TLE5014SP16 E0001 [INFINEON]

Our TLE5014 magnetic angle sensor family is available as single and dual die products. All sensors out of this family come pre-configured and pre-calibrated as plug-and-play sensors – and are thus easy-to-use. Today, customers can choose between the following interfaces.;
TLE5014SP16 E0001
型号: TLE5014SP16 E0001
厂家: Infineon    Infineon
描述:

Our TLE5014 magnetic angle sensor family is available as single and dual die products. All sensors out of this family come pre-configured and pre-calibrated as plug-and-play sensors – and are thus easy-to-use. Today, customers can choose between the following interfaces.

文件: 总29页 (文件大小:885K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Features  
Fast SSC interface up to 8MHz  
Giant Magneto Resistance (GMR)-based principle  
Integrated magnetic field sensing for angle measurement  
360° angle measurement  
EEPROM for storage of configuration (e.g. zero angle) and customer  
specific ID  
15 bit representation of absolute angle value on the output  
Max. 1° angle error over lifetime and temperature range  
32 point look-up table to correct for systematic angle errors (e.g. magnetic circuit)  
112 bit customer ID (programmable)  
Automotive qualified Q100, Grade 1: -40°C to 125°C (ambient temperature)  
ESD: 4 kV (HBM) on VDD and 2kV (HBM) on output pins  
RoHS compliant and halogen free package  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The TLE5014SP16 E0001 is an iGMR (integrated GMR) based angle sensor with a high speed serial interface  
(SSC interface). It provides high accurate angular position information for various applications.  
Table 1  
Derivative Ordering codes  
Product Type  
Marking  
Ordering Code  
Package  
Comment  
TLE5014SP16 E0001  
014SP01  
SP004232096  
PG-TDSO-16  
SSC Interface, single die  
Data Sheet  
www.infineon.com  
Rev. 1.1  
2019-04-04  
1
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Table of contents  
1
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1  
1.2  
1.3  
1.4  
1.5  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Sensing Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
3.1  
3.2  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.4  
3.5  
3.6  
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
EEPROM Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reset Concept and Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
External & Internal Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Device Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.7  
3.8  
4
4.1  
Synchronous Serial Communication (SSC) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Bit Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Update of update-registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Command Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Safety word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Cyclic Redundancy Check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.1.1  
4.1.2  
4.2  
4.2.1  
4.2.2  
4.2.3  
5
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.1  
5.2  
5.3  
5.4  
5.5  
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Data Sheet  
2
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Functional Description  
1
Functional Description  
1.1  
Block Diagram  
PMU  
Clock  
ADC_X  
ADC_Y  
ADC_T  
EEPROM  
Filter  
GMR_X  
GMR_Y  
Temp.  
SSC  
Interface  
ISM  
Filter  
CORDIC  
Figure 1-1 TLE5014SP16 E0001 block diagram  
1.2  
Functional Block Description  
Internal Power Supply (PMU)  
The internal blocks of the TLE5014 are supplied from several voltage regulators:  
GMR Voltage Regulator, VRS  
Analog Voltage Regulator, VRA  
Digital Voltage Regulator, VRD  
These regulators are directly connected to the supply voltage VDD.  
Oscillator and PLL (Clock)  
The digital clock of the TLE5014 is given by the Phase-Locked Loop (PLL), which is fed by an internal oscillator.  
SD-ADC  
The Sigma-Delta Analog-Digital-Converters (SD-ADC) transform the analog GMR voltages and temperature  
voltage into the digital domain.  
Digital Signal Processing Unit ISM  
The Digital Signal Processing Unit ISM contains the:  
Intelligent State Machine (ISM), which does error compensation of offset, offset temperature drift,  
amplitude synchronicity and orthogonality of the raw signals from the GMR bridges.  
COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle  
calculation  
Data Sheet  
3
