TLE94104EP [INFINEON]

TLE9410EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。;
TLE94104EP
型号: TLE94104EP
厂家: Infineon    Infineon
描述:

TLE9410EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。

空调 PC 电机 驱动 驱动器
文件: 总63页 (文件大小:1651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE94104EP  
Features  
Four half bridge power outputs  
Very low power consumption in sleep mode  
3.3V / 5V compatible inputs with hysteresis  
All outputs with overload and short circuit protection  
Independently diagnosable outputs (overcurrent, open load)  
Open load diagnostics in ON-state for all high-side and low-side  
16-bit Standard SPI interface with daisy chain and in-frame response capability for control and diagnosis  
Fast diagnosis with the global error flag  
Overtemperature pre-warning and protection  
Over- and Undervoltage lockout  
Cross-current protection  
Potential applications  
HVAC Flap DC motors  
Monostable and bistable relays  
Side mirror x-y adjustment  
Voltage controlled bipolar stepper motors  
Product validation  
Qualified for Automotive Applications. Product Validation according to AEC-Q100  
Description  
The TLE94104EP is a protected quad half-bridge driver designed especially for automotive motion control  
applications such as Heating, Ventilation and Air Conditioning (HVAC) flap DC motor control. It is part of a  
larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI  
interface.  
The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation  
modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It  
offers diagnosis features such as short circuit, open load, power supply failure and overtemperature  
detection. In combination with its low quiescent current, this device is attractive among others for automotive  
applications. The small fine pitch exposed pad package, PG-TSDSO-14, provides good thermal performance  
and reduces PCB-board space and costs.  
Datasheet  
www.infineon.com  
1
1.0  
2017-12-07  
TLE94104EP  
Type  
Package  
Marking  
TLE94104EP  
PG-TSDSO-14  
TLE94104  
Table 1  
Product Summary  
Operating Voltage  
Logic Supply Voltage  
VS  
5.5 ... 20 V  
VDD  
3.0 ... 5.5 V  
40 V  
Maximum Supply Voltage for Load Dump  
Protection  
VS(LD)  
Minimum Overcurrent Threshold  
ISD  
0.9 A  
Maximum On-State Path Resistance at Tj = 150°C RDSON(total)_HSx+LSy  
1.8 + 1.8  
0.1 µA  
Typical Quiescent Current at Tj = 85°C  
Maximum SPI Access Frequency  
ISQ  
fSCLK  
5 MHz  
Datasheet  
2
1.0  
2017-12-07  
TLE94104EP  
Table of Contents  
1
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.1  
1.2  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1  
Voltage and current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
3.3  
3.4  
4
Characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reset Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1  
5.2  
5.2.1  
5.2.2  
5.3  
5.4  
6
6.1  
6.2  
Half-Bridge Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Protection & Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Short Circuit of Output to Supply or Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Cross-Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Temperature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Overvoltage and undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
VS Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
VS Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.4.1  
6.2.4.2  
6.2.4.3  
6.2.5  
V
DD Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7
7.1  
7.1.1  
7.1.2  
7.1.3  
7.2  
7.3  
7.4  
7.5  
7.6  
Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SPI Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Global Error Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Global Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
SPI protocol error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
SPI with independent slave configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Daisy chain operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Status register change during SPI communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
SPI Bit Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
SPI Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Control register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
SPI Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Status register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
7.6.1  
7.7  
7.7.1  
8
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
8.1  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Datasheet  
3
1.0  
2017-12-07  
TLE94104EP  
8.2  
8.3  
Thermal application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
EMC Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
9
10  
Datasheet  
4
1.0  
2017-12-07  
TLE94104EP  
Pin Configuration  
1
Pin Configuration  
1.1  
Pin Assignment  
SDI  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDD  
SDO  
CSN  
SCLK  
TEST  
VS  
TEST  
EN  
OUT 4  
OUT 3  
OUT 1  
OUT 2  
GND  
8
Figure 1  
Pin Configuration TLE94104EP with SPI interface  
1.2  
Pin Definitions and Functions  
Pin  
1
Symbol  
Function  
SDI  
Serial data input with internal pull down  
Chip select Not input with internal pull up  
Serial clock input with internal pull down  
2
CSN  
3
SCLK  
TEST  
VS  
4
Test pin. This pin can be left open or be terminated to ground.  
Main supply voltage for power half bridges.  
Power half-bridge 3  
5
6
OUT 3  
OUT 1  
GND  
OUT 2  
OUT 4  
EN  
7
Power half-bridge 1  
8
Ground  
9
Power half-bridge 2  
10  
11  
Power half-bridge 4  
Enable with internal pull-down; Places device in standby mode by pulling the EN  
line Low  
12  
TEST  
SDO  
VDD  
-
Test pin. This pin must be terminated to ground  
Serial data output  
13  
14  
Logic supply voltage  
EDP  
Exposed Die Pad; For cooling and EMC purposes only - not usable as electrical  
ground. Electrical ground must be provided by pins 8. 1)  
1) The exposed die pad at the bottom of the package allows better heat dissipation from the device via the PCB. The  
exposed pad (EP) must be either left open or connected to GND. It is recommended to connect EP to GND for best  
EMC and thermal performance.  
Datasheet  
5
1.0  
2017-12-07  
TLE94104EP  
Block Diagram  
2
Block Diagram  
VDD  
VS  
Quad Half Bridge Driver  
SPI Interface  
UNDERVOLTAGE  
&
OVERVOLTAGE  
MONITOR  
CHARGE  
PUMP  
BIAS  
Power stage  
EN  
&
Power driver  
open load  
MONITOR  
d
e
t
e
ction  
short to ground  
high-side  
driver  
detection  
CSN  
SCLK  
SDI  
overtemperature  
detection  
LOGIC CONTROL & LATCH  
SPI INTERFACE  
OUT 1  
OUT 2  
OUT 3  
OUT 4  
temp  
sensor  
SDO  
open load  
detection  
short to battery  
tection  
low-side  
driver  
de
ERROR  
DETECTION  
overtemperature  
GND  
Figure 2  
Block Diagram TLE94104EP (SPI Interface)  
Datasheet  
6
1.0  
2017-12-07  
TLE94104EP  
Block Diagram  
2.1  
Voltage and current definition  
Figure 3 shows terms used in this datasheet, with associated convention for positive values.  
VS  
IS  
VS  
IDD  
ISDO  
ISDI  
VDD  
SDO  
SDI  
VDD  
VSDO  
VSDI  
VCSN  
VSCLK  
ICSN  
ISCLK  
VDSHSx  
VDSLSx  
IOUTx  
SPI INTERFACE  
DRIVER  
CSN  
SCLK  
OUT x  
IEN  
EN  
VEN  
GND  
IGND  
Figure 3  
Voltage and Current Definition  
Datasheet  
7
1.0  
2017-12-07  
TLE94104EP  
General Product Characteristics  
3
General Product Characteristics  
3.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings1)Tj = -40°C to +150°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltages  
Supply voltage  
VS  
-0.3  
40  
10  
V
P_4.1.1  
Supply Voltage Slew Rate  
| dVS/dt |  
V/µs VS increasing and P_4.2.2  
decreasing 1)  
Power half-bridge output voltage  
Logic supply voltage  
VOUT  
VDD  
-0.3  
-0.3  
-0.3  
40  
V
V
V
0 V < VOUT < VS  
0 V < VS < 40 V  
P_4.1.2  
P_4.1.3  
P_4.1.4  
5.5  
VDD  
Logic input voltages  
(SDI, SCLK, CSN, EN)  
VSDI  
VSCLK  
CSN, VEN  
,
0 V < VS < 40 V  
0 V < VDD < 5.5V  
,
V
Logic output voltage  
(SDO)  
VSDO  
-0.3  
-0.3  
VDD  
VDD  
V
V
0 V < VS < 40 V  
0 V < VDD < 5.5V  
P_4.1.5  
Test pins  
VTEST  
0 V < VS < 40 V  
0 V < VDD < 5.5V  
P_4.1.19  
Currents  
Continuous Supply Current for VS  
Current per GND pin  
Output Currents  
IS  
0
2.0  
2.0  
2.0  
A
A
A
P_4.1.20  
P_4.1.14  
P_4.1.15  
IGND  
IOUT  
0
-2.0  
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
Tj  
-40  
-50  
150  
150  
°C  
°C  
P_4.1.8  
P_4.1.9  
Tstg  
ESD susceptibility OUTn and VS pins VESD  
versus GND. All other pins  
grounded.  
-4  
4
kV  
JEDEC HBM1)2)  
P_4.1.10  
ESD susceptibility all pins  
ESD susceptibility all pins  
ESD susceptibility corner pins  
VESD  
VESD  
VESD  
-2  
2
kV  
V
JEDEC HBM1)2)  
CDM1)3)  
CDM1)3)  
P_4.1.11  
P_4.1.12  
P_4.1.13  
-500  
-750  
500  
750  
V
1) Not subject to production test, specified by design  
2) ESD susceptibility, “JEDEC HBM” according to ANSI/ ESDA/ JEDEC JS001 (1.5 k, 100pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Datasheet  
8
1.0  
2017-12-07  
TLE94104EP  
General Product Characteristics  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
9
1.0  
2017-12-07  
TLE94104EP  
General Product Characteristics  
3.2  
Functional Range  
Table 3  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Supply voltage range for  
normal operation  
VS(nor)  
VDD  
5.5  
20  
V
V
V
P_4.2.1  
P_4.2.3  
P_4.2.4  
Logic supply voltage range for  
normal operation  
3.0  
5.5  
5.5  
Logic input voltages  
(SDI, SCLK, CSN, EN)  
VSDI  
VSCLK  
CSN, VEN  
Tj  
,
-0.3  
,
V
Junction temperature  
-40  
150  
°C  
P_4.2.5  
Note:  
Within the normal functional range the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the related electrical  
characteristics table.  
Datasheet  
10  
1.0  
2017-12-07  
TLE94104EP  
General Product Characteristics  
3.3  
Thermal Resistance  
Table 4  
Thermal Resistance TLE94104EP  
Symbol  
Parameter  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
1)  
Junction to Case, TA = -40°C  
Junction to Case, TA = 85°C  
RthjC_cold  
RthjC_hot  
14  
K/W  
K/W  
K/W  
1)  
17  
1) 2)  
Junction to ambient, TA = -40°C RthjA_cold_  
126  
(1s0p, minimal footprint)  
min  
1) 2)  
1) 3)  
1) 3)  
1) 4)  
1) 4)  
1) 5)  
1) 5)  
Junction to ambient, TA = 85°C RthjA_hot_m  
(1s0p, minimal footprint)  
134  
69  
81  
67  
79  
53  
67  
K/W  
K/W  
K/W  
K/W  
K/W  
K/W  
K/W  
in  
Junction to ambient, TA = -40°C RthjA_cold_3  
(1s0p, 300mm2 Cu)  
00  
Junction to ambient, TA = 85°C RthjA_hot_30  
(1s0p, 300mm2 Cu)  
0
Junction to ambient, TA = -40°C RthjA_cold_6  
(1s0p, 600mm2 Cu)  
00  
Junction to ambient, TA = 85°C RthjA_hot_60  
(1s0p, 600mm2 Cu)  
0
Junction to ambient, TA = -40°C RthjA_cold_2  
(2s2p)  
s2p  
Junction to ambient, TA = 85°C RthjA_hot_2s  
(2s2p)  
2p  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2, -3 at natural convection on FR4 1s0p board; The product (chip  
