TLE7186FXUMA1 [INFINEON]

Brushless DC Motor Controller, PQCC48, VQFN-48;
TLE7186FXUMA1
型号: TLE7186FXUMA1
厂家: Infineon    Infineon
描述:

Brushless DC Motor Controller, PQCC48, VQFN-48

文件: 总39页 (文件大小:1382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE7186F  
System IC for B6 motor drives  
Data Sheet  
Rev. 1.1, 2011-04-08  
Automotive Power  
TLE7186F  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1
2
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment TLE7186F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Default State of Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
4.3  
4.4  
5
MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Inputs and Dead Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bootstrap Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Currents at SH pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1  
5.2  
5.3  
5.4  
5.5  
6
Shunt Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7
5 V Low Drop Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8
Interface, VDH Switch and INH Digital Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PWM Interface (IFMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
VDHS Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Digital Output INHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8.1  
8.2  
8.3  
8.4  
9
9.1  
9.2  
Description of Modes, Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Description of modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Protection and Diagnosis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Over Temperature Shut Down (OTSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Over Temperature Prewarning (OTPW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Analog Temperature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
VS Under Voltage Lockout (VS_UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
VDD Under Voltage Diagnosis (VDD_UVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
VDD Under Voltage Shut Down (VDD_UVSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
VREG Under Voltage Diagnosis (VREG_UVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
VREG Under Voltage Shut Down (VREG_UVSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
IOV and VDH Over Voltage Shut Down (IOV_OVSD, VDH_OVSD) . . . . . . . . . . . . . . . . . . . . . . . . 29  
Dead Time and Shoot Through Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Short Circuit Protection (SCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SCDL Pin Open Detection (SCDL_open) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Over Current Shut Down (OCSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
VDD Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Passive Gxx Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
ERR Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.9  
9.2.10  
9.2.11  
9.2.12  
9.2.13  
9.2.14  
9.2.15  
9.3  
Data Sheet  
2
Rev. 1.1, 2011-04-08  
TLE7186F  
Table of Contents  
9.4  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
10  
Phase voltage feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
10.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
11  
12  
13  
Application Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Data Sheet  
3
Rev. 1.1, 2011-04-08  
System IC for B6 motor drives  
TLE7186F  
1
Overview  
Features  
Drives 6 N-Channel Power MOSFETs  
Integrated 5V Vreg-Controller to power µC  
Integrated switch for VDH voltage  
Separate control input for each MOSFET  
Adjustable dead time  
Shoot through protection  
Analog adjustable Short Circuit Protection levels  
Low quiescent current mode  
1 bit diagnosis ERR  
Over Temperature shut down and analog temperature output  
Over Temperature pre-warning  
Under Voltage shut down  
Adjustable Over Voltage shut down  
Current sense OpAmp  
PG-VQFN-48  
Over current shut down based on Current sense OpAmp, fixed shut down level  
0 …94% duty cycle at 25 kHz PWM frequency  
Digital phase voltage feedback  
Green Product (RoHS compliant)  
AEC Qualified  
Description  
The TLE7186F is a system IC for Brushless Motor Control. It incorporates a voltage supply for a µC, a bridge driver  
for a B6 configuration, an application typical PWM interface and some other smaller features. Target is to reduce  
the number of discrete components in typical BLDC automotive applications and give enough flexibility for custom  
specific adaptations.  
It works with 3-phase motors and brush DC motors. Its exposed pad package allows the usage even at high  
ambient temperatures.  
Type  
Package  
Marking  
TLE7186F  
PG-VQFN-48  
TLE7186F  
Data Sheet  
4
Rev. 1.1, 2011-04-08  
TLE7186F  
Block Diagram  
2
Block Diagram  
___ ____  
VS  
VDD  
GND INH INHD VREG  
VDHS  
VDH  
switch  
5V voltage  
regulator  
VREG  
U_fb  
V_fb  
W_fb  
BH1  
GH1  
SH1  
SH1  
Digital phase  
voltage feedback  
Floating HS driver  
Short circuit detection  
SH2  
SH3  
IOV  
Diagnostic logic  
____  
Under voltage  
Over voltage  
Overtemperature  
Short circuit  
Reset  
ERR  
____  
RGS  
Floating LS driver  
Short circuit detection  
GL1  
SCDL  
TEMP  
Over current  
L
E
V
E
L
BH2  
GH2  
SH2  
Floating HS driver  
Short circuit detection  
IFuC  
Interface  
IFMA  
S
H
I
Floating LS driver  
Short circuit detection  
DT  
F
T
E
R
GL2  
IL1  
___  
IH1  
Input control  
Shoot through  
protection  
BH3  
GH3  
SH3  
IL2  
Floating HS driver  
Short circuit detection  
___  
dead time  
IH2  
IL3  
___  
IH3  
Floating LS driver  
Short circuit detection  
GL3  
SL  
AGND  
ISP  
ISN  
OCTH  
GND  
ISO  
Figure 1  
Block Diagram  
Data Sheet  
5
Rev. 1.1, 2011-04-08  
TLE7186F  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment TLE7186F  
____  
RGS  
____  
ERR  
GND  
32  
N.C  
30  
GND  
26  
IOV  
28  
GND  
35  
TEMP  
33  
VDD  
31  
V_fb  
29  
W_fb  
27  
VDH  
25  
36  
34  
___  
IH1  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
BH1  
IL1  
GH1  
SH1  
___  
IH2  
IL2  
GL1  
BH2  
GH2  
SH2  
GL2  
BH3  
GH3  
___  
IH3  
TLE 7186 F  
Topview  
IL3  
AGND  
ISN  
ISP  
ISO  
____  
INHD  
SH3  
GL3  
IFuC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
GND  
IFMA  
VS  
VREG  
SCDL  
DT  
___  
INH  
NC  
VDHS  
U_fb  
SL  
GND  
Figure 2  
Pin Configuration  
Data Sheet  
6
Rev. 1.1, 2011-04-08  
TLE7186F  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
5
Symbol  
Function  
VS  
Supply Pin  
7
VREG  
VDD  
INH  
Output of supply for driver output stages - connect to capacitor  
Output of 5V supply for µC - connect to capacitor  
Input pin wake up the complete system IC  
Digital output 5V for INH state (high when INH is high)  
Switched output of VDH voltage; switch open in sleep mode  
Output pin for analog temperature signal  
31  
2
47  
4
INHD  
VDHS  
TEMP  
RGS  
33  
36  
Reset and Go-to-Sleep input pin for reset of error registers, set HIGH to avoid to go-  
to-sleep  
38  
37  
40  
39  
42  
41  
11  
9
IL1  
Input for low side switch 1 (active high)  
IH1  
IL2  
Input for high side switch 1 (active low)  
Input for low side switch 2 (active high)  
IH2  
IL3  
Input for high side switch 2 (active low)  
Input for low side switch 3(active high)  
IH3  
DT  
Input for high side switch 3(active low)  
Input pin for adjustable dead time function, connect to GND via resistor  
SCDL  
Analog input pin for adjustable Short Circuit Detection function, connect to voltage  
divider  
28  
34  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
10  
44  
45  
46  
43  
3
IOV  
Input pin for Over Voltage detection.  
ERR  
VDH  
BH1  
GH1  
SH1  
GL1  
BH2  
GH2  
SH2  
GL2  
BH3  
GH3  
SH3  
GL3  
SL  
Open drain error output  
Voltage input common drain high side for short circuit detection  
Pin for + terminal of the bootstrap capacitor of phase 1  
Output pin for gate of high side MOSFET 1  
Pin for source connection of high side MOSFET 1  
Output pin for gate of low side MOSFET 1  
Pin for + terminal of the bootstrap capacitor of phase 2  
Output pin for gate of high side MOSFET 2  
Pin for source connection of high side MOSFET 2  
