TLE7250LEXUMA1 [INFINEON]

Interface Circuit, PDSO8, TSON-8;
TLE7250LEXUMA1
型号: TLE7250LEXUMA1
厂家: Infineon    Infineon
描述:

Interface Circuit, PDSO8, TSON-8

电信 光电二极管 电信集成电路
文件: 总34页 (文件大小:1616K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE7250  
High Speed CAN-Transceiver  
TLE7250LE  
TLE7250SJ  
Data Sheet  
Rev. 1.0, 2015-08-12  
Automotive Power  
TLE7250LE  
TLE7250SJ  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1
2
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4
4.1  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.3  
4.3.1  
4.3.2  
4.3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
High Speed CAN Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Normal-operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Receive-only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-up and Undervoltage Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Undervoltage on the Transmitter Supply VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
Fail Safe Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Unconnected Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TxD Time-out Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Delay Time for Mode Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1  
5.2  
5.3  
5.4  
5.5  
6
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.1  
6.2  
6.3  
7
7.1  
7.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
ESD Robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Examples for Mode Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Mode Change while the TxD Signal is “low” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode Change while the Bus Signal is “dominant” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
8.4  
9
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
10  
Data Sheet  
2
Rev. 1.0, 2015-08-12  
 
High Speed CAN-Transceiver  
TLE7250LE  
TLE7250SJ  
1
Overview  
Features  
Fully compatible to ISO 11898-2  
Wide common mode range for electromagnetic immunity (EMI)  
Very low electromagnetic emission (EME)  
Excellent ESD robustness  
Guaranteed loop delay symmetry to support CAN FD data frames up  
to 2 MBit/s  
Extended supply range on VCC supply  
CAN short circuit proof to ground, battery and VCC  
TxD time-out function  
PG-TSON-8  
Low CAN bus leakage current in power-down state  
Overtemperature protection  
Protected against automotive transients  
Receive-only mode and power-save mode  
Green Product (RoHS compliant)  
Two package variants: PG-DSO-8 and PG-TSON-8  
AEC Qualified  
PG-DSO-8  
Description  
The TLE7250 is a transceiver designed for HS CAN networks in  
automotive and industrial applications. As an interface between the physical bus layer and the CAN protocol  
controller, the TLE7250 drives the signals to the bus and protects the microcontroller against interferences  
generated within the network. Based on the high symmetry of the CANH and CANL signals, the TLE7250 provides  
a very low level of electromagnetic emission (EME) within a wide frequency range.  
The TLE7250 is available in a small, leadless PG-TSON-8 package and in a PG-DSO-8 package. Both packages  
are RoHS compliant and halogen free. Additionally the PG-TSON-8 package supports the solder joint  
requirements for automated optical inspection (AOI). The TLE7250LE and the TLE7250SJ are fulfilling or  
exceeding the requirements of the ISO11898-2.  
The TLE7250 provides a receive-only mode and a power-save mode. It is designed to fulfill the enhanced physical  
layer requirements for CAN FD and supports data rates up to 2 MBit/s.  
On the basis of a very low leakage current on the HS CAN bus interface the TLE7250 provides an excellent  
passive behavior in power-down state. These and other features make the TLE7250 exceptionally suitable for  
mixed supply HS CAN networks.  
Based on the Infineon Smart Power Technology SPT, the TLE7250 provides excellent ESD immunity together with  
Type  
Package  
Marking  
7250  
TLE7250LE  
TLE7250SJ  
PG-TSON-8  
PG-DSO-8  
7250  
Data Sheet  
3
Rev. 1.0,2015-08-12  
TLE7250LE  
TLE7250SJ  
Overview  
a very high electromagnetic immunity (EMI). The TLE7250 and the Infineon SPT technology are AEC qualified  
and tailored to withstand the harsh conditions of the automotive environment.  
Three different operating modes, additional fail-safe features like a TxD time-out and the optimized output  
slew rates on the CANH and CANL signals, make the TLE7250 the ideal choice for large HS CAN networks with  
high data transmission rates.  
Data Sheet  
4
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Block Diagram  
2
Block Diagram  
3
VCC  
Transmitter  
7
1
TxD  
CANH  
CANL  
Timeout  
Driver  
Temp-  
protection  
8
6
NEN  
Mode  
control  
5
NRM  
Receiver  
Normal-mode receiver  
4
RxD  
VCC/2  
=
Bus-biasing  
GND  
2
Figure 1  
Functional block diagram  
Data Sheet  
5
Rev. 1.0, 2015-08-12  
 
TLE7250LE  
TLE7250SJ  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
NEN  
1
8
TxD  
1
2
3
4
8
7
6
5
NEN  
CANH  
CANL  
NRM  
TxD  
GND  
VCC  
CANH  
CANL  
NRM  
2
7
GND  
VCC  
PAD  
3
4
6
5
RxD  
(Top-side x-ray view)  
RxD  
Figure 2  
Pin configuration  
3.2  
Pin Definitions  
Table 1  
Pin No.  
1
Pin definitions and functions  
Symbol  
Function  
TxD  
Transmit Data Input;  
internal pull-up to VCC, “low” for “dominant” state.  
2
3
GND  
Ground  
VCC  
Transmitter Supply Voltage;  
100 nF decoupling capacitor to GND required.  
4
5
RxD  
Receive Data Output;  
“low” in “dominant” state.  
NRM  
Not Receive-Only Mode Input;  
control input for selecting receive-only mode,  
internal pull-up to VCC, “low” for receive-only mode.  
6
7
CANL  
CANH  
CAN Bus Low Level I/O;  
“low” in “dominant” state.  
CAN Bus High Level I/O;  
“high” in “dominant” state.  
Data Sheet  
6
Rev. 1.0, 2015-08-12  
 