+ package) was simulated on a 76.2 x 114.3 x 1.5mm board with minimal footprint copper area and 35µm thickness.  
Ta = -40°C, each channel dissipates 0.2W. Ta = 85°C, each channel dissipates 0.135W.  
3) Specified RthJA value is according to JEDEC JESD51-2, -3 at natural convection on FR4 1s0p board; The product (chip  
+ package) was simulated on a 76.2 x 114.3 x 1.5mm board with additional cooling of 300mm2 copper area and 35µm  
thickness. Ta = -40°C, each channel dissipates 0.2W. Ta = 85°C, each channel dissipates 0.135W.  
4) Specified RthJA value is according to JEDEC JESD51-2, -3 at natural convection on FR4 1s0p board; The product (chip  
+ package) was simulated on a 76.2 x 114.3 x 1.5mm board with additional cooling of 600mm2 copper area and 35µm  
thickness. Ta = -40°C, each channel dissipates 0.2W. Ta = 85°C, each channel dissipates 0.135W.  
5) Specified RthJA value is according to JEDEC JESD51-2, -3 at natural convection on FR4 2s2p board; The product (chip  
+ package) was simulated on a 76.2 x 114.3 x 1.5mm board with two inner copper layers ( 4 x 35µm Cu). Ta = -40°C,  
each channel dissipates 0.2W. Ta = 85°C, each channel dissipates 0.135W.  
Datasheet  
11  
1.0  
2017-12-07  
TLE94104EP  
General Product Characteristics  
3.4  
Electrical Characteristics  
Table 5  
Electrical Characteristics, VS =5.5 V to 20 V, VDD = 3.0V to 5.5V, Tj = -40°C to +150°C, EN= HIGH,  
OUTn= 0 A; Typical values refer to VDD = 5.0 V, VS = 13.5 V and TJ = 25 °C unless otherwise  
I
specified; all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Current Consumption, EN = GND  
Supply Quiescent current  
ISQ  
0.1  
0.1  
0.6  
2
1
3
µA  
µA  
µA  
-40°C Tj 85°C  
-40°C Tj 85°C  
-40°C Tj 85°C  
P_4.4.1  
P_4.4.2  
P_4.4.3  
Logic supply quiescent current IDD_Q  
Total quiescent current  
ISQ + IDD_Q  
Current Consumption, EN=HIGH  
Supply current  
IS  
0.13 0.5  
mA  
Power drivers and P_4.4.4  
power stages are  
off  
Supply current  
IS_HSON  
IDD  
IDD_RUN  
IS + IDD_RUN  
1.5  
0.6  
2.5  
2.7  
3
mA  
mA  
mA  
mA  
All high-sides ON1)2) P_4.4.101  
Logic supply current  
Logic supply current  
Total supply current  
2.5  
SPI not active  
SPI 5MHz 2)  
SPI 5MHz 2)  
P_4.4.5  
P_4.4.6  
P_4.4.7  
Over- and Undervoltage Lockout  
Undervoltage Switch ON  
voltage threshold  
VUV ON  
VUV OFF  
VUV HY  
4.4  
4
4.90 5.3  
4.50 4.9  
V
V
V
V
V
V
VS increasing  
VS decreasing  
VUV ON - VUV OFF  
VS increasing  
VS decreasing  
VOV OFF - VOV ON  
P_4.4.8  
Undervoltage Switch OFF  
voltage threshold  
P_4.4.9  
2)  
Undervoltage Switch ON/OFF  
hysteresis  
0.40  
23  
22  
1
P_4.4.10  
P_4.4.11  
P_4.4.12  
P_4.4.13  
Overvoltage Switch OFF voltage VOV OFF  
threshold  
21  
20  
25  
24  
Overvoltage Switch ON voltage VOV ON  
threshold  
2)  
Overvoltage Switch ON/OFF  
hysteresis  
VOV HY  
VDD Power-On-Reset  
VDD POR  
2.40  
2.35  
2.63 2.90  
2.57 2.85  
V
V
V
VDD increasing  
VDD decreasing  
VDD POR - VDD POffR  
P_4.4.14  
P_4.4.15  
P_4.4.98  
VDD Power-Off-Reset  
VDD POffR  
VDD POR HY  
2)  
VDD Power ON/OFF hysteresis  
0.06  
Static Drain-source ON-Resistance (High-Side or Low-Side)  
High-Side or Low-Side RDSON  
(all outputs)  
RDSON_HB_25C  
825 1200 mΩ  
IOUT = ±0.5 A;  
Tj = 25 °C  
P_4.4.16  
P_4.4.17  
High-Side or Low-Side RDSON  
(all outputs)  
RDSON_HB_150  
1350 1800 mΩ  
IOUT = ±0.5 A;  
Tj = 150 °C  
C
Datasheet  
12  
1.0  
2017-12-07  
TLE94104EP  
General Product Characteristics  
Table 5  
Electrical Characteristics, VS =5.5 V to 20 V, VDD = 3.0V to 5.5V, Tj = -40°C to +150°C, EN= HIGH,  
OUTn= 0 A; Typical values refer to VDD = 5.0 V, VS = 13.5 V and TJ = 25 °C unless otherwise  
I
specified; all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Output Protection and Diagnosis of high-side (HS) channels of half-bridge output  
HS Overcurrent Shutdown  
Threshold  
ISD_HS  
-1.5  
-1.2  
15  
-1.2 -0.9  
A
See Figure 5  
P_4.4.20  
P_4.4.21  
P_4.4.22  
Difference between shutdown ILIM_HS  
and limit current  
-
-0.6  
19  
0
A
2) |ILIM_HS| |ISD_HS|  
See Figure 5  
2)  
ISD_HS  
Overcurrent Shutdown filter  
time  
tdSD_HS  
23  
µs  
Open Load Detection Current  
IOLD1_HS  
-15  
-8  
-3  
mA  
-
2)  
P_4.4.23  
P_4.4.24  
Open Load Detection filter time tOLD1_HS  
2000 3000 4000 µs  
Output Protection and Diagnosis of low-side (LS) channels of half-bridge output  
LS Overcurrent Shutdown  
Threshold  
ISD_LS  
0.9  
1.2  
0.6  
19  
8
1.5  
1.2  
23  
A
See Figure 6  
P_4.4.27  
P_4.4.28  
P_4.4.29  
2)  
Difference between shutdown ILIM_LS  
and limit current  
-
0
A
I
ISD_LS  
LIM_LS  
ISD_LS  
Figure 6  
2)  
Overcurrent Shutdown filter  
time  
tdSD_LS  
15  
3
µs  
mA  
Open Load Detection Current  
IOLD_LS  
15  
-
2)  
P_4.4.30  
P_4.4.31  
Open Load Detection filter time tOLD_LS  
Outputs OUT(1...n) leakage current  
HS leakage current in off state IQLHn_NOR  
HS leakage current in off state IQLHn_SLE  
LS Leakage current in off state IQLLn_NOR  
LS Leakage current in off state IQLLn_SLE  
2000 3000 4000 µs  
-2  
-2  
-0.5  
-0.5  
0.5  
2
2
µA  
µA  
µA  
µA  
VOUTn = 0V ; EN=High P_4.4.32  
VOUTn = 0V; EN=GND P_4.4.33  
VOUTn = VS ; EN=High P_4.4.34  
VOUTn = VS ; EN=GND P_4.4.35  
0.5  
Output Switching Times. See Figure 7 and Figure 8.  
Slew rate of high-side and low- dVOUT/ dt  
side outputs  
0.1  
0.45 0.75  
V/µs Resistive load =  
P_4.4.36  
P_4.4.37  
P_4.4.38  
P_4.4.39  
P_4.4.40  
P_4.4.41  
3)  
100; VS=13.5V  
Output delay time high side  
driver on  
tdONH  
tdOFFH  
tdONL  
tdOFFL  
5
20  
45  
20  
45  
35  
75  
35  
75  
µs  
µs  
µs  
µs  
µs  
Resistive load =  
100to GND  
Output delay time high side  
driver off  
15  
5
Resistive load =  
100to GND  
Output delay time low side  
driver on  
Resistive load =  
100to VS  
Output delay time low side  
driver off  
15  
100  
Resistive load =  
100to VS  
Cross current protection time, tDHL  
high to low  
130 160  
Resistive load =  
1002)  
Datasheet  
13  
1.0  
2017-12-07  
TLE94104EP  
General Product Characteristics  
Table 5  
Electrical Characteristics, VS =5.5 V to 20 V, VDD = 3.0V to 5.5V, Tj = -40°C to +150°C, EN= HIGH,  
OUTn= 0 A; Typical values refer to VDD = 5.0 V, VS = 13.5 V and TJ = 25 °C unless otherwise  
I
specified; all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Cross current protection time, tDLH  
low to high  
100  
130 160  
µs  
Resistive load =  
P_4.4.42  
1002)  
Input Interface: Logic Input EN  
High-input voltage  
VENH  
VENL  
0.7 *  
VDD  
VDD  
V
V
P_4.4.43  
P_4.4.44  
Low-input voltage  
0
0.3 *  
VDD  
2)  
Hysteresis of input voltage  
Pull down resistor  
VENHY  
500  
40  
mV  
P_4.4.45  
P_4.4.46  
RPD_EN  
20  
70  
kΩ  
VEN = 0.2 x VDD  
SPI frequency  
2) 4)  
Maximum SPI frequency  
fSPI,max  
5.0  
MHz  
µs  
P_4.4.47  
P_4.4.48  
SPI INTERFACE: Delay Time from EN rising edge to first Data in  
Setup time tset 150  
SPI INTERFACE: Input Interface, Logic Inputs SDI, SCLK, CSN  
2) See Figure 12  
H-input voltage threshold  
VIH  
0.7 *  
VDD  
VDD  
V
V
P_4.4.50  
P_4.4.51  
L-input voltage threshold  
VIL  
0
0.3 *  
VDD  
2)  
Hysteresis of input voltage  
Pull up resistor at pin CSN  
VIHY  
500  
40  
mV  
kΩ  
kΩ  
P_4.4.52  
P_4.4.53  
RPU_CSN  
20  
20  
70  
70  
VCSN = 0.7 x VDD  
Pull down resistor at pin SDI,  
SCLK  
RPD_SDI,  
RPD_SCLK  
40  
VSDI, VSCLK = 0.2 x VDD P_4.4.54  
Input capacitance at pin CSN, CI  
SDI or SCLK  
10  
15  
pF  
V
0V < VDD < 5.25V 2)  
P_4.4.55  
P_4.4.56  
Input Interface, Logic Output SDO  
H-output voltage level  
VSDOH  
VDD  
0.4  
-
VDD  
0.2  
-
VDD  
ISDOH = -1.6 mA  
ISDOL = 1.6 mA  
L-output voltage level  
VSDOL  
ISDOLK  
0
0.2  
0.4  
1
V
P_4.4.57  
P_4.4.58  
Tri-state Leakage Current  
-1  
µA  
VCSN = VDD;  
0V < VSDO < VDD  
2)  
Tri-state input capacitance  
CSDO  
10  
15  
pF  
P_4.4.59  
Data Input Timing. See Figure 13 and Figure 15.  
2)  
2)  
SCLK Period  
tpCLK  
200  
ns  
P_4.4.60  
P_4.4.61  
SCLK High Time  
tSCLKH  
0.45 *  
0.55 * ns  
tpCLK  
tpCLK  
2)  
SCLK Low Time  
tSCLKL  
0.45 *  
0.55 * ns  
P_4.4.62  
tpCLK  
tpCLK  
Datasheet  
14  
1.0  
2017-12-07  
TLE94104EP  
General Product Characteristics  
Table 5  
Electrical Characteristics, VS =5.5 V to 20 V, VDD = 3.0V to 5.5V, Tj = -40°C to +150°C, EN= HIGH,  
OUTn= 0 A; Typical values refer to VDD = 5.0 V, VS = 13.5 V and TJ = 25 °C unless otherwise  
I
specified; all voltages with respect to ground, positive current flowing into pin (unless  
otherwise specified) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
SCLK Low before CSN Low  
CSN Setup Time  
tBEF  
125  
250  
250  
125  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P_4.4.63  
P_4.4.64  
P_4.4.65  
P_4.4.66  
P_4.4.67  
P_4.4.68  
P_4.4.69  
tlead  
SCLK Setup Time  
tlag  
SCLK Low after CSN High  
SDI Setup Time  
tBEH  
tSDI_setup  
tSDI_hold  
trIN  
SDI Hold Time  
30  
Input Signal Rise Time at pin  
SDI, SCLK, CSN  
50  
2)  
Input Signal Fall Time at pin SDI, tfIN  
SCLK, CSN  
5
50  
8
ns  
µs  
µs  
P_4.4.70  
P_4.4.71  
P_4.4.72  
2)  
Delay time from EN falling edge tDMODE  
to standby mode  
2)  
Minimum CSN High Time  
tCSNH  
Data Output Timing. See Figure 13.  
SDO Rise Time  
SDO Fall Time  
trSDO  
tfSDO  
30  
30  
80  
80  
75  
ns  
ns  
ns  
Cload = 40pF 2)  
Cload = 40pF 2)  
Low Impedance 2) P_4.4.75  
P_4.4.73  
P_4.4.74  
SDO Enable Time after CSN  
falling edge  
tENSDO  
SDO Disable Time after CSN  
rising edge  
tDISSDO  
75  
55  
95  
ns  
%
High Impedance 2) P_4.4.76  
2)  
Duty cycle of incoming clock at dutySCLK  
SCLK  
45  
P_4.4.77  
SDO Valid Time for VDD = 3.3V  
SDO Valid Time for VDD = 5V  
Thermal warning & Shutdown  
tVASDO3  
70  
ns  
VSDO < 0.2 x VDD  
VSDO > 0.8 x VDD  
Cload = 40pF 2)  
P_4.4.78  
P_4.4.79  
tVASDO5  
50  
65  
ns  
VSDO < 0.2 x VDD  
VSDO > 0.8 VDD  
Cload = 40pF 2)  
Thermal warning junction  
temperature  
TjW  
120  
160  
135 150  
175 190  
°C  
°C  
See Figure 92)  
See Figure 92)  
P_4.4.80  
P_4.4.81  
Thermal shutdown junction  
temperature  
TjSD  
2)  
2)  
Thermal comparator hysteresis TjHYS  
4
°C  
°C  
P_4.4.82  
Difference between TjSD -TjW  
TjSD -TjW  
40  
P_4.4.120  
1) IS_HSON does not include the load current  
2) Not subject to production test, specified by design  
Datasheet  
15  
1.0  
2017-12-07  
TLE94104EP  
General Product Characteristics  
3) Measured for 20% - 80% of VS.  
4) Not applicable in daisy chain configuration  
Datasheet  
16  
1.0  
2017-12-07  
TLE94104EP  
Characterization results  
4
Characterization results  
Performed on 5 devices, over operating temperature and nominal/extended supply range.  
Typical performance characteristics  
Supply quiescent current  
Supply current  
P_4.4.1  
P_4.4.4  
2.9  
0.3  
0.25  
0.2  
2.4  
1.9  
1.4  
0.9  
0.4  
0.15  
0.1  
0.05  
0
-0.1  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20  
VS=22V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
