TLE8251V [INFINEON]

High Speed CAN Transceiver with Bus Wake-up;
TLE8251V
型号: TLE8251V
厂家: Infineon    Infineon
描述:

High Speed CAN Transceiver with Bus Wake-up

文件: 总35页 (文件大小:1039K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
1
Overview  
Features  
Compliant to ISO11898-2: 2003 and ISO11898-5: 2007  
Wide common mode range for electromagnetic immunity (EMI)  
Very low electromagnetic emission (EME)  
Excellent ESD robustness  
Guaranteed and improved loop delay symmetry to support CAN FD data  
frames up to 2 MBit/s for Japanese OEMs  
VIO input for voltage adaption to the microcontroller supply  
Extended supply range on VCC and VIO supply  
CAN short circuit proof to ground, battery and VCC  
TxD time-out function  
Low CAN bus leakage current in power-down state  
Overtemperature protection  
Protected against automotive transients  
Stand-by mode with remote wake-up function  
Wake-up indication on the RxD output  
Transmitter supply VCC can be turned off in stand-by mode  
Green Product (RoHS compliant)  
AEC Qualified  
Certified according to latest VeLIO (Vehicle LAN Interoperability & Optimization) test requirements for the  
Japanese market  
Applications  
Gateway Modules  
Body Control Modules (BCMs)  
Electric Power steering  
Battery Management Systems  
Cluster and Lighting Control Modules  
Description  
The TLE8251VSJ is a transceiver designed for HS CAN networks in automotive and industrial applications. As  
an interface between the physical bus layer and the CAN protocol controller, the TLE8251VSJ drives the  
Data Sheet  
www.infineon.com/transceiver  
1
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Overview  
signals to the bus and protects the microcontroller against interferences generated within the network. Based  
on the high symmetry of the CANH and CANL signals, the TLE8251VSJ provides a very low level of  
electromagnetic emission (EME) within a wide frequency range.  
The TLE8251VSJ fulfills or exceeds the requirements of the ISO11898-2.  
The TLE8251VSJ provides a digital supply input VIO and a stand-by mode. It is designed to fulfill the enhanced  
physical layer requirements for CAN FD and supports data rates up to 2 MBit/s.  
On the basis of a very low leakage current on the HS CAN bus interface the TLE8251VSJ provides an excellent  
passive behavior in power-down state. These and other features make the TLE8251VSJ exceptionally suitable  
for mixed supply HS CAN networks.  
Based on the Infineon Smart Power Technology SPT, the TLE8251VSJ provides excellent ESD immunity  
together with a very high electromagnetic immunity (EMI). The TLE8251VSJ and the Infineon SPT technology  
are AEC qualified and tailored to withstand the harsh conditions of the automotive environment.  
Two different operating modes, additional fail-safe features like a TxD time-out and the optimized output slew  
rates on the CANH and CANL signals make the TLE8251VSJ the ideal choice for large HS CAN networks with  
high data transmission rates.  
Type  
Package  
Marking  
8251V  
TLE8251VSJ  
PG-DSO-8  
Data Sheet  
2
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
4.1  
4.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
High Speed CAN Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Normal-operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Stand-by Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-up and Undervoltage Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Forced Stand-by Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Undervoltage on the Digital Supply VIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Undervoltage on the Transmitter Supply VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Voltage Adaption to the Microcontroller Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Remote Wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.2.1  
4.2.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.4  
5
Fail Safe Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Unconnected Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TxD Time-out Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Delay Time for Mode Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1  
5.2  
5.3  
5.4  
5.5  
6
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.1  
6.2  
6.3  
7
7.1  
7.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
8.3.2.1  
8.3.2.2  
8.4  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
ESD Robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Examples for Mode Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Mode Change to Stand-by Mode during a dominant Bus Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Mode Change from Stand-by Mode to Normal-operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Mode Change while the TxD Signal is “low” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Mode Change while the Bus Signal is dominant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10  
Data Sheet  
3
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Block Diagram  
2
Block Diagram  
3
5
VCC  
VIO  
Transmitter  
7
1
8
TxD  
STB  
CANH  
CANL  
Timeout  
Driver  
Temp-  
protection  
6
Mode  
control  
Receiver  
Normal-mode receiver  
4
Mux  
RxD  
Wake-logic  
& filter  
Low-power receiver  
VIO  
VCC/2  
=
Bus-biasing  
GND  
2
Figure 1  
Functional block diagram  
Data Sheet  
4
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
2
3
4
8
7
6
5
STB  
CANH  
CANL  
TxD  
GND  
VCC  
RxD  
VIO  
Figure 2  
Pin configuration  
3.2  
Pin Definitions  
Table 1  
Pin definitions and functions  
Pin No. Symbol Function  
1
TxD  
Transmit Data Input;  
internal pull-up to VIO, “low” for dominant state.  
2
3
GND  
Ground  
VCC  
Transmitter Supply Voltage;  
100 nF decoupling capacitor to GND required,  
VCC can be turned off in stand-by mode.  
4
5
RxD  
Receive Data Output;  
“low” in dominant state.  
VIO  
Digital Supply Voltage;  
