TLE9844QX [INFINEON]

TLE9844QX includes an Arm® Cortex® M0 and integrated high-side and low-side switches;
TLE9844QX
型号: TLE9844QX
厂家: Infineon    Infineon
描述:

TLE9844QX includes an Arm® Cortex® M0 and integrated high-side and low-side switches

文件: 总128页 (文件大小:3290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9844QX  
Microcontroller with LIN and Power Switches for  
Automotive Applications  
1
Overview  
Features  
32-bit Arm® Cortex®*-M0 Core  
up to 25 MHz clock frequency  
one clock per machine cycle architecture  
single cycle multiplier  
VQFN-48-31  
On-chip memory  
64 KB Flash (including EEPROM)  
4 KB EEPROM (emulated in Flash)  
768 bytes 100 Time Programmable Memory (100TP)  
4 KB RAM  
Boot ROM for startup firmware and Flash routines  
On-chip OSC  
2 Low-Side Switches incl. PWM functionality, can be used e.g. as relay driver  
1 High-Side Switch with cyclic sense option and PWM functionality, e.g. for supplying LEDs or switch panels  
(min. 150 mA)  
4 High Voltage Monitor Input pins for wake-up and with cyclic sense with analog measurement option  
10 General-purpose I/O Ports (GPIO)  
6 Analog input Ports  
10-Bit A/D Converter with 6 analog inputs + VBAT_SENSE + VS + 4 high voltage monitoring inputs  
8-Bit A/D Converter with 7 inputs for voltage and temperature supervision  
Measurement unit with 12 channels together with the onboard 10-Bit A/D converter and data post  
processing  
16-Bit timers - GPT12, Timer 2 and Timer 21  
Capture/compare unit for PWM signal generation (CCU6)  
*
Arm and Cortex are registered trademarks of Arm Limited, UK  
Type  
Package  
Marking  
TLE9844QX  
VQFN-48-31  
TLE9844QX  
Datasheet  
www.infineon.com  
1
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Overview  
2 full duplex serial interfaces (UART1, UART2), UART1 with LIN support  
2 synchronous serial channels (SSC1, SSC2)  
On-chip debug support via 2-wire SWD  
LIN Bootstrap loader to program the Flash via LIN (LIN BSL)  
1 LIN 2.2 transceiver  
Single power supply from 3.0 V to 28 V  
Low-dropout voltage regulators (LDO)  
5 V voltage supply VDDEXT for external loads (e.g. Hall-sensor)  
Core logic supply at 1.5 V  
Programmable window watchdog (WDT1) with independent on-chip clock source  
Power saving modes:  
Micro Controller Unit slow-down mode  
Sleep Mode with cyclic sense option  
Cyclic wake-up during Sleep Mode  
Stop Mode with cyclic sense option  
Power-on and undervoltage/brownout reset generator  
Overtemperature protection  
Short circuit protection for all voltage regulators and actuators (High Side, Low Side)  
Loss of clock detection with fail safe mode for power switches  
Temperature Range TJ: -40°C up to 150°C  
Package VQFN-48-31 with LTI feature  
Green package (RoHS compliant)  
AEC Qualified  
Datasheet  
2
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
3.1  
3.2  
Device Pinout and Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.3  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PMU Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power Supply Generation (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power-on Reset Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6
6.1  
6.2  
6.2.1  
6.3  
6.3.1  
6.3.2  
6.3.2.1  
6.3.2.2  
6.3.3  
System Control Unit - Digital Modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Low Precision Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
High Precision Oscillator Circuit (OSC_HP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
External Input Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
External Crystal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Clock Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7
System Control Unit - Power Modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Description of the Power Modules System Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.1  
7.2  
7.2.1  
8
Arm® Cortex®-M0 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.1  
8.2  
8.2.1  
9
Address Space Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10  
Memory Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.1  
10.2  
10.2.1  
11  
11.1  
11.1.1  
NVM Module (Flash Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Datasheet  
3
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
12  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
12.1  
12.2  
12.2.1  
13  
13.1  
13.2  
Watchdog Timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
14  
14.1  
14.2  
GPIO Ports and Peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 0 and Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
TLE9844QX Port Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port 0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Port 1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Port 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
14.2.1  
14.2.2  
14.3  
14.3.1  
14.3.1.1  
14.3.2  
14.3.2.1  
14.3.3  
14.3.3.1  
15  
15.1  
General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features Block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features Block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Block Diagram GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Block Diagram GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
15.1.1  
15.1.2  
15.2  
15.2.1  
15.2.2  
16  
Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Timer2 and Timer21 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
16.1  
16.2  
16.2.1  
17  
Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Feature Set Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
17.1  
17.2  
17.2.1  
18  
UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
UART Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
18.1  
18.2  
18.2.1  
18.3  
19  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
19.1  
19.2  
19.2.1  
20  
High-Speed Synchronous Serial Interface SSC1/SSC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
20.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Datasheet  
4
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
20.2  
20.2.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
21  
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
21.1  
21.2  
21.2.1  
22  
Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
22.1  
22.2  
22.2.1  
23  
10-Bit Analog Digital Converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
23.1  
23.2  
23.2.1  
24  
High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
24.1  
24.2  
24.2.1  
25  
High-Side Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
25.1  
25.2  
25.2.1  
25.2.2  
26  
26.1  
26.2  
Low-Side Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
27  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Relay Window Lift Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Connection of N.C. / N.U. pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Connection of unused pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Connection of P0.2 for SWD debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Connection of TMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
ESD Immunity According to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
27.1  
27.2  
27.3  
27.4  
27.5  
27.6  
28  
28.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
PMU Input Voltage VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
PMU I/O Supply Parameters VDDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
PMU Core Supply Parameters VDDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
VDDEXT Voltage Regulator 5.0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
28.1.1  
28.1.2  
28.1.3  
28.1.4  
28.1.5  
28.2  
28.2.1  
28.2.2  
28.2.3  
28.2.4  
Datasheet  
5
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
28.2.5  
28.2.5.1  
28.2.6  
28.3  
28.3.1  
28.3.2  
28.4  
VPRE Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Load Sharing of VPRE Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Power Down Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Electrical Characteristics Oscillators and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
External Clock Parameters XTAL1, XTAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Description of Keep and Force Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
DC Parameters Port 0, Port 1, TMS, Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
DC Parameters Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
SSC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Central Temperature Sensor Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
ADC1 Reference Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Electrical Characteristics ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
High-Voltage Monitoring Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
High Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Low Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
28.4.1  
28.5  
28.5.1  
28.5.2  
28.5.3  
28.5.4  
28.6  
28.6.1  
28.7  
28.7.1  
28.8  
28.8.1  
28.8.2  
28.8.2.1  
28.9  
28.9.1  
28.9.2  
28.10  
28.10.1  
28.11  
28.11.1  
28.12  
28.12.1  
29  
30  
31  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Datasheet  
6
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Block Diagram  
2
Block Diagram  
TMS  
P0.0  
TEST / DEBUG  
INTERFACE  
ARM  
CORTEX-M0  
FLASH  
slave  
SRAM  
slave  
ROM  
slave  
systembus  
Multilayer AHB Matrix  
slave  
PBA0  
slave  
PBA1  
P2.x (ANx)  
VBAT_SENSE  
ADC10B  
DPP1  
P0.x  
P1.x  
P2.x  
UART1  
GPIO  
LIN  
CCU6  
UART2  
LS1  
LS2  
LS1  
LIN  
GNDLIN  
SSC1  
SSC2  
GNDLS  
GPT12  
MU:  
LS2  
ADC8B  
DPP2  
T2  
VS  
T21  
PMU –  
Power  
Management  
Unit  
RESET  
VDDEXT  
VDDP  
VDDC  
HS1  
HS1  
PLL  
SCU_DM  
WDT1  
1- 4 MON  
MON 1...4  
SCU_PM  
Figure 1  
Block Diagram, TLE9844QX  
Datasheet  
7
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Device Pinout and Pin Configuration  
3
Device Pinout and Pin Configuration  
3.1  
Device Pinout  
P2.1 37  
N.C. 38  
P2.0 39  
24 P0.4  
23 P0.3  
22 P0.2  
21 RESET  
20 P0.0/ SWD_CLK  
19 GNDP  
18 TMS /SWD_IO  
17 P0.1  
N.C. 40  
N.C. 41  
VDDC 42  
GNDA 43  
VDDP 44  
VDDEXT 45  
16 P1.2  
N.C. 46  
15 P1.1  
VS 47  
14 P1.0  
VBAT _SENSE 48  
13 GNDLS  
Figure 2  
Device Pinout, TLE9844QX  
Datasheet  
8
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Device Pinout and Pin Configuration  
3.2  
Pin Configuration  
After reset, all pins are configured as input (except supply and LIN pins) with one of the following settings:  
Pull-up enabled only (PU)  
Pull-down enabled only (PD)  
Input with both pull-up and pull-down disabled (I)  
Output with output stage deactivated = high impedance state (Hi-Z)  
The functions and default states of the TLE9844QX external pins are provided in the following table.  
Type: indicates the pin type.  
I/O: Input or output  
I: Input only  
O: Output only  
P: Power supply  
Not all alternate functions listed, see Chapter 14.  
Table 1  
Symbol  
Pin Definitions and Functions  
Pin Number Type Reset Function  
State  
P0  
Port 0  
Port 0 is an 6-Bit bidirectional general purpose I/O port.  
Alternate functions can be assigned and are listed in the Port  
description. Main function is listed below.  
P0.0  
20  
I/O  
I/PU  
SWD_CLK  
GPIO  
Serial Wire Debug Clock  
General Purpose IO  
Alternate function mapping see Table 7  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P1  
17  
22  
23  
24  
25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/PU  
I/PD  
I/PU  
I/PU  
I/PU  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Port 1  
General Purpose IO  
Alternate function mapping see Table 7  
General Purpose IO  
Alternate function mapping see Table 7  
General Purpose IO  
Alternate function mapping see Table 7  
General Purpose IO  
Alternate function mapping see Table 7  
General Purpose IO  
Alternate function mapping see Table 7  
Port 1 is an 4-Bit bidirectional general purpose I/O port.  
Alternate functions can be assigned and are listed in the Port  
description. Main function is listed below.  
P1.0  
P1.1  
P1.2  
14  
15  
16  
I/O  
I/O  
I/O  
I
I
I
GPIO  
GPIO  
GPIO  
General Purpose IO  
Alternate function mapping see Table 8  
General Purpose IO  
Alternate function mapping see Table 8  
General Purpose IO  
Alternate function mapping see Table 8  
Datasheet  
9
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Device Pinout and Pin Configuration  
Table 1  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number Type Reset Function  
State  
P1.4  
26  
I/O  
I
GPIO  
General Purpose IO  
Alternate function mapping see Table 8  
P2  
Port 2  
Port 2 is an 8-Bit general purpose input-only port.  
Alternate functions can be assigned and are listed in the Port  
description. Main function is listed below.  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
39  
37  
33  
36  
32  
31  
34  
35  
I
I
I
I
I
I
I
I
I
I
AN0  
AN1  
AN2  
AN3  
ADC1 analog input channel 12  
Alternate function mapping see Table 9  
ADC1 analog input channel 7  
Alternate function mapping see Table 9  
ADC1 analog input channel 8  
Alternate function mapping see Table 9  
ADC1 analog input channel 9  
Alternate function mapping see Table 9  
Alternate function mapping see Table 9  
External oscillator input  
XTAL11)  
I
O
I
Alternate function mapping see Table 9  
External oscillator output  
Hi-Z  
XTAL21)  
AN6  
I
I
I
I
ADC1 analog input channel 10  
Alternate function mapping see Table 9  
AN7  
ADC1 analog input channel 11  
Alternate function mapping see Table 9  
Power Supply  
VS  
47  
44  
P
P
Battery supply input  
VDDP  
I/O port supply (5.0 V). Do not connect external loads. For  
buffer and bypass capacitors  
VDDC  
42  
P
Core supply (1.5 V during Active Mode,  
reduced voltage during Stop Mode). Do not connect external  
loads. For buffer/bypass capacitor  
VDDEXT  
GNDLS  
GNDP  
45  
P
P
P
P
P
External voltage supply output (5.0 V, 20 mA)  
Low-side ground LS1, LS2  
Core supply ground  
13  
19, 30  
43  
GNDA  
Analog supply ground  
GNDLIN  
Monitor Inputs  
MON1  
2
LIN ground  
5
6
7
8
I
I
I
I
I
I
I
I
High Voltage Monitor Input 1  
High Voltage Monitor Input 2  
High Voltage Monitor Input 3  
High Voltage Monitor Input 4  
MON2  
MON3  
MON4  
High-Side Switch / Low-Side Switch Outputs  
Datasheet  
10  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Device Pinout and Pin Configuration  
Table 1  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number Type Reset Function  
State  
LS1  
11  
12  
3
O
O
O
Hi-Z  
Hi-Z  
Hi-Z  
Low-Side switch output 1  
Low-Side Switch output 2  
High-Side Switch output 1  
LS2  
HS1  
LIN Interface  
LIN  
1
I/O  
I
PU  
LIN bus interface input/output  
Others  
TMS  
18  
21  
I/PD  
TMS  
SWD_IO  
Test mode select input  
Serial Wire Debug input/output  
RESET  
I/O  
I
I/O/PU Reset input/output, not available during Sleep Mode  
VBAT_SENSE 48  
I
Battery supply voltage sense input  
N.C.  
10, 27, 28, 29, –  
Not connected, can be connected to GND  
38, 40, 41, 46  
N.U.  
EP  
4, 9  
Not Used; see Chapter 27.2  
Exposed Pad, connect to GND  
1) configurable by user  
Datasheet  
11  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Modes of Operation  
4
Modes of Operation  
This highly integrated circuit contains analog and digital functional blocks. For system and interface control  
an embedded 32-Bit Cortex®-M0 microcontroller is included. For internal and external power supply purposes,  
on-chip low drop-out regulators are existent. An internal oscillator (no external components necessary)  
provides a cost effective and suitable clock in particular for LIN slave nodes. As communication interface, a LIN  
transceiver and several High Voltage Monitor Inputs with adjustable threshold and filters are available.  
Furthermore oneHigh-Sides Switche (e.g. for driving LEDs or powering of switches), two low-side switches  
(e.g. for relays) and several general purpose input/outputs (GPIO) with pulse-width modulation (PWM)  
capabilities are available.  
The Micro Controller Unit supervision and system protection including reset feature is controlled by a  
programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated  
temperature sensors are available on-chip.  
All relevant modules offer power saving modes in order to support terminal 30 connected automotive  
applications. A wake-up from the power saving mode is possible via a LIN bus message, via the monitoring  
inputs or repetitive with a programmable time period (cyclic wake-up).  
The integrated circuit is available in a package with 0.5 mm pitch and is designed to withstand the challenging  
conditions of automotive applications.  
The TLE9844QX has several operational modes mainly to support low power consumption requirements. The  
low power modes and state transitions are depicted in Figure 3 below.  
Power-up  
VS > 3V  
Reset  
Transition by software Transition by external event  
WDT1 reset  
(error_wdt++)  
VDDC stable &  
error_supp < 5  
VDDC fail  
Safety Fallback Transition by internal event  
(error_supp++)  
Safety fallback  
error_supp = 5  
Cyclic wake  
Active Mode  
LIN wake or  
Cyclic wake  
MON wake or  
GPIO wake  
LIN wake or  
MON wake  
STOP command  
SLEEP command  
Stop Mode  
Safety fallback  
error_wdt = 5  
Sleep Mode  
Cyclic-sense  
Cyclic-sense  
PMU_System_Modes.vsd  
Figure 3  
Power Control State Diagram  
Datasheet  
12  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Modes of Operation  
Reset Mode  
The Reset Mode is a transition mode e.g. during power-up of the device after a power-on reset. In this mode  
the on-chip power supplies are enabled and all other modules are initialized. Once the core supply VDDC is  
stable, the Active Mode is entered. In case the watchdog timer WDT1 fails for more than four times, a fail-safe  
transition to the Sleep Mode is done.  
Active Mode  
In Active Mode all modules are activated and the TLE9844QX is fully operational.  
Stop Mode  
The Stop Mode is one out of two major low power modes. The transition to the low power modes is done by  
setting the respective Bits in the mode control register. In Stop Mode the embedded microcontroller is still  
powered allowing faster wake-up reaction times, but not clocked. A wake-up from this mode is possible by LIN  
bus activity, the High Voltage Monitor Input pins or the respective 5V GPIOs.  
Sleep Mode  
The Sleep Mode is a major low-power mode. The transition to the low-power modes is done by setting the  
respective Bits in the Micro Controller Unit mode control register. The sleep time is configurable. In Sleep  
Mode the embedded microcontroller power supply is deactivated, allowing the lowest system power  
consumption, but the wake-up time is longer compared to the Stop Mode. In this mode a 64 bit wide buffer for  
data storage is available. A wake-up from this mode is possible by LIN bus activity or the High Voltage Monitor  
Input pins and cyclic wake. A wake-up from Sleep Mode behaves similar to a power-on reset. While changing  
into Sleep Mode, no incoming wake-requests are lost (i.e. no dead-time). It is possible to enter sleep-mode  
even with LIN dominant.  
Cyclic Wake-up Mode  
The cyclic wake-up mode is a special operating mode of the Sleep Mode and the Stop Mode. The transition to  
the cyclic wake-up mode is done by first setting the respective Bits in the mode control register followed by  
the SLEEP or STOP command. Additional to the cyclic wake-up behavior (wake-up after a programmable time  
period), the wake-up sources of the normal Stop Mode and Sleep Mode are available.  
Cyclic Sense Mode  
The cyclic sense mode is a special operating mode of the Sleep Mode and the Stop Mode. The transition to the  
cyclic sense mode is done by first setting the respective Bits in the mode control register followed by the STOP  