Logic supply quiescent current  
Logic supply current  
P_4.4.2  
P_4.4.5  
0.7  
0.7  
0.65  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.55  
0.5  
-0.1  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50  
0
50  
100  
150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
VS=5.5V  
VS=13.5V VS=18V VS=20V  
VS=22V  
Datasheet  
17  
1.0  
2017-12-07  
TLE94104EP  
Characterization results  
HS static Drain-source ON-resistance  
LS static Drain-source ON-resistance  
P_4.4.16/P_4.4.17  
P_4.4.16/P_4.4.17  
1500  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
1400  
1300  
1200  
1100  
1000  
900  
800  
800  
700  
700  
600  
600  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
HS static drain-source ON-resistance  
VS = 13.5V and VDD = 5V  
LS static drain-source ON-resistance  
VS = 13.5V and VDD = 5V  
P_4.4.16/P_4.4.17  
LS Static Drain-source ON-Resistance  
P_4.4.16/P_4.4.17  
1500  
1500  
1400  
1300  
1200  
1100  
1000  
900  
1400  
1300  
1200  
1100  
1000  
900  
800  
800  
700  
700  
600  
600  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
OUT1  
OUT2  
OUT3  
OUT1  
OUT2  
OUT3  
Datasheet  
18  
1.0  
2017-12-07  
TLE94104EP  
Characterization results  
Slew rate ON of high-side outputs  
Slew rate ON of low-side outputs  
P_4.4.36  
P_4.4.36  
0.60  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.20  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
Slew rate OFF of high-side outputs  
Slew rate OFF of low-side outputs  
P_4.4.36  
P_4.4.36  
0.55  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13V5  
VS=18V  
VS=20V  
VS=22V  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
Datasheet  
19  
1.0  
2017-12-07  
TLE94104EP  
Characterization results  
HS overcurrent shutdown threshold  
LS overcurrent shutdown threshold  
P_4.4.20  
P_4.4.27  
-1120  
1240  
1220  
1200  
1180  
1160  
1140  
1120  
-1140  
-1160  
-1180  
-1200  
-1220  
-1240  
1100  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
VS=5.5V  
VS=13.5  
VS=18V  
VS=20V  
VS=22V  
Undervoltage switch ON voltage threshold  
Undervoltage switch OFF voltage threshold  
P_4.4.8  
P_4.4.9  
5.05  
4.64  
4.62  
4.6  
5
4.95  
4.9  
4.58  
4.56  
4.54  
4.52  
4.85  
4.5  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VDD=3V  
VDD=5V  
VDD=5.5V  
VDD=3V  
VDD=5V  
VDD=5.5V  
Datasheet  
20  
1.0  
2017-12-07  
TLE94104EP  
Characterization results  
Overvoltage switch ON voltage threshold  
Overvoltage switch OFF voltage threshold  
P_4.4.12  
P_4.4.11  
22.8  
23.6  
22.7  
22.6  
22.5  
22.4  
22.3  
22.2  
22.1  
22.0  
23.5  
23.4  
23.3  
23.2  
23.1  
23  
22.9  
22.8  
21.9  
22.7  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VDD=3V  
VDD=5V  
VDD=5.5V  
VDD=3V  
VDD=5V  
VDD=5.5V  
VDD Power-on-reset and VDD Power-off-reset  
P_4.4.14/P_4.4.15  
2.68  
2.66  
2.64  
2.62  
2.60  
2.58  
2.56  
2.54  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
VDD POR  
VDD POffR  
Datasheet  
21  
1.0  
2017-12-07  
TLE94104EP  
General Description  
5
General Description  
5.1  
Power Supply  
The TLE94104EP has two power supply inputs, VS and VDD. The half bridge outputs are supplied by VS, which is  
connected to the 12V automotive supply rail. VDD is used to supply the I/O buffers and internal voltage  
regulator of the device.  
VS and VDD supplies are separated so that information stored in the logic block remains intact in the event of  
voltage drop outs or disturbances on VS. The system can therefore continue to operate once VS has recovered,  
without having to resend commands to the device.  
A rising edge on VDD crossing VDD POR triggers an internal Power-On Reset (POR) to initialize the IC at power-on.  
All data stored internally is deleted, and the outputs are switched off (high impedance).  
An electrolytic and 100nF ceramic capacitors are recommended to be placed as close as possible to the VS  
supply pin of the device for improved EMC performance in the high and low frequency band. The electrolytic  
capacitor must be dimensioned to prevent the VS voltage from exceeding the absolute maximum rating. In  
addition, decoupling capacitors are recommended on the VDD supply pin.  
5.2  
Operation modes  
5.2.1  
Normal mode  
The TLE94104EP enters normal mode by setting the EN input High. In normal mode, the charge pump is active  
and all output transistors can be configured via SPI.  
5.2.2  
Sleep mode  
The TLE94104EP enters sleep mode by setting the EN input Low. The EN input has an internal pull-down  
resistor.  
In sleep mode, all output transistors are turned off and the SPI register banks are reset. The current  
consumption is reduced to ISQ + IDD_Q  
.
5.3  
Reset Behaviour  
The following reset triggers have been implemented in the TLE94104EP:  
DD Undervoltage Reset:  
V
The SPI Interface shall not function if VDD is below the undervoltage threshold, VDD POffR. The digital block will  
be deactivated, the logic contents cleared and the output stages are switched off . The digital block is  
initialized once VDD voltage levels is above the undervoltage threshold, VDD POR. Then the NPOR bit is reset  
(NPOR = 0 in SYS_DIAG1 and Global Status Register).  
Reset on EN pin:  
If the EN pin is pulled Low, the logic content is reset and the device enters sleep mode.  
The reset event is reported by the NPOR bit (NPOR = 0) once the TLE94104EP is in normal mode (EN = High;  
VDD > VDD POR).  
Datasheet  
22  
1.0  
2017-12-07  
TLE94104EP  
General Description  
5.4  
Reverse Polarity Protection  
The TLE94104EP requires an external reverse polarity protection. During reverse polarity, the free-wheeling  
diodes across the half bridge output will begin to conduct, causing an undesired current flow (IRB) from ground  
potential to battery and excessive power dissipation across the diodes. As such, a reverse polarity protection  
diode is recommended (see Figure 4).  
b)  
VBAT  
a)  
GND  
D
RP  
CS2  
C
S
HSx  
HSx  
OUTx  
OUTx  
LSx  
LSx  
I
RB  
VBAT  
GND  
Figure 4  
Reverse Polarity Protection  
Datasheet  
23  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
6
Half-Bridge Outputs  
6.1  
Functional Description  
The half-bridge outputs of the TLE94104EP are intended to drive motor loads.  
If the outputs are driven continuously via SPI, for example HS1 and LS2 used to drive a motor, then the  
following suggested SPI commands shall be sent:  
Activate HS1: Bit HB1_HS_EN in HB_ACT_1_CTRL register  
Activate LS2: Bit HB2_LS_EN in HB_ACT_1_CTRL register  
Datasheet  
24  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
6.2  
Protection & Diagnosis  
The TLE94104EP is equipped with an SPI interface to control and diagnose the state of the half-bridge drivers.  
This device has embedded protective functions which are designed to prevent IC destruction under fault  
conditions described in the following sections. Fault conditions are treated as “outside” normal operating  
range. Protection functions are not designed for continuous repetitive operation.  
The following table provides a summary of fault conditions, protection mechanisms and recovery states  
embedded in the TLE94104EP device.  
Table 6  
Summary of diagnosis and monitoring of outputs  
Fault  
condition  
Error Flag Error bit: Status Register  
(EF)  
behaviour  
Output  
Protection  
mechanism state  
Error output High-Z Half-bridgecontrol  
Output Output and error  
error flag (EF) recovery  
Overcurrent Latch  
1. Load Error bit, LE (bit 6) in  
SYS_DIAG 1: Global Status 1  
Register  
2. Localized error for each HS and  
LS channel of half-bridge,  
HBn_HS_OC and HBn_LS_OC bits  
in SYS_DIAG_2 status register.  
shutdown  
and latched  
bits remain set  
despite error,  
however the  
output stage is  
shutdown.ClearEF  
to reactivate  
output stage.  
Open load  
Latch  
1. Load Error bit, LE (bit 6) in  
SYS_DIAG 1: Global Status 1  
Register  
2. Localized error for each HS and  
LS channel of half-bridge,  
HBn_HS_OL and HBn_LS_OL bits in  
SYS_DIAG3 status register.  
None  
None  
No  
state  
An open load  
detection does not  
change change the state of  
the output.  
EF to be cleared.  
Temperature Latch  
pre-warning  
Global error bit 1, TPW in  
SYS_DIAG_1: Global Status 1  
register  
No  
state  
change  
Not applicable  
Temperature Latch  
shutdown  
Global error bit 2, TSD in  
SYS_DIAG_1: Global Status 1  
register  
All outputs  
shutdown  
and latched.  
High-Z Half-bridgecontrol  
bits remain set  
despite error,  
however the  
output stage is  
shutdown.ClearEF  
to reactivate  
output stage.  
Datasheet  
25  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
Table 6  
Summary of diagnosis and monitoring of outputs (cont’d)  
Fault  
condition  
Error Flag Error bit: Status Register  
(EF)  
Output  
Protection  
Output Output and error  
error flag (EF) recovery  
behaviour  
mechanism state  
Powersupply Latch  
failure due to  
undervoltage  
Global error bit 5, VS_UV in  
SYS_DIAG_1: Global Status 1  
register  
All outputs  
shutdown  
and  
High-Z Half-bridgecontrol  
bits remain set  
despite error,  
automatically  
recovers.  
however the  
output stage is  
shutdown. They  
will automatically  
be reactivated  
once the power  
supplyrecovers. EF  
to be cleared.  
Powersupply Latch  
failure due to  
overvoltage  
Global error bit 4, VS_OV in  
SYS_DIAG_1: Global Status 1  
register  
All outputs  
shutdown  
and  
High-Z Half-bridgecontrol  
bits remain set  
despite error,  
automatically  
recover.  
however the  
output stage is  
shutdown. They  
will automatically  
be reactivated  
once the power  
supplyrecovers. EF  
to be cleared.  
Datasheet  
26  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
6.2.1  
Short Circuit of Output to Supply or Ground  
The high-side switches are protected against short to ground whereas the low-side switches are protected  
against short to supply.  
The high-side and low-side power switches will enter into an over-current condition if the current within the  
switch exceeds the overcurrent shutdown detection threshold, ISD. Upon detection of the ISD threshold, an  
overcurrent shutdown filter, tdSD is begun. As the current rises beyond the threshold ISD, it will be limited by the  
current limit threshold, ILIM. Upon expiry of the overcurrent shutdown filter time, the affected power switch is  
latched off and the corresponding error bit, HBn_HS_OC or HBn_LS_OC is set and latched. See Figure 5 and  
Figure 6 for more detail. A global load error bit, LE, contained in the global status register, SYS_DIAG_1, is also  
set for ease of error scanning by the application software. The power switch remains deactivated as long as  
the error bit is set.  
To resume normal functionality of the power switch (in the event the overcurrent condition disappears or to  
verify if the failure still exists) the microcontroller shall clear the error bit in the respective status register to  