supply voltage input to adapt the logical input and output voltage levels of the transceiver  
to the microcontroller supply,  
supply for the low-power receiver,  
100 nF decoupling capacitor to GND required.  
6
7
8
CANL  
CANH  
STB  
CAN Bus Low Level I/O;  
“low” in dominant state.  
CAN Bus High Level I/O;  
“high” in dominant state.  
Stand-by Input;  
internal pull-up to VIO, “low” for normal-operating mode.  
Data Sheet  
5
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Functional Description  
4
Functional Description  
HS CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control  
applications. The use of the Controller Area Network (abbreviated CAN) within road vehicles is described by  
the international standard ISO 11898. According to the 7-layer OSI reference model the physical layer of a  
HS CAN bus system specifies the data transmission from one CAN node to all other available CAN nodes within  
the network. The physical layer specification of a CAN bus system includes all electrical and mechanical  
specifications of a CAN network. The CAN transceiver is part of the physical layer specification. Several  
different physical layer standards of CAN networks have been developed in recent years. The TLE8251VSJ is a  
High Speed CAN transceiver with a dedicated bus wake-up function and defined by the international standard  
ISO 11898-5.  
4.1  
High Speed CAN Physical Layer  
VIO  
=
=
Digital supply voltage  
Transmitter supply voltage  
Transmit data input from  
the microcontroller  
TxD  
VCC  
TxD  
VIO  
=
RxD  
=
Receive data output to  
the microcontroller  
CANH =  
CANL =  
Bus level on the CANH  
input/output  
t
t
Bus level on the CANL  
input/output  
CANH  
CANL  
VDiff  
=
Differential voltage  
VCC  
between CANH and CANL  
VDiff = VCANH VCANL  
VDiff  
VCC  
“dominant” receiver threshold  
“recessive” receiver threshold  
t
RxD  
VIO  
tLoop(H,L)  
tLoop(L,H)  
t
Figure 3  
High speed CAN bus signals and logic signals  
Data Sheet  
6
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Functional Description  
The TLE8251VSJ is a High-Speed CAN transceiver, operating as an interface between the CAN controller and  
the physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission  
rates for CAN FD frames up to 2 MBit/s. Characteristic for HS CAN networks are the two signal states on the  
HS CAN bus: dominant and recessive (see Figure 3).  
VCC, VIO and GND are the supply pins for the TLE8251VSJ. The pins CANH and CANL are the interface to the  
HS CAN bus and operate in both directions, as an input and as an output. RxD and TxD pins are the interface  
to the CAN controller, the TxD pin is an input pin and the RxD pin is an output pin. The STB pin is the input pin  
for mode selection (see Figure 4).  
By setting the TxD input pin to logical “low” the transmitter of the TLE8251VSJ drives a dominant signal to the  
CANH and CANL pins. Setting TxD input to logical “high” turns off the transmitter and the output voltage on  
CANH and CANL discharges towards the recessive level. The recessive output voltage is provided by the bus  
biasing (see Figure 1). The output of the transmitter is considered to be dominant, when the voltage difference  
between CANH and CANL is greater than 1.5 V (VDiff = VCANH - VCANL).  
Parallel to the transmitter the normal-mode receiver monitors the signal on the CANH and CANL pins and  
indicates it on the RxD output pin. A dominant signal on the CANH and CANL pins sets the RxD output pin to  
logical “low”, vice versa a recessive signal sets the RxD output to logical “high”. The normal-mode receiver  
considers a voltage difference (VDiff) between CANH and CANL above 0.9 V as dominant and below 0.5 V as  
recessive.  
To conform with HS CAN features, like the bit to bit arbitration, the signal on the RxD output has to follow the  
signal on the TxD input within a defined loop delay tLoop 255 ns.  
The thresholds of the digital inputs (TxD and STB) and of the RxD output voltage are adapted to the digital  
power supply VIO.  
Data Sheet  
7
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Functional Description  
4.2  
Modes of Operation  
stand-by mode  
STB = 1  
VCC = “don’t care”  
VIO > VIO(UV,R)  
STB = 0  
STB = 1  
normal-operating  
mode  
VCC > VCC(UV,R)  
VIO > VIO(UV,R)  
STB = 0  
Figure 4  
Mode state diagram  
4.2.1  
Normal-operating Mode  
In normal-operating mode the transmitter and the receiver of the HS CAN transceiver TLE8251VSJ are active  
(see Figure 1). The HS CAN transceiver sends the serial data stream on the TxD input pin to the CAN bus. The  
data on the CAN bus is displayed at the RxD pin simultaneously. A logical “low” signal on the STB pin selects  
the normal-operating mode, while the transceiver is supplied by VCC and VIO (see Table 2 for details).  
4.2.2  
Stand-by Mode  
The stand-by mode is an idle mode of the TLE8251VSJ with optimized power consumption. In stand-by mode  
the transmitter and the normal-mode receiver are turned off. The TLE8251VSJ cannot send any data to the  
CAN bus nor receive any data from the CAN bus.  
The low-power receiver is connected to the bus lines. Wake-up signals are indicated on the RxD output pin. An  
additional filter, implemented inside the low-power receiver, ensures that only dominant and recessive”  
signals on the CAN bus, which are longer than the CAN activity filter time tFilter, are indicated at the RxD output  
pin (see Figure 8).  
A logical “high” signal on the STB pin selects the stand-by mode, while the transceiver is supplied by the digital  
supply VIO (see Table 2 for details).  
In stand-by mode the bus input pins are biased to GND via the receiver input resistors Ri.  
Undervoltage detection on the transmitter supply VCC is turned off, allowing to switch off the VCC supply in  
stand-by mode.  
Data Sheet  
8
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Functional Description  
4.3  
