C-E4  
Timing Characteristics  
4) Values based on 3σ measurements.  
7
Timing Characteristics  
Between each magnetic transition and the rising edge of the corresponding output pulse, the output current  
is low for tpre-low in order to allow reliable internal conveyance. After pre low time the output current level is set  
to high.  
After power on the speed pulse is being issued. As soon as the sensor has enough information to recognize the  
direction of the target wheel, the output pulse will include the direction information.  
tpre-low  
tpre-low  
tpre-low  
IDD  
tccw or tcw  
tccw or tcw  
tS  
IHigh  
ILow  
t
Bspeed  
Hysteresis high level  
t
Hysteresis low level  
Uncalibrated Speed Signal  
with negative offset  
Calibrated Speed Signal  
Figure 7  
Definition of PWM Current Interface  
Data Sheet  
12  
Version1.01  
2018-03-25  
TLE4955C-E4  
Timing Characteristics  
Table 5  
Timing Characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
16.87  
33.75  
101.25  
50.62  
Pre-low length  
tpre-low  
tS  
tCCW  
tCW  
13.12  
26.25  
78.75  
39.37  
12000  
8000  
15  
30  
90  
45  
μs  
lenght of first pulse  
Length of CCW pulse  
Length of CW pulse  
μs  
μs  
μs  
Hz  
Hz  
First pulse after power on  
CW / CCW pulse  
maximum frequency  
fCW  
fCCW  
I
tr  
tf  
IHigh  
90%  
50%  
10%  
ILow  
tS  
T
t
Figure 8  
Definition of Rise and Fall time; Duty Cycle= (ts / T) x 100%  
Data Sheet  
13  
Version1.01  
2018-03-25  
TLE4955C-E4  
Electromagnetic Compatibility  
8
Electromagnetic Compatibility  
Electromagnetic Compatibility (values depends on RM!). See Figure 9  
Note:  
Characterization of Electro Magnetic Compatibility is carried out on samples based on one  
qualification lot. Not all specification parameters have been monitored during EMC exposure. Only  
key parameters e.g. switching current have been monitored.  
Table 6  
Conducted Pulses  
REF. ISO 7637-2; 2004; ΔBspeed = 2 mT (amplitude of sinus signal); VDD = 13.5V; fB = 100 Hz; Tj = 25 °C; RM = 75 Ω  
Parameter  
Symbol  
Level/Type  
IV / -100 V  
IV / 75 V  
Status  
Testpulse 1  
Testpulse 2a1)  
Testpulse 2b  
Testpulse 3a  
Testpulse 3b  
Testpulse 44)  
Testpulse 5a  
Testpulse 5b  
VEMC  
C
A2)  
C3)  
A
- / 10 V  
IV / -150 V  
IV / 100 V  
IV / -7 V  
A
C
IV / 86.5 V  
Us*=28.5 V5)  
C
C
1) ISO 7637-2 describes internal resistance = 2 Ω (former 10 Ω)  
2) Node A does not exceed 27 V clamping voltage of D2 in any case; Design target!  
3) Ri=0.01 Ω  
4) Testpulse4 tested for VDD=12 V  
5) A central load dump protection of 42 V is used. Us*=42 V-13.5 V  
Table 7  
Coupled Pulses  
REF. ISO 7637-3; 1995; ΔBspeed=2 mT (amplitude of sinus signal);  
VDD=13.5 V; fB=100 Hz; Tj=25 °C; RM=75 Ω  
Parameter  
Testpulse 3a  
Testpulse 3b  
Symbol  
Level/Typ  
IV / -60 V  
IV / 40 V  
Status  
A
A
Table 8  
TEM-cell measurement  
REF. ISO 11452-3, 2nd edition 2001-03-01; measured in TEM-cell; ΔBspeed = 2 mT (amplitude of sinus signal)  
VDD = 13.5 V; fB=100 Hz; T = 25 °C; RM=75 Ω  
Parameter  
Symbol  
Level/Typ  
Status  
ETemCell  
IV / 250 V/m  
CW; AM=80%, f=1  
kHz  
Data Sheet  
14  
Version1.01  
2018-03-25  
TLE4955C-E4  
Electromagnetic Compatibility  
D1  
EMC Generator  
Mainframe  
VDDIC  
C1  
GND  
VEMC  
D2  
C2  
IC + Cpackage  
C3  
RM  
AES03199  
Figure 9  
EMC test circuit  
D1  
IDD  
VDD  
VDDIC  
C1  
GND  
D2  
C2  
IC + Cpackage  
C3  
RM  
GND  
TCU  
Sensor Module  
Figure 10 Application circuit  
Components  
D1= 1N4007  
D2= 27 V  
C1= 1.8nF / 50 V  
C2= 10 μF / 35 V  
C3= 1 nF / 1000 V  
RM= 75 Ω  
Data Sheet  
15  
Version1.01  
2018-03-25  
TLE4955C-E4  
Package Information  
9
Package Information  
Pure tin covering (green lead plating) is used. Lead frame material is copper based, e.g. K62. (UNS:C18090) and  
contains CuSn1CrNiTi. Product is RoHS (Restriction of hazardous Substances) compliant and marked with the  
letter G in front of the data code marking and may contain a data matrix code on the rear side of the package  
(see also information note 136/03). Please refer to your key account team or regional sales if you need further  
information.  
Figure 11 Pin configuration and sensitive area (view on front side with marking of component)  
Figure 12 Distance of the chip to the upper package edge  
Data Sheet  
16  
Version1.01  
2018-03-25  
TLE4955C-E4  
Package Information  
Figure 13 PG-SSO-2-53 (Plastic Single Small Outline Package) packing, all dimensions in mm  
Data Sheet  
17  
Version1.01  
2018-03-25  
TLE4955C-E4  
Package Information  
Figure 14 PG-SSO-2-53 package outline, dimensions in mm.  
Data Sheet  
18  
Version1.01  
2018-03-25  
TLE4955C-E4  
Package Information  
Figure 15 Marking of PG-SSO-2-53  
Table 9  
GYYWW  
G
Marking Description  
123456  
Green package  
Production year  
Production week  
55BIC3  
YY  
WW  
For additional packages information, sort of packing and others, please see Infineon internet web page  
http://www.infineon.com/products  
Data Sheet  
19  
Version1.01  
2018-03-25  
TLE4955C-E4  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
SP number updated  
Confidentilal marking removed  
Data Sheet  
20  
Version1.01  
2018-03-25  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™,  
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™,  
i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,  
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,  
thinQ!™, TRENCHSTOP™, TriCore™.  
Trademarks updated August 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-03-25  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  