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Functional Description  
Interface  
The Interface block is used to generate the SSC signals  
EEPROM  
The EEPROM contains the configuration and calibration parameters. A part of the EEPROM can be accessed by  
the customer for application specific configuration of the device. Programming of the EEPROM is achieved  
with the SSC interface. Programming mode can be accessed directly after power-up of the IC.  
1.3  
Sensing Principle  
The Giant Magneto Resistance (GMR) sensor is implemented using vertical integration. This means that the  
GMR-sensitive areas are integrated above the logic part of the TLE5014 device. These GMR elements change  
their resistance depending on the direction of the magnetic field.  
Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense  
one of two components of the applied magnetic field:  
X component, Vx (cosine) or the  
Y component, Vy (sine)  
With this full-bridge structure the maximum GMR signal is available and temperature effects cancel out each  
other.  
16  
15  
14  
13  
12  
11  
10  
9
ReferenceDirection:  
Resistance low when  
external magnetic field is  
in this direction  
Y
X
0°  
1
2
3
4
5
6
7
8
Figure 1-2 Sensitive bridges of the GMR sensor (not to scale)  
In Figure 1-2 the arrows in the resistors represent the magnetic direction which is fixed in the reference layer.  
If the external magnetic field is parallel to the direction of the Reference Layer, the resistance is minimal. If  
they are anti-parallel, resistance is maximal.  
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges  
are oriented orthogonally to each other to measure 360°.  
Data Sheet  
4
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Functional Description  
With the trigonometric function ARCTAN2, the true 360° angle value is calculated out of the raw X and Y signals  
from the sensor bridges.  
Data Sheet  
5
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Functional Description  
1.4  
Pin Configuration  
16  
15  
14  
13  
12  
11  
10  
9
Center of  
Sensitive area  
1
2
3
4
5
6
7
8
Figure 1-3 Pin configuration (top view)  
1.5  
Pin Description  
The following Table 1-1 describes the pin-out of the chip.  
Table 1-1 Pin description TLE5014SP16  
Pin  
1
Symbol  
IF1  
In/Out  
Function  
I/O  
I
DATA (MOSI/MISO)  
SCK (SSC clock)  
CSQ (chip select)  
2
IF2  
3
IF3  
I
4
VDD  
GND  
IFA  
Supply voltage, positive  
Supply voltage, ground  
Connect to GND  
Connect via pull-up to VDD  
Keep open  
5
6
7
IFB  
8
IFC  
9-16  
-
n.c.  
Data Sheet  
6
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Application Circuits  
2
Application Circuits  
The application circuit in this chapter shows the communication possibilities of the TLE5014SP16 E0001. To  
improve robustness against electro-magnetic disturbances, a capacitor of 100nF on the supply is  
recommended. This capacitor shall be placed as close as possible to the corresponding sensor pins. The load  
capacitor CL shall not exeed the specified value (Table 3-5). The DATA line is actively driven to HIGH and LOW  
but the driver is switched off once reaching the HIGH state. Therefore, a pull-up resistor is recommended to  
maintain a stable HIGH level.  
In case of a high speed communication, an additional serial resistor in the range of 140Ω can be implemented  
in the DATA, SCK and CSQ line to avoid reflections and enhance communication reliability. In this case the user  
is responsible to verify that the intended communication speed can be reached in his specific setup.  
VµC  
VDD  
RPU  
50k  
TLE5014  
IF1  
IF2  
IF3  
MOSI/MISO  
VDD  
CL  
VDD  
SCK  
CSQ  
CD  
100nF  
VDD  
RP1  
2.2k  
GND  
IFA  
IFB  
IFC  
GND  
µController  
Master  
GND  
Figure 2-1 Application circuit for TLE5014SP16 E0001 with SSC interface, microcontroller switches pin  
between MISO and MOSI  
Data Sheet  
7
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
3
Specification  
3.1  
Absolute Maximum Ratings  
Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute  
ratings; exceeding only one of these values may cause irreversible damage to the device.  
Table 3-1 Maximum Ratings for Voltages and Output Current  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Absolute maximum supply VDD  
voltage  
-18  
26  
V
for 40h, no damage of device;  
-18V means VDD < GND  
Voltage Peaks  
VDD  
30  
6
V
V
for 50µs, no current limitation  
no damage of device  
Absolute maximum voltage VIF  
for pin IF1, IF2, IF3  