Power-up and Undervoltage Condition  
When detecting an undervoltage event, either on the transmitter supply VCC or the digital supply VIO, the  
transceiver TLE8251VSJ changes the mode of operation. Turning off the digital power supply VIO, the  
transceiver powers down and remains in the power-down state. While switching off the transmitter supply VCC  
,
the transceiver either changes to the forced stand-by mode, or remains in stand-by mode (details see  
Figure 5).  
normal-operating  
mode  
VIO “on”  
VCC “on”  
STB “0”  
VIO “on”  
VCC “on”  
STB “0”  
STB VCC  
VIO  
0
“on” “on”  
VIO “on”  
VCC “off”  
STB “0”  
VIO “on”  
VCC “on”  
STB “0”  
power-down  
state  
forced stand-by  
mode  
VIO “on”  
VCC “off”  
STB “0”  
STB VCC  
“X” “X”  
VIO  
STB VCC  
VIO  
“off”  
0
“off” “on”  
VIO “on”  
VCC “X”  
STB “1”  
VIO “on”  
VCC “X”  
STB “1”  
stand-by  
mode  
VIO “on”  
VCC “X”  
STB “1”  
STB VCC  
“X”  
VIO  
1
“on”  
Figure 5  
Power-up and undervoltage  
Modes of operation  
Table 2  
Mode  
STB  
VIO  
VCC  
Bus Bias Transmitter Normal-mode Low-power  
Receiver  
Receiver  
Normal-operating “low”  
Stand-by “high”  
“on”  
“on”  
“on”  
“off”  
“on”  
“X”  
V
CC/2  
“on”  
“off”  
“off”  
“on”  
“off”  
GND  
GND  
“off”  
“on”  
Forced stand-by “low”  
Power-down state “X1)”  
“off”  
“X”  
“off”  
“on”  
floating “off”  
“off”  
“off”  
1) “X”: Don’t care  
Data Sheet  
9
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Functional Description  
4.3.1  
Power-down State  
Independent of the transmitter supply VCC and of the STB input pin, the TLE8251VSJ is in power-down state  
when the digital supply voltage VIO is turned off (see Figure 5).  
In power-down state the input resistors of the receiver are disconnected from the bus biasing VCC/2. The CANH  
and CANL bus interface of the TLE8251VSJ is floating and acts as a high-impedance input with a very low  
leakage current. The high-ohmic input does not influence the recessive level of the CAN network and allows  
an optimized EME performance of the entire HS CAN network (see also Table 2).  
4.3.2  
Forced Stand-by Mode  
The forced stand-by mode is a fail-safe mode to avoid any disturbance on the HS CAN bus during loss of the  
transmitter supply VCC  
.
In forced stand-by mode, the transmitter and the normal-mode receiver are turned off and therefore the  
transceiver TLE8251VSJ can not disturb the bus media.  
Similar to stand-by mode, the low-power receiver is connected to the bus lines and wake-up signals on the  
CAN bus are indicated at the RxD output pin (see Figure 8).  
In forced stand-by mode the bus is also biased to GND (details see Table 2) via the receiver input resistors.  
Forced stand-by mode can only be entered when the transmitter supply VCC is not available, either by  
powering up the digital supply VIO only or by turning off the transmitter supply in normal-operating mode.  
While the transceiver TLE8251VSJ is in forced stand-by mode, switching the STB input pin to logical “high”  
triggers a mode change to stand-by mode (see Figure 5).  
4.3.3  
Power-up  
The HS CAN transceiver TLE8251VSJ powers up if at least the digital supply VIO is connected to the device. By  
default the device powers up in stand-by mode, due to the internal pull-up resistor on the STB pin to VIO.  
In case the device is to power-up to normal-operating mode, the STB pin needs to be pulled active to logical  
“low” and the supplies VIO and VCC have to be connected.  
By supplying only the digital power supply VIO the TLE8251VSJ powers up either in forced stand-by mode or  
stand-by mode, depending on the signal of the STB input pin (see Figure 5).  
Data Sheet  
10  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Functional Description  
4.3.4  
Undervoltage on the Digital Supply VIO  
If the voltage on VIO supply input falls below the threshold VIO < VIO(UV,F), the transceiver TLE8251VSJ powers  
down and changes to power-down state.  
Undervoltage detection on the digital supply VIO has the highest priority. It is independent of the transmitter  
supply VCC and also independent of the currently selected operating mode. Any undervoltage event on VIO  
powers down the TLE8251VSJ.  
transmitter supply voltage VCC = “don’t care”  
VIO  
VIO undervoltage monitor  
VIO(UV,R)  
hysteresis  
VIO(UV,H)  
VIO undervoltage monitor  
VIO(UV,F)  
tDelay(UV) delay time undervoltage  
t
any mode of operation  
power-down state  
stand-by mode  
STB  
“high” due the internal  
pull-up resistor1)  
“X” = don’t care  
t
1) assuming no external signal applied  
Figure 6  
Undervoltage on the digital supply VIO  
Data Sheet  
11  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Functional Description  
4.3.5  
Undervoltage on the Transmitter Supply VCC  
In case the transmitter supply VCC falls below the threshold VCC < VCC(UV,F), the transceiver TLE8251VSJ changes  
the mode of operation to forced stand-by mode. The transmitter and also the normal-mode receiver of the  
TLE8251VSJ are powered by the VCC supply. In case of insufficient VCC supply, the TLE8251VSJ can neither  
transmit the CANH and CANL signals correctly to the bus, nor can it receive them properly. Therefore the  
TLE8251VSJ blocks the transmitter and the receiver in forced stand-by mode. The low-power receiver is active  
in forced stand-by mode (see Figure 7).  
Undervoltage detection on the transmitter supply VCC is only active in normal-operating mode (see Figure 5).  
digital supply voltage VIO = “on”  
VCC  
V
CC undervoltage monitor  
VCC(UV,R)  
hysteresis  
VCC(UV,H)  
V
CC undervoltage monitor  
VCC(UV,F)  
tDelay(UV) delay time undervoltage  
t
t
normal-operating mode  
forced stand-by mode  
normal-operating mode  
STB  
Assuming the STB remains “low”. The “low” signal is driven by the external microcontroller  
Figure 7  
Undervoltage on the transmitter supply VCC  
4.3.6  
Voltage Adaption to the Microcontroller Supply  
