TLE6389G50 [INFINEON]

Step - Down DC/DC Controller; 步骤 - 降压型DC / DC控制器
TLE6389G50
型号: TLE6389G50
厂家: Infineon    Infineon
描述:

Step - Down DC/DC Controller
步骤 - 降压型DC / DC控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总24页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Step-Down DC/DC Controller  
Target Datasheet  
TLE 6389  
Features  
• Operation from 5V to 60V Input Voltage  
• 100% Maximum Duty Cycle  
• Efficiency >90%  
• Output Current up to 3A  
P-DSO-14-3, -4, -9, -11  
• Less than 100µA Quiescent Current  
• 2µA Max Shutdown Current  
• Up to 350kHz Switching Frequency  
RSENSE  
=
• Adjustable and Fixed 5V and  
M1  
L1 = 47 µH  
VIN  
VOUT  
IOUT  
0.05  
3.3V Output Voltage versions  
• 3% output voltage accuracy  
(PWM Mode)  
• Current-Mode Control Scheme  
• On Chip Low Battery Detector  
• Ambient operation range  
-40°C to 125°C  
CIN1  
100  
=
COUT  
100  
=
F
CBDS  
=
µF  
D1  
µ
220 nF  
M1: Infineon SPD09P06PL  
D1: Motorola MBRD360  
L1: Coilcraft DO3340P-473  
Cin1: TBD  
11  
BDS  
14  
12  
GDRV  
2
CS  
3
FB  
13  
7
VOUT  
VS  
RSI1  
=
CIN2  
=
9
SO  
Cout: Low ESR Tantalum  
400k  
220nF  
TLE6389G50-1  
10  
SI  
RO  
RD  
RSI2=  
SI_GND SI_ENABLE SYNC GND  
100k  
6
1
5
4
8
CRD =100nF  
ON OFF  
Type  
Ordering Code  
on request  
on request  
on request  
on request  
on request  
Package  
Description  
adjustable  
TLE 6389 GV  
TLE 6389 G50  
TLE 6389 G50-1  
TLE 6389 G33  
TLE 6389 G33-1  
P-DSO-14  
P-DSO-14  
P-DSO-14  
P-DSO-14  
P-DSO-14  
5V, Device Enable  
5V, SI GND, SI Enable  
3.3V, Device Enable  
3.3V, SI GND, SI Enable  
Functional description  
The TLE6389 step-down DC-DC switching controllers provide high efficiency over loads  
ranging from 1mA up to 3A. A unique PWM/PFM control scheme operates with up to a  
100% duty cycle, resulting in very low dropout voltage. This control scheme eliminates  
minimum load requirements and reduces the supply current under light loads to 100µA.  
These step-down controllers drive an external P-channel MOSFET, allowing design  
flexibility for applications up to 3A. A high switching frequency (up to 350kHz) and  
Target Datasheet Rev. 1.7  
1
2001-09-17  
TLE 6389  
operation in continuous-conduction mode allow the use of tiny surface-mount inductors.  
Output capacitor requirements are also reduced, minimizing PC board area and system  
costs. The output voltage is preset at 5V (TLE6389-50) or 3.3V (TLE6389-33) and  
adjustable for the TLE6389. Input voltages can be up to 60V.  
Pin Configuration (top view)  
ENABLE /  
1
2
3
4
5
6
7
14 CS  
SI_EN  
FB  
13 VS  
VOUT  
GND  
12 GDRV  
11 BDS  
10 RO  
P-D-SO-14  
SYNC  
SI_GND  
SI  
9
8
SO  
RD  
Pin Definitions and Functions  
Pin No  
SO-14  
Symbol Function  
2
FB  
Feedback Input.  
1. For adjustable-output operation connect to an external voltage divider  
between the output and GND (see the Setting the Output Voltage section).  
2. Sense input for fixed 5V or 3.3V output operation. FB is internally  
connected to an on-chip voltage divider.  
3
1
VOUT  
VOUT Input.  
Input for internal supply. Connect to output if variable version is used. For  
fixed voltage version connect FB and VOUT.  
ENABLE Active-Low Enable Input. Device is placed in shutdown when Enable is  
driven low. In shutdown mode, the reference, output, and external  
MOSFET are turned off. Connect to logic high for normal operation.  