Output pin for gate of low side MOSFET 2  
Pin for + terminal of the bootstrap capacitor of phase 3  
Output pin for gate of high side MOSFET 3  
Pin for source connection of high side MOSFET 3  
Output pin for gate of low side MOSFET 3  
Pin for common source connection of low side MOSFETs  
Input for OpAmp - terminal  
ISN  
ISP  
Input for OpAmp + terminal  
ISO  
Output of OpAmp  
AGND  
IFMA  
IFuC  
Analog GND for Opamp and analog temperature output  
Interface to master ECU (used for wake up)  
Interface to µC  
48  
Data Sheet  
7
Rev. 1.1, 2011-04-08  
TLE7186F  
Pin Configuration  
Pin  
6
Symbol  
U_fb  
V_fb  
W_fb  
GND  
GND  
GND  
GND  
GND  
NC  
Function  
Digital phase voltage feedback output of SH1  
29  
27  
1
Digital phase voltage feedback output of SH2  
Digital phase voltage feedback output of SH3  
Ground pin  
12  
26  
32  
35  
8
Ground pin  
Ground pin  
Ground pin  
Ground pin  
connect to GND  
connect to GND  
30  
NC  
Exposed pad to be connected to GND  
Data Sheet  
8
Rev. 1.1, 2011-04-08  
TLE7186F  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings 1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Conditions  
Min.  
Voltages  
4.1.1  
Voltage range at VS, IFMA, INH, IOV  
Voltage range at IFMA, INH  
Voltage range at VS  
VVS1  
VIFMA  
VVS2  
-0.3  
-6.0  
-3.0  
45  
45  
45  
V
V
V
4.1.2  
R >= 10kΩ  
4.1.3  
R
VS >= 4.7Ω;  
60s, 5x;  
RVS >= 2.0Ω;;  
4.1.4  
Voltage range at VS  
VVS3  
-3.0  
45  
V
200ms, 5x;  
4.1.5  
4.1.6  
4.1.7  
Voltage range at VREG output  
Voltage range at VDH, VDHS  
Voltage range at VDH  
VVREG  
VVDHx  
VVDH1  
-0.3  
-0.3  
-3.0  
15  
55  
55  
V
V
V
With RVDH  
>=10Ω; 60s, 5x;  
Tj<=150°C  
4.1.8  
Voltage range at IHx, ILx, RGS, ERR,  
IFuC, TEMP, DT, VDD, ISO, INHD,  
SCDL, U_fb, V_fb, W_fb  
VDP  
-0.3  
6
V
4.1.9  
Voltage range at ISP, ISN  
VOPI  
-5.0  
-5.0  
-0.3  
-0.3  
-7.0  
-2.0  
-7.0  
-0.3  
-7.0  
5.0  
5.0  
55  
55  
55  
45  
45  
18  
18  
V
V
V
V
V
V
V
V
V
4.1.10  
4.1.11  
4.1.12  
4.1.13  
4.1.14  
4.1.15  
4.1.16  
4.1.17  
Voltage difference between ISP and ISN VOPD  
Voltage range at BHx  
Voltage range at GHx  
Voltage range at GHx  
Voltage range at SHx  
Voltage range at SHx  
Voltage range at GLx  
Voltage range at GLx  
VBH  
VGH  
VGHP  
VSH  
tP < 1µs; f=50kHz  
VSHP  
VGL  
tP < 1µs; f=50kHz  
VGLP  
tP < 0.5µs;  
f=50kHz  
4.1.18  
4.1.19  
Voltage range at SL  
Voltage range at SL  
VSL  
-0.3  
-7.0  
5.0  
5.0  
V
V
VSLP  
tP < 0.5µs;  
f=50kHz  
4.1.20  
4.1.21  
4.1.22  
4.1.23  
4.1.24  
Voltage difference Gxx-Sxx  
VGS  
-0.3  
-0.3  
330  
1
15  
15  
V
Voltage difference BHx-SHx  
Minimum bootstrap capacitor CBS  
Minimum buffer capacitor CVREG  
VBS  
V
CBS  
nF  
µF  
pF  
-10% tolerance  
allowed  
CVREG  
Maximum load capacitance for voltage CX_FB  
25  
feedback output X_FB  
Temperatures  
4.1.25  
Junction temperature  
Tj  
-40  
150  
°C  
Data Sheet  
9
Rev. 1.1, 2011-04-08  
TLE7186F  
General Product Characteristics  
Absolute Maximum Ratings (cont’d)1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Conditions  
Min.  
-55  
4.1.26  
4.1.27  
Storage temperature  
Case temperature2)  
Tstg  
150  
°C  
TCase  
145  
°C  
ESD Susceptibility  
4.1.28  
4.1.29  
ESD Resistivity3)  
VESD  
VCDM  
-2  
+2  
kV  
V
CDM  
500  
1) Not subject to production test, specified by design.  
2) Calculation based on Tjmax, RthJC and the assumption of 1W power dissipation  
3) ESD susceptibility HBM according to EIA/JESD 22-A 114B  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional Range  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Max.  
4.2.1  
4.2.2  
Supply voltage at VS  
Quiescent current  
VVS  
IQ  
6.0  
45  
V
below 7V reduced  
functionality1) 2)  
50  
19  
µA  
VS<16V;  
sleep mode  
VVS=VVDH=VIFMA  
(IVS + IVDH + IIFMA  
)
4.2.3  
Supply current at VS (device  
enabled)  
IVS(0)  
mA  
Vs=8...18V;  
no load3);  
f
PWM=25kHz;  
4.2.4  
4.2.5  
Duty cycle HS  
Duty cycle LS  
DHS  
DLS  
0
0
94  
%
%
f
PWM=25kHz;  
continuous  
operation  
100  
4.2.6  
Junction temperature  
TJ  
-40  
150  
°C  
1) MOS driver output deactivated and ERROR pin set to low if VREG is lower UVVR  
2) MOS driver output stage will operate at Vs=6.7V with 5mA load current at VREG  
3) no load at VDD, ERR, ISO, IFµC, VDHS, GXX, TEMP, DT  
The limitations in the PWM frequency are given by thermal constraints and limitations in the duty cycle (charging  
time of bootstrap capacitor).  
All maximum ratings have to be considered  
All basic functions will work between TJ=150°C and Over Temperature shut down. In this temperature range, the  
parameters might leave the specified range.  
Data Sheet  
10  
Rev. 1.1, 2011-04-08  
TLE7186F  
General Product Characteristics  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
4.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
4.3.1  
4.3.2  
Junction to Case1)  
Junction to Ambient1)  
RthJC  
RthJA  
5
K/W  
K/W  
2)  
29  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
4.4  
Default State of Inputs  
Table 1  
Default State of Inputs  
Characteristic  
State  
Low  
Remark  
Default state of ILx (if ILx left open -pull down)  
Default state of IHx (if IHx left open - pull up)  
Default state of RGS (if RGS left open - pull down)  
Low side MOSFETs off  
High side MOSFETs off  
High  
Low  
Error signal is reset and  
the TLE7186F goes to  
sleep  
Default state of INH (if INH left open - pull down)  
Default state of SCDL (if SCDL left open - pull up)  
Low  
no wake up by INH  
High  
Error signal is set; all  
MOSFETs switched off  
Default state of IFMA (if IFMA left open - pull up)1)  
Default state of IOV (if IOV left open - pull down)  
High  
Low  
no wake up by IFMA  
no Over Voltage detection  
by IOV  
Default state of DT (if DT left open)  
1) external capacitance < 25pF  
max. dead time  
max. dead time  
Data Sheet  
11  
Rev. 1.1, 2011-04-08  
TLE7186F  
MOSFET Driver  
5
MOSFET Driver  
5.1  
Inputs and Dead Time  
There are 6 independent control inputs to control the 6 MOSFETs individually. However, the control inputs for the  
High Side MOSFETs IHx are inverted. Hence, the control inputs for High Side IHx and Low Side MOSFETs ILx of  
the same half bridge can be tight together to control one half bridge by one control signal. To avoid shoot through  
currents within the half bridges, a dead time is provided by the TLE7186F.  
For more details about the dead time please see Chapter 9.2.10  
5.2  
Output Stages  
The 3 low side and 3 high side powerful push-pull output stages of the TLE7186F are all floating blocks.  
All 6 output stages have the same output power and thanks to the bootstrap principle used, all MOSFETs can be  
switched up to high frequencies.  
Each output stage has its own short circuit detection block. For more details about short circuit detection see  
Chapter 9.2.11.1)  
___  
INH  
VS  
VREG  
VDH  
Voltage regulator  
BHx  
____  
ERR  
+
-
VREG  
VDH  
GHx  
Error logic  
Reset  
Power On Reset  
VSCP  
____  
RGS  
blanking  
SHx  
Level  
shifter  
SCD  
SCD  
SCD  
Floating HS driver 3x  
VREG  
lock/  
unlock  
Short Circuit  
Detection Level  
___  
IH1  
short circuit filter  
IL1  
+
-
___  
GLx  
SL  
Input Logic  
ON/OFF  
ON/OFF  
IH2  
Shoot Through  
Protection  
IL2  
___  
IH3  
VSCP  
Level  
shifter  
Dead Time  
IL3  
Floating LS driver 3x  
DT  
GND  
SCDL  
Figure 3  
Block Diagram of Driver Stages including Short Circuit Detection  
1) The high side outputs are not designed to be used for low side MOSFETs; the low side outputs are not designed to be used  
for high side MOSFETs  
Data Sheet  
12  
Rev. 1.1, 2011-04-08  
TLE7186F  
MOSFET Driver  
5.3  
Bootstrap Principle  
The TLE7186F provides a bootstrap based supply for its high side output stages. The benefit of this principle is a  
fast switching of the high side switches - supporting active freewheeling in high side.  
The bootstrap capacitors are charged by switching on the external low side MOSFETs connecting the bootstrap  
capacitor to GND. Under this condition the bootstrap capacitor will be charged from the VREG capacitor. If the low  