The HS CAN transceiver TLE8251VSJ has two different power supplies, VCC and VIO. The power supply VCC  
supplies the transmitter and the normal-mode receiver. The power supply VIO supplies the digital input and  
output buffers, the low-power receiver and the wake-up logic. It is also the main power domain for the internal  
logic.  
To adjust the digital input and output levels of the TLE8251VSJ to the I/O levels of the external microcontroller,  
connect the power supply VIO to the microcontroller I/O supply voltage (see Figure 14).  
Note:  
In case the digital supply voltage VIO is not required in the application, connect the digital supply  
voltage VIO to the transmitter supply VCC  
.
Data Sheet  
12  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Functional Description  
4.4  
Remote Wake-up  
The TLE8251VSJ has a remote wake-up feature, also called bus wake-up feature. In both stand-by mode and  
forced stand-by mode, the low-power receiver monitors the activity on the CAN bus and in case it detects a  
wake-up signal, the TLE8251VSJ indicates the wake-up signal on the RxD output pin.  
While entering stand-by mode, the RxD output pin is set to logical “high”, regardless of the signal on the CAN  
bus. The low-power receiver of the TLE8251VSJ requires a signal change from recessive to dominant on the  
CAN bus before the RxD output is enabled to follow the signals on the HS CAN bus.  
HS CAN bus signals, dominant or recessive, with a pulse width above the CAN activity filter time t > tFilter are  
indicated on the RxD output pin. Glitches with a pulse width below the CAN activity filter time t < tFilter are  
ignored and not considered a valid wake-up signal. The RxD output reacts within the reaction time tWU_Rec after  
detecting a wake-up signal (see Figure 8).  
Note:  
A wake-up event on the CAN bus is only indicated on the RxD output, no automatic change of the  
operating mode is applied. To enter normal-operating mode, the external microcontroller needs to  
change the signal on the STB pin.  
The wake-up logic is supplied by the power supply VIO (see Figure 1). In case the TLE8251VSJ is in stand-by  
mode the power supply VCC can be turned off, while the TLE8251VSJ is still able to detect a wake-up signal on  
the HS CAN bus (see also Figure 4).  
VDiff = VCANH - VCANL  
t < tFilter  
t = tFilter  
1.15 V  
t = tWU_Rec  
t = tFilter  
0.4 V  
t = tWU_Rec  
VDiff  
1.15V  
0.4V  
t
t
RxD  
STB  
0.7 x VIO  
0.3 x VIO  
t
Figure 8  
Wake-up pattern  
Data Sheet  
13  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Fail Safe Functions  
5
Fail Safe Functions  
5.1  
Short Circuit Protection  
The CANH and CANL bus outputs are short circuit proof, either against GND or a positive supply voltage. A  
current limiting circuit protects the transceiver against damage. If the device is heating up due to a continuous  
short on the CANH or CANL, the internal overtemperature protection switches off the bus transmitter.  
5.2  
Unconnected Logic Pins  
All logic input pins have an internal pull-up resistor to VIO. In case VIO supply is activated and the logic pins are  
open, the TLE8251VSJ enters stand-by mode by default. In stand-by mode the transmitter of the TLE8251VSJ  
is disabled, the bus bias is turned off and the input resistors of CANH and CANL are connected to GND.  
5.3  
TxD Time-out Function  
The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the  
TxD pin is continuously “low”. A continuous “low” signal on the TxD pin might have its root cause in a locked-  
up microcontroller or in a short circuit on the printed circuit board, for example. In normal-operating mode, a  
logical “low” signal on the TxD pin for the time t > tTxD enables the TxD time-out feature and the TLE8251VSJ  
disables the transmitter (see Figure 9). The receiver is still active and the the RxD output continues monitoring  
data on the bus.  
t > tTxD  
TxD time-out  
TxD time–out released  
CANH  
CANL  
t
TxD  
RxD  
t
t
Figure 9  
TxD time-out function  
Figure 9 illustrates how the transmitter is deactivated and activated again. A permanent “low” signal on the  
TxD input pin activates the TxD time-out function and deactivates the transmitter. To release the transmitter  
after a TxD time-out event the TLE8251VSJ requires a signal change on the TxD input pin from logical “low” to  
logical “high”.  
Data Sheet  
14  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Fail Safe Functions  
5.4  
Overtemperature Protection  
The integrated overtemperature detection protects the TLE8251VSJ against thermal overstress of the  
transmitter. Overtemperature protection is active in normal-operating mode and disabled in stand-by mode.  
In overtemperature condition, the temperature sensor disables the transmitter (see Figure 1) while the  
transceiver remains in normal-operating mode.  
After the device has cooled down the transmitter is activated again (see Figure 10). A hysteresis is  
implemented within the temperature sensor.  
TJSD (shut down temperature)  
cool down  
TJ  
˂T  
switch-on transmitter  
t
CANH  
CANL  
t
TxD  
t
RxD  
t
Figure 10  
Overtemperature protection  
5.5  
Delay Time for Mode Change  
The HS CAN transceiver TLE8251VSJ changes the mode of operation within the time window tMode. During the  
mode change the RxD output pin is permanently set to logical “high” and does not reflect the status on the  
CANH and CANL input pins.  
While changing the mode of operation from normal-operating mode to stand-by mode, the transceiver  
TLE8251VSJ turns off the transmitter and switches from the normal-mode receiver to the low-power receiver.  
After the mode change is completed, the transceiver TLE8251VSJ releases the RxD output pin (see as an  
example Figure 16 and Figure 17).  
Data Sheet  
15  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
General Product Characteristics  
6
General Product Characteristics  