-0.3  
-18  
Absolute maximum voltage VIO  
for pin IFB  
19.5  
30  
V
V
for 40h; no damage of device,  
-18V means VDD < GND  
Voltage Peaks (for pin IFB) VIO  
for 50µs, no current limitation  
Table 3-2 Maximum Temperature and Magnetic Field  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Maximum ambient  
temperature  
TA  
-40  
125  
°C  
Q100, Grade 1  
Maximum allowed magnetic B  
field  
200  
150  
40  
mT  
mT  
°C  
max 5 min @ TA = 25°C  
max 5 h @ TA = 25°C  
Maximum allowed magnetic B  
field  
Storage & Shipment1) 2)  
Tstorage  
5
for dry packed devices,  
Relative humidity < 90%,  
storage time < 3a  
1) Air-conditioning of ware houses, distribution centres etc. is not necessary, if the combination of the specified limits  
of 75% R.H. and 40 °C will not be exceeded during storage for more than 10 events per year, irrespective of the  
duration per event, and one of the specified limits (75 % R.H. or 40 °C) will not be exceeded for longer than 30 days  
per year  
2) See Infineon Application Note: “Storage of Products Supplied by Infineon Technologies”  
Table 3-3 Mission Profile  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
°C for 2000h  
Min.  
Max.  
Mission Profile  
TA,max  
125  
Data Sheet  
8
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
Table 3-4 Lifetime & Ignition Cycles  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Min.  
Typ. Max.  
15.000  
Operating life time  
top_life  
h
a
see Table 3-3 for mission  
profile  
additional 2a storage time1)  
Total life time  
Ignition cycles  
ttot_life  
19  
Nignition  
200.000  
during operating lifetime top_life  
1) The lifetime shall be considered as an anticipation with regard to the product that shall not extend the warranty  
period  
The device qualification is done according to AEC Q100 Grade 1 for ambient temperature range -40°C < TA <  
125°C  
3.2  
Operating Range  
The following operating conditions must not be exceeded in order to ensure correct operation of the angle  
sensor. All parameters specified in the following sections refer to these operating conditions, unless otherwise  
noted. Table 3-5 is valid for -40°C < TA < 125°C unless otherwise noted.  
Table 3-5 Operating Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
3.0  
Max.  
5.5  
108  
Operating supply voltage  
Supply Voltage Slew Rate  
VDD  
V
-
-
-
VDD_slew  
TA  
0.1  
V/s  
°C  
Operating ambient  
temperature  
-40  
125  
Angle speed  
n
30000 rpm  
50 pF  
-
Capacitive output load on  
SSC interface (DATA pin)  
CL  
Magnetic Field Range  
The operating range of the magnetic field describes the field values where the performance of the sensor,  
especially the accuracy, is as specified in Table 3-11 and Table 3-12. This value is valid for a NdFeB magnet  
with a Tc of -1300ppm/K. In case a different magnet is used, the individual Tc of this magnet has to be  
considered and ensured that the limits are not exceeded. The allowed magnetic field range is given in  
Figure 3-1.  
Table 3-6 Magnetic Field Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Angle measurement field  
range @ 25°C  
B
25  
80  
mT  
TA = 25°C, valid for NdFeB  
magnet  
The below figure Figure 3-1 shows the magnetic field range which shall not be exceeded during operation at  
the respective ambient temperature. The temperature dependency of the magnetic field is based on a NdFeB  
magnet with Tc = -1300ppm/K.  
Data Sheet  
9
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
100  
90  
80  
70  
60  
50  
40  
30  
20  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
Temperature (°C)  
Figure 3-1 Allowed magnetic field range within operating ambient temperature range.  
It is also possible to widen the magnetic field range for higher temperatures. In that case, additional angle  
errors have to be considered.  
Data Sheet  
10  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
3.3  
Electrical Characteristics  
3.3.1  
Input/Output Characteristics  
The indicated parameters apply to the full operating range, unless otherwise specified. The typical values  
correspond to a supply voltage VDD = 5.0V and an ambient temperature TA = 25°C, unless individually specified.  
All other values correspond to -40°C < TA < 125°C.  
Table 3-7 Electrical Characteristics  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note / Test Condition  
Max.  
15  
Operating Supply Current  
IDD  
12  
mA  
ms  
-
Time between supply voltage tPon  