(TLE6389G50, TLE6389G33, TLE6389GV only)  
Target Datasheet Rev. 1.7  
2
2001-09-17  
TLE 6389  
Pin No  
SO-14  
Symbol Function  
SI_ENA SI Enable Input. SI_GND is switched to high impedance when SI_Enable  
1
BLE  
is low. High level at SI_Enable connects SI_GND to GND via a low  
impedance path. SO is undefined when SI_Enable is low. (TLE6389G50-  
1, TLE6389G33-1 only)  
13  
4
VS  
Supply Input. Bypass with 0.47µF.  
Ground. Analog signal ground.  
GND  
6
SI_GND SI Ground. Ground connection for SI comparator resistor devider.  
11  
BDS  
Buck Driver Supply Input. Connect ceramic capacitor between BDS and  
VS to generate clamped gate-source voltage to drive the PMOS power  
stage.  
14  
CS  
Current-Sense Input. Connect current-sense resistor between VS and  
CS. External MOSFET is turned off when the voltage across the resistor  
equals the current-limit trip level.  
12  
10  
GDRV  
RO  
Gate Drive Output for External P-Channel MOSFET. GDRV swings  
between VS and BDS.  
Reset Output. Open drain output from reset comparator with an internal  
pull up resistor.  
8
9
RD  
SO  
Reset Delay. Connect a capacitor to ground for delay time adjustment.  
Sense Output Comparator. Open drain output from SI comparator with  
an internal pull up resistor.  
7
5
SI  
Sense Input Comparator. Input to the Low-Battery Comparator. This  
input is compared to an internal 1.25V reference.  
SYNC  
Input for external synchronization. An external clock signal connected  
to this pin allows for GDRV switching synchronization.  
Target Datasheet Rev. 1.7  
3
2001-09-17  
TLE 6389  
1
Absolute Maximum Ratings  
Item  
Parameter  
Symbol Limit Values Unit Remarks  
min.  
max.  
Supply Input  
Voltage  
1.0.1  
1.0.2  
VS  
IS  
-0.3  
60  
V
Current  
Current Sense Input  
Voltage  
1.0.3  
1.0.4  
VCS  
ICS  
-0.3  
60  
V
Current  
Gate Drive Output  
Voltage  
1.0.5  
1.0.6  
VGDRV  
– 0.3  
6.8  
V
|VS –  
VGDRV|<6.8V  
Current  
IGDRV  
Internally limited  
Buck Drive Supply Input  
Voltage  
1.0.7  
1.0.8  
VBDS  
– 0.3  
55  
V
|VS – VBDS|<6.8V  
Current  
IBDS  
Feedback Input  
Voltage  
1.0.9  
VFB  
– 0.3  
6.8  
V
1.0.10 Current  
SI_Enable Input  
IFB  
(TLE6389G50-1,  
TLE6389G33-1  
only)  
1.0.11 Voltage  
VSI_ENAB – 0.3  
6.8  
V
LE  
1.0.12 Current  
ISI_ENABL  
E
SI_GND Input  
(TLE6389G50-1,  
TLE6389G33-1  
only)  
1.0.13 Voltage  
VSI_GND – 0.3  
60  
V
1.0.14 Current  
ISI_GND  
Enable Input  
Target Datasheet Rev. 1.7  
4
2001-09-17  
TLE 6389  
1
Absolute Maximum Ratings (cont’d)  
Parameter Symbol Limit Values Unit Remarks  
Item  
min.  
max.  
1.0.15 Voltage  
VENABLE – 0.3  
60  
V
(TLE6389G50,  
TLE6389G33,  
TLE6389GV only)  
1.0.16 Current  
IENABLE  
Sense Input  
1.0.17 Voltage  
1.0.18 Current  
VSI  
– 0.3  
60  
V
ISI  
Sense Output  
1.0.19 Voltage  
1.0.20 Current  
VSO  
– 0.3  
6.8  
V
ISO  
VOUT Input  
1.0.21 Voltage  
1.0.22 Current  
VOUT  
– 0.3  
15  
V
IOUT  
Reset Delay Adjust Input  
1.0.23 Voltage  
1.0.24 Current  
VRD  
– 0.3  
6.8  
V
IRD  
TBD  
TBD  
mA  
Reset Output  
1.0.25 Voltage  
1.0.26 Current  
VRO  
– 0.3  
6.8  
V
IRO  
-2  
2
mA  
Synchronization Input  
1.0.27 Voltage  
1.0.28 Current  
VSYNC  
– 0.3  
6.8  
V
ISYNC  
TBD  
TBD  
mA  
ESD-Protection (Human Body Model; R=1,5k; C=100pF)  
1.0.29 all pins to GND –2 kV  
VHBM  
2
Target Datasheet Rev. 1.7  
5
2001-09-17  
TLE 6389  
1
Absolute Maximum Ratings (cont’d)  
Item  
Parameter  