side MOSFET is switched off and the high side MOSFET is switched on, the bootstrap capacitor will float together  
with the SHx voltage to the supply voltage of the bridge. Under this condition the supply current of the high side  
output stage will discharge the bootstrap capacitor. This current is specified. The size of the capacitor together  
with this current will determine how long the high side MOSFET can be kept on without recharging the bootstrap  
capacitor.  
When all external MOSFETs are switched off, the SHx voltage can be undefined. Under this condition, the  
bootstrap capacitors can be discharged, dependent on the SHx voltage.  
5.4  
Currents at SH pins  
The currents at the SH pins can be used for diagnostic purposes to check the health state of the power stage.  
The simplified structure related to the SH currents the TLE7186F is described by Figure 4.  
BHx  
VDH  
IBSH  
40µA  
SHx  
SL  
RSHGN  
80kΩ  
Figure 4  
Block Diagram of SHx pin configuration  
5.5  
Electrical Characteristics  
Electrical Characteristics MOSFET Drivers  
VS = 7.0 to 33 V, Tj = -40 °C to +150 °C all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)1)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Inputs  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.5.5  
Low level input voltage of ILx; IHx VI_LL  
High level input voltage of ILx; IHx VI_HL  
1.6  
V
2.8  
V
Input hysteresis of IHx; ILx2)  
IHx pull-up resistors to VDD  
ILx pull-down resistors to GND  
dVI  
RIH  
RIL  
100  
28.5  
178.5  
mV  
kΩ  
kΩ  
76.5  
564  
Data Sheet  
13  
Rev. 1.1, 2011-04-08  
TLE7186F  
MOSFET Driver  
Electrical Characteristics MOSFET Drivers  
VS = 7.0 to 33 V, Tj = -40 °C to +150 °C all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)1)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
MOSFET driver output  
5.5.6  
5.5.7  
5.5.8  
Output source resistance  
RSou  
RSink  
VGxx1  
2
2
13.5  
9
Ω
Ω
V
I
I
load=20mA  
load=20mA  
Output sink resistance  
High level output voltage Gxx vs.  
Sxx  
11  
14  
13,5V  
<=VVS<=45V3),  
V
V
IOV<=VOVIOV  
VDH<=VOVVDH  
,
I
load=37,5mA  
VVs=8V,  
load=20nF,  
dc=95%;  
PWM=20kHz  
VVs=8V,  
load=20nF,  
dc=95%;  
PWM=20kHz;  
5.5.9  
High level output voltage GHx vs. VGxx2  
6
V
V
SHx2)  
C
f
5.5.10 High level output voltage GHx vs. VGxx3  
6
SHx2)4)  
+Vdiode  
C
f
passive  
freewheeling  
5.5.11 High level output voltage GLx vs. VGxx4  
6.7  
V
VVS=8V,  
GND  
C
load=20nF,  
dc=95%;  
PWM=20kHz;  
Load=11nF;  
Load=1Ω  
f
5.5.12 Rise time  
Tj = -40°C  
trise  
ns  
ns  
V
C
R
100  
150  
230  
350  
Tj = 150°C  
VVS=7V  
20-80%  
5.5.13 Fall time  
Tj = -40°C  
tfall  
80  
150  
210  
290  
Tj = 150°C  
5.5.14 High level output voltage (in  
passive clamping)  
VGUV  
1.2  
sleep mode or  
VS_UVLO2) 5)  
5.5.15 Pull-down resistor at BHx to GND RBHUV  
5.5.16 Pull-down resistor at VREG to GND RVRUV  
80  
kΩ  
kΩ  
µA  
30  
5.5.17 Bias current into BHx  
IBH  
150  
V
BHx-VSHx=5...13V;  
no switching  
5.5.18 Current between BHx and SHx  
IBSH  
15  
40  
60  
µA  
V
V
BHx-VSHx=5...13V;  
SHX = GND  
5.5.19 Resistor between SHx and GND  
5.5.20 Bias current out of SL  
RSHGN  
ISL  
48  
80  
112  
2
kΩ  
mA  
0V<=VSH<=VS+1  
V; no switching;  
V
CBS>5V  
Data Sheet  
14  
Rev. 1.1, 2011-04-08  
TLE7186F  
MOSFET Driver  
Electrical Characteristics MOSFET Drivers  
VS = 7.0 to 33 V, Tj = -40 °C to +150 °C all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)1)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
50  
50  
50  
50  
Typ.  
Max.  
5.5.21 Input propagation time (low on)  
5.5.22 Input propagation time (low off)  
5.5.23 Input propagation time (high on)  
5.5.24 Input propagation time (high off)  
tP(ILN)  
tP(ILF)  
tP(IHN)  
tP(IHF)  
tP(diff)  
200  
200  
200  
200  
100  
ns  
ns  
ns  
ns  
ns  
CLoad=11nF;  
R
Load=1Ω  
5.5.25 Absolute input propagation time  
difference between above  
propagation times  
VREG  
5.5.26 VREG output voltage  
VVREG  
11  
12.5  
14  
V
V
VS >= 13,5V;  
I
load=37,5mA  
5.5.27 VREG over current limitation  
IVREGOCL 100  
VVsVREG  
500  
0.5  
mA  
V
no activation of  
error; VVREG>VVRSD  
5.5.28 Voltage drop between Vs and  
VREG  
VVS>= 7V;  
I
load=37,5mA;  
Ron operation  
1) RLoad and CLoad in series  
2) Not subject to production test; specified by design  
3) Values above 33V not subjected to production test; specified by design  
4) Vdiode is the bulk diode of the external low side MOSFET  
5) see Chapter 9.2.15  
Data Sheet  
15  
Rev. 1.1, 2011-04-08  
TLE7186F  
Shunt Signal Conditioning  
6
Shunt Signal Conditioning  
The TLE7186F incorporates a fast and precise operational amplifier for conditioning and amplification of the  
current sense shunt signal. The gain of the OpAmp is adjustable by external resistors within a range higher than 5.  
The usage of higher gains in the application might be limited by required settling time and band width.  
It is recommended to apply a small offset to the OpAmp, to avoid operation close to the lower rail at low currents.  
The output of the OpAmp ISO is not short-circuit proof.  
In addition to the integrated operational amplifier, the TLE7186F incorporates a comparator to detect over current  
situations. The output voltage VISO is compared to a reference voltage VOCTH close to the upper rail of the 5V  
OpAmp supply (VDD). If VISO reaches this level an error is set.  
VDD  
Rfb2  
VDD  
ASIC  
internal  
RS1  
ISP  
ISN  
+
-
µC  
ISO  
Rshunt  
RS2  
+
-
330pF  
Rfb3  
ERR  
VOCTH  
external  
Rfb2 Rfb3 = Rfb1  
Rfb1  
fc < 1 Mhz  
Figure 5  
Shunt Signal Conditioning Block Diagram and Over Current Limitation  
Over current shut down see Chapter 9.2.13.  
6.1  
Electrical Characteristics  
Electrical Characteristics - Current sense signal conditioning  
VS = 6.0 to 33 V, Tj = -40 °C to +150 °C, gain = 5 to 75, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)1)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
100  
2000  
5
Typ.  
500  
7500  
Max.  
6.1.1  
6.1.2  
6.1.3  
Series resistors  
RS  
1000  
Ω
Ω
Feedback resistor  
Rfb  
Resistor ratio (gain ratio),  
Rfb/RS  
RL>3kΩ  
max. gain limited by settling time  
6.1.4  
6.1.5  
Input differential voltage (ISP - ISN) VIDR  
-800  
-800  
800  
mV  
mV  
Input voltage (Both Inputs - GND) VLL  
2000  
(ISP - GND) or (ISN -GND)  
6.1.6  
6.1.7  
Input offset voltage of the I-DC link VIO  
OpAmp, including temperature drift  
+/-2  
mV  
µA  
RS=500Ω; VCM=0V;  
V
ISO=1.65V;  
Input bias current (ISN,ISP to  
GND)  
IIB  
-300  
V
CM=0V; VISO=open  
Data Sheet  
16  
Rev. 1.1, 2011-04-08  
TLE7186F  
Shunt Signal Conditioning  
Electrical Characteristics - Current sense signal conditioning (cont’d)  
VS = 6.0 to 33 V, Tj = -40 °C to +150 °C, gain = 5 to 75, all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)1)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
6.1.8  
6.1.9  
High level output voltage of ISO  
Low level output voltage of ISO  
VOH  
VVDD  
0.2  
-
VVDD  
V
IO=-3mA  
VOL  
-0.1  
5
0.2  
V
IO=3mA  
6.1.10 Guaranteed output current  
capability  
IGOC  
mA  
6.1.11 Differential input resistance2)  
6.1.12 Common mode input capacitance2) CCM  
RI  
100  
kΩ  
pF  
dB  
10  
10kHz  
6.1.13 Common mode rejection ratio at  
CMRR  
80  
100  
DC  
CMRR =  
20*Log((Vout_diff/Vin_diff) *  
(Vin_CM/Vout_CM))  
6.1.14 Common mode suppression3)2)  
CMS  
dB  
VIN=360mV*  
with  
sin(2*π*freq*t);  
Rs=500Ω; Rfb=7500Ω  
CMS = 20*Log(Vout_CM/Vin_CM)  
Freq =100kHz  
Freq = 1MHz  
62  
43  
33  
Freq = 10MHz  
6.1.15 Slew rate  
dV/dt  
AOL  
10  
V/µs  
dB  
Gain>= 5;  
RL=1.0kΩ; CL=500pF  
6.1.16 Large signal open loop voltage  
gain (DC)  
80  
100  
6.1.17 Unity gain bandwidth  
6.1.18 Phase margin 2)  
GBW  
FM  
10  
20  
50  
MHz  
°
RL=1kΩ; CL=100pF  
Gain>= 5;  
RL=1kΩ; CL=100pF  
6.1.19 Gain margin 2)  
6.1.20 Bandwidth  
AM  
12  
dB  
RL=1kΩ; CL=100pF  
BWG  
1.6  
MHz  
Gain=15;  
RL=1kΩ; CL=500pF;  
Rs=500Ω  
6.1.21 Output settle time to 98%  
Rfb/RS=15  
tset1  
µs  
RL=1kΩ;  
CL=500pF;  
0.3<VISO< VDD-0.3V;  
Rs=500Ω  
1
4.6  
1.8  
8
Rfb/RS=75  
1) A minimum capacitance of 100pF is needed at the output of the OpAmp (parasitic or real capacitor); RL is the total load  
resistance including the feedback network; In the application it is not recommended to apply a resistor from the output ISO  
to GND directly in addition to the feedback network.  
2) Not subject to production test; specified by design  
3) Without considering any offsets such as input offset voltage, internal mismatch and assuming no tolerance error in external  
resistors.  
Data Sheet  
17  
Rev. 1.1, 2011-04-08  
TLE7186F  
5 V Low Drop Voltage Regulator  
7
5 V Low Drop Voltage Regulator  
The TLE7186F incorporates a 5V LDO for µC supply. The voltage regulator is protected against Over Temperature  
by the central temperature sensor (see Chapter 9.2.1 and Chapter 9.2.2). It has an integrated current limitation  
and Under Voltage detection.  
Parameters for Under Voltage detection see Chapter 9.2.5.  
VDD  
VS  
temperature  
5V LDO  
sensor  
Error logic and  
Wake-up logic  
Figure 6  
Block diagram of 5V LDO  
7.1  
Electrical Characteristics  
Electrical Characteristics - Current sense signal conditioning  
VS = 6.0 to 45 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
Output voltage  
VDD1  
VDD2  
IOCL  
4.85  
5.25  
5.20  
270  
100  
V
2mA<=Iload<=70mA;  
C
load= 1...22uF1)  
Output voltage  
4.90  
130  
V
5mA <=Iload<=25mA;  
load= 1...22uF1)  
C
LDO over current limitation  
Load regulation  
mA  
mV  
dB  
no activation of error  
by current limitation  
DVDD  
PSRR  
50  
l
C
oad step 0...20mA;  
VDD=1uF  
Power supply ripple rejection2)  
50  
100Hz sine wave;  
0.5Vpp  
VVS>=7V  
7.1.6  
Power supply ripple rejection2)  
PSRR  
31  
dB  
100Hz sine wave;  
0.5Vpp  
6V<=VVS<7V  
1) ceramic C with 100nF with ESR<0.1Ω in parallel  
Data Sheet  
18  
Rev. 1.1, 2011-04-08  
TLE7186F  
5 V Low Drop Voltage Regulator  
2) Not subject to production test; specified by design  
5,150  
5,100  
5,050  
5,000  
4,950  
25°C  
-40°C  
+150°C  
0,000  
0,010  
0,020  
0,030  
0,040  
0,050  
0,060  
0,070  
0,080  
I_VDD [A]  
Figure 7  
Typ. VDD output voltage vs. load current  
Data Sheet  
19  
Rev. 1.1, 2011-04-08  
TLE7186F  
5 V Low Drop Voltage Regulator  
5,07  
5,065  
5,06  
5,055  
5,05  
25°C  
5,045  
5,04  
5,035  
5,03  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
U_VS [V]  
Figure 8  
Typ. VDD output voltage vs. supply voltage  
Data Sheet  
20  
Rev. 1.1, 2011-04-08  
TLE7186F  
Interface, VDH Switch and INH Digital Output  
8
Interface, VDH Switch and INH Digital Output  
8.1  
PWM Interface (IFMA)  
The TLE7186F has an integrated interface supporting the typical PWM interface between a remote master ECU  
and the µC. The link to the external master ECU is a single wire communication based on the battery voltage and  
running typ. with about 10 to 400 Hz. The information is encoded in the duty cycle of the signal.  
This communication line requires a signal conditioning to connect to the on board µC.  
The integrated circuit supports the incoming data path.  
The outgoing data path is formed by external components  
interface  
uC  
TLE 7184 F  
ECU  
VDD  
VS  
VS  
KL 30  
Wake up  
Pull up  
IFuC  
340k  
700k  
IFMA  
T3  
Interface_uC  
R1  
10k  
VCC  
T1  
GND  
T2  
Figure 9  
The integrated circuitry is described in Figure 9.  
The main task of this interface is level shifting and protection of the µC.  
Structure PWM Interface  
The IFuC signal is following the IFMA signal, passing the duty cycle information from IFMA to the IFuC.  
The µC port is used as input and is listening to the IFuC signal. The voltage at IFMA is monitored. If IFMA is low  
the IFuC open drain output is switched on - forcing the IFuC signal to low.  
If IFMA is high, the IFuC open drain output is deactivated and the IFuC signal is pulled to high by the internal pull-  
up resistor.  
The IFMA input is used as well for wake-up. See Chapter 9.1  
Influence of serial resistor at IFMA pin  
As shown in Figure 9 a 10k resistor R1 is recommended to protect the IFMA pin against negative voltage levels  
coming from the interface signal. The integrated pull down and pull up resistors at the IFMA pin form a voltage  
divider together with the resistor R1. This will influence the resulting switching level of the IFMA interface in the  
application compared to the levels specified directly at the IFMA pin.  
In this datasheet an additional parameter is provided to calculate the influence of the 10k resistor. The specified  
IFMA input current divided by Vs allows to calculate the drop over R1 with the following formula:  
I
Voltage _ drop _ over _ R1= IFMA *VVS *R1  
VVS  
Data Sheet  
21  
Rev. 1.1, 2011-04-08  
TLE7186F  
Interface, VDH Switch and INH Digital Output  
8.2  
VDHS Switch  
The System IC has an integrated switch connecting the VDH pin to the VDHS pin. This allows to place an external  
voltage divider for VDH voltage monitoring at the VDHS pin and to disconnect this voltage divider from VDH during  
sleep mode to assure low current consumption. The VDHS switch is only deactivated when the VDD regulator is  
switched off.  
8.3  
Digital Output INHD  
The System IC provides a digital output INHD showing the logic state of INH (e.g. KL15) after a complete wake-  
up of the driver (approx. 1ms). The input levels of INH for the INHD output are defined separately from the levels  
for wake-up. Voltage levels for INH wake-up function please see Chapter 9.4 section Wake-up and go-to-sleep.  
The output stage consists of an integrated low side switch with a pull-up resistor to VDD.  
8.4  
Electrical Characteristics  
Electrical Characteristics - Protection and diagnostic functions  
VS = 6.0 to 20V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Interface - static parameters  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
IFMA input voltage high level  
(for IFµC high)  
VIMHL  
VIMLL  
VIMhy  
VIMWH  
59  
%
%
%
V
of VVS; IC not in  
Sleep Mode  
IFMA input voltage low level  
(for IFµC low)  
46  
9
of VVS; IC not in  
Sleep Mode;  
IFMA input hysteresis  
(for IFµC)  
0.5  
2
of VVS; IC not in  
Sleep Mode  
IFMA wake up voltage high level  
= VS-VIFMA  
4
valid in Sleep Mode  
IFMA low time to guarantee wake- tIFlow  
100  
µs  
VVS=7...20V  
up  
8.4.6  
8.4.7  
IFMA internal pull-up resistor to VS RIMu  
210  
420  
340  
700  
495  
980  
kΩ  
kΩ  
IFMA internal pull-down resistor to RIMd  
GND  
not active in Sleep  
Mode  
8.4.8  
IFMA input current related to VS  
I
IFMA/VVS  
µA/V  
V
V
IFMA = 59% of VVS  
IFMA = 46% of VVS  
-2.0  
-3.0  
+2.0  
+1.0  
8.4.9  
IFµC output low voltage  
VIuLL  
0.5  
23  
V
no external load  
8.4.10 IFµC internal pull-up resistor to VDD RIu  
8.5  
kΩ  
Interface - dynamic parameters  
8.4.11 IFµC duty cycle  
dIu  
0
100  
6
%
8.4.12 Propagation time rising edge IFµC tPRE  
µs  
Including rise time  
to 80% of VVDD  
load=100pF  
Including fall time to  
20% of VVDD  
load=100pF  
;
C
8.4.13 Propagation time falling edge IFµC tPFE  
5
µs  
;
C
Data Sheet  
22  
Rev. 1.1, 2011-04-08  
TLE7186F  
Interface, VDH Switch and INH Digital Output  
Electrical Characteristics - Protection and diagnostic functions (cont’d)  
VS = 6.0 to 20V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Cload=100pF  
Min.  
Typ.  
Max.  
8.4.14 Deviation between rising and falling tPD  
4
µs  
IFµC  
VDH switch  
8.4.15 Ron VDH switch  
RVDH  
VINHDL  
VINHDH  
150  
Ω
Load current = 1mA  
INHD digital output  
8.4.16 Low level input voltage INH  
(for INHD=low)  
1.5  
V
V
8.4.17 High level input voltage INH  
(for INHD=high)  
2.2  
8.4.18 Input hysteresis of INH for INHD1) dVINHD  
100  
mV  
V
8.4.19 INHD low level output voltage  
VINHD  
RINHD  
0.5  
115  
no external load  
8.4.20 INHD Internal pull-up resistor to  
42.5  
kΩ  
VDD  
1) Not subject to production test; specified by design  
Data Sheet  
23  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
9
Description of Modes, Protection and Diagnostic Functions  
9.1  
Description of modes  
The operation of TLE7186F can be described by different operation modes  