相关型号:

TLE4959-5U

Sensor/Transducer,
INFINEON

TLE4959-5U-FX

Our Infineon XENSIVTM TLE4959-5U FX is an integrated differential Hall magnetic speed sensor ideally suited for transmission applications.Its basic function is to provide information about rotational speed and direction of rotation to thetransmission control unit. TLE4959-5U FX includes a sophisticated algorithm which actively suppresses vibration while keeping excellent air-gap performance.
INFINEON

TLE4959-5U-R

The Infineon XENSIV TLE4959-5U-R is an integrated differential Hall speed sensor that perfectly fits into transmission applications.Its basic function is to provide information about rotational speed and direction of rotation to the transmission control unit. TLE4959-5U-R includes a sophisticated algorithm which actively suppresses vibration while keeping excellent airgap performance. The sensor comes in a RoHs compliant four-pin package, qualified for automotive usage. 
INFINEON

TLE4959-5U-SP

The Infineon XENSIV TLE4959-5U-SP is an integrated differential Hall speed sensor ideally suited for transmission applications. The sensors´ basic function is to provide information about rotational speed and direction of rotation to the transmission control unit. The product includes a sophisticated algorithm which actively suppresses vibration while keeping excellent airgap performance. The product is qualified for automotive usage. 
INFINEON

TLE4959C

The Infineon XENSIV TLE4959 now also addresses your 3-wire applications with the latest state-of-the art technology for our transmission sensors.Differential Hall sensor TLE4959 is your  choice when you need a 3-wire-sensor with direction detection and active vibration suppression.Beside it´s outstanding airgap and best in class Hall jitter performance, with it´s  high immunity against strayfields it is the  ideal match not only for traditional transmissions but also particularly for hybrid applications.
INFINEON

TLE4959C-FX

The Infineon XENSIV TLE4959 supports your 3-wire applications with the latest state-of-the art technology of transmission sensors.Differential Hall sensor TLE4959 is your  choice when you need a 3-wire-sensor with direction detection and active vibration suppression.Beside it´s outstanding airgap and best of class Hall jitter performance, with it´s  high immunity against strayfields it is the  ideal match not only for traditional transmissions but also particularly for hybrid applications.
INFINEON

TLE4961-1K

The Infineon TLE4961-1K is an integrated Hall effect latch designed specifically for highly accurate applications with superior supply voltage capability, operating temperature range and temperature stability of the magnetic thresholds. The sensor is housed in the SMD SC59 package. Our TLE496x Hall Latch family can be used in all applications which require a high precision Hall Latch with an operating temperature range from -40°C to 170°C. 
INFINEON

TLE4961-1M

The Infineon Hall-effect latch TLE4961-1M offers superior supply voltage capability, operating temperature range and temperature stability of the magnetic thresholds. The sensor comes in a a small SMD package, SOT 23 and is qualified according to AEC-Q100.
INFINEON

TLE4961-2M

Target applications for the Infineon TLE4961-2M Hall latch are all applications which require a high precision Hall sensor with an operating temperature range from -40°C to 170°C. Its superior supply voltage range from 3.0 V to 32 V with overvoltage capability (e.g. load-dump) up to 42 V without external resistor makes it ideally suited for automotive and industrial applications. The product comes in the small SMD package SOT23-3.
INFINEON

TLE4961-3L

Hall Effect Sensor, 0-10.4mT Min, 10.4mT Max, 0-25mA, Rectangular, Through Hole Mount, GREEN, PLASTIC, SSO-3
INFINEON

TLE49611KXTSA1

Hall Effect Sensor, 0-3.5mT Min, 3.5mT Max, 0-25mA, Rectangular, Surface Mount, HALOGEN FREE AND ROHS COMPLIANT, SOT-23, SMD-3
INFINEON

TLE49611LHALA1

Hall Effect Sensor, 0-3.5mT Min, 3.5mT Max, 0-25mA, Plastic/Epoxy, Rectangular, 3 Pin, Through Hole Mount, ROHS COMPLIANT, SSO-3
INFINEON