Symbol Limit Values Unit Remarks  
min.  
max.  
Temperatures  
1.0.30 Junction temperature  
1.0.31 Storage temperature  
Tj  
– 40  
– 50  
150  
150  
°C  
°C  
Tstg  
Note: Maximum ratings are absolute ratings; exceeding any one of these values may  
cause irreversible damage to the integrated circuit.  
Target Datasheet Rev. 1.7  
6
2001-09-17  
TLE 6389  
2
Operating Range  
Parameter  
Item  
Symbol Limit Values Unit Remarks  
min.  
5
max.  
48  
2.0.1  
2.0.2  
Supply voltage range  
Junction temperature  
VS  
V
Tj  
– 40  
150  
°C  
Thermal Resistance  
2.0.3  
2.0.4  
Junction ambient  
Junction pin  
Rthj-a  
Rthj-p  
180  
K/W –  
K/W –  
TBD  
3
Electrical Characteristics  
5V< VS <48V; - 40°C< Tj <150°C;  
all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Current Consumption1) TLE6389 (variable)  
3.0.1 Supply current into IS  
VS  
80  
µA  
VS = 13.5 V;  
ENABLE = 5 V;  
V
IOUT = 0 mA;  
TJ = 25 °C;  
3.0.2  
110 µA  
VS = 42 V;  
V
ENABLE = 5 V;  
IOUT = 0 mA;  
TJ = 25 °C;  
3.0.3  
2
4
µA  
µA  
VENABLE=0V  
3.0.4 FB current  
IFB  
V
ENABLE = 5 V;  
TJ = 25 °C;  
Target Datasheet Rev. 1.7  
7
2001-09-17  
TLE 6389  
3
Electrical Characteristics (cont’d)  
5V< VS <48V; - 40°C< Tj <150°C;  
all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Current Consumption TLE6389-50  
3.0.5 Supply current into IS  
VS  
50  
80  
µA  
µA  
VS = 13.5 V;  
ENABLE = 5 V;  
IOUT = 0 mA;  
TJ = 25 °C;  
V
3.0.6  
VS = 42 V;  
V
ENABLE = 5 V;  
IOUT = 0 mA;  
TJ = 25 °C;  
3.0.7  
2
µA  
µA  
V
ENABLE=0V  
3.0.8 FB current  
IFB  
50  
V
V
ENABLE = 5 V;  
OUT = 5 V;  
TJ = 25 °C;  
Current Consumption TLE6389-33  
3.0.9 Supply current into IS  
VS  
80  
µA  
VS = 13.5 V;  
V
ENABLE = 5 V;  
IOUT = 0 mA;  
TJ = 25 °C;  
3.0.10  
3.0.11  
110 µA  
VS = 42 V;  
V
ENABLE = 5 V;  
IOUT = 0 mA;  
TJ = 25 °C;  
2
µA  
VENABLE=0V  
Current Consumption TLE6389-50-1  
Target Datasheet Rev. 1.7  
8
2001-09-17  
TLE 6389  
3
Electrical Characteristics (cont’d)  
5V< VS <48V; - 40°C< Tj <150°C;  
all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
min. typ. max.  
50  
Unit Test Condition  
3.0.12 Supply current into IS  
VS  
µA  
µA  
µA  
VS = 13.5 V;  
IOUT = 0 mA;  
TJ = 25 °C;  
3.0.13  
80  
50  
VS = 42 V;  
IOUT = 0 mA;  
TJ = 25 °C;  
3.0.14 FB current  
IFB  
VOUT = 5 V;  
TJ = 25 °C;  
Current Consumption TLE6389-33-1  
3.0.15 Supply current into IS  
VS  
80  
µA  
VS = 13.5 V;  
IOUT = 0 mA;  
TJ = 25 °C;  
3.0.16  
110 µA  
VS = 42 V;  
IOUT = 0 mA;  
TJ = 25 °C;  
3.0.17 FB current  
IFB  
15  
µA  
VOUT = 3.3 V;  
TJ = 25 °C;  
Buck-Controller  
3.0.18 Output voltage  
VOUT  
4.85 5  
5.15 V  
5V Versions;  
VS = 5.8 V to  
48V; IOUT  
=
TBDmA to 2A  
(PWM Mode);  
RSENSE = 0.05;  
RM1 = 0.25;RL1  
= 0.1;  
Target Datasheet Rev. 1.7  
9
2001-09-17  
TLE 6389  
3
Electrical Characteristics (cont’d)  
5V< VS <48V; - 40°C< Tj <150°C;  
all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
3.0.19 Output voltage  
VOUT  
4.75 5  
5.25 V  
5V Versions;  
VS = 5.8 V to  
48V; IOUT = 0mA  
to TBDA (PFM  
Mode);RSENSE  
0.05; RM1  
=
=
0.25;RL1 =  
0.1;  
3.0.20  
3.8  
V
5V Versions;  
VS = 4.2 V to  
5.8V; IOUT  
=
0mA to 500mA;  
RSENSE = 0.1;  
RM1 = 0.4;RL1  
= 0.1;  
3.0.21 Output voltage  
3.0.22  
VOUT  
-3% 3.3 +3% V  
-5% 3.3 +5% V  
3.3V Versions;  
VS = 5 V to 48V;  
IOUT = TBDto 2A  
(PWM Mode);  
3.3V Versions;  
VS = 5 V to 48V;  
IOUT = 0mA to  