reactivate the desired power switch.  
VS  
| IHS |  
I ILIM_HS I  
ON  
I ILIM_HS - ISD_HS  
I
I ISD_HS  
I
OUTn  
Short to GND  
t
tdSD_ HS  
Short condition on High-Side Switch  
Figure 5  
High-Side Switch - Short Circuit and Overcurrent Protection  
VS  
ILS  
VS  
ILIM_ LS  
ILIM_ LS - ISD_LS  
Short to Supply  
ISD_LS  
OUTn  
ON  
t
tdSD_LS  
Short condition on Low-Side Switch  
Figure 6  
Low-Side Switch - Short Circuit and Overcurrent Protection  
Datasheet  
27  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
Table 7  
Control and Status register bit state in the event of an overcurrent condition for an  
activated power switch  
BEFORE  
DURING  
AFTER  
REGISTER  
TYPE  
REGISTER NAME Bit  
OVERCURRENT OVERCURRENT OVERCURRENT  
Bit State  
Bit State  
Bit State  
Control  
HB_ACT_CTRL_n HBn_HS_EN  
HBn_LS_EN  
1
1
1(corresponding  
half-bridge  
deactivated)  
Status  
Status  
SYS_DIAG_1:  
Global Status 1  
LE  
0
0
0
0
1
1
SYS_DIAG_x  
where x=2  
HBn_HS_OC  
HBn_LS_OC  
Datasheet  
28  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
6.2.2  
Cross-Current  
In bridge configurations the high-side and low-side power transistors are ensured never to be simultaneously  
“ON” to avoid cross currents. This is achieved by integrating delays in the driver stage of the power outputs to  
create a dead-time between switching off of one power transistor and switching on of the adjacent power  
transistor within the half-bridge. The dead times, tDHL and tDLH, as shown in Figure 7 case 3 and Figure 8 case  
3, have been specified to ensure that the switching slopes do not overlap with each other. This prevents a cross  
conduction event.  
CSN  
t
Case 1: Delay TimeHigh SideDriver OFF  
VOUT_HSx [V]  
Previous State Æ New State  
HS ON Æ HS OFF  
VS  
80%  
1)  
tdOFFH  
LS OFF Æ LS OFF  
20%  
GND 1)  
t
Delay time HS OFF  
Case2: Delay TimeLow SideDriver ON  
VOUT_LSx [V]  
Previous StateÆ New State  
HS OFF Æ HS OFF  
VS  
80%  
2)  
tdONL  
LS OFF Æ LS ON  
20%  
2) Delay time LS ON without dead time ; HS previously OFF  
GND  
t
Case 3: Delay TimeLow SideDriver ON with tDHL dead time  
VOUT_LSx [V]  
Previous State Æ New State  
HS ON Æ HS OFF  
VS  
80%  
Low-Side  
ON  
delay time  
3)  
tdONL +tDHL  
LS OFF Æ LS ON  
20%  
3) Delay time LS ON with dead time ; HS previously ON  
GND  
t
Figure 7  
Half bridge outputs switching times - high-side to low-side transition  
Datasheet  
29  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
CSN  
t
Case 1: Delay Time High Side Driver OFF  
Previous StateÆ New State  
HS OFF Æ HS OFF  
VOUT_LSx [V]  
VS  
80%  
1)  
tdOFFL  
LS ON Æ LS OFF  
20%  
GND  
t
1)  
Delay time LS OFF  
Case 2: Delay Time High Side Driver ON  
VOUT_HSx [V]  
Previous StateÆ New State  
HS OFF Æ HS ON  
VS  
80%  
2)  
tdONH  
LS OFF Æ LS OFF  
20%  
2) Delay time HS ON without dead time ; LS previously OFF  
GND  
t
Case 3: Delay TimeHigh SideDriver ON with tDLH dead time  
VOUT _HSx [V]  
Previous State Æ New State  
HS OFF Æ HS ON  
VS  
80%  
High-Side  
ON  
delay time  
3)  
tdONH +tDLH  
LS ON Æ LS OFF  
20%  
3) HS ON delay time with dead time ; LS previously ON  
GND  
t
Figure 8  
Half bridge outputs switching times- low-side to high-side transition  
Datasheet  
30  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
6.2.3  
Temperature Monitoring  
Temperature sensors are integrated in the power stages. The temperature monitoring circuit compares the  
measured temperature to the warning and shutdown thresholds. If one or more temperature sensors reach  
the warning temperature, the temperature pre-warning bit, TPW is set. This bit is latched and can only be  
cleared via SPI. The outputs stages however remain activated.  
If one or more temperature sensors reach the shut-down temperature threshold, all outputs are latched off.  
The TSD bit in SYS_DIAG_1: Global Status 1 is set. All outputs remain deactivated until the TSD bit is cleared.  
See Figure 9.  
To resume normal functionality of the power switch (in the event the overtemperature condition disappears,  
or to verify if the failure still exists) the microcontroller shall clear the TSD error bit in the status register to  
reactivate the respective power switch.  
Tj  
TjSD  
TjW  
t
VOUTx  
Output is switched off if  
ON  
TjSD is reached, can be  
reactivated if TSD bit is  
cleared  
High Z  
t
t
no error  
TPW error bit  
High  
TPW is latched, can  
be cleared via SPI  
Low  
no error  
TSD error bit  
High  
TSD is latched, can be  
cleared via SPI  
Low  
t
no error  
Figure 9  
Overtemperature Behavior  
Datasheet  
31  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
Table 8  
Control and Status register bit state in the event of an overtemperature condition for an  
activated power switch  
Tj < TjW  
Tj > TjW  
Tj > TjSD  
Tj < TjSD - TjHYS  
REGISTER REGISTER NAME  
TYPE  
Bit  
Bit State  
Bit State  
Bit State  
Bit State  
Control  
HB_ACT_CTRL_n  
HBn_HS_EN  
HBn_LS_EN  
1
1
1
‘1’ (outputs  
(all outputs are latched off  
are latched unless error is  
off)  
cleared)  
Status  
Status  
SYS_DIAG_1: Global TPW  
status 1  
0
0
1
1
‘0’ if error is  
cleared and  
Tj < TjW , else ‘1’  
(latched)  
(latched)  
SYS_DIAG_1: Global TSD  
status 1  
0
1
‘0’ if error is  
cleared, else  
‘1’  
(latched)  
6.2.4  
Overvoltage and undervoltage shutdown  
The power supply rails VS and VDD are monitored for supply fluctuations. The VS supply is monitored for under-  
and over-voltage conditions where as the VDD supply is monitored for under-voltage conditions.  
6.2.4.1 VS Undervoltage  
In the event the supply voltage VS drops below the switch off voltage VUV OFF, all output stages are switched off,  
however, the logic information remains intact and uncorrupted. The VS under-voltage error bit, VS_UV,  
located in SYS_DIAG_1: Global Status 1 status register, will be set and latched. If VS rises again and reaches the  
switch on voltage VUV ON threshold, the power stages will automatically be activated. The VS_UV error bit  
should be cleared to verify if the supply disruption is still present. See Figure 10.  
6.2.4.2 VS Overvoltage  
In the event the supply voltage VS rises above the switch off voltage VOV OFF, all output stages are switched off.  
The VS over-voltage error bit, VS_OV, located in SYS_DIAG_1: Global Status 1 status register, will be set and  
latched. If VS falls again and reaches the switch on voltage VOV ON threshold, the power stages will automatically  
be activated. The VS_OV error bit should be cleared to verify if the overvoltage condition is still present. See  
Figure 10.  
6.2.4.3 VDD Undervoltage  
In the event the VDD logic supply decreases below the undervoltage threshold, VDD POffR, the SPI interface shall  
no longer be functional and the TLE94104EP will enter reset.  
The digital block will be initialized and the output stages are switched off to High impedance. The  
undervoltage reset is released once VDD voltage levels are above the undervoltage threshold, VDD POR  
.
The reset event is reported in SYS_DIAG1 by the NPOR bit (NPOR = 0) once the TLE94104EP is in normal mode  
(EN = High ; VDD > VDD POR).  
Datasheet  
32  
1.0  
2017-12-07  
TLE94104EP  
Half-Bridge Outputs  
VS  
VOV HY  
VOV OFF  
VOV ON  
VUV HY  
VUV ON  
VUV OFF  
t
Output  
reactivated  
VOUTx  
Output  
reactivated  
VOUTx  
ON  
ON  
High Z  
High Z  
t
t
t
SPI command :  
Clear SYS _DIAG1  
SPI command  
Clear SYS_DIAG1  
VS_UV error bit  
VS_OV error bit  
High  
Low  
High  
Low  
t
Figure 10 Output behavior during under- and overvoltage VS condition  
6.2.5  
Open Load  
Both high-side and low-side switches of the half-bridge power outputs are capable of detecting an open load  
in their activated state. If a load current lower than the open load detection threshold, IOLD for at least tdOLD is  
detected at the activated switch, the corresponding error bit, HBn_HS_OL or HBn_LS_OL is set and latched. A  
global load error bit, LE, in the global status register, SYS_DIAG_1: Global Status 1, is also set for ease of error  
scanning by the application software. The half-bridge output however, remains activated.  
The microcontroller must clear the error bit in the respective status register to determine if the open load is  
still present or disappeared.  
Datasheet  
33  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
7
Serial Peripheral Interface (SPI)  
The TLE94104EP has a 16-bit SPI interface for output control and diagnostics. This section describes the SPI  
protocol, the control and status registers.  
7.1  
SPI Description  
The 16-bit wide Control Input Word is read via the data input SDI, which is synchronized with the clock input  
SCLK provided by the microcontroller. SCLK must be Low during CSN falling edge (Clock Polarity = 0). The SPI  
incorporates an in-frame response: the content of the addressed register is shifted out at SDO within the same  
SPI frame (see Figure 17 and Figure 19).The transmission cycle begins when the chip is selected by the input  
CSN (Chip Select Not), Low active. After the CSN input returns from Low to High, the word that has been read  
is interpreted according to the content. The SDO output switches to tri-state status (High impedance) at this  
point, thereby releasing the SDO bus for other use.The state of SDI is shifted into the input register with every  
falling edge on SCLK. The state of SDO is shifted out of the output register at every rising edge on SCLK (Clock  
Phase = 1). The SPI protocol of the TLE94104EP is compatible with independent slave configuration and with  
daisy chain. Daisy chaining is applicable to SPI devices with the same protocol.  
Writing, clearing and reading is done byte wise. The SPI configuration and status bits are not cleared  
automatically by the device and therefore must be cleared by the microcontroller, e.g. if the TSD bit was set  
due to over temperature (refer to the respective register description for detailed information).  
CSN high to low: SDO is enabled. Status information transferred to output shift register  
CSN  
time  
CSN low to high: data from shift register is transferred to output functions  
SCLK  
time  
LSB  
MSB  
Actual data  
New data  
0 1  
+ +  
SDI  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
time  
SDI: will accept data on the falling edge of SCLK signal  
Actual status  
New status  
GEF 0 1  
+ +  
SDO  
GEF 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
+
time  
SDO will change state on the rising edge of SCLK signal  
Figure 11 SPI Data Transfer Timing (note the reversed order of LSB and MSB as shown in this figure  
compared to the register description)  
SPI messages are only recognized if a minimum set time, tSET, is observed upon rising edge of the EN pin  
(Figure 12).  
Datasheet  
34  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
EN  
EN  