or SLEEP command. In cyclic sense mode the High-Side Switch can be switched on periodically for biasing  
some switches for example. The wake-up condition is configurable, when the sense result of defined monitor  
inputs at a window of interest changed compared to the previous wake-up period or reached a defined state  
respectively. In this case the Active Mode is entered immediately.  
The following table shows the possible power mode configurations of each major module or function  
respectively.  
Table 2  
Power Mode Configurations  
Module/function  
VPRE, VDDP, VDDC  
VDDEXT  
Active Mode Sleep Mode  
Stop Mode  
ON  
Comment  
ON  
OFF  
ON/OFF  
ON/OFF  
OFF  
cyclic ON/OFF  
cyclic ON/OFF  
HSx  
cyclic ON/OFF  
cyclic sense  
Datasheet  
13  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Modes of Operation  
Table 2  
Power Mode Configurations (cont’d)  
Module/function  
LSx  
Active Mode Sleep Mode  
Stop Mode  
Comment  
ON/OFF  
ON/OFF  
OFF  
OFF  
LIN TRx  
wake-up only / OFF wake-up only/  
OFF  
MONx (wake-up)  
MONx (measurement)  
VS sense  
n.a.  
disabled/static/  
cyclic  
disabled/static/ cyclic: combined with  
cyclic  
HS=on  
ON/OFF  
OFF  
OFF  
available on all  
channels  
ON/OFF  
brownout  
detection  
brownout detection brownout  
detection  
brownout det. done  
in PCU  
VBAT_SENSE  
GPIO 5V  
ON/OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
WDT1  
ON  
OFF  
CYCLIC WAKE  
n.a.  
cyclic wake-up/  
cyclic sense/OFF  
cyclic wake-up/ cyclic sense with HS;  
cyclic sense/OFF wake-up needs MC  
for enter Sleep Mode  
again  
Measurement  
ON1)  
OFF  
OFF  
OFF  
OFF  
Micro Controller Unit  
ON/slow-  
down/STOP  
CLOCK GEN (MC)  
ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
LP_CLK (fLP_CLK  
)
WDT1  
LP_CLK2 (fLP_CLK2  
)
for cyclic wake-up  
1) May not be switched off due to safety reasons  
Wake-up Source Prioritization  
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up  
sources, the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are  
latched in order to provide all wake-up events to the application software. The software can clear the wake-  
up source flags. It is ensured, that no wake-up event is lost.  
As default wake-up sources, MON inputs and cyclic wake are activated after power-on reset, LIN is disabled as  
wake-up source by default.  
Wake-up Levels and Transitions  
The wake-up can be triggered by rising, falling or both signal edges for each monitor input individually.  
Datasheet  
14  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Power Management Unit (PMU)  
5
Power Management Unit (PMU)  
5.1  
Features  
System modes control (startup, sleep, stop and active)  
Power management (cyclic wake)  
Control of system voltage regulators with diagnosis (overload, short, overvoltage)  
Fail safe mode detection and operation in case of system errors (watchdog fail)  
Wake-up sources configuration and management (LIN, MON, GPIOs)  
System error logging  
5.2  
Introduction  
The purpose of the power management unit is to ensure the fail safe behavior of the system IC. Therefore the  
power management unit controls all system modes including the corresponding transitions. The power  
management unit is responsible for generating all needed voltage supplies for the embedded MCU (VDDC,  
VDDP) and the external supply (VDDEXT). Additionally, the PMU provides well defined sequences for the  
system mode transitions and generates hierarchical reset priorities. The reset priorities control the reset  
behavior of all system functionalities especially the reset behavior of the embedded MCU. All these functions  
are controlled by finite state machines. The system master functionality of the PMU requires the generation of  
an independent logic supply and system clock. Therefore the PMU has a module internal logic supply and  
system clock which works independently of the MCU clock.  
Datasheet  
15  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Power Management Unit (PMU)  
5.2.1  
Block Diagram  
The following figure shows the structure of the Power Management Unit. Table 3 describes the submodules  
more detailed.  
VS  
Power Down Supply  
VDDP  
VDDC  
Power Supply Generation Unit  
(PGU)  
I
N
T
E
R
N
A
L
e.g. for WDT1  
LP_CLK  
Peripherals  
LDO for External Supply  
VDDEXT  
VDDEXT  
e.g. for cyclic wake  
LP_CLK2  
PMU-PCU  
PMU-SFR  
PMU-CMU  
PMU-RMU  
B
U
S
MONx  
LIN  
PMU-WMU  
PMU-Control  
Power ManagementUnit  
Power_Management.vsd  
Figure 4  
Table 3  
Power Management Unit Block Diagram  
Description of PMU Submodules  
Mod.  
Modules  
Functions  
Name  
Power Down Independent Supply Voltage  
This supply is dedicated to the PMU to ensure an  
Supply  
Generation for PMU  
independent operation from generated power supplies  
(VDDP, VDDC).  
LP_CLK  
(= fLP_CLK  
- Clock Source for all PMU  
submodules  
This ultra low power oscillator generates the clock for  
the PMU.  
)
- Backup Clock Source for System This clock is also used as backup clock for the system in  
- Clock Source for WDT1  
Clock Source for PMU  
Peripheral Blocks of PMU  
case of PLL Clock failure and as independent clock  
source for WDT1.  
LP_CLK2  
(= fLP_CLK2  
This ultra low power oscillator generates the clock for  
the PMU in Stop Mode and in the cyclic modes.  
)
Peripherals  
These blocks include the analog peripherals to ensure a  
stable and fail safe PMU startup and operation  
(bandgap, bias).  
Datasheet  
16  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Power Management Unit (PMU)  
Table 3  
Description of PMU Submodules (cont’d)  
Modules Functions  
Mod.  
Name  
Power Supply Voltage regulators for VDDP and  
This block includes the voltage regulators for the pad  
supply (VDDP) and the core supply (VDDC).  
Generation  
Unit (PGU)  
VDDC  
VDDEXT  
Voltage regulator for VDDEXT to  
supply external modules (e.g.  
Sensors)  
This voltage regulator is a dedicated supply for external  
modules.  
PMU-SFR  
PMU-PCU  
All PMU relevant Extended Special This module contains all PMU relevant registers, which  
Function Registers  
are needed to control and monitor the PMU.  
Power Control Unit of the PMU  
This block is responsible for controlling all power  
related actions within the PGU Module.It also contains  
all regulator related diagnosis like under- and  
overvoltage detection, overcurrent and short circuit  
diagnoses.  
PMU-WMU  
PMU-CMU  
PMU-RMU  
Wake-up Management Unit of the This block is responsible for controlling all Wake-up  
PMU  
related actions within the PMU Module.  
Cyclic Management Unit of the  
PMU  
This block is responsible for controlling all actions  
within cyclic mode.  
Reset Management Unit of the PMU This block generates resets triggered by the PMU like  
undervoltage or short circuit reset, and passes all resets  
to the relevant modules and their register. A reset status  
register with every reset source is available.  
Datasheet  
17  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Power Management Unit (PMU)  
5.2.2  
PMU Modes Overview  
The following state diagram shows the available modes of the device.  
VS > 4V and VS ramp up  
or  
VS  
< 3V and V  
S
ramp down  
LIN-wake or  
MON-wake or  
cyclic -wake  
start-up  
VDDC =stable and  
error_supp<5  
VDDC / VDDP = fail  
(short circuit)  
à error_supp ++  
error_sup=5  
sleep  
active  
Sleep command (from MCU ) or  
WDT1_SEQ_FAIL = 1 (à error_wdt = 5) or  
VDDC / VDDP = overload  
LIN-wake or  
MON-wake or  
GPIO-wake or  
cyclic _wake or  
PMU_PIN = 1 or  
SUP_TMOUT = 1  
PMU_PIN = 1 or  
PMU_SOFT = 1 or  
(PMU_Ext_WDT = 1 and  
WDT1_SEQ_FAIL = 0  
à error_wdt ++)  
cyclic sense  
Stop  
command  
(from MCU)  
stop  
cyclic sense  
PMU_System _Modes _Cus_w_Stopp .vsd  
Figure 5  
Power Management Unit System Modes  
Datasheet  
18  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Power Management Unit (PMU)  
5.3  
Power Supply Generation (PGU)  
5.3.1  
Voltage Regulator 5.0V (VDDP)  
This module represents the 5 V voltage regulator, which provides the pad supply for the parallel port pins and  
other 5 V analog functions (e.g. LIN Transceiver).  
Features  
5 V low-drop voltage regulator  
Overcurrent monitoring and shutdown with MCU signalling (Interrupt)  
Overvoltage monitoring with MCU signalling (Interrupt)  
Undervoltage monitoring with MCU signalling (Interrupt)  
Undervoltage monitoring with Reset (Undervoltage Reset, VDDPUV  
Overtemperature shutdown with MCU signalling (Interrupt)  
Pre-Regulator for VDDC Regulator  
)
GPIO Supply  
Pull Down Current Source at the output for Sleep Mode only (typ.5 mA)  
The output capacitor CVDDP is mandatory to ensure a proper regulator functionality.  
VDDP Regulator  
VS  
VDDP  
VPRE  
A
CVDDP  
V
GND  
I
5V LDO  
LDO Supervision  
LDO_block_external .vsd  
Figure 6  
Module Block Diagram of VDDP Voltage Regulator  
Datasheet  
19  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Power Management Unit (PMU)  
5.3.2  
Voltage Regulator 1.5V (VDDC)  
This module represents the 1.5 V voltage regulator, which provides the supply for the microcontroller core,  
digital peripherals and other chip internal analog 1.5 V functions (e.g. ADC).  
Features  
1.5 V low-drop voltage regulator  
Overcurrent monitoring and Shutdown with MCU signalling (Interrupt)  
Overvoltage monitoring with MCU signalling (Interrupt)  
Undervoltage monitoring with MCU signalling (interrupt)  
Undervoltage monitoring with reset  
Overtemperature Shutdown with MCU signalling (Interrupt)  
Pull Down Current Source at the output for Sleep Mode only (typ. 100 μA)  
The output capacitor CVDDC is mandatory to ensure a proper regulator functionality.  
VDDC Regulator  
VDDP (5V)  
VDDC (1.5V)  
CVDDC  
A
V
V
CVDDP  
I
1.5V LDO  
Supervision  
1.5VLDOblockexternal.vsd  
Figure 7  
Module Block Diagram of VDDC Voltage Regulator  
Datasheet  
20  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Power Management Unit (PMU)  
5.3.3  
External Voltage Regulator 5.0V (VDDEXT)  
This module represents the 5 V voltage regulator, which serves as a supply for external circuits. It can be used  
e.g. to supply an external sensor, LEDs or potentiometers.  
Features  
Switchable (by software) +5 V, low-drop voltage regulator  
Switch-on undervoltage blanking time in order to drive small capacitive loads  
Intrinsic current limitation  
Undervoltage monitoring and shutdown with MCU signalling (Interrupt)  
Overtemperature Shutdown with MCU signalling (Interrupt)  
Pull Down Current Source at the output for Sleep Mode only (typ. 100 μA)  
Cyclic sense option together with GPIOs  
Low current mode available to ensure reduced stop mode current consumption. In this mode current  
capability is reduced to IVDDEXT_LCM  
The output capacitor CVDDEXT is mandatory to ensure a proper regulator functionality.  
VDDEXT Regulator  
VS  
VDDEXT (5V)  
CVDDEXT  
V
CVS  
V
VDDEXT LDO  
Supervision  
HALL_LDOblockexternal.vsd  
Figure 8  
Module Block Diagram  
Datasheet  
21  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Power Management Unit (PMU)  
5.3.4  
Power-on Reset Concept  
Vs  
ca. 4V  
1.5V  
PMU_1V5DidPOR  
LP_Clk  
5V  
VDDP  
ca. 3.5V  
3V  
VDDC  
1.5V  
fail  
stable  
ok  
SUPPLY_STATUS  
RESET_PIN  
PMU_RESET_STS  
xxh  
80h  
Down  
Start-up  
Active  
SYSTEM_STATE  
Figure 9  
Power-on Reset Concept  
Datasheet  
22  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
System Control Unit - Digital Modules (SCU-DM)  
6
System Control Unit - Digital Modules (SCU-DM)  
6.1  
Features  
Flexible clock configuration features  
Reset management of all system resets  
System modes control for all power modes (active, power down, sleep)  
Interrupt enabling for many system peripherals  
General purpose input output control  
Debug mode control of system peripherals  
6.2  
Introduction  
The System Control Unit (SCU) supports all central control tasks in the TLE9844QX. The SCU is made up of the  
following sub-modules:  
Clock System and Control (CGU)  
Reset Control (RCU)  
Power Management (PCU)  
Interrupt Management (ICU)  
General Port Control  
Flexible Peripheral Management  
Module Suspend Control  
Error Detection and Correction in Data Memory  
Miscellaneous Control  
Register Mapping  
Datasheet  
23  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
System Control Unit - Digital Modules (SCU-DM)  
6.2.1  
Block Diagram  
on signals to digital  
peripherals;  
status signalsfrom  
digital peripherals  
AMBA AHB  
NMI  
PCU  
CGU  
ICU  
I
INTISR <9:0>  
N
T
E
R
N
A
L
fpclk  
fBR  
fsys  
LP_CLK  
Baudrate Generator /  
LIN Frame Detection  
B
U
S
PMU_1V5DidPOR  
PMU_PIN  
PMU_ExtWDT  
PMU_SOFT  
RCU  
MISC Control  
MODPISELx  
PMU_Wake  
Reset_Type_3  
Reset_Type_4  
P0_POCONy.PDMx  
P1_POCONy.PDMx  
Port Control  
System Control Unit -Digital Modules  
SCU_DM_Block_Diagram_Cust.vsd  
Figure 10 System Control Unit - Digital Modules Block Diagram  
IO description of SCU_DM:  
CGU:  
f
sys; system clock  
LP_CLK; low-power backup clock  
RCU:  
1V5DidPOR; Undervoltage reset of power down supply  
PMU_PIN; Reset generated by reset pin  
PMU_ExtWDT; WDT1 reset  
PMU_SOFT; Software reset  
PMU_Wake; Stop Mode exit with reset  
Datasheet  
24  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
System Control Unit - Digital Modules (SCU-DM)  
Reset_Type_3; Peripheral reset (contains all resets)  
Reset_Type_4; Peripheral reset (without SOFT)  
Baudrate generator:  
fBR; Baudrate clock for UART  
Port Control:  
P0_POCONy.PDMx; driver strength control  
P1_POCONy.PDMx; driver strength control  
MISC:  
MODPISELx; Mode selection registers for UART (source selection) and Timer (trigger or count selection)  
Datasheet  
25  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
System Control Unit - Digital Modules (SCU-DM)  
6.3  
Clock Generation Unit  
The Clock Generation Unit (CGU) provides a flexible clock generation for TLE9844QX. During user program  
execution the frequency can be programmed for an optimal ratio between performance and power  
consumption. Therefore the power consumption can be adapted to the actual application state.  
The CGU in the TLE9844QX consists of one oscillator circuit (OSC_HP), a Phase-Locked Loop (PLL) module  
including an internal oscillator (OSC_PLL) and a Clock Control Unit (CCU). The CGU can convert a low-  
frequency input/external clock signal to a high-frequency internal clock.  
The system clock fSYS is generated out of the following selectable clocks:  
PLL clock output fPLL  
Direct clock from oscillator OSC_HP fOSC  
Direct output of internal Oscillator fINTOSC  
Low precision clock fLP_CLK (HW-enabled for startup after reset and during power-down wake-up sequence)  
The following sections describe the different parts of the CGU.  
6.3.1  
Low Precision Clock  
The clock source LP_CLK is a low-precision RC oscillator (LP-OSC, see fLP_CLK) that is enabled by hardware as  
an independent clock source for the TLE9844QX startup after reset and during the power-down wake-up  
sequence. There is no user configuration possible on fLP_CLK  
.
6.3.2  
High Precision Oscillator Circuit (OSC_HP)  
The high precision oscillator circuit, designed to work with both an external crystal oscillator or an external  
stable clock source, consists of an inverting amplifier with XTAL1 as input, and XTAL2 as output.  
Figure 11 shows the recommended external circuitries for both operating modes, External Crystal Mode and  
External Input Clock Mode.  
6.3.2.1 External Input Clock Mode  
When supplying the clock signal directly, not using an external crystal and bypassing the oscillator, the input  
frequency needs to be within the range of 4 MHz to 24 MHz if the PLL VCO part is used.  
When using an external clock signal it must be connected to XTAL1. XTAL2 is left open (unconnected).  
6.3.2.2 External Crystal Mode  
When using an external crystal, its frequency can be within the range of 4 MHz to 6 MHz. An external oscillator  
load circuitry must be used, connected to both pins, XTAL1 and XTAL2. It consists normally of the two load  
capacitances C1 and C2, for some crystals a series damping resistor might be necessary. The exact values and  
related operating range are dependent on the crystal and have to be determined and optimized together with  
the crystal vendor using the negative resistance method. As starting point for the evaluation, the following  
load cap values may be used:  
Table 4  
External CAP Capacitors  
Fundamental Mode Crystal Frequency (approx., MHz) Load Caps C1, C2 (pF)  
4
5
6
33  
22  
18  
Datasheet  
26  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
System Control Unit - Digital Modules (SCU-DM)  
V
V
DDP  
DDP  
External Clock  
Signal  
f
XTAL1  
OSC_HP  
XTAL2  
XTAL1  
OSC_HP  
f
OSC  
OSC  
4 - 6  
MHz  
XTAL2  
C1  
C2  
Fundamental  
Mode Crystal  
V
V
SS  
SS  
External Crystal Mode  
External Input Clock Mode  
VSS = GND  
ext_osc  
Figure 11 TLE9844QX External Circuitry for the OSC_HP  
Datasheet  
27  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
System Control Unit - Digital Modules (SCU-DM)  
6.3.3  
Clock Control Unit  
The Clock Control Unit (CCU) receives the clock from the PLL fPLL, the external input clock fOSC, the internal  
input clock fINTOSC, or the low-precision input clock fLP_CLK. The system frequency is derived from one of these  
clock sources.  
CCU  
SCU_SYSCON0.  
SYSCLKSEL  
fPLL  
M
U
X
fOSC  
f
SYS  
fINTOSC  
fLP_CLK  
CCU_block  
Figure 12 Clock Inputs to Clock Control Unit  
The CCU generates all necessary clock signals within the microcontroller from the system clock. It consists of:  
Clock slow down circuitry  
Centralized enable/disable circuit for clock control  
In normal running mode, the main module frequencies (synchronous unless otherwise stated) are as follows:  
System frequency, fSYS = up to 25 MHz (measurement interface clock MI_CLK is derived from this clock)  
CPU clock (CCLK, SCLK) = up to 25 MHz (divide-down of NVM access clock)  
NVM access clock (NVMACCCLK) = up to 25 MHz  
Peripheral clock (PCLK, PCLK2, NVMCLK) = up to 25 MHz (equals CPU clock; must be same or higher)  
Some peripherals are clocked by PCLK, others clocked by PCLK2 and the NVM is clocked by both NVMCLK and  
NVMACCCLK. During normal running mode, PCLK = PCLK2 = NVMCLK = CCLK. On wake-up from power-down  
mode, PCLK2 is restored similarly like NVMCLK, whereas PCLK is restored only after PLL is locked.  
For optimized NVM access (read/write) with reduced wait state(s) and with respect to system requirements on  
CPU operational frequency, bit field NVMCLKFAC is provided for setting the frequency factor between the NVM  
access clock NVMACCCLK and the CPU clock CCLK.  
For the slow down mode, the operating frequency is reduced using the slow down circuitry with clock divider  
setting at the bit field CLKREL. Bit field CLKREL is only effective when slow down mode is enabled via SFR bit  
PMCON0.SD bit. Note that the slow down setting of bit field CLKREL correspondingly reduces the NVMACCCLK  
clock. Slow down setting does not influence the erase and write cycles for the NVM.  
Peripherals UART1, UART2, T2 and T21 and are not influenced by CLKREL and either not by NVMCLKFAC,  
to allow functional LIN communication in slow down mode.  
Datasheet  
28  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
System Control Unit - Digital Modules (SCU-DM)  
Analog Subsystem /  
PBA0 / PBA1  
fSYS  
UART 1/2,  
Timer 2/21,  
Baudgen 1/2  
Clock  
Control Unit  
APCLK2FAC  
TFILT_CLK  
TFILT_CLK  
Analog  
Peripherals  
MI_CLK  
PCLK2  
APCLK1FAC  
SFR  
MI_CLK  
MI_CLK  
Measurement  
Interface  
PCLK2  
PCLK  
Peripherals  
Peripherals  
CLKREL  
NVMCLKFAC  
fPLL  
SCLK  
CCLK  
fOSC  
f
f
SYS  
CCLK  
CORE  
M
U
X
fINTOSC  
f
LP_CLK  
NVMCLK  
NVM  
NVMACCCLK  
PBA0CLKREL  
Peripherals  