reaches reset value and valid  
angle value is available on the  
output (without interface  
delay  
7
Overvoltage detection on VDD VOV  
6.5  
2.5  
7.0  
V
In an overvoltage condition  
the output switches to tri-  
state  
Undervoltage detection on VDD VUV  
2.3  
-5  
2.7  
5
V
In an undervoltage condition  
the sensor performs a reset  
Internal clock tolerance  
Δfclock  
%
including temperature and  
lifetime  
The following Figure 3-2 shows the operating area of the device, the condition for overvoltage and  
undervoltage and the corresponding sensor reaction. The values for the over- and undervoltage comparators  
are the typical values from Table 3-7.  
In the extended range, the sensor fulfills the full specification. However, voltages above the operating range  
can only be applied for a limited time (see Table 3-1).  
Data Sheet  
11  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
V_out  
No output  
8.0  
Sensor  
reset  
No output  
7.0  
5.7  
No output  
Operating  
range  
VDD  
6.5  
2.5 3.0  
5.5  
Figure 3-2 Operating area and sensor reaction for over- and undervoltage.  
Table 3-8 Output driver  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Output low level1)  
Output high level1)  
VOL  
VOH  
0.3*VDD  
0.7*VDD  
1) In case several sensors are connected in a bus mode, the output levels may be influenced and out of specification in  
case a malfunction of one of the sensors on the bus occurs (e.g. one sensors has loss of VDD).  
VOUT  
VDD  
VOH  
VOL  
t
Figure 3-3 Output level high / low  
Output Delay Time and Jitter  
Data Sheet  
12  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
Due to the internal signal sampling and signal conditioning, there will be a delay of the provided angle value  
at the output. The definition of this delay is described in below Figure 3-4  
Table 3-9 Signal delay and delay time jitter  
Parameter  
Symbol  
Values  
Typ.  
64  
Unit  
Note /  
Test Condition  
Min.  
Max.  
Delay time between real angle  
and angle value available at the  
AVAL register  
tadel  
60.8  
67.2  
µs  
Min/max values  
include clock  
tolerance  
Variation of delay time tadel  
tdeljit  
+/-12.0 +/-12.8 +/-14.0 µs  
Min/max values  
include clock  
tolerance  
Angle update rate  
(new angle value is provided in  
the AVAL register)  
tupdate  
24.3  
25.6  
27.0  
µs  
Min/max values  
include clock  
tolerance  
The sensor calculates a new angle value every tupdate. The delay time (latency) of the angle value is determined  
by the time needed for the sampling of the sin/cos raw signals and angle calculation. The calculated angle is  
then transferred into the corresponding SSC register. This register is updated every tupdate. As the reading of  
the angle value with the SSC interface is asynchronous to the internal angle update rate, a jitter on the delay  
time of the angle value is introduced in the range of tdeljit = +/- tupdate/2. Figure 3-4 shows this relation.  
angle  
α1  
α2  
α3  
α4  
sin/cos raw  
values filtering  
X1; Y1  
X2; Y2  
X3; Y3  
X4; Y4  
angle  
calculation  
calculate α1  
calculate α2 calculate α3  
tupdate  
angle value  
register  
α1  
α2  
tdeljit tdeljit  
tadel  
t
Figure 3-4 Definition of update rate tupdate, delay time tadel and jitter of delay time tdeljit  
Data Sheet  
13  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
3.3.2  
ESD Protection  
Table 3-10 ESD Voltage  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Electro-Static-Discharge  
voltage (HBM), according to  
ANSI/ESDA/JEDEC JS-001  
VHBM  
±4  
kV  
kV  
kV  
HBM contact discharge  
for pins VDD, GND, IFB  
Electro-Static-Discharge  
voltage (HBM), according to  
ANSI/ESDA/JEDEC JS-001  
VHBM  
±2  
HBM contact discharge  
for pins IF1, IF2, IF3, IFA, IFC  
Electro-Static-Discharge  
voltage (CDM), according to  
JESD22-C101  
VCDM  
±0.5  
for all pins except corner pins  
for corner pins only  
±0.75 kV  
Data Sheet  
14  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
3.3.3  
Angle Performance  
After internal angle calculation, the sensor has a remaining error, as shown in Table 3-11 for an ambient  
temperature range up to 85°C and a reduced magnetic field range and in Table 3-12 for the ambient  
temperature range up to 125°C and full magnetic operating range. The error value refers to BZ= 0mT.  
The overall angle error represents the relative angle error. This error describes the deviation from the  
reference line after zero-angle definition. It is valid for a static magnetic field.  