 
TLE7250LE  
TLE7250SJ  
Pin Configuration  
Table 1  
Pin No.  
8
Pin definitions and functions (cont’d)  
Symbol  
Function  
NEN  
Not Enable Input;  
internal pull-up to VCC,  
“low” for normal-operating mode or receive-only mode.  
PAD  
Connect to PCB heat sink area.  
Do not connect to other potential than GND.  
Data Sheet  
7
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Functional Description  
4
Functional Description  
HS CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control  
applications. The use of the Controller Area Network (abbreviated CAN) within road vehicles is described by the  
international standard ISO 11898. According to the 7-layer OSI reference model the physical layer of a HS CAN  
bus system specifies the data transmission from one CAN node to all other available CAN nodes within the  
network. The physical layer specification of a CAN bus system includes all electrical and mechanical specifications  
of a CAN network. The CAN transceiver is part of the physical layer specification. Several different physical layer  
standards of CAN networks have been developed in recent years. The TLE7250 is a High Speed CAN transceiver  
without a wake-up function and defined by the international standard ISO11898-2.  
4.1  
High Speed CAN Physical Layer  
TxD  
VCC  
=
=
Transmitter supply voltage  
Transmit data input from  
the microcontroller  
TxD  
VCC  
RxD  
=
Receive data output to  
the microcontroller  
CANH =  
CANL =  
Bus level on the CANH  
input/output  
Bus level on the CANL  
input/output  
t
t
VDiff  
=
Differential voltage  
CANH  
CANL  
VCC  
between CANH and CANL  
VDiff = VCANH VCANL  
VDiff  
VCC  
“dominant” receiver threshold  
“recessive” receiver threshold  
t
RxD  
VCC  
tLoop(H,L)  
tLoop(L,H)  
t
Figure 3  
High speed CAN bus signals and logic signals  
Data Sheet  
8
Rev. 1.0, 2015-08-12  
 
TLE7250LE  
TLE7250SJ  
Functional Description  
The TLE7250 is a High-Speed CAN transceiver, operating as an interface between the CAN controller and the  
physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission rates  
for CAN FD frames up to 2 MBit/s. Characteristic for HS CAN networks are the two signal states on the HS CAN  
bus: “dominant” and “recessive” (see Figure 3).  
VCC and GND are the supply pins for the TLE7250. The pins CANH and CANL are the interface to the HS CAN  
bus and operate in both directions, as an input and as an output. RxD and TxD pins are the interface to the CAN  
controller, the TxD pin is an input pin and the RxD pin is an output pin. The NEN and NRM pins are the input pins  
for the mode selection (see Figure 4).  
By setting the TxD input pin to logical “low” the transmitter of the TLE7250 drives a “dominant” signal to the CANH  
and CANL pins. Setting TxD input to logical “high” turns off the transmitter and the output voltage on CANH and  
CANL discharges towards the “recessive” level. The “recessive” output voltage is provided by the bus-biasing (see  
Figure 1). The output of the transmitter is considered to be “dominant”, when the voltage difference between  
CANH and CANL is at least higher than 1.5 V (VDiff = VCANH - VCANL).  
Parallel to the transmitter the normal-mode receiver monitors the signal on the CANH and CANL pins and indicates  
it on the RxD output pin. A “dominant” signal on the CANH and CANL pins sets the RxD output pin to logical “low”,  
vice versa a “recessive” signal sets the RxD output to logical “high”. The normal-mode receiver considers a voltage  
difference (VDiff) between CANH and CANL above 0.9 V as “dominant” and below 0.5 V as “recessive”.  
To be conform with HS CAN features, like the bit to bit arbitration, the signal on the RxD output has to follow the  
signal on the TxD input within a defined loop delay tLoop 255 ns.  
Data Sheet  
9
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Functional Description  
4.2  
Modes of Operation  
The TLE7250 supports three different modes of operation, power-save mode, receive-only mode and normal-  
operating mode while the transceiver is supplied according to the specified functional range. The mode of  
operation is selected by the NEN and the NRM input pins (see Figure 4).  
VCC > VCC(UV,R)  
power-save mode  
NEN = 0  
NRM = 1  
NEN = 1  
NRM = “X”  
NEN = 1 NRM = “X”  
NEN = 1  
NRM = “X”  
NEN = 0  
NRM = 0  
NEN = 0  
NRM = 0  
receive-only  
mode  
normal-operating mode  
NEN = 0 NRM = 1  
NEN = 0  
NRM = 1  
NEN = 0  
NRM = 0  
VCC > VCC(UV,R)  
VCC > VCC(UV,R)  
Figure 4  
Mode state diagram  
4.2.1  
Normal-operating Mode  
In normal-operating mode the transmitter and the receiver of the HS CAN transceiver TLE7250 are active (see  
Figure 1). The HS CAN transceiver sends the serial data stream on the TxD input pin to the CAN bus. The data  
on the CAN bus is displayed at the RxD pin simultaneously. A logical “low” signal on the NEN pin and a logical  
“high” signal on the NRM pin selects the normal-operating mode, while the transceiver is supplied by VCC (see  
Table 2 for details).  
4.2.2  
Power-save Mode  
The power-save mode is an idle mode of the TLE7250 with optimized power consumption. In power-save mode  
the transmitter and the normal-mode receiver are turned off. The TLE7250 can not send any data to the HS CAN  
bus nor receive any data from the HS CAN bus.  
The RxD output pin is permanently “high” in the power-save mode.  
A logical “high” signal on the NEN pin selects the power-save mode, while the transceiver is supplied by the  
transmitter supply VCC (see Table 2 for details).  
In power-save mode the bus input pins are not biased. Therefore the CANH and CANL input pins are floating and  
the HS CAN bus interface has a high resistance.  
4.2.3  
Receive-only Mode  
In receive-only mode the normal-mode receiver is active and the transmitter is turned off. The TLE7250 can  
receive data from the HS CAN bus, but cannot send any data to the HS CAN bus.  
A logical “low” signal on the NEN pin and a logical “low” signal on the NRM pin selects the receive-only mode,  
while the transceiver is supplied by VCC (see Table 2 for details).  
Data Sheet  
10  
Rev. 1.0, 2015-08-12  
 