Peripherals  
COREL  
TLEN  
Toggle  
Latch  
CLKOUT  
COUTS1  
Figure 13 Clock Generation from fsys; CLKOUT Generation  
Datasheet  
29  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
System Control Unit - Power Modules (SCU-PM)  
7
System Control Unit - Power Modules (SCU-PM)  
7.1  
Description of the Power Modules System Control Unit  
The System Control Unit of the power modules consists of the following sub-modules:  
Clock Watchdog Unit (CWU): supervision of all power modules relevant clocks with NMI signalling.  
Interrupt Control Unit (ICU): all system relevant interrupt flags and status flags.  
Power Control Unit (PCU): takes over control when device enters and exits Sleep and Stop Mode.  
External Watchdog (WDT1): independent system watchdog to monitor system activity  
7.2  
Introduction  
7.2.1  
Block Diagram  
The System Control Unit of the power modules consists of the sub-modules in the figure shown below:  
on signals to analog  
peripherals;  
status signalsfrom  
analog peripherals  
AMBA AHB  
I
N
T
PCU  
WDT1  
LP_CLK  
E
R
N
A
L
fsys  
MI_CLK  
PREWARN_SUP_NMI  
PREWARN_CLK_INT  
INT<n:0>  
B
U
S
CWU  
ICU  
TFILT_CLK  
System Control Unit -Power Modules  
SCU_PM_Block_Diagram_Cust.vsd  
Figure 14 Block diagram of System Control Unit - Power Modules  
IO description of SCU_PM:  
CWU (Clock Watchdog Unit)  
check of fsys = system frequency: output of PLL  
check of MI_CLK = measurement interface clock (analog clock): derived out of fsys by division factors  
1/2/3/4  
Datasheet  
30  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
System Control Unit - Power Modules (SCU-PM)  
check of TFILT_CLK = clock used for digital filters: derived out of fsys by configurable division factors  
ICU (Interrupt Control Unit)  
PREWARN_SUP_NMI = generation of Prewarn-Supply NMI  
PREWARN_CLK_INT = generation of Prewarn-Clock Watchdog NMI  
INT = generation of MISC interrupts  
Datasheet  
31  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Arm® Cortex®-M0 Core  
8
Arm® Cortex®-M0 Core  
8.1  
Features  
The key features of the Cortex®-M0 implemented are listed below.  
Processor Core. A low gate count core, with low latency interrupt processing:  
Thumb® + Thumb-2® Instruction Set  
Banked stack pointer (SP) only  
Handler and thread modes  
Thumb and debug states  
Interruptible-continued instructions LDM/STM, Push/Pop for low interrupt latency  
Automatic processor state saving and restoration for low latency Interrupt Service Routine (ISR) entry and  
exit  
Arm® architecture v6-M Style  
ARM®v6 unaligned accesses  
Systick (typ. 1ms)  
Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core to achieve low  
latency interrupt processing:  
External interrupts, configurable from 1 to 24  
7 interrupt priority registers for levels from 0 up to 192 in steps of 64  
Dynamic repriorization of interrupts  
Priority grouping. This enables selection of pre-empting interrupt levels and non pre-empting interrupt  
levels  
Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing  
without the overhead of state saving and restoration between interrupts.  
Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction  
overhead  
Bus interfaces  
Advanced High-performance Bus-Lite (AHB-Lite) interfaces  
Datasheet  
32  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Arm® Cortex®-M0 Core  
8.2  
Introduction  
The Arm® Cortex®-M0 processor is a leading 32-bit processor and provides a high-performance and cost-  
optimized platform for a broad range of applications including microcontrollers, automotive body systems  
and industrial control systems. Like the other Cortex®-family processors, the Cortex®-M0 processor  
implements the Thumb®-2 instruction set architecture. With the optimized feature set the Cortex®-M0 delivers  
32-bit performance in an application space that is usually associated with 8- and 16-bit microcontrollers.  
8.2.1  
Block Diagram  
Figure 15 shows the functional blocks of the Cortex®-M0.  
Cortex-M0 Processor  
Nested Vectored  
Interrupt  
Breakpoint  
and  
watchpoint  
unit  
Cortex-M0  
processor  
core  
Interrupt and  
Power Control  
Controller  
(NVIC)  
Serial-Wire  
Debug Access Port  
(SW-DP)  
Busmatrix  
Debugger interface  
AHB-Lite interface  
Serial-Wire Debug  
Interface  
Cortex_M0_Block_diagram.vsd  
Figure 15 Cortex®-M0 Block Diagram  
Datasheet  
33  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Address Space Organization  
9
Address Space Organization  
The embedded Cortex®-M0 MCU offers the following address space organization:  
Figure 16 Original Cortex®-M0 Memory Map  
The TLE9844QX manipulates operands in the following memory spaces:  
64 KByte of Flash memory in code space  
24 KB Boot ROM memory in code space (used for boot code and IP storage)  
4 KB RAM memory in code space and data space (RAM can be read/written as program memory or external  
data memory)  
Special function registers (SFRs) in peripheral linear address space, up to 0.5 GBytes  
The figure below shows the detailed address alignment of TLE9844QX:  
Datasheet  
34  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Address Space Organization  
The on-chip memory modules available in the TLE9844QX are:  
FFFF.FFFFH  
E010.0000H  
reserved  
E00F.FFFFH  
Private Peripheral Bus  
E000.0000H  
DFFF.FFFFH  
6000.0000H  
reserved  
5FFF.FFFFH  
PBA1  
4800.0000H  
47FF.FFFFH  
PBA0  
4000.0000H  
3FFF.FFFFH  
1800.1000H  
reserved  
1800.0FFFH  
SRAM  
up to 4K *)  
1800.0000H  
17FF.FFFFH  
1101.0000H  
reserved  
1100.FFFFH  
Flash  
up to 64K *)  
1100.0000H  
10FF.FFFFH  
0000.6000H  
reserved  
0000.5FFFH  
Boot-ROM  
24K  
0000.0000H  
*) Product variant dependant  
MemoryMapARM0_4x.vsd  
Figure 17 TLE9844QX Memory Map  
Datasheet  
35  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Memory Control Unit  
10  
Memory Control Unit  
10.1  
Features  
Provides Memory access to ROM, RAM, NVM, Config Sector through AHB-Lite Interface  
MBIST for RAM  
MBIST for ROM  
NVM Configuration with Special Function Registers through AHB-Lite Interface  
Hardware Memory Protection Logic  
10.2  
Introduction  
10.2.1  
Block Diagram  
The Memory Control Unit is divided in the following sub-modules:  
NVM Memory module (embedded Flash Memory)  
RAM memory module  
BootROM memory module  
Memory protection Unit (MPU) module  
Datasheet  
36  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Memory Control Unit  
NVM  
S0  
RAM  
S1  
ROM  
S2  
PBA0  
S3  
Memory Protection  
Unit  
Sx: BusSlave  
Mx: Bus Master  
M0  
M1  
M2  
M3  
Bus Matrix  
MCU_Block_Diagram_overview.vsd  
Figure 18 Memory Control Unit Block View  
Functional Features for RAM  
4 KB RAM  
Error correction code (ECC) for detection of single bit and double bit errors and dynamic correction of  
single bit errors  
Single byte access  
Datasheet  
37  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
NVM Module (Flash Memory)  
11  
NVM Module (Flash Memory)  
The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and  
reliable storage of user code and data.  
Features  
In-System Programming via LIN (Flash mode) and SWD  
Error Correction Code (ECC) for detection of single Bit and double Bit errors and dynamic correction of  
single Bit errors on Data Block (Double words, 64 bits).  
Interrupt and signaling of double bit error by NMI, address of double bit error readable by FW API user  
routine.  
Possibility of checking single bit error occurrence by ROM routines  
Program width of 128 Byte (page)  
Minimum erase width of 128 Byte (page)  
Integrated hardware support for EEPROM emulation  
8 Byte read access  
Physical read access time: typ. 75 ns  
Code read access acceleration integrated; read buffer  
Page program time: typ. 3 ms  
Programming time for 64KB via Debug Interface: < 1800 ms (typ.)  
Page erase (128 bytes) and sector erase (4K bytes) time: typ. 4ms  
3 separate keys for data area, program area and BSL area  
Password protection for three configurable program flash areas, three separate keys for data, program  
and BSL  
Security option to protect read out via debug interface in application run mode. NVM protection mode  
available, which can be enabled/disabled with password  
Write/erase access to 100TP (e.g. option bytes) is possible via the debug interface  
Note:  
The user has to ensure that no flash operations which change the content of the flash get interrupted  
at any time.  
The clock for the NVM is supplied with the system frequency fsys. Integrated firmware routines are provided to  
ease NVM, and other operations including EEPROM emulation.  
The TLE9844QX NVM module provides physical implementation of the memory module as well as needed  
complementary features and interface towards the core.  
The module provides proper access to the memory through 2 AHB-Lite interfaces: a 8-bit data interface for  
NVM internal register access and a 32-bit data interface for code/data access both multiplexed on Cortex®-M0  
system bus.  
The TLE9844QX NVM module consists of the memory cell array and all the control circuits and registers needed  
to access the array itself. The 64 Kbyte data module is mapped in the Cortex®-M0 code address range  
11000000H - 1100FFFFH while the dedicated SFRs are mapped in the Cortex®-M0 system address range  
58004000H - 58007FFFH.  
Access of NVM module is granted through the AMBA matrix block that forwards to the memory modules AHB-  
Lite interfaces the requests generated by the masters according to the defined priority policy.  
Datasheet  
38  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
NVM Module (Flash Memory)  
11.1  
Definitions  
This section defines the nomenclature and some abbreviations. The used flash memory is a non-volatile  
memory (“NVM”) based on a floating gate one-transistor cell. It is called “non-volatile” because the memory  
content is kept when the memory power supply is shut off.  
11.1.1  
General Definitions  
Logical and Physical States  
Erasing  
The erased state of a cell is ´1´. Forcing an NVM cell to this state is called erasing. Erasing is possible with a  
granularity of a page (see below).  
Writing  
The written state of a cell is ´0´. Forcing an NVM cell to this state is called writing. Each bit can be individually  
written.  
Programming  
The combination of erasing and writing is called ‘programming’. Programming often means also writing a  
previously erased page.  
The wording ‘write’ or ‘writing’ are also used for accessing special function registers and the assembly buffer.  
The meaning depends therefore on the context.  
The above listed processes have certain limitations:  
Retention: This is the time during which the data of a flash cell can be read reliably. The retention time is a  
statistical figure that depends on the operating conditions of the flash array (temperature profile) and the  
accesses to the flash array. With an increasing number of program/erase cycles (see endurance) the retention  
is lowered. Drain and gate disturbs decrease data retention as well.  
Endurance: As described above, the data retention is reduced with an increasing number of program/erase  
cycles. A flash cell incurs one cycle whenever its page or sector is erased. This number is called “endurance”.  
As said for the retention, it is a statistical figure that depend on operating conditions and the use of the flash  
cells and on the required quality level.  
Drain Disturb: Because of using a so called “one-transistor” flash cell each program access disturbs all pages  
of the same sector slightly. Over long these “drain disturbs” make 0 and 1 values indistinguishable and thus  
provoke read errors. This effect is again interrelated with the retention. A cell that incurred a high number of  
drain disturbs will have a lower retention. The physical sectors of the flash array are isolated from each other.  
So pages of a different sector do not incur a drain disturb. this effect must be therefore considered when the  
page erase feature is used or when re-programming an ready programmed page (implicitly causing an erase  
of the page before writing the new data).  
Datasheet  
39  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
NVM Module (Flash Memory)  
Data Portions  
Array(n-1)*4 kB  
Spare page  
sector n-1  
Page 31  
Page 30  
Page 1  
sector 1  
Page 0  
sector 0  
1 page = 16 user data block + 1 mapping information block  
Map block  
Data block 0  
Data block 1  
Data block 14 Data block 15  
1 block = 8 bytes  
byte 2 byte 3  
byte 0  
byte 1  
byte 4  
byte 5  
byte 6  
byte 7  
NVM Logical Structure  
Figure 19 Logical Structure of the NVM Core  
Doubleword  
A doubleword consists of 64 bits. A doubleword represents the data size that is read from or written to the NVM  
core module within one access cycle.  
Block  
A block consists of one doubleword and its associated ECC data (64 bit data and 8 bit ECC). A block represents  
the smallest data portion that can be changed in the assembly buffer. Since the ECC protects 64 bits, when a  
byte is written to the assembly buffer automatically an NVM internal read of the complete block is triggered,  
the byte and the ECC are updated and the complete block is written back to the assembly buffer.  
Mapblock  
A map block consists of a module specific number of ECC -protected bits that hold the necessary information  
to map a physical page to a logical page.  
Datasheet  
40  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
NVM Module (Flash Memory)  
Page  
A page consists of 16 blocks and one map block.  
Spare Page  
A spare page is an additional page in a sector used in each programming routine to allow tearing-safe  
programming.  
Sector  
A sector consists of 32 logical and 33 physical pages.  
Datasheet  
41  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Interrupt System  
12  
Interrupt System  
12.1  
Features  
Up to 24 interrupt nodes for on-chip peripherals  
Up to 8 NMI nodes for critical system events  
Maximum flexibility for all 24 interrupt nodes  
12.2  
Introduction  
12.2.1  
Overview  
The TLE9844QX supports 24 interrupt vectors with 4 priority levels. 22 of these interrupt vectors are assigned  
to the on-chip peripherals: GPT12, SSC1, SSC2, CCU6, Low-Side Switch, High-Side Switch and A/D Converter  
are each assigned to one dedicated interrupt vector; while UART1 and Timer2 or UART2, External Interrupt 2  
and Timer21 share interrupt vectors. Two vectors are dedicated for External Interrupt 0 and 1.  
Table 5  
Interrupt Vector Table  
Service Request  
GPT1  
GPT2  
MU  
Node ID  
Description  
0
GPT1 Interrupt  
1
GPT2 Interrupt  
2
MU interrupt / ADC2, VBG interrupt  
ADC10 Bit interrupt  
ADC1  
CCU0  
CCU1  
CCU2  
CCU3  
SSC1  
3
4
CCU6 node 0 interrupt  
5
CCU6 node 1 interrupt  
6
CCU6 node 2 interrupt  
7
CCU6 node 3 interrupt  
8
SSC1 interrupt (receive, transmit, error)  
SSC2 interrupt (receive, transmit, error)  
UART1 (ASC-LIN) interrupt (receive, transmit), t2, linsync1, LIN  
UART2 interrupt (receive, transmit), t21, External interrupt (EINT2)  
External interrupt (EINT0)  
SSC2  
9
UART1  
UART2  
EXINT0  
EXINT1  
WAKEUP  
rfu  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
External interrupt (EINT1)  
Wakeup interupt (generated by a wakeup event)  
Reserved for future use  
rfu  
Reserved for future use  
LS1  
Low Side 1 Interrupt  
LS2  
Low Side 2 Interrupt  
HS1  
High Side 1 Interrupt  
rfu  
Reserved for future use  
Datasheet  
42  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Interrupt System  
Table 5  
Interrupt Vector Table (cont’d)  
Service Request  
rfu  
Node ID  
Description  
21  
22  
23  
Reserved for future use  
MONx Interrupt  
Port 2.x - DPP1  
MONx  
Port 2.x  
Table 6  
NMI Interrupt Table  
Service Request  
Node  
NMI  
Description  
PLL NMI  
PLL Loss-of-Lock  
NVM Operation Complete  
NVM Operation  
Complete NMI  
NMI  
Overtemperature NMI NMI  
System Overtemperature  
Oscillator Watchdog  
NMI  
NMI  
Oscillator Watchdog and MI_CLK Watchdog Timer Overflow  
NVM Map Error NMI  
ECC Error NMI  
NMI  
NMI  
NVM Map Error  
RAM / NVM Uncorrectable ECC Error  
Supply Prewarning  
Supply Prewarning NMI NMI  
Datasheet  
43  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Watchdog Timer (WDT1)  
13  
Watchdog Timer (WDT1)  
13.1  
Features  
In Active Mode, the WDT1 acts as a windowed watchdog timer, which provides a highly reliable and safe way  
to recover from software or hardware failures.  
The WDT1 is always enabled in Active Mode. In Sleep Mode, Stop Mode and Debug Mode the WDT1 is disabled.  
Functional Features  
Watchdog Timer is operating with a from the system clock (fSYS) independent clock source (fLP_CLK)  
Windowed Watchdog Timer with programmable timing (16, 32, 48, …, 1008ms period) in Active Mode  
Long open window (200 ms) after power-up, reset, wake-up  
Short open window (30 ms) to facilitate Flash programming  
System safety shutdown to Sleep Mode after 5 missed WDT1 services  
Watchdog is disabled in Debug Mode  
Watchdog cannot be deactivated in Normal Mode  
Watchdog reset is stored in reset status register  
Datasheet  
44  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Watchdog Timer (WDT1)  
13.2  
Introduction  
The behavior of the Watchdog Timer in Active Mode is depicted in Figure 20.  
Power-up  
Reset  
RESET  
always  
timeout  
timeout  
Maximum number  
RESET  
Trigger SOW  
of SOW triggers  
exceeded  
Timeout  
or  
Trigger in closed window  
RESET  
Long  
Open Window  
Trigger  
Trigger SOW  
Trigger  
Normal  
„windowed“  
operation  
Short  
open window  
Trigger SOW  
Trigger  
Figure 20 Watchdog Timer Behavior  
Datasheet  
45  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
14  
GPIO Ports and Peripheral I/O  
The TLE9844QX has 18 port pins organized into three parallel ports: Port 0 (P0), Port 1 (P1) and Port 2 (P2). Each  
port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. P0  
and P1 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate  
input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can  
be selected. On Port 2 (P2) analog inputs are shared with general purpose input.  
14.1  
Features  
10 GPIOs (P0.x & P1.x), 6 analog inputs (P2.x) and two additional analog inputs shared with a XTAL feature  
(P2.4, P2.5).  
Strong pull-up at Reset-pin and Hall-inputs (except P2.x)  
Bidirectional Port Features (P0, P1)  
Configurable pin direction  
Configurable pull-up/pull-down devices  
Configurable open drain mode  
Configurable drive strength  
Transfer of data through digital inputs and outputs (general purpose I/O)  
Alternate input/output for on-chip peripherals  
Analog Port Features (P2)  
Configurable pull-up/pull-down devices  
Transfer of data through digital inputs  
Alternate inputs for on-chip peripherals  
Datasheet  
46  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
14.2  
Introduction  
14.2.1  
Port 0 and Port 1  
Figure 21 shows the block diagram of an TLE9844QX bidirectional port pin. Each port pin is equipped with a  
number of control and data bits, thus enabling very flexible usage of the pin.  
PUDSEL  
Pull-up / Pull-down  
Select Register  
Pull-up / Pull-down  
Control Logic  
PUDEN  
Pull-up / Pull-down  
Enable Register  
TCCR  
Temperature Compensation  
Control Register  
Px_POCONy  
Port Output  
Driver Control Registers  
I
N
T
E
R
N
A
L
OD  
Open Drain  
Control Register  
DIR  
Direction Register  
ALTSEL0  
Alternate Select  
Register 0  
B
U
S
ALTSEL1  
Alternate Select  
Register 1  
Pull Device  
AltDataOut 3  
AltDataOut 2  
AltDataOut 1  
11  
10  
Output  
Driver  
01  
00  
Out  
In  
Data  
Data Register  
Input  
Driver  
AltDataIn  
AnalogIn  
Schmitt  
Trigger  
Pad  
Port_Block_Diagram.vsd  
Figure 21 General Structure of Bidirectional Port  
Datasheet  
47  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