If the magnetic field is rotating during the measurement, an additional propagation error is caused by the  
angle delay time (see Table 3-9).  
Table 3-11 Angle Error for -40°C < TA < 85°C and magnetic field range 33mT < B < 50mT  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Accuracy1) over temperature AErr,T  
w/o look-up table  
Accuracy1) over temperature AErr,s  
and lifetime,  
0.8  
°
°
0h2), over temperature  
0.9  
lifetime stress:  
TA=85°C/1000h/50mT  
w/o look-up table  
Accuracy1)3) over  
temperature and lifetime,  
with look-up table  
AErr,sLUT  
0.65  
0.16  
°
°
lifetime stress:  
TA=85°C/1000h/50mT  
with look-up table correction  
Hysteresis4)  
AHyst  
0.1  
value includes quantization  
error  
1) Hysteresis and noise are included in the angle accuracy specification  
2) “0h” is the condition when the part leaves the production at Infineon  
3) Verified by characterization  
4) Hysteresis is the maximum difference of the angle value for forward and backward rotation  
Table 3-12 Angle Error for -40°C < TA < 125°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Min.  
Max.  
Accuracy1) over temperature AErr,T  
w/o look-up table  
Accuracy1) over temperature AErr,s  
and lifetime,  
0.8  
°
°
0h2), over temperature  
B = 33mT to 80mT3)  
33mT…80mT3)  
1.0  
lifetime stress: TA=125°C/2000h  
w/o look-up table  
Accuracy1)4) over  
temperature and lifetime,  
with look-up table  
Hysteresis5)  
AErr,sLUT  
0.85  
0.16  
°
°
B = 33mT to 80mT3),  
lifetime stress: TA=125°C/2000h  
with look-up table correction  
B = 33mT to 80mT6), value  
includes quantization error  
AHyst  
0.1  
1) Hysteresis and noise are included in the angle accuracy specification  
2) “0h” is the condition when the part leaves the production at Infineon  
3) For the magnetic field range of 25mT < B < 33mT, 0.2° have to be added to the max. angle accuracy  
4) Verified by characterization  
5) Hysteresis is the maximum difference of the angle value for forward and backward rotation  
Data Sheet  
15  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
6) For the magnetic field range of 25mT < B < 33mT, 0.1° have to be added to the max. hysteresis AHyst  
3.4  
EEPROM Memory  
The sensor includes a non-volatile memory (NVM) where calibration data and sensor configuration data are  
stored. The customer has access to a part of this memory for storage of application specific data (e.g. look-up  
table & customer ID)  
The time for programming the customer relevant part of the NVM as well as maximum cycles of programming  
and data retention is given in Table 3-13  
Table 3-13 EEPROM  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Number of possible NVM  
programming cycles  
nProg  
100  
-
NVM data retention  
tretention  
-
21  
a
s
includes 19a  
lifetime and 2a  
storage  
Time for programming of  
whole NVM (customer  
relevant part)  
tProg  
0.5  
incl. look-up  
table,  
configuration,  
customer ID;  
with 100kbit/s  
3.5  
Reset Concept and Fault Monitoring  
Some internal and external faults of the device can trigger a reset. During this reset, all output pins are high-  
ohmic to avoid any disturbance of other sensors which may be connected together in a bus mode. A reset is  
indicated as soon as the sensor is back at operational mode by a status bit.  
3.6  
External & Internal Faults  
In case of an occurrence of external or internal faults, as for example overvoltage or undervoltage, the sensor  
reacts in a way that these faults are indicated to the customer.  
All errors are indicated as long as they persist, but at least once. After disappearance of the error, the error  
indication is also cleared.  
Overvoltage, undervoltage  
It is ensured, that the sensor provides a valid output value as long as the voltage is within the operating range  
or no under- or overvoltage is indicated. At occurrence of an undervoltage, the sensor performs a reset. The  
implemented undervoltage comparator at VDD detects an undervoltage at ~2.5V (typ. value). At occurrence of  
an overvoltage, the sensor output goes to tristate and no protocol is transmitted. The implemented  
overvoltage comparator at VDD detects an overvoltage at ~6.5V (typ. value).  
Open and Shorts  
All pins of the device withstand a short to ground (GND) and a short to VDD (as long as VDD is within the operating  
range). In case of an open VDD connection or an open GND the sensor provides a detectable wrong signal (e.g.  