 
TLE7250LE  
TLE7250SJ  
Functional Description  
4.3  
Power-up and Undervoltage Condition  
By detecting an undervoltage event or by switching off the transmitter power supply VCC, the transceiver TLE7250  
changes the mode of operation (details see Figure 5).  
normal-operating  
mode  
VCC “on”  
NEN “0”  
NRM “1”  
VCC “on”  
NEN “0”  
NRM “1”  
NEN NRM VCC  
0
1
“on”  
VCC “on”  
NEN “0”  
NRM “0”  
VCC “on”  
NEN “0”  
NRM “1”  
power-down  
receive-only  
state  
mode  
VCC “on”  
NEN “0”  
NRM “0”  
NEN NRM VCC  
NEN NRM VCC  
“X”  
“X”  
“off”  
0
0
“on”  
VCC “on”  
NEN “1”  
NRM “X”  
VCC “on”  
NEN “1”  
NRM “X”  
power-save  
mode  
VCC “on”  
NEN “0”  
NRM “0”  
VCC “on”  
NEN “0”  
NRM “X”  
NEN NRM VCC  
“X” “on”  
1
Figure 5  
Power-up and undervoltage  
Modes of operation  
Table 2  
Mode  
NEN  
NRM  
VCC  
Bus-bias Transmitter Normal-mode Low-power  
Receiver  
Receiver  
Normal-operating “low”  
“high”  
“X”  
“on”  
“on”  
“on”  
“off”  
VCC/2  
“on”  
“off”  
“off”  
“off”  
“on”  
not available  
not available  
not available  
not available  
Power-save  
Receive-only  
“high”  
“low”  
floating  
VCC/2  
“off”  
“low”  
“X”  
“on”  
Power-down state “X”  
floating  
“off”  
Data Sheet  
11  
Rev. 1.0, 2015-08-12  
 
 
TLE7250LE  
TLE7250SJ  
Functional Description  
4.3.1  
Power-down State  
Independent of the NEN and NRM input pins the TLE7250 is in power-down state when the transmitter supply  
voltage VCC is turned off (see Figure 5).  
In the power-down state the input resistors of the receiver are disconnected from the bus biasing VCC/2. The CANH  
and CANL bus interface of the TLE7250 is floating and acts as a high-impedance input with a very small leakage  
current. The high-ohmic input does not influence the “recessive” level of the CAN network and allows an optimized  
EME performance of the entire HS CAN network (see also Table 2).  
4.3.2  
Power-up  
The HS CAN transceiver TLE7250 powers up if the transmitter supply VCC is connected to the device. By default  
the device powers up in power-save mode, due to the internal pull-up resistor on the NEN pin to VCC.  
In case the device needs to power-up to normal-operating mode, the NEN pin needs to be pulled active to logical  
“low” while the NRM pin is logical “high” (see Figure 5).  
Data Sheet  
12  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Functional Description  
4.3.3  
Undervoltage on the Transmitter Supply VCC  
In case the transmitter supply VCC falls below the threshold VCC < VCC(UV,F), the transceiver TLE7250 can not  
provide the correct bus levels to the CANH and CANL anymore. The normal-mode receiver is powered by the  
transmitter supply VCC. In case of insufficient VCC supply the TLE7250 can neither transmit the CANH and CANL  
signals correctly to bus nor can it receive them properly. Therefore the TLE7250 powers down and blocks both,  
the transmitter and the receiver.  
The transceiver TLE7250 powers up again, when the transmitter supply VCC recovers from the undervoltage  
condition.  
VCC  
VCC undervoltage monitor  
VCC(UV,R)  
hysteresis  
VCC(UV,H)  
VCC undervoltage monitor  
VCC(UV,F)  
tDelay(UV) delay time undervoltage  
t
any mode of operation  
power-down state  
power-save mode  
NEN  
NRM  
“high” due the internal  
pull-up resistor1)  
“X” = don’t care  
“X” = don’t care  
t
t
“high” due the internal  
pull-up resistor1)  
1) assuming no external signal applied  
Figure 6  
Undervoltage on the transmitter supply VCC  
Data Sheet  
13  
Rev. 1.0, 2015-08-12  
 