Error conditions TLE7184F and used abbreviations:  
VREG Under Voltage Diagnosis ( VREG_UVD)  
VDD Under Voltage Diagnosis ( VDD_UVD)  
Over Current Shut Down( OCSD)  
VDH Over Voltage Shut Down ( VDH_OVSD)  
IOV Over Voltage Shut Down ( IOV_OVSD))  
Short Circuit Detection ( SCD)  
Over Temperature Pre-Warning ( OTPW)  
Over Temperature Shut Down( OTSD)  
Sleep Mode  
VDD Under Voltage Shut Down( VDD_UVSD)  
VREG Under Voltage Shut Down( VREG_UVSD)  
- low quiescent current  
- all supplies switched off  
SCDL Pin Open Detection ( SCDLPOD)  
VS Under Voltage Lockout ( VS_UVLO)  
/INH = High  
“OR”  
VS Under Voltage Lockout ( VS_UVLO) leads from every mode into the Sleep Mode  
IFMA= Low  
Over Temperature Shut Down( OTSD) leads from every mode except Dead Lock Mode into the Sleep  
Mode  
Wake-up Mode  
- ramp-up of  
int5V, VREG and VDD  
VREG_UVSD (no OTPW)  
Wake-up time  
expired  
VDD_UVSD “OR” (VREG_UVSD “AND” OTPW)  
Reset by /RGS “AND“ OTPW  
OTPW “OR” VDD_UVSD  
Normal Mode  
with  
Error Mode  
VREG Shut-down  
Mode  
Deadlock Mode  
*2)  
OT-Prewarning  
- latched error is reported  
- MOSFets switched-off  
- VREG and VDD on  
- latched error is reported  
- MOSFets switched-off  
- VREG off  
- VREG and VDD off  
- latched error is reported  
- driver stages are active  
- latched error is reported  
- MOSFets switched-off  
- only 5Vint supply is on  
Error condition  
occures*1)  
Error  
condition  
Reset of  
error  
occures*1)  
Reset of OTPW error  
Normal Mode  
without  
VDD_UVSD  
“OR”  
Error Conditions  
VREG_UVSD  
- no error is reported  
- driver stages are active  
OTPW  
VDD_UVSD “OR” (VREG_UVSD “AND” OTPW)  
VREG_UVSD (no OTPW)  
/RGS = Low  
for t > tsleep  
/RGS = Low for t>  
t
sleep  
Go-to-Sleep Mode  
- VDD andVREG are  
switched off  
*1) Error conditions:  
VREG_UVD, VDD_UVD, OCSD, VDH_OVSD,  
- latched error is reported  
IOV_OVSD, SCD, SCDLPOD  
*2) only way to leave this mode is VS_UVLO  
VDD <= VDDsleep  
Figure 10 State diagram TLE7186F  
Data Sheet  
24  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
Sleep Mode:  
The sleep mode is entered if the device is in the Go-to-sleep Mode and the VDD voltage is lower than VDDsleep  
.
The complete chip is deactivated beside the wake-up function (see Wake-up Mode). This mode is designed for  
lowest current consumption from the power net of the car. The passive clamping is active. For details see the  
description of passive clamping, see Chapter 9.2.15.  
The only way to leave the Sleep Mode is to go to the Wake-up Mode.  
Wake-up Mode:  
The TLE7186F wakes up if INH (=KL15) is high or if IFMA is low and VVS is higher than VVSLO  
.
In this mode all supplies are ramping up. As soon as the internal 5V is available, a so called wake-up timer starts  
to run. If the IC reaches this state, the wake-up will continue even if the wake-up signals at INH or IFMA disappear.  
The PWM interface (IFMA) is active as soon as the VDD voltage is sufficiently high. During this time it is expected  
that the supplies are powered up and the µC sets the RGS to high. All external MOSFETs are switched off actively  
or passively. When the wake up timer is expired the IC goes into the Error mode.  
In this mode all errors will be ignored beside Over Temperature Shut Down or VS Under Voltage Lockout.  
Error Mode  
The Error Mode can be reached in 3 different ways:  
1. The device is in Wake-up Mode and the wake up timer expires  
2. The device is in Normal Mode and one or more of the following errors occur: VREG Under Voltage Shut Down,  
VDD Under Voltage Shut Down, Over Current Shut Down, VDH Over Voltage Shut Down, IOV Over Voltage  
Shut Down, Short Circuit Detection or SCDL Open Detection.  
3. The device is in Normal Mode with OT-Prewarning and one or more of the following errors occur: VREG Under  
Voltage Shut Down, VDD Under Voltage Shut Down, Over Current Shut Down, VDH Over Voltage Shut Down,  
IOV Over Voltage Shut Down, Short Circuit Detection or SCDL Open Detection.  
In this mode an Error is set at the ERROR Pin and all external MOSFETs are actively switched off as long as the  
bootstrap voltages allows it. The interface is active. VDHS switch is on and the current sense functions are  
working. VDD and VREG are active. Passive clamping is not active.  
The Error mode can be left in the following ways:  
1. If no error is present, the IC can be sent to Normal Mode by a reset with the RGS pin.  
2. If a VREG Under Voltage Shut Down occurs and no Over Temperature Prewarning is present, the device will  
go to VREG Shut-down Mode.  
3. If VDD Under Voltage Shut Down occurs or a VREG Under Voltage Shut Down together with a Over  
Temperature Prewarning occurs, the device will go into Deadlock Mode.  
4. If Over Temperature Prewarning is present, the IC can be sent to Normal Mode with OT-Prewarning by a reset  
with the RGS pin.  
Normal Mode  
The Normal Mode can be reached in two different ways:  
1. The device is in Error Mode, no error is present and a reset is performed by the RGS pin.  
2. The device is in Normal Mode with OT-Prewarning, the chip temperature is below the OT-Prewarning level and  
a reset is performed by the RGS pin.  
In the Normal Mode all functions are active and available with the regular limitations of the bootstrap principle. The  
gate drive output stages can be controlled with the input pins.  
The Normal Mode can be left in 5 ways:  
1. The devices goes to the Go-To-Sleep Mode by setting RGS to low for a time longer than tsleep  
.
2. If a Over Temperature Prewarning occurs the device goes into the Normal Mode with OT-Prewarning.  
Data Sheet  
25  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
3. If a VREG Under Voltage Shut Down occurs and no Over Temperature Prewarning is present, the device will  
go to VREG Shut-down Mode.  
4. If VDD Under Voltage Shut Down occurs or a VREG Under Voltage Shut Down together with a Over  
Temperature Prewarning occurs, the device will go into Deadlock Mode.  
5. If one or more of the following errors occur, the device goes to the Error Mode: VREG Under Voltage Shut  
Down, VDD Under Voltage Shut Down, Over Current Shut Down, VDH Over Voltage Shut Down, IOV Over  
Voltage Shut Down, Short Circuit Detection or SCDL Open Detection.  
Go-To-Sleep Mode  
The Go-To-Sleep Mode can be reached in 2 different ways:  
1. The device is in Normal Mode and RGS is set to low for a time longer than tsleep  
.
2. The device is in VREG Shut-down Mode and RGS is set to low for a time longer than tsleep  
.
In this mode all external MOSFETs are actively or passively switched off. An Error is set and is shown as long as  
VDD is sufficient high. In this mode VDD and VREG is switched off. As soon as VDD voltage reaches the VVDDsleep  
level the IC goes into the Sleep Mode.  
Normal Mode with Over Temperature Prewarning  
This mode can be reached in 2 different ways:  
1. The device is in Error Mode, the chip temperature is above the prewarning level while a reset is performed by  
the RGS pin.  
2. The device is in Normal Mode and the chip temperature increases above the prewarning level.  
In this mode all functions are active and available. The gate drive output stages can be controlled with the input  
pins with the regular limitations of the bootstrap principle.  
The ERR pin is set to low and this error is latched.  
There are 3 possibilities to leave this mode:  
1. This mode can be left into the Normal Mode by applying a reset at RGS if the temperature has dropped below  
the Over Temperature pre-warning level.  
2. The device goes into Error Mode if one of the following errors occurs: VREG Under Voltage Shut Down, VDD  
Under Voltage Shut Down, Over Current Shut Down, VDH Over Voltage Shut Down, IOV Over Voltage Shut  
Down, Short Circuit Detection or SCDL Open Detection.  
3. The device goes into Deadlock Mode if either a VREG Under Voltage Shut Down or a VDD Under Voltage Shut  
Down occurs.  
If the temperature is still in the pre-warning range and RGS is low, the ERR pin gets high only during the time were  
RGS is low and the IC stays in the “Normal Mode with Over Temperature Prewarning”.  