TBD (PFM  
Mode);  
3.0.23 FB threshold  
voltage  
VFB,th  
1.22 1.25 1.27 V  
TLE6389GV  
5
5
3.0.24 Output adjust range  
3.0.25 Line regulation  
5
15  
1
V
TLE6389GV  
0.7  
20  
mV/ TBD  
V
3.0.26 Load regulation  
30  
mV/ IOUT = 5mA to  
A
2A;  
3.0.27 Gate driver,  
P-gate to source  
voltage (off)  
V
VS  
GDRV 0  
0.2  
V
V
C
C
ENABLE = 5 V  
BDS = 220 nF  
GDRV = 5nF  
Target Datasheet Rev. 1.7  
10  
2001-09-17  
TLE 6389  
3
Electrical Characteristics (cont’d)  
5V< VS <48V; - 40°C< Tj <150°C;  
all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
3.0.28 Gate driver,  
P-gate to source  
V
VS  
GDRV TBD  
6.5  
V
VENABLE = 5 V  
C
C
BDS = 220 nF  
GDRV = 5nF  
voltage (on)  
3.0.29 Gate driver,  
peak charging  
current  
IGDRV  
IGDRV  
tr  
TBD  
TBD  
70  
A
3.0.30 Gate driver,  
peak discharging  
current  
A
3.0.31 Gate driver,  
ns  
ns  
nC  
VENABLE = 5 V  
rise time  
C
C
BDS = 220 nF  
GDRV = 5nF  
3.0.32 Gate driver,  
tf  
100  
VENABLE = 5 V  
fall time  
C
C
BDS = 220 nF  
GDRV = 5nF  
3.0.33 Gate driver,  
QGDRV  
50  
70  
gate charge  
3.0.34 Current Limit  
VLIM  
=
100 130 mV  
Threshold Voltage  
VVS –  
VCS  
3.0.35 PWM to PFM  
0.1*  
ILIM  
mA ILIM = VLIM  
RSENSE  
/
Threshold Current  
3.0.36 PFM to PWM  
toff_PFM  
TBD  
µs  
Threshold Timing  
3.0.37 Oscillator frequency fOSC  
3.0.38 Maximum duty cycle dMAX  
3.0.39 Minimum duty cycle dMIN  
270 360 450 kHz PWM mode only  
100  
%
PWM mode only  
PWM mode only  
TBD %  
3.0.40 SYNC capture  
range  
270 360 450 kHz PWM mode only  
Target Datasheet Rev. 1.7  
11  
2001-09-17  
TLE 6389  
3
Electrical Characteristics (cont’d)  
5V< VS <48V; - 40°C< Tj <150°C;  
all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Reset Generator  
3.0.41 Reset threshold  
VRT  
0.9*  
1.25  
V
TLE6389GV  
only; VOUT  
decreasing  
3.0.42 Reset threshold  
hysteresis  
VRT,hys  
VRT  
100  
mV TLE6389GV  
only  
3.0.43 Reset threshold  
3.5  
4.5  
2.8  
2.9  
10  
3.65 3.8  
4.65 4.8  
2.95 3.1  
3.05 3.2  
V
5V Versions;  
VOUT decreasing  
3.0.44  
V
5V Versions;  
VOUT increasing  
3.0.45 Reset threshold  
3.0.46  
VRT  
V
3.3V Versions;  
VOUT decreasing  
V
3.3V Versions;  
VOUT increasing  
3.0.47 Reset pull up  
RRO  
20  
40  
kΩ  
3.3V and 5V  
Versions;  
Internally  
connected to  
VOUT  
3.0.48 Reset output High  
VROH  
0.8*  
VOUT  
V
3.3V and 5V  
Versions;IROH=0  
mA  
voltage  
3.0.49 Reset output Low  
VROL  
0.2 0.4  
0.2 0.4  
4
V
IROL=1mA;  
2.5V < VOUT  
VRT  
voltage  
<
3.0.50  
V
IROL=0.2mA;  
1V < VOUT  
2.5V  
<
3.0.51 Reset delay  
Id  
µA  
VD = 1V  
charging current  
Target Datasheet Rev. 1.7  
12  
2001-09-17  
TLE 6389  
3
Electrical Characteristics (cont’d)  
5V< VS <48V; - 40°C< Tj <150°C;  
all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
min. typ. max.  
tbd  
Unit Test Condition  
3.0.52 Upper reset timing  
VRDO  
VRDL  
td  
V
V
--  
--  
threshold  
3.0.53 Lower timing  
tbd  
threshold  
3.0.54 Reset delay time  
35  
50  
70  
10  
1
ms  
µs  
µs  
CRD = 100nF  
CRD = 100nF  
CRD = 100nF  
3.0.55 Reset reaction time trr  
3.0.56 Reset Output delay tROd  
ENABLE Input  
3.0.57 Enable ON-  
threshold  
VENABLE,  
2
V
ON  
3.0.58 Enable OFF-  
threshold  
VENABLE,  
OFF  
0.8  
5
V
3.0.59 H-level input current IENABLE,O  
µA  
µA  
N
3.0.60 L-level input current IENABLE,O  
2
FF  
SI_ENABLE Input  
3.0.61 Enable ON-  
threshold  
VENABLE,  
2
V