TLE7250LE  
TLE7250SJ  
Fail Safe Functions  
5
Fail Safe Functions  
5.1  
Short Circuit Protection  
The CANH and CANL bus outputs are short circuit proof, either against GND or a positive supply voltage. A current  
limiting circuit protects the transceiver against damages. If the device is heating up due to a continuous short on  
the CANH or CANL, the internal overtemperature protection switches off the bus transmitter.  
5.2  
Unconnected Logic Pins  
All logic input pins have an internal pull-up resistor to VCC. In case the VCC supply is activated and the logical pins  
are open, the TLE7250 enters into the power-save mode by default. In power-save mode the transmitter of the  
TLE7250 is disabled and the bus bias is floating.  
5.3  
TxD Time-out Function  
The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the TxD  
pin is continuously “low”. A continuous “low” signal on the TxD pin might have its root cause in a locked-up  
microcontroller or in a short circuit on the printed circuit board, for example. In normal-operating mode, a logical  
“low” signal on the TxD pin for the time t > tTxD enables the TxD time-out feature and the TLE7250 disables the  
transmitter (see Figure 7). The receiver is still active and the data on the bus continues to be monitored by the  
RxD output pin.  
t > tTxD  
TxD time–out released  
TxD time-out  
CANH  
CANL  
t
TxD  
t
RxD  
t
Figure 7  
TxD time-out function  
Figure 7 illustrates how the transmitter is deactivated and activated again. A permanent “low” signal on the TxD  
input pin activates the TxD time-out function and deactivates the transmitter. To release the transmitter after a TxD  
time-out event the TLE7250 requires a signal change on the TxD input pin from logical “low” to logical “high”.  
Data Sheet  
14  
Rev. 1.0, 2015-08-12  
 
TLE7250LE  
TLE7250SJ  
Fail Safe Functions  
5.4  
Overtemperature Protection  
The TLE7250 has an integrated overtemperature detection to protect the TLE7250 against thermal overstress of  
the transmitter. The overtemperature protection is active in normal-operating mode and disabled in power-save  
mode and receive-only mode. In case of an overtemperature condition, the temperature sensor will disable the  
transmitter (see Figure 1) while the transceiver remains in normal-operating mode.  
After the device has cooled down the transmitter is activated again (see Figure 8). A hysteresis is implemented  
within the temperature sensor.  
TJSD (shut down temperature)  
cool down  
TJ  
˂T  
switch-on transmitter  
t
CANH  
CANL  
t
TxD  
t
RxD  
t
Figure 8  
Overtemperature protection  
5.5  
Delay Time for Mode Change  
The HS CAN transceiver TLE7250 changes the mode of operation within the time window tMode. Depending on the  
selected mode of operation, the RxD output pin is set to logical “high” during the mode change.  
In this case the RxD output does not reflect the status on the CANH and CANL input pins (see as an example  
Figure 13 and Figure 14).  
Data Sheet  
15  
Rev. 1.0, 2015-08-12  
 
TLE7250LE  
TLE7250SJ  
General Product Characteristics  
6
General Product Characteristics  
6.1  
Absolute Maximum Ratings  
Table 3  
Absolute maximum ratings voltages, currents and temperatures1)  
All voltages with respect to ground; positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Voltages  
Transmitter supply voltage  
VCC  
-0.3  
-40  
-40  
6.0  
40  
40  
40  
V
V
V
V
P_6.1.1  
P_6.1.2  
P_6.1.3  
P_6.1.4  
CANH DC voltage versus GND VCANH  
CANL DC voltage versus GND  
VCANL  
Differential voltage between  
CANH and CANL  
VCAN SDiff -40  
VMAX_IN -0.3  
VMAX_OUT -0.3  
Voltages at the input pins:  
NEN, NRM, TxD  
6.0  
V
V
P_6.1.5  
P_6.1.6  
Voltages at the output pin:  
RxD  
VCC  
Currents  
RxD output current  
Temperatures  
IRxD  
-20  
20  
mA  
P_6.1.7  
Junction temperature  
Storage temperature  
ESD Resistivity  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_6.1.8  
P_6.1.9  
TS  
ESD immunity at CANH, CANL VESD_HBM_ -9  
9
kV  
kV  
V
HBM  
P_6.1.10  
P_6.1.11  
P_6.1.12  
versus GND  
(100 pF via 1.5 k)2)  
CAN  
ESD immunity at all other pins  
ESD immunity to GND  
VESD_HBM_ -2  
2
HBM  
(100 pF via 1.5 k)2)  
ALL  
VESD_CDM -750  
750  
CDM3)  
1) Not subject to production test, specified by design  
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001  
3) ESD susceptibility, Charge Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM5.3.1  
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability. Integrated protection functions  
are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions  
are considered as “outside” normal-operating range. Protection functions are not designed for continuos  
repetitive operation.  
Data Sheet  
16  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
 
 
 