Deadlock Mode  
This mode is intended to prevent the IC for long time toggling in Over Temperature if a short is present at the VDD  
pin.  
There are 4 ways to enter this mode:  
1. The IC is in Error Mode and a VDD Under Voltage Shut Down occurs or a VREG Under Voltage Shut Down  
together with a Over Temperature Prewarning occurs  
2. The IC is in Normal Mode with Over Temperature Prewarning and a VDD Under Voltage Shut Down or a VREG  
Under Voltage Shut Down occurs.  
3. The IC is in Normal Mode and a VDD Under Voltage Shut Down occurs or a VREG Under Voltage Shut Down  
together with a Over Temperature Prewarning occurs.  
4. The IC is in VREG Shut Down Mode and a VDD Under Voltage Shut Down or a Over Temperature Prewarning  
occurs.  
Data Sheet  
26  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
In this mode the VDD and VREG regulators are switched off. The gates of the external MOSFETs are passively  
clamped.  
The VDHS switch is deactivated.  
The IC will not react to IFMA or INH signals. Even a Over Temperature Shut Down detection will have no influence.  
The internal logic is supplied and prevents the IC from going into “Go to sleep mode”.  
The only way to leave this state is that VS is lower than VVSLO, means a VS Under Voltage Lockout occurs. In this  
case the IC goes to Sleep Mode.  
VREG Shut Down Mode  
This mode is intended to prevent the IC from long time toggling in Over Temperature if a short is present at the  
VREG pin.  
There are 2 ways to enter this mode:  
1. The IC is in the Error Mode and a VREG Under Voltage Shut-down occurs without an Over Temperature  
Prewarning.  
2. The IC is in the Normal Mode and a VREG Under Voltage Shut-down occurs without an Over Temperature  
Prewarning.  
In this mode VREG is switched off, but VDD is still present. The VDHS switch is still active and the PWM interface  
(IFMA) is working.  
The IC will not react to IFMA or INH signals.  
In this situation the µC is still able to provide diagnostic information by the interface. It can prevent the IC from Go-  
to-Sleep Mode and can avoid unintended toggling as long there is no Over Temperature Shut Down.  
This state can be left by 2 ways:  
1. The µC has to set RGS to low for a time longer than tsleep. In this case the IC goes to Sleep Mode.  
2. If a VDD Under Voltage Shut Down or an Over Temperature Prewarning occurs the IC will go into the Deadlock  
Mode.  
9.2  
Protection and Diagnosis Functions  
Over Temperature Shut Down (OTSD)  
9.2.1  
If the junction temperature is exceeding the Over Temperature shut down level an error signal is set. The driver  
IC will pull down the gate-source voltage of all external MOSFETs, deactivate the VDD and VREG supply and go  
directly into the Sleep Mode.  
In the Sleep Mode the regular wake-up conditions will be used. Over Temperature cycling is possible and will lead  
to accelerated aging of the IC.  
In Deadlock Mode an Over Temperature Shut Down is ignored.  
9.2.2  
Over Temperature Prewarning (OTPW)  
The IC provides a digital Over Temperature Pre-Warning. If no other errors are present, the IC goes into “Normal  
Mode with Over Temperature Prewarning”. This function is not available in Deadlock Mode.  
9.2.3  
Analog Temperature Monitoring  
The TEMP output of the TLE7186F provides an analog voltage signal proportional to the chip temperature. This  
function is not available in Deadlock Mode.  
Data Sheet  
27  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
9.2.4  
VS Under Voltage Lockout (VS_UVLO)  
The TLE7186F has an integrated VS Under Voltage Lockout to assure that the behavior of the complete IC is  
predictable in all supply voltage ranges.  
If the supply voltage at VS reaches the Under Voltage shut down level VVSLO for a minimum specified filter time  
the IC goes into Go-to-Sleep Mode and finally into Sleep Mode.  
9.2.5  
VDD Under Voltage Diagnosis (VDD_UVD)  
The TLE7186F has an integrated VDD Under Voltage Diagnosis to assure that the behavior of the bridge driver  
output stages is predictable in all supply voltage ranges.  
If the voltage at VDD reaches the Under Voltage diagnosis level VUVVDD for a minimum specified filter time, an error  
is set and the IC goes into Error Mode.  
VS  
VVDD  
< TRR  
VRT  
TRR  
ERR  
____  
RGS  
Figure 11 Timing of VDD Under Voltage Diagnosis  
9.2.6  
VDD Under Voltage Shut Down (VDD_UVSD)  
The TLE7186F has an integrated VDD Under Voltage Shut Down to avoid operation with VDD shorted to GND.  
If the supply voltage at VDD reaches the Under Voltage shut down level VVDDsleep and the wake-up time is expired,  
VREG and VDD will be switched off and the IC will go to Deadlock Mode.  
9.2.7  
VREG Under Voltage Diagnosis (VREG_UVD)  
The TLE7186F has an integrated VREG Under Voltage Diagnosis to assure that the behavior of the bridge driver  
output stages is predictable in all supply voltage ranges.  
Data Sheet  
28  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
If the voltage at VREG reaches the Under Voltage diagnosis level VUVVR for a minimum specified filter time, an  
error is set and the IC goes into Error Mode.  
As long as the VS Under Voltage Lock Out is not reached, the low side MOSFETs will stay actively switched off.  
The status of the high side MOSFET drivers is dependent on the bootstrap voltage - which depends on the SHx  
voltage. It is expected that the SHx nodes will be pulled to VDH level by the high side MOSFETs and this will switch  
off the high side MOSFETs passively.  
In this situation the short circuit detection of this output stage is deactivated to avoid wrong error reporting.  
9.2.8  
VREG Under Voltage Shut Down (VREG_UVSD)  
The TLE7186F has an integrated VREG Under Voltage Shut Down to avoid operation with VREG shorted to GND.  
If the supply voltage at VREG reaches the Under Voltage shut down level VVRSD, “AND” no Over Temperature  
Prewarning is set “AND” the wake up time is expired, VREG will be switched off and the IC will go to the VREG  
Shut Down Mode. In this condition the µC is still supplied and can communicate via the PWM interface (IFMA),  
the MOSFETs are switched off and an error is set. The only way to leave this mode is to go to “Sleep Mode”.  
If the supply voltage at VREG reaches the Under Voltage shut down level VVRSD “AND” Over Temperature  
Prewarning is set “AND” the wake-up time is expired, VREG and VDD will be switched off and the IC will go to the  
“Dead Lock Mode”.  
The only way to leave this Deadlock Mode is to provoke a VS Under Voltage Shut Down, for example by removing  
the battery voltage.  
9.2.9  
IOV and VDH Over Voltage Shut Down (IOV_OVSD, VDH_OVSD)  
The TLE7186F has an integrated Over Voltage shut down to minimize the risk of destruction of the IC at high  
supply voltages caused by violation of the maximum ratings.  
The voltages are observed at the Over Voltage input pin IOV and at the VDH pin. If the voltage at the IOV pin or  
at the VDH pin exceeds the Over Voltage shut down level for more than the specified filter time, the IC goes into  
Error Mode.  
The effective Over Voltage level can be adjusted by a voltage divider at the IOV pin. This voltage devider is  
normally supplied by the VDHS pin. The Over Voltage level at VDH is fix.  
9.2.10  
Dead Time and Shoot Through Protection  
In bridge applications it has to be assured that the external high side and low side MOSFETs are not “on” at the  
same time, connecting the battery voltage directly to GND. The dead time generated in the TLE7186F is set to a  
minimum value if the DT pin is connected to GND. This function assures a minimum dead time if a common input  
signal for ILx and IHx is used.  
The dead time can be increased by connecting the DT pin via a dead time resistor RDT to GND. Larger dead time  
resistors result in a longer dead time.  
The typical dead time can be calculated with the following formula:  
0.081  
tdeadtime  
=
µs  
2.4  
0.02 +  
4+Rdt  
Please put in the Rdt in kΩ.  
If an exact dead time of the bridge is needed, the use of the µC PWM generation unit is recommended.  