ON  
3.0.62 Enable OFF-  
threshold  
VENABLE,  
0.8  
5
V
OFF  
3.0.63 H-level input current IENABLE,O  
µA  
N
Target Datasheet Rev. 1.7  
13  
2001-09-17  
TLE 6389  
3
Electrical Characteristics (cont’d)  
5V< VS <48V; - 40°C< Tj <150°C;  
all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
min. typ. max.  
2
Unit Test Condition  
3.0.64 L-level input current IENABLE,O  
µA  
FF  
SI_GND Input  
3.0.65 Switch ON  
resistance  
RSW  
100  
Tj=25°C;  
ISI_GND = TBDuA  
Battery Voltage Sense  
3.0.66 Sense threshold  
Vsi, high  
Vsi, hys  
RSO  
1.13 1.25 1.37 V  
high to low  
3.0.67 Sense threshold  
100 –  
mV  
hysteresis  
3.0.68 S ense out pull up  
10  
20  
40  
kΩ  
3.3V and 5V  
Versions;  
Internally  
connected to  
VOUT  
3.0.69 Sense out output  
VSOH  
VSOL  
0.8*  
VOUT  
V
V
ISOH=0mA  
High voltage  
3.0.70 Sense out output  
0.2 0.4  
ISOL=1mA;  
Low voltage  
2.5V < VOUT;  
VSI < 1.13 V  
3.0.71  
0.2 0.4  
V
ISOL=0.2mA;  
1V<VOUT<2.5V;  
VSI < 1.13 V  
3.0.72 Sense input current ISI  
1  
0.1  
1
µA  
Thermal Shutdown  
Target Datasheet Rev. 1.7  
14  
2001-09-17  
TLE 6389  
3
Electrical Characteristics (cont’d)  
5V< VS <48V; - 40°C< Tj <150°C;  
all voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
3.0.73 Thermal shutdown TjSD  
junction  
150 175 200 °C  
temperature  
3.0.74 Temperature  
hysteresis  
DT  
30  
K
1)  
The device IS and IFB current measurements exclude MOSFET driver currents. Contribution of MOSFET  
driver currents are discussed in application section.  
Target Datasheet Rev. 1.7  
15  
2001-09-17  
TLE 6389  
4
Detailed Description  
The TLE6389 family is a family of step-down DC-DC controllers designed primarily for  
use in high voltage applications such as automotive. Using an external MOSFET and  
current-sense resistor allows design flexibility and the improved efficiencies associated  
with high-performance P-channel MOSFETs. A unique, current-limited, pulse-width  
(PWM)/pulse-frequency-modulated (PFM) control scheme gives these devices excellent  
efficiency over load ranges up to three decades, while drawing less than 100µA under  
no load. This wide dynamic range optimizes the TLE6389 for automotive applications,  
where load currents can vary considerably as individual circuit blocks are turned on and  
off to conserve energy. Operation to a 100% duty cycle allows the lowest possible  
dropout voltage, allowing operation during cold cranking. High switching frequencies and  
a simple circuit topology minimize PC board area and component costs.  
The output voltage is sensed either by an internal voltage divider connected to the FB  
pin (TLE6389-50 and TLE6389-33) or an external divider returned to the FB pin  
(TLE6389).  
RSENSE  
=
M1  
L1 = 47 µH  
VIN  
VOUT  
IOUT  
0.05  
CIN1  
100  
=
COUT  
100  
=
F
CBDS  
=
µF  
D1  
µ
220 nF  
M1: Infineon SPD09P06PL  
D1: Motorola MBRD360  
L1: Coilcraft DO3340P-473  
Cin1: TBD  
11  
BDS  
14  
12  
GDRV  
2
CS  
3
FB  
13  
7
VOUT  
VS  
RSI1  
=
CIN2  
=
9
SO  
Cout: Low ESR Tantalum  
TLE6389G50  
400k  
220nF  
10  
SI  
RO  
RD  
RSI2=  
SI_GND ENABLE  
SYNC GND  
100k  
6
1
5
4
8
CRD =100nF  
ON OFF  
TLE6389G50 Application Circuit  
Target Datasheet Rev. 1.7  
16  
2001-09-17  
TLE 6389  
RSENSE  
=
M1  
L1 = 47 µH  
VIN  
VOUT  
0.05  
CIN1  
100  
=
COUT  
=
F
RSO  
=
RRO  
=
CBDS  
=
µF  
D1  
100  
µ
20k  
20k  
220 nF  
11  
BDS  
VS  
14  
12  
GDRV  