 
TLE7250LE  
TLE7250SJ  
General Product Characteristics  
6.2  
Functional Range  
Table 4  
Functional range  
Parameter  
Symbol  
Values  
Unit Note /  
Number  
Test Condition  
Min.  
4.5  
Typ. Max.  
Supply Voltages  
Transmitter supply voltage  
Thermal Parameters  
Junction temperature  
VCC  
Tj  
5.5  
V
P_6.2.1  
P_6.2.2  
1)  
-40  
150  
°C  
1) Not subject to production test, specified by design.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
6.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information,  
please visit www.jedec.org.  
Table 5  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
Thermal Resistances  
Junction to Ambient PG-TSON-8  
Junction to Ambient PG-DSO-8  
RthJA  
RthJA  
55  
K/W  
K/W  
2) TLE7250LE  
2) TLE7250SJ  
P_6.3.1  
P_6.3.4  
130  
Thermal Shutdown (junction temperature)  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
TJSD  
150  
175  
10  
200  
°C  
K
P_6.3.2  
P_6.3.3  
T  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board. The product (TLE7250)  
was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Data Sheet  
17  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
TLE7250LE  
TLE7250SJ  
Electrical Characteristics  
7
Electrical Characteristics  
7.1  
Functional Device Characteristics  
Table 6  
Electrical characteristics  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Current consumption at VCC ICC  
normal-operating mode  
2.6  
38  
5
mA “recessive” state,  
P_7.1.1  
P_7.1.2  
P_7.1.3  
V
V
TxD = VNRM = VCC,  
NEN = 0 V;  
Current consumption at VCC ICC  
normal-operating mode  
60  
mA “dominant” state,  
V
V
TxD = VNEN = 0 V,  
NRM = VCC;  
Current consumption at VCC ICC(ROM)  
receive-only mode  
2
5
3
mA  
µA  
V
NEN = VNRM = 0 V;  
Current consumption at VCC ICC(PSM)  
12  
V
TxD = VNEN = VNRM = VCC; P_7.1.4  
power-save mode  
Supply Resets  
V
CC undervoltage monitor  
rising edge  
CC undervoltage monitor  
falling edge  
CC undervoltage monitor  
hysteresis  
CC undervoltage delay time tDelay(UV)  
VCC(UV,R)  
VCC(UV,F)  
VCC(UV,H)  
3.8  
3.65  
4.0  
3.85  
150  
4.3  
4.3  
V
P_7.1.5  
P_7.1.52  
P_7.1.6  
V
V
1)  
V
mV  
µs  
V
100  
1) (see Figure 6);  
P_7.1.7  
Receiver Output RxD  
“High” level output current  
IRD,H  
IRD,L  
2
-4  
4
-2  
mA  
mA  
V
V
RxD = VCC - 0.4 V,  
Diff < 0.5 V;  
P_7.1.8  
P_7.1.9  
“Low” level output current  
V
RxD = 0.4 V, VDiff > 0.9 V;  
Data Sheet  
18  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
 
 
 
