TLE4966V-1G [INFINEON]

The TLE4966V-1G is specifically designed to detect the rotation direction and the rotation speed of a pole wheel.The sensing direction is in-plane to the sensor surface. Even at high distances to the hall elements the direction will be detected correctly.;
TLE4966V-1G
型号: TLE4966V-1G
厂家: Infineon    Infineon
描述:

The TLE4966V-1G is specifically designed to detect the rotation direction and the rotation speed of a pole wheel.The sensing direction is in-plane to the sensor surface. Even at high distances to the hall elements the direction will be detected correctly.

传感器 换能器
文件: 总24页 (文件大小:1518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE4966V-1G  
In Plane Sensing with Vertical Dual Hall Effect Latch  
for Automotive Applications  
Data Sheet  
Revision 1.0, 2018-12-06  
Sense & Control  
Edition 2018-12-06  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2019 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
TLE4966V-1G  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Revision 1.0, 2018-12-06  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™,  
EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™,  
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™,  
PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,  
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™  
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,  
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.  
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.  
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden  
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.  
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™  
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of  
Diodes Zetex Limited.  
Last Trademarks Update 2011-02-24  
Data Sheet  
3
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1
1.1  
1.2  
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Start-up Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.1  
2.2  
2.3  
2.4  
2.5  
3
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electro Magnetic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1  
3.2  
3.3  
3.4  
3.5  
4
5
Timing Diagrams for the Speed and Direction Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Data Sheet  
4
Revision 1.0, 2018-12-06  
TLE4966V-1G  
List of Figures  
List of Figures  
Figure 1-1 Image of TLE4966V in the PG-TSOP6-6-9 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 1-2 Target Application (top and side view): Sensing Direction parallel to target wheel . . . . . . . . . . . . . 7  
Figure 2-1 Target Application: Side view and top view for In-Plane Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 2-2 Magnetic field signal with the corresponding speed & direction output including the definition of the  
direction signal 9  
Figure 2-3 PG-TSOP6-6-9 Pin Configuration and sensitive area (d = 1.25mm) (see table 2-2) . . . . . . . . . . . 10  
Figure 2-4 Functional Block Diagram of the TLE4966V-1G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 2-5 Start-up behavior of the at different magnetic start conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 2-6 Basic Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 2-7 Enhanced Application Circuit for very high ESD robustness on system level . . . . . . . . . . . . . . . . 13  
Figure 3-1 EMC test circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 4-1 Timing Diagram TLE4966V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 4-2 TLE4966V - Output Voltage Signal over applied magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 4-3 TLE4966V - Definition of the direction signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 5-1 Image of TLE4966V in the PG-TSOP6-6-9 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 5-2 PG-TSOP6-6-9 Package Outline (All dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 5-3 PG-TSOP6-6-9 Packing (All dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 5-4 Footprint of PG-TSOP6-6-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 5-5 Distance between chip and package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 5-6 Marking of TLE4966V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Data Sheet  
5
Revision 1.0, 2018-12-06  
TLE4966V-1G  
List of Tables  
List of Tables  