6.1  
Absolute Maximum Ratings  
Table 3  
Absolute maximum ratings voltages, currents and temperatures1)  
All voltages with respect to ground; positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Voltages  
Transmitter supply voltage VCC  
Digital supply voltage VIO  
-0.3  
-0.3  
-40  
-40  
-40  
6.0  
6.0  
40  
V
V
V
V
V
P_6.1.1  
P_6.1.2  
P_6.1.3  
P_6.1.4  
P_6.1.5  
CANH DC voltage versus GND VCANH  
CANL DC voltage versus GND VCANL  
40  
Differential voltage between VCAN_Diff  
40  
CANH and CANL  
Voltages at the input pins:  
STB, TxD  
VMAX_IN  
-0.3  
-0.3  
6.0  
V
V
P_6.1.6  
P_6.1.7  
Voltages at the output pin:  
RxD  
VMAX_OUT  
VIO  
Currents  
RxD output current  
Temperatures  
IRxD  
-20  
20  
mA  
P_6.1.8  
Junction temperature  
Storage temperature  
ESD Resistivity  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_6.1.9  
TS  
P_6.1.10  
ESD immunity at CANH, CANL VESD_HBM_CAN -10  
versus GND  
10  
2
kV  
kV  
V
HBM  
P_6.1.11  
P_6.1.12  
P_6.1.13  
(100 pF via 1.5 k)2)  
ESD immunity at all other  
pins  
VESD_HBM_ALL -2  
VESD_CDM -750  
HBM  
(100 pF via 1.5 k)2)  
ESD immunity to GND  
750  
CDM3)  
1) Not subject to production test, specified by design  
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001  
3) ESD susceptibility, Charge Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM5.3.1  
Note:  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability. Integrated  
protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal-operating range. Protection  
functions are not designed for continuos repetitive operation.  
Data Sheet  
16  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
General Product Characteristics  
6.2  
Functional Range  
Table 4  
Functional range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Supply Voltages  
Transmitter supply voltage VCC  
4.5  
3.0  
5.5  
5.5  
V
V
P_6.2.1  
P_6.2.2  
Digital supply voltage  
Thermal Parameters  
Junction temperature  
VIO  
1)  
Tj  
-40  
150  
°C  
P_6.2.3  
1) Not subject to production test, specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
6.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, please visit www.jedec.org.  
Table 5  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
K/W 2) TLE8251VSJ  
Number  
P_6.3.1  
Min. Typ. Max.  
Thermal Resistances  
Junction to Ambient PG-  
DSO-8  
RthJA  
130  
Thermal Shutdown (junction temperature)  
Thermal shutdown  
temperature  
TJSD  
150  
175  
10  
200  
°C  
K
P_6.3.2  
P_6.3.3  
Thermal shutdown  
hysteresis  
ΔT  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board. The product  
(TLE8251VSJ) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Data Sheet  
17  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Electrical Characteristics  
7
Electrical Characteristics  
7.1  
Functional Device Characteristics  
Table 6  
Electrical characteristics  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Current consumption at VCC ICC  
normal-operating mode  
2.6  
38  
4
mA recessive state,  
P_7.1.1  
P_7.1.2  
P_7.1.3  
P_7.1.4  
P_7.1.5  
P_7.1.6  
VTxD = VIO, VSTB = 0 V;  
Current consumption at VCC ICC  
normal-operating mode  
60  
1
mA dominant state,  
VTxD = VSTB = 0 V;  
Current consumption at VIO IIO  
normal-operating mode  
mA VSTB = 0 V;  
Current consumption at VCC ICC(STB)  
stand-by mode  
5
µA VTxD = VSTB = VIO;  
Current consumption at VIO IIO(STB)  
stand-by mode  
8
14  
µA VTxD = VSTB = VIO,  
0 V < VCC < 5.5 V;  
Current consumption at VIO IIO(STB)_105  
stand-by mode @ 105°C  
6
12.5 µA VTxD = VSTB = VIO,  
0 V < VCC < 5.5 V,  
T < 105°C;  
Supply Resets  
V
CC undervoltage monitor  
VCC(UV,R)  
VCC(UV,F)  
VCC(UV,H)  
VIO(UV,R)  
VIO(UV,F)  
VIO(UV,H)  
tDelay(UV)  
3.8  
4.0  
4.3  
V
P_7.1.7  
P_7.1.8  
P_7.1.9  
P_7.1.10  
P_7.1.11  
P_7.1.12  
P_7.1.13  
rising edge  
VCC undervoltage monitor  
falling edge  
3.65 3.85 4.3  
V
1)  
VCC undervoltage monitor  
hysteresis  
150  
2.5  
2.3  
200  
mV  
V
VIO undervoltage monitor  
2.0  
1.8  
3.0  
3.0  
rising edge  
VIO undervoltage monitor  
falling edge  
V
1)  
VIO undervoltage monitor  
hysteresis  
mV  
µs  
VCC and VIO undervoltage  
delay time, rising edge  
100  
1) (see Figure 6 and  
Figure 7);  
Data Sheet  
18  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Receiver Output RxD  
“High” level output current IRD,H  
2
-4  
4
-2  
mA VRxD = VIO - 0.4 V,  
VDiff < 0.5 V;  
P_7.1.14  
P_7.1.15  
“Low” level output current  
Transmission Input TxD  
IRD,L  
mA VRxD = 0.4 V, VDiff > 0.9 V;  
“High” level input voltage  
threshold  
VTxD,H  
VTxD,L  
0.5  
× VIO × VIO  
0.7  
V
V
recessive state;  
dominant state;  
P_7.1.16  
P_7.1.17  
“Low” level input voltage  
threshold  
0.3  
× VIO × VIO  
0.4  
Pull-up resistance  
Input hysteresis  
Input capacitance  
RTxD  
10  
25  
450  
50  
kΩ  
mV  
pF  
P_7.1.18  
P_7.1.19  
P_7.1.20  
1)  
VHYS(TxD)  
CTxD  
1)  
10  
16  
TxD permanent dominant  
time-out  
tTxD  
4.5  
ms normal-operating mode; P_7.1.21  
Stand-by Input STB  
“High” level input voltage  
threshold  
VSTB,H  
VSTB,L  
0.5  
× VIO × VIO  
0.7  
V
V
stand-by mode;  
P_7.1.22  
“Low” level input voltage  
threshold  
0.3  
× VIO × VIO  
0.4  
normal-operating mode; P_7.1.23  
Pull-up resistance  
Input capacitance  
Input hysteresis  
Bus Receiver  
RSTB  
10  
25  
50  
10  
kΩ  
pF  
P_7.1.24  
P_7.1.25  
P_7.1.26  
1)  
CSTB  
1)  
VHYS(STB)  
200  
mV  
2)  
Differential receiver  
threshold dominant  
normal-operating mode  
VDiff_D  
0.75 0.9  
V
V
P_7.1.27  
P_7.1.28  
2)  
Differential receiver  
threshold recessive  
normal-operating mode  
VDiff_R  
0.5  
0.66  
1) 2)  
1) 2)  
2)  
Differential range dominant VDiff_D_Range 0.9  
normal-operating mode  
-
-
8.0  
0.5  
V
V
V
P_7.1.29  
P_7.1.30  
P_7.1.31  
Differential range recessive VDiff_R_Range -3.0  
normal-operating mode  
Differential receiver  
threshold dominant  