TLE7250LE  
TLE7250SJ  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Transmission Input TxD  
“High” level input voltage  
threshold  
VTxD,H  
VTxD,L  
0.5  
0.7  
V
V
“recessive” state;  
“dominant” state;  
P_7.1.10  
P_7.1.11  
× VCC × VCC  
“Low” level input voltage  
threshold  
0.3  
0.4  
× VCC × VCC  
Pull-up resistance  
Input hysteresis  
Input capacitance  
RTxD  
10  
25  
450  
50  
kΩ  
mV  
pF  
1)  
P_7.1.12  
P_7.1.13  
P_7.1.14  
P_7.1.15  
VHYS(TxD)  
CTxD  
1)  
10  
16  
TxD permanent “dominant” tTxD  
4.5  
ms normal-operating mode;  
time-out  
Not Enable Input NEN  
“High” level input voltage  
threshold  
VNEN,H  
0.5 × 0.7 ×  
V
V
power-save mode;  
P_7.1.16  
P_7.1.17  
VCC  
VCC  
“Low” level input voltage  
threshold  
VNEN,L  
0.3 × 0.4 ×  
normal-operating mode,  
receive-only mode;  
VCC  
10  
VCC  
Pull-up resistance  
RNEN  
25  
50  
10  
kΩ  
pF  
1)  
P_7.1.18  
P_7.1.19  
P_7.1.20  
Input capacitance  
CNEN  
1)  
Input hysteresis  
VHYS(NEN)  
200  
mV  
Not Receive-only Input NRM  
“High” level input voltage  
threshold  
VNRM,H  
0.5 × 0.7 ×  
V
V
normal-operating mode,  
power-save mode;  
P_7.1.21  
VCC  
VCC  
“Low” level input voltage  
threshold  
VNRM,L  
0.3 × 0.4 ×  
receive-only mode, power- P_7.1.22  
save mode;  
VCC  
10  
VCC  
Pull-up resistance  
Input capacitance  
Input hysteresis  
Bus Receiver  
RNRM  
25  
50  
10  
kΩ  
pF  
1)  
P_7.1.23  
P_7.1.24  
P_7.1.25  
CNRM  
1)  
VNRM(HYS)  
200  
mV  
2)  
Differential receiver  
VDiff_D  
0.75  
0.66  
0.9  
V
V
P_7.1.26  
threshold “dominant”  
normal-operating mode and  
receive-only mode  
2)  
Differential receiver  
VDiff_R  
0.5  
P_7.1.27  
threshold “recessive”  
normal-operating mode and  
receive-only mode  
Common mode range  
CMR  
-12  
12  
V
V
1)  
CC = 5 V;  
P_7.1.28  
P_7.1.29  
Differential receiver  
hysteresis normal-operating  
mode  
VDiff,hys  
90  
mV  
CANH, CANL input  
resistance  
Ri  
10  
20  
30  
k“recessive” state;  
P_7.1.30  
Data Sheet  
19  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLE7250LE  
TLE7250SJ  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Differential input resistance RDiff  
20  
- 1  
40  
60  
1
k“recessive” state;  
P_7.1.31  
P_7.1.32  
Input resistance deviation  
between CANH and CANL  
Ri  
%
1) “recessive” state;  
Input capacitance CANH,  
CANL versus GND  
CIn  
20  
10  
40  
20  
pF 1) VTxD = VCC;  
pF 1) VTxD = VCC;  
P_7.1.33  
P_7.1.34  
Differential input capacitance CInDiff  
Bus Transmitter  
CANL/CANH “recessive”  
output voltage  
normal-operating mode  
VCANL/H  
2.0  
2.5  
3.0  
50  
V
V
TxD = VCC,  
P_7.1.35  
P_7.1.36  
P_7.1.37  
P_7.1.38  
P_7.1.39  
no load;  
CANH, CANL “recessive”  
output voltage difference  
normal-operating mode  
VDiff_NM  
VCANL  
VCANH  
VDiff  
-500  
0.5  
mV  
V
V
TxD = VCC,  
no load;  
CANL “dominant”  
output voltage  
normal-operating mode  
2.25  
4.5  
3.0  
V
V
V
TxD = 0 V;  
TxD = 0 V;  
TxD = 0 V,  
CANH “dominant”  
output voltage  
normal-operating mode  
2.75  
1.5  
V
CANH, CANL “dominant”  
output voltage difference  
normal-operating mode  
according to ISO 11898-2  
V
50 < RL < 65 ,  
4.75 < VCC < 5.25 V;  
VDiff = VCANH - VCANL  
CANH, CANL “dominant”  
output voltage difference  
normal-operating mode  
VDiff_R45  
1.4  
3.0  
V
V
TxD = 0 V,  
P_7.1.53  
45 < RL < 50 ,  
4.75 < VCC < 5.25 V;  
VDiff = VCANH - VCANL  
Driver “dominant” symmetry VSYM  
normal-operating mode  
VSYM = VCANH + VCANL  
4.5  
40  
5
5.5  
100  
-40  
5
V
V
CC = 5.0 V, VTxD = 0 V;  
P_7.1.40  
P_7.1.41  
P_7.1.42  
P_7.1.43  
CANL short circuit current  
CANH short circuit current  
Leakage current, CANH  
ICANLsc  
75  
mA  
mA  
µA  
V
V
V
CANLshort = 18 V,  
CC = 5.0 V, t < tTxD  
TxD = 0 V;  
,
,
ICANHsc  
-100 -75  
V
V
V
CANHshort = 0 V,  
CC = 5.0 V, t < tTxD  
TxD = 0 V;  
ICANH,lk  
-5  
V
CC = 0 V,  
0 V < VCANH < 5 V,  
CANH=VCANL  
V
;
Data Sheet  
20  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLE7250LE  
TLE7250SJ  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Leakage current, CANL  
ICANL,lk  
-5  
5
µA  
V
CC = 0 V,  
0 V < VCANL < 5 V,  
CANH=VCANL  
P_7.1.44  
V
;
Dynamic CAN-Transceiver Characteristics  
Propagation delay  
TxD-to-RxD “low”  
(“recessive to “dominant”)  
tLoop(H,L)  
180  
180  
255  
255  
300  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
RxD = 15 pF;  
P_7.1.45  
P_7.1.46  
C
Propagation delay  
TxD-to-RxD “high”  
(“dominant” to “recessive”)  
tLoop(L,H)  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
1) CL = 200 pF, RL = 120 , P_7.1.54  
4.75 V < VCC < 5.25 V,  
Propagation delay  
extended load  
tLoop_Ext(H,L)  
TxD-to-RxD “low”  
(“recessive to “dominant”)  
CRxD = 15 pF;  
Propagation delay  
extended load  
tLoop_Ext(L,H)  
300  
ns  
1) CL = 200 pF, RL = 120 , P_7.1.55  
4.75 V < VCC < 5.25 V,  
TxD-to-RxD “high”  
(“dominant” to “recessive”)  
CRxD = 15 pF;  
Propagation delay  
TxD “low” to bus “dominant”  
td(L),T  
td(H),T  
td(L),R  
90  
90  
90  
90  
140  
140  
140  
140  
ns  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
P_7.1.47  
P_7.1.48  
P_7.1.49  
P_7.1.50  
CRxD = 15 pF;  
Propagation delay  
TxD “high” to bus “recessive”  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
bus “dominant” to RxD “low”  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
td(H),R  
CL = 100 pF,  
bus “recessive” to RxD “high”  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Delay Times  
Delay time for mode change tMode  
20  
µs  
1) (see Figure 13 and  
Figure 14);  
P_7.1.51  
Data Sheet  
21  
Rev. 1.0, 2015-08-12  
 
 
 
 
 
 
 
 
 
 
TLE7250LE  
TLE7250SJ  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive current flowing  
into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
CAN FD Characteristics  
Received recessive bit width tBit(RxD)_2MB 400  
at 2 MBit/s  
500  
500  
550  
530  
40  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
P_7.1.59  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 11);  
Transmitted recessive bit  
width  
tBit(Bus)_2MB 435  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 11);  
P_7.1.56  
P_7.1.57  
at 2 MBit/s  
Receiver timing symmetry  
at 2 MBit/s  
ΔtRec_2MB -65  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
tRec = tBit(RxD) - tBit(Bus)  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 11);  
1) Not subject to production test, specified by design.  
2) In respect to the common mode range.  
Data Sheet  
22  
Rev. 1.0, 2015-08-12  
 
 
 
TLE7250LE  
TLE7250SJ  
Electrical Characteristics  
7.2  
Diagrams  
5
NRM  
7
6
CANH  
CANL  
1
8
TxD  
NEN  
CL  
RL  
4
3
RxD  
VCC  
CRxD  
GND  
2
100 nF  
Figure 9  
Test circuits for dynamic characteristics  
TxD  
0.7 x VCC  
0.3 x VCC  
t
td(L),T  
td(H),T  
VDiff  
0.9 V  
0.5 V  
t
td(L),R  
td(H),R  
tLoop(H,L)  
tLoop(L,H)  
RxD  
0.7 x VCC  
0.3 x VCC  
t
Figure 10 Timing diagrams for dynamic characteristics  
Data Sheet  
23  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Electrical Characteristics  
TxD  
0.7 x VCC  
0.3 x VCC  
0.3 x VCC  
t
t
5 x tBit  
tBit  
tLoop(H,L)  
tBit(Bus)  
VDiff = VCANH - VCANL  
VDiff  
0.9 V  
0.5 V  
tLoop(L,H)  
tBit(RxD)  
RxD  
0.7 x VCC  
0.3 x VCC  
t
Figure 11 “Recessive” bit width - five “dominant” bits followed by one “recessive” bit  
Data Sheet  
24  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Application Information  
8
Application Information  
8.1  
ESD Robustness according to IEC61000-4-2  
Test for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 ) have been performed. The results  
and test conditions are available in a separate test report.  
Table 7  
ESD robustness according to IEC61000-4-2  
Result Unit  
Performed Test  
Remarks  
Electrostatic discharge voltage at pin CANH and +8  
kV  
1)Positive pulse  
CANL versus GND  
Electrostatic discharge voltage at pin CANH and -8  
kV  
1)Negative pulse  
CANL versus GND  
1) ESD susceptibility “ESD GUN” according to GIFT / ICT paper: “EMC Evaluation of CAN Transceivers, version 03/02/IEC  
TS62228”, section 4.3. (DIN EN61000-4-2)  
Tested by external test facility (IBEE Zwickau, EMC test report no. TBD).  
Data Sheet  
25  
Rev. 1.0, 2015-08-12  
 