In case of an open DT pin, the dead time is set to the internal maximum value.  
In addition to this dead time, the TLE7186F provides a locking mechanism avoiding that both external MOSFETs  
of one half bridge can be switched on at the same time. This functionality is called shoot through protection.  
Data Sheet  
29  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
If the command to switch on both high and low side switches in the same half bridge is given at the input pins, the  
command will be ignored. The outputs will stay in the state like before the conflicting input.  
9.2.11  
Short Circuit Protection (SCP)  
The TLE7186F provides a short circuit protection for the external MOSFETs. It is monitoring the drain-source  
voltage of the external MOSFETs. (see Figure 3 )  
The drain-source voltage monitoring for a certain external MOSFET is active as soon as the corresponding driver  
output stage is set to “on” and the dead time and the blanking time is expired.  
The blanking time starts when the dead time is expired and assures that the switch on process of the MOSFET is  
not taken into account. It is recommended to keep the switching times of the MOSFETs below the blanking time.  
The short circuit detection level is adjustable in an analogue way by the voltage setting at the SCDL pin. There is  
a 1:1 translation between the voltage applied to the SCDL pin and the drain-source voltage limit. E.g. to trigger the  
SCD circuit at 1 V drain-source voltage, the SCDL pin must be set to 1 V as well. The drain-source voltage limit  
can be chosen between 0.3 ... 2 V.  
In the case that after the expiration of the blanking time the drain source voltage of the observed MOSFET is still  
higher then the SCDL level, the SCD filter time tSCP starts to run. A capacitor is charged with a current. If the  
capacitor voltage reaches a specific level (filter time tSCP), the error signal is set and the IC goes into Error Mode.  
If the SCD condition is removed before the SC is detected, the capacitor is discharged with the same current. The  
discharging of the capacitor happens as well when the MOSFET is switched off. It has to be considered that the  
high side and the low side outputs of one phase are working with the same capacitor.  
9.2.12  
SCDL Pin Open Detection (SCDL_open)  
For safety reasons a pull-up resistor at the SCDL pin assures that in case of an open pin the SCDL voltage is  
pulled to a high level. In this case an error is set and the IC goes into Error Mode.  
9.2.13  
Over Current Shut Down (OCSD)  
The TLE7186F is monitoring the output signal of the operational amplifier. If the output signal reaches a specified  
level close to the upper rail (VDD) for a specified time, the System IC detects an over current condition and sets  
an error signal. The driver output pulls down the gate-source voltage of all external MOSFETs actively and stays  
in the Error Mode.  
9.2.14  
VDD Current Limitation  
The TLE7186F has an integrated voltage supply for an external µC. The output current of the supply is limited to  
a specified value. This limitation does not cause any error reporting. In this situation a VDD Under Voltage  
detection is likely. If the current is limited for a longer time, the Over Temperature protection will react.  
9.2.15  
Passive Gxx Clamping  
If VS Under Voltage Lock Out is detected or the device is in Sleep Mode, a passive clamping is active as long as  
the voltage at VS or VDH is higher than 3V. Even below 3V it is assured that the MOSFET driver stage will not  
switch on the MOSFET actively.  
The passive clamping means that the BHx and the VREG pin are pulled to GND with specified pull down resistors.  
Together with the intrinsic diode of the push stage of the output stages which connect the gate output to BHx  
respectively VREG, this assures that the gate of the external MOSFETs are not floating.  
9.3  
ERR Pin  
The TLE7186F has a status pin to provide diagnostic feedback to the µC. The logical output of this pin is an open  
drain output with integrated pull-down resistor to GND (see Figure 12).  
Data Sheet  
30  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
Reset of error registers and Disable  
The TLE7186F can be reset by the enable pin RGS. If the RGS pin is pulled to low for a specified minimum time,  
the error registers are cleared. If the error is still existing when the RGS pin is pulled to low, no reset will be  
performed and the ERR pin stays low. The only exemption of this behavior is the Over Temperature Prewarning.  
Even if the junction temperature is exceeding the over temperature prewarning level, the error signal goes to high  
when RGS is pulled low.  
Figure 13 describes the timing behavior during error reset:  
For more details see description of Error Mode and Normal Mode with Over Temperature Pre-Warning in  
Chapter 9.1.  
Internal  
5V  
internal  
Error  
Logic  
uC  
ERR  
Interface_uC  
GND  
GND  
Figure 12 Structure of ERR output  
TLE 7184 F  
releases signal  
Error occurs  
5V  
Error reset  
Normal operation  
Sleep mode  
ERR  
0V  
No driver  
reset  
undefined  
tnres-min  
t
res-min  
5V  
RGS  
0V  
Short glitches are  
ignored  
tsleep  
Figure 13 Enable / Disable timing  
Data Sheet  
31  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
9.4  
Electrical Characteristics  
Electrical Characteristics - Protection and diagnostic functions  
VS = 7.0 to 33V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Typ. Max.  
Unit  
Conditions  
Min.  
Dead time  
9.4.1  
Programmable internal dead time tDT  
0.095 0.14  
0.18  
0.55  
1.55  
2.6  
µs  
RDT=0 Ω  
0.29  
0.85  
1.2  
0.42  
1.21  
1.88  
3.62  
RDT=10 kΩ  
RDT=47 kΩ  
RDT=100 kΩ  
RDT=1000 kΩ  
2.1  
5.1  
9.4.2  
9.4.3  
Max. internal dead time  
tDT_MAX  
dtDT  
2.0  
-20  
-15  
-14  
-12  
-14  
-12  
4.0  
6.0  
20  
15  
14  
12  
14  
12  
µs  
%
%
%
%
%
%
DT pin open  
Dead time deviation between  
channels  
RDT<=47 kΩ  
9.4.4  
9.4.5  
Dead time deviation between  
channels LSoff -> HS on  
dtDTH  
dtDTL  
RDT<=47 kΩ  
Dead time deviation between  
channels HSoff -> LS on  
RDT<=47 kΩ  
Short circuit protection  
9.4.6  
9.4.7  
9.4.8  
9.4.9  
Short circuit protection detection  
level  
VSCPDL  
ASCP  
0.3  
-20  
-10  
2
V
programmed by  
SCDL pin  
Short circuit protection detection  
Accuracy  
+20  
+10  
%
%
0.3V<= VSCDL<0.9V  
Short circuit protection detection  
Accuracy  
ASCP  
0.9V<=  
V
SCDL<=2.0V  
Filter time of short circuit protection tSCP(off)  
2.3  
4
4.3  
8
µs  
µs  
Ixx static on  
9.4.10 Blanking time plus filter time of  
short circuit detection  
tSCPTT  
Ixx switching “off”  
to “on”  
9.4.11 Internal pull-up resistor SCDL to  
VDD  
RSCDL  
180  
300  
420  
kΩ  
9.4.12 SCDL open pin detection level  
9.4.13 Filter time of SCDL open pin  
VSCPOP  
tSCPOP  
VSCOPH  
2.0  
1
2.5  
3.4  
V
µs  
V
9.4.14 SCDL open pin detection level  
hysteresis2)  
0.3  
Over- and Under Voltage monitoring  
9.4.15 Over Voltage shut down at IOV  
VOVIOV  
4.15  
4.4  
V
IOV voltage  
increasing  
9.4.16 Pull down resistor at IOV to GND RIOV  
300  
33  
700  
37  
kΩ  
V
9.4.17 Over Voltage shut down at VDH  
VOVVDH  
VDH increasing  
9.4.18 Over Voltage shut down filter time tOV  
13  
23  
µs  
for IOV or VDH  
9.4.19 Under Voltage diagnosis at VREG VUVVR  
5.5  
6.5  
V
VREG decreasing  
Data Sheet  
32  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
Electrical Characteristics - Protection and diagnostic functions (cont’d)  
VS = 7.0 to 33V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
9.4.20 Under Voltage diagnosis filter time tUVVR  
10  
30  
µs  
for VREG  
9.4.21 Under Voltage shut down at VREG VVRSD  
1.5  
4.4  
1
2.3  
5.5  
3
V
VREG decreasing  
9.4.22 Under Voltage lockout at VS  
VVSLO  
5.0  
V
V
VS decreasing  
9.4.23 Under Voltage lockout filter time for tUVLO  
µs  
VS  
ERR pin1)  
9.4.24 ERR output voltage  
VERR  
4.4  
V
No external load  
9.4.25 Rise time ERR (20 - 80% of internal tf(ERR)  
3.5  
µs  
CLOAD=1nF;  
5V)  
9.4.26 Internal pull-down resistor ERR to Rf(ERR)  
21.2  
60  
kΩ  
GND  