Table 1-1 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 2-1 Output Pin Q1 Direction Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 2-2 Pin Description PG-TSOP6-6-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 3-1 Absolute Maximum Rating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3-2 ESD Protection (TA = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 3-3 Operating Conditions Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3-4 General Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 3-5 Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3-6 Magnetic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 3-7 Electro Magnetic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 4-1 Output Pin Q1 Direction Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Data Sheet  
6
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Product Description  
1
Product Description  
1.1  
Target Applications  
The TLE4966V-1G is specifically designed to detect the rotation direction and the rotation speed of a pole  
wheel.The sensing direction is in-plane to the sensor surface. Even at high distances to the hall elements the  
direction will be detected correctly.  
Figure 1-1 Image of TLE4966V in the PG-TSOP6-6-9 package  
N
S
Hall Elements  
S
N
N
S
S
N
N
S
Rotation  
Direction  
N
S
S
S
N
4
5
6
3
2
1
N
S
S
N
Branded Side of  
IC  
N
Magnetic  
Encoder  
Figure 1-2 Target Application (top and side view): Sensing Direction parallel to target wheel  
1.2  
Features  
In-Plane Sensing for parallel mounting of magnetic encoder and sensor  
Low current consumption  
Direction Detection  
Speed output for index counting applications  
3.5V to 32V operating supply voltage  
Operating from unregulated power supply  
Reverse polarity protection (-18V)  
Over voltage capability up to 42V without external resistor  
Output over current and over temperature protection  
High robustness to mechanical stress by Active Error Compensation  
Low drift of magnetic thresholds  
Low jitter (typ. 0.3us)  
SMD package PG-TSOP6-6-9  
Table 1-1 Ordering Information  
Product Name  
Product Type  
Dual Vertical Hall Latch  
Ordering Code  
Package  
TLE4966V-1G  
SP002983184  
PG-TSOP6-6-9  
Data Sheet  
7
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Functional Description  
2
Functional Description  
The TLE4966V-1G is specifically designed to detect the direction and rotational speed of a pole wheel as shown  
in Figure 1-2.  
2.1  
General  
The new Infineon Vertical Double Hall Switch TLE4966V-1G has integrated the functionality of detecting speed  
and direction of a rotating magnet, commonly known as pole wheel.  
Note: Completely new is the in plane field direction which will be detected with the TLE4966V-1G shown in  
Figure 2-1 which enables completely new application layouts.  
V-Hall  
elements  
Centered  
Pin3  
Q1  
Pin4  
VDD  
Branded Side  
Direction  
S
N
6
1
Pin1  
Q2  
Speed  
Pin6  
GND  
Figure 2-1 Target Application: Side view and top view for In-Plane Sensing  
The sensor provides a speed output at Q2 with the status (high or low) corresponding to the magnetic field value.  
For positive magnetic fields (south pole) exceeding the threshold BOP the output is low, whereas for negative  
magnetic fields (north pole) lower than BRP the output switches to high. The output Q1 can be either high or low  
depending on the direction of rotation of the pole wheel. This direction information is calculated internally. (see  
Table 2-2)  
Designed in a new technology, this device offers high voltage capabilities with very small current consumption.  
The product can be operated from unregulated power supplies which offers our customers unique freedom of  
design for their system.  
This product is AEC Q100 certified and enables our customers to build systems for the highest automotive quality  
requirements. The product has a PG-TSOP6-6-9 package, which is RoHs compliant and fulfills the usual  
automotive environmental guidelines.  
Application Examples are:  
Window lifter (index counting)  
Power closing (index counting)  
All applications with the need of speed and direction detection.  
Figure 2-2 and Table 2-1 show the mapping of a pole wheel with the two corresponding output signals of the  
device.  
Data Sheet  
8
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Functional Description  
N
S
N
S
N
S
N
S
N
S
N
S
N
Signal @  