stand-by mode  
VDiff_D_STB  
0.75 1.15  
Data Sheet  
19  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
P_7.1.32  
Min. Typ. Max.  
2)  
Differential receiver  
threshold recessive  
stand-by mode  
VDiff_R_STB 0.4  
0.72  
V
1)2)  
Differential range dominant VDiff_D_Range 1.15  
Stand-by mode  
-
-
8.0  
0.4  
V
P_7.1.33  
P_7.1.34  
_STB  
1)2)  
Differential range recessive VDiff_R_Range -3.0  
V
Stand-by mode  
_STB  
Common mode range  
CMR  
-12  
12  
V
VCC = 5 V;  
1)  
P_7.1.35  
P_7.1.36  
Differential receiver  
hysteresis  
VDiff,hys  
90  
mV  
normal-operating mode  
CANH, CANL input resistance Ri  
Differential input resistance RDiff  
10  
20  
- 1  
20  
40  
30  
60  
1
krecessive state;  
krecessive state;  
P_7.1.37  
P_7.1.38  
P_7.1.39  
Input resistance deviation  
between CANH and CANL  
ΔRi  
%
1) recessive state;  
1)  
Input capacitance CANH,  
CANL versus GND  
CIn  
20  
10  
40  
20  
pF  
pF  
V
V
= VIO;  
= VIO:  
P_7.1.40  
P_7.1.41  
TxD  
TxD  
1)  
Differential input  
capacitance  
CIn_Diff  
Bus Transmitter  
CANL/CANH recessive  
output voltage  
normal-operating mode  
VCANL/H_R  
2.0  
2.5  
3.0  
50  
V
VTxD = VIO,  
no load;  
P_7.1.42  
P_7.1.43  
P_7.1.44  
P_7.1.45  
P_7.1.46  
P_7.1.47  
CANH, CANL recessive  
output voltage difference  
normal-operating mode  
VDiff_NM  
-500  
mV VTxD = VIO,  
no load;  
CANH, CANL recessive  
output voltage  
stand-by mode  
VCANL,H_STB -0.1  
0.1  
0.2  
2.25  
4.5  
V
V
V
V
no load;  
no load;  
VTxD = 0 V;  
VTxD = 0 V;  
CANH, CANL recessive  
output voltage difference  
stand-by mode  
VDiff_STB  
-0.2  
0.5  
CANL dominant  
output voltage  
normal-operating mode  
VCANL  
CANH dominant  
VCANH  
2.75  
output voltage  
normal-operating mode  
Data Sheet  
20  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
P_7.1.48  
Min. Typ. Max.  
CANH, CANL dominant  
output voltage difference  
normal-operating mode  
according to ISO 11898-2  
VDiff  
1.5  
3.0  
V
VTxD = 0 V,  
50 < RL < 65 ,  
4.75 < VCC < 5.25 V;  
VDiff = VCANH - VCANL  
CANH, CANL dominant  
output voltage difference  
normal-operating mode  
VDiff_EXT  
1.4  
1.5  
3.3  
5
V
V
V
VTxD = 0 V,  
45 < RL < 70 ,  
4.75 < VCC < 5.25 V;  
P_7.1.49  
P_7.1.50  
VDiff = VCANH - VCANL  
CANH, CANL dominant  
output voltage difference  
normal-operating mode  
VDiff_HEXT  
VTxD = 0 V,  
static behavior,  
RL = 2240,  
VDiff = VCANH - VCANL  
4.75 < VCC < 5.25 V 1)  
;
Driver dominant symmetry VSYM  
normal-operating mode  
VSYM = VCANH + VCANL  
4.5  
40  
5
5.5  
100  
-40  
5
VCC = 5.0 V, VTxD = 0 V;  
P_7.1.51  
P_7.1.52  
P_7.1.53  
P_7.1.54  
P_7.1.55  
CANL short circuit current  
CANH short circuit current  
Leakage current, CANH  
Leakage current, CANL  
ICANLsc  
75  
mA VCANLshort = 18 V,  
VCC = 5.0 V, t < tTxD  
,
,
VTxD = 0 V;  
ICANHsc  
ICANH,lk  
ICANL,lk  
-100 -75  
mA VCANHshort = -3 V,  
VCC = 5.0 V, t < tTxD  
VTxD = 0 V;  
-5  
-5  
µA VCC = VIO = 0 V,  
0 V < VCANH < 5 V,  
VCANH = VCANL;  
5
µA VCC = VIO = 0 V,  
0 V < VCANL < 5 V,  
VCANH = VCANL;  
Data Sheet  
21  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Dynamic CAN-Transceiver Characteristics  
Propagation delay  
TxD-to-RxD “low”  
(“recessive to dominant)  
td(L),TR  
td(H),TR  
td(L),T  
td(H),T  
td(L),R  
td(H),R  
170  
170  
90  
230  
230  
140  
140  
140  
140  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
C = 15 pF;  
P_7.1.56  
P_7.1.57  
P_7.1.58  
P_7.1.59  
P_7.1.60  
P_7.1.61  
Propagation delay  
TxD-to-RxD “high”  
(dominant to recessive)  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
TxD “low” to bus dominant  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
TxD “high” to bus recessive  
90  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
bus dominant to RxD “low”  
90  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
90  
CL = 100 pF,  
bus recessive to RxD “high”  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Delay Times  
Delay time for mode change tMode  
20  
5
µs  
µs  
1) (see Figure 16);  
1) (see Figure 17);  
P_7.1.62  
P_7.1.63  
RxD reaction delay,  
stand-by mode to normal-  
operating mode,  
tRxD_Rec  
CAN activity filter time  
Wake-up reaction time  
tFilter  
0.5  
5
5
µs  
µs  
(see Figure 8);  
1) (see Figure 8);  
P_7.1.64  
P_7.1.65  
tWU_Rec  
Data Sheet  
22  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
CAN FD Characteristics -  
Received recessive bit width tBit(RxD)_2MB 430  
at 2 MBit/s  
500  
500  
530  
530  
20  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
P_7.1.66  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 13);  
Transmitted recessive bit  
width  
tBit(Bus)_2MB 450  
CL = 100 pF,  
P_7.1.67  
P_7.1.68  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 13);  
at 2 MBit/s  
Receiver timing symmetry  
at 2 MBit/s  
ΔtRec_2MB  
-45  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
ΔtRec = tBit(RxD) - tBit(Bus)  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 13);  
1) Not subject to production test, specified by design.  
2) In respect to common mode range.  
Data Sheet  
23  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Electrical Characteristics  
7.2  
Diagrams  
5
VIO  
100 nF  
7
6
CANH  
CANL  
1
8
TxD  
STB  
CL  
RL  
4
3
RxD  
VCC  
CRxD  
GND  
2
100 nF  
Figure 11  
Test circuits for dynamic characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
t
t
td(L),T  
td(H),T  
VDiff  
0.9 V  
0.5 V  
td(H),R  
td(L),R  
tLoop(H,L)  
tLoop(L,H)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 12  
Timing diagrams for dynamic characteristics  
Data Sheet  
24  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Electrical Characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
0.3 x VIO  
t
t
5 x tBit  
tBit  
tLoop(H,L)  
tBit(Bus)  
VDiff = VCANH - VCANL  
VDiff  
0.9 V  
0.5 V  
tLoop(L,H)  
tBit(RxD)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 13  