tSET  
SPI  
SPI  
A) SPI message ignored  
B) SPI message accepted  
Figure 12 Setup time from EN rising edge to first SPI communication  
tlead  
tlag  
tCSNH  
tpCLK  
0.8VDD  
0.2VDD  
CSN  
tSCLKH  
tSCLKL  
0.8VDD  
0.2VDD  
SCLK  
SDI  
tSDI_setup  
tSDI_hold  
0.8VDD  
0.2VDD  
tENSDO  
tVASDO  
tDISSDO  
0.8VDD  
0.2VDD  
SDO  
Figure 13 SPI Data Timing  
7.1.1  
Global Error Flag  
A logic OR combination between Global Error Flag (GEF) and the signal present on SDI is reported on SDO  
between a CSN falling edge and the first SCLK rising edge (Figure 11). GEF is set if a fault condition is detected  
or if the device comes from a Power On Reset (POR).  
Note:  
The SDI pin of all devices in daisy chain or non daisy chain mode must be Low at the beginning of the  
SPI frame (between the CSN falling edge and the first SCLK rising edge).  
It is possible to check if the TLE94104EP has detected a fault by reading the GEF without SPI clock pulse  
(Figure 14).  
Datasheet  
35  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
CSN  
time  
0
0
SCLK  
SDI  
time  
time  
High Impedance  
High Impedance  
Global Error Flag  
SDO  
time  
Figure 14 SDO behaviour with 0-clock cycle  
7.1.2  
Global Status Register  
The SDO shifts out during the first eight SCLK cycles the Global Status Register. This register provides an  
overview of the device status. All failures conditions are reported in this byte:  
SPI protocol error (SPI_ERR)  
Load Error (LE bit): logical OR between Open Load (OL) and Overcurrent (OC) failures  
VS Undervoltage (VS_UV bit)  
VS Overvoltage (VS_OV bit)  
Negated Power ON Reset (NPOR bit)  
Temperature Shutdown (TSD bit)  
Temperature Pre-Warning (TPW bit)  
See Chapter 7.7.1 for details.  
Note: The Global Error Flag is a logic OR combination of every bit of the Global Status Register with the  
exception of NPOR: GEF = (SPI_ERR) OR (LE) OR (VS_UV) OR (VS_OV) OR (NOT(NPOR)) OR (TSD) OR  
(TPW). It is possible to mask open load failures from the Global Error Flag by setting the OL_BLANK  
bit (refer to Chapter 7.6).  
The following table shows how failures are reported in the Global Status Register and by the Global Error Flag.  
Table 9 Failure reported in the Global Status Register and Global Error Flag  
Type of Error  
Failure reported in the Global  
Status Register  
Global Error Flag  
SPI protocol error  
Open load or Overcurrent  
VS Undervoltage  
SPI_ERR = 1  
LE = 1  
1
11)  
VS_UV = 1  
VS_OV = 1  
NPOR = 0  
TSD = 1  
1
VS Overvoltage  
1
Power ON Reset  
1
Thermal Shutdown  
1
Datasheet  
36  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
Table 9  
Failure reported in the Global Status Register and Global Error Flag  
Type of Error  
Failure reported in the Global  
Status Register  
Global Error Flag  
Thermal Warning  
TPW = 1  
1
0
No Error and no Power ON Reset  
SPI_ERR = 0  
LE = 0  
VS_UV = 0  
VS_OV = 0  
NPOR = 1  
TSD = 0  
TPW = 0  
1) Open load errors are reported in the Global Error Flag only if OL_BLANK bit is set to 0.  
Note:  
The default value (after Power ON Reset) of NPOR is 0, therefore the default value of GEF is 1.  
7.1.3  
SPI protocol error detection  
The SPI incorporates an error flag in the Global Status Register (SPI_ERR, Bit7) to supervise and preserve the  
data integrity. If an SPI protocol error is detected during a given frame, the SPI_ERR bit is set in the next SPI  
communication.  
The SPI_ERR bit is set in the following error conditions:  
the number of SCLK clock pulses received when CSN is Low is not 0, or is not a multiple of 8 and at least 16  
the microcontroller sends an SPI command to an unused address. In particular, SDI stuck to High is  
reported in the SPI_ERR bit  
the LSB of an address byte is not set to 1. In particular, SDI stuck to Low is reported in the SPI_ERR bit  
the Last Address Bit Token (LABT, bit 1 of the address byte, see Chapter 7.2) in independent slave  
configuration is not set to 1  
the LABT bit of the last address byte in daisy chain configuration is not set to 1 (see Chapter 7.3)  
a clock polarity error is detected (see Figure 15 Case 2 and Case 3): the incoming clock signal was High  
during CSN rising or falling edges.  
For a correct SPI communication:  
SCLK must be Low for a minimum tBEF before CSN falling edge and tlead after CSN falling edge  
SCLK must be Low for a minimum tlag before CSN rising edge and tBEH after CSN rising edge  
Datasheet  
37  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
Case 1: Correct SCLK signal  
Correct incoming clock signal  
Correct clock during CSN rising edge  
CSN  
time  
tBEF  
tlead  
tlag tBEH  
SCLK  
time  
Case 2: Erroneous incoming clock signal  
CSN  
time  
time  
SCLK is High with CSN falling edge  
SCLK  
Case 3: Erroneous clock signal during CSN rising edge  
CSN  
time  
time  
Clock is High with CSN rising edge  
SCLK  
Figure 15 Clock Polarity Error  
Datasheet  
38  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
7.2  
SPI with independent slave configuration  
In an independent slave configuration, the microcontroller controls the CSN of each slave individually  
(Figure 16).  
Microcontroller  
TLE941xy_1  
SPI  
TLE941xy_2  
SPI  
TLE941xy_3  
SPI  
SDI1  
SDO1 SDI2  
SDO2 SDI3  
SDO3  
MCSN1  
MCSN2  
MCSN3  
MCLK  
MO  
MI  
Figure 16 SPI with independent slave configuration  
Each SPI communication starts with one address byte followed by one data byte (Figure 17).The LSB of the  
data byte must be set to ‘1’.The address bytes specifies:  
the type of operation: READ ONLY (OP bit =0) or READ/ WRITE (OP bit = 1) of the configuration bits, and  
READ ONLY (OP bit =0)or READ & CLEAR (OP bit = 1) of the status bits.  
The target register address (A[6:2])  
The Last Address Byte Token bit (LABT, Bit1 of the address byte) must be set to 1, as no daisy chain  
configuration is used.  
While the microcontroller sends the address byte on SDI, SDO shifts out GEF and the Global Status Register.  
A further data byte (Bit15...8) is allocated to either configure the half-bridges or retrieve status information of  
the TLE94104EP.  
Datasheet  
39  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
Address Byte  
Data Byte  
MSB  
15  
LSB  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
LABT  
= 1  
SDI  
1
A2  
A3  
A4  
A5  
A6  
OP  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Register content of the selected address  
Global Status Register  
Data Byte (Response)  
MSB  
15  
LSB  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
SPI_  
ERR  
SD0  
0
TPW TSD NPOR VS_OV VS_UV LE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Time  
LSB is sent first in SPI message  
Figure 17 SPI Operation Mode with independent slave configuration  
The in-frame response characteristic enables the microcontroller to read the contents of the addressed  
register within the SPI command. See Figure 17.  
Datasheet  
40  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
7.3  
Daisy chain operation  
The TLE94104EP supports daisy chain operation with devices with the same SPI protocol.This section  
describes the daisy chain hardware configuration with three devices from the TLE941xy family (See  
Figure 18).  
The master output (noted MO) is connected to a slave SDI and the first slave SDO is connected to the next slave  
SDI to form a chain. The SDO of the final slave in the chain will be connected to the master input (MI) to close  
the loop of the SPI communication frame. In daisy chain configuration, a single chip select, CSN, and clock  
signal, SCLK, connected in parallel to each slave device, are used by the microcontroller to control or access  
the SPI devices.  
In this configuration, the Master Output must send the address bytes and data bytes in the following order:  
All address bytes must be sent first:  
Address Byte 1 (for TLE941xy_1) is sent first, followed by Address Byte 2 (for TLE941xy_2) etc,...  
The LABT bit of the last address byte must be 1, while the LABT bit of all the other address bytes must  
be 0  
The data bytes are sent all together once all address bytes have been transmitted: Data Byte 1 (for  
TLE941xy_1) is sent first, followed by Data Byte 2 (for TLE941xy_2) etc,...  
Note:  
The signal on the SDI pin of the first IC in daisy chain (and in non-daisy chain mode), must be Low at  
the beginning of the SPI frame (between CSN falling edge and the first SCLK rising edge). This is  
because each Global Error Flag in daisy chain operation is implemented in OR logic.  
The Master Input (MI), which is connected to the SDO of the last device in the daisy chain receives:  
A logic OR combination of all Global Error Flags (GEF), at the beginning of the SPI frame, between CSN  
falling edge and the first SCLK rising edge  
The logic OR combination of the GEFs is followed by the Global Status Registers in reverse order. In other  
words MI receives first the Global Status Register of the last device of the daisy chain  
Once all Global Status Registers are received, MI receives the response bytes corresponding to the  
respective address and data bytes in reverse order. For example, if the daisy chain consists of three devices  
with SDO or TLE941xy_3 connected to MI, the master receives first the Response Byte 3 of TLE941xy_3  
(corresponding to Address Byte 3 and Data Byte 3) followed by the Response Byte 2 of TLE941xy_2 and  
finally the Response Byte 1 of TLE941xy_1.  
An example of an SPI frame with three devices from the TLE941xy family is shown in Figure 19.  
Datasheet  
41  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
Microcontroller  
MO  
TLE941xy_1  
SPI  
TLE941xy_2  
SPI  
TLE941xy_3  
SPI  
SDO1 SDI2  
SDO2 SDI3  
SDO3  
SDI1  
MCSN  
MCLK  
MI  
Figure 18 Example of daisy chain hardware configuration with devices from the TLE941xy family  
8 CLOCK CYCLES  
8 CLOCK CYLES  
8 CLOCK CYCLES  
8 CLOCK CYLES  
8 CLOCK CYCLES  
8 CLOCK CYLES  
SCLK  
CSN  
0
LABT=0  
LABT=0  
LABT=1  
ADDRESS BYTE 1  
ADDRESS BYTE 2  
ADDRESS BYTE 3  
DATA BYTE 1  
RESPONSE 1  
RESPONSE 2  
RESPONSE 3  
DATA BYTE 2  
DATA BYTE 2  
RESPONSE1  
RESPONSE2  
DATA BYTE 3  
DATA BYTE 3  
DATA BYTE 3  
RESPONSE 1  
MO = SDI1  
0
SDI2 = SDO1  
GEF1  
GLOBAL STATUS1 ADDRESS BYTE 2  
ADDRESS BYTE 3  
SDI3 = SDO2  
MI =SDO3  
OR  
GEF1/2  
GLOBAL STATUS2 GLOBAL STATUS 1 ADDRESS BYTE 3  
GLOBAL STATUS3 GLOBAL STATUS 2 GLOBAL STATUS 1  
OR  
GEF1/2/3  
Time  
Figure 19 SPI frame with three devices of the TLE941xy family  
Like in the individual slave configuration, it is possible to check if one or several TLE941xy have detected a fault  
condition by reading the logic OR combination of all the Global Error Flags when CSN goes Low without any  
clock cycle (Figure 20).  
Datasheet  
42  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
SCLK  
0
0
CSN  
MO = SDI1  
SDI2 = SDO1  
SDI3 = SDO2  
MI = SDO3  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
GEF1  