Element1  
BOP1 & BOP2  
BRP1 & BRP2  
Signal @  
Element2  
Speed Signal Q2  
Direction Signal Q1  
Direction Change  
Figure 2-2 Magnetic field signal with the corresponding speed & direction output including the definition  
of the direction signal  
Table 2-1 Output Pin Q1 Direction Signals  
Rotation direction  
Counterclockwise  
Clockwise  
State of direction output Q1  
Low  
High  
Data Sheet  
9
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Functional Description  
2.2  
Pin Configuration (top view)  
d
6
5
4
h
direction  
speed  
1
2
PG-TSOP6-6-5  
3
Figure 2-3 PG-TSOP6-6-9 Pin Configuration and sensitive area (d = 1.25mm) (see table 2-2)  
Table 2-2 Pin Description PG-TSOP6-6-9  
Pin No.  
Symbol  
Q2  
Function  
1
2
3
4
5
6
Speed  
GND  
Q1  
Recommended connection to GND  
Direction  
VDD  
Supply voltage  
GND  
GND  
Recommended connection to GND  
Ground  
The sensitive elements are placed in an optimized distance (d) to guarantee the direction detection. To  
compensate package stress the sensitive elements are placed in the middle of the package (h).  
Data Sheet  
10  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Functional Description  
2.3  
Block Diagram  
VDD  
Voltage Regulator  
(reverse polarity protected)  
ESD  
GND  
Bias and  
Compensation  
Circuits  
Oscillator  
& Sequencer  
Q2 (=Speed)  
Control  
Overtemperature  
& short-circuit  
protection  
Speed  
&
Direction  
Detection  
Q1 (=Direction)  
Control  
Overtemperature  
& short-circuit  
protection  
Comparator  
with  
Hysteresis  
Chopped  
Hall  
Probe  
Amplifier  
Filter  
Figure 2-4 Functional Block Diagram of the TLE4966V-1G  
The chopped Dual Hall IC switch comprises a Hall probe, bias generator, compensation circuits, oscillator and  
output transistor.  
The bias generator provides currents for the Hall probe and the active circuits. Compensation circuits stabilize the  
temperature behavior and reduce influence of technology variations.  
The active error compensations (chopping technique) rejects offsets in the signal path. Therefore the influence of  
mechanical stress to the Hall elements caused by molding and soldering processes and other thermal stress in  
the package is minimized. The chopped measurement principle together with the threshold generator and the  
comparator ensures highly accurate and temperature stable magnetic thresholds. The output transistor has an  
integrated over current and over temperature protection to prevent the device from destruction.  
Data Sheet  
11  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Functional Description  
2.4  
Start-up Behavior  
The magnetic threshold exhibit a hysteresis Bhys = Bop - Brp. In case of a power-on with a magnetic field B within  
hysteresis (Brp < B < Bop) the output of the sensor is set to the pull up voltage level “Vq” per default. After the first  
crossing of Bop or Brp of the magnetic field the internal decision logic is set to the corresponding magnetic input  
value.  
V
DDA is the internal supply voltage which is following the external supply voltage VDD.  
This means for B > Bop the output is switching for B > Brp and Bop > B > Brp the output stays at VQ  
VDDA  
tPon  
3.5V  
The device always applies  
Power on ramp  
VQ level at start-up  
t
VQ  
independent from the  
applied magnetic field !  
Magnetic field above threshold  
B > BOP  
t
VQ  
Magnetic field below threshold  
B < BRP  
t
t
VQ  
Magnetic field in hysteresis  
BOP > B > BRP  
Figure 2-5 Start-up behavior of the at different magnetic start conditions  
Data Sheet  
12  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Functional Description  
2.5  
Application Circuit  
The Figure 2-6 below shows the basic option of an application circuit. The Resistor Rq has to be in a dimension  
to match the applied Vs to keep Iq limited to the operating range of maximal 10mA.  
For example: Vs = 12V, Iq = 10mA --> R = 12V / 0.01A = 1.2kΩ.  
In Figure 2-7 the additional ESD Diodes are optional to achieve an increased ESD robustness at the Q pins.  
Additional with the (optional) 47nF between Vdd and GND a high system level robustness is achieved.  
VS  
RQ RQ  
Q1  
Q2  
GND  
Figure 2-6 Basic Application Circuit  
VS  
RQ = 1.2kΩ  
RS = 100Ω  
VDD  
Q1  
CDD = 47nF  
Q2  
TVS diodes  
GND  
e.g. ESD24VS2U  