Recessive bit time - five dominant bits followed by one recessive bit  
Data Sheet  
25  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Application Information  
8
Application Information  
8.1  
ESD Robustness according to IEC61000-4-2  
Tests for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 ) have been performed. The  
results and test conditions are available in a separate test report.  
Table 7  
ESD robustness according to IEC61000-4-2  
Result Unit  
Performed Test  
Remarks  
Electrostatic discharge voltage at pin CANH and +8  
kV  
1)Positive pulse  
CANL versus GND  
Electrostatic discharge voltage at pin CANH and -8  
kV  
1)Negative pulse  
CANL versus GND  
1) ESD susceptibility “ESD GUN” according to GIFT / ICT paper: “EMC Evaluation of CAN Transceivers, version 03/02/IEC  
TS62228”, section 4.3. (DIN EN61000-4-2)  
Tested by external test facility (IBEE Zwickau, EMC test report no. TBD).  
Data Sheet  
26  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Application Information  
8.2  
Application Example  
VBAT  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
CANH  
CANL  
EN  
100 nF  
3
VCC  
100 nF  
22 uF  
VIO  
5
8
1
4
120  
Ohm  
TLE8251VSJ  
VCC  
Out  
Out  
In  
STB  
7
6
CANH  
CANL  
TxD  
RxD  
Microcontroller  
e.g. XC22xx  
optional:  
common mode choke  
GND  
GND  
2
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
EN  
3
VCC  
100 nF  
22 uF  
VIO  
100 nF  
5
8
1
4
TLE8251VSJ  
VCC  
Out  
STB  
7
6
CANH  
Out  
In  
TxD  
RxD  
Microcontroller  
e.g. XC22xx  
CANL  
2
optional:  
common mode choke  
GND  
120  
Ohm  
GND  
CANH  
CANL  
example ECU design  
Figure 14  
Application circuit  
8.3  
Examples for Mode Changes  
Changing the status on the STB input pin triggers a change of the operating mode, disregarding the actual  
signal on the CANH, CANL and TxD pins (see also Chapter 4.2).  
Data Sheet  
27  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Application Information  
Mode changes are triggered by the STB pin when the device TLE8251VSJ is fully supplied. Setting the STB pin  
to logical “low” changes the mode of operation to normal-operating mode:  
The mode change is executed independently of the signal on the HS CAN bus. The CANH, CANL inputs may  
be either dominant or recessive. They can be also permanently shorted to GND or VCC  
.
A mode change is performed independently of the signal on the TxD input. The TxD input may be either  
logical “high” or “low”.  
Analog to that, changing the STB input pin to logical “high” changes the mode of operation to the stand-by  
mode, independent on the signals at the CANH, CANL and TxD pins.  
Note:  
In case the TxD signal is “low” setting the STB input pin to logical “low” changes the operating mode  
of the device to normal-operating mode and drives a dominant signal to the HS CAN bus.  
Note:  
The TxD time-out is only effective in normal-operating mode. The TxD time-out timer starts when the  
TLE8251VSJ enters normal-operating mode and the TxD input is set to logical “low”.  
Data Sheet  
28  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Application Information  
8.3.1  
Mode Change to Stand-by Mode during a dominant Bus Signal  
Figure 15 shows an example of mode change from normal-operating mode to stand-by mode while the signal  
on the HS CAN bus is dominant.  
During the mode transition time tMode, the TLE8251VSJ blocks the RxD output and provides a logical “high” on  
the RxD output pin. The internal receiver switches from the normal-mode receiver to the low-power receiver,  
while changing from normal-operating mode to stand-by mode.  
After entering stand-by mode the TLE8251VSJ continues to indicate a “high” signal on the RxD output as long  
as the HS CAN bus remains dominant. The permanent dominant bus signal is not considered a wake-up event  
and is therefore not indicated on the RxD output pin.  
Detecting the first signal change from recessive to dominant on the HS CAN bus releases the internal wake-up  
logic. Within the wake-up reaction time tWU_Rec, a recessive CAN bus signal is indicated on the RxD output pin  
by a logical “high” signal and a dominant CAN bus signal is indicated by a logical “low” signal, as long as the  
pulse width of the HS CAN bus signals exceeds CAN activity filter time t > tFilter  
.
Entering stand-by mode while the HS CAN bus signal is recessive, a release of the internal wake-up logic is not  
necessary and a dominant wake-up signal (t > tFilter) on the HS CAN bus is indicated on the RxD output pin  
within the wake-up reaction time tWU_Rec (compare to Figure 8).  
Note: The “dominant” signal on the HS CAN bus is set by another HS CAN bus subscriber.  
t = tMode  
STB  
t
normal-operating  
transition  
stand-by mode  
TxD  
VDiff  
t
t
t
Filter + tWU_Rec  
tFilter + tWU_Rec  
t
Filter + tWU_Rec  
tFilter + tWU_Rec  
VDiff = VCANH - VCANL  
1.15V  
1.15V  
0.4V  
0.4V  
first change “recessive” to “dominant”  
RxD  
t
RxD “high”  
RxD “low”  
indicating a  
“dominant” bus  
signal  
RxD “high”  
due to the  
mode  
RxD “low”  
indicating a  
“dominant” bus  
wake-up signal  
RxD “high”  
indicating a  
“recessive” bus  
wake-up signal  
The low-power receiver is not detecting a wake-up as  
long the bus signal is permanently “dominant”. The first  
change from to “recessive” to “dominant” releases the  
wake-up logic.  
transition  
Figure 15  
Change to stand-by mode during bus dominant  
Data Sheet  
29  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Application Information  
8.3.2  
Mode Change from Stand-by Mode to Normal-operating Mode  
8.3.2.1  
Mode Change while the TxD Signal is “low”  
Figure 16 shows an example of mode change to normal-operating mode while the TxD input is logical “low”.  
The HS CAN signal is recessive, assuming all other HS CAN bus subscribers are also sending a recessive bus  
signal.  