Reset and Enable  
9.4.27 Low time of uC RGS signal without tnres  
3
0.5  
µs  
µs  
reset  
9.4.28 Low time of uC RGS pin necessary tres  
to trigger reset and to clear error  
registers  
Wake-up and go-to-sleep  
9.4.29 Low level input voltage of RGS  
9.4.30 High level input voltage of RGS  
9.4.31 Input hysteresis of RGS2)  
VRGSLL  
VRGSHL  
dRGS  
1.6  
V
2.8  
100  
100  
V
mV  
kΩ  
V
9.4.32 RGS pull-down resistors to GND  
9.4.33 Low level input voltage of INH3) for VINHL  
RRGS  
210  
0.75  
wake up  
9.4.34 High level input voltage of INH3) for VINHH  
2.1  
V
wake up  
9.4.35 INH high time to guarantee wake- tIHhigh  
100  
µs  
up  
9.4.36 INH pull-down resistors to GND  
9.4.37 Wake up delay time  
RINH  
twake  
tsleep  
100  
9
210  
17  
kΩ  
ms  
µs  
V
9.4.38 RGS low time for go-to-sleep  
20  
50  
9.4.39  
V
DD voltage for changing  
VDDsleep 1.5  
2.3  
from Go-to-Sleep Mode to Sleep  
Mode  
9.4.40  
V
DD Under Voltage Shut Down  
VUVSDVDD 1.5  
2.3  
V
1) ERR pin and Reset & Enable functional between VVS=6 ... 7V, but characteristics might be out of specified range  
2) Not subject to production test; specified by design  
3) These levels are valid for wake up of the IC. The input levels for INH deciding the output state of INHD are shown in  
Chapter 8.4  
Data Sheet  
33  
Rev. 1.1, 2011-04-08  
TLE7186F  
Description of Modes, Protection and Diagnostic Functions  
Electrical Characteristics - Protection and diagnostic functions  
VS = 6.0 to 33V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Temperature monitoring  
1)  
9.4.41 Over Temperature shut down  
9.4.42 Over Temperature pre-warning  
Tj(SD)  
Tj(PW)  
160  
130  
170  
140  
30  
180  
150  
40  
°C  
°C  
°C  
1)  
1)  
9.4.43 Difference between Over  
Temperature shut down level and  
Over Temperature pre-Warning  
level  
dTj(SDPW) 20  
9.4.44 Analog temperature output at 25°C VATRT  
1.32  
4.57  
0
1.65  
5.20  
+6  
V
C
load<=1.5nF;  
Tj=25°C  
9.4.45 Analog temperature output  
coefficient  
KATRT  
VATRTd  
TAT  
mV/K  
mV  
°C  
C
C
load<=1.5nF 1)  
9.4.46 Analog temperature output drift  
over lifetime1)  
load<=1.5nF  
9.4.47 Analog temperature range1)  
-40  
175  
Over current detection  
9.4.48 Over current detection level in% of VOCTH  
92  
96.5  
4.2  
%
VVDD  
9.4.49 Filter time for over current detection tOC  
1.8  
µs  
Under Voltage monitoring VDD  
2)  
9.4.50 Under Voltage shut down at VDD  
VUVVDD  
3.7  
15  
4.2  
45  
V
V
VDD decreasing  
9.4.51 Under Voltage shut down filter time tUVVDD  
µs  
1) Not subject to production test; specified by design  
2) For Under Voltage detection level during go-to-sleep see VDDsleep  
Data Sheet  
34  
Rev. 1.1, 2011-04-08  
TLE7186F  
Phase voltage feedback  
10  
Phase voltage feedback  
The TLE7186F incorporates a fast conversion of the phase voltages into logic signals. The threshold values are proportional  
to VDH. The outputs are 5V push pull stages. When they are not used they can be left open.  
5V  
SHx  
-
X_fb  
+
VDH  
Voltage feed back 3x  
Figure 14 Block diagram phase voltage feedback  
10.1  
Electrical Characteristics  
Electrical Characteristics - Phase Voltage Feedback  
VS = 7 to 20V, Tj = -40 °C to +150 °C, FPWM < 25kHz, CLOAD<25pF, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Low level threshold  
High level threshold  
Threshold difference  
VILfb  
VIHfb  
dVIxfb  
44.7  
48.75  
52.8  
55.2  
% of  
VDH  
VDH>7V  
V
10.1.1  
10.1.2  
10.1.3  
SHX decreasing1)  
46.8  
51.0  
2.25  
% of  
VDH  
VDH>7V  
SHX decreasing1)  
VDH>7V  
SHX decreasing  
V
% of  
VDH  
V
10.1.4  
10.1.5  
10.1.6  
High level output voltage of x_fb  
Low level output voltage of x_fb  
VOHfb  
VOLfb  
4.0  
-0.1  
5.2  
0.2  
250  
V
I= -40uA  
I= 40uA  
V
Propagation delay time incl. rise or fall tPDfb  
time  
ns  
CLOAD<25pF  
10.1.7  
Matching of propagation delay time  
tdPDfb  
100  
ns  
1) Not subjected to production test; specified by design  
Data Sheet  
35  
Rev. 1.1, 2011-04-08  
TLE7186F  
Application Description  
11  
Application Description  
In the automotive sector there are more and more applications requiring high performance motor drives, such as  
HVAC fans, engine cooling fans, pumps etc.. In these applications synchronous and asynchronous 3-phase  
motors are used, combining high output performance, low space requirements and high reliability.  
R
2,2kΩ  
KL 15  
R
33Ω  
L
2,2µH  
interface  
R
1,2kΩ  
C
1nF  
L
2,2µH  
VBAT  
R
RVS  
1,6kΩ  
10 Ω  
CBR  
CBR  
1µF  
4,7mF  
CVS  
100 nF  
CVS  
2µF  
PGND  
PGND  
R
R
10kΩ  
10kΩ  
CREG  
2µF  
___  
INH  
VDHS  
RVDH  
IFMA  
VS VREG  
VDH  
CBS1  
470nF  
BH1  
RVDH1  
ROV1  
THS1  
GH1  
SH1  
RGH1  
IOV  
ROV2  
CBS2  
470nF  
RVDH2  
BH2  
THS2  
GH2  
SH2  
IFuC  
____  
RGS  
____  
INHD  
____  
ERR  
RGH2  
CBS3  
470nF  
BH3  
THS3  
TLE  
7186  
GH3  
SH3  
TEMP  
RGH3  
U_fb  
V_fb  
W_fb  
IL1  
TLS1  
GL1  
GL2  
___  
RGL1  
IH1  
µC  
IL2  
___  
IH2  
TLS2  
IL3  
___  
RGL2  
IH3  
RSC1  
SCDL  
GL3  
TLS3  
RGL3  
RSC2  
VDD  
DT  
+
Rfb2  
CVDD2  
CVDD1  
100nF 2.2nF  
SL  
ISP  
RS  
RS  
RDT  
Rfb3  
Shunt  
AGND  
RLP  
ISN  
ISO  
GND  
AGND  
GND  
Rfb1  
CLP  
CISO  
For details of the current sense feature  
please see the dedicated chapter  
GND  
AGND  
GND  
PGND  
Figure 15 Application Circuit TLE7186F  
This is a simplified example of an application circuit. The function must be verified in the real application.  
Data Sheet  
36  
Rev. 1.1, 2011-04-08  
TLE7186F  
Package Outlines  
12  
Package Outlines  
11 x 0.65 = 7.15  
0.65  
0.1  
0.9 MAX.  
(0.65)  
9
A
0.05  
24  
0.55  
0.1  
8.75  
48x  
0.08  
B
25  
36  
37  
13  
48  
Index Marking  
48x  
1
12  
0.05  
0.35  
Index Marking  
M
0.1 A B C  
C
(0.2)  
0.15  
6.8  
0.05 MAX.  
GVQ01049  
STANDOFF  
Figure 16 PG-VQFN-48  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
You can find all of our packages, sorts of packing and others in our  
Dimensions in mm  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Data Sheet 37  
Rev. 1.1, 2011-04-08  
TLE7186F  
Revision History  
13  
Revision History  
Revision  
Date  
Changes  
Rev. 1.1  
2011-04-08  
- Voltage difference between ISP and ISN specified  
- Minimum buffer capacitor CVREG specified  
- Description of SH currents added  
- Fig. 4 new  
- Pull up and pull down resistors at IHx and ILx expanded  
- Rise and fall times specified  
- Propagation time tolerance reduced  
- Limit the lower load current of VDD to 2mA  
- Fig. 5 updated  
- Steady state differential input voltage range across VIN removed  
- Common mode suppression, footnote added  
- IFMA low time to guarantee wake-up added  
- Matching of IFMA pull up / pull down resistors replaced by  
IFMA input current / VS  
- Pull up resistor at IFuC output expanded  
- Pull up resistor at INHD expanded  
- High level input voltage INH (for INHD=high) adapted  
- Dead time description improved  
- Short circuit detection accuracy improved  
- SCDL open pin detection level hysteresis, footnote added  
- Rise time ERR adapted  
- Pull down resistor at ERR output expanded  
- INH high time to guarantee wake-up added  
- Analog temperature output tolerance at 25°C improved  
Data Sheet  
38  
Rev. 1.1, 2011-04-08  
Edition 2011-04-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2011 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE7188F

3-Phase Bridge Driver IC
INFINEON

TLE7189F

3-Phase Bridge Driver IC
INFINEON

TLE7189FXUMA1

AC Motor Controller, 0.01A, PQCC48, GREEN, PLASTIC, VQFN-48
INFINEON

TLE7189QK

PRO-SILTM 3-Phase Bridge Driver IC
INFINEON

TLE7189QKXUMA1

AC Motor Controller, 0.01A, PQFP64, GREEN, PLASTIC, LQFP-64
INFINEON

TLE7189QK_09

PRO-SILTM 3-Phase Bridge Driver IC
INFINEON

TLE7201R

Automotive Analog Circuit,
INFINEON

TLE7209-2R

7 A H-Bridge for DC-Motor Applications
INFINEON

TLE7209-2R_07

7 A H-Bridge for DC-Motor Applications
INFINEON

TLE7209-2R_10

7 A H-Bridge for DC-Motor Applications
INFINEON

TLE7209-3R

MOTIX™ | Integrated Full-Bridge Driver
INFINEON

TLE72092RAUMA2

Stepper Motor Controller, PDSO20, GREEN, PLASTIC, DSO-20
INFINEON