GEF1  
OR  
GEF1/2  
OR  
GEF1/2  
OR  
GEF1/2/3  
OR  
GEF1/2/3  
Time  
Figure 20 Global Error Flag with zero SCLK clock cycle in daisy chain consisting only of TLE941xy  
devices  
Note:  
Some SPI protocol errors such as the LSB of an address byte is wrongly equal to 0, may be reported  
in the SPI_ERR bit of another device in the daisy chain (refer to Chapter 7.1.3 and Chapter 7.7 for  
more details on SPI_ERR). In this case some devices might accept wrong data during the corrupted  
SPI frame. Therefore if one of the devices in the daisy chain reports an SPI error, it is recommended  
to verify the content of the registers of all devices.  
7.4  
Status register change during SPI communication  
If a new failure occurs after the transfer of the data byte(s), i.e. between the end of the last address byte and  
the CSN rising edge, this failure will be reported in the next SPI frame (see example in Figure 21).  
8 CLOCK CYCLES  
8 CLOCK CYLES  
8 CLOCK CYCLES  
8 CLOCK CYLES  
SCLK  
CSN  
0
End of the  
address byte detection  
New failure  
Read status byte  
corresponding to the failure  
SDI  
ADDRESS BYTE  
DATA BYTE  
ADDRESS BYTE  
DATA BYTE  
0
SDO  
Failure is NOT notified in this SPI frame  
Failure notified in the new SPI frame  
HiZ  
HiZ  
GEF  
GLOBAL STATUS  
DATA BYTE  
GLOBAL STATUS  
DATA BYTE  
GEF  
Time  
Figure 21 Status register change during transfer of data byte - Example in independent slave  
configuration  
Datasheet  
43  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
No information is lost, even if a status register is changed during a SPI frame, in particular during a Read and  
Clear command. For example:  
the microcontroller sends a Read and Clear command to a status register  
the TLE94104EP detects during the transfer the data byte(s) a new fault condition, which is normally  
reported in the target status register  
The incoming Clear command will be ignored, so that the microcontroller can read the new failure in the  
subsequent SPI frames.  
Data inconsistency between the Global Status Register (see Chapter 7.7) and the data byte (status register)  
within the same SPI frame is possible if:  
an open load or overcurrent error is detected during the transfer of the data byte  
the target status register corresponds to the new detected failure  
In this case the new failure:  
is not reported in the Global Status Register of the current SPI frame but in the next one  
is reported in the data byte of the current SPI frame  
Refer to Figure 21.  
Datasheet  
44  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
SPI Frame 1  
Overcurrent failure detected on HS of HB 1 SPI frame: Read SYS _DIAG2 (OC error of HB 1-4)  
Address Byte  
Data Byte  
MSB  
15  
LSB  
0
1
2
3
4
5
6
7
8
9
10  
X
11  
X
12  
X
13  
X
14  
X
LABT  
=1  
A2  
=0  
A3  
=0  
A4  
=1  
A5  
=1  
A6  
=0  
OP  
=0  
SDI  
1
X
X
X
Overcurrent failure detected on HS of HB 1 during the  
transfer of the address byte  
Target status register : OC error of HB 1-4  
Global Status Register  
LSB  
Response Data Byte : SYS_DIAG2  
MSB  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
LE  
=0  
SPI_  
ERR  
D0  
=0  
D1  
=1  
D2  
=0  
D3  
=0  
D4  
=0  
D5  
=0  
D6  
=0  
D7  
=0  
SDO  
0
TPW TSD NPOR VS_OV VS_UV  
HB1_HS_OC reports the new  
Overcurrent failure on the HS of HB 1  
Load Error bit (Overcurrent or Open Load )  
does not report the new Overcurrent failure  
Inconsistency between Global Status Register  
and target Status Register  
Time  
SPI frame 2 (new)  
New SPI frame: e.g. Read SYS_DIAG2 (OC error of HB1-4)  
Address Byte  
Data Byte  
MSB  
15  
LSB  
0
1
2
3
4
5
6
7
8
9
10  
X
11  
X
12  
X
13  
X
14  
X
LABT  
=1  
A2  
=0  
A3  
=0  
A4  
=1  
A5  
=1  
A6  
=0  
OP  
=0  
1
X
X
X
Target status register : OC error of HB1-4  
Global Status Register  
Response Data Byte : SYS_DIAG2  
MSB  
15  
LSB  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
LE  
=1  
SPI_  
ERR  
D0  
=0  
D1  
=1  
D2  
=0  
D3  
=0  
D4  
=0  
D5  
=0  
D6  
=0  
D7  
=0  
0
TPW TSD NPOR VS_OV VS_UV  
Consistent information : Both Load Error bit and HB 1_HS_OC report  
the Overcurrent failure detected during the previous SPI frame  
Figure 22 Example of inconsistency between Global Error Flag and Status Register when a status bit is  
changed during the transfer of an address byte  
Datasheet  
45  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
7.5  
SPI Bit Mapping  
The SPI Registers have been mapped as shown in Figure 23 and Figure 24 respectively.  
The control registers are READ/ WRITE registers. To set the control register to READ, bit 7 of the address byte  
(OP bit) must be programmed to ‘0’, otherwise ‘1’ for WRITE.  
The status registers are READ/CLEAR registers. To CLEAR any Status Register, bit 7 of the address byte must be  
set to ‘1’, otherwise ‘0’ for READ.  
15  
14  
13  
12  
11  
10  
9
8
7
6 5 4 3 2  
8 Address Bits [A7…0]  
Access  
type  
1
0
8 Data Bits [D7…D0]  
for Configuration & Status Information  
HB_ACT_1_CTRL  
read/write 0 0 0 0 0 LABT 1  
read/write 0 1 1 0 0 LABT 1  
read/write 1 1 0 1 0 LABT 1  
FM_CLK_CTRL  
OLBLK_CTRL  
CONFIG_CTRL  
read  
1 1 0 0 1 LABT 1  
SYS_DIAG_1 : Global status 1  
SYS_DIAG_2 : OP ERROR_1_STAT  
SYS_DIAG_3 : OP ERROR_2_STAT  
read/clear 0 0 1 1 0 LABT 1  
read/clear 1 0 1 1 0 LABT 1  
read/clear 0 0 0 0 1 LABT 1  
Figure 23 TLE94104EP SPI Register mapping  
Note:  
LABT: Last Address Bit Token, refer to Chapter 7.2 and Chapter 7.3.  
Datasheet  
46  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
R E G  
R O N T C O  
R
S T A  
L
Figure 24 TLE94104EP Bit Mapping  
Note:  
LABT: Last Address Bit Token, refer to Chapter 7.2 and Chapter 7.3.  
Datasheet  
47  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
7.6  
SPI Control Registers  
The Control Registers have a READ/WRITE access (see Chapter 7.5):  
The ‘POR’ value is defined by the register content after a POR or device Reset  
The default value of all control registers is 0000 0000B with the exception of CONFIG_CTRL and  
FM_CLK_CTRL  
The default value of the CONFIG_CTRL register is 0000 0100B  
The default value of the FM_CTLR_CTRL register is 1100 0000B  
One 16-bit SPI command consists of two bytes (see Figure 23 and Figure 24), i.e.  
an address byte  
followed by a data byte  
The control bits are not cleared or changed automatically by the device. This must be done by the  
microcontroller via SPI programming.  
Reading a register is done byte wise by setting the SPI bit 7 to “0” (= READ ONLY).  
Writing to a register is done byte wise by setting the SPI bit 7 to “1”.  
Datasheet  
48  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
7.6.1  
Control register definition  
HB_ACT_1_CTRL  
Half-bridge output control 1 (Address Byte [OP] 000 00[LABT]1B)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HB4_HS_EN HB4_LS_EN HB3_HS_EN HB3_LS_EN HB2_HS_EN HB2_LS_EN HB1_HS_EN HB1_LS_EN  
r
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
HB4_HS_EN D7  
HB4_LS_EN D6  
HB3_HS_EN D5  
HB3_LS_EN D4  
HB2_HS_EN D3  
HB2_LS_EN D2  
HB1_HS_EN D1  
HB1_LS_EN D0  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Half-bridge output 4 high side switch enable  
0B HS4 OFF/ High-Z (default value)  
1B HS4 ON  
Half-bridge output 4 low side switch enable  
0B LS4 OFF/ High-Z (default value)  
1B LS4 ON  
Half-bridge output 3 high side switch enable  
0B HS3 OFF/ High-Z (default value)  
1B HS3 ON  
Half-bridge output 3 low side switch enable  
0B LS3 OFF/ High-Z (default value)  
1B LS3 ON  
Half-bridge output 2 high side switch enable  
0B HS2 OFF/ High-Z (default value)  
1B HS2 ON  
Half-bridge output 2 low side switch enable  
0B LS2 OFF/ High-Z (default value)  
1B LS2 ON  
Half-bridge output 1 high side switch enable  
0B HS1 OFF/ High-Z (default value)  
1B HS1 ON  
Half-bridge output 1 low side switch enable  
0B LS1 OFF/ High-Z (default value)  
1B LS1 ON  
Note:  
The simultaneous activation of both HS and LS switch within a half-bridge is prevented by the  
digital block to avoid cross current. If both LS_EN and HS_EN bits of a given half-bridge are set, the  
logic turns off this half-bridge.  
Datasheet  
49  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
FM_CLK_CTRL  
Frequency modulation select (Address Byte [OP]011 00[LABT]1B)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FM_CLK_  
MOD1  
FM_CLK_  
MOD0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
r
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
FM Modulation Enable1)  
FM_MOD_EN  
D7:D6  
rw  
00B No modulation  
01B Modulation frequency 15.625kHz  
10B Modulation frequency 31.25kHz  
11B Modulation frequency 62.5kHz (default)  
reserved  
reserved  
reserved  
D5:D4  
D3:D2  
D1:D0  
r
r
r
Reserved. Always reads as ‘0’.  
Reserved. Always reads as ‘0’.  
Reserved. Always reads as ‘0’.  
1) Not subject to production test, guaranteed by design. Frequency may deviate by ±10%  
Datasheet  
50  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
OLBLK_CTRL  
Open load blanking setting (Address Byte [OP]110 10[LABT]1)B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OL_BLANK  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
r
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
Internal target:  
OL_BLANK  
D7  
rw  
0B (default) Open load failures are reported in the GEF  
1B Open load failures are not reported in the GEF  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
To be programmed as ‘0’.  
Reserved. Always reads as ‘0’.  
Reserved. Always reads as ‘0’.  
Reserved. Always reads as ‘0’.  
Reserved. Always reads as ‘0’.  
Reserved. Always reads as ‘0’.  
Reserved. Always reads as ‘0’.  
Datasheet  
51  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
CONFIG_CTRL  
Device Configuration control (Address Byte [OP]110 01[LABT]1B)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
reserved  
reserved  
reserved  
reserved  
reserved  
DEV_ID2  
DEV_ID1  
DEV_ID0  
r
r
r
r
r
r
r
r
r
Field  
Bits  
Type  
Description  
Always reads as ‘0’  
Device/ derivative identifier  
reserved  
DEV_IDn  
D7:D3  
D2:D0  
r
r
Note:  
These bits can be used to verify the silicon  
content of the device  
000B TLE94112EL chip  
001B TLE94110EL chip  
010B TLE94108EL chip  
011B TLE94106EL/ES chip  
100B TLE94104EP chip  
101B TLE94103EP chip  
110B reserved  
111B reserved  
Datasheet  
52  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
7.7  
SPI Status Registers  
The Control Registers have a READ/CLEAR access (see also Chapter 7.5):  
The ‘POR Value’ of the Status registers (content after a POR or device Reset) and is 0000 0000B.  
One 16-bit SPI command consists of two bytes (see Figure 23 and Figure 24), i.e.  
an address byte  
followed by a data byte  
Reading a register is done byte wise by setting the SPI bit 7 of the address byte to “0” (= Read Only).  
Clearing a register is done byte wise by setting the SPI bit 7 of the address byte to “1”.  