Figure 2-7 Enhanced Application Circuit for very high ESD robustness on system level  
Data Sheet  
13  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Specification  
3
Specification  
3.1  
Absolute Maximum Ratings  
Table 3-1 Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
Unit Note / Test Condition  
Min.  
Max.  
Supply voltage  
VDD  
-18  
32  
42  
V
10h, no external resistor required  
Output voltage  
VQ  
IQ  
-0.5  
-35  
-40  
32  
V
Reverse output current  
Junction temperature  
mA  
°C  
TJ  
155  
165  
175  
for 2000h (not additive)  
for 1000h (not additive)  
for 168h (not additive)  
Storage temperature  
TS  
-40  
150  
200  
°C  
Thermal resistance  
Junction ambient  
RthJA  
K/W for PG-TSOP6-6-9  
Thermal resistance  
Junction lead  
RthJL  
100  
K/W for PG-TSOP6-6-9  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the integrated circuit.  
Calculation of the dissipated power PDIS and junction temperature TJ of the chip (TSPOP6 example):  
e.g for: VDD = 12 V, IS = 10mA, VQSAT = 0.5 V, IQ = 10mA  
Power dissipation: PDIS = 12 V x 10mA + 2 x (0.5 V x 10mA) = 120mW + 10mW = 130mW  
Temperature T = RthJA x PDIS = 200K/W x 130mW = 26K  
For TA = 100°C: TJ = TA + T = 100°C + 26K = 126°C  
Table 3-2 ESD Protection1) (TA = 25°C)  
Parameter  
Symbol  
Limit Values  
Unit  
Note / Test Condition  
Min.  
Max.  
+2  
ESD voltage (HBM)2)  
System level test  
VESD  
-2  
-6  
kV  
kV  
R = 1.5k, C = 100pF  
Figure 2-7 3)  
+6  
1) Characterization of ESD is carried out on a sample basis.  
2) Human Body Model (HBM) tests according to EIA/JESD22-A114  
3) Gun test (2k/330pF or 330/150pF) according to ISO 10605-2008  
Data Sheet  
14  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Specification  
3.2  
Operating Range  
Attention: The following operating conditions must not be exceeded in order to ensure correct operation  
of the TLE4966V-1G. All parameters specified in the following sections refer to these operating  
conditions unless otherwise mentioned.  
Table 3-3 Operating Conditions Parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
3.5  
-0.3  
-40  
0
Max.  
321)  
32  
Supply voltage  
Output voltage  
VDD  
VQ  
Tj  
V
V
Junction temperature  
Output current  
Magnetic signal input frequency2) fmag  
150  
10  
°C  
mA  
kHz  
IQ  
0
5
1) Latch-up test with factor 1.5 is not covered. Please see max ratings also.  
2) For operation at the maximum switching frequency the magnetic input signal must be 1.4 times higher than for static fields.  
This is due to the -3dB corner frequency of the internal low-pass filter in the signal path.  
Data Sheet  
15  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Specification  
3.3  
Electrical Characteristics  
Table 3-4 General Electrical Characteristics  
Parameter  
Symbol  
Values  
Typ.  
5.8  
Unit Note / Test Condition  
Min.  
Max.  
7.5  
1
Supply current  
IS  
3.9  
mA  
mA  
V
Reverse current  
ISR  
-
0.05  
0.2  
for VDD = -18V  
IQ = 10mA  
Output saturation voltage  
Output leakage current  
Output current limitation  
VQSAT  
IQLEAK  
IQLIMIT  
-
0.5  
5.0  
40  
-
-
μA  
mA  
T=150°C, 12V  
20  
30  
internally limited & thermal  
shutdown  
Output fall time1)  
Output rise time1)  
Output jitter3)1)  
tf  
0.1  
0.1  
0.2  
0.2  
0.3  
45  
1
1
1
μs  
1.2k2)/ 50pF, see Figure 4-1  
1.2k2)/ 50pF, see Figure 4-1  
For square wave signal with 1kHz  
tr  
μs  
tQJ  
BNeff  
μs  
Effective noise value of the  
magnetic switching points4)1)  
μTRMS  
Delay time5)1)  
td  
8
20  
30  
μs  
Bpeak=10mT, Ramp=500mT/s;  
see Figure 4-1  
Signal Count Delay1)  
Power-on time6)1)  
Chopper frequency1)  
tdc  
50  
48  
400  
84  
1000 ns  
1.2k/50pF @ Vq=12V, Direction  
before Speed Signal, 50% to 50%  
tPON  
fOSC  
120  
μs  
VDD = 3.5 V, B BRP - 0.5 mT or  
B BOP + 0.5 mT  
1300  
kHz  
1) Not subject to production test, verified by design/characterization  
2) Current limitation has to be taken into consideration for Vs > 12V in order not to exceed 10mA  
3) Output jitter is the 1σ value of the output switching distribution.  
4) The magnetic noise is normal distributed and can be assumed as nearly independent to frequency without sampling noise  
or digital noise effects. The typical value represents a the rms-value and corresponds therefore to a 1 σ probability of normal  
distribution. Consequently a 3 σ value corresponds to 0.3% probability of appearance.  
5) Systematic delay between magnetic threshold reached and output switching.  
6) Time from applying VDD = 3.0 V to the sensor until the output is valid.  
Data Sheet  
16  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Specification  
3.4  
Magnetic Characteristics  
Table 3-5 Magnetic Characteristics  
Parameter  
Symbol T (°C)  
Values  
Typ.  
2.8  
Unit  
Note / Test Condition  
Min.  
1.1  
Max.  
4.5  
Operating point  
BOP  
BRP  
BHys  
-40  
25  
mT  
0.9  
2.5  
4.1  
150  
-40  
25  
0.4  
1.9  
3.3  
Release point  
Hysteresis  
-4.5  
-4.1  
-3.3  
3.6  
-2.8  
-2.5  
-1.9  
5.3  
-1.1  
-0.9  
-0.4  
7.4  
mT  
mT  
mT  
150  
-40  
25  
3.4  
5.0  
6.8  
150  
2.5  
3.7  
5.2  
Magnetic Matching BMatch  
-1.0  
+1.0  
for (Bop1 - Bop2) and (Brp1 - Brp2);  
-40..125°C  
-1.5  
-1.0  
-1.5  
+1.5  
+1.0  
+1.5  
-40..150°C  
Magnetic Offset  
BOff  
TC  
mT  
mt  
(Bop + Brp) / 2; -40..125°C  
(Bop + Brp) / 2; -40..150°C  
Temperature  
Compensation1)  
-1700  
ppm/K ferrite magnet  
1) Not subject to production test, verified by design/characterization  
The initial status of Q1 and Q2 after power on is Vq high (=OFF)!  
Data Sheet  
17  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Specification  
3.5  
Electro Magnetic Compatibility  
Characterization of Electro Magnetic Compatibility is carried out on a sample basis from one qualification lot. Not  
all specification parameters have been monitored during EMC exposure.  
VS  
VQ =5 V  
RQ=1.2kΩ  
RS = 100Ω  
VDD  
Q
1
CDD =47nF  
Q2  
TVS diodes  
e. g. ESD24VS2U  
GND  
Figure 3-1 EMC test circuit  
Ref: ISO 7637-2 (Version 2004), test circuit Figure 3-1(with external resistor, Rs = 100)  
Table 3-6 Magnetic Compatibility  
Parameter  
Symbol  
Level / Type  
Status  
Testpulse 1  
VEMC  
-90V  
C
Testpulse 2a1)  
Testpulse 2b  
Testpulse 3a  
Testpulse 3b  
Testpulse 42)  
Testpulse 5b3)  
60V/110V  
10V  
-150V  
100V  
-7V / -5.5V  
US = 86.5 V / US* = 28.5 V  
A/C  
C
A
A
A
A
1) ISO 7637-2 (2004) describes internal resistance = 2(former 10).  
2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V +/- 0.2 V.  
3) A central load dump protection of 42 V is used. US* = 42 V-13.5V.  
Ref: ISO 7637-2 (Version 2004), test circuit Figure 3-1 (without external resistor, RS = 0)  
Table 3-7 Electro Magnetic Compatibility  
Parameter  
Symbol  
Level / Type  
Status  
Testpulse 1  
VEMC  
-50V  
45V  
10V  
-150V  
C
A
C
A
A
A
A
Testpulse 2a1)  
Testpulse 2b  
Testpulse 3a  
Testpulse 3b  
Testpulse 42)  
Testpulse 5b3)  
100V  
-7V / 5.5 V  
US = 86.5 V / US* = 28.5 V  
1) ISO 7637-2 (2004) describes internal resistance = 2(former 10).  
2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V +/- 0.2 V.  
3) A central load dump protection of 42 V is used. US* = 42 V-13.5V.  
Data Sheet  
18  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Timing Diagrams for the Speed and Direction Output  
4
Timing Diagrams for the Speed and Direction Output  
Applied Magnetic Field  
BOP  
BRP  
td  
tf  
td  
tr  
VQ  
90%  
10%  
Figure 4-1 Timing Diagram TLE4966V  
VQ  
B
BRP  
0
BOP  
Figure 4-2 TLE4966V - Output Voltage Signal over applied magnetic Field  
Data Sheet  
19  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Timing Diagrams for the Speed and Direction Output  
N
S
S
N
N
S
S
N
N
S
Rotation  
Direction  
S
N
N
S
S
N
Branded Side of  
IC  
Figure 4-3 TLE4966V - Definition of the direction signal  
Table 4-1 Output Pin Q1 Direction Signals  
Rotation direction  
Counterclockwise  
Clockwise  
State of direction output Q1  
Low  
High  
Data Sheet  
20  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Package Information  
5
Package Information  
Figure 5-1 Image of TLE4966V in the PG-TSOP6-6-9 package  
Figure 5-2 PG-TSOP6-6-9 Package Outline (All dimensions in mm)  
Data Sheet  
21  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Package Information  
Figure 5-3 PG-TSOP6-6-9 Packing (All dimensions in mm)  
0.5  
0.95  
Figure 5-4 Footprint of PG-TSOP6-6-9  
Data Sheet  
22  
Revision 1.0, 2018-12-06  
TLE4966V-1G  
Package Information  
Branded Side  
± 0.1  
± 0.1  
d1 = 0.59  
d2 = 0.45  
mm  
mm  
Figure 5-5 Distance between chip and package  
S
VG  
Figure 5-6 Marking of TLE4966V  
Data Sheet  
23  
Revision 1.0, 2018-12-06  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TLE4966V-1K

In Plane Sensing with Vertical Dual Hall Effect Latch for Automotive Applications
INFINEON

TLE4966V-1K_15

In Plane Sensing with Vertical Dual Hall Effect Latch for Automotive Applications
INFINEON

TLE4968-1M

The Infineon TLE496x-xM/L family of Hall switches saves energy and enables designers to create precise, compact systems. With current consumption of just 1.6mA, TLE496x-xM/L products can cut energy needs by up to 50 percent compared with similar competitor products.
INFINEON

TLE49681KXTSA1

Hall Effect Sensor, 0-2.25mT Min, 2.25mT Max, 0-25mA, Plastic/Epoxy, Rectangular, 3 Pin, Surface Mount, HALOGEN FREE AND ROHS COMPLIANT, SOT-23, SMD-3
INFINEON

TLE49681MXTSA1

Hall Effect Sensor, -2.25mT Min, 2.25mT Max, 0-25mA, Rectangular, Surface Mount, SOT-23, 3 PIN
INFINEON

TLE4971-A025N5-E0001

The Infineon XENSIV TLE4971-A025N5-E0001 is our brand new automotive current sensor, pre-programmed to the 25A measurement range. It offers high precision current measurement in applications with lower currents. This improved design of a coreless magnetic current sensor solution is usable for AC and DC measurements. It consists of an analog interface and two fast over-current detection outputs.
INFINEON

TLE4971-A025N5-U-E0001

The Infineon XENSIV TLE4971-A025N5-U-E0001 is our brand new automotive current sensor, pre-programmed to the 25A measurement range. It offers high precision current measurement in applications with lower currents. This improved design of a coreless magnetic current sensor solution is usable for AC and DC measurements. It consists of an analog interface and two fast over-current detection outputs.
INFINEON

TLE4971-A050N5-E0001

The Infineon XENSIV TLE4971-A050N5-E0001 is a new automotive qualified current sensor, pre-programmed to the 50A measurement range. In applications with medium currents, this coreless magnetic current sensor solution is usable for AC and DC measurements. Due to its 210kHz bandwidth the fast analog interface and two fast over-current detection outputs as well as the high precision current measurement ensures high flexibility in many application use cases.
INFINEON

TLE4971-A050N5-U-E0001

The Infineon XENSIV TLE4971-A050N5-E0001 is a new automotive qualified current sensor, pre-programmed to the 50A measurement range. In applications with medium currents, this coreless magnetic current sensor solution is usable for AC and DC measurements. Due to its 210kHz bandwidth the fast analog interface and two fast over-current detection outputs as well as the high precision current measurement ensures high flexibility in many application use cases.
INFINEON

TLE4971-A075N5-E0001

The Infineon XENSIV TLE4971-A075N5-E0001 is a new automotive qualified pre-programmed 75A current sensor. The high precision current measurement serves applications with medium to high currents. Due to the coreless magnetic current sensing principle, saturation or hysteresis effects commonly known from sensors using flux concentration techniques are avoided. The analog interface and two fast over-current detection pins with a reaction time of less than 1µs ensures a safe operation of the applications.
INFINEON

TLE4971-A075N5-U-E0001

The Infineon XENSIV TLE4971-A075N5-E0001 is a new automotive qualified pre-programmed 75A current sensor. The high precision current measurement serves applications with medium to high currents. Due to the coreless magnetic current sensing principle, saturation or hysteresis effects commonly known from sensors using flux concentration techniques are avoided. The analog interface and two fast over-current detection pins with a reaction time of less than 1µs ensures a safe operation of the applications.
INFINEON

TLE4971-A120N5-E0001

The Infineon XENSIV TLE4971-A120N5-E0001 is a new automotive qualified pre-programmed 120A sensor. It serves the unique ±120A measurement rage, the highest for current sensors with integrated current rail in a small SMD body. Due to the coreless magnetic current sensing principle, saturation or hysteresis effects commonly known from sensors using flux concentration techniques are avoided. The analog interface and two dedicated fast over-current detection pins with a reaction time of less than 1µs ensures a safe operation of systems.
INFINEON