14.2.2  
Port 2  
Figure 22 shows the structure of an input-only port pin. Each P2 pin can only function in input mode. Register  
P2_DIR is provided to enable or disable the input driver. When the input driver is enabled, the actual voltage  
level present at the port pin is translated into a logic 0 or 1 via a Schmitt-Trigger device and can be read via the  
register P2_DATA. Each pin can also be programmed to activate an internal weak pull-up or pull-down device.  
Register P2_PUDSEL selects whether a pull-up or the pull-down device is activated while register P2_PUDEN  
enables or disables the pull device. The analog input (AnalogIn) bypasses the digital circuitry and Schmitt-  
Trigger device for direct feed-through to the ADC input channel.  
Internal  
Bus  
PUDSEL  
Pull-up/Pull-down  
Select Register  
Pull-up/Pull-down  
Control Logic  
PUDEN  
Pull-up/Pull-down  
Enable Register  
Pull  
Device  
Input  
Driver  
In  
Data  
Data Register  
Schmitt  
Trigger  
Pad  
AltDataIn  
AnalogIn  
Port_InputDiagram.vsd  
Figure 22 General Structure of Input Port  
Datasheet  
48  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
14.3  
TLE9844QX Port Implementation Details  
Port 0  
14.3.1  
14.3.1.1 Port 0 Functions  
Port 0 alternate function mapping according Table 7  
Table 7  
Port Pin  
P0.0  
Port 0 Input/Output Functions  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P0  
T12HR_0  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
CCU6  
GPT12  
Timer 2  
SWD  
T4INA  
T2_0  
SWD_CLK  
EXINT2_3  
P0_DATA.P0  
T3OUT_0  
EXF21_0  
SCU  
Output  
Input  
GPT12  
Timer 21  
UART2  
UART2_RXDO  
P0_DATA.P1  
T13HR_0  
P0.1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
INP8  
INP9  
GPO  
ALT1  
ALT2  
ALT3  
CCU6  
UART1_RXD  
T2EX_1  
UART1  
Timer 2  
Timer 21  
SCU  
T21_0  
EXINT0_3  
T4INC  
GPT12  
GPT12  
SSC1/2  
CCU6  
CAPINA  
SSC12_S_SCK  
CC62_0  
Output  
P0_DATA.P1  
T6OUT_0  
CC62_0  
GPT12  
CCU6  
SSC12_M_SCK  
SSC1/2  
Datasheet  
49  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
Table 7  
Port Pin  
P0.2  
Port 0 Input/Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P2  
T2EUDA  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12  
CCU6  
CTRAP_0  
SSC12_M_MRST  
T21EX_0  
SSC1/2  
Timer 21  
SCU  
EXINT1_3  
Output  
Input  
P0_DATA.P2  
SSC12_S_MRST  
UART1_TXD  
EXF2_0  
SSC1/2  
UART1  
Timer 2  
P0.3  
P0_DATA.P3  
SSC1_S_SCK  
T4EUDA  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
SSC1  
GPT12  
GPT12  
SCU  
CAPINB  
EXINT1_2  
T3EUDD  
GPT12  
CCU6  
CCPOS0_1  
P0_DATA.P3  
SSC1_M_SCK  
T6OFL  
Output  
Input  
SSC1  
GPT12  
GPT12  
T6OUT_1  
P0.4  
P0_DATA.P4  
SSC1_S_MTSR  
CC60_0  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
SSC1  
CCU6  
Timer 21  
SCU  
T21_2  
EXINT2_2  
T3EUDA  
GPT12  
CCU6  
CCPOS1_1  
P0_DATA.P4  
SSC1_M_MTSR  
CC60_0  
Output  
SSC1  
CCU6  
SCU  
CLKOUT_0  
Datasheet  
50  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
Table 7  
Port Pin  
P0.5  
Port 0 Input/Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P5  
SSC1_M_MRST  
EXINT0_0  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
SSC1  
SCU  
T21EX_2  
Timer 21  
GPT12  
CCU6  
T5INA  
CCPOS2_1  
Output  
P0_DATA.P5  
SSC1_S_MRST  
COUT60_0  
SSC1  
CCU6  
LIN  
LIN_RXD  
Datasheet  
51  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
14.3.2  
Port 1  
14.3.2.1 Port 1 Functions  
Port 1alternate function mapping according Table 8  
Table 8  
Port Pin  
P1.0  
Port 1 Input / Output Functions  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P1_DATA.P0  
T3INC  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12  
CCU6  
SSC2  
CC61_0  
SSC2_S_SCK  
T4EUDB  
GPT12  
Output  
Input  
P1_DATA.P0  
SSC2_M_SCK  
CC61_0  
SSC2  
CCU6  
UART2  
UART2_TXD  
P1_DATA.P1  
T6EUDA  
P1.1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12  
GPT12  
GPT12  
SSC2  
T5INB  
T3EUDC  
SSC2_S_MTSR  
T21EX_3  
Timer 21  
UART2  
UART2_RXD  
P1_DATA.P1  
SSC2_M_MTSR  
COUT61_0  
EXF21_1  
Output  
Input  
SSC2  
CCU6  
Timer 21  
P1.2  
P1_DATA.P2  
EXINT0_1  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
SCU  
T21_1  
Timer 21  
GPT12  
SSC2  
T2INA  
SSC2_M_MRST  
CCPOS2_2  
P1_DATA.P2  
SSC2_S_MRST  
COUT63_0  
T3OUT_1  
CCU6  
Output  
SSC2  
CCU6  
GPT12  
Datasheet  
52  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
Table 8  
Port Pin  
P1.4  
Port 1 Input / Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P1_DATA.P4  
EXINT2_1  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
SCU  
T21EX_1  
Timer 21  
GPT12  
GPT12  
SSC1/2  
CCU6  
T2INB  
T5EUDA  
SSC12_S_MTSR  
CCPOS1_2  
Output  
P1_DATA.P4  
CLKOUT_1  
COUT62_0  
SCU  
CCU6  
SSC1/2  
SSC12_M_MTSR  
Datasheet  
53  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
14.3.3  
Port 2  
14.3.3.1 Port 2 Functions  
Port 2 alternate function mapping according Table 9  
Table 9  
Port Pin  
P2.0  
Port 2 Input Functions  
Input/Output  
Select  
Connected Signal(s)  
P2_DATA.P0  
EXINT1_1  
CCPOS0_2  
T5EUDB  
From/to Module  
Input  
GPI  
INP1  
INP2  
INP3  
ANALOG  
GPI  
SCU  
CCU6  
GPT12  
ADC  
AN0  
P2.1  
Input  
P2_DATA.P1  
CCPOS0_0  
EXINT1_0  
T12HR_1  
CC61_1  
INP1  
INP2  
INP3  
INP4  
ANALOG  
GPI  
CCU6  
SCU  
CCU6  
CCU6  
ADC  
AN1  
P2.2  
P2.3  
Input  
Input  
P2_DATA.P2  
T6EUDB  
INP1  
INP2  
INP3  
ANALOG  
GPI  
GPT12  
Timer 2  
CCU6  
ADC  
T2EX_0  
T12HR_2  
AN2  
P2_DATA.P3  
CCPOS1_0  
EXINT0_2  
CTRAP_1  
T3IND  
INP1  
INP2  
INP3  
INP4  
INP5  
ANALOG  
GPI  
CCU6  
SCU  
CCU6  
GPT12  
CCU6  
ADC  
CC60_1  
AN3  
P2.4  
Input  
P2_DATA.P4  
T2EUDB  
INP1  
INP2  
INP3  
INP4  
INP5  
IN  
GPT12  
Timer 2  
Timer 2  
CCU6  
T2_2  
T2EX_2  
CCPOS0_3  
CTRAP_2  
XTAL (in)1)  
CCU6  
XTAL  
Datasheet  
54  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
GPIO Ports and Peripheral I/O  
Table 9  
Port Pin  
P2.5  
Port 2 Input Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P2_DATA.P5  
T3EUDB  
From/to Module  
Input / Output  
INP1  
INP2  
INP3  
INP4  
INP5  
OUT  
GPT12  
GPT12  
Timer 2  
LIN  
T4EUDC  
T2_1  
LIN_TXD  
CCPOS1_3  
XTAL (out)1)  
P2_DATA.P6  
T4EUDD  
CCU6  
XTAL  
P2.6  
P2.7  
Input  
Input  
GPI  
INP1  
INP2  
INP3  
INP4  
ANALOG  
GPI  
GPT12  
Timer 2  
CCU6  
CCU6  
ADC  
T2EX_3  
CCPOS2_3  
T13HR_2  
AN6  
P2_DATA.P7  
CCPOS2_0  
EXINT2_0  
T13HR_1  
CC62_1  
INP1  
INP2  
INP3  
INP4  
ANALOG  
CCU6  
SCU  
CCU6  
CCU6  
ADC  
AN7  
1) configurable by user  
Datasheet  
55  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
General Purpose Timer Units (GPT12)  
15  
General Purpose Timer Units (GPT12)  
Features  
15.1  
15.1.1  
Features Block GPT1  
The following list summarizes the supported features:  
fGPT/4 maximum resolution  
3 independent timers/counters  
Timers/counters can be concatenated  
4 operating modes:  
Timer Mode  
Gated Timer Mode  
Counter Mode  
Incremental Interface Mode  
Reload and Capture functionality  
Shared interrupt: Node 0  
15.1.2  
Features Block GPT2  
The following list summarizes the supported features:  
fGPT/2 maximum resolution  
2 independent timers/counters  
Timers/counters can be concatenated  
3 operating modes:  
Timer Mode  
Gated Timer Mode  
Counter Mode  
Extended capture/reload functions via 16-bit capture/reload register CAPREL  
Shared interrupt: Node 1  
15.2  
Introduction  
The General Purpose Timer Unit blocks GPT1 and GPT2 have very flexible multifunctional timer structures  
which may be used for timing, event counting, pulse width measurement, pulse generation, frequency  
multiplication, and other purposes.  
They incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in  
each block may operate independently in a number of different modes such as Gated timer or Counter Mode,  
or may be concatenated with another timer of the same block.  
Each block has alternate input/output functions and specific interrupts associated with it. Input signals can  
be selected from several sources by register PISEL.  
The GPT module is clocked with clock fGPT. fGPT is a clock derived from fSYS  
.
Datasheet  
56  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
General Purpose Timer Units (GPT12)  
15.2.1  
Block Diagram GPT1  
Block GPT1 contains three timers/counters: The core timer T3 and the two auxiliary timers T2 and T4. The  
maximum resolution is fGPT/4. The auxiliary timers of GPT1 may optionally be configured as reload or capture  
registers for the core timer.  
T3CON.BPS1  
2n : 1  
Basic clock  
fGPT  
InterruptRequest  
(T2IRQ)  
Aux. Timer T2  
Core Timer T3  
Aux. Timer T4  
U/D  
T2IN  
T2  
Mode  
Control  
Capture  
Reload  
T2EUD  
Toggle Latch  
T3  
Mode  
Control  
T3IN  
T3OTL  
T3OUT  
U/D  
T3EUD  
InterruptRequest  
(T3IRQ)  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
T4EUD  
InterruptRequest  
(T4IRQ)  
U/D  
MC _GPT0101_bldiax1.vsd  
Figure 23 GPT1 Block Diagram (n = 2 … 5)  
Datasheet  
57  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
General Purpose Timer Units (GPT12)  
15.2.2  
Block Diagram GPT2  
Block GPT2 contains two timers/counters: The core timer T6 and the auxiliary timer T5. The maximum  
resolution is fGPT/2. An additional Capture/Reload register (CAPREL) supports capture and reload operation  
with extended functionality.  
T6CON.BPS2  
fGPT  
2n : 1  
Basic clock  
Toggle FF  
T5  
Mode  
Control  
U/D  
Interrupt Request  
(T5IR)  
T5IN  
GPT2 Timer T5  
Clear  
T5EUD  
Capture  
CAPIN  
CAPREL  
Mode  
Control  
GPT2 CAPREL  
T3IN/  
T3EUD  
Interrupt Request  
(CRIR)  
Reload  
Interrupt Request  
(T6IR)  
Clear  
U/D  
T6  
Mode  
Control  
GPT2 Timer T6  
T6OTL  
T6OUT  
T6OUF  
T6IN  
T6EUD  
MC_GPT0108_bldiax4.vsd  
Figure 24 GPT2 Block Diagram (n = 1 … 4)  
Datasheet  
58  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Timer2 and Timer21  
16  
Timer2 and Timer21  
Features  
16.1  
16-bit auto-reload mode  
selectable up or down counting  
One channel 16-bit capture mode  
Baud-rate generator for U(S)ART  
16.2  
Introduction  
Two functionally identical timers are implemented: Timer 2 and 21. The description refers to Timer 2 only, but  
applies to Timer 21 as well.  
The timer modules are general purpose 16-bit timer. Timer 2 can function as a timer or counter in each of its  
modes. As a timer, it counts with an input clock of fsys/12 (if prescaler is disabled). As a counter, Timer 2 counts  
1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is fsys/24 (if prescaler  
is disabled).  
16.2.1  
Timer2 and Timer21 Modes Overview  
Table 10 Timer2 and Timer21 Modes  
Mode  
Description  
Auto-reload  
Up/Down Count Disabled  
Count up only  
Start counting from 16-Bit reload value, overflow at FFFFH  
Reload event configurable for trigger by overflow condition only, or by  
negative/positive edge at input pin T2EX as well  
Programmable reload value in register RC2  
Interrupt is generated with reload events.  
Datasheet  
59  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Timer2 and Timer21  
Table 10 Timer2 and Timer21 Modes (cont’d)  
Mode  
Description  
Auto-reload  
Up/Down Count Enabled  
Count up or down, direction determined by level at input pin T2EX  
No interrupt is generated  
Count up  
Start counting from 16-Bit reload value, overflow at FFFFH  
Reload event triggered by overflow condition  
Programmable reload value in register RC2  
Count down  
Start counting from FFFFH, underflow at value defined in register RC2  
Reload event triggered by underflow condition  
Reload value fixed at FFFFH  
Count up only  
Channel capture  
Start counting from 0000H, overflow at FFFFH  
Reload event triggered by overflow condition  
Reload value fixed at 0000H  
Capture event triggered by falling/rising edge at pin T2EX  
Captured timer value stored in register RC2  
Interrupt is generate with reload or capture event  
Datasheet  
60  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Capture/Compare Unit 6 (CCU6)  
17  
Capture/Compare Unit 6 (CCU6)  
17.1  
Feature Set Overview  
This section gives an overview over the different building blocks and their main features.  
Timer 12 Block Features  
Three capture/compare channels, each channel can be used either as capture or as compare channel  
Generation of a three-phase PWM supported (six outputs, individual signals for High Side and low-side  
switches)  
16-bit resolution, maximum count frequency = peripheral clock  
Dead-time control for each channel to avoid short-circuits in the power stage  
Concurrent update of T12 registers  
Center-aligned and edge-aligned PWM can be generated  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Multiple interrupt request sources  
Hysteresis-like control mode  
Timer 13 Block Features  
One independent compare channel with one output  
16-bit resolution, maximum count frequency = peripheral clock  
Concurrent update of T13 registers  
Can be synchronized to T12  
Interrupt generation at period-match and compare-match  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Additional Specific Functions  
Block commutation for Brushless DC-drives implemented  
Position detection via Hall-sensor pattern  
Noise filter supported for position input signals  
Automatic rotational speed measurement and commutation control for block commutation  
Integrated error handling  
Fast emergency stop without CPU load via external signal (CTRAP)  
Control modes for multi-channel AC-drives  
Output levels can be selected and adapted to the power stage  
Datasheet  
61  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Capture/Compare Unit 6 (CCU6)  
17.2  
Introduction  
The CCU6 unit is made up of a Timer T12 Block with three capture/compare channels and a Timer T13 Block  
with one compare channel. The T12 channels can independently generate PWM signals or accept capture  
triggers, or they can jointly generate control signal patterns to drive AC-motors or inverters.  
A rich set of status bits, synchronized updating of parameter values via shadow registers, and flexible  
generation of interrupt request signals provide means for efficient software-control.  
Note:  
The capture/compare module itself is named CCU6 (capture/compare unit 6). A capture/compare  
channel inside this module is named CC6x.  
17.2.1  
Block Diagram  
The Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be  
combined (e.g. a channel works in compare mode, whereas another channel works in capture mode). The  
Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns which  
can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal  
modulation.  
CCU6 Module Kernel  
Compare  
CC60  
CC61  
CC62  
1
1
1
T12SUSP  
T13SUSP  
Dead-  
Time  
Control  
Multi-  
channel  
Control  
Debug  
Suspend  
Trap  
Control  
T12  
T13  
fCC6  
Clock  
Control  
CC63  
1
3
2
2
2
3
1
SR[3:0]  
Interrupt  
Control  
Input / Output Control  
Port Control  
CCU6_BD.vsd  
P0. x  
P1.x  
P2.x  
Figure 25 CCU6 Block Diagram  
Datasheet  
62  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
UART1/UART2  
18  
UART1/UART2  
18.1  
Features  
Full-duplex asynchronous modes  
8-Bit or 9-Bit data frames, LSB first  
fixed or variable baud rate  
Receive buffered (1 Byte)  
Multiprocessor communication  
Interrupt generation on the completion of a data transmission or reception  
Baud-rate generator with fractional divider for generating a wide range of baud rates, e.g. 9.6kBaud,  
19.2kBaud, 115.2kBaud, 125kBaud, 250kBaud, 500kBaud  
Hardware logic for break and sync byte detection  
for UART1: LIN support: connected to timer channel for synchronization to LIN baud rate  
In all modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is  
initiated in the modes by the incoming start bit if REN = 1.  
The serial interface also provides interrupt requests when transmission or reception of the frames has been  
completed. The corresponding interrupt request flags are TI or RI, respectively. If the serial interrupt is not  
used (i.e., serial interrupt not enabled), TI and RI can also be used for polling the serial interface.  
18.2  
Introduction  
The UART1/UART2 provide a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive  
simultaneously. They are also receive-buffered, i.e., they can commence reception of a second byte before a  
previously received byte has been read from the receive register. However, if the first byte still has not been  
read by the time reception of the second byte is complete, the previous byte will be lost. The serial port receive  
and transmit registers are both accessed at Special Function Register (SFR) SBUF. Writing to SBUF loads the  
transmit register, and reading SBUF accesses a physically separate receive register.  
Datasheet  
63  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
UART1/UART2  
18.2.1  
Block Diagram  
UART disreq from SCU _DM  
RI  
TXD  
RXD  
TXD  
SCU_D  
M
Interrupt  
Control  
RXD_0  
RXD_1  
TI  
URIOS  
SCU_DM  
P0.x  
P1.x  
P2.x  
UART  
Module  
PortControl  
fUART2  
Clock  
Control  
Baud Rate  
Generator  
f
BR  
Address  
Decoder  
RXDO _2  
SCU_DM  
AHB Interface  
UART  
GPIOs  
Figure 26 UART Block Diagram  
18.3  
UART Modes  
The UART1/UART2 can be used in four different modes. In mode 0, it operates as an 8-Bit shift register. In mode  
1, it operates as an 8-Bit serial port. In modes 2 and 3, it operates as a 9-Bit serial port. The only difference  
between mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable  
baud rate is set by the underflow rate on the dedicated baud-rate generator.  
The different modes are selected by setting bits SM0 and SM1 to their corresponding values, as shown in  
Table 11.  
Mode 1 example: 8 data bits, 1 start bit, 1 stop bit, no parity selection, 16 times oversampled (majority decision  
of bits 6, 7, 8), receive & transmit register double buffered, Tx/Rx IRQ(s).  
Table 11 UART Modes  
SM0  
SM1  
Operating Mode  
Mode 0: 8-Bit shift register  
Baud Rate  
0
0
1
1
0
1
0
1
f
sys/2  
Variable  
sys/64 or fsys/32  
Variable  
Mode 1: 8-Bit shift UART  
Mode 2: 9-Bit shift UART  
Mode 3: 9-Bit shift UART  
f
Datasheet  
64  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
LIN Transceiver  
19  
LIN Transceiver  
19.1  
Features  
General Functional Features  
Compliant to LIN2.2 Standard, backward compatible to LIN1.3, LIN2.0 and LIN 2.1  
Compliant to SAE J2602 (Slew Rate, Receiver hysteresis)  
Special Features  
Measurement of LIN Master baudrate via Timer 2  
LIN can be used as Input/Output with SFR bits.  
TxD Timeout Feature (optional, on by default)  
Overcurrent limitation and overtemperature protection  
LIN module fully resettable via global enable bit  
Operation Modes Features  
LIN Sleep Mode (LSLM)  
LIN Receive-Only Mode (LROM)  
LIN Normal Mode (LNM)  
High Voltage Input / Output Mode (LHVIO)  
Slope Modes Features  
Normal Slope Mode (20 kbit/s)  
Low Slope Mode (10.4 kbit/s)  
Fast Slope Mode (62.5 kbit/s)  
Flash Mode (115 kbit/s, 250 kbit/s)  
Wake-Up Features  
LIN Bus wake-up. The wake-up happens on the falling edge of the LIN signal, to allow wake-up and  
decoding of the same frame. It is possible to enter the sleep mode also with LIN dominant (e.g. caused by  
LIN shorted to GND).  
19.2  
Introduction  
The LIN Module is a transceiver for the Local Interconnect Network (LIN) compliant to the LIN2.2 Standard,  
backward compatible to LIN1.3, LIN2.0 and LIN2.1. It operates as a bus driver between the protocol controller  
and the physical network. The LIN bus is a single wire, bi-directional bus typically used for in-vehicle networks,  
using baud rates between 2.4 kBaud and 20 kBaud. Additionally baud rates up to 62.5 kBaud are  
implemented.  
The LIN Module offers several different operation modes, including a LIN Sleep Mode and the LIN Normal  
Mode. The integrated slope control allows to use several data transmission rates with optimized EMC  