SPI status registers are not cleared automatically by the device. This must be done by the microcontroller  
via SPI command.  
Datasheet  
53  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
7.7.1  
Status register definition  
SYS_DIAG1  
Global status 1 (Address Byte [OP]001 10[LABT]1B)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SPI_ERR  
LE  
VS_UV  
VS_OV  
NPOR  
TSD  
TPW  
reserved  
r
rc  
r
rc  
rc  
rc  
rc  
rc  
r
Field  
Bits  
Type  
Description  
SPI_ERR  
D7  
rc  
SPI error detection  
0B No SPI protocol error is detected (default value).  
1B An SPI protocol error is detected.  
LE  
D6  
r
Load error detection (logic OR combination of Open Load and  
Overcurrent)  
0B No Open Load and no Overcurrent detected (default value)  
1B Open Load or Overcurrent detected in at least one of the  
power outputs. Error latched. Faulty output is latched off in  
case of Overcurrent  
VS_UV  
VS_OV  
D5  
D4  
rc  
rc  
VS Undervoltage error detection  
0B No undervoltage on VS detected (default value)  
1B Undervoltage on VS detected. Error latched and all outputs  
disabled.  
VS Overvoltage error detection  
0B No overvoltage on VS detected (default value)  
1B Overvoltage on VS detected. Error latched and all outputs  
disabled.  
NPOR  
TSD  
D3  
D2  
rc  
rc  
Not Power On Reset (NPOR) detection  
0B POR on EN or VDD supply rail (default value)  
1B No POR  
Temperature shutdown error detection  
0B Junction temperature below temperature shutdown  
threshold (default value)  
1B Junction temperature has reached temperature shutdown  
threshold. Error latched and all outputs disabled.  
TPW  
D1  
rc  
Temperature pre-warning error detection  
0B Junction temperature below temperature pre-warning  
threshold (default value)  
1B Junction temperature has reached temperature pre-warning  
threshold.  
reserved  
D0  
r
Bit reserved. Always reads ‘0’.  
Note:  
The LE bit in the Global Status register is read only. It reflects an OR combination of the respective  
open load and overcurrent errors of the half-bridge channels. If all OC/ OL bits of the respective high-  
side and low-side channels are cleared to ‘0’, the LE bit will be automatically updated to ‘0’.  
Datasheet  
54  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
SYS_DIAG_2 : OP_ERROR_1_STAT  
Overcurrent error status of half-bridge outputs 1 - 4 (Address Byte [OP]101 10[LABT]1B)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HB4_HS_OC HB4_LS_OC HB3_HS_OC HB3_LS_OC HB2_HS_OC HB2_LS_OC HB1_HS_OC HB1_LS_OC  
r
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
Field  
Bits  
Type  
Description  
HB4_HS_OC D7  
HB4_LS_OC D6  
HB3_HS_OC D5  
HB3_LS_OC D4  
HB2_HS_OC D3  
HB2_LS_OC D2  
HB1_HS_OC D1  
HB1_LS_OC D0  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
High-side (HS) switch of half-bridge 4 overcurrent detection  
0B No error on HS4 switch (default value)  
1B Overcurrent detected on HS4 switch. Error latched and HS4  
disabled.  
Low-side (LS) switch of half-bridge 4 overcurrent detection  
0B No error on LS4 switch (default value)  
1B Overcurrent detected on LS4 switch. Error latched and LS4  
disabled.  
High-side (HS) switch of half-bridge 3 overcurrent detection  
0B No error on HS3 switch (default value)  
1B Overcurrent detected on HS3 switch. Error latched and HS3  
disabled.  
Low-side (LS) switch of half-bridge 3 overcurrent detection  
0B No error on LS3 switch (default value)  
1B Overcurrent detected on LS3 switch. Error latched and LS3  
disabled.  
High-side (HS) switch of half-bridge 2 overcurrent detection  
0B No error on HS2 switch (default value)  
1B Overcurrent detected on HS2 switch. Error latched and HS2  
disabled.  
Low-side (LS) switch of half-bridge 2 overcurrent detection  
0B No error on LS2 switch (default value)  
1B Overcurrent detected on LS2 switch. Error latched and LS2  
disabled.  
High-side (HS) switch of half-bridge 1 overcurrent detection  
0B No error on HS1 switch (default value)  
1B Overcurrent detected on HS1 switch. Error latched and HS1  
disabled.  
Low-side (LS) switch of half-bridge 1 overcurrent detection  
0B No error on LS1 switch (default value)  
1B Overcurrent detected on LS1 switch. Error latched and LS1  
disabled.  
Datasheet  
55  
1.0  
2017-12-07  
TLE94104EP  
Serial Peripheral Interface (SPI)  
SYS_DIAG_3 : OP_ERROR_2_STAT  
Open load error status of half-bridge outputs 1 - 4 (Address Byte [OP]000 01[LABT]1B)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HB4_HS_OL HB4_LS_OL HB3_HS_OL HB3_LS_OL HB2_HS_OL HB2_LS_OL HB1_HS_OL HB1_LS_OL  
r
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
Field  
Bits  
Type  
Description  
HB4_HS_OL D7  
HB4_LS_OL D6  
HB3_HS_OL D5  
HB3_LS_OL D4  
HB2_HS_OL D3  
HB2_LS_OL D2  
HB1_HS_OL D1  
HB1_LS_OL D0  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
High-side (HS) switch of half-bridge 4 open load detection  
0B No error on HS4 switch (default value)  
1B Open load detected on HS4 switch. Error latched.  
Low-side (LS) switch of half-bridge 4 open load detection  
0B No error on LS4 switch (default value)  
1B Open load detected on LS4 switch. Error latched.  
High-side (HS) switch of half-bridge 3 open load detection  
0B No error on HS3 switch (default value)  
1B Open load detected on HS3 switch. Error latched.  
Low-side (LS) switch of half-bridge 3 open load detection  
0B No error on LS3 switch (default value)  
1B Open load detected on LS3 switch. Error latched.  
High-side (HS) switch of half-bridge 2 open load detection  
0B No error on HS2 switch (default value)  
1B Open load detected on HS2 switch. Error latched.  
Low-side (LS) switch of half-bridge 2 open load detection  
0B No error on LS2 switch (default value)  
1B Open load detected on LS2 switch. Error latched.  
High-side (HS) switch of half-bridge 1 open load detection  
0B No error on HS1 switch (default value)  
1B Open load detected on HS1 switch. Error latched.  
Low-side (LS) switch of half-bridge 1 open load detection  
0B No error on LS1 switch (default value)  
1B Open load detected on LS1 switch. Error latched.  
Datasheet  
56  
1.0  
2017-12-07  
TLE94104EP  
Application Information  
8
Application Information  
Note:  
The following simplified application examples are given as a hint for the implementation of the  
device only and shall not be regarded as a description or warranty of a certain functionality,  
condition or quality of the device. The function of the described circuits must be verified in the real  
application.  
8.1  
Application Diagram  
VS  
VBAT  
VBAT  
3 motors in  
cascaded  
configuration  
2 motors in  
non-cascaded  
configuration  
47µF  
100nF  
100nF  
I
Q
VDD  
VDD  
VS  
OUT 1  
TLE4678  
TLE94104EP  
M1  
M1  
µC  
N.C.  
EN  
D
INH  
W
OUT 2  
RADJ  
M2  
M3  
VDD  
SDO  
SDI  
Series resistors are  
10k  
OUT 3  
OUT 4  
recommended if the VS of  
the TLE94104 EL is protected  
by an active reverse polarity  
protection  
RO  
M2  
CSN  
SCLK  
GND  
GND  
GND  
Landing pads for ceramic  
capacitors at OUTx  
Figure 25 Application Example for DC-motor loads  
Datasheet  
57  
1.0  
2017-12-07  
TLE94104EP  
Application Information  
VBAT  
DRP  
VReg  
Q
VCC  
VS  
VDD  
EN  
OUT1  
OUT2  
OUT3  
µC  
SDI  
Series resistors are  
recommended if the VS of  
the TLE94104EP is protected  
by an active reverse polarity  
protection  
SDO  
SCLK  
CSN  
M
Landing pads for ceramic  
capacitors at OUTx  
OUT4  
GND  
GND  
Figure 26 Application Example for bipolar stepper motor in voltage mode control  
Notes on the application example  
1. Series resistors between the microcontroller and the signal pins of the TLE94104EP are recommended if an  
active reverse polarity protection (MOSFET) is used to protect the VS pin. These resistors limit the current  
between the microcontroller and the device during negative transients on VBAT (e.g. ISO/TR 7637 pulse 1)  
2. Landing pads for ceramic capacitors at the outputs of the TLE94104EP as close as possible to the connectors  
are recommended (the ceramic capacitors are not populated if unused). These ceramic capacitors can be  
mounted if a higher performance in term of ESD capability is required.  
3. The electrolytic capacitor at the VS pin should be dimensioned in order to prevent the VS voltage from  
exceeding the absolute maximum rating. PWM operation with a too low capacitance can lead to a VS voltage  
overshoot, which results in a VS overvoltage detection.  
4. Unused outputs are recommended to be left unconnected (open) in the application. If unused output pins are  
routed to an external connector which leaves the PCB, then these outputs should have provision for a zero  
ohm jumper (depopulated if unused) or ESD protection. In other words, unused pins should be treated like  
used pins.  
5. Place bypass ceramic capacitors as close as possible to the VS pins, with shortest connections the GND pins  
and GND layer, for best EMC performance  
Datasheet  
58  
1.0  
2017-12-07  
TLE94104EP  
Application Information  
8.2  
Thermal application information  
Ta = -40°C, Ch1 to Ch4 are dissipating a total of 0.8W (0.2W each).  
Ta = 85°C, Ch1 to Ch4 are dissipating a total of 0.54W (0.135W each).  
Zth-ja for TLE 94104EP  
150  
1s0p / 600mm² / -40°C  
1s0p / 600mm² / +85°C  
120  
1s0p / 300mm² / -40°C  
1s0p / 300mm² / +85°C  
1s0p / footprint / -40°C  
90  
1s0p / footprint / +85°C  
2s2p / -40°C  
2s2p / +85°C  
60  
30  
0
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
time [sec]  
Figure 27 ZthJA Curve for different PCB setups  
Zth-jc for TLE 94104EP  
18  
16  
14  
12  
10  
8
Tamb = -40°C  
Tamb = +85°C  
6
4
2
0
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
time [sec]  
Figure 28 ZthJC Curve  
Datasheet  
59  
1.0  
2017-12-07  
TLE94104EP  
Application Information  
8.3  
EMC Enhancement  
In the event the emissions of the device exceed the allowable limits, a modulation of the oscillator frequency  
is incorporated to reduce eventual harmonics of the 8MHz base clock. The frequencies can be selected based  
on the resolution bandwidth of the peak detector during EMC testing.  
The selection is achieved by setting the FM_CLK_MODn bits in the FM_CLK_CTRL register as follows:  
00B: OFF  
01B: FM CLK=15.625 kHZ  
10B: FM CLK=31.25 kHz  
11B: FM CLK=62.5 kHz  
Datasheet  
60  
1.0  
2017-12-07  
TLE94104EP  
Package Outlines  
9
Package Outlines  
Figure 29 PG-TSDSO-14 (Plastic Green - Dual Small Outline Package)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e lead-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
61  
1.0  
2017-12-07  
TLE94104EP  
Revision History  
10  
Revision History  
Revision Date  
Changes  
1.0  
2017-12-07 Initial release  
Datasheet  
62  
1.0  
2017-12-07  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2017-12-07  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Doc_Number  