TLE7250LE  
TLE7250SJ  
Application Information  
8.2  
Application Example  
VBAT  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
CANH  
CANL  
EN  
3
VCC  
100 nF  
22 uF  
120  
Ohm  
TLE7250LE  
VCC  
8
1
4
5
Out  
NEN  
7
6
CANH  
CANL  
Out  
TxD  
RxD  
Microcontroller  
e.g. XC22xx  
In  
optional:  
common mode choke  
Out  
NRM  
GND  
GND  
2
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
EN  
3
VCC  
100 nF  
22 uF  
TLE7250LE  
VCC  
8
1
4
5
Out  
NEN  
TxD  
7
6
CANH  
Out  
In  
Microcontroller  
e.g. XC22xx  
RxD  
CANL  
2
optional:  
common mode choke  
Out  
NRM  
GND  
120  
GND  
Ohm  
CANH  
CANL  
example ECU design  
Figure 12 Application circuit  
Data Sheet  
26  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Application Information  
8.3  
Examples for Mode Changes  
Changing the status on the NRM or NEN input pin triggers a change of the operating mode, disregarding the actual  
signal on the CANH, CANL and TxD pins (see also Chapter 4.2).  
Mode changes are triggered by the NRM pin and NEN pin, when the device TLE7250 is fully supplied. Setting the  
NEN pin to logical “low” and the NRM pin to logical “high” changes the mode of operation to normal-operating  
mode:  
The mode change is executed independently of the signal on the HS CAN bus. The CANH, CANL inputs may  
be either “dominant” or “recessive”. They can be also permanently shorted to GND or VCC.  
A mode change is performed independently of the signal on the TxD input. The TxD input may be either logical  
“high” or “low”.  
Analog to that, changing the NEN input pin to logical “high” changes the mode of operation to the power-save  
mode. Changing the NEN input pin and the NRM input pin to logical “low” changes the mode of operation to the  
receive-only mode. Both mode changes are independent on the signals at the CANH, CANL and TxD pins.  
Note:In case the TxD signal is “low” setting the NRM input pin to logical “high” and the NEN input pin to logical  
“low” changes the device to normal-operating mode and drives a “dominant” signal to the HS CAN bus”.  
Note:The TxD time-out is only effective in normal-operating mode. The TxD time-out timer starts when the  
TLE7250 enters normal-operating mode and the TxD input is set to logical “low”.  
Data Sheet  
27  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Application Information  
8.3.1  
Mode Change while the TxD Signal is “low”  
The example in Figure 13 shows a mode change to normal-operating mode while the TxD input is logical “low”.  
The HS CAN signal is “recessive”, assuming all other HS CAN bus subscribers are also sending a “recessive” bus  
signal.  
While the transceiver TLE7250 is in power-save mode, the transmitter and the normal-mode receiver are turned  
off. The TLE7250 drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN bus.  
Changing the NEN to logical “low” turns the mode of operation to normal-operating mode, while the TxD input  
signal remains logical “low”. The transmitter and the normal-mode receiver remain disabled until the mode  
transition is completed. In normal-operating mode the transceiver and the normal-mode receiver are active. The  
“low” signal on the TxD input drives a “dominant” signal to the HS CAN bus and the RxD output pin becomes  
logical “low”, following the “dominant” signal on the HS CAN bus.  
Changing the mode of operation from normal-operating mode to receive-only mode by setting the NRM input pin  
to “low”, disables the transmitter and the TxD input, but the normal-mode receiver and the RxD output remain  
active. The HS CAN bus becomes “recessive” since the transmitter is disabled. The RxD input indicates the  
“recessive” HS CAN bus signal by a logical “high” output signal (see also the example in Figure 13).  
Mode changes between the power-save mode on the one side and the normal-operating mode or the receive-only  
mode on the other side, disable the transmitter and the normal-mode receiver. No signal can be driven to the  
HS CAN bus nor can it be received from the HS CAN bus. Mode changes between the normal-operating mode  
and the receive-only mode disable the transmitter and the normal mode receiver remains active. The HS CAN  
transceiver TLE7250 monitors the HS CAN bus also during the mode transition from normal-operating mode to  
receive-only mode and vice versa.  
8.3.2  
Mode Change while the Bus Signal is “dominant”  
The example in Figure 14 shows a mode change while the bus is “dominant” and the TxD input signal is set to  
logical “high”.  
While the transceiver TLE7250 is in power-save mode, the transmitter and the normal-mode receiver are turned  
off. The TLE7250 drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN bus.  
Changing the NEN to logical “low” turns the mode of operation to normal-operating mode, while the TxD input  
signal remains logical “high”. The transmitter and the normal-mode receiver remain disabled until the mode  
transition is completed. In normal-operating mode the transceiver and the receiver are active and therefor the RxD  
output changes to logical “low” indicating the “dominant” signal on the HS CAN bus.  
Changing the mode of operation from normal-operating mode to receive-only mode by setting the NRM input pin  
to “low”, disables the transmitter and the TxD input, but the normal-mode receiver and the RxD output remain  
active. Since the “dominant” signal on the HS CAN bus is driven by another HS CAN bus subscriber, the bus  
remains “dominant” and the RxD input indicates the “dominant” HS CAN bus signal by a logical “low” output signal  
(see also the example in Figure 14).  
Data Sheet  
28  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Application Information  
Figure 13 Example for a mode change while the TxD is “low”  
Data Sheet 29  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Application Information  
Figure 14 Example for a mode change while the HS CAN is “dominant”  
Data Sheet 30  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Application Information  
8.4  
Further Application Information  
Please contact us for information regarding the pin FMEA.  
Existing application note.  
For further information you may visit: http://www.infineon.com/  
Data Sheet  
31  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Package Outline  
9
Package Outline  
±±0.  
204  
±±0.  
±0.  
±±0.  
±±0.  
±±0.  
3
±03  
±038  
±0±5  
Z
±±0.  
±065  
Pin . Marking  
±±0.  
Pin . Marking  
Z (4:.)  
±03  
PG-TSON-8-.-PO V±.  
±0±7 MIN0  
Figure 15 PG-TSON-8 (Plastic Thin Small Outline Nonleaded PG-TSON-8-1)  
0.35 x 45˚  
1)  
4-0.2  
C
1.27  
B
0.1  
±0.25  
0.64  
+0.1 2)  
-0.06  
0.41  
±0.2  
6
M
M
0.2  
A B 8x  
0.2  
C 8x  
8
5
4
1
A
1)  
5-0.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
GPS01181  
Figure 16 PG-DSO-8 (Plastic Dual Small Outline PG-DSO-8-44)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
32  
Rev. 1.0, 2015-08-12  
TLE7250LE  
TLE7250SJ  
Revision History  
10  
Revision History  
Revision  
Date  
Changes  
Data Sheet created.  
1.00  
2015-08-12  
Data Sheet  
33  
Rev. 1.0, 2015-08-12  
Edition 2015-08-12  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2006 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE7250LE_15

Material Content Data Sheet
INFINEON

TLE7250SJ

Material Content Data Sheet
INFINEON

TLE7250SJXUMA1

Interface Circuit, PDSO8, DSO-8
INFINEON

TLE7250SJ_15

Material Content Data Sheet
INFINEON

TLE7250V

High Speed CAN-Transceiver
INFINEON

TLE7250VLE

Material Content Data Sheet
INFINEON

TLE7250VLEXUMA1

Interface Circuit, PDSO8, TSON-8
INFINEON

TLE7250VLE_15

Material Content Data Sheet
INFINEON

TLE7250VSJ

Material Content Data Sheet
INFINEON

TLE7250VSJXUMA1

Interface Circuit, PDSO8, DSO-8
INFINEON

TLE7250VSJ_15

Material Content Data Sheet
INFINEON

TLE7250V_15

High Speed CAN-Transceiver
INFINEON