3
CS  
VOUT  
SO  
13  
7
9
10  
2
RFB1  
=
RSI1  
=
CIN2  
=
RO  
FB  
TBDk  
TLE6389GV  
400k  
220nF  
SI  
RSI2=  
SI_GND ENABLE  
SYNC GND  
RD  
RFB2=  
100k  
5
4
6
1
8
47k  
ON OFF  
CRD =100nF  
M1: Infineon SPD09P06PL  
D1: Motorola MBRD340  
L1: Coilcraft DO3340P-473  
Cin1: TBD  
Cout: Low ESR Tantalum  
TLE6389GV Application Circuit  
RSENSE  
=
M1  
L1 = 47 µH  
VIN  
VOUT  
IOUT  
0.05  
CIN1  
100  
=
COUT  
100  
=
F
CBDS  
=
µF  
D1  
µ
220 nF  
M1: Infineon SPD09P06PL  
D1: Motorola MBRD360  
L1: Coilcraft DO3340P-473  
Cin1: TBD  
11  
BDS  
14  
12  
GDRV  
2
CS  
3
FB  
13  
7
VOUT  
VS  
RSI1  
=
CIN2  
=
9
SO  
Cout: Low ESR Tantalum  
400k  
220nF  
TLE6389G50-1  
10  
SI  
RO  
RD  
RSI2=  
SI_GND SI_ENABLE SYNC GND  
100k  
6
1
5
4
8
CRD =100nF  
ON OFF  
TLE6389G50-1 Application Circuit  
Target Datasheet Rev. 1.7  
17  
2001-09-17  
TLE 6389  
4.1  
Operating Modes  
4.1.1  
PWM Control Scheme  
The TLE6389 uses a slope-compensated, current-mode PWM controller capable of  
achieving 100% duty cycle. The device uses an oscillator-triggered, minimum on-time,  
current-mode control scheme. The minimum on-time is approximately 200ns unless in  
dropout. The maximum on-time is greater than 1/fOSC, allowing operation to 100% duty  
cycle. Current-mode feedback provides cycle-by-cycle current limiting for superior load-  
and line-response and protection of the external MOSFET and rectifier diode. At each  
falling edge of the internal oscillator, the oscillator cell sends a PWM ON signal to the  
control and drive logic, turning on the external P-channel MOSFET. This allows current  
to ramp up through the inductor to the load, and stores energy in a magnetic field. The  
switch remains on until either the current-limit comparator is tripped or the PWM  
comparator signals that the output is in regulation. When the switch turns off during the  
second half of each cycle, the inductor’s magnetic field collapses, releasing the stored  
energy and forcing current through the rectifier diode to the output-filter capacitor and  
load. The output-filter capacitor stores charge when the inductor current is high and  
releases it when the inductor current is low, thus smoothing the voltage across the load.  
During normal operation, the TLE6389 regulates output voltage by switching at a  
constant frequency and then modulating the power transferred to the load each cycle  
using the PWM comparator. A multi-input comparator sums three weighted differential  
signals: the output voltage with respect to the reference, the main switch current sense,  
and the slope-compensation ramp. It modulates output power by adjusting the inductor-  
peak current during the first half of each cycle, based on the output-error voltage.  
4.1.2  
100% Duty-Cycle Operation and Dropout  
The TLE6389 operates with a duty cycle up to 100%. This feature extends allows to  
operate with the lowest possible drop at low battery voltage as it occurs at cold ambient  
temperatures. The MOSFET is turned on continuously when the supply voltage  
approaches the output voltage. This services the load when conventional switching  
regulators with less than 100% duty cycle would fail. Dropout voltage is defined as the  
difference between the input and output voltages when the input is low enough for the  
output to drop out of regulation. Dropout depends on the MOSFET drain-to-source on-  