no valid output protocol).  
It is also ensured that a short between two neighboring pins leads to a detectable wrong output signal.  
Data Sheet  
16  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Specification  
Communication Failures  
An external fault can happen where an ongoing communication is interrupted before it is finished correctly. In  
such an event, no sensor malfunction or dead-lock will occur.  
3.7  
Power Dissipation  
Following table describes the calculated power dissipation for the different application cases within the  
operating range defined in Table 3-5. It is a worst case assumption with the maximum values within the  
operating range.  
Table 3-14 Power Dissipation  
Scenario Configuration  
V
DD (V)  
IDD (mA)  
15  
VOUT (V)  
IOUT (mA)  
P (mW)  
49.5  
1
2
SSC  
SSC  
3.3  
5.5  
~0  
~0  
15  
82.8  
3.8  
Device Programming  
It is possible to do the programming of the EEPROM with the SSC interface. The programming mode can be  
accessed directly after start-up of the IC by sending the appropriate command.  
Following parameters can be programmed and stored in the EEPROM:  
Zero angle (angle base)  
Rotation direction (clock wise or counter clock wise)  
Look-up table (32 points)  
Customer ID (112bit individual data)  
To align the angle output of the sensor with the application specific required zero angle direction this value  
can be programmed. All further output angles are in reference to this zero angle.  
Look-Up Table  
To increase the accuracy of the provided angle value, a look-up table is implemented which allows to  
compensate for external angle errors which may be introduced for example by the magnetic circuit. Alignment  
tolerances (eccentricity or tilt) may lead to a non-linearity of the output signal which can be compensated  
using the implemented look-up table. This look-up table has 32 equidistant points over 360° angle range with  
a linear interpolation between the 32 defined values  
Further details for programming and configuration of the device can be found in the corresponding user  
manual of the TLE5014.  
Data Sheet  
17  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Synchronous Serial Communication (SSC) interface  
4
Synchronous Serial Communication (SSC) interface  
The SSC interface is a half-duplex communication protocol. The communication is always initiated by the  
microcontroller by sending a command to the TLE5014SP16 E0001. The command can be either a Read access  
(Figure 4-3) or a Write access (Figure 4-4). According to the command, the microcontroller can either send a  
data word to the TLE5014SP16 E0001 (Write access) or receive data word from the TLE5014SP16 E0001 (Read  
access). At the end of the communication the TLE5014SP16 E0001 sends a safety word.  
The 3-pin SSC Interface is composed of:  
DATA: Bidirectional data line. Data bits are sent synchronously with the clock line.  
SCK: Unidirectional clock line. Generated by the microcontroller, TLE5014SP16 E0001 is always a slave.  
CSQ: Chip select, active low. Asserted by the microcontroller to select a slave.  
4.1  
Data transmission  
The data communication via SSC interface has the following characteristic:  
The SSC Interface is word-aligned. All functions are activated after each transmitted word.  
The microcontroller selects a TLE5014SP16 E0001 by asserting the CSQ to low. A “high” condition on the  
negated Chip Select pin (CSQ) of the selected TLE5014SP16 E0001 interrupts the transfer immediately. The  
CRC calculator is automatically reset.  
Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK. Similar to a  
SPI configuration with CPOL=0 and CPHA=1.  
After changing the data direction, a delay (twr_delay) has to be considered before continuing the data  
transfer. This is necessary for internal register access.  
After sending the Safety Word the transfer ends. To start another data transfer, the CSQ has to be  
deselected once for tCSoff  
.
The SSC is default Push-Pull. The Push-Pull driver is only active, if the TLE5014SP16 E0001 has to send data,  
otherwise the Push-Pull is disabled for receiving data from the microcontroller.  
SSC Transfer  
twr_delay  
Command Word  
Data Word (s)  
SCK  
DATA  
CSQ  
MSB  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
LSB  
MSB  
1
LSB  
RW PRTY CMD  
ACCESS  
ADDR  
LEN  
SSC -Master is driving DAT A  
SSC -Slave is driving DAT A  
Figure 4-1 SSC data transmission  
4.1.1  