performance. For data transfer at the end of line, a Flash Mode up to 115 kBaud is implemented. This Flash  
Datasheet  
65  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
LIN Transceiver  
Mode can be used for data transfer under special conditions for up to 250 kbit/s (in production environment,  
point-to-point communication with reduced wire length and limited supply voltage).  
19.2.1  
Block Diagram  
VS  
LINTransceiver  
30 k  
LIN_CTRL_STS  
LIN-FSM  
LIN  
CTRL  
Driver +  
Curr. Limit. +  
TSD  
TxD_1  
from UART  
STATUS  
GND_LIN  
Transmitter  
PMU_LIN_WAKE_EN.LIN_EN  
Filter  
RxD_1  
to UART  
Filter  
Receiver  
LIN_Wake  
Sleep Comparator  
LIN_Block_Diagram_Customer.vsd  
GND_LIN  
Figure 27 LIN Transceiver Block Diagram  
Datasheet  
66  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
High-Speed Synchronous Serial Interface SSC1/SSC2  
20  
High-Speed Synchronous Serial Interface SSC1/SSC2  
20.1  
Features  
Master and Slave Mode operation  
Full-duplex or half-duplex operation  
Transmit and receive double buffered  
Flexible data format  
Programmable number of data bits: 2 to 16 bits  
Programmable shift direction: Least Significant Bit (LSB) or Most Significant Bit (MSB) shift first  
Programmable clock polarity: idle low or high state for the shift clock  
Programmable clock/data phase: data shift with leading or trailing edge of the shift clock  
Variable baud rate, e.g. 250kBaud - 8MBaud  
Compatible with Serial Peripheral Interface (SPI)  
Interrupt generation  
On a transmitter empty condition  
On a receiver full condition  
On an error condition (receive, phase, baud rate, transmit error)  
On a transfer complete condition  
Port direction selection, see Chapter 14  
20.2  
Introduction  
The High-Speed Synchronous Serial Interface (SSC) supports both full-duplex and half-duplex serial  
synchronous communication. The serial clock signal can be generated by the SSC internally (master mode),  
using its own 16-Bit baud-rate generator, or can be received from an external master (slave mode). Data width,  
shift direction, clock polarity, and phase are programmable. This allows communication with SPI-compatible  
devices or devices using other synchronous serial interfaces.  
Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR  
(MasterTransmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line  
MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally  
connected to the pin SCLK. Transmission and reception of data are double-buffered.  
Datasheet  
67  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
High-Speed Synchronous Serial Interface SSC1/SSC2  
20.2.1  
Block Diagram  
Figure 28 shows all functional relevant interfaces associated with the SSC Kernel.  
MRSTA  
MRSTB  
EIR  
MTSR  
SCU_DM  
Interrupt  
Control  
RIR  
TIR  
MTSRA  
MTSRB  
P0.x  
P1.x  
P2.x  
SSC  
Port  
Control  
Module  
(Kernel)  
MRST  
fhw_clk  
Clock  
Control  
SCLKA  
SCLKB  
Address  
Decoder  
SCLK  
AHB Interface  
Module  
Product Interface  
SSC_interface_overview.vsd  
Figure 28 SSC Interface Diagram  
Datasheet  
68  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Measurement Unit  
21  
Measurement Unit  
21.1  
Features  
1 x 10 Bit ADC with 13 Inputs including attenuator allowing measurement of high voltage input signals  
Supply Voltage Attenuators with attenuation of VBAT_SENSE, VS, MONx, P2.x.  
1 x 8 Bit ADC with 7 Inputs including attenuator allowing measurement of high voltage input signals  
Supply Voltage Attenuators with attenuation of VS, VDDEXT, VDDP, VBG, VDDC, TSENSE_LS,  
TSENSE_CENTRAL.  
VBG monitoring of 8 Bit ADC to support functional safety requirements.  
Temperature Sensor for monitoring the chip temperature and Low Side module temperature.  
Supplement Block with Reference Voltage Generation, Bias Current Generation, Voltage Buffer for NVM  
Reference Voltage, Voltage Buffer for Analog Module Reference Voltage and Test Interface.  
21.2  
Introduction  
The measurement unit is a functional unit that comprises the following associated sub-modules:  
Table 12 Measurement functions and associated modules  
Module  
Name  
Modules  
Functions  
Central  
Functions Unit  
Bandgap reference circuit +  
current reference circuit  
The bandgap-reference sub-module provides two  
reference voltages  
1. an accurate reference voltage for the 10-bit and 8-  
bit ADCs. A local dedicated bandgap circuit is  
implemented to avoid deterioration of the reference  
voltage arising e.g. from crosstalk or ground voltage  
shift.  
2. the reference voltage for the NVM module  
10 Bit ADC (ADC1) 10-bit ADC module with 13  
multiplexed analog inputs  
VBAT_SENSE, VS and MONx measurement.  
Six (5V) analog inputs from Port 2.x  
8 Bit ADC (ADC2) 8-bit ADC module with 7  
multiplexed inputs  
VS/VDDEXT/VDDP/VBG/VDDC/TSENSE_LS and  
TSENSE_CENTRAL measurement.  
Temperature  
Sensor  
Temperature sensor readout  
amplifier with two multiplexed  
ΔVbe-sensing elements  
Generates outputs voltage which is a linear function  
of the local chip (Tj) temperature.  
Measurement  
Core Module  
Digital signal processing and ADC 1. Generates the control signal for the 8-bit ADC 2 and  
control unit  
the synchronous clock for the switched capacitor  
circuits (temperature sensor)  
2. Performs digital signal processing functions and  
provides status outputs for interrupt generation.  
Datasheet  
69  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Measurement Unit  
21.2.1  
Block Diagram  
The Structure of the Measurement Functions Module is shown in the following figure.  
VS  
VDDC  
ATT  
x 0.047  
x 0.047  
x 0.039  
x 0.039  
VBAT_SENSE  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
MON1  
MON2  
MON3  
MON4  
x 0.039  
x 0.039  
x 0.039  
x 0.219  
DPP1  
ADC 1  
10  
/
P2.0  
P2.1  
SFR  
MUX  
A
D
CH7  
CH8  
CH9  
P2.2  
P2.3  
P2.6  
P2.7  
N.U.  
x 0.219  
x 0.219  
x 0.219  
x 0.219  
CH10  
CH11  
CH12  
x 0.219  
10 Bit ADC + DPP  
ATT  
x 0.039  
CH0  
CH1  
VBG  
VDDEXT  
VDDP  
x 0.203  
x 0.203  
x 0.75  
CH2  
CH3  
DPP2  
PMU Bandgap  
8
/
MUX  
SFR  
x 0.75  
x 1  
CH4  
CH5  
CH6  
CH7  
A
D
VDDC  
Temperature  
Sensor LS  
Temperature  
Sensor Central  
x 1  
ADC 2  
rfu  
rfu  
CH8  
8 Bit ADC + DPP  
Measurement-Unit  
Figure 29 TLE9844QX Measurement Unit-Overview  
Datasheet  
70  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Measurement Core Module (incl. ADC2)  
22  
Measurement Core Module (incl. ADC2)  
22.1  
Features  
7 individually programmable channels split into two groups of user configurable and non user  
configurable  
Individually programmable channel prioritization scheme for measurement unit  
Two independent filter stages with programmable low-pass and time filter characteristics for each  
channel  
Two channel configurations:  
Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis  
Two individually programmable trigger thresholds with limit hysteresis settings  
Individually programmable interrupts and status for all channel thresholds  
Operation down to reset threshold of entire system  
22.2  
Introduction  
The basic function of this block is the digital postprocessing of several analog digitized measurement signals  
by means of filtering level comparison and interrupt generation. The measurement postprocessing block is  
built of seven identical channel units attached to the outputs of the 7-channel 8-bit ADC (ADC2). It processes  
seven channels, where the channel sequence and prioritization is programmable within a wide range.  
22.2.1  
Block Diagram  
3
/
MUX_SEL<2:0>  
Channel Controller  
(Sequencer)  
SOS à EOC  
ADC2 - SFR  
10  
/
VS  
CH0  
Digital Signal Processing  
ADC2_OUT_CHx  
1st Order IIR  
VDDEXT  
VDDP  
CH1  
CH2  
CH3  
1
/
+
-
ADC2  
UP_X_STS  
+ / -  
+ / -  
Calibration Unit:  
TH_UP_CHx  
VBG  
8
10  
/
8
/
MUX  
VDDC  
CH4  
CH5  
CH6  
CH7  
CH8  
A
D
/
y= a + (1+b)*x  
1
/
TH_LOW_CHx  
-
Temperature Sensor LS  
LOW_X_STS  
+
Temperature Sensor Central  
rfu  
rfu  
Figure 30 Module Block Diagram  
Datasheet  
71  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
10-Bit Analog Digital Converter (ADC1)  
23  
10-Bit Analog Digital Converter (ADC1)  
23.1  
Features  
The basic function of this block is the digital postprocessing of several analog digitized measurement signals  
by means of filtering, level comparison and interrupt generation. The measurement postprocessing block is  
built of twelve identical channel units attached to the outputs of the 13-channel 10-bit ADC. It processes  
twelve channels, where the channel sequence and prioritization is programmable within a wide range.  
Functional Features  
10 Bit SAR ADC with conversion time of 17 clock cycles  
Programmable clock divider for sequencer and ADC  
12 individually programmable channels (ch0..ch11):  
6 HV Channels: VS, VBAT_SENSE, MON1...MON4  
6 LV Channels: P2.1, P2.2, P2.3, P2.6, P2.7, P2.0  
All channels are fully calibrated and user configurable  
Individually programmable channel prioritization scheme for digital postprocessing (dpp)  
Two independent filter stages with programmable low-pass and time filter characteristics for each  
channel  
Two channel configurations:  
Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis  
Two individually programmable trigger thresholds with limit hysteresis settings  
Individually programmable upper threshold and lower threshold interrupts and status for all channel  
thresholds  
ADC reference completely integrated  
Note:  
In case the MONx should be evaluated by the ADC1, it is recommended to add 6.8nF capacitors close  
to the MONx pin of the device, in order to build an external RC filter to limit the bandwidth of the input  
signal.  
Datasheet  
72  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
10-Bit Analog Digital Converter (ADC1)  
23.2  
Introduction  
23.2.1  
Block Diagram  
4
/
MUX_SEL<3:0>  
Channel Controller  
(Sequencer)  
SOS à EOC  
ADC - SFR  
13*12  
12*12  
/
/
VBAT_SENSE  
CH0  
VS  
MON1  
MON2  
MON3  
MON4  
P2.0  
CH1  
CH2  
CH3  
ADC_OUT_CHx  
ADC_OUT_CHx  
1st Order IIR  
1
/
+
-
10 Bit ADC  
UP_X_STS  
+ / -  
+ / -  
CH4  
CH5  
CH6  
CH7  
CH8  
CH9  
CH10  
CH11  
Calibration Unit:  
y= a + (1+b)*x  
TH_UP _CHx  
13*10  
/
11*12  
/
12*10  
/
MUX  
A
D
1
/
TH_LOW_CHx  
-
LOW_X_STS  
P2.1  
+
P2.2  
P2.3  
P2.6  
ADC1 - Digital Post-Processing  
P2.7  
Figure 31 Module Block Diagram  
Datasheet  
73  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
High-Voltage Monitor Input  
24  
High-Voltage Monitor Input  
24.1  
Features  
Features  
4 High-voltage inputs with VS/2 threshold voltage  
Wake capability for system stop mode and system sleep mode  
Edge sensitive wake-up feature configurable for transitions from low to high, high to low or both directions  
MON inputs can also be evaluated with ADC in Active Mode, using adjustable threshold values (see also  
Chapter 23).  
Selectable pull-up and pull-down current sources available  
24.2  
Introduction  
This module is dedicated to monitor external voltage levels above or below a specified threshold. Each MONx  
pin can further be used to detect a wake-up event by detecting a level change by crossing the selected  
threshold. This applies to any power mode. Further more each MONx pin can be sampled by the ADC as analog  
input.  
24.2.1  
Block Diagram  
VS  
MON  
+
-
Filter  
MON_int  
MON  
Logic  
SFR  
MONx_Input_Circuit_ext.vsd  
Figure 32 Monitoring Input Block Diagram  
Datasheet  
74  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
High-Side Switch  
25  
High-Side Switch  
25.1  
Features  
The high-side switch is optimized for driving resistive loads. Only small line inductance are allowed. Typical  
applications are single or multiple LEDs of a dashboard, switch illumination or other loads that require a high-  
side switch.  
A cyclic switch activation during Sleep Mode or Stop Mode of the system is also available.  
Functional Features  
Multi-purpose high-side switch for resistive load connections (only small line inductances are allowed)  
Overcurrent limitation  
Overcurrent detection with thresholds: 25 mA, 50 mA, 100 mA, 150 mA and automatic shutdown  
Overtemperature detection and automatic shutdown  
Open load detection in on mode with open load current of max. 1.5 mA.  
Interrupt signalling of overcurrent, overtemperature and open load condition  
Cyclic switch activation in Sleep Mode and Stop Mode with cyclic sense support and reduced driver  
capability: max. 40 mA  
PWM capability up to 25 kHz  
Internal connection to System-PWM Generator (CCU6)  
Slew rate control for low EMI characteristic  
Applications hints  
The voltage at HSx must not exceed the supply voltage by more than 0.3V to prevent a reverse current from  
HSx to VS.  
Datasheet  
75  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
High-Side Switch  
25.2  
Introduction  
25.2.1  
Block Diagram  
VS  
25 mA  
50 mA  
100 mA  
150 mA  
OCTH_SEL  
OC-Detection  
Cyclic-  
Driver  
SFR  
ON  
Driver  
OLTH  
1,5 mA  
HS  
OL-Detection  
High Side  
Figure 33 High-Side Module Block Diagram (incl. subblocks)  
25.2.2  
General  
The high-side switch can generally be controlled in three different ways:  
In Normal mode the output stage is fully controllable through the SFR Registers HSx_CTRL. Protection  
functions as overcurrent, overtemperature and open load detection are available.  
The PWM Mode can also be enabled by a HSx_CTRL - SFR bit. The PWM configuration has to be done in the  
corresponding PWM Module. All protection functions are also available in this mode. The maximum PWM  
frequency must not exceed 25 kHz (disabled slew rate control only).  
The high-side switch provides also the possibility of cyclic switch activation in all low power modes (Sleep  
Mode and Stop Mode). In this configuration it has limited functionality with limited current capability.  
Diagnostic functions are not available in this mode.  
Datasheet  
76  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Low-Side Switch  
26  
Low-Side Switch  
26.1  
Features  
The general purpose low-side switch is optimized to control an on-board relay. The low-side switch provides  
embedded protection functions including overcurrent and overtemperature detection. The module is  
designed for on-board connections.  
Measures for standard ESD (HBM) and EMC robustness are implemented.  
Functional Features  
Multi purpose low-side switch optimized for driving relays:  
simple relay driver  
PWM relay driver  
Integrated clamping for usage as a simple relay driver  
overcurrent detection and automatic shutdown  
overtemperature detection and automatic shutdown  
interrupt signalling of overcurrent and overtemperature condition  
open load detection with interrupt signalling  
PWM capability up to 25 kHz (for inductive loads with external clamping circuitry only!)  
Selectable PWM source: dedicated CCU6 channels  
Current drive capability up to min. 270 mA  
Applications hints  
It is not recommended to use the switch in PWM Mode without external free wheeling diode.  
Datasheet  
77  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Low-Side Switch  
LS  
Clamp  
XSFR  
ON  
Driver  
270 mA  
OC-Detection  
Low Side  
LSGND  
Figure 34 Module Block Diagram  
26.2  
Functional Description  
The low-side switches can generally be controlled in two different ways:  
In normal mode the output stage is fully controllable through the SFR Registers LSx_CTRL. Protection  
functions as overcurrent and overtemperature are available.  
The PWM Mode can also be enabled by a LSx_CTRL - SFR bit. The PWM configuration has to be done in the  
corresponding PWM Module (CCU6). All protection functions are also available in this mode. The maximum  
PWM frequency must not exceed 25 kHz (fast slew rate only).  
Datasheet  
78  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Application Information  
27  
Application Information  
Note:  
27.1  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Relay Window Lift Application diagram  
LIN  
LIN  
CLIN  
RMONx  
GND  
GND  
MON 1  
MON 2  
MON 3  
R
VBAT_SENSE  
CMONx  
RMONx  
CMONx  
RMONx  
CMONx  
VBAT_SENSE  
CVBAT_SENSE2  
C
VBAT_SENSE1  
VBAT  
VS  
C1VS  
C2VS  
RMONx  
MON 4  
CMONx  
M+  
LS 1  
M
R2HS  
M-  
HS 2*  
HS 1  
LS 2  
C1HS  
C2HS  
R1HS  
PWM  
C1HS  
C2HS  
VDDC  
VDDP  
CVDDC  
Speed  
Direction  
CC60  
CC61  
VDDEXT  
Double Hall  
Sensor  
e.g. TLE 4966  
CVDDP  
CVDDEXT  
ApplicationDiagram_Arkas.vsd  
* onlyavailable in product variantswith HS 2  
Figure 35 Simplified Application Diagram Example  
Note:  
This is a very simplified example of an application circuit and bill of material. The function must be  
verified in the actual application.  
Datasheet  
79  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Application Information  
Table 13 External Component (BOM)  
Symbol  
C1VS  
Function  
Component  
22 µF1)  
100 nF2)3)  
330 nF2)  
100 nF2)3) + 330 nF2)  
470 nF2)3) + 470 nF2)  
3.9 kΩ  
Capacitor 1 at VS pin  
C2VS  
Capacitor 2 at VS pin  
CVDDEXT  
CVDDC  
Capacitor at VDDEXT pin  
Capacitor at VDDC pin  
Capacitor at VDDP pin  
Resistor at MONx pin  
CVDDP  
RMONx  
CMONx  
Capacitor at MONx connector  
Resistor at VBAT_SENSE pin  
Capacitor 1at VBAT_SENSE pin  
Capacitor 2 at VBAT_SENSE connector  
Capacitor at LIN pin  
6.8 nF4)  
RVBAT_SENSE  
CVBAT_SENSE1  
CVBAT_SENSE2  
CLIN  
3.9 kΩ  
10 nF2)  
6.8 nF4)  
220 pF  
R1HS  
Resistor at HS pin for LED  
Resistor at HS pin  
e.g. 2.7kΩ  
160 5)  
R2HS  
C1HS  
Capacitor at HS pin  
6.8nF2)  
33nF4)  
C2HS  
Capacitor at HS connector  
1) to be dimensioned according to application requirements  
2) to reduce the effect of fast voltage transients of Vs, these capacitors should be placed close to the device pin  
3) ceramic capacitor  
4) for ESD GUN  
5) optional, for short to battery protection, calculated for 24V (jump start)  
27.2  
Connection of N.C. / N.U. pins  
The device contains several N.C. (not connected, no bond wire) and N.U. (not used, but bonded) pins.  
Table 14 Recommendation for connecting N.C. / N.U. pins  
type pin number  
recommendation 1 recommendation 2  
comment  
N.C.  
N.C.  
27, 28, 29, 38, 40, 41  
GND  
10, 46  
open  
GND  
neighboring high-voltage  
pins  
N.U.  
N.U.  
4
9
VS  
open  
GND  
Datasheet  
80  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Application Information  
27.3  
Connection of unused pins  
Table 15 shows recommendations how to connect pins, in case they are not needed by the application.  
Table 15 Recommendation for connecting unused pins  
type  
pin number  
recommendation 1  
(if unused)  
recommendation 2  
(if unused)  
LIN  
1
open  
VS  
HS1  
3
open  
MON  
LS1, LS2  
GPIO  
5, 6, 7, 8  
11, 12  
GND  
GNDLS  
open + configure internal PU/PD  
open  
14, 15, 16, 17, 20, 22, 23, GND  
24, 25, 26, 33, 34, 35, 36,  
37, 39  
external PU/PD  
or  
open + configure internal PU/PD  
TMS  
18  
21  
31  
32  
45  
48  
GND  
open  
open  
GND  
open  
VS  
Reset  
P2/XTAL out  
P2/XTAL in  
VDDEXT  
VBAT_SENSE  
27.4  
Connection of P0.2 for SWD debug mode  
To enter the SWD debug mode, P0.2 needs to be 0 at the rising edge of the reset signal.  
P0.2 has an internal pulldown, so it just needs to be ensured that there is no external 1 at P0.2 when the debug  
mode is entered.  
27.5  
Connection of TMS  
For the debug mode, the TMS pin needs to be 1 at the rising edge of the reset signal. This is controlled by the  
debugger. The TMS pin has an internal PD.  
To avoid the device entering the debug mode unintendedly in the final application, adding an external pull-  
down additionally is recommended.  
Datasheet  
81  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Application Information  
27.6  
ESD Immunity According to IEC61000-4-2  
Note:  
Tests for ESD robustness according to IEC61000-4-2 “gun test” (150pF, 330) were performed. The  
results and test condition are available in a test report. The achieved values for the test are listed in  
Table 16 below.  
Table 16 ESD “Gun Test”  
Performed Test  
Result  
6  
Unit  
kV  
Remarks  
ESD at pin LIN, versus GND  
ESD at pin LIN, versus GND  
1)positive pulse  
1)negative pulse  
1)positive pulse  
-6  
kV  
ESD at pin VS, VBAT_SENSE, MONx, 6  
kV  
HS, versus GND  
ESD at pin VS, VBAT_SENSE, MONx, -6  
kV  
1)negative pulse  
HS, versus GND  
1) ESD susceptibility “ESD GUN”, tested by external test house (IBEE Zwickau, EMC Test report Nr. 11-01-16), according  
to "LIN Conformance Test Specification Package for LIN 2.1, October 10th, 2008" and "Hardware Requirements for  
LIN, CAN and FlexRay Interfaces in Automotive Application – AUDI, BMW, Daimler, Porsche, Volkswagen – Revision 1.3  
/ 2012"  
Datasheet  
82  
Rev.1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28  
Electrical Characteristics  
This chapter includes all relevant Electrical Characteristics of the product TLE9844QX.  
28.1  
General Characteristics  
28.1.1  
Absolute Maximum Ratings  
Table 17  
Absolute Maximum Ratings1)  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltages Supply Pins  
VS voltage  
VS,max  
-0.3  
-0.3  
-0.3  
40  
V
V
V
Load dump  
P_1.1.1  
P_1.1.2  
P_1.1.3  
VDDP voltage  
VDDP,max  
VDDEXT,max  
5.5  
VDDEXT voltage  
VS  
+0.3  
VDDC voltage  
VDDC,max  
-0.3  
1.6  
40  
V
P_1.1.4  
Voltages High Voltage Pins  
Voltage at VBAT_SENSE pin  
2)  
VBAT_SENSE,m -28  
V
V
P_1.1.5  
P_1.1.6  
ax  
Voltage at HS pin  
VHS,max  
-0.3  
VS  
+0.3  
Voltage at LIN pin  
Voltage at MON_x pins  
Voltage at LS pin  
VLIN,max  
VMON,max  
VLS,max  
-28  
-28  
-0.3  
40  
40  
40  
V
V
V
P_1.1.7  
P_1.1.8  
P_1.1.9  
2)  
Internal clamping  
structure > 40V  
Voltages GPIOs  
Voltage on port pin P0.x, P1.x, VIO,max  
P2.x, TMS and RESET  
-0.3  
VDDP  
+0.3  
V
VIN < VDDPmax  
P_1.1.10  
P_1.1.11  
Currents  
Injection current in Sleep Mode Ixx  
on P0.x, P1.x, P2.x, TMS and  
RESET  
5
mA maximum allowed  
injection current on  
single pin or sum of  
pins in Sleep Mode  
and unpowered  
device  
Injection current on HS  
IXLO  
150  
mA current flowing into P_1.1.12  
HS pin (back supply  
in case of short to  
battery)  
Datasheet  
83  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 17  
Absolute Maximum Ratings1) (cont’d)  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Output current on LS  
ILS  
-300  
mA current flowing out of P_1.1.13  
LS pin, e.g. reverse  
polarity event  
(defined in LV124) or  
ISO Pulse event  
(defined in ISO 7637-  
2)  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Susceptibility  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_1.1.14  
P_1.1.15  
Tstg  
ESD Susceptibility HBM  
all pins  
VESD1  
-2  
2
kV  
kV  
V
JEDEC HBM3)  
JEDEC HBM3)  
P_1.1.16  
P_1.1.17  
P_1.1.18  
ESD Susceptibility HBM  
pins LIN vs. LINGND  
VESD3  
-6  
6
ESD Susceptibility CDM  
VESD_CDM  
–500  
500  
Charged device  
model, acc. JEDEC  
JESD22-C101  
ESD Susceptibility CDM  
pins 1, 12, 13, 24, 25, 36, 37, 48  
(corner pins)  
VESD_CDM  
–750  
750  
V
Charged device  
model, acc. JEDEC  
JESD22-C101  
P_1.1.19  
1) Not subject to production test, specified by design.  
2) for -28V, external 3.9kresistor is required to limit output current.  
3) ESD susceptibility, “JEDEC HBM” according to ANSI/ESDA/JEDEC JS001 (1.5k, 100pF).  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
84  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.1.2  
Functional Range  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Table 18  
Functional Range  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
28  
Supply voltage in Active Mode  
VS_AM  
5.5  
V
V
P_1.2.1  
Extended Supply voltage in Active  
Mode - Range 1  
VS_AM_exten 28  
40  
Functional with P_1.2.12  
parameter  
d_1  
deviation1)  
Extended Supply voltage in Active  
Mode with reduced functionality  
(Microcontroller / Flash with full  
operation) - Range 2  
VS_AM_exten 3.0  
5.5  
V
Functional with P_1.2.2  
parameter  
d_2  
deviation2)  
Specified Supply voltage for LIN  
Transceiver - Active Mode  
VS_AM_LIN 5.5  
18  
28  
V
V
Parameter  
Specification  
P_1.2.3  
Extended Supply voltage for LIN  
Transceiver - Active Mode  
VS_AM_LIN_e 4.8  
Functional with P_1.2.4  
parameter  
xtend  
deviation  
Extended Supply voltage for LIN &  
Monitoring Input (MON) - Stop &  
Sleep Mode  
VS_SSM_LIN_ 3.6  
5.5  
V
Wakeup  
functionality  
ensured  
P_1.2.13  
MON_extend  
Min. Supply voltage in Stop Mode  
Min. Supply voltage in Sleep Mode  
VS_Stopmin 3.0  
VS_Sleepmin 3.0  
V
P_1.2.5  
P_1.2.6  
P_1.2.7  
P_1.2.8  
P_1.2.9  
P_1.2.10  
P_1.2.11  
V
3)  
Supply Voltage transients slew rate dVS/dt  
Output current on any GPIO OH , IOL  
-5  
5
V/µs  
mA  
mA  
MHz  
°C  
3)  
3)  
3)  
I
-10  
-50  
5
10  
50  
25  
150  
Output sum current for all GPIO pins IGPIO,sum  
4)  
Operating frequency  
fsys  
Junction Temperature  
Tj  
-40  
1) This operation voltage range is only allowed for a short duration: tmax 400 ms.  
2) Hall-Supply, ADC, SPI, UART, NVM, RAM, CPU fully functional and in spec down to 3V VS. Actuators (HS, LS) in VS range  
from 3V < VS < 5.5V functional but some parameters can be out of spec  
3) Not subject to production test, specified by design.  
4) Function not specified when limits are exceeded.  
Datasheet  
85  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.1.3  
Current Consumption  
Table 19  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current Consumption @VS pin  
Current Consumption in IVs_freduced  
15  
mA fsys = 10 MHz  
P_1.3.1  
Active Mode  
Vs= 13.5V  
all digital modules enabled and  
functional, ADCs converting in  
sequencer mode, PLL running,  
no loads on GPIOs, VDDEXT off,  
LIN in recessive state (no  
communication), HSx & LSx  
enabled but off1)  
Current Consumption in IVs  
14  
18  
mA fsys = 25 MHz  
P_1.3.22  
Active Mode  
Vs= 13.5V  
all digital modules enabled and  
functional, ADCs converting in  
sequencer mode, PLL running,  
no loads on GPIOs, VDDEXT off,  
LIN in recessive state (no  
communication), HSx & LSx  
enabled but off  
Current consumption in ISleep  
Sleep Mode  
15  
25  
µA System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND:  
P_1.3.2  
P_1.3.3  
TJ = -40°C to 25°C;  
Vs = 13.5V  
Current consumption in ISleep(T_exte  
µA System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND:  
Sleep Mode (extended  
nd)  
Temperature Range)  
TJ = 25°C to 85°C;  
Vs = 13.5V  
Datasheet  
86  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 19  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current consumption in ISleep(V_T_e  
30  
µA System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND:  
P_1.3.4  
Sleep Mode (extended  
xtend)  
Voltage and  
Temperature Range)  
TJ = -40°C to 85°C;  
Vs = 5.5V to 18V  
Current consumption in ISleep(V_T_e  
40  
µA System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND:  
P_1.3.7  
Sleep Mode (extended  
xtend2)  
Voltage and  
Temperature Range 2)  
TJ = -40°C to 85°C;  
Vs = 3V to 28V  
Current consumption in ICyclic  
Sleep Mode with cyclic  
wake  
15  
30  
µA TJ = -40°C to 25°C;  
Vs = 13.5V  
P_1.3.5  
P_1.3.6  
during sleep period  
Current consumption in ICyclic(T_exte  
µA TJ = 25°C to 85°C;  
Vs = 13.5V;  
Sleep Mode with cyclic  
nd)  
wake (extended  
during sleep period  
Temperature Range)  
Current consumption in IStop  
Stop Mode  
65  
115  
µA System in Stop Mode,  
microcontroller not clocked,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND; TJ = -  
40°C to 85°C  
P_1.3.19  
Datasheet  
87  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 19  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current consumption in IStop_V_exte  
3.5  
4.0  
mA System in Stop Mode,  
microcontroller not clocked,  
Wake capable via LIN and MON;  
GPIOs open (no loads) or  
connected to GND; TJ = -  
40°C to 85°C;  
P_1.3.21  
Stop Mode  
nd  
Vs = 3V  
Current consumption in IStop_CS  
Stop Mode with cyclic  
sense  
70  
125  
µA System in Stop Mode (during stop P_1.3.20  
period), microcontroller not  
clocked, Wake capable via LIN  
and MON; VDDEXT off; High Side  
off;  
GPIOs open (no loads) or  
connected to GND or VDDP; TJ = -  
40°C to 85°C;  
Vs = 5.5V to 28V  
1) Not subject to production test, specified by design  
28.1.4  
Thermal Resistance  
Table 20  
Thermal Resistance  
Parameter  
Symbol  
Rth(JC)  
Rth(JA)  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
Junction to Case  
6
K/W 1) measured to  
Exposed Pad  
P_1.4.1  
P_1.4.2  
2)  
Junction to Ambient  
33  
K/W  
1) Not subject to production test, specified by design.  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board . Board: 76.2x114.3x1.5mm3 with 2 inner  
copper layers (35µm thick), with thermal via array under the exposed pad contacting the first inner copper layer and  
300mm2 cooling area on the bottom layer (70µm).  
Datasheet  
88  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.1.5  
Timing Characteristics  
The transition times between the system modes are specified here. Generally the timings are defined from the  
time when the corresponding Bits in register PMCON0 are set until the sequence is terminated.  
Table 21  
System Timing1)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Wake-up over battery  
tstart  
1
ms  
ms  
µs  
Battery ramp-up till MCU  
reset is released; Vs > 3V and  
RESET = ’1’  
P_1.5.1  
Sleep-Exit  
tsleep - exit  
1
rising/falling edge of any  
wake-up signal (LIN, MON) till  
MCU software running  
2)  
P_1.5.2  
P_1.5.3  
Sleep-Entry  
tsleep -  
330  
entry  
1) Not subject to production test, specified by design.  
2) Wake events during Sleep-Entry are stored and lead to wake-up after Sleep Mode is reached.  
Datasheet  
89  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.2  
Power Management Unit (PMU)  
This chapter includes all electrical characteristics of the Power Management Unit  
28.2.1  
PMU Input Voltage VS  
Table 22  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Required decoupling  
capacitance  
CVS1  
0.1  
µF  
µF  
1) ESR < 1Ω  
P_2.1.12  
P_2.1.13  
2)  
Required buffer capacitance CVS2  
for stability (load jumps)  
10  
1) only min. value is tested.  
2) Not subject to production test, specified by design.  
28.2.2  
PMU I/O Supply Parameters VDDP  
Table 23  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)1)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
2)  
Specified Output Current  
IVDDP  
0
50  
mA  
µF  
P_2.1.1  
P_2.1.2  
Required decoupling  
capacitance  
CVDDP1  
0.47  
3)4) ESR < 1Ω  
4)5)  
Required buffer capacitance CVDDP2  
for stability (load jumps)  
0.47  
4.9  
1
µF  
V
P_2.1.3  
6)  
Output Voltage including line VDDPOUT  
and load regulation @ Active  
Mode  
5.0  
5.1  
I
< 90mA;Vs > 5.5V P_2.1.4  
is only internal;Vs P_2.1.5  
= 50mA; VS = 3V; P_2.1.6  
load  
6)  
Output Voltage including line VDDPOUTST 4.5  
and load regulation @ Stop  
Mode  
5.0  
5.25  
V
I
load  
> 5.5V  
OP  
7)  
Output Drop  
Vs V DDPout  
50  
+400 mV  
I
VDDP  
Load Regulation  
VVDDPLOR -50  
50  
mV  
2 ... 90mA; C =  
VDDP1+CVDDP2  
P_2.1.7  
C
Line Regulation  
VVDDPLIR  
VDDPOV  
-50  
50  
mV  
V
Vs= 5.5 ... 28V  
P_2.1.8  
P_2.1.9  
Over Voltage Detection  
5.14  
5.4  
Vs > 5.5V; Overvoltage  
leads to SUPPLY_NMI  
Datasheet  
90  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 23  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)1)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Under Voltage Reset  
VDDPUV  
IVDDPOC  
2.55 2.7  
90  
2.8  
V
P_2.1.10  
Over Current Diagnostic  
200 mA  
current including VDDC P_2.1.11  
current consumption  
1) currents used in this table are positive but flowing out the pin VDDP  
2) Specified output current for port supply and additional other external loads connected to VDDP, excluding on-chip  
current consumption.  
3) only min. value is tested.  
4) the total capacitance on VDDP must not exceed 2,2 µF  
5) Not subject to production test, specified by design.  
6) Load current includes internal supply.  
7) Output drop for IVDDP plus internal supply  
Datasheet  
91  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.2.3  
PMU Core Supply Parameters VDDC  
Table 24  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Required decoupling capacitance CVDDC1  
0.1  
1
µF  
µF  
1) ESR < 1Ω  
2)  
P_2.2.1  
P_2.2.2  
Required buffer capacitance for CVDDC2  
0.33  
stability (load jumps)  
Output Voltage including line  
regulation @ Active Mode/Stop  
Mode  
VDDCOUT 1.44 1.5  
1.56  
V
Iload < 40mA; with  
setting of VDDC  
output voltage to  
1.5V in Stop Mode  
P_2.2.3  
Load Regulation  
VDDCLOR  
-50  
50  
mV 2 ... 40mA; C =  
VDDC1+CVDDC2  
mV Vs= 5.5 ... 28V  
P_2.2.4  
P_2.2.5  
C
Line Regulation  
VDDCLIR  
VDDCOV  
-25  
25  
Over Voltage Detection  
1.58  
1.68  
V
Overvoltage leads to P_2.2.6  
SUPPLY_NMI  
Under Voltage Reset  
VDDVUV  
IVDDCOC  
1.10  
40  
1.19  
80  
V
P_2.2.7  
P_2.2.8  
Over Current Diagnostic  
1) only min. value is tested.  
mA  
2) Not subject to production test, specified by design.  
Datasheet  
92  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.2.4  
VDDEXT Voltage Regulator 5.0V  
Table 25  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VDDEXT Regulator Active Mode  
Specified Output Current  
IVDDEXT  
0
20  
mA  
current flowing out P_2.3.1  
of pin VDDEXT  
Required decoupling  
capacitance  
CVDDEXT1  
330  
100  
4.9  
1000 nF  
1000 nF  
2) ESR < 1 Ω  
P_2.3.2  
3)  
Required buffer capacitance for CVDDEXT2  
stability (load jumps)  
P_2.3.3  
Output Voltage including line  
and load regulation  
VDDEXT  
5.0  
50  
5.1  
V
Iload < 20mA;Vs 5.5V P_2.3.4  
Output Drop  
Vs-VDDEXT  
VDDEXTLOR  
+400 mV  
Iload < 20mA;  
3V < Vs < 5.0V  
P_2.3.5  
P_2.3.6  
Load Regulation  
-80  
20  
mV  
0.01 ... 20mA; C =  
C
VDDEXT1+CVDDEXT2;  
Vs5.5V  
Line Regulation  
VVDDEXTLIR -50  
50  
mV  
dB  
Vs= 5.5 ... 28V  
3) Vs= 13.5V; f=0 ...  
P_2.3.7  
P_2.3.8  
Power Supply Ripple Rejection PSSRVDDEXT 50  
1KHz; Vr=2Vpp; 0 ...  
20mA  
4)  
Under Voltage Shutdown  
Over Current Limitation  
VVDDEXTUV  
IVDDEXTOC  
1.55 1.9  
100  
2.2  
V
P_2.3.9  
3)  
250 380  
mA  
kΩ  
P_2.3.10  
P_2.3.11  
VDDEXT output discharge  
resistance  
RVDDEXT_DISC 16  
20  
24  
HG  
VDDEXT Regulator Low Current Mode  
Specified Output Current  
IVDDEXT_LCM  
0
5
mA  
V
P_2.3.28  
Output Voltage including line  
and load regulation - Load 1  
VDDEXT_LCM1 4.6  
5.0  
5.1  
Iload 5mA;Vs 5.5V P_2.3.29  
Output Drop - Load 1  
Vs-  
VDDEXT_LCM1  
50  
+300 mV  
Iload 5mA;  
3V < Vs 5V;  
C = CVDDEXT1+CVDDEXT2  
P_2.3.30  
P_2.3.31  
Load Regulation - Load 1  
VDDEXTLOR_L -250  
250  
mV  
0 ... 5mA; C =  
C
VDDEXT1+CVDDEXT2  
;
CM1  
Vs5.5V  
Datasheet  
93  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 25  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Line Regulation - Load 1  
VVDDEXTLIR_L -300  
300  
mV  
Iload 5mA;  
Vs= 5.5 ... 28V  
3) Vs= 13.5V; f=0 ...  
1KHz; Vr=2Vpp; 0 ...  
5mA  
P_2.3.32  
P_2.3.33  
CM1  
Power Supply Ripple Rejection PSSRVDDEXT_L 50  
dB  
CM  
1) currents used in this table are positive but flowing out the pin VDDEXT  
2) only min. value is tested.  
3) Not subject to production test, specified by design.  
4) When condition is met, the Bit VDDEXT_CTRL.VDDEXT_UV_IS will be set.  
Datasheet  
94  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.2.5  
VPRE Voltage Regulator (PMU Subblock) Parameters  
The PMU VPRE Regulator acts as a supply of VDDP and VDDC voltage regulators.  
Table 26  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Specified Output Current  
IVPRE  
90  
mA  
P_2.4.1  
1) Not subject to production test, specified by design.  
28.2.5.1 Load Sharing of VPRE Regulator  
The figure below shows the load sharing concept of VPRE regulator.  
VS  
VPRE  
max. 90 mA  
max. 50 mA  
VDDP  
VDDP - 5V  
max. 90 mA  
CVDDP  
GNDA (Pin 43)  
VDDC  
max. 0 mA  
VDDC - 1.5V  
max. 40 mA  
C
VDDC  
GNDA (Pin 43)  
Load Sharing VPRE  
Load_Sharing_VPRE.vsd  
Figure 36 Load Sharing of VPRE Regulator  
Datasheet  
95  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.2.6  
Power Down Voltage Regulator (PMU Subblock) Parameters  
The PMU Power Down voltage regulator consists of two subblocks:  
Power Down Pre regulator: VDD5VPD  
Power Down Core regulator: VDD1V5_PD (Supply used for GPUDATAxy registers)  
Both regulators are used as purely internal supplies. The following table contains all relevant parameter:  
Table 27  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Power-On Reset Threshold  
VDD1V5_PD_ 1.2  
1.5  
V
I
= internal load P_2.5.1  
load  
connected to  
VDD1V5_PD  
RSTTH  
1) Not subject to production test, specified by design  
Datasheet  
96  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.3  
System Clocks  
28.3.1  
Electrical Characteristics Oscillators and PLL  
Table 28  
Electrical Characteristics System Clocks  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min.  
PMU Oscillators (Power Management Unit)  
Typ. Max.  
Frequency of LP_CLK fLP_CLK  
17  
20  
23  
MHz this clock is used at startup P_3.1.1  
and can be used in case the  
PLL fails  
Frequency of LP_CLK2 fLP_CLK2  
70  
100  
130  
kHz this clock is used for cyclic P_3.1.2  
wake  
CGU Oscillator (Clock Generation Unit Microcontroller)  
Short term frequency fTRIMST  
deviation1)  
-0.4%  
+0.4% MHz within any 100 ms, e.g.  
after synchronization to a  
LIN frame (includes PLL  
accumulated jitter  
P_3.1.3  
value).Assuption: Tj is  
varying < 30°C.  
Absolute accuracy  
fTRIMABSA  
-1.49%  
+1.49% MHz Including temperature&  
lifetime drift and supply  
variation  
P_3.1.4  
P_3.1.5  
CGU-OSC Start-up time tOSC  
10  
µs  
2) startup time OSC from  
Sleep Mode, power supply  
stable  
PLL (Clock Generation Unit Microcontroller) 2)  
VCO reference  
frequency range  
fREF  
0.8  
75  
4
1
1.25  
160  
6
MHz  
MHz  
P_3.1.25  
P_3.1.21  
VCOfrequency(tuning) fVCO  
range  
Input frequency range fOSC  
MHz see also specified limits for P_3.1.6  
fVCO and fREF resulting in  
restrictions for possible N  
divider settings  
XTAL1 input freq. range fOSCHP  
4
6
MHz see also specified limits for P_3.1.23  
fVCO and fREF resulting in  
restrictions for possible N  
divider settings  
Datasheet  
97  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 28  
Electrical Characteristics System Clocks (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min.  
Typ. Max.  
Output freq. range  
fPLL  
15  
40  
MHz see also specified limits for P_3.1.7  
VCO and fREF resulting in  
f
restrictions for possible N  
divider settings  
Free-running  
frequency  
fVCOfree  
34  
MHz  
ns  
P_3.1.24  
P_3.1.8  
P_3.1.9  
Input clock high/low thigh/low  
time  
10  
-500  
Peak period jitter  
tjp  
500  
ps  
for K=2; this parameter  
value is only valid with the  
combination of an external  
quartz oscillator (e.g. 5  
MHz)  
Accumulated jitter  
with external oscillator  
jacc_ext  
5
ns  
µs  
for K=2; this parameter  
value is only valid with the  
combination of an external  
quartz oscillator (e.g. 5  
MHz).  
P_3.1.10  
Lock-in time  
tL  
260  
this parameter represents P_3.1.11  
the duration from module  
power-on to assertion of  
lock signal  
1) The typical oscillator frequency is 40 MHz  
2) Not subject to production test, specified by design.  
28.3.2 External Clock Parameters XTAL1, XTAL2  
Table 29  
Functional Range  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
2)  
Input voltage range limits VIX1_SR  
-1.7 + VDDC  
1.7  
V
P_3.2.1  
for signal on XTAL1  
Input voltage (amplitude) VAX1_SR  
on XTAL1  
0.3 x VDDC  
V
3) Peak-to-peak P_3.2.2  
voltage  
XTAL1 input current  
Oscillator frequency  
IIL  
4
±20  
6
µA 0 V < VIN < VDDI  
P_3.2.3  
P_3.2.4  
fOSC  
MHz Clock signal  
Datasheet  
98  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 29  
Functional Range (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Oscillator frequency  
fOSC  
4
6
MHz Crystal or  
Resonator  
P_3.2.5  
4)5)  
High time  
Low time  
Rise time  
Fall time  
High time  
Low time  
Rise time  
Fall time  
t1_VCOBYP  
t2_VCOBYP  
t3_VCOBYP  
t4_VCOBYP  
t1_PLLNM  
t2_PLLNM  
t3_PLLNM  
t4_PLLNM  
6
8
8
7
7
8
8
7
7
ns  
P_3.2.6  
P_3.2.7  
P_3.2.8  
P_3.2.9  
P_3.2.10  
P_3.2.11  
P_3.2.12  
P_3.2.13  
4)5)  
6
ns  
4)5)  
ns  
4)5)  
ns  
5)6)  
12  
12  
ns  
5)6)  
ns  
5)6)  
ns  
5)6)  
ns  
1) Not subject to production test, specified by design.  
2) Overload conditions must not occur on pin XTAL1.  
3) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation  
and the resulting voltage peaks must remain within the limits defined by VIX1.  
4) this performance is only valid for Prescaler Mode (VCO Bypass mode).  
5) tested with rectangular signal with VIN_Low = 0V to VIN_High = VDDC  
6) this performance is only valid for PLL Normal Mode.  
Datasheet  
99  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.4  
Flash Parameters  
This chapter includes the parameters for the 64 KByte embedded flash module.  
28.4.1  
Flash Characteristics  
Table 30  
Flash Characteristics1)  
VS = 5.5 V to 28 V,, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit  
Note or  
Number  
Test Condition  
Min. Typ. Max.  
Programming time per 128 Byte  
page  
tPR  
32)  
3.5  
ms  
3V < VS < 28V  
P_4.1.1  
Erase time per sector/page  
Data retention time  
tER  
42)  
4.5  
ms  
3V < VS < 28V  
P_4.1.2  
P_4.1.3  
tRET  
20  
years  
1,000 erase /  
program cycles  
Data retention time  
tRET  
50  
years  
1,000 erase /  
program cycles  
Tj = 30°C3)  
P_4.1.4  
Flash erase endurance for user  
sectors  
NER  
30  
10  
32  
kcycles Data retention P_4.1.5  
time 5 years  
Flash erase endurance for security NSEC  
cycles Data retention P_4.1.6  
pages4)  
time 20 years  
5)  
Drain disturb limit  
NDD  
kcycles  
P_4.1.7  
1) Not subject for production test, specified by design.  
2) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few  
system clock cycles. The requirement is only relevant for extremely low system frequencies.  
3) Derived by extrapolation of lifetime tests.  
4) Temperature: 25 °C  
5) This parameter limits the number of subsequent programming operations within a physical sector without a given  
page in this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly.  
For normal sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM  
emulation firmware routines handle this limit automatically, for wordline erases in code sectors (without EEPROM  
emulation) it is recommended to execute a software based refresh, which may make use of the integrated random  
number generator NVMBRNG to statistically start a refresh.  
Datasheet  
100  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.5  
Parallel Ports (GPIO)  
28.5.1  
Description of Keep and Force Current  
VDDP  
keeper  
current  
PU Device  
PUDSEL  
P1.x  
P0.x  
\PUDSEL  
keeper  
current  
PD Device  
VSS  
Pull-Up-Down.vsd  
Figure 37 Pull-Up/Down Device  
UGPIO  
Logical „1"  
7.5 KOhm (equivalent)  
(1.5V / 200uA) *)  
VIH - VDDP  
VIL - VDDP  
undefined  
Logical „0"  
2.33 KOhm (equivalent)  
(3.5V / 1.5mA) *)  
I
-IPLF  
-IPLK  
Current_Diag.vsd  
*) value for port 0 and 1, as example  
Figure 38 Pull-Up Keep and Forced Current  
Datasheet  
101  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
UGPIO  
Logical „1"  
undefined  
Logical „0"  
2.33 KOhm (equivalent)  
(3.5V / 1.5mA) *)  
VIH  
VIL  
7.5 KOhm (equivalent)  
(1.5V / 200uA) *)  
I
IPLK  
IPLF  
Current_Diag-Pull_down.vsd  
*) value for port 0 and 1, as example  
Figure 39 Pull-Down Keep and Force Current  
28.5.2  
DC Parameters Port 0, Port 1, TMS, Reset  
Table 31  
DC Characteristics Port0, Port1  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Input low voltage  
Input low voltage  
Input high voltage  
Input high voltage  
Input Hysteresis  
VIL  
-0.3  
0.3 x VDDP  
V
V
V
V
V
1) 4.5V VDDP  
5.5V  
2) 2.6V VDDP  
4.5V  
1) 4.5V VDDP  
5.5V  
2) 2.6V VDDP  
4.5V  
2) 4.5V VDDP  
5.5V; Series  
resistance = 0 Ω  
2) 2.6V VDDP  
<
<
P_5.2.1  
P_5.2.14  
P_5.2.2  
P_5.2.15  
P_5.2.3  
VIL_extend -0.3  
0.42 x  
VDDP  
VIH  
0.7 x VDDP  
VDDP + 0.3  
VIH_extend  
HYS  
0.52 x VDDP + 0.3  
VDDP  
0.11 x VDDP  
Input Hysteresis  
HYSextend  
0.09 x  
V
<
P_5.2.16  
VDDP  
4.5V; Series  
resistance = 0 Ω  
3) 4)  
Output low voltage  
Output low voltage  
Output high voltage  
Output high voltage  
Input leakage current  
VOL  
VOL  
VOH  
VOH  
IOZ2  
1.0  
0.4  
V
V
V
V
I
I
I
I
IOLmax  
IOLnom  
IOHmax  
IOHnom  
P_5.2.4  
P_5.2.5  
P_5.2.6  
P_5.2.7  
P_5.2.8  
OL  
OL  
OH  
OH  
3) 5)  
3) 4)  
3) 5)  
VDDP - 1.0  
VDDP - 0.4  
-5  
+5  
µA 6) TJ 85°C,  
0.45 V < VIN  
< VDDP  
Datasheet  
102  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 31  
DC Characteristics Port0, Port1 (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Input leakage current  
IOZ2  
-15  
+15  
µA TJ 150°C,  
P_5.2.9  
0.45 V < VIN  
< VDDP  
8)  
Pull level keep current7)  
Pull level force current7)  
IPLK  
IPLF  
CIO  
±200  
µA  
mA  
pF  
V
VIH (up)  
P_5.2.10  
P_5.2.11  
P_5.2.12  
PIN  
V
PIN VIL (dn)  
8)  
±1.5  
V
VIL (up)  
PIN  
VPIN VIH (dn)  
2)  
9)  
Pin capacitance  
10  
Reset Pin Timing  
Reset Pin Input Filter Time Tfilt_RESET  
5
µs  
P_5.2.13  
1) Tested at VDDP = 5V, specified for 2.55V < VDDP < 5.1V.  
2) Not subject to production test, specified by design.  
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for  
pin groups must be respected.  
4) Tested at 2.55V < VDDP < 5.1V, IOL = 4mA, IOH = -4mA, specified for 2.7V < VDDP < 5.1V.  
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOLGND, VOHVDDP).  
Tested at 2.55V < VDDP < 5.1V, IOL = 1mA, IOH = -1mA.  
6) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values  
are ensured by correlation. For derating, please refer to the following descriptions:  
Leakage derating depending on temperature (TJ = junction temperature [°C]):  
I
OZ = 0.05 × e(1.5 + 0.028×TJ) [µA]. For example, at a temperature of 95°C the resulting leakage current is 3.2 µA.  
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):  
OZ = IOZtempmax - (1.6 × DV) [µA]  
I
This voltage derating formula is an approximation which applies for maximum temperature.  
7) Negative current is representing pullup; positive current is representing pulldown  
8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the  
default pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the  
enabled pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.  
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general  
purpose IO pins.  
9) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK  
.
Note:  
Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
overload current IOV  
.
Datasheet  
103  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 32  
Current Limits for Port Output Drivers1)  
Port Output Driver Mode  
Maximum Output Current Output Current (IOLnom , - Number  
(IOLmax , - IOHmax) IOHnom)  
VDDP 4.5V 2.55V < VDDP VDDP 4.5V 2.55V <VDDP  
< 4.5V  
< 4.5V  
1.0 mA  
0.8 mA  
0.15 mA  
Strong Driver  
Medium Driver  
Weak Driver  
5 mA  
3 mA  
1.6 mA  
1.0 mA  
0.25 mA  
P_5.2.20  
P_5.2.21  
P_5.2.22  
3 mA  
1.8 mA  
0.3 mA  
0.5 mA  
1) Not subject to production test, specified by design.  
28.5.3  
DC Parameters Port 2  
These parameters apply to the IO voltage range, 2.55 V VDDP 5.5 V.  
Note:  
Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
overload current IOV  
.
Table 33  
DC Characteristics Port 2  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Input low voltage  
Input low voltage  
Input high voltage  
Input high voltage  
Input Hysteresis  
VIL_P2  
-0.3  
0.3 x VDDP  
V
V
V
V
V
1) 4.5V VDDP  
5.5V  
2) 2.6V VDDP  
4.5V  
1) 4.5V VDDP  
5.5V  
2) 2.6V VDDP  
4.5V  
<
<
P_5.3.1  
P_5.3.8  
P_5.3.2  
P_5.3.9  
P_5.3.3  
VIL_P2_exte -0.3  
0.42 x  
VDDP  
nd  
VIH_P2  
0.7 x VDDP  
VDDP + 0.3  
VIH_P2_exte  
0.52 x VDDP + 0.3  
VDDP  
nd  
HYSP2  
0.11 x VDDP  
2) 4.5V VDDP  
5.5V; Series  
resistance = 0 Ω  
Input Hysteresis  
HYSP2_ext  
0.09 x  
V
2) 2.6V VDDP  
<
P_5.3.10  
VDDP  
4.5V; Series  
end  
resistance = 0 Ω  
Input leakage current  
IOZ1_P2  
-400  
+400  
+1  
nA  
uA  
4.5V VDDP 5.5V P_5.3.4  
TJ 85°C,  
0 V < VIN < VDDP  
Input leakage current  
(extended temperature  
range)  
IOZ1_P2_T_ -1  
2.6V VDDP < 4.5V P_5.3.11  
TJ 150°C,  
0 V < VIN < VDDP  
extend  
Datasheet  
104  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 33  
DC Characteristics Port 2 (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Pull level keep current4)  
Pull level force current4)  
IPLK_P2  
IPLF_P2  
CIO_P2  
±30  
µA  
µA  
pF  
V
VIH (up)  
P_5.3.5  
P_5.3.6  
P_5.3.7  
3)  
PIN  
V
PIN VIL (dn)  
3)  
±750  
V
VIL (up)  
PIN  
V
PIN VIH (dn)  
2)  
Pin capacitance  
10  
(digital inputs/outputs)  
1) Tested at VDDP = 5V, specified for 4.9V < VDDP < 5.1V.  
2) Not subject to production test, specified by design.  
3) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the  
default pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the  
enabled pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.  
4) Negative current is representing pullup; positive current is representing pulldown  
28.5.4  
Operating Conditions  
The following operating conditions must not be exceeded to ensure correct operation of the TLE9844QX. All  
parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.  
Note:  
Typical parameter values refer to room temperature and nominal supply voltage,  
minimum/maximum parameter values also include conditions of minimum/maximum temperature  
and minimum/maximum supply voltage. Additional details are described where applicable.  
Table 34  
Operating Condition Parameters  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Digital core supply voltage  
VDDC  
1.35  
2.55  
0
1.6  
5.5  
0
V
V
V
Full active mode P_5.4.1  
1)  
Digital supply voltage for IO pads VDDP  
5.0  
P_5.4.2  
Digital ground voltage  
VSS  
Reference  
voltage  
P_5.4.3  
Overload current  
Overload current  
IOV  
IOV  
- 5.0  
- 2.0  
5.0  
5.0  
mA Per IO pin2)3)  
P_5.4.4  
mA Per analog input P_5.4.5  
pin2)3)  
Overload positive current coupling KOVA  
1.0  
1.0  
IOV > 03)  
P_5.4.6  
factor for analog inputs4)  
x 10-6 x 10-4  
Overload negative current coupling KOVA  
factor for analog inputs  
2.5  
1.5  
IOV < 03)  
P_5.4.7  
x 10-4 x 10-3  
Datasheet  
105  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 34  
Operating Condition Parameters (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Overload positive current coupling KOVD  
factor for digital  
I/O pins  
1.0  
5.0  
IOV > 03)  
P_5.4.8  
x 10-4 x 10-3  
Overload negative current coupling KOVD  
factor for digital  
I/O pins  
1.0  
3.0  
IOV < 03)  
P_5.4.9  
x 10-2 x 10-2  
3)  
Absolute sum of overload currents Σ|IOV  
|
80  
mA  
P_5.4.10  
1) Performance of pad drivers, A/D Converter, and Flash module depends on VDDP  
.
If the external supply voltage VDDP becomes lower than the specified operating range, a power reset must be  
generated. Otherwise, the core supply voltage VDDI may rise above its specified operating range due to parasitic  
effects.  
This power reset can be generated by the on-chip SWD. If the SWD is disabled the power reset must be generated by  
activating the PORST input  
2) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the  
specified range: VOV > VIHmax (IOV > 0) or VOV < VILmin (IOV < 0). The absolute sum of input overload currents on all pins may  
not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload  
conditions depends on the application.  
Overload conditions must not occur on pin XTAL1 (powered by VDDIM).  
3) Not subject to production test, specified by design.  
4) An overload current (IOV) through a pin injects an error current (IINJ) into the adjacent pins. This error current adds to  
that pin’s leakage current (IOZ). The value of the error current depends on the overload current and is defined by the  
overload coupling factor KOV. The polarity of the injected error current is reversed from the polarity of the overload  
current that produces it.  
The total current through a pin is |ITOT| = |IOZ| + (|IOV| x KOV). The additional error current may distort the input voltage  
on analog inputs.  
Datasheet  
106  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.6  
LIN Transceiver  
28.6.1  
Electrical Characteristics  
Table 35  
Electrical Characteristics LIN Transceiver  
Vs = 5.5V to 18V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Bus Receiver Interface  
Receiver threshold voltage, Vth_dom 0.4 ×VS 0.45 ×VS 0.53 x VS  
V
SAE J2602  
P_6.1.1  
recessive to dominant edge  
Receiver dominant state  
VBUSdom -27  
0.4 ×VS  
V
V
LIN Spec 2.2 (Par. 17) P_6.1.2  
SAE J2602 P_6.1.3  
Receiver threshold voltage, Vth_rec  
0.47 x 0.55 ×VS 0.6 ×VS  
dominant to recessive edge  
VS  
Receiver recessive state  
Receiver center voltage  
VBUSrec 0.6 ×VS  
1.15 ×VS  
V
V
1) LIN Spec 2.2 (Par. 18) P_6.1.4  
2) LIN Spec 2.2 (Par. 19) P_6.1.5  
VBUS_CNT 0.475  
× VS  
0.5 ×VS 0.525  
× VS  
Receiver hysteresis  
VHYS  
0.07  
× VS  
0.12 ×VS 0.175  
× VS  
V
3) LIN Spec 2.2 (Par. 20) P_6.1.6  
Wake-up threshold voltage VBUS,wk 0.4 ×VS 0.5 ×VS 0.6 ×VS  
V
P_6.1.7  
Dominant time for bus  
wake-up  
tWK,bus  
30  
150  
µs  
including analog and P_6.1.8  
digital filter time.  
Digital filter time can  
be adjusted by  
PMU.CNF_WAKE_FILT  
ER  
Bus Transmitter Interface  
Bus recessive output  
voltage  
VBUS,ro 0.8 ×VS  
IBUS,sc 40  
VS  
V
VTxD = high Level  
P_6.1.9  
Bus short circuit current  
100  
150  
mA Current Limitation for P_6.1.10  
driver dominant state  
driver on  
V
BUS = 18 V; LIN Spec  
2.2 (Par. 12)  
Leakage current  
Leakage current  
Leakage current  
IBUS_NO_ -1000 -450  
0
µA  
µA  
VS = 0 V; VBUS = -12 V;  
LIN Spec 2.2 (Par. 15)  
P_6.1.11  
P_6.1.12  
P_6.1.13  
GND  
IBUS_NO_  
10  
20  
VS = 0 V; VBUS = 18 V;  
LIN Spec 2.2 (Par. 16)  
BAT  
IBUS_PAS_ -1  
mA VS = 18 V; VBUS = 0 V;  
LIN Spec 2.2 (Par. 13)  
dom  
Datasheet  
107  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 35  
Electrical Characteristics LIN Transceiver (cont’d)  
Vs = 5.5V to 18V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Leakage current  
IBUS_PAS_  
20  
µA  
VS = 8 V; VBUS = 18 V;  
P_6.1.14  
LIN Spec 2.2 (Par. 14)  
rec  
Bus pull-up resistance  
RBUS  
20  
30  
47  
kNormal mode LIN Spec P_6.1.15  
2.2 (Par. 26), also  
present in Sleep mode  
AC Characteristics - Transceiver Normal Slope Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
1
1
6
6
2
µs  
µs  
µs  
LIN Spec 2.2  
(Param. 31)  
P_6.1.16  
P_6.1.17  
P_6.1.18  
P_6.1.19  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
0.1  
LIN Spec 2.2  
(Param. 31)  
Receiver delay symmetry tsym,R  
-2  
tsym,R = td(L),R - td(H),R;  
LIN Spec 2.2 (Par. 32)  
4) duty cycle 1  
THRec(max) = 0.744 ×VS;  
THDom(max) =  
Duty cycle D1  
Normal Slope Mode  
(for worst case at 20 kbit/s)  
tduty1  
0.396  
0.581 ×VS;  
t
bit = 50 µs;  
D1 = tbus_rec(min) / 2 x tbit  
;
LIN Spec 2.2 (Par. 27)  
Duty cycle D2  
tduty2  
0.581  
4) duty cycle 2  
P_6.1.20  
Normal Slope Mode  
(for worst case at 20 kbit/s)  
THRec(min) = 0.422 ×VS;  
THDom(min) =  
0.284 ×VS;  
tbit = 50 µs;  
D2 = tbus_rec(max) / 2 x tbit  
;
LIN Spec 2.2 (Par. 28)  
AC Characteristics - Transceiver Low Slope Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
0.1  
-2  
1
1
6
6
2
µs  
µs  
µs  
LIN Spec 2.2  
(Param. 31)  
P_6.1.21  
P_6.1.22  
P_6.1.23  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
LIN Spec 2.2  
(Param. 31)  
Receiver delay symmetry tsym,R  
tsym,R = td(L),R - td(H),R  
;
LIN Spec 2.2 (Par. 32)  
Datasheet  
108  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 35  
Electrical Characteristics LIN Transceiver (cont’d)  
Vs = 5.5V to 18V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Duty cycle D3  
(for worst case at  
10,4 kbit/s)  
tduty1  
0.417  
4) duty cycle 3  
THRec(max) = 0.778 ×VS;  
THDom(max) =  
P_6.1.24  
0.616 ×VS;  
t
bit = 96 µs;  
D3 = tbus_rec(min) / 2 x tbit  
;
LIN Spec 2.2 (Par. 29)  
Duty cycle D4  
(for worst case at  
10,4 kbit/s)  
tduty2  
0.590  
4) duty cycle 4  
THRec(min) = 0.389 ×VS;  
THDom(min) =  
0.251 ×VS;  
P_6.1.25  
tbit = 96 µs;  
D4 = tbus_rec(max) / 2 x tbit  
;
LIN Spec 2.2 (Par. 30)  
AC Characteristics - Transceiver Fast Slope Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
0.1  
-2.0  
1
1
6
µs  
µs  
µs  
P_6.1.26  
P_6.1.27  
P_6.1.42  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
6
Receiver delay symmetry- tsym,R  
extended supply voltage  
range  
2.0  
tsym,R = td(L),R - td(H),R;  
Duty cycle D5  
tduty1  
0.395  
4) duty cycle 5  
P_6.1.29  
(used for 62,5 kbit/s)  
THRec(max) = 0.744 ×VS;  
THDom(max) =  
0.581 ×VS;  
t
bit = 16µs;  
D5 = tbus_rec(min) / 2 x tbit  
;
Duty cycle D6  
tduty2  
0.581  
4) duty cycle 6  
P_6.1.30  
(used for 62,5 kbit/s)  
THRec(min)= 0.422 ×VS;  
THDom(min)= 0.284 ×VS;  
tbit = 16 µs;  
D6 = tbus_rec(max) / 2 x tbit  
;
AC Characteristics - Flash Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
0.1  
-1.0  
0.5  
0.5  
6
µs  
µs  
µs  
P_6.1.31  
P_6.1.32  
P_6.1.44  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
6
Receiver delay symmetry tsym,R  
2.0  
tsym,R = td(L),R - td(^H),R;  
Datasheet  
109  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 35  
Electrical Characteristics LIN Transceiver (cont’d)  
Vs = 5.5V to 18V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Duty cycle D7  
tduty1  
0.395  
5)duty cycle D7  
P_6.1.34  
(for worst case at  
115 kbit/s)  
THRec(max) = 0.744 ×VS;  
THDom(max) =  
for +1 µs Receiver delay  
symmetry  
0.581 ×VS; tbit = 8.7 µs;  
D7 = tbus_rec(min) / 2 x tbit  
;
(used for 250 kbit/s  
programming)  
Duty cycle D8  
tduty2  
0.578  
5)duty cycle D8  
P_6.1.35  
(for worst case at  
115 kbit/s)  
THRec(min) = 0.422 ×VS;  
THDom(min) =  
for +1 µs Receiver delay  
symmetry  
0.284 ×VS; tbit = 8.7 µs;  
D8 = tbus_rec(max) / 2 x tbit  
;
(used for 250 kbit/s  
programming)  
6)  
LIN input capacity  
CLIN_IN  
ttimeout  
6
15  
12  
30  
20  
pF  
P_6.1.36  
P_6.1.37  
TxD dominant time out  
ms VTxD = 0 V  
Thermal Shutdown (Junction Temperature)  
6)  
Thermal shutdown temp. TjSD  
Thermal shutdown hyst. ΔT  
160  
180  
10  
200  
°C  
P_6.1.38  
P_6.1.39  
6)  
K
1) Maximum limit specified by design.  
2) VBUS_CNT = (Vth_dom +Vth rec)/2  
3) VHYS = VBUSrec - VBUSdom  
4) Bus load concerning LIN Spec 2.2:  
Load 1 = 1 nF / 1 k= CBUS / RBUS  
Load 2 = 6.8 nF / 660 = CBUS / RBUS  
Load 3 = 10 nF / 500 = CBUS / RBUS  
5) Bus load  
Load 1 = 1 nF / 500 = CBUS / RBUS  
6) Not subject to production test, specified by design.  
Datasheet  
110  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.7  
High-Speed Synchronous Serial Interface  
28.7.1  
SSC Timing  
The table below provides the SSC timing in the TLE9844QX.  
Table 36 SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
1) 2 * TSSC  
10  
Typ.  
Max.  
2)  
2)  
2)  
2)  
SCLK clock period  
t0  
t1  
t2  
t3  
V
V
V
V
> 2.7 V  
> 2.7 V  
> 2.7 V  
> 2.7 V  
P_7.1.1  
P_7.1.2  
P_7.1.3  
P_7.1.4  
DDP  
DDP  
DDP  
DDP  
MTSR delay from SCLK  
MRST setup to SCLK  
MRST hold from SCLK  
ns  
ns  
ns  
10  
15  
1) TSSCmin = TCPU = 1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.  
2) Not subject to production test, specified by design.  
t0  
SCLK1)  
t1  
t1  
1)  
MTSR  
t2  
t3  
Data  
valid  
MRST1)  
t1  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_Tmg1  
Figure 40 SSC Master Mode Timing  
Datasheet  
111  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.8  
Measurement Unit  
28.8.1  
Electrical Characteristics  
Table 37  
Supply Voltage Signal Conditioning  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
ADC1 - Battery / Supply Voltage Measurement VBAT_SENSE / VS  
Input to output voltage  
attenuation:  
ATTVBAT_SENSE , –  
ATTVS  
0.047  
P_8.1.10  
P_8.1.11  
P_8.1.12  
VBAT_SENSE / VS  
Nominal operating input VBAT_SENSE,  
voltage range VBAT_SENSE  
VS  
0
25.7  
7
V
2) Max. value  
corresponds to typ. ADC  
full scale input;  
/
range, VS, range  
Accuracy of VBAT_SENSE / VS VBAT_SENSE_IIR, -200  
after calibration - with IIR VS_IIR  
filter  
200 mV Vs= 5.5V to 18V,  
Tj = -40..125°C,  
fADCI = fsys_max  
ADC1_FILTCOEFF0_11.C  
Hx = 11’b.  
Accuracy of VBAT_SENSE / VS VBAT_SENSE, VS -300  
after calibration  
300 mV Vs= 5.5V to 18V,  
Tj = -40..125°C,  
P_8.1.36  
fADCI = fsys_max  
.
ADC1 - Monitoring Input Voltage Measurement VMONx  
Input to output voltage  
attenuation:  
VMONx  
ATTVMONx  
0.039  
P_8.1.13  
P_8.1.14  
P_8.1.33  
Nominal operating input VMONx,range  
voltage range VMONx  
0
31.0  
5
V
2) Max. value  
corresponds to typ. ADC  
full scale input;  
Accuracy of VMONx sense  
after calibration - with IIR  
filter  
ΔVMONx_IIR  
-241  
241 mV Vs= 5.5V to 18V,  
Tj = -40..125°C,  
fADCI = fsys_max  
ADC1_FILTCOEFF0_11.C  
Hx = 11’b.  
Accuracy of VMONx sense  
after calibration -  
ΔVMONx_ROR_IIR -170  
170 mV 2) Vs= 5.5V to 18V,  
Tj = -40..125°C,  
P_8.1.20  
Reduced Operating  
Range - with IIR filter  
VMONx,range= 0V to 12V,  
fADCI = fsys_max,  
ADC1_FILTCOEFF0_11.C  
Hx = 11’b.  
Datasheet  
112  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 37  
Supply Voltage Signal Conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Accuracy of VMONx sense  
after calibration  
ΔVMONx  
-361  
361 mV 2) Vs= 5.5V to 18V,  
Tj = -40..125°C,  
P_8.1.37  
fADCI = fsys_max.  
ADC1 - Port 2.x Voltage Measurement V2.x  
Input to output voltage  
attenuation:  
VPort2.x  
ATT2.x  
0.219  
P_8.1.15  
P_8.1.16  
P_8.1.34  
Nominal operating input VPort2.x,range  
voltage range VPort2.x  
0
5.53  
V
2) Max. value  
corresponds to typ. ADC  
full scale input;  
1)  
Accuracy of VPort2.x sense ΔVPort2.x_IIR  
after calibration - with IIR  
filter  
-43  
43  
mV Vs= 5.5V to 18V,  
Tj = -40..125°C,  
fADCI = fsys_max  
ADC1_FILTCOEFF0_11.C  
Hx = 11’b.  
Accuracy of VPort2.x sense ΔVPort2.x  
after calibration  
-67  
67  
mV Vs= 5.5V to 18V,  
Tj = -40..125°C,  
ADCI = fsys_max  
P_8.1.38  
f
.
ADC2 - Supply Voltage Measurement VS  
Input to output voltage  
ATTVS_ADC2  
3
0.039  
P_8.1.1  
P_8.1.2  
attenuation:  
VS  
Nominal operating input VS,ADC2  
voltage range VS  
31.0  
5
V
2) Max. value  
corresponds to typ. ADC  
full scale input; 3V < VS <  
28V  
Accuracy of VS after  
calibration  
VS,ADC2  
-270  
270 mV Vs= 5.5V to 18V,  
Tj = -40..125°C  
P_8.1.3  
ADC2 - VDDEXT Voltage Measurement VDDEXT  
Input to output voltage  
attenuation:  
VDDEXT  
ATTVDDEXT  
0.203  
P_8.1.17  
P_8.1.18  
Nominal operating input VDDEXT,range  
0
5.96  
V
2) Max. value  
voltage range VDDEXT  
corresponds to typ. ADC  
full scale input;  
ADC2 - Pad Supply Voltage Measurement VVDDP  
Input-to-output voltage ATTVDDP  
0.203  
P_8.1.4  
attenuation:  
VDDP  
Datasheet  
113  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 37  
Supply Voltage Signal Conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Nominal operating input VDDP,range  
0
5.96  
V
2) Max. value  
P_8.1.5  
voltage range VDDP  
corresponds to typ. ADC  
full scale input;  
ADC2 - Reference Voltage Measurement VBG  
Input-to-output voltage ATTVBG  
attenuation:  
VBG  
0.75  
P_8.1.6  
P_8.1.7  
P_8.1.39  
Nominal operating input VBG,range  
voltage range VBG  
0.8  
VDD  
C -  
0.1V  
V
V
2) Max. value  
corresponds to typ. ADC  
full scale input;  
Value of ADC2-VBG  
measurement after  
calibration  
VBG_PMU  
0.90 1.0  
1.1  
ADC2 - Core supply Voltage Measurement VDDC  
Input-to-output voltage ATTVDDC  
attenuation:  
VDDC  
0.75  
P_8.1.8  
P_8.1.9  
Nominal operating input VDDC,range  
voltage range VDDC  
0.6  
VDD  
C +  
0.1V  
V
2) Max. value  
corresponds to typ. ADC  
full scale input;  
1) This typical theoretical full scale is not reached as the internal ESD Clamping Structure limits the voltage to max. 5.2V.  
2) Not subject to production test, specified by design.  
Datasheet  
114  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.8.2  
Central Temperature Sensor Module  
28.8.2.1 Electrical Characteristics  
Table 38  
Electrical Characteristics Temperature Sensor Module  
VS = 5.5 V to 28 V, , Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Output voltage VTEMP at  
T0=0°C (273 K)2)  
a
0.628  
V
T0=0°C (273 K)  
P_8.2.1  
Temperature sensitivity b 2)  
b
2.31  
mV/K  
°C  
P_8.2.2  
P_8.2.3  
P_8.2.4  
P_8.2.5  
Accuracy_1  
Acc_1  
Acc_2  
Acc_3  
-10  
-15  
-5  
10  
15  
5
1) -40°C < Tj < 85°C  
125°C < Tj < 175°C  
2) 85°C < Tj < 125°C  
Accuracy_2  
°C  
Accuracy_3  
°C  
1) Accuracy with reference to on-chip temperature calibration measurement.  
2) Not subject to production test, specified by design.  
Datasheet  
115  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.9  
ADC1 (10-Bit)  
28.9.1  
ADC1 Reference Voltage  
Table 39  
DC Specifications  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
-1%  
-1%  
Max.  
+1%  
+1%  
Reference Voltage  
Temperature Drift  
VBG  
1.211  
V
V
P_9.1.10  
P_9.1.11  
VBG  
28.9.2  
Electrical Characteristics ADC1 (10-Bit)  
These parameters describe the conditions for optimum ADC performance.  
Note:  
Operating Conditions apply.  
Table 40  
A/D Converter Characteristics  
VS = 5.5 V to 28 V, , Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
40  
1)  
Analog clock frequency  
DNL error  
fADCI  
5
MHz  
LSB  
LSB  
P_9.2.1  
P_9.2.8  
P_9.2.9  
P_9.2.10  
2)  
EADNL  
EAINL  
EAGAIN  
± 2  
INL error  
± 3  
Gain error  
± 1.2  
% of 4)calibrated;  
FSR Gain Error is  
3)  
calibrated by  
implemented  
calibration unit  
Offset error  
EAOFF  
± 2.5  
± 10  
LSB 4)calibrated;  
Offset Error is  
calibrated by  
P_9.2.11  
P_9.2.33  
implemented  
calibration unit  
Total unadjusted error  
EATUE  
LSB already  
calibrated  
Datasheet  
116  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 40  
A/D Converter Characteristics (cont’d)  
VS = 5.5 V to 28 V, , Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input referred noise  
VNoise_LSB  
1.5  
LSB  
P_9.2.34  
rms 4)Tj = 25°C; this  
value is  
determined out  
of 4 consecutive  
measurements  
which are  
averaged.  
4)  
Cross-coupling  
Attenuation between LV  
Channels  
EACCOUP  
±1  
± 2  
LSB  
P_9.2.12  
4)  
4)  
Input capacitance of  
a HV analog input  
CAINT_HVI  
CAINT_LVI  
200  
200  
fF  
fF  
P_9.2.13  
P_9.2.19  
Input capacitance of  
a LV analog input  
1) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.  
2) this parameter is measured with disabled hardware calibration  
3) this Gain error is calibrated by IFX end of line  
4) Not subject to production test  
Datasheet  
117  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.10  
High-Voltage Monitoring Input  
28.10.1 Electrical Characteristics  
Table 41  
Electrical Characteristics Monitoring Input  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
MON Input Pin characteristics  
Wake-up/monitoring VMONth  
threshold voltage  
0.4*Vs 0.5*Vs 0.6*Vs  
V
V
without external  
serial resistor Rs (with  
Rs:DV = IPD/PU * Rs);  
P_10.1.1  
Threshold hysteresis  
VMONth,hys 0.015* 0.06*Vs 0.10*Vs  
in all modes; without P_10.1.2  
externalserialresistor  
Vs  
Rs (with Rs:dV = IPD/PU  
Rs); 5.5 V < VS < 18 V  
*
Threshold hysteresis- VMONth,hys 0.02*Vs 0.06*Vs 0.12*Vs  
V
in all modes; without P_10.1.7  
externalserialresistor  
extended supply  
_VS_extende  
voltage range  
Rs (with Rs:dV = IPD/PU  
Rs); 18 V < VS < 28 V  
*
d
Pull-up current  
IPU, MON  
IPD, MON  
-20  
5
-10  
10  
-5  
20  
2
µA  
µA  
µA  
0.6*Vs;  
P_10.1.3  
P_10.1.4  
P_10.1.5  
Pull-down current  
0.4*Vs;  
Input leakage current ILK,MON  
-2  
0 V < VMON_IN < 28 V  
Timing  
1)  
Wake-up filter time  
tFT,MON  
-
20  
-
µs  
P_10.1.6  
1) With pull-up, pull down current disabled.  
Datasheet  
118  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.11  
High Side Switches  
28.11.1 Electrical Characteristics  
Table 42  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
PWM frequency of HS with fPWM_W_SR  
Slew Rate Control  
0
10  
kHz 1) Frequency must be  
configured in the PWM  
Generator  
P_11.1.1  
P_11.1.2  
PWM frequency of HS  
fPWM_W/O_SR  
0
252) kHz 1) Frequency must be  
configured in the PWM  
Generator  
without Slew Rate Control  
Output HS  
ON-State Resistance  
RON  
2
10  
18  
2
5.5 V < VS < 28V,  
Ids=100mA,  
Tj = 25 °C  
P_11.1.3  
P_11.1.4  
P_11.1.5  
P_11.1.6  
P_11.1.7  
P_11.1.8  
Output leakage Current  
Ileakage  
µA  
Output OFF  
0 V < VXLO < VS;  
Tj 150 °C  
Output Slew Rate (rising)  
with slow Slew Rate setting  
(Slew Rate 1)  
SRraise_SR1  
SRfall_SR1  
SRraise_SR2  
SRfall_SR2  
tIN-HS_SR1  
1
10  
-1  
V/µs 20% to 80% of VS  
VS = 9 to 18V  
RL =3001)  
Output Slew Rate (falling)  
with slow Slew Rate setting  
(Slew Rate 1)  
-10  
18.0  
-43.4  
V/µs 80% to 20% of VS  
VS = 9 to 18V  
RL =3001)  
Output Slew Rate (rising)  
with fast Slew Rate setting  
(Slew Rate 2)  
55.0 V/µs 20% to 80% of VS  
VS = 9 to 18V  
RL =3001)  
Output Slew Rate (falling)  
with fast Slew Rate setting  
(Slew Rate 2)  
-12.5 V/µs 80% to 20% of VS  
VS = 9 to 18V  
RL =3001)  
Turn ON Delay time (Slew  
Rate 1)  
1
4.5  
15  
µs  
µs  
ON = 1 to 20% of VS  
RL =300Ω  
P_11.1.9  
Turn ON time (Slew Rate 1) tON_SR1  
VS = 9 to 18V  
HS_ON=1 to 80% of VS  
RL =300Ω  
P_11.1.10  
Tj =25°C  
Datasheet  
119  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 42  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Turn OFF time (Slew Rate 1) tOFF_SR1  
1
15  
µs  
VS = 9 to 18V  
HS_ON= 0 to 20% of VS  
RL =300;  
P_11.1.11  
Tj =25°C  
Turn ON Delay time (Slew  
Rate 2)  
tIN-HS_SR2  
1
3
µs  
µs  
ON = 1 to 20% of VS  
RL =300Ω  
P_11.1.55  
P_11.1.56  
Turn ON time (Slew Rate 2) tON_SR2  
Turn OFF time (Slew Rate 2) tOFF_SR2  
Over-current detection  
VS = 9 to 18V  
HS_ON=1 to 80% of VS  
RL =300Ω  
Tj =25°C  
3
µs  
VS = 9 to 18V  
HS_ON= 0 to 20% of VS  
RL =300;  
P_11.1.57  
Tj =25°C  
Overcurrent threshold 0  
Iocth0  
26  
42  
14  
60  
17  
60  
mA VS = 13.5V  
HSx_OC_SEL =00  
mA 1) HSx_OC_SEL =00  
P_11.1.12  
P_11.1.13  
P_11.1.14  
P_11.1.15  
P_11.1.16  
P_11.1.17  
P_11.1.18  
P_11.1.19  
P_11.1.20  
Overcurrent threshold 0  
hysteresis  
Iocth0,hyst  
Iocth1  
Iocth1,hyst  
Iocth2  
Iocth2,hyst  
Iocth3  
Iocth3,hyst  
tocft  
Overcurrent threshold 1  
51  
80  
mA VS = 13.5V  
HSx_OC_SEL =01  
mA 1) HSx_OC_SEL =01  
Overcurrent threshold 1  
hysteresis  
Overcurrent threshold 2  
101 123 150 mA VS = 13.5V  
HSx_OC_SEL =10  
mA 1) HSx_OC_SEL =10  
Overcurrent threshold 2  
hysteresis  
25  
Overcurrent threshold 3  
151 176 210 mA VS = 13.5V  
HSx_OC_SEL =11  
mA 1) HSx_OC_SEL =11  
Overcurrent threshold 3  
hysteresis  
8
30  
Over-current shutdown  
response time  
80  
µs  
1) VS = 13.5V,  
RL =100, HS_ON to  
OC_SD (including switch-  
on time)  
ON-state open load detection  
Open load threshold  
Hysteresis  
IOLONth  
IOLONhys  
0.46 1.32 2.2  
mA  
P_11.1.21  
P_11.1.22  
35  
155 300 µA  
Datasheet  
120  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 42  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Cyclic sense mode  
Current capability  
IHS max  
40  
mA Sleep Mode / Stop Mode P_11.1.23  
sleep_pd  
ON-State Resistance  
RON,static  
1
40  
Ids = 40mA,  
P_11.1.24  
P_11.1.25  
Output Slew Rate (rising)  
SRrise_cyc  
V/µs 20% to 80% of VS  
VS = 9 to 18V  
RL =300Ω  
Output Slew Rate (falling)  
SRfal_cycl  
-1  
V/µs 80% to 20% of VS  
VS = 9 to 18V  
P_11.1.26  
RL =300Ω  
Delay Time CYCLIC_ON-HS tIN_cyc  
2
µs  
µs  
ON =1 to 20% of VS  
RL=300Ω  
P_11.1.27  
P_11.1.28  
Turn-ON time  
Turn-OFF time  
tON_cyc  
15  
VS = 9 to 18V  
ON=1 to 80%  
RL =300Ω  
tOFF_cyc  
15  
µs  
VS = 9 to 18V  
ON=0 to 20% of VS  
RL =300;  
P_11.1.29  
Tj=25°C  
1) Not subject to production test, specified by design.  
2) this is an additional requirement which refers to a 47Ohm series resistor to charge an external power mos gate.  
Datasheet  
121  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
28.12  
Low Side Switches  
28.12.1 Electrical Characteristics  
Table 43  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
PWM Frequency of LS  
Overcurrent Limitation  
ON-State Resistance  
Leakage Current  
fPWM  
25  
kHz 1) RL =270Ω  
P_12.1.1  
P_12.1.2  
P_12.1.3  
P_12.1.5  
ILSTyp  
RON  
270 300 330 mA  
1
4
10  
2
Ids =100mA;  
Ileakage  
µA 0 V < VLS < VS;  
Tj < 85°C  
Turn ON Delay time, slow mode tdOn-LS  
Turn ON Delay time, PWM mode tdOn,f-LS  
1
50  
µs  
2) LS_ON=1 to 0.9*Vs  
VS=13.5V, RL =270Ω  
P_12.1.6  
P_12.1.7  
P_12.1.8  
P_12.1.9  
P_12.1.10  
P_12.1.11  
P_12.1.12  
P_12.1.13  
P_12.1.14  
P_12.1.15  
P_12.1.16  
P_12.1.17  
0.5  
µs  
LS_ON=1 to 0.9*Vs  
VS=13.5V, RL =270Ω  
Turn ON fall time, PWM mode  
Turn ON fall time, slow mode  
tONF,PWM  
tONF,Slow  
1.25 µs  
VLS 0.9*Vs to 0.1*Vs  
VS=13.5V, RL =270Ω  
2)  
100 150 µs  
V 0.9*Vs to 0.1*Vs  
LS  
VS=13.5V, RL =270Ω  
2) LS_ON=0 to 0.1*Vs  
VS=13.5V, RL =270Ω  
Turn OFF Delay time, slow mode tdOff-LS  
Turn OFF Delay time, PWM mode tdOff,f-LS  
Turn OFF Rise time, PWM mode tOFFR,PWM  
Turn OFF Rise time, slow mode tOFFR,Slow  
1
50  
2
µs  
µs  
LS_ON=0 to 0.1*Vs  
VS=13.5V, RL =270Ω  
1.25 µs  
VLS 0.1*Vs to 0.9*Vs;  
VS=13.5V, RL =270Ω  
2)  
100 150 µs  
V 0.1*Vs to 0.9*Vs;  
LS  
VS=13.5V, RL =270Ω  
ton(dig) = 2µs1)  
Minimum Duty Cycle Pulse  
Width variation  
tonMIN  
1.5  
2
3.5  
µs  
µs  
V
Typical (systematic) Pulse Width d tonTYP  
increase LS_ON to VLS  
1.25  
50  
ton(dig) = 2µs1)  
Zener Clamp Voltage  
VAZ  
values are valid at  
Tj = 25°C  
Clamping Energy (repetitive)  
Eclamp  
2
mJ 1)3) 1.000.000 cycles, @  
max = 90mA  
I
Datasheet  
122  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Electrical Characteristics  
Table 43  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Clamping Energy  
Eclamp  
Eclamp  
14  
mJ 1)3) 10 cycles, Tstart =  
P_12.1.18  
P_12.1.19  
25°C, @ Imax = 230mA  
mJ 1)3) 10 cycles, Tstart =  
Clamping Energy (single), hot  
7
85°C, @ Imax = 230mA  
1) Not subject to production test, specified by design.  
2) Static ON mode (no PWM)  
3) valid for one low-side, not for both at the same time  
Datasheet  
123  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Package Outlines  
29  
Package Outlines  
0ꢀ9 MAXꢀ  
(0ꢀ65)  
11 x 0ꢀ5 = 5ꢀ5  
0ꢀ5  
0ꢀ1  
7
A
0ꢀ03  
6ꢀ8  
0ꢀ1  
+0ꢀ031)  
2)  
37  
B
36  
25  
24  
48x  
0ꢀ08  
48  
13  
1
12  
Index Marking  
48x  
0ꢀ1  
0ꢀ4 x 45°  
0ꢀ05  
Index Marking  
0ꢀ23  
(0ꢀ35)  
M
A B C  
(0ꢀ2)  
0ꢀ05 MAXꢀ  
(5ꢀ2)  
(6)  
C
1) Vertical burr 0ꢀ03 maxꢀ, all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 41 Package outline VQFN-48-31 (with LTI)  
Notes  
1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:  
http://www.infineon.com/products.  
2. Dimensions in mm.  
Datasheet  
124  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Abbreviations  
30  
Abbreviations  
The following acronyms and terms are used within this document. List see in Table 44.  
Table 44  
Acronyms  
AHB  
CCU6  
CGU  
CLKMU  
CMU  
DPP  
ECC  
Acronyms  
Name  
Arm® Advanced High-Performance Bus  
Capture Compare Unit 6  
Clock Generation Unit  
Clock Management Unit  
Cyclic Management Unit  
Data Post Processing  
Error Correction Code  
EEPROM  
GPIO  
HV  
Electrically Erasable Programmable Read Only Memory  
General Purpose Input Output  
High Voltage  
ICU  
Interrupt Control Unit  
LDO  
LIN  
Low DropOut voltage regulator  
Local Interconnect Network  
Least Significant Bit  
LSB  
LTI  
Lead Tip Inspection  
LV  
Low Voltage  
MCU  
MF  
Microcontroller Unit  
Measurement Functions  
Memory Protection Unit  
Master Receive / Slave Transmit, corresponds to MISO in SPI  
Most Significant Bit  
MPU  
MRST  
MSB  
MTSR  
MU  
Master Transmit / Slave Receive, corresponds to MOSI in SPI  
Measurement Unit  
NMI  
Non Maskable Interrupt  
Nested Vector Interrupt Controller  
Oscillator  
NVIC  
OSC  
OTP  
PBA  
One Time Programmable  
Peripheral Bridge  
PC  
Program Counter  
PCU  
PD  
Power Control Unit  
Pull Down  
PGU  
PLL  
Power supply Generation Unit  
Phase Locked Loop  
PMU  
PPB  
Power Management Unit  
Private Peripheral Bus  
Datasheet  
125  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Abbreviations  
Table 44  
Acronyms  
PSW  
PU  
Acronyms (cont’d)  
Name  
Program Status Word  
Pull Up  
PWM  
RAM  
Pulse Width Modulation  
Random Access Memory  
RCU  
Reset Control Unit  
rfu  
reserved for future use  
RMU  
ROM  
SCU  
Reset Management Unit  
Read Only Memory  
System Control Unit  
SOW  
SPI  
Short Open Window (for WDT1)  
Serial Peripheral Interface  
Synchronous Serial Channel  
Arm® Serial Wire Debug  
SSC  
SWD  
TCCR  
TMS  
Temperature Compensation Control Register  
Test Mode Select  
TSD  
Thermal Shut Down  
UART  
VBG  
Universal Asynchronous Receiver Transmitter  
Voltage reference Band Gap  
Voltage Controlled Oscillator  
Watchdog timer in SCU-PM (System Control Unit - Power Modules)  
Wake-up Management Unit  
100 Times Programmable  
VCO  
WDT1  
WMU  
100TP  
Datasheet  
126  
Rev. 1.1  
2022-05-11  
TLE9844QX  
Microcontroller with LIN and Power Switches for Automotive Applications  
Revision History  
31  
Revision History  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Rev. 1.1, 2022-05-11  
Table 1: For VDDC changed value 0.9 V to reduced voltage  
Editorial changes:  
Updated Arm® trademarks  
Figure 9: Changed “PMU_RST_STS” to “PMU_RESET_STS”  
Chapter 11: Added system address range “58004000H - 58007FFFH”  
Table 5: Removed “wakeup” at nodes 12 and 22  
Table 10: Changed table title from “Port Registers” to “Timer2 and Timer21 Modes”  
Moved the “Abbreviations” to the end of the datasheet  
P_1.1.10: Removed footnote  
Rev. 1.0, 2016-03-17  
Initial revision  
Datasheet  
127  
Rev. 1.1  
2022-05-11  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Important notice  
Warnings  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics ("Beschaffenheitsgarantie").  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Edition 2022-05-11  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  

相关型号:

TLE9851QXW

TLE9851QXW is part of the TLE985x Infineon Embedde
INFINEON

TLE9852QX

MOTIX™ TLE9852QX provides cost-effective solid-state soution for window lift
INFINEON

TLE9853QX

TLE9853QX is part of the MOTIX™ TLE985x Infineon
INFINEON

TLE9854QX

TLE9854QX is part of the MOTIX™ TLE985x Infineo
INFINEON

TLE9855QXXUMA2

RISC Microcontroller,
INFINEON

TLE9861QXA20

Microcontroller with PWM Interface and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9861QXA20_15

Microcontroller with PWM Interface and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9861QXA20_17

Microcontroller with PWM Interface and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9862QXA40

The TLE9862QXA40 is part of the TLE986x product family. The TLE9862QXA40 is a single chip 2-Phas
INFINEON

TLE9867QXA20

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9867QXA20_15

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
INFINEON

TLE9867QXA20_17

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications
INFINEON