resistance, current-sense resistor, and inductor series resistance, and is proportional to  
the load current:  
Dropout Voltage = IOUT x (RDS(ON) + RSENSE + RINDUCTOR  
)
Target Datasheet Rev. 1.7  
18  
2001-09-17  
TLE 6389  
4.1.3  
PWM/PFM Operation  
This control scheme overrides PWM mode and places the TLE6389 in PFM mode at  
light loads to improve efficiency and reduce quiescent current to less than 100µA. The  
pulse-skipping PFM operation is initiated when the peak inductor current drops below 0.1  
x Ilimit. During PFM operation, the TLE6389 switches only as needed to service the load,  
reducing the switching frequency and associated losses in the external switch, the  
rectifier diode, and the external inductor. During PFM mode, a switching cycle initiates  
when the PFM comparator senses that the output voltage has dropped too low. The P-  
channel MOSFET switch turns on and conducts current to the output-filter capacitor and  
load until the inductor current reaches the PFM peak voltage limit. Then the switch turns  
off and the magnetic field in the inductor collapses, forcing current through the  
synchronous rectifier to the output filter capacitor and load. Then the TLE6389 waits until  
the PFM comparator senses a low output voltage again.  
Output ripple is higher during PFM operation. A larger output-filter capacitor can be used  
to minimize ripple.  
4.2  
SYNC Input and Frequency Control  
The TLE6389’s internal oscillator is set for a fixed-switching frequency of 360kHz or can  
be synchronized to an external clock. Do not leave SYNC unconnected. Connecting  
SYNC to GND enables PWM/PFM operation to reduce supply current at light loads.  
SYNC is a negative-edge triggered input that allows synchronization to an external  
frequency ranging between 270kHz and 450kHz. When SYNC is clocked by an external  
signal, the converter operates in PWM mode until the load current drops below the PWM  
to PFM threshold. Thereafter the converter continues operation in PFM mode.  
4.3  
Shutdown Mode  
Connecting ENABLE to GND places the TLE6389GV, TLE6389G33 and TLE6389G50  
in shutdown mode. In shutdown, the reference, control circuitry, external switching  
MOSFET, and the oscillator are turn off and the output falls to 0V. Connect ENABLE to  
IN for normal operation.  
4.4  
SI_Enable  
Connecting SI_ENABLE to 5V causes SI_GND to have low impedance. Thus the SI  
comparator is operational and ca be used to monitor the battery voltage. SO output  
signal is valid. Connecting SI_ENABLE to GND causes SI_GND to have high  
impedance. Thus the SI comparator is not able to monitor the battery voltage. SO output  
signal is invalid.  
Target Datasheet Rev. 1.7  
19  
2001-09-17  
TLE 6389  
4.5  
Quiescent Current  
The device’s typical quiescent current is 50µA. However, actual applications draw  
additional current to supply MOSFET switching currents, FB pin current, or external  
feedback resistors (if used), and both the diode and capacitor leakage currents. For  
example, with VS at 13.5V and VOUT at 5V, typical no-load supply current for the entire  
circuit is TBDµA. When designing a circuit for high-temperature operation, select a  
Schottky diode with low reverse leakage.  
5
Application Information  
5.1  
Output Voltage Selection (TLE6389GV only)  
Select an output voltage between 5V and 15V by connecting FB to a resistor-divider  