Bit Numbering  
The SSC communication is using the convention: Most Significant Bit (MSB) first. Figure 4-1 shows the  
Command Word and the beginning of the Data Word to demonstrate the bit numbering.  
4.1.2  
Update of update-registers  
At a rising edge of CSQ without a preceding data transfert (no SCK pulse), the content of all registers which  
have an update buffer is saved into the buffer. The content of the update buffer can be read by sending a read  
Data Sheet  
18  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Synchronous Serial Communication (SSC) interface  
command for the desired register and setting the ACCESS bits of the Command Word to 11B.  
This feature allows to take a snapshot of all necessary system parameters at the same time.  
Update -Signal  
Update -Event  
Command Word  
MSB  
Data Word (s)  
SCK  
DATA  
CSQ  
LSB  
LSB  
tCSupdate  
SSC -Master is driving DAT A  
SSC -Slave is driving DAT A  
Figure 4-2 Update of update-registers  
The types of functions used in the registers are listed here:  
Table 4-1 Bit types  
Abbreviation  
Function  
Read  
Description  
R
Read-only registers  
Read and write registers  
W
U
Write  
Update  
Update buffer for this bit is present. If an update is issued and the Update-  
Register Access bits (ACCESS in Command Word) are set, the immediate  
values are stored in this update buffer simultaneously. This enables a  
snapshot of all necessary system parameters at the same time  
Data Sheet  
19  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Synchronous Serial Communication (SSC) interface  
4.2  
Data transfer  
The SSC data transfer is word aligned. The following transfer words are possible:  
Command word (to access and change operating modes of the TLE5014SP16 E0001)  
Data words (any data transferred in any direction)  
Safety word (confirms the data transfer and provide status information)  
twr_delay  
SAFETY-WORD  
COMMAND  
READ Data  
SSC-Master is driving DATA  
SSC-Slave is driving DATA  
Figure 4-3 SSC data transfer (data read example)  
twr_delay  
SAFETY-WORD  
COMMAND  
WRITE Data  
SSC-Master is driving DATA  
SSC-Slave is driving DATA  
Figure 4-4 SSC data transfer (data write example)  
4.2.1  
Command Word  
The TLE5014SP is controlled by a command word. It is sent first at every data transmission.The structure of  
the command word is shown in Table 4-2.  
Table 4-2 Structure of the command word  
Name  
Bits  
Description  
RW  
[15]  
Read - Write  
0: Write  
1: Read  
PRTY  
[14]  
Command parity  
Odd parity of all Command-Word-bits. Number of “1”s has to be odd  
CMD  
[13]  
Set to 0B  
ACCESS  
[12:11]  
Access mode to registers  
00B: Direct access  
11B: Update register; read-access  
ADDR  
LEN  
[10:4]  
[3:0]  
7-bit Address  
Set to 1B  
Data Sheet  
20  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Synchronous Serial Communication (SSC) interface  
4.2.2  
Safety word  
The safety word contains following bits:  
Table 4-3 Structure of the safety word  
Name  
Bits  
Description  
STAT  
Chip and Interface Status.  
[15]  
Indication of chip reset (undervoltage, watchdog)  
(resets after readout via SSC)  
0: Reset occurred  
1: No reset  
[14]  
[13]  
System Error (e.g. Overvoltage; Undervoltage; VDD-, GND- off; ROM)  
0: Error occurred  
1: No error  
Interface Access Error (access to wrong address; wrong lock, wrong parity,  
wrong access)  
0: Error occurred  
1: No error  
[12]  
Angle Value error (ADC , vectorlength or redundant angle calculation error)  
0: Angle value invalid  
1: Angle value valid  
RESP  
CRC  
[11:8]  
[7:0]  
Sensor Number Response Indicator  
The sensor no. bit is pulled low and the other bits are high  
Cyclic Redundancy Check (CRC) includes Command Word, Data-words,  
STAT and RESP  
Data Sheet  
21  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Synchronous Serial Communication (SSC) interface  
4.2.3  
Cyclic Redundancy Check (CRC)  
This CRC is according to the J1850 Bus-Specification.  
Every new transfer resets the CRC generation.  
Every Byte of a transfer will be taken into account to generate the CRC (also the sent command(s)).  
Generator-Polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast-CRC generation circuit is used  
(see Figure 4-5).  
The remainder of the fast CRC circuit is initial set to 11111111B.  
Remainder is inverted before transmission.  
Serial  
CRC  
X7  
X6  
X5  
X4  
X3  
X2  
X1  
X0  
xor  
&
xor  
1
1
1
1
1
1
1
xor  
xor  
1
Input  
output  
TX_CRC  
parallel  
Remainder  
Figure 4-5 Fast CRC polynomial division circuit  
Two code examples to compute the CRC are provided. The first implementation is based on a two loops  
implentation. This implementation is recommended if the memory space is critical in the application. The  
second implementation replaces the inner loop by a look-up-table. It requires more memory space but the  
computation time is lower.  
Data Sheet  
22  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Package Information  
5
Package Information  
The device is qualified with a MSL level of 3. It is halogen free, lead free and RoHS compliant.  
5.1  
Package Parameters  
Table 5-1 Package Parameters  
Parameter  
Symbol Limit Values  
Min. Typ. Max.  
150 K/W  
Unit  
Notes  
Thermal resistance  
RthJA  
RthJC  
RthJL  
Junction to air1)  
Junction to case  
Junction to lead  
260°C2)  
45  
70  
K/W  
K/W  
Moisture Sensitively Level MSL 3  
Lead Frame  
Plating  
Cu  
Sn 100%  
> 7 μm  
1) according to Jedec JESD51-7  
2) suitable for reflow soldering with soldering profiles according to JEDEC J-STD-020E (December 2014)  
Table 5-2 Position of the die in the package  
Parameter  
Symbol Limit Values  
Min. Typ. Max.  
Unit  
Notes  
Tilt  
3
°
in respect to the z-axis and  
reference plane (see  
Figure 5-1),  
Rotational displacement  
3
°
in respect to the reference  
axis (see Figure 5-1)  
Placement tolerance in  
package  
100 µm  
in x and y direction  
z
y
Tilt angle  
Reference plane  
Chip  
Package  
Chip  
Die pad  
Rotational  
displacement  
x
x
Figure 5-1 Tolerance of the die in the package  
The active area of the GMR sensing element is 360µm x 470µm.  
It has to be ensured that a magnet is used which has sufficient size to provide a homogeneous magnetic field  
over the total sensing element area. For a practical application design this means that the magnet has to be  
Data Sheet  
23  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Package Information  
large enough to ensure that the non-homogeneity of the magnetic field in this area (plus relevant positioning  
tolerances) is negligible. In case the magnet diameter is too small or there is a misalignment of the magnet to  
the sensor, an additional angle error may occur which has to be taken into account by the user.  
Data Sheet  
24  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Package Information  
5.2  
Package Outline  
Figure 5-2 PG-TDSO-16 package dimension  
Figure 5-3 Position of sensing element  
Data Sheet  
25  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Package Information  
5.3  
Footprint  
Figure 5-4 Footprint of PG TDSO-16  
5.4  
Packing  
Figure 5-5 Tape and Reel  
Data Sheet  
26  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Package Information  
5.5  
Marking  
Position  
Marking  
Description  
1st Line  
Gxxxx  
G: green, 4-digit date code: YYWW  
e.g. “1801”: 1st week in 2018  
2nd Line  
3rd Line  
xxxxxxxx  
xxx  
Interface type and version  
Lot code  
Figure 5-6 Marking of PG-TDSO-16  
Data Sheet  
27  
Rev. 1.1  
2019-04-04  
TLE5014SP16 E0001  
GMR-based Angle Sensor  
Revision history  
6
Revision history  
Revision Date  
Changes  
1.0  
1.1  
2019-01-15 Initial creation.  
2019-04-04 Remove Register chapter  
Data Sheet  
28  
Rev. 1.1  
2019-04-04  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-04-04  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  

相关型号:

TLE5014SP16 E0002

Our TLE5014 magnetic angle sensor family is available as single and dual die products. All sensors out of this family come pre-configured and pre-calibrated as plug-and-play sensors – and are thus easy-to-use. Today, customers can choose between the following interfaces.
INFINEON

TLE5041PLUSC

TLE5041plusC 车轮速度传感器专为复杂车辆控制系统设计。该传感器可以精准感测转速,支持设计师在防抱死制动 (ABS) 和电子稳定控制 (ESP) 系统中集成间接胎压监测。
INFINEON

TLE5045IC-R050

Analog Circuit,
INFINEON

TLE5045ICR050HALA1

Analog Circuit,
INFINEON

TLE5046IC

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-AK-ERR

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-AK-LR

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-PWM2-R050

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-PWM2-R100

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-PWM2E-R050

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046IC-PWM2E-R100

High End GMR Wheel Speed Sensor with direction detection, ASIL B(D)
INFINEON

TLE5046ICAKLRHALA1

Analog Circuit,
INFINEON