相关型号:

TLE94106ES

TLE94106ES 是受保护的六倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。 半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-24,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94108EL

TLE94108EL 是受保护的八倍半桥驱动器,专为汽车运动控制应用而设计,如加热,通风和空调(HVAC)的活门直流电机控制。它属于一个较大的半桥驱动器系列,可提供三路至十二路输出,设有直接接口或SPI接口。该半桥驱动器旨在以顺序或并行方式驱动直流电机负载。正向 (cw)、反向 (ccw)、制动和高阻抗等工作模式通过16位SPI接口进行控制。该器件提供各种诊断功能,如短路、开路负载、电源故障和过热检测。结合其低静态电流,该器件在汽车应用中具有吸引力。采用小型小脚距散热焊盘封装PG-SSOP-24,具有良好的散热性能,可减少PCB板的占用空间和成本。
INFINEON

TLE94108ELXUMA1

Brush DC Motor Controller, 2A, PDSO24, SSOP-24
INFINEON

TLE94108ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.
INFINEON

TLE94110ELXUMA1

Brush DC Motor Controller, 2A, PDSO24, SSOP-24
INFINEON

TLE94110ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.
INFINEON

TLE94112ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.
INFINEON

TLE9461

Lite LDO System Basis Chip supports CAN Flexible Data-Rate(FD) and Partial Networking (PN)
INFINEON

TLE9461-3ES

Lite LDO System Basis Chip supports CAN Flexible Data-Rate(FD) and Partial Networking (PN)
INFINEON

TLE9461-3ESV33

Lite LDO System Basis Chip supports CAN Flexible Data-Rate(FD) and Partial Networking (PN)
INFINEON

TLE94613ESV33XUMA1

Power Supply Management Circuit,
INFINEON

TLE94613ESXUMA1

Power Supply Management Circuit,
INFINEON