between the output and GND. Select feedback resistor R2 in the 5kto 500krange.  
R1 is then given by:  
R1 = R2 [(VOUT / VFB) - 1]  
where VFB = 1.25V. Add a small ceramic capacitor around 47pF to 100pF in parallel  
with R1 to compensate for stray capacitance at the FB pin and output capacitor  
equivalent series resistance (ESR).  
5.2  
Output Capacitor Selection  
Choose input- and output-filter capacitors to service inductor currents with acceptable  
voltage ripple. The input-filter capacitor also reduces peak currents and noise at the  
voltage source. In addition, connect a low-ESR bulk capacitor (>10µF suggested) to the  
input. Select this bulk capacitor to meet the input ripple requirements and voltage rating,  
rather than capacitor size. Use the following equation to calculate the maximum RMS  
input current:  
IRMS = IOUT[VOUT (VIN - VOUT)]1/2 · VIN  
When selecting an output capacitor, consider the output- ripple voltage and approximate  
it as the product of the ripple current and the ESR of the output capacitor.  
VRIPPLE = [VOUT (VIN - VOUT)] / [2 · fOSC(L) (VIN)] · ESRCOUT  
where ESRCOUT is the equivalent-series resistance of the output capacitor. Higher  
values of COUT provide improved output ripple and transient response. Lower oscillator  
frequencies require a larger-value output capacitor. Verify capacitor selection with light  
loads during PFM operation, since output ripple is higher under these conditions. Low-  
ESR capacitors are recommended. Capacitor ESR is a major contributor to output ripple  
(usually more than 60%). Ordinary aluminum-electrolytic capacitors have high ESR and  
should be avoided. Low-ESR aluminum-electrolytic capacitors are acceptable and  
relatively inexpensive. Low-ESR tantalum capacitors are better and provide a compact  
Target Datasheet Rev. 1.7  
20  
2001-09-17  
TLE 6389  
solution for space-constrained surface-mount designs. Do not exceed the ripple-current  
ratings of tantalum capacitors. Ceramic capacitors have the lowest ESR overall.  
Target Datasheet Rev. 1.7  
21  
2001-09-17  
TLE 6389  
6
Package Outlines  
Dimensions in mm  
Target Datasheet Rev. 1.7  
22  
2001-09-17  
TLE 6389  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53  
D-81541 München  
© Infineon Technologies AG2000  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted charac-  
teristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologiesis an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Infi-  
neon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Target Datasheet Rev. 1.7  
23  
2001-09-17  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

TLE6389G50-1

Step - Down DC/DC Controller
INFINEON

TLE6389G50NTMA1

Switching Controller, Current-mode, 420kHz Switching Freq-Max, PDSO14, PLASTIC, DSO-14
INFINEON

TLE6389GV

Step - Down DC/DC Controller
INFINEON

TLE6389GVT

Switching Controller, Current-mode, 420kHz Switching Freq-Max, PDSO14, PLASTIC, DSO-14
INFINEON

TLE6389_07

Step-Down DC/DC Controller
INFINEON

TLE6710Q

Power Management Circuit,
INFINEON

TLE6711

Multifunctional Voltage Regulator and Watchdog
INFINEON

TLE6711G

Multifunctional Voltage Regulator and Watchdog
INFINEON

TLE6711GL

Multifunctional Voltage Regulator and Watchdog
INFINEON

TLE6711GLXUMA2

Power Supply Management Circuit,
INFINEON

TLE6711_07

Multifunctional Voltage Regulator and Watchdog
INFINEON

TLE6712

Analog Circuit, 1 Func, PDSO24, PLASTIC, DSO-24
INFINEON