While the TLE8251VSJ is in stand-by mode, the transmitter and the normal-mode receiver are turned off. In  
stand-by mode the low-power receiver is active. The TLE8251VSJ drives no signal to the HS CAN bus, the RxD  
output is connected to the low-power receiver and follows only the HS_CAN bus signals when its pulse width  
exceeds CAN activity filter time tFilter. Changing the STB to logical “low” turns the mode of operation to normal-  
operating mode, while the TxD input signal remains logical “low”. The transmitter and the normal-mode  
receiver remain disabled until the mode transition is completed. During the mode transition the RxD output is  
blocked and set to logical “high”. In normal-operating mode the transmitter and the normal-mode receiver  
are active. The “low” signal on the TxD input drives a dominant signal to the HS CAN bus and the RxD output  
becomes logical “low” following the dominant signal on the HS CAN bus.  
Changing the STB pin back to logical “high”, disables the transmitter and normal-mode receiver again. The  
RxD output pin is blocked and set to logical “high” with the start of the mode transition. The TxD input and the  
transmitter are blocked and the HS CAN bus becomes recessive.  
Note: The signals on the HS CAN bus are “recessive, the “dominant” signal is  
generated by the TxD input signal  
t = tMode  
t = tMode  
STB  
TxD  
t
t
VDiff  
RxD  
t
t
stand-by mode transition  
normal-operating  
transition  
stand-by mode  
low-power receiver RxD output  
normal-mode receiver  
active  
RxD output  
blocked  
low-power receiver active  
active  
blocked  
TxD input and transmitter  
active  
TxD input and transmitter blocked  
TxD input and transmitter blocked  
Figure 16  
Mode change from stand-by mode to normal-operating mode  
Data Sheet  
30  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Application Information  
8.3.2.2  
Mode Change while the Bus Signal is dominant  
Figure 17 shows an example of mode change while the bus is dominant and the TxD input signal is set to  
logical “high”.  
While the TLE8251VSJ is in stand-by mode, the transmitter and the normal-mode receiver are turned off. In  
stand-by mode the low-power receiver is active. The TLE8251VSJ drives no signal to the HS CAN bus, the RxD  
output is connected to the low-power receiver and follows only the HS_CAN bus signals when its pulse width  
exceeds the bus wake-up time tWU. Changing the STB to logical “low” turns the mode of operation to normal-  
operating mode, while the TxD input signal remains logical “high”. The transmitter and the normal-mode  
receiver remain disabled until the mode transition is completed. During the mode transition the RxD output is  
blocked and set to logical “high”. In normal-operating mode the normal-mode receiver is active and the RxD  
output follows the dominant signal on the HS CAN bus by indicating a logical “low” signal.  
Changing the STB pin back to logical “high”, disables the transmitter and normal-mode receiver again. The  
RxD output pin is blocked and set to logical “high” with the start of the mode transition. The low-power  
receiver is active in stand-by mode. The RxD output signal remains “high” as long as the HS CAN bus remains  
dominant. Only if the HS CAN bus changes to a recessive signal exceeding CAN activity filter time tFilter, the RxD  
output follows the bus signal within wake-up reaction time tWU_Rec (see also Chapter 8.3.1).  
Note: The “dominant” signal on the HS CAN bus is set by another HS CAN bus subscriber.  
t = tMode  
t = tMode  
STB  
TxD  
VDiff  
t
t
t
t
tFilter + tWU_Rec  
tRxD_Rec  
RxD  
stand-by mode  
transition  
normal-operating  
transition  
stand-by mode  
RxD output  
blocked  
RxD output  
blocked  
low-power receiver active  
normal-mode receiver active  
low-power receiver active  
TxD input and transmitter blocked  
TxD input & transmitter active  
TxD input and transmitter blocked  
Figure 17  
Receiving a dominant signal from the bus during a mode change  
Data Sheet  
31  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Application Information  
8.4  
Further Application Information  
Please contact us for information regarding the pin FMEA.  
Existing application note.  
For further information you may visit: http://www.infineon.com/transceiver  
Data Sheet  
32  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Package Outline  
9
Package Outline  
0.35 x 45˚  
1)  
4-0.2  
C
1.27  
B
0.1  
±0.25  
0.64  
+0.1 2)  
-0.06  
0.41  
±0.2  
6
M
M
0.2  
A B 8x  
0.2  
C 8x  
8
1
5
4
A
1)  
5-0.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
GPS01181  
Figure 18  
PG-DSO-8 (Plastic Dual Small Outline PG-DSO-8)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
33  
Rev. 1.0  
2016-07-15  
TLE8251V  
High Speed CAN Transceiver with Bus Wake-up  
Revision History  
10  
Revision History  
Revision  
1.0  
Date  
Changes  
2016-07-15 Data Sheet created.  
Data Sheet  
34  
Rev. 1.0  
2016-07-15  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2016-07-15  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
WARNINGS  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2016 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

TLE8251VSJ

High Speed CAN Transceiver with Bus Wake-up
INFINEON

TLE8251VSJXUMA1

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8261-2E

Universal System Basis Chip
INFINEON

TLE8261E

Universal System Basis Chip HERMES Rev. 1.0
INFINEON

TLE8261EXUMA1

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON

TLE8261EXUMA3

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON

TLE8262-2E

Universal System Basis Chip
INFINEON

TLE8262E

Universal System Basis Chip HERMES Rev. 1.0
INFINEON

TLE8263-2E

Universal System Basis Chip
INFINEON

TLE82632EXUMA1

Interface Circuit, PDSO36, GREEN, PLASTIC, SOP-36
INFINEON

TLE8263E

Universal System Basis Chip HERMES Rev. 1.0
INFINEON

TLE8263EXT

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON