TLE9869QXA20 [INFINEON]

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications;
TLE9869QXA20
型号: TLE9869QXA20
厂家: Infineon    Infineon
描述:

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications

微控制器
文件: 总122页 (文件大小:4649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9869QXA20  
Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications  
BE-Step  
Data Sheet  
Rev. 1.0, 2015-04-30  
Automotive Power  
TLE9869QXA20  
Table of Contents  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
3.1  
3.2  
Device Pinout and Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.3  
5.3.1  
5.3.2  
5.3.3  
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PMU Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power Supply Generation Unit (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6
6.1  
6.2  
6.2.1  
6.3  
6.3.1  
6.3.2  
6.3.2.1  
6.3.2.2  
System Control Unit - Digital Modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Low Precision Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
High Precision Oscillator Circuit (OSC_HP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
External Input Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
External Crystal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7
System Control Unit - Power Modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.1  
7.2  
7.2.1  
8
ARM Cortex M3 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.1  
8.2  
8.2.1  
9
9.1  
9.2  
9.2.1  
9.3  
9.3.1  
DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
DMA Mode Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10  
Address Space Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
11  
Memory Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
NVM Module (Flash Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
11.1  
11.2  
11.2.1  
11.3  
Data Sheet  
2
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Table of Contents  
12  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
12.1  
12.2  
12.2.1  
13  
13.1  
13.2  
Watchdog Timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
14  
14.1  
14.2  
GPIO Ports and Peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Port 0 and Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
TLE9869QXA20 Port Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port 1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Port 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
14.2.1  
14.2.2  
14.3  
14.3.1  
14.3.1.1  
14.3.2  
14.3.2.1  
14.3.3  
14.3.3.1  
15  
15.1  
General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Features Block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Features Block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Block Diagram GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Block Diagram GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
15.1.1  
15.1.2  
15.2  
15.2.1  
15.2.2  
16  
Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Timer2 and Timer21 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
16.1  
16.2  
16.2.1  
17  
Timer3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Timer3 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
17.1  
17.2  
17.3  
17.3.1  
18  
Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Feature Set Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
18.1  
18.2  
18.2.1  
19  
UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
UART Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
19.1  
19.2  
19.2.1  
19.3  
20  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
20.1  
20.2  
20.2.1  
Data Sheet  
3
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Table of Contents  
21  
High-Speed Synchronous Serial Interface (SSC1/SSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
21.1  
21.2  
21.2.1  
22  
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
22.1  
22.2  
22.2.1  
23  
Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Measurement Core Module Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
23.1  
23.2  
23.2.1  
23.2.2  
24  
10-Bit Analog Digital Converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
24.1  
24.2  
24.2.1  
25  
High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
25.1  
25.2  
25.2.1  
26  
Bridge Driver (incl. Charge Pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
26.1  
26.2  
26.2.1  
26.2.2  
27  
Current Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
27.1  
27.2  
27.2.1  
28  
28.1  
28.2  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
H-Bridge Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
ESD Immunity According to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
29  
29.1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
PMU I/O Supply (VDDP) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
PMU Core Supply (VDDC) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
VDDEXT Voltage Regulator (5.0V) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
VPRE Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Load Sharing Scenarios of VPRE Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Power Down Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
29.1.1  
29.1.2  
29.1.3  
29.1.4  
29.1.5  
29.2  
29.2.1  
29.2.2  
29.2.3  
29.2.4  
29.2.4.1  
29.2.5  
29.3  
Data Sheet  
4
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Table of Contents  
29.3.1  
29.4  
29.4.1  
29.5  
29.5.1  
29.5.2  
29.5.3  
29.6  
29.6.1  
29.7  
Oscillators and PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Description of Keep and Force Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
DC Parameters of Port 0, Port 1, TMS and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
DC Parameters of Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
SSC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
System Voltage Measurement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Central Temperature Sensor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
ADC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
ADC2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
ADC1 - VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Electrical Characteristics VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Electrical Characteristics ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
High-Voltage Monitoring Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
29.7.1  
29.8  
29.8.1  
29.8.2  
29.8.3  
29.8.3.1  
29.9  
29.9.1  
29.9.2  
29.10  
29.11  
29.11.1  
29.12  
29.12.1  
29.13  
29.13.1  
30  
31  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Data Sheet  
5
Rev. 1.0, 2015-04-30  
Microcontroller with LIN and H-Bridge MOSFET Driver  
for Automotive Applications  
TLE9869QXA20  
1
Overview  
Summary of Features  
32 bit ARM Cortex M3 Core  
– up to 24 MHz clock frequency  
– one clock per machine cycle architecture  
On-chip memory  
– 128 kByte Flash including  
– 4 kByte EEPROM (emulated in Flash)  
– 512 Byte 100 Time Programmable Memory (100TP)  
– 6 kByte RAM  
VQFN-48-31  
– Boot ROM for startup firmware and Flash routines  
On-chip OSC and PLL for clock generation  
– PLL loss-of-lock detection  
MOSFET driver including charge pump  
10 general-purpose I/O Ports (GPIO)  
5 analog inputs, 10-bit A/D Converter (ADC1)  
16-bit timers - GPT12, Timer 2, Timer 21 and Timer 3  
Capture/compare unit for PWM signal generation (CCU6)  
2 full duplex serial interfaces (UART) with LIN support (for UART1 only)  
2 synchronous serial channels (SSC)  
On-chip debug support via 2-wire SWD  
1 LIN 2.2 transceiver  
1 high voltage monitoring input  
Single power supply from 5.5 V to 27 V  
Extended power supply voltage range from 3 V to 28 V  
Low-dropout voltage regulators (LDO)  
High speed operational amplifier for motor current sensing via shunt  
5 V voltage supply for external loads (e.g. Hall sensor)  
Core logic supply at 1.5 V  
Programmable window watchdog (WDT1) with independent on-chip clock source  
Power saving modes  
– MCU slow-down Mode  
– Sleep Mode  
– Stop Mode  
– Cyclic wake-up Sleep Mode  
Power-on and undervoltage/brownout reset generator  
Type  
Package  
Marking  
TLE9869QXA20  
VQFN-48-31  
Data Sheet  
6
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Overview  
Overtemperature protection  
Short circuit protection  
Loss of clock detection with fail safe mode entry for low system power consumption  
Temperature Range TJ: -40 °C up to 150 °C  
Package VQFN-48 with LTI feature  
Green package (RoHS compliant)  
AEC qualified  
Data Sheet  
7
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Overview  
1.1  
Abbreviations  
The following acronyms and terms are used within this document. List see in Table 1.  
Table 1  
Acronyms  
AHB  
APB  
Acronyms  
Name  
Advanced High-Performance Bus  
Advanced Peripheral Bus  
Capture Compare Unit 6  
Clock Generation Unit  
Cyclic Management Unit  
Charge Pump for MOSFET driver  
Current Sense Amplifier  
Data Post Processing  
CCU6  
CGU  
CMU  
CP  
CSA  
DPP  
ECC  
EEPROM  
EIM  
Error Correction Code  
Electrically Erasable Programmable Read Only Memory  
Exceptional Interrupt Measurement  
Finite State Machine  
FSM  
GPIO  
H-Bridge  
ICU  
General Purpose Input Output  
Half Bridge  
Interrupt Control Unit  
IEN  
Interrupt Enable  
IIR  
Infinite Impulse Response  
Load Instruction  
LDM  
LDO  
LIN  
Low DropOut voltage regulator  
Local Interconnect Network  
Least Significant Bit  
LSB  
LTI  
Lead Tip Inspection  
MCU  
MF  
Micro Controller Unit  
Measurement Functions  
Most Significant Bit  
MSB  
MPU  
MRST  
MTSR  
MU  
Memory Protection Unit  
Master Receive Slave Transmit  
Master Transmit Slave Receive  
Measurement Unit  
NMI  
Non Maskable Interrupt  
Nested Vector Interrupt Controller  
Non-Volatile Memory  
NVIC  
NVM  
OTP  
OSC  
PBA  
One Time Programmable  
Oscillator  
Peripheral Bridge  
Data Sheet  
8
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Overview  
Table 1  
Acronyms  
PCU  
Acronyms  
Name  
Power Control Unit  
PD  
Pull Down  
PGU  
Power supply Generation Unit  
Phase Locked Loop  
PLL  
PPB  
Private Peripheral Bus  
Pull Up  
PU  
PWM  
RAM  
RCU  
Pulse Width Modulation  
Random Access Memory  
Reset Control Unit  
RMU  
ROM  
SCU-DM  
SCU-PM  
SFR  
Reset Management Unit  
Read Only Memory  
System Control Unit - Digital Modules  
System Control Unit - Power Modules  
Special Function Register  
Short Open Window (for WDT)  
Serial Peripheral Interface  
Synchronous Serial Channel  
Store Instruction  
SOW  
SPI  
SSC  
STM  
SWD  
TCCR  
TMS  
ARM Serial Wire Debug  
Temperature Compensation Control Register  
Test Mode Select  
TSD  
Thermal Shut Down  
UART  
VBG  
Universal Asynchronous Receiver Transmitter  
Voltage reference Band Gap  
Voltage Controlled Oscillator  
Pre Regulator  
VCO  
VPRE  
WDT  
WDT1  
WMU  
100TP  
Watchdog Timer in SCU-DM  
Watchdog Timer in SCU-PM  
Wake-up Management Unit  
100 Time Programmable  
Data Sheet  
9
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Block Diagram  
2
Block Diagram  
TMS  
P0.0  
TEST / DEBUG  
INTERFACE  
ARM  
CORTEX-M3  
MICRO DMA  
CONTROLLER  
FLASH  
slave  
SRAM  
slave  
ROM  
slave  
systembus  
slave  
Multilayer AHB Matrix  
slave  
PBA0  
slave  
PBA1  
VAREF  
GND_REF  
SCU_DM  
PLL  
XTAL1  
XTAL2  
UART1  
UART2  
SSC1  
SSC2  
T2  
MU-VAREF  
P2.0, P2.2, P2.3, P2.4, P2.5  
(AN0, AN2, AN3, AN4, AN5)  
P0.1 – P0.4  
P1.0 – P1.4  
ADC 1  
DPP1  
GPT12  
CCU6  
GPIO  
LIN  
GND_LIN  
LIN  
MU  
VDH  
GH2  
SH2  
GL2  
GH1  
SH1  
MF / ADC2  
T21  
MOSFET  
Driver  
VBAT_SENSE  
DPP2  
SCU_DM  
WDT  
OP1  
OP2  
OP AMP  
GL1  
SL  
VS  
SCU_PM  
WDT1/  
PMU –  
Power  
RESET  
VDDEXT  
VDDP  
VDDC  
VCP  
Control  
System  
Functions  
CLKWDT  
VSD  
CP2H  
CP2L  
CP1H  
CP1L  
CP  
uDMA  
Controller  
MON  
MON  
T3  
TLE9869_block_diagram_bus_architecture.vsd  
Figure 1  
Block Diagram TLE9869  
Data Sheet  
10  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Device Pinout and Pin Configuration  
3
Device Pinout and Pin Configuration  
3.1  
Device Pinout  
OP1 37  
24 P0.3  
23 P0.1  
EP  
VDDC 38  
GND 39  
22 RESET  
21 P0.0  
VDDP 40  
VDDEXT 41  
GND_LIN 42  
20 TMS  
19 GND  
TLE 9869  
LIN 43  
18 P0. 4  
17 P1.2  
16 P1.1  
15 P1.0  
VDH 44  
VS 45  
VBAT _SENSE 46  
VSD 47  
14 MON  
13 GL1  
CP1H 48  
Note:  
= Low voltage pins  
Figure 2  
Device Pinout, TLE9869  
Data Sheet  
11  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Device Pinout and Pin Configuration  
3.2  
Pin Configuration  
After reset, all pins are configured as input (except supply and LIN pins) with one of the following settings:  
Pull-up device enabled only (PU)  
Pull-down device enabled only (PD)  
Input with both pull-up and pull-down devices disabled (I)  
Output with output stage deactivated = high impedance state (Hi-Z)  
The functions and default states of the TLE9869QXA20 external pins are provided in the following table.  
Type: indicates the pin type.  
I/O: Input or output  
I: Input only  
O: Output only  
P: Power supply  
Not all alternate functions listed.  
Table 2  
Symbol  
Pin Definitions and Functions  
Pin Number Type  
Reset Function  
State1)  
P0  
Port 0  
Port 0 is a 5-bit bidirectional general purpose I/O port. Alternate  
functions can be assigned and are listed in the port description.  
Main function is listed below.  
P0.0  
P0.1  
21  
23  
I/O  
I/O  
I/PU  
I/PU  
SWD  
GPIO  
Serial Wire Debug Clock  
General Purpose IO  
Alternate function mapping see Table 8  
P0.2  
25  
I/O  
I/PD  
GPIO  
General Purpose IO  
Alternate function mapping see Table 8  
Note: For a functional SWD connection this  
GPIO must be tied to zero!  
P0.3  
P0.4  
P1  
24  
18  
I/O  
I/O  
I/PU  
I/PD  
GPIO  
GPIO  
Port 1  
General Purpose IO  
Alternate function mapping see Table 8  
General Purpose IO  
Alternate function mapping see Table 8  
Port 1 is a 5-bit bidirectional general purpose I/O port. Alternate  
functions can be assigned and are listed in the Port description.  
The principal functions are listed below.  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
15  
16  
17  
26  
27  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
General Purpose IO  
Alternate function mapping see Table 9  
General Purpose IO  
Alternate function mapping see Table 9  
General Purpose IO  
Alternate function mapping see Table 9  
General Purpose IO, used for Inrush Transistor  
Alternate function mapping see Table 9  
General Purpose IO  
Alternate function mapping see Table 9  
Data Sheet  
12  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Device Pinout and Pin Configuration  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number Type  
Reset Function  
State1)  
P2  
Port 2  
Port 2 is a 5-bit general purpose input-only port.  
Alternate functions can be assigned and are listed in the Port  
description. Main function is listed below.  
P2.0/XTAL1  
P2.2/XTAL2  
P2.3  
29  
30  
35  
32  
31  
I/I  
I
I
I
I
I
AN0  
AN2  
AN3  
AN4  
AN5  
ADC analog input 0  
Alternate function mapping see Table 10  
I/O  
ADC analog input 2  
Alternate function mapping see Table 10  
I
I
I
ADC analog input 3  
Alternate function mapping see Table 10  
P2.4  
ADC analog input 4  
Alternate function mapping see Table 10  
P2.5  
ADC analog input 5  
Alternate function mapping see Table 10  
Power Supply  
VS  
45  
40  
38  
P
P
P
Battery supply input  
2)I/O port supply (5.0 V). Connect external buffer capacitor.  
3)Core supply (1.5 V during Active Mode).  
Do not connect external loads, connect external buffer  
capacitor.  
VDDP  
VDDC  
VDDEXT  
GND  
41  
19  
28  
39  
P
P
P
P
External voltage supply output (5.0 V, 20 mA)  
GND digital  
GND digital  
GND analog  
GND  
GND  
Monitor Input  
MON  
14  
I
High Voltage Monitor Input  
LIN Interface  
LIN  
43  
42  
I/O  
P
LIN bus interface input/output  
LIN ground  
GND_LIN  
Charge Pump  
CP1H  
48  
1
P
P
P
P
P
P
Charge Pump Capacity 1 High, connect external C  
Charge Pump Capacity 1 Low, connect external C  
Charge Pump Capacity 2 High, connect external C  
Charge Pump Capacity 2 Low, connect external C  
Charge Pump Capacity  
CP1L  
CP2H  
3
CP2L  
4
VCP  
2
VSD  
47  
Battery supply input for Charge Pump  
MOSFET Driver  
VDH  
44  
6
P
P
P
Voltage Drain High Side MOSFET Driver  
Source High Side FET 2  
SH2  
GH2  
7
Gate High Side FET 2  
Data Sheet  
13  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Device Pinout and Pin Configuration  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number Type  
Reset Function  
State1)  
SH1  
8
P
P
P
P
P
Source High Side FET 1  
Gate High Side FET 1  
Source Low Side FET  
Gate Low Side FET 2  
Gate Low Side FET 1  
GH1  
9
SL  
10  
12  
13  
GL2  
GL1  
Others  
GND_REF  
VAREF  
OP1  
33  
34  
37  
36  
20  
P
GND for VAREF  
I/O  
5V ADC1 reference voltage, optional buffer or input  
Negative operational amplifier input  
I
I
OP2  
Positive operational amplifier input  
TMS  
I
I/PD  
TMS  
Test Mode Select input  
I/O  
SWD  
Serial Wire Debug input/output  
RESET  
22  
I/O  
I
Reset input, not available during Sleep Mode  
Battery supply voltage sense input  
Exposed Pad, connect to GND  
VBAT_SENSE 46  
EP  
1) Only valid for digital IOs  
2) Also named VDD5V.  
3) Also named VDD1V5.  
Data Sheet  
14  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Modes of Operation  
4
Modes of Operation  
This highly integrated circuit contains analog and digital functional blocks. An embedded 32-bit microcontroller is  
available for system and interface control. On-chip, low-dropout regulators are provided for internal and external  
power supply. An internal oscillator provides a cost effective clock that is particularly well suited for LIN  
communications. A LIN transceiver is available as a communication interface. Driver stages for an H-Bridge with  
external MOSFET are integrated, featuring PWM capability, protection features and a charge pump for operation  
at low supply voltage. A 10-bit SAR ADC is implemented for high precision sensor measurement. An 8-bit ADC is  
used for diagnostic measurements.  
The Micro Controller Unit (MCU) supervision and system protection (including a reset feature) is complemented  
by a programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated  
temperature sensors are available on-chip.  
All relevant modules offer power saving modes in order to support automotive applications connected to terminal  
30. A wake-up from power-save mode is possible via a LIN bus message, via the monitoring input or using a  
programmable time period (cyclic wake-up).  
Featuring LTI, the integrated circuit is available in a VQFN-48-31 package with 0.5 mm pitch, and is designed to  
withstand the severe conditions of automotive applications.  
The TLE9869QXA20 has several operation modes mainly to support low power consumption requirements.  
Reset Mode  
The Reset Mode is a transition mode used e.g. during power-up of the device after a power-on reset, or after wake-  
up from Sleep Mode. In this mode, the on-chip power supplies are enabled and all other modules are initialized.  
Once the core supply VDDC is stable, the device enters Active Mode. If the watchdog timer WDT1 fails more than  
four times, the device performs a fail-safe transition to Sleep Mode.  
Active Mode  
In Active Mode, all modules are activated and the TLE9869QXA20 is fully operational.  
Stop Mode  
Stop Mode is one of two major low power modes. The transition to the low power modes is performed by setting  
the corresponding bits in the mode control register. In Stop Mode the embedded microcontroller is still powered,  
allowing faster wake-up response times. Wake-up from this mode is possible through LIN bus activity, by using  
the high-voltage monitoring pin or the corresponding 5V GPIOs.  
Stop Mode with Cyclic Wake-Up  
The Cyclic Wake-Up Mode is a special operating mode of the Stop Mode. The transition to the Cyclic Wake-Up  
Mode is done by first setting the corresponding bits in the mode control register followed by the Stop Mode  
command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period), asynchronous  
wake events via the activated sources (LIN and/or MON) are available, as in normal Stop Mode.  
Sleep Mode  
The Sleep Mode is a low-power mode. The transition to the low-power mode is done by setting the corresponding  
bits in the MCU mode control register or in case of failure, see below. In Sleep Mode the embedded microcontroller  
power supply is deactivated allowing the lowest system power consumption. A wake-up from this mode is possible  
by LIN bus activity, the High Voltage Monitor Input pin or Cyclic Wake-up.  
Sleep Mode in Case of Failure  
Data Sheet  
15  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Modes of Operation  
Sleep Mode is activated after 5 consecutive watchdog failures or in case of supply failure (5 times). In this case,  
MON is enabled as the wake source and Cyclic Wake-Up is activated with 1s of wake time.  
Sleep Mode with Cyclic Wake-Up  
The Cyclic Wake-Up Mode is a special operating mode of the Sleep Mode. The transition to Cyclic Wake-Up Mode  
is performed by first setting the corresponding bits in the mode control register followed by the Sleep and Stop  
Mode command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period),  
asynchronous wake events via the activated sources (LIN and/or MON) are available, as in normal Sleep Mode.  
When using Sleep Mode with cyclic wake-up the voltage regulator is switched off and started again with the wake.  
A limited number of registers is buffered during sleep, and can be used by SW e.g. for counting sleep/wake cycles.  
MCU Slow Down Mode  
In MCU Slow Down Mode the MCU frequency is reduced for saving power during operation. LIN communication  
is still possible. LS MOSFET can be activated.  
Wake-Up Source Prioritization  
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up sources,  
the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are latched in order  
to provide all wake-up events to the application software. The software can clear the wake-up source flags. This  
is to ensure that no wake-up event is lost.  
As default wake-up source, the MON input is activated after power-on reset only. Additionally, the device is in  
Cyclic Wake-Up Mode with the max. configurable dead time setting.  
The following table shows the possible power mode configurations including the Stop Mode.  
Table 3  
Power Mode Configurations  
Module/Function  
Active Mode Stop Mode  
Sleep Mode  
Comment  
VDDEXT  
ON/OFF  
ON (no dynamic  
OFF  
load)/OFF  
Bridge Driver  
LIN TRx  
ON/OFF  
ON/OFF  
OFF  
OFF  
wake-up only/  
OFF  
wake-up only/  
OFF  
VS sense  
ON/OFF  
brownout  
detection  
brownout detection  
POR on VS  
brownout det. done in  
PCU  
VBAT_SENSE  
GPIO 5V (wake-up)  
GPIO 5V (active)  
WDT1  
ON/OFF  
n.a.  
OFF  
OFF  
OFF  
OFF  
OFF  
disabled/static  
ON  
ON  
ON  
OFF  
CYCLIC WAKE  
n.a.  
cyclic wake-up/  
cyclic sense/OFF  
cyclic wake-up/  
OFF  
Measurement  
MCU  
ON1)  
OFF  
STOP2)  
OFF  
OFF  
ON/slow-  
down/STOP  
CLOCK GEN (MC)  
ON  
OFF  
OFF  
Data Sheet  
16  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Modes of Operation  
Table 3  
Power Mode Configurations (cont’d)  
Module/Function  
LP_CLK (18 MHz)  
LP_CLK2 (100 kHz)  
Active Mode Stop Mode  
Sleep Mode  
OFF  
Comment  
ON  
OFF  
WDT1  
ON/OFF  
ON/OFF  
ON/OFF  
for cyclic wake-up  
1) May not be switched off due to safety reasons  
2) MC PLL clock disabled, MC supply reduced to 0.9 V  
Wake-Up Levels and Transitions  
The wake-up can be triggered by rising, falling or both signal edges for the monitor input, by LIN or by cyclic wake-  
up.  
Data Sheet  
17  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Power Management Unit (PMU)  
5
Power Management Unit (PMU)  
5.1  
Features  
System modes control (startup, sleep, stop and active)  
Power management (cyclic wake-up)  
Control of system voltage regulators with diagnosis (overload, short, over-voltage)  
Fail safe mode detection and operation in case of system errors (watchdog fail)  
Wake-up sources configuration and management (LIN, MON, GPIOs)  
System error logging  
5.2  
Introduction  
The power management unit is responsible for generating all required voltage supplies for the embedded MCU  
(VDDC, VDDP) and the external supply (VDDEXT). The power management unit is designed to ensure fail-safe  
behavior of the system IC by controlling all system modes including the corresponding transitions. Additionally, the  
PMU provides well defined sequences for the system mode transitions and generates hierarchical reset priorities.  
The reset priorities control the reset behavior of all system functionalities especially the reset behavior of the  
embedded MCU. All these functions are controlled by a state machine. The system master functionality of the  
PMU make use of an independent logic supply and system clock. For this reason, the PMU has an "Internal logic  
supply and system clock" module which works independently of the MCU clock.  
Data Sheet  
18  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Power Management Unit (PMU)  
5.2.1  
Block Diagram  
The following figure shows the structure of the Power Management Unit. Table 4 describes the submodules in  
more detail.  
VS  
Power Down Supply  
VDDP  
VDDC  
Power SupplyGeneration Unit  
(PGU)  
I
N
T
E
R
N
A
L
e.g. for WDT1  
LP_CLK  
Peripherals  
LDO for External Supply  
VDDEXT  
VDDEXT  
e.g. for cyclic  
wake and sense  
LP_CLK2  
B
U
S
PMU-PCU  
PMU-SFR  
MON  
LIN  
P0.0...P0.4  
P1.0...P1.4  
PMU-CMU  
PMU-RMU  
PMU-WMU  
PMU-Control  
Power Management Unit  
Power_Management_7x.vsd  
Figure 3  
Table 4  
Power Management Unit Block Diagram  
Description of PMU Submodules  
Mod.  
Modules  
Functions  
Name  
Power Down  
Supply  
Independent supply voltage  
generation for PMU  
This supply is dedicated to the PMU to ensure an  
independent operation from generated power supplies  
(VDDP, VDDC).  
LP_CLK  
(= 18 MHz)  
- Clock source for all PMU  
submodules  
This ultra low power oscillator generates the clock for the  
PMU.  
- Backup clock source for System  
- Clock source for WDT1  
This clock is also used as backup clock for the system in  
case of PLL Clock failure and as an independent clock  
source for WDT1.  
LP_CLK2  
(= 100 kHz)  
Clock source for PMU  
This ultra low power oscillator generates the clock for the  
PMU in Stop Mode and in the cyclic modes.  
Peripherals  
Peripheral blocks of PMU  
These blocks include the analog peripherals to ensure a  
stable and fail-safe PMU startup and operation (bandgap,  
bias).  
Data Sheet  
19  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Power Management Unit (PMU)  
Table 4  
Description of PMU Submodules (cont’d)  
Modules Functions  
Mod.  
Name  
Power Supply Voltage regulators for VDDP and  
This block includes the voltage regulators for the pad  
supply (VDDP) and the core supply (VDDC).  
Generation  
Unit (PGU)  
VDDC  
VDDEXT  
PMU-SFR  
PMU-PCU  
Voltage regulator for VDDEXT to  
supply external modules (e.g.  
Sensors)  
This voltage regulator is a dedicated supply for external  
modules and can also be used for cyclic sense operations  
(e.g. with hall sensor).  
All Extended Special Function  
registers that are relevant to the  
PMU.  
This module contains all registers needed to control and  
monitor the PMU.  
Power Control Unit of the PMU  
This block is responsible for controlling all power related  
actions within the PGU Module. It also contains all  
regulator related diagnostics such as undervoltage and  
overvoltage detection as well as overcurrent and short  
circuit diagnostics.  
PMU-WMU  
PMU-CMU  
PMU-RMU  
Wake-Up Management Unit of the This block is responsible for controlling all wake-up related  
PMU actions within the PMU Module.  
Cyclic Management Unit of the PMU This block is responsible for controlling all actions in cyclic  
mode.  
Reset Management Unit of the PMU This block generates resets triggered by the PMU such as  
undervoltage or short circuit reset, and passes all resets to  
the relevant modules and their register.  
Data Sheet  
20  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Power Management Unit (PMU)  
5.2.2  
PMU Modes Overview  
The following state diagram shows the available modes of the device.  
VS > 4V and VS ramp up  
or  
VS < 3V and VS ramp down  
LIN-wake or  
MON-wake  
or  
start-up  
cyclic -wake  
VDDC =stable and  
error_supp<5  
VDDC / VDDP=  
fail (short circuit)  
Æ error_supp ++  
error_sup=5  
sleep  
active  
Sleep command (from MCU) or  
WDT1_SEQ_FAIL = 1 (Æ error_wdt = 5)  
or  
VDDC / VDDP = overload  
LIN-wake or  
MON-wake or  
GPIO-wake or  
cyclic_wake or  
PMU_PIN = 1 or  
PMU_SOFT = 1 or  
(PMU_Ext_WDT = 1 and  
WDT1_SEQ_FAIL = 0  
PMU_PIN = 1 or  
SUP_TMOUT = 1  
Æ error_wdt ++)  
Stop  
command  
(from MCU)  
stop  
cyclic -sense  
PMU_System_Modes _Cus _withStopp .vsd  
Figure 4  
Power Management Unit System Modes  
Data Sheet  
21  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Power Management Unit (PMU)  
5.3  
Power Supply Generation Unit (PGU)  
Voltage Regulator 5.0V (VDDP)  
5.3.1  
This module represents the 5 V voltage regulator, which provides the pad supply for the parallel port pins and other  
5 V analog functions (e.g. LIN Transceiver).  
Features  
5 V low-drop voltage regulator  
Overcurrent monitoring and shutdown with MCU signaling (interrupt)  
Overvoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with reset (Undervoltage Reset, VDDPUV  
Pre-Regulator for VDDC Regulator  
GPIO Supply  
)
Pull Down Current Source at the output for Sleep Mode only (typ. 5 mA)  
The output capacitor CVDDP is mandatory to ensure proper regulator functionality.  
VDDP Regulator  
VS  
VDDP  
VPRE  
A
CVDDP  
V
GND (Pin 39)  
I
5V LDO  
LDO Supervision  
LDO_block_external .vsd  
Figure 5  
Module Block Diagram of VDDP Voltage Regulator  
Data Sheet  
22  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Power Management Unit (PMU)  
5.3.2  
Voltage Regulator 1.5V (VDDC)  
This module represents the 1.5 V voltage regulator, which provides the supply for the microcontroller core, the  
digital peripherals and other internal analog 1.5 V functions (e.g. ADC2) of the chip. To further reduce the current  
consumption of the MCU during Stop Mode the output voltage can be lowered to 0.9 V.  
Features  
1.5 V low-drop voltage regulator  
Overcurrent monitoring and shutdown with MCU signaling (interrupt)  
Overvoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with reset  
Pull Down Current Source at the output for Sleep Mode only (typ. 100 μA)  
The output capacitor CVDDC is mandatory to ensure a proper regulator functionality.  
VDDC Regulator  
VDDP (5V)  
VDDC (1.5V)  
A
V
CVDDP  
CVDDC  
I
1.5V LDO  
LDO Supervision  
1.5V_LDO_block_external.vsd  
Figure 6  
Module Block Diagram of VDDC Voltage Regulator  
Data Sheet  
23  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Power Management Unit (PMU)  
5.3.3  
External Voltage Regulator 5.0V (VDDEXT)  
This module represents the 5 V voltage regulator, which serves as a supply for external circuits. It can be used  
e.g. to supply an external sensor, LEDs or potentiometers.  
Features  
Switchable +5 V, low-drop voltage regulator  
Switch-on overcurrent blanking time in order to drive small capacitive loads  
Overcurrent monitoring and shutdown with MCU signaling (interrupt)  
Overvoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with MCU signaling (interrupt)  
Pull Down current source at the output for Sleep Mode only (typ. 100 μA)  
Cyclic sense option together with GPIOs  
The output capacitor CVDDEXT is mandatory to ensure a proper regulator functionality.  
VDDEXTRegulator  
VS  
VDDEXT  
VPRE  
A
C
VDDEXT  
V
GND (Pin 39)  
I
5V LDO  
LDO Supervision  
HALL_LDO_block_external .vsd  
Figure 7  
Module Block Diagram of External Voltage Regulator  
Data Sheet  
24  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
System Control Unit - Digital Modules (SCU-DM)  
6
System Control Unit - Digital Modules (SCU-DM)  
6.1  
Features  
Flexible clock configuration features  
Reset management of all system resets  
System modes control for all power modes (active, power down, sleep)  
Interrupt enabling for many system peripherals  
General purpose input output control  
Debug mode control of system peripherals  
6.2  
Introduction  
The System Control Unit (SCU) supports all central control tasks in the TLE9869QXA20. The SCU is made up of  
the following sub-modules:  
Clock System and Control  
Reset Control  
Power Management  
Interrupt Management  
General Port Control  
Flexible Peripheral Management  
Module Suspend Control  
Watchdog Timer  
Error Detection and Correction in Data Memory  
Miscellaneous Control  
Data Sheet  
25  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
System Control Unit - Digital Modules (SCU-DM)  
6.2.1  
Block Diagram  
On signals to digital  
peripherals;  
status signals from  
digital peripherals  
AHB  
PMCU  
WDT  
ICU  
f
SYS  
I
N
T
E
R
N
A
L
CGU  
fOSC  
XTAL1  
OSC_HP  
PLL  
XTAL2  
LP_CLK  
NMI  
f
SYS  
fPLL  
fPCLK  
INTISR <9:0>  
CG  
fMI_CLK  
f
TFILT _CLK  
B
U
S
PMU_1V5DidPOR  
PMU_PIN  
PMU_ExtWDT  
PMU_IntWDT  
PMU_SOFT  
RCU  
MISC Control  
MODPISELx  
PMU_Wake  
RESET_TYPE_3  
RESET_TYPE_4  
P0_POCONy.PDMx  
P1_POCONy.PDMx  
Port Control  
System Control Unit -Digital Modules  
SCU_DM_Block_Diagram_Cust.vsd  
Figure 8  
System Control Unit - Digital Modules Block Diagram  
AMBA AHB (Advanced High-Performance Bus)  
PMCU (Power Module Control Unit)  
WDT (Watchdog Timer in SCU-DM)  
f
SYS; System clock  
CGU (Clock Generation Unit)  
f
f
SYS; System clock  
PCLK; Peripheral clock  
Data Sheet  
26  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
System Control Unit - Digital Modules (SCU-DM)  
f
f
MI_CLK; Measurement interface clock  
TFILT_CLK; Analog module filter clock  
LP_CLK; Clock source for all PMU submodules and WDT1  
ICU (Interrupt Control Unit)  
NMI (Non-Maskable Interrupt)  
INTISR<15:0>; External interrupt signals  
RCU (Reset Control Unit)  
PMU_1V5DidPOR; Undervoltage reset of power down supply  
PMU_PIN; Reset generated by reset pin  
PMU_ExtWDT; WDT1 reset  
PMU_IntWDT; WDT (SCU) reset  
PMU_SOFT; Software reset  
PMU_Wake; Sleep Mode/Stop Mode exit with reset  
RESET_TYPE_3; Peripheral reset (contains all resets)  
RESET_TYPE_4; Peripheral reset (without SOFT and WDT reset)  
Port Control  
P0_POCONy.PDMx; driver strength control  
P1_POCONy.PDMx; driver strength control  
MISC Control  
MODPISELx; Mode selection registers for UART (source section) and Timer (trigger or count selection)  
6.3  
Clock Generation Unit  
The Clock Generation Unit (CGU) enables a flexible clock generation for TLE9869QXA20. During user program  
execution, the frequency can be modified to optimize the performance/power consumption ratio, allowing power  
consumption to be adapted to the actual application state.  
The CGU in the TLE9869QXA20 consists of one oscillator circuit (OSC_HP), a Phase-Locked Loop (PLL) module  
with an internal oscillator (OSC_PLL), and a Clock Control Unit (CCU). The CGU can convert a low-frequency  
input/external clock signal to a high-frequency internal clock.  
The system clock fSYS is generated from of the following selectable clocks:  
PLL clock output fPLL  
Direct clock from oscillator OSC_HP fOSC  
Low precision clock fLP_CLK (HW-enabled for startup after reset and during power-down wake-up sequence)  
Data Sheet  
27  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
System Control Unit - Digital Modules (SCU-DM)  
CGU  
PLLCON  
CMCON  
OSC_CON  
SYSCON0  
XTAL1  
XTAL2  
PLL  
OSC_HP  
f
f
SYS  
OSC  
CCU  
f
LP_CLK  
LP_CLK  
PMU  
CGU_block  
Figure 9  
Clock Generation Unit Block Diagram  
The following sections describe the different parts of the CGU.  
6.3.1  
Low Precision Clock  
The clock source LP_CLK is a low-precision RC oscillator (LP-OSC) with a nominal frequency of 18 MHz that is  
enabled by hardware as an independent clock source for the TLE9869QXA20 startup after reset and during the  
power-down wake-up sequence. fLP_CLK is not user configurable.  
6.3.2  
High Precision Oscillator Circuit (OSC_HP)  
The high precision oscillator circuit, designed to work with both an external crystal oscillator or an external stable  
clock source, consists of an inverting amplifier with XTAL1 as the input, and XTAL2 as the output.  
Figure 10 shows the recommended external circuitry for both operating modes, External Crystal Mode and  
External Input Clock Mode.  
6.3.2.1  
External Input Clock Mode  
When supplying the clock signal directly, not using an external crystal and bypassing the oscillator, the input  
frequency needs to be equal to or greater than 4 MHz if the PLL VCO part is used.  
When using an external clock signal, it must be connected to XTAL1. XTAL2 is left open (unconnected).  
6.3.2.2  
External Crystal Mode  
When using an external crystal, its frequency can be within the range of 4 MHz to 25 MHz. An external oscillator  
load circuitry must be used, connected to both pins, XTAL1 and XTAL2. It normally consists of the two load  
capacitances C1 and C2. A series damping resistor could be required for some crystals. The exact values and the  
corresponding operating ranges depend on the crystal and have to be determined and optimized in cooperation  
with the crystal vendor using the negative resistance method. The following load cap values can be used as  
starting point for the evaluation:  
Data Sheet  
28  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
System Control Unit - Digital Modules (SCU-DM)  
Table 5  
External CAP Capacitors  
Fundamental Mode Crystal Frequency (approx., MHz) Load Caps C1, C2 (pF)  
4
33  
18  
12  
10  
10  
8
8
12  
16  
20  
25  
External Crystal Mode  
External Input Clock Mode  
VDDP  
VDDP  
Fundamental Mode Crystal  
4 - 25 MHz  
External  
XTAL1  
Clock  
XTAL1  
Signal  
OSC_HP  
fOSC  
OSC_HP  
fOSC  
XTAL2  
XTAL2  
C1  
C2  
VSS  
VSS  
VSS = GND = PIN 39  
ext_Osc.vsd  
Figure 10 TLE9869QXA20 External Circuitry for the OSC_HP  
Data Sheet  
29  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
System Control Unit - Power Modules (SCU-PM)  
7
System Control Unit - Power Modules (SCU-PM)  
7.1  
Features  
Clock Watchdog Unit (CWU): supervision of all clocks with NMI signaling relevant to power modules  
Interrupt Control Unit (ICU): all interrupt flags and status flags with system relevance  
Power Control Unit (PCU): takes over control when device enters and exits Sleepand Stop Mode  
External Watchdog (WDT1): independent system watchdog for monitoring system activity  
7.2  
Introduction  
7.2.1  
Block Diagram  
The System Control Unit of the power modules consists of the sub-modules in the figure shown below:  
On signals to analog  
peripherals;  
status signals from  
analog peripherals  
AMBA AHB  
I
N
T
PCU  
WDT1  
LP_CLK  
E
R
N
A
L
fsys  
MI_CLK  
PREWARN_SUP_NMI  
PREWARN_SUP_INT  
INT<n:0>  
B
U
S
CWU  
ICU  
TFILT_CLK  
System Control Unit -Power Modules  
SCU_PM_Block_Diagram_Cust.vsd  
Figure 11 Block diagram of System Control Unit - Power Modules  
AMBA AHB (Advanced High-Performance Bus)  
CWU (Clock Watchdog Unit)  
fsys; system frequency: PLL output  
MI_CLK; measurement interface clock (analog clock): derived from fsys using division factors 1/2/3/4  
TFILT_CLK; clock used for digital filters: derived from fsys using configurable division factors  
Data Sheet  
30  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
System Control Unit - Power Modules (SCU-PM)  
WDT1 (System Watchdog)  
LP_CLK; clock source for all PMU submodules and WDT1  
ICU (Interrupt Control Unit)  
PREWARN_SUP_NMI; supply prewarning NMI request  
PREWARN_SUP_INT; supply prewarning interrupt  
grouping of peripheral interrupts for external interupt nodes:  
– grouping single peripheral interrupts for interrupt node INT<2> (Measurement Unit (MU))  
– grouping single peripheral interrupts for interrupt node INT<3> (ADC1-VAREF)  
– grouping single peripheral interrupts for interrupt node INT<10> (UART1-LIN Transceiver)  
– grouping single peripheral interrupts for interrupt node INT<14> (Bridge Driver)  
Data Sheet  
31  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
ARM Cortex M3 Core  
8
ARM Cortex M3 Core  
8.1  
Features  
The key features of the Cortex M3 implemented are listed below.  
Processor Core. A low gate count core, with low latency interrupt processing:  
A subset of the Thumb®-2 Instruction Set  
Banked stack pointer (SP) only  
32-bit hardware divide instructions, SDIV and UDIV (Thumb-2 instructions)  
Handler and Thread Modes  
Thumb and debug states  
Interruptible-continued instructions LDM/STM, Push/Pop for low interrupt latency  
Automatic processor state saving and restoration for low latency Interrupt Service Routine (ISR) entry and exit  
ARM architecture v7-M Style BE8/LE support  
ARMv6 unaligned accesses  
Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core to achieve low  
latency interrupt processing:  
Interrupts, configurable from 1 to 16  
Bits of priority (4)  
Dynamic reprioritization of interrupts  
Priority grouping. This enables selection of preemptive interrupt levels and non-preemptive interrupt levels  
Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing without  
the overhead of state saving and restoration between interrupts.  
Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction  
overhead  
Bus interfaces  
Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode, DCode, and System bus interface  
Memory access alignment  
Write buffer for buffering of write data  
8.2  
Introduction  
The ARM Cortex-M3 processor is a leading 32-bit processor and provides a high-performance and cost-optimized  
platform for a broad range of applications including microcontrollers, automotive body systems and industrial  
control systems. Like the other Cortex family processors, the Cortex-M3 processor implements the Thumb®-2  
instruction set architecture. With the optimized feature set the Cortex-M3 delivers 32-bit performance in an  
application space that is usually associated with 8- and 16-bit microcontrollers.  
Data Sheet  
32  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
ARM Cortex M3 Core  
8.2.1  
Block Diagram  
Figure 12 shows the functional blocks of the Cortex M3.  
Cortex-M3 Processor  
Nested Vectored  
Interrupt  
Cortex-M3  
Processor  
Core  
Interrupt and  
Power Control  
Controller  
(NVIC)  
AHB  
Access Port  
(AHB-AP)  
Serial-Wire  
(SW-DP)  
Bus Matrix  
ICode  
AHB-Lite  
Instruction  
Interface  
DCode  
AHB-Lite  
Data  
System Bus  
ICode  
Serial-Wire Debug  
Interface  
PBA0  
PBA1  
Interface  
Cortex_M3_Block_diagram.vsd  
Figure 12 Cortex M3 Block Diagram  
Data Sheet  
33  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
DMA Controller  
9
DMA Controller  
Figure 13 shows the Top Level Block Diagram of the TLE9869QXA20.  
The bus matrix allows the uDMA to access the PBA0, PBA1 and RAM.  
9.1  
Features  
The principal features of the DMA Controller are that:  
it is compatible with AHB-Lite for the DMA transfers  
it is compatible with APB for programming the registers  
it has a single AHB-Lite master for transferring data using a 32-bit address bus and 32-bit data bus  
it supports 13 DMA channels  
each DMA channel has dedicated handshake signals  
each DMA channel has a programmable priority level  
each priority level arbitrates using a fixed priority that is determined by the DMA channel number. The DMA  
also supports multiple transfer types:  
- memory-to-memory  
- memory-to-peripheral  
- peripheral-to-memory  
it supports multiple DMA cycle types  
it supports multiple DMA transfer data widths  
each DMA channel can access a primary, and alternate, channel control data structure  
all the channel control data is stored in system memory (RAM) in little-endian format  
it performs all DMA transfers using the SINGLE AHB-Lite burst type. The destination data width is equal to the  
source data width.  
the number of transfers in a single DMA cycle can be programmed from 1 to 1024  
the transfer address increment can be greater than the data width  
Data Sheet  
34  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
DMA Controller  
9.2  
Introduction  
Please also refer to Chapter 9.3, Functional Description.  
9.2.1  
Block Diagram  
SSC1  
GPT12  
ADC1  
DMA requests  
DMA requests  
DMA requests  
DMA Controller  
Bus Matrix  
S
PBA1  
AHB2APB  
M
AHB lite  
M
AHB lite  
S
APB Interface  
interrupts  
SCU_DM  
PBA0  
S
AHB lite  
AHB lite  
M
M
RAM  
S
ARM Core  
interrupts  
S
S
S
M
M
M
AHB lite  
AHB lite  
AHB lite  
Figure 13  
DMA Controller Top Level Block Diagram  
Data Sheet  
35  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
DMA Controller  
9.3  
Functional Description  
DMA Mode Overview  
9.3.1  
The DMA controller implements the following 13 hardware DMA requests:  
ADC1 complete sequence 1 done: DMA transfer is requested on completion of the ADC1 channel conversion  
sequence.  
ADC1 exceptional sequence 2 (ESM) done: DMA transfer is requested on completion of the ADC1 conversion  
sequence triggered by an exceptional measurement request.  
SSC1/2 transmit byte: DMA transfer is requested upon the completion of data transmission via SSC1/2  
SSC1/2: receive byte: DMA transfer is requested upon the completion of data reception via SSC1/2.  
ADC1 channel 0 conversion done: DMA transfer is requested on completion of the ADC1 channel 0  
conversion.  
ADC1 channel 1 conversion done: DMA transfer is requested on completion of the ADC1 channel 1  
conversion.  
ADC1 channel 2 conversion done: DMA transfer is requested on completion of the ADC1 channel 2  
conversion.  
ADC1 channel 3 conversion done: DMA transfer is requested on completion of the ADC1 channel 3  
conversion.  
ADC1 channel 4 conversion done: DMA transfer is requested on completion of the ADC1 channel 4  
conversion.  
ADC1 channel 5 conversion done: DMA transfer is requested on completion of the ADC1 channel 5  
conversion.  
ADC1 channel 6 conversion done: DMA transfer is requested on completion of the ADC1 channel 6  
conversion.  
ADC1 channel 7 conversion done: DMA transfer is requested on completion of the ADC1 channel 7  
conversion.  
Timer3 ccu6_int: DMA transfer is requested following a timer trigger.  
Data Sheet  
36  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Address Space Organization  
10  
Address Space Organization  
The TLE9869QXA20 manipulates operands in the following memory spaces:  
128 kByte of Flash memory in code space  
32 kByte Boot ROM memory in code space (used for boot code and IP storage)  
6 kByte RAM memory in code space and data space (RAM can be read/written as program memory or external  
data memory)  
Special function registers (SFRs) in peripheral space  
The figure below shows the detailed address alignment of TLE9869QXA20:  
00000000H  
Reserved (BROM)  
00008000H / 10FFFFFFH  
11000000H / 1101FFFFH  
Flash, 128K  
Reserved  
11020000H / 17FFFFFFH  
18000000H / 180017FFH  
SRAM, 6K  
Reserved  
18001800H / 3FFFFFFFH  
40000000H / 47FFFFFFH  
PBA0  
PBA1  
48000000H / 5FFFFFFFH  
60000000H/ DFFFFFFFH  
E0000000H / E00FFFFFH  
FFFFFFFFH  
Reserved  
Private Peripheral Bus  
Reserved  
Figure 14 TLE9869QXA20 Memory Map  
Data Sheet  
37  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Memory Control Unit  
11  
Memory Control Unit  
11.1  
Features  
Handles all system memories and their interaction with the CPU  
Memory protection functions for all system memories (D-Flash, P-Flash, RAM)  
Address management with access violation detection including reporting  
Linear address range for all memories (no paging)  
11.2  
Introduction  
11.2.1  
Block Diagram  
The Memory Control Unit (MCU) is divided in the following sub-modules:  
NVM Memory module (embedded Flash Memory)  
RAM memory module  
BootROM memory module  
Memory Protection Unit (MPU) module  
NVM  
S0  
RAM  
S1  
BROM  
S2  
PBA0  
S3  
Memory Protection  
Unit  
Sx: BusSlave  
Mx: Bus Master  
M0  
M1  
M2  
M3  
Bus Matrix  
MCU_Block_Diagram_overview.vsd  
Figure 15 MCU Block View  
Data Sheet  
38  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Memory Control Unit  
11.3  
NVM Module (Flash Memory)  
The Flash Memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable  
storage of user code and data.  
Features  
In-system programming via LIN (Flash Mode) and SWD  
Error Correction Code (ECC) for detection of single-bit and double-bit errors and dynamic correction of single  
Bit errors.  
Interrupts and signals double-bit error by NMI  
Program width of 128 byte (page)  
Minimum erase width of 128 bytes (page)  
Integrated hardware support for EEPROM emulation  
8 byte read access  
Physical read access time: 75 ns  
Code read access acceleration integrated; read buffer and automatic pre-fetch  
Page program time: 3 ms  
Page erase (128 bytes) and sector erase (4K bytes) time: 4ms  
Note: The user has to ensure that no flash operations which change the content of the flash get interrupted at any  
time.  
The clock for the NVM is supplied with the system frequency fsys. Integrated firmware routines are provided to  
erase NVM, and other operations including EEPROM emulation are provided as well.  
Data Sheet  
39  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Interrupt System  
12  
Interrupt System  
12.1  
Features  
Up to 16 interrupt nodes for on-chip peripherals  
Up to 8 NMI nodes for critical system events  
Maximum flexibility for all 16 interrupt nodes  
12.2  
Introduction  
12.2.1  
Overview  
The TLE9869QXA20 supports 16 interrupt vectors with 16 priority levels. Fifteen of these interrupt vectors are  
assigned to the on-chip peripherals: GPT12, SSC, CCU6, DMA, Bridge Driver and A/D Converter are each  
assigned to one dedicated interrupt vector; while UART1 and Timer2 or UART2, External Interrupt 2 and Timer21  
share interrupt vectors. Two vectors are dedicated for External Interrupt 0 and 1.  
Table 6  
Interrupt Vector Table  
Service Request  
GPT12  
Node ID  
Description  
0/1  
2
GPT interrupt (T2-T6, CAPIN)  
MU- ADC8/T3  
ADC1  
Measurement Unit, VBG, Timer3  
ADC1 interrupt / VREF5V Overload / VREF5V OV/UV, 10-bit ADC  
CCU6 node 0 interrupt  
3
CCU0  
4
CCU1  
5
CCU6 node 1 interrupt  
CCU2  
6
CCU6 node 2 interrupt  
CCU3  
7
CCU6 node 3 interrupt  
SSC1  
8
SSC1 interrupt (receive, transmit, error)  
SSC2 interrupt (receive, transmit, error)  
UART1 (ASC-LIN) interrupt (receive, transmit), Timer2, linsync1, LIN  
SSC2  
9
UART1  
UART2  
10  
11  
UART2 interrupt (receive, transmit), Timer21, External interrupt  
(EINT2)  
EXINT0  
EXINT1  
BDRV/CP  
DMA  
12  
13  
14  
15  
External interrupt (EINT0), MON  
External interrupt (EINT1)  
Bridge Driver / Charge Pump  
DMA Controller  
Table 7  
NMI Interrupt Table  
Service Request  
Watchdog Timer NMI  
PLL NMI  
Node  
NMI  
NMI  
NMI  
Description  
Watchdog Timer overflow  
PLL Loss-of-Lock  
NVM Operation  
Complete NMI  
NVM Operation Complete  
Overtemperature NMI  
NMI  
System Overtemperature  
Data Sheet  
40  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Interrupt System  
Table 7  
NMI Interrupt Table  
Service Request  
Node  
Description  
Oscillator Watchdog  
NMI  
NMI  
Oscillator Watchdog / MI_CLK Watchdog Timer Overflow  
NVM Map Error NMI  
ECC Error NMI  
NMI  
NMI  
NVM Map Error  
RAM / NVM Uncorrectable ECC Error  
Supply Prewarning  
Supply Prewarning NMI NMI  
Data Sheet  
41  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Watchdog Timer (WDT1)  
13  
Watchdog Timer (WDT1)  
13.1  
Features  
There are two watchdog timers in the system. The Watchdog Timer (WDT) within the System Control Unit - Digital  
Modules (see SCU_DM) and the Watchdog Timer (WDT1) located within the System Control Unit - Power  
Modules (see SCU_PM). The Watchdog Timer WDT1 is described in this section.  
In Active Mode, the WDT1 acts as a windowed watchdog timer, which provides a highly reliable and safe way to  
recover from software or hardware failures.  
The WDT1 is always enabled in Active Mode. In Sleep Mode, Low Power Mode and SWD Mode the WDT1 is  
automatically disabled.  
Functional Features  
Windowed Watchdog Timer with programmable timing in Active Mode  
Long open window (typ. 80ms) after power-up, reset, wake-up  
Short open window (typ. 30ms) to facilitate Flash programming  
Disabled during debugging  
Safety shutdown to Sleep Mode after 5 missed WDT1 services  
Data Sheet  
42  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Watchdog Timer (WDT1)  
13.2  
Introduction  
The behavior of the Watchdog Timer in Active Mode is illustrated in Figure 16.  
Power-up  
Reset  
RESET  
Timeout  
always  
Timeout  
RESET  
Trigger SOW  
Maximum number  
of count_SOW  
Timeout  
or  
Trigger in closed window  
RESET  
Long  
Open Window  
Trigger&  
count_SOW = 0  
Trigger SOW&  
count_SOW++  
Normal  
„windowed“  
operation  
Short  
open window  
& SOW  
Trigger &  
count_SOW = 0  
Trigger SOW &  
count_SOW++  
Trigger&  
count_SOW = 0  
Figure 16 Watchdog Timer Behavior  
Data Sheet  
43  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
GPIO Ports and Peripheral I/O  
14  
GPIO Ports and Peripheral I/O  
The TLE9869QXA20 has 15 port pins organized into three parallel ports: Port 0 (P0), Port 1 (P1) and Port 2 (P2).  
Each port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. P0  
and P1 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate  
input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be  
selected. On Port 2 (P2) analog inputs are shared with general purpose input.  
14.1  
Features  
Bidirectional Port Features (P0, P1)  
Configurable pin direction  
Configurable pull-up/pull-down devices  
Configurable open drain mode  
Configurable drive strength  
Transfer of data through digital inputs and outputs (general purpose I/O)  
Alternate input/output for on-chip peripherals  
Analog Port Features (P2)  
Configurable pull-up/pull-down devices  
Transfer of data through digital inputs  
Alternate inputs for on-chip peripherals  
14.2  
Introduction  
14.2.1  
Port 0 and Port 1  
Figure 17 shows the block diagram of an TLE9869QXA20 bidirectional port pin. Each port pin is equipped with a  
number of control and data bits, thus enabling very flexible usage of the pin. By defining the contents of the control  
register, each individual pin can be configured as an input or an output. The user can also configure each pin as  
an open drain pin with or without internal pull-up/pull-down device.  
Each bidirectional port pin can be configured for input or output operation. Switching between input and output  
mode is accomplished through the register Px_DIR (x = 0 or 1), which enables or disables the output and input  
drivers. A port pin can only be configured as either input or output mode at any one time.  
In input mode (default after reset), the output driver is switched off (high-impedance). The actual voltage level  
present at the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via the register  
Px_DATA.  
In output mode, the output driver is activated and drives the value supplied through the multiplexer to the port pin.  
In the output driver, each port line can be switched to open drain mode or normal mode (push-pull mode) via the  
register Px_OD.  
The output multiplexer in front of the output driver enables the port output function to be used for different  
purposes. If the pin is used for general purpose output, the multiplexer is switched by software to the data register  
Px_DATA. Software can set or clear the bit in Px_DATA and therefore directly influence the state of the port pin.  
If an on-chip peripheral uses the pin for output signals, alternate output lines (AltDataOut) can be switched via the  
multiplexer to the output driver circuitry. Selection of the alternate output function is defined in registers  
Data Sheet  
44  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
GPIO Ports and Peripheral I/O  
Px_ALTSEL0 and Px_ALTSEL1. When a port pin is used as an alternate function, its direction must be set  
accordingly in the register Px_DIR.  
Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register Px_PUDSEL  
selects whether a pull-up or the pull-down device is activated while register Px_PUDEN enables or disables the  
pull device.  
PUDSEL  
Pull-up / Pull-down  
Select Register  
Pull-up / Pull-down  
Control Logic  
PUDEN  
Pull-up / Pull-down  
Enable Register  
TCCR  
Temperature Compensation  
Control Register  
Px_POCONy  
Port Output  
Driver Control Registers  
I
N
T
E
R
N
A
L
OD  
Open Drain  
Control Register  
DIR  
Direction Register  
ALTSEL0  
Alternate Select  
Register 0  
B
U
S
ALTSEL1  
Alternate Select  
Register 1  
Pull Device  
AltDataOut 3  
AltDataOut 2  
AltDataOut 1  
11  
10  
Output  
Driver  
01  
00  
Out  
In  
Data  
Data Register  
Input  
Driver  
AltDataIn  
Schmitt  
Trigger  
Pad  
Port_Block_Diagram.vsd  
Figure 17 General Structure of Bidirectional Port (P0, P1)  
Data Sheet  
45  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
GPIO Ports and Peripheral I/O  
14.2.2  
Port 2  
Figure 18 shows the structure of an input-only port pin. Each P2 pin can only function in input mode. Register  
P2_DIR is provided to enable or disable the input driver. When the input driver is enabled, the actual voltage level  
present at the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via register  
P2_DATA. Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register  
P2_PUDSEL selects whether a pull-up or the pull-down device is activated while register P2_PUDEN enables or  
disables the pull device. The analog input (AnalogIn) bypasses the digital circuitry and Schmitt trigger device for  
direct feed-through to the ADC input channels.  
PUDSEL  
Pull-up / Pull-down  
Select Register  
Pull-up / Pull-down  
Control Logic  
I
N
T
E
R
N
A
L
PUDEN  
Pull-up / Pull-down  
Enable Register  
Pull Device  
B
U
S
Input  
Driver  
In  
Data  
Data Register  
Schmitt  
Trigger  
Pad  
AltDataIn  
AnalogIn  
Port_Input_Diagram.vsd  
Figure 18 General Structure of Input Port (P2)  
Data Sheet  
46  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
GPIO Ports and Peripheral I/O  
14.3  
TLE9869QXA20 Port Module  
Port 0  
14.3.1  
14.3.1.1 Port 0 Functions  
Table 8  
Port Pin  
P0.0  
Port 0 Input/Output Functions  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P0  
SWCLK / TCK_0  
T12HR_0  
T4INA  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
SW  
CCU6  
GPT12T4  
Timer 2  
T2_0  
EXINT2_3  
P0_DATA.P0  
T3OUT  
SCU  
Output  
Input  
GPT12T3  
Timer 21  
UART2  
EXF21_0  
RXDO_2  
P0_DATA.P1  
T13HR_0  
TxD1  
P0.1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
INP8  
GPO  
ALT1  
ALT2  
ALT3  
CCU6  
LIN_TxD  
GPT12CAP  
Timer 21  
GPT12T4  
SSC1  
CAPINA  
T21_0  
T4INC  
MRST_1_2  
EXINT0_2  
P0_DATA.P1  
TxD1  
SCU  
Output  
UART1 / LIN_TxD  
T6OUT  
GPT12T6  
Data Sheet  
47  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
GPIO Ports and Peripheral I/O  
Table 8  
Port Pin  
P0.2  
Port 0 Input/Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P2  
CCPOS2_1  
T2EUDA  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
CCU6  
GPT12T2  
SSC1  
MTSR_1  
T21EX_0  
Timer 21  
GPT12T6  
T6INA  
Output  
Input  
P0_DATA.P2  
COUT60_0  
MTSR_1  
CCU6  
SSC1  
EXF2_0  
Timer 2  
P0.3  
P0_DATA.P3  
SCK_1  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
SSC1  
CAPINB  
GPT12  
GPT12T5  
GPT12T4  
CCU6  
T5INA  
T4EUDA  
CCPOS0_1  
P0_DATA.P3  
SCK_1  
Output  
Input  
SSC1  
EXF21_2  
T6OUT  
Timer 21  
GPT12T6  
P0.4  
P0_DATA.P4  
MRST_1_0  
CC60_0  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
SSC1  
CCU6  
T21_2  
Timer 21  
SCU  
EXINT2_2  
T3EUDA  
GPT12T3  
CCU6  
CCPOS1_1  
P0_DATA.P4  
MRST_1_0  
CC60_0  
Output  
SSC1  
CCU6  
SCU  
CLKOUT_0  
Data Sheet  
48  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
GPIO Ports and Peripheral I/O  
14.3.2  
Port 1  
14.3.2.1 Port 1 Functions  
Table 9  
Port Pin  
P1.0  
Port 1 Input / Output Functions  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P1_DATA.P0  
T3INC  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12T3  
GPT12T4  
CCU6  
T4EUDB  
CC61_0  
SCK_2  
SSC2  
EXINT1_2  
P1_DATA.P0  
SCK_2  
SCU  
Output  
Input  
SSC2  
CC61_0  
CCU6  
EXF21_3  
P1_DATA.P1  
Timer 21  
P1.1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
T6EUDA  
GPT12T6  
-
MTSR_2  
T21_1  
SSC2  
Timer 21  
SCU  
EXINT1_0  
P1_DATA.P1  
MTSR_2  
COUT61_0  
TXD2_0  
Output  
Input  
SSC2  
CCU6  
UART2  
P1.2  
P1_DATA.P2  
T2INA  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
GPT12T2  
Timer 2  
Timer 21  
SSC2  
T2EX_1  
T21EX_3  
MRST_2_0  
RXD2_0  
UART2  
CCU6  
CCPOS2_2  
EXINT0_1  
P1_DATA.P2  
MRST_2_0  
COUT63_0  
T3OUT  
SCU  
Output  
SSC2  
CCU6  
GPT12T3  
Data Sheet  
49  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
GPIO Ports and Peripheral I/O  
Table 9  
Port Pin  
P1.3  
Port 1 Input / Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P1_DATA.P3  
T6INB  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12T6  
CC62_0  
CCU6  
T6EUDB  
GPT12T6  
CCPOS0_2  
EXINT1_1  
P1_DATA.P3  
EXF21_1  
CC62_0  
CCU6  
SCU  
Output  
Input  
Timer 21  
CCU6  
TXD2_1  
UART2  
P1.4  
P1_DATA.P4  
EXINT2_1  
T21EX_1  
T5EUDA  
RxD1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
SCU  
Timer 21  
GPT12T5  
UART1  
GPT12T2  
CCU6  
T2INB  
CCPOS1_2  
MRST_1_3  
P1_DATA.P4  
CLKOUT_1  
COUT62_0  
RxD1  
SSC1  
Output  
SCU  
CCU6  
UART1 / LIN_RxD  
Data Sheet  
50  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
GPIO Ports and Peripheral I/O  
14.3.3  
Port 2  
14.3.3.1 Port 2 Functions  
Table 10  
Port Pin  
P2.0  
Port 2 Input Functions  
Input/Output  
Select  
Connected Signal(s)  
P2_DATA.P0  
CCPOS0_3  
-
From/to Module  
Input  
GPI  
INP1  
INP2  
INP3  
INP4  
INP5  
ANALOG  
CCU6  
-
T12HR_2  
EXINT0_0  
CC61_2  
CCU6  
SCU  
CCU6  
ADC  
XTAL  
AN0  
XTAL (in)  
P2_DATA.P2  
CCPOS2_3  
T13HR_2  
P2.2  
Input  
GPI  
INP1  
INP2  
INP3  
INP4  
ANALOG  
OUT  
CCU6  
CCU6  
CC62_2  
CCU6  
ADC  
AN2  
XTAL (out)  
P2_DATA.P3  
CCPOS1_0  
T3IND  
XTAL  
P2.3  
Input  
GPI  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
ANALOG  
GPI  
CCU6  
GPT12T3  
CCU6  
Timer 21  
CCU6  
SCU  
CTRAP#_1  
T21EX_2  
CC60_1  
EXINT0_3  
AN3  
ADC  
P2.4  
P2.5  
Input  
Input  
P2_DATA.P4  
CTRAP#_0  
T2EUDB  
MRST_1_1  
EXINT1_3  
AN4  
INP1  
INP2  
INP3  
INP4  
ANALOG  
GPI  
CCU6  
GPT12T2  
SSC1  
SCU  
ADC  
P2_DATA.P5  
RXD2_1  
T3EUDB  
MRST_2_1  
T2_1  
INP1  
INP2  
INP3  
INP4  
ANALOG  
UART2  
GPT12T3  
SSC2  
Timer 2  
ADC  
AN5  
Data Sheet  
51  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
General Purpose Timer Units (GPT12)  
15  
General Purpose Timer Units (GPT12)  
15.1  
Features  
15.1.1  
Features Block GPT1  
The following list summarizes the supported features:  
fGPT/4 maximum resolution  
3 independent timers/counters  
Timers/counters can be concatenated  
4 operating modes:  
– Timer Mode  
– Gated Timer Mode  
– Counter Mode  
– Incremental Interface Mode  
Reload and Capture functionality  
Shared interrupt: Node 0  
15.1.2  
Features Block GPT2  
The following list summarizes the supported features:  
fGPT/2 maximum resolution  
2 independent timers/counters  
Timers/counters can be concatenated  
3 operating modes:  
– Timer Mode  
– Gated Timer Mode  
– Counter Mode  
Extended capture/reload functions via 16-bit capture/reload register CAPREL  
Shared interrupt: Node 1  
15.2  
Introduction  
The General Purpose Timer Unit blocks GPT1 and GPT2 have very flexible multifunctional timer structures which  
may be used for timing, event counting, pulse width measurement, pulse generation, frequency multiplication, and  
other purposes.  
They incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in each  
block may operate independently in a number of different modes such as Gated timer or Counter Mode, or may  
be concatenated with another timer of the same block.  
Each block has alternate input/output functions and specific interrupts associated with it. Input signals can be  
selected from several sources by register PISEL.  
The GPT module is clocked with clock fGPT. fGPT is a clock derived from fSYS  
.
Data Sheet  
52  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
General Purpose Timer Units (GPT12)  
15.2.1  
Block Diagram GPT1  
Block GPT1 contains three timers/counters: The core timer T3 and the two auxiliary timers T2 and T4. The  
maximum resolution is fGPT/4. The auxiliary timers of GPT1 may optionally be configured as reload or capture  
registers for the core timer.  
T3CON.BPS1  
2n : 1  
Basic clock  
fGPT  
Interrupt Request  
(T2IRQ)  
Aux. Timer T2  
Core Timer T3  
Aux. Timer T4  
U/D  
T2IN  
T2  
Mode  
Control  
Capture  
Reload  
T2EUD  
Toggle Latch  
T3  
Mode  
Control  
T3IN  
T3OTL  
T3OUT  
U/D  
T3EUD  
Interrupt Request  
(T3IRQ)  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
T4EUD  
Interrupt Request  
(T4IRQ)  
U/D  
MC _GPT0101_bldiax1.vsd  
Figure 19 GPT1 Block Diagram (n = 2 … 5)  
Data Sheet  
53  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
General Purpose Timer Units (GPT12)  
15.2.2  
Block Diagram GPT2  
Block GPT2 contains two timers/counters: The core timer T6 and the auxiliary timer T5. The maximum resolution  
is fGPT/2. An additional Capture/Reload register (CAPREL) supports capture and reload operation with extended  
functionality.  
T6CON.BPS2  
fGPT  
2n : 1  
Basic clock  
Toggle FF  
T5  
Mode  
Control  
U/D  
InterruptRequest  
(T5IR)  
T5IN  
GPT2 Timer T5  
Clear  
T5EUD  
Capture  
CAPIN  
CAPREL  
Mode  
Control  
GPT2 CAPREL  
T3IN/  
T3EUD  
InterruptRequest  
(CRIR)  
Reload  
InterruptRequest  
(T6IR)  
Clear  
U/D  
T6  
Mode  
Control  
GPT2 Timer T6  
T6OTL  
T6OUT  
T6OUF  
T6IN  
T6EUD  
MC_GPT0108_bldiax4.vsd  
Figure 20 GPT2 Block Diagram  
Data Sheet  
54  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Timer2 and Timer21  
16  
Timer2 and Timer21  
16.1  
Features  
16-bit auto-reload mode  
– selectable up or down counting  
One channel 16-bit capture mode  
16.2  
Introduction  
The timer modules are general-purpose 16-bit timers. Timer 2/21 can function as a timer or counter in each of its  
modes. As a timer, it counts with an input clock of fPCLK/12 (if prescaler is disabled). As a counter, Timer 2 counts  
1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is fPCLK/24 (if prescaler is  
disabled).  
16.2.1  
Timer2 and Timer21 Modes Overview  
Table 11  
Mode  
Timer2 and Timer21 Modes  
Description  
Auto-reload  
Up/Down Count Disabled  
Count up only  
Start counting from 16-bit reload value, overflow at FFFFH  
Reload event configurable for trigger by overflow condition only, or by  
negative/positive edge at input pin T2EX as well  
Programmable reload value in register RC2  
Interrupt is generated with reload events.  
Auto-reload  
Up/Down Count Enabled  
Count up or down, direction determined by level at input pin T2EX  
No interrupt is generated  
Count up  
– Start counting from 16-bit reload value, overflow at FFFFH  
– Reload event triggered by overflow condition  
– Programmable reload value in register RC2  
Count down  
– Start counting from FFFFH, underflow at value defined in register RC2  
– Reload event triggered by underflow condition  
– Reload value fixed at FFFFH  
Channel capture  
Count up only  
Start counting from 0000H, overflow at FFFFH  
Reload event triggered by overflow condition  
Reload value fixed at 0000H  
Capture event triggered by falling/rising edge at pin T2EX  
Captured timer value stored in register RC2  
Interrupt is generated by reload or capture events  
Data Sheet  
55  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Timer3  
17  
Timer3  
17.1  
Features  
16-bit incremental timer/counter (counting up)  
Counting frequency up to fsys  
Selectable clock prescaler  
6 modes of operation  
Interrupt up on overflow  
Interrupt on compare  
17.2  
Introduction  
The possible applications for the timer include measuring the time interval between events, counting events and  
generating a signal at regular intervals.  
Timer3 can function as timer or counter. When functioning as a timer, Timer3 is incremented in periods based on  
the MI_CLK or LP_CLK clock. When functioning as a counter, Timer3 is incremented in response to a 1-to-0  
transition (falling edge) at its respective input. Timer3 can be configured in four different operating modes to use  
in a variety of applications, see Table 12.  
Several operating modes can be used for different tasks such as the following:  
simple time measurement between two events  
triggering of the measuring unit upon PWM/CCU6 unit  
measurement of the 100kHz LP_CLK2  
17.3  
Functional Description  
Six modes of operation are provided to fulfill various tasks using this timer. In every mode the clocking source can  
be selected between MI_CLK and LP_CLK. A prescaler provides in addition capability to divide the selected clock  
source by 2, 4 or 8. The timer counts upwards, starting with the value in the timer count registers, until the  
maximum count value which depends on the selected mode of operation. Timer 3 provides two individual  
interrupts upon counter overflow, one for the low-byte and one for the high-byte counter register.  
17.3.1  
Timer3 Modes Overview  
The following table provides an overview of the timer modes together with the reasonable configuration options in  
Table 12.  
Table 12  
Mode  
Timer3 Modes  
Sub- Operation  
Mode  
No Sub- 13-bit Timer  
0
1
1
Mode  
The timer is essentially an 8-bit counter with a divide-by-32 prescaler.  
a
16-bit Timer  
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter.  
b
16-bit Timer triggered by an event  
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter, which is  
triggered by an event to enable a single shot measurement on a preset channel with the  
measurement unit.  
Data Sheet  
56  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Timer3  
Table 12  
Mode  
Timer3 Modes (cont’d)  
Sub- Operation  
Mode  
No Sub- 8-bit Timer with auto-reload  
2
3
3
Mode  
The timer register TL3 is reloaded with a user-defined 8-bit value in TH3 upon overflow.  
a
Timer3 operates as two 8-bit timers  
The timer registers TL3 and TH3, operate as two separate 8-bit counters.  
b
Timer3 operates as Two 8-bit timers for clock measurement  
The timer registers, TL3 and TH3 operate as two separate 8-bit counters. In this mode the  
LP_CLK2 Low Power Clock can be measured. TL3 acts as an edge counter for the clock  
edges and TH3 as a counter which counts the time between the edges.  
Data Sheet  
57  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Capture/Compare Unit 6 (CCU6)  
18  
Capture/Compare Unit 6 (CCU6)  
18.1  
Feature Set Overview  
This section gives an overview over the different building blocks and their main features.  
Timer 12 Block Features  
Three capture/compare channels, each channel can be used either as capture or as compare channel  
Generation of a three-phase PWM supported (six outputs, individual signals for high-side and low-side  
switches)  
16-bit resolution, maximum count frequency = peripheral clock  
Dead-time control for each channel to avoid short-circuits in the power stage  
Concurrent update of T12 registers  
Center-aligned and edge-aligned PWM can be generated  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Multiple interrupt request sources  
Hysteresis-like control mode  
Timer 13 Block Features  
One independent compare channel with one output  
16-bit resolution, maximum count frequency = peripheral clock  
Concurrent update of T13 registers  
Can be synchronized to T12  
Interrupt generation at period-match and compare-match  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Additional Specific Functions  
Block commutation for brushless DC-drives implemented  
Position detection via hall-sensor pattern  
Noise filter supported for position input signals  
Automatic rotational speed measurement and commutation control for block commutation  
Integrated error handling  
Fast emergency stop without CPU load via external signal (CTRAP)  
Control modes for multi-channel AC-drives  
Output levels can be selected and adapted to the power stage  
18.2  
Introduction  
The CCU6 unit is made up of a Timer T12 block with three capture/compare channels and a Timer T13 block with  
one compare channel. The T12 channels can independently generate PWM signals or accept capture triggers, or  
they can jointly generate control signal patterns to drive DC-motors or inverters.  
A rich set of status bits, synchronized updating of parameter values via shadow registers, and flexible generation  
of interrupt request signals provide efficient software-control.  
Data Sheet  
58  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Capture/Compare Unit 6 (CCU6)  
Note:The capture/compare module itself is referred to as CCU6 (capture/compare unit 6). A capture/compare  
channel inside this module is referred to as CC6x.  
The timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined  
(e.g. a channel works in compare mode, whereas another channel works in capture mode). The timer T13 can  
work in compare mode only. The multi-channel control unit generates output patterns which can be modulated by  
T12 and/or T13. The modulation sources can be selected and combined for the signal modulation.  
18.2.1  
Block Diagram  
CCU6 Module Kernel  
Compare  
CC60  
CC61  
CC62  
1
T12SUSP  
Dead-  
Time  
Control  
Multi-  
channel  
Control  
Debug  
Suspend  
Trap  
Control  
T12  
T13  
1
1
T13SUSP  
fCC 6  
Clock  
Control  
CC63  
1
3
2
2
2
3
1
SR[3:0]  
Interrupt  
Control  
Input / Output Control  
PortControl  
CCU6_MCB05506.vsd  
P0.x  
P1.x  
P2.x  
Figure 21 CCU6 Block Diagram  
Data Sheet  
59  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
UART1/UART2  
19  
UART1/UART2  
19.1  
Features  
Full-duplex asynchronous modes  
– 8-bit or 9-bit data frames, LSB first  
– fixed or variable baud rate  
Receive buffered  
Multiprocessor communication  
Interrupt generation on the completion of a data transmission or reception  
Baud-rate generator with fractional divider for generating a wide range of baud rates  
Hardware logic for break and synch byte detection  
19.2  
Introduction  
The UART provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive  
simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a previously  
received byte has been read from the receive register. However, if the first byte still has not been read by the time  
reception of the second byte is complete, one of the bytes will be lost. The serial port receive and transmit registers  
are both accessed at Special Function Register (SFR) SBUF. Writing to SBUF loads the transmit register, and  
reading SBUF accesses a physically separate receive register.  
19.2.1  
Block Diagram  
UART disreq from SCU_DM  
RI  
TXD  
RXD  
TXD  
SCU_D  
M
Interrupt  
Control  
RXD_0  
RXD_1  
TI  
URIOS  
SCU_DM  
P0.x  
P1.x  
P2.x  
UART  
Module  
(Kernel)  
PortControl  
fUART2  
Clock  
Control  
Baud Rate  
Generator  
f
BR  
Address  
Decoder  
RXDO _2  
SCU_DM  
AHB Interface  
SSC Module  
GPIOs  
Figure 22 UART Block Diagram  
Data Sheet  
60  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
UART1/UART2  
19.3  
UART Modes  
The UART can be used in four different modes. In mode 0, it operates as an 8-bit shift register. In mode 1, it  
operates as an 8-bit serial port. In modes 2 and 3, it operates as a 9-bit serial port. The only difference between  
mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable baud rate is  
set by the underflow rate on the dedicated baud-rate generator.  
The different modes are selected by setting bits SM0 and SM1 to their corresponding values, as shown in  
Table 13.  
Table 13  
UART Modes  
SM1  
SM0  
Operating Mode  
Mode 0: 8-bit shift register  
Baud Rate  
0
0
1
1
0
1
0
1
f
PCLK/2  
Variable  
PCLK/64  
Variable  
Mode 1: 8-bit shift UART  
Mode 2: 9-bit shift UART  
Mode 3: 9-bit shift UART  
f
The UART1 is connected to the integrated LIN transceiver, and to GPIO for test purpose. The UART2 is connected  
to GPIO only.  
Data Sheet  
61  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
LIN Transceiver  
20  
LIN Transceiver  
20.1  
Features  
General Functional Features  
Compliant to LIN2.2 standard, backward compatible to LIN1.3, LIN2.0 and LIN 2.1  
Compliant to SAE J2602 (slew rate, receiver hysteresis)  
Special Features  
Measurement of LIN master baudrate via Timer 2  
LIN can be used as input/output with SFR bits.  
TxD timeout feature (optional, on by default)  
Operation Mode Features  
LIN Sleep Mode (LSLM)  
LIN Receive-Only Mode (LROM)  
LIN Normal Mode (LNM)  
High Voltage Input / Output Mode (LHVIO)  
Supported Baud Rates  
Mode for a transmission up to 10.4 kBaud  
Mode for a transmission up to 20 kBaud  
Mode for a transmission up to 40 kBaud  
Mode for a transmission up to 115.2 kBaud  
Slope Mode Features  
Normal Slope Mode (20 kbit/s)  
Low Slope Mode (10.4 kbit/s)  
Flash Mode (115.2 kbit/s)  
Wake-Up Features  
LIN bus wake-up  
Data Sheet  
62  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
LIN Transceiver  
20.2  
Introduction  
The LIN Module is a transceiver for the Local Interconnect Network (LIN) compliant to the LIN2.2 standard,  
backward compatible to LIN1.3, LIN2.0 and LIN2.1. It operates as a bus driver between the protocol controller and  
the physical network. The LIN bus is a single wire, bi-directional bus typically used for in-vehicle networks, using  
baud rates between 2.4 kBaud and 20 kBaud. Additionally baud rates up to 115.2 kBaud are implemented.  
The LIN Module offers several different operation modes, including a LIN Sleep Mode and the LIN Normal Mode.  
The integrated slope control allows to use several data transmission rates with optimized EMC performance. For  
data transfer at the end of line, a Flash Mode up to 115.2 kBaud is implemented. This Flash Mode can be used  
for data transfer under special conditions for up to 250 kbit/s (in production environment, point-to-point  
communication with reduced wire length and limited supply voltage).  
20.2.1  
Block Diagram  
VS  
LIN Transceiver  
30 k  
LIN_CTRL_STS  
LIN-FSM  
LIN  
CTRL  
Driver +  
Curr. Limit. +  
TSD  
TxD_1  
from UART  
STATUS  
GND_LIN  
Transmitter  
Filter  
RxD_1  
to UART  
Receiver  
Filter  
LIN_Wake  
Sleep Comparator  
LIN_Block_Diagram_Customer.vsd  
GND_LIN  
Figure 23 LIN Transceiver Block Diagram  
Data Sheet  
63  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
High-Speed Synchronous Serial Interface (SSC1/SSC2)  
21  
High-Speed Synchronous Serial Interface (SSC1/SSC2)  
21.1  
Features  
Master and Slave Mode operation  
– Full-duplex or half-duplex operation  
Transmit and receive buffered  
Flexible data format  
– Programmable number of data bits: 2 to 16 bits  
– Programmable shift direction: Least Significant Bit (LSB) or Most Significant Bit (MSB) shift first  
– Programmable clock polarity: idle low or high state for the shift clock  
– Programmable clock/data phase: data shift with leading or trailing edge of the shift clock  
Variable baud rate  
Compatible with Serial Peripheral Interface (SPI)  
Interrupt generation  
– On a transmitter empty condition  
– On a “receiver full” condition  
– On an error condition (receive, phase, baud rate, transmission error)  
Data Sheet  
64  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
High-Speed Synchronous Serial Interface (SSC1/SSC2)  
21.2  
Introduction  
The High-Speed Synchronous Serial Interface (SSC) supports both full-duplex and half-duplex serial synchronous  
communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-  
bit baud rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock  
polarity, and phase are programmable. This allows communication with SPI-compatible devices or devices using  
other synchronous serial interfaces.  
Data is transmitted or received on TXD and RXD lines, which are normally connected to the MTSR  
(MasterTransmit/Slave Receive) and MRST (Master Receive/Slave Transmit) pins. The clock signal is output via  
line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are  
normally connected to the pin SCLK. Transmission and reception of data are double-buffered.  
21.2.1  
Block Diagram  
Figure 24 shows all functional relevant interfaces associated with the SSC Kernel.  
MRSTA  
MRSTB  
EIR  
MTSR  
SCU_DM  
Interrupt  
Control  
RIR  
TIR  
MTSRA  
MTSRB  
P0.x  
P1.x  
P2.x  
SSC  
Port  
Control  
Module  
(Kernel)  
MRST  
fhw_clk  
Clock  
Control  
SCLKA  
SCLKB  
Address  
Decoder  
SCLK  
AHB Interface  
Module  
ProductInterface  
SSC_interface_overview.vsd  
Figure 24 SSC Interface Diagram  
Data Sheet  
65  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Measurement Unit  
22  
Measurement Unit  
22.1  
Features  
1 x 8-bit ADC with 10 Inputs including attenuator allowing measurement of high voltage input signals  
Supply Voltage Attenuators with attenuation of VBAT_SENSE, VS, VDDP and VDDC.  
VBG monitoring of 8-bit ADC to guarantee functional safety requirements.  
Bridge Driver Diagnosis Measurement (VDH, VCP).  
Temperature Sensor for monitoring the chip temperature and PMU Regulator temperature.  
Supplement Block with Reference Voltage Generation, Bias Current Generation, Voltage Buffer for NVM  
Reference Voltage, Voltage Buffer for Analog Module Reference Voltage and Test Interface.  
22.2  
Introduction  
The measurement unit is a functional unit that comprises the following associated sub-modules:  
Table 14  
Measurement Functions and Associated Modules  
Module  
Name  
Modules  
Functions  
Central Functions Bandgap reference circuit  
Unit  
The bandgap-reference sub-module provides two  
reference voltages  
1. a trimmable reference voltage for the 8-bit ADCs. A  
local dedicated bandgap circuit is implemented to avoid  
deterioration of the reference voltage arising e.g. from  
crosstalk or ground voltage shift.  
2. the reference voltage for the NVM module  
8-bit ADC (ADC2) 8-bit ADC module with 10  
multiplexed inputs, including HV  
input attenuator  
5 high voltage full supply range capable inputs  
(2.5V...30,7V(FS))  
2 medium voltage inputs (0..5V/7V FS).  
3 low voltage inputs (0..1.2V/1.6V FS)  
(allocation see following overview figure)  
10-bit ADC  
(ADC1)  
10-bit ADC module with 8  
multiplexed inputs  
Five (5V) analog inputs from Port 2.x  
VDH Input  
Voltage  
VDH input voltage attenuator  
Scales down V(VDH) to the input voltage range of  
ADC1.CH6  
Attenuator  
Temperature  
Sensor  
Temperature sensor with two  
multiplexed sensing elements:  
Generates output voltage which is a linear function of  
the local chip (junction) temperature.  
PMU located sensor  
Central chip located sensor  
Measurement  
Core Module  
Digital signal processing and ADC2 1. Generates the control signal for the 8-bit ADC2 and  
control unit  
the synchronous clock for the switched capacitor  
circuits,  
2. Performs digital signal processing functions and  
provides status outputs for interrupt generation.  
Data Sheet  
66  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Measurement Unit  
22.2.1  
Block Diagram  
VAGND  
VS  
VAREF  
P2.0  
OP1  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
5
V
GND_SENSE  
OP  
OP2  
P2.2  
G = 10/20/40/60  
ADC 1  
10  
/
MUX  
SFR  
A
D
Channel sequencer  
P2.3  
P2.4  
P2.5  
VDH  
x 0.226  
x 0.166  
rfu  
10 Bit ADC + DPP1  
Programmable  
range setting  
x 0.055  
x 0.039  
x 0.055  
x 0.039  
VBAT_SENSE  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
1.23  
V
VSD  
VCP  
x 0.039  
x 0.023  
x 0.039  
x 0.164  
x 0.219  
calibration & filter unit  
with  
upper / lower  
threshold  
MON  
VDDP  
8
/
SFR  
MUX  
A
D
detection / interrupt  
VAREF  
CH6  
CH7  
ADC 2  
PMU-VBG  
CH8  
CH9  
VDDC  
x 0.75  
Temperature  
Sensor  
8 Bit ADC + DPP2  
Measurement-Unit  
Measurement_Unit_Overview_TLE9869_B15.vsd  
Figure 25  
Measurement Unit-Overview (with opamp)  
Data Sheet  
67  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Measurement Core Module (incl. ADC2)  
23  
Measurement Core Module (incl. ADC2)  
23.1  
Features  
8 individually programmable channels split into two groups of user configurable and non user configurable  
Individually programmable channel prioritization scheme for measurement unit  
Two independent filter stages with programmable low-pass and time filter characteristics for each channel  
Two channel configurations:  
– Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis  
– Two individually programmable trigger thresholds with limit hysteresis settings  
Individually programmable interrupts and statuses for all channel thresholds  
23.2  
Introduction  
The basic function of this block is the digital postprocessing of several analog digitized measurement signals by  
means of filtering, level comparison and interrupt generation. The measurement postprocessing block consists of  
ten identical channel units attached to the outputs of the 10-channel 8-bit ADC (ADC2). It processes ten channels,  
where the channel sequence and prioritization is programmable within a wide range.  
23.2.1  
Block Diagram  
4
/
MUX_SEL<3:0>  
Channel Controller  
(Sequencer)  
ADC2 - SFR  
VBAT_SENSE  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
CH9  
VS  
VSD  
1st Order IIR  
1
/
+
-
8 Bit ADC  
UP_X_STS  
VCP  
+ / -  
+ / -  
THy_z_UPPER.  
CHx  
Calibration Unit:  
y= a + (1+b)*x  
8
/
10  
/
8
/
MON  
MUX  
A
D
VDDP  
1
/
THy_z_LOWER.  
CHx  
-
VAREF  
LOW_X_STS  
+
PMU-VBG  
VDDC  
Digital Signal Processing  
Temperature Sensor  
TSENSE  
Measurement Core Module  
Figure 26 Module Block Diagram  
Data Sheet  
68  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Measurement Core Module (incl. ADC2)  
23.2.2  
Measurement Core Module Modes Overview  
The basic function of this unit, is the digital signal processing of several analog digitized measurement signals by  
means of filtering, level comparison and interrupt generation. The Measurement Core module processes ten  
channels in a quasi parallel process.  
As shown in the figure above, the ADC2 postprocessing unit consists of a channel controller (Sequencer), an 10-  
channel demultiplexer and the signal processing block, which filters and compares the sampled ADC2 values for  
each channel individually. The channel control block controls the multiplexer sequencing on the analog side before  
the ADC2 and on the digital domain after the ADC2. As described in the following section, the channel sequence  
can be controlled in a flexible way, which allows a certain degree of channel prioritization.  
This capability can be used e.g. to set a higher priority to supply voltage channels compared to the other channel  
measurements. The Measurement Core Module offers additionally two different post-processing measurement  
modes for over-/undervoltage detection and for two-level threshold detection.  
The channel controller (sequencer) runs in one of the following modes:  
“Normal Sequencer Mode” – channels are selected according to the 10 sequence registers which contain  
individual enablers for each of the 10 channels.  
“Exceptional Interrupt Measurement” – following a hardware event, a high priority channel is inserted into the  
current sequence. The current actual measurement is not destroyed.  
“Exceptional Sequence Measurement” – following a hardware event, a complete sequence is inserted after the  
current measurement is finished. The current sequence is interrupted by the exception sequence.  
Data Sheet  
69  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
10-Bit Analog Digital Converter (ADC1)  
24  
10-Bit Analog Digital Converter (ADC1)  
24.1  
Features  
The principal features of the ADC1 are:  
Up to 8 analog input channels (channel 7 reserved for future use)  
Flexible results handling  
- 8-bit and 10-bit resolution  
Flexible source selection due to sequencer  
- insert one exceptional sequence (ESM)  
- insert one interrupt measurement into the current sequence (EIM), single or up to 128 times  
- software mode  
Conversion sample time (separate for each channel) adjustable to adapt to sensors and reference  
Standard external reference (VAREF) to support ratiometric measurements and different signal scales  
DMA support, transfer ADC conversion results via DMA into RAM  
Support of suspend and power saving modes  
Result data protection for slow CPU access (wait-for-read mode)  
Programmable clock divider  
Integrated sample and hold circuitry  
24.2  
Introduction  
The TLE9869QXA20 includes a high-performance 10-bit Analog-to-Digital Converter (ADC1) with eight  
multiplexed analog input channels. The ADC1 uses a successive approximation technique to convert the analog  
voltage levels from up to eight different sources. The analog input channels of the ADC1 are available at AN0,  
AN2 - AN5.  
Data Sheet  
70  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
10-Bit Analog Digital Converter (ADC1)  
24.2.1  
Block Diagram  
3
3
/
/
MUX_SEL <2:0>  
Channel Controller  
(Sequencer)  
ADC1 - SFR  
10  
10  
10  
10  
10  
10  
10  
10  
10  
/
/
/
/
/
/
/
/
/
ADC1_OUT_CH0  
ADC1_OUT_CH1  
ADC1_OUT_CH2  
ADC1_OUT_CH3  
ADC1_OUT_CH4  
ADC1_OUT_CH5
ADC1_OUT_CH6
ADC1_OUT_CH7
ADC1_RES_OUT_EIM  
P2.0  
CH0  
CH1  
CH2  
CH3  
ADC1  
P2.2  
P2.3  
P2.4  
P2.5  
VDH  
rfu  
10  
MUX  
A
D
/
MUX  
CH4  
CH5  
CH6  
CH7  
OP1  
OP2  
OPA  
ADC10B_Signal_Conditioning_TLE9869_B15.vsd  
Figure 27  
ADC1 Top Level Block Diagram  
As shown in the figure above, the ADC1 postprocessing consists of a channel controller (Sequencer) and an 8-  
channel demultiplexer. The channel control block controls the multiplexer sequencing on the analog side before  
the ADC1 and on the digital domain after the ADC1. As described in the following section, the channel sequence  
can be controlled in a flexible way, which allows a certain degree of channel prioritization.  
This capability can be used e.g. to give a higher priority to some channels compared to the other channel  
measurements.  
Data Sheet  
71  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
High-Voltage Monitor Input  
25  
High-Voltage Monitor Input  
25.1  
Features  
High-voltage input with VS/2 threshold voltage  
Integrated selectable pull-up and pull-down current sources  
Wake capability for power saving modes  
Level change sensitivity configurable for transitions from low to high, high to low or both directions  
25.2  
Introduction  
This module is dedicated to monitor external voltage levels above or below a specified threshold or it can be used  
to detect a wake-up event at the high-voltage MON pin in low-power mode. The input is sensitive to a input level  
monitoring, this is available when the module is switched to active mode with the SFR bit EN.  
To use the Wake function during low power mode of the IC, the monitoring pin is switched to Sleep Mode via the  
SFR bit EN.  
25.2.1  
Block Diagram  
VS  
MON  
+
-
Filter  
to internal  
circuitry  
MON  
Logic  
SFR  
MONx_Input_Circuit_ext.vsd  
Figure 28 Monitoring Input Block Diagram  
Data Sheet  
72  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Bridge Driver (incl. Charge Pump)  
26  
Bridge Driver (incl. Charge Pump)  
26.1  
Features  
The MOSFET Driver is intended to drive external normal level NFET transistors in bridge configuration. The driver  
provides many diagnostic possibilities to detect faults.  
Functional Features  
External Power NFET Transistor Driver Stage with driver capability for max. 100 nC gate charge @ 25 kHz  
switching frequency.  
Implemented adjustable cross conduction protection.  
Supply voltage (VSD) monitoring incl. adjustable over- and undervoltage shutdown with configurable interrupt  
signalling.  
VSD operating range down to 5.4 V  
VDS comparators for short circuit detection in on- and off-state  
Open-Load detection in off-state  
26.2  
Introduction  
The MOSFET Driver Stage can be used for controlling external Power NFET Transistors (normal level). The  
module output is controlled by SFR or System PWM Machine (CCU6).  
Data Sheet  
73  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Bridge Driver (incl. Charge Pump)  
26.2.1  
Block Diagram  
VDH  
VCP  
PWM-Unit  
CCU6  
(not part of the module )  
Pre-Driver  
+
VDS  
-
>1  
>1  
GHx  
VREF  
SFR  
SHx  
+
VDS  
GLx  
-
VREF  
SL  
Block_Diagram_PreDriver_Cus.vsd  
Figure 29 Driver Module Block Diagram (incl. system connections)  
26.2.2  
General  
The Driver can be controlled in two different ways:  
In Normal Mode the output stage is fully controllable through the SFR registers CTRLx (x = 1,2,3). Protection  
functions such as overcurrent and open-load detection are available.  
The PWM Mode can also be enabled by the corresponding bit in CTRL1 and CTRL2. The PWM must be  
configured in the System PWM Module (CCU6). All protection functions are available in PWM mode as well.  
Protection Functions  
Overcurrent detection and shutdown feature for external MOSFET by Drain Source measurement  
Programmable minimum cross current protection time  
Open-load detection feature in Off-state for external MOSFET.  
Data Sheet  
74  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Current Sense Amplifier  
27  
Current Sense Amplifier  
27.1  
Features  
Main Features  
Programmable gain settings: G = 10, 20, 40, 60  
Differential input voltage: ± 1.5V / G  
Wide common mode input range ± 2 V  
Low setting time < 1.4 µs  
27.2  
Introduction  
The current sense amplifier in Figure 30 can be used to measure near ground differential voltages via the 10-bit  
ADC. Its gain is digitally programmable through internal control registers.  
Linear calibration has to be applied to achieve high gain accuracy, e.g. end-of-line calibration including the shunt  
resistor.  
Figure 30 shows how the current sense amplifier can be used as a low-side current sense amplifier where the  
motor current is converted to a voltage by means of a shunt resistor RSH. A differential amplifier input is used in  
order to eliminate measurement errors due to voltage drop across the stray resistance RStray and differences  
between the external and internal ground. If the voltage at one or both inputs is out of the operating range, the  
input circuit is overloaded and requires a certain specified recovery time.  
In general, the external low pass filter should provide suppression of EMI.  
27.2.1  
Block Diagram  
VBAT  
M
V
5V  
AREF  
VZERO  
Motor  
Current  
Amplifier  
configurable  
LP Filter  
OP2  
OP1  
ROPAFILT  
Gain: 10, 20, 40, 60  
VP  
Vzero + (VOP2 -VOP1) * G  
10  
/
10-bit ADC  
RSH  
COPAFILT  
ROPAFILT  
ADC1_OUT_CH1  
VN  
CSA_CTRL  
RStray  
Ext. GND  
Current_Sense_Amplifier.vsd  
Figure 30 Simplified Application Diagram  
Data Sheet  
75  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Application Information  
28  
Application Information  
28.1  
H-Bridge Driver  
Figure 31 shows the TLE9869QXA20 in an electric drive application setup controlling an H-Bridge motor.  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Rev . Polarity Protection  
LPFILT  
VBAT  
CPFILT  
CPFILT  
1
1
TRP  
CVD DP 2  
CVDD P1  
CVDDC1  
CVDDC2  
EMC Filter  
DRP  
RRP1  
DVS  
VDDP VDDC  
RRP2  
VS  
TRPG  
CP1H  
CP1L  
CP2H  
CCPS1  
CVS2  
CVS 1  
Switch  
CCPS2  
CP2L  
VCP  
RVBAT  
_SEN SE  
VBAT_SENSE  
RVSD  
CVCP  
CVBAT  
_SEN SE  
VSD  
CVSD  
RVDH  
CVDH  
VDH  
LIN  
LIN  
CLIN  
GND_LIN  
VAREF  
CVAREF  
D
S
D
S
GND_REF  
RGATE  
G
G
GH1  
TH1  
CPH  
TH2  
1
CPH2  
VDD_EXT  
P0.3  
RGS  
CGS  
RGS  
CGS  
CVDD _EXT  
CVDD_EXT  
2
1
RVDDPU  
TLE4946 -2K  
Hall  
RGATE  
GH2  
SH2  
RAD C  
CADC  
CEMC  
M
RMON  
MON  
SH1  
GL1  
CMON  
TLE9869  
CEMC  
D
S
D
S
RGATE  
G
G
RSWITCH  
TL1  
TL2  
RGS  
CGS  
Temp Sensor  
RGS  
CGS  
P2.2  
P1.2  
RGATE  
GL2  
SL  
ROPAFILT  
P1.0  
OP2  
OP1  
RShunt  
COPAFILT  
ROPAFILT  
TMS  
P0.0  
Debug Connector  
P0.1  
P0.4  
P2.5  
P1.3  
GND  
RTMS  
GND  
H-Bridge System  
Figure 31 Simplified Application Diagram Example  
Note:This is a very simplified example of an application circuit and bill of materials. The function must be verified  
in the actual application.  
Data Sheet  
76  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Application Information  
Table 15  
Symbol  
CVS1  
External Components (BOM)  
Function  
Component  
Blocking capacitor at VS pin  
Blocking capacitor at VS pin  
Blocking capacitor at VDDP pin  
Blocking capacitor at VDDEXT pin  
Blocking capacitor at VDDC pin  
Blocking capacitor at VAREF pin  
Standard C for LIN slave  
100 nF Ceramic, ESR < 1Ω  
> 2.2 µF Elco1)  
CVS2  
CVDDP  
CVDD_EXT  
CVDDC  
CVAREF  
CLIN  
470 nF + 100 nF Ceramic, ESR < 1Ω  
100nF, Ceramic ESR < 1Ω  
470 nF + 100 nF Ceramic, ESR < 1Ω  
100 nF, Ceramic ESR < 1Ω  
220 pF  
CVSD  
Filter C for charge pump end driver 1 µF  
CCPS1  
CCP2S  
CVCP  
Charge pump capacitor  
Charge pump capacitor  
Charge pump capacitor  
Filter C for ISO pulses  
Capacitor  
220 nF  
220 nF  
470 nF  
10nF  
1 nF  
CMON1  
CVDH  
CPH1  
Capacitor  
220 µF  
220 µF  
100 nF  
1 nF  
CPH2  
Capacitor  
COPAFILT  
CEMCP1  
CEMCP2  
Capacitor  
Capacitor  
Capacitor  
1 nF  
C
PFILT1, CPFILT2  
CVBAT_SENSE  
RMON1  
Capacitor  
10 µF  
10 nF  
1kΩ  
Capacitor  
Resistor at MON pin  
RVSD  
Limitation of reverse current due to  
transient (-2V, 8ms)  
2Ω  
RVDH  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
1kΩ  
2Ω  
RGATE  
ROPAFILT  
RVBAR_SENSE  
RSH1  
12Ω  
optional  
optional  
RSH2  
LPFILT  
DVS  
Reverse-polarity protection diode  
1) The capacitor must be dimensioned so as to ensure that flash operations modifying the content of the flash are never  
interrupted (e.g. in case of power loss).  
Data Sheet  
77  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Application Information  
28.2  
ESD Immunity According to IEC61000-4-2  
Note:Tests for ESD immunity according to IEC61000-4-2 “Gun test” (150pF, 330) has been performed. The  
results and test condition will be available in a test report.  
Table 16  
ESD “Gun Test”  
Performed Test  
Result  
Unit  
Remarks  
ESD at pin LIN, versus  
GND1)  
> 6  
kV  
2)positive pulse  
ESD at pin LIN, versus  
GND1)  
< -6  
kV  
2)negative pulse  
1) ESD test “ESD GUN” is specified with external components; see application diagram:  
MON = 100nF, RMON = 1k, CLIN = 220pF, CVS = >20µF ELCO + 100nF ESR < 1, CVSD = 1µF, RVSD = 2.  
C
2) ESD susceptibility “ESD GUN” according to LIN EMC Test Specification, Section 4.3 (IEC 61000-4-2). Tested by external  
test house (IBEE Zwickau, EMC Test report Nr. 09-07-14)  
Data Sheet  
78  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29  
Electrical Characteristics  
This chapter includes all relevant electrical characteristics of the product TLE9869QXA20.  
29.1  
General Characteristics  
Absolute Maximum Ratings  
Absolute Maximum Ratings1)  
29.1.1  
Table 17  
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min. Typ. Max.  
Voltages Supply Pins  
Supply voltage – VS  
Supply voltage – VSD  
Supply voltage – VSD  
VS  
-0.3  
-0.3  
40  
48  
48  
V
V
V
Load dump  
P_1.1.1  
P_1.1.2  
VSD  
VSD_max_exten -2.8  
Series resistor RVSD = P_1.1.32  
2.2 , t = 8 ms 2)  
d
Voltage range – VDDP  
Voltage range – VDDP  
VDDP  
-0.3  
5.5  
7
V
V
P_1.1.3  
VDDP_max_ext -0.3  
In case of voltage  
transients on VS with  
dVS/dt 1V/µs;  
P_1.1.41  
end  
duration: t 150µs;  
CVDDP 570 nF  
Voltage range – VDDEXT  
Voltage range – VDDEXT  
VDDEXT  
-0.3  
5.5  
7
V
V
P_1.1.4  
VDDEXT_max_ -0.3  
In case of voltage  
transients on VS with  
dVS/dt 1V/µs;  
P_1.1.42  
extend  
duration: t 150µs;  
CVDDEXT 570 nF  
Voltage range – VDDC  
Voltages High Voltage Pins  
Battery voltage VBAT_SENSE  
Input voltage at LIN  
VDDC  
-0.3  
1.6  
V
P_1.1.5  
3)  
VBAT_SENSE -28  
VLIN -28  
40  
40  
40  
40  
48  
19  
48  
48  
19  
V
V
V
V
V
V
V
V
V
P_1.1.6  
P_1.1.7  
P_1.1.8  
P_1.1.38  
P_1.1.9  
P_1.1.44  
P_1.1.11  
P_1.1.13  
P_1.1.45  
4)  
Input voltage at MON  
VMON_maxrate -28  
VVDH_maxrate -2.8  
5)  
6)  
Input voltage at VDH  
Voltage range at GHx  
VGH  
-6.0  
14  
Voltage range at GHx vs. SHx  
Voltage range at SHx  
VGHvsSH  
VSH  
16  
-6.0  
-6.0  
14  
7)  
Voltage range at GLx  
VGL  
Voltage range at GLx vs. SL  
VGLvsSL  
16  
Data Sheet  
79  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 17  
Absolute Maximum Ratings1) (cont’d)  
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min. Typ. Max.  
8)  
Voltage range at charge pump  
pins CP1H, CP1L, CP2H, CP2L,  
VCP  
VCPx  
-0.3  
48  
V
P_1.1.15  
Voltages GPIOs  
9)  
Voltage on any port pin  
Vin  
-0.3  
VDDP  
+0.3  
V
VIN < VDDPmax  
P_1.1.16  
P_1.1.35  
Current at VCP Pin  
Max. current at VCP pin  
Injection Current at GPIOs  
IVCP  
-15  
-5  
mA  
10)  
10)  
Injection current on any port pin IGPIONM  
5
mA  
mA  
P_1.1.34  
P_1.1.30  
Sum of all injected currents in  
Normal Mode  
IGPIOAM_sum -50  
50  
10)  
10)  
Sum of all injected currents in  
Power Down Mode (Stop Mode)  
IGPIOPD_sum -5000 –  
50  
5
µA  
P_1.1.36  
P_1.1.37  
Sum of all injected currents in  
Sleep Mode  
IGPIOSleep_su -5  
mA  
m
Other Voltages  
Input voltage VAREF  
VAREF  
VOAI  
-0.3  
VDDP  
+0.3  
V
V
P_1.1.17  
P_1.1.23  
Input voltage  
OP1, OP2  
-7  
7
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_1.1.18  
P_1.1.19  
Tstg  
ESD susceptibility  
all pins  
VESD1  
VESD2  
-2  
-4  
2
4
kV  
kV  
HBM 11)  
HBM 12)  
P_1.1.20  
P_1.1.21  
ESD susceptibility  
pins MON, VS, VSD,  
VBAT_SENSE vs.GND  
ESD susceptibility  
pins LIN vs. GND_LIN  
VESD3  
-6  
6
kV  
V
HBM 11)  
P_1.1.22  
P_1.1.28  
P_1.1.43  
13)  
ESD susceptibility CDM  
all pins vs. GND  
VESD_CDM1  
VESD_CDM2  
-500  
-750  
500  
750  
13)  
ESD susceptibility CDM  
pins 1, 12, 13, 24, 25, 36, 37, 48  
(corner pins) vs. GND  
V
1) Not subject to production test, specified by design.  
2) Conditions and min. value is derived from application condition for reverse polarity event.  
Data Sheet  
80  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
3) Min voltage -28V with external 3.9kseries resistor only.  
4) Min voltage -28V with external 3.9kseries resistor only.  
5) Min voltage -2.8V with external 1kseries resistor only.  
6) To achieve max. ratings on this pin, Parameter P_1.1.44 has to be taken into account resulting in the following dependency:  
VGH < VSH + VGHvsSH and additionally VSH < VGH + 0.3V.  
7) To achieve max. ratings on this pin, Parameter P_1.1.45 has to be taken into account resulting in the following dependency:  
VGL < VSL + VGLvsSL and additionally VSL < VGL + 0.3V.  
8) These limits can be kept if max current drawn out of pin does not exceed limit of 200 µA.  
9) Includes TMS and RESET.  
10) Maximum rating for injection current of GPIO with VIN respected.  
11) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001 (1.5k, 100pF)  
12) MON with external circuitry of a series resistor of 3.9kand 10nF (at connector); VS with an external ceramic capacitor of  
100nF; VSD with an external capacitor of 470nF; VDH with external circuitry of a series resistor of 1kand 3.3nF (at pin).  
13) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JESD22-C101F  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Data Sheet  
81  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.1.2  
Functional Range  
Table 18  
Functional Range  
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ.  
Max.  
28  
Supply voltage in Active Mode  
VS_AM  
5.5  
V
V
P_1.2.1  
Extended supply voltage in Active  
Mode  
VS_AM_exte 28  
40  
1) Functionalwith P_1.2.16  
parameter  
nd  
deviation  
Supply voltage in Active Mode for  
MOSFET Driver Supply  
VSD_AM  
5.4  
28  
32  
V
V
P_1.2.18  
Extended supply voltage in Active  
Mode for MOSFET Driver Supply  
VSD_AM_ext 28  
1)Functional with P_1.2.17  
parameter  
end  
deviation  
Specified supply voltage for LIN  
Transceiver  
VS_AM_LIN 5.5  
VS_AM_LIN 4.8  
18  
28  
V
V
Parameter  
Specification  
P_1.2.2  
Extended supply voltage for LIN  
Transceiver  
Functional with P_1.2.14  
parameter  
deviation  
2)  
Supply voltage in Active Mode with  
reduced functionality (Microcontroller /  
Flash with full operation)  
VS_AMmin 3.0  
5.5  
V
P_1.2.3  
Supply voltage in Sleep Mode  
VS_Sleep  
3.0  
-1  
28  
1
V
3)  
P_1.2.4  
P_1.2.5  
P_1.2.7  
P_1.2.15  
P_1.2.9  
Supply voltage transients slew rate  
dVS/dt  
V/µs  
mA  
MHz  
°C  
Output sum current for all GPIO pins IGPIO,sum  
-50  
5
50  
24  
150  
4)  
Operating frequency  
Junction temperature  
fsys  
Tj  
-40  
1) This operation voltage range is only allowed for a short duration: tmax 400 ms, fsys = 24 MHz, IVDDP = 10 mA, IVDDEXT = 5 mA.  
2) Reduced functionality (e.g. cranking pulse) - Parameter deviation possible.  
3) Not subject to production test, specified by design.  
4) Function not specified when limits are exceeded.  
Data Sheet  
82  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.1.3  
Current Consumption  
Table 19  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Current Consumption @VS pin  
Current consumption in IVs  
Active Mode at pin VS  
30  
35  
mA  
f
sys = 20 MHz  
P_1.3.1  
P_1.3.8  
no loads on pins, LIN in recessive  
state1)  
Current consumption in IVSD  
Active Mode at pin VSD  
40  
30  
mA 20 kHz  
PWM on Bridge Driver  
sys = 5 MHz; LIN communication P_1.3.6  
Current consumption in ISDM  
mA  
f
Slow Down Mode  
running; charge pump on (reverse  
polarity FET on), external Low  
Side FET static on (motor break  
mode); VDDEXT on; all other  
module set to power down;VS =  
13.5V  
Current consumption in ISleep  
Sleep Mode  
30  
90  
35  
µA  
System in Sleep Mode,  
microcontrollernotpowered, Wake  
capable via LIN and MON; MON  
connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
P_1.3.3  
P_1.3.15  
P_1.3.9  
TJ = -40°C to 85°C;  
VS = 5.5 V to 18V;2)  
Current consumption in ISleep_exten  
200  
µA  
System in Sleep Mode,  
microcontrollernotpowered, Wake  
capable via LIN and MON; MON  
connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
Sleep Mode extended  
d
range  
TJ = -40°C to 150°C;  
VS = 5.5 V to 18V;2)  
Current consumption in ISleep  
Sleep Mode  
33  
µA  
System in Sleep Mode,  
microcontrollernotpowered, Wake  
capable via LIN and MON; MON  
connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
TJ = -40°C to 40°C;  
VS = 5.5 V to 18V;2)  
Data Sheet  
83  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 19  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Current consumption in ICyclic  
Sleep Mode with cyclic  
wake  
110  
µA  
TJ = -40°C to 85°C;  
VS = 5.5 V to 18V;  
P_1.3.4  
t
t
Cyclic_ON = 4ms;  
Cyclic_OFF = 2048 ms;2)  
Current consumption in IStop  
100  
150  
µA  
System in Stop Mode,  
P_1.3.10  
Stop Mode  
microcontroller not clocked, Wake  
capable via LIN and MON; MON  
connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND; TJ = -  
40°C to 85°C;  
VS = 5.5V to 18V  
1) Current on VS, ADC1/2 active, timer running, LIN active (recessive).  
2) Incl. leakage currents form VBAT_SENSE, VDH, VSD and MON  
Note:Within the functional range, the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Data Sheet  
84  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.1.4  
Thermal Resistance  
Table 20  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
6
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Junction to Soldering Point  
Junction to Ambient  
RthJSP  
RthJA  
K/W  
1) measured to  
P_1.4.1  
P_1.4.2  
Exposed Pad  
2)  
33  
K/W  
1) Not subject to production test, specified by design.  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board. Board: 76.2x114.3x1.5mm³ with 2 inner  
copper layers (35µm thick), with thermal via array under the exposed pad contacting the first inner copper layer and  
300mm2 cooling area on the bottom layer (70µm).  
29.1.5  
Timing Characteristics  
The transition times between the system modes are specified here. Generally the timings are defined from the  
time when the corresponding bits in register PMCON0 are set until the sequence is terminated.  
Table 21  
System Timing1)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note / Test Condition  
Number  
Max.  
Wake-up over battery  
Wake-up over battery  
tstart  
3
ms  
ms  
Battery ramp-up time to code P_1.5.6  
execution  
tstartSW  
1.5  
1.5  
330  
Battery ramp-up time to till  
MCU reset is released; VS > 3  
V and RESET = 1  
P_1.5.1  
P_1.5.2  
P_1.5.3  
Sleep-Exit  
tsleep - exit  
ms  
µs  
Rising/falling edge of any  
wake-up signal (LIN, MON) till  
MCU reset is released;  
2)  
Sleep-Entry  
tsleep -  
entry  
1) Not subject to production test, specified by design.  
2) Wake events during Sleep-Entry are stored and lead to wake-up after Sleep Mode is reached.  
Data Sheet  
85  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.2  
Power Management Unit (PMU)  
This chapter includes all electrical characteristics of the Power Management Unit  
29.2.1  
PMU I/O Supply (VDDP) Parameters  
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the pad-  
supply VDDP and the transition times between the system modes are specified here.  
Table 22  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
1)  
Specified output current  
Specified output current  
IVDDP  
0
50  
30  
2.2  
mA  
P_2.1.1  
P_2.1.22  
P_2.1.2  
1)2)  
IVDDP  
0
mA  
Required decoupling  
capacitance  
CVDDP1  
0.47  
µF  
µF  
V
3)4) ESR < 1; the  
specified capacitor value  
is a typical value.  
3)4) The specified  
capacitor value is a  
typical value.  
Required buffer capacitance for CVDDP2  
stability (load jumps)  
1
2.2  
5.1  
5.1  
5.5  
400  
P_2.1.20  
Output voltage including line  
and load regulation @ Active  
Mode  
VDDPOUT 4.9  
5.0  
5.0  
5.0  
50  
5) Iload < 90mA; VS > 5.5V P_2.1.3  
Output voltage including line  
and load regulation @ Active  
Mode  
VDDPOUT 4.9  
V
2)5) Iload < 70mA; VS >  
5.5V  
P_2.1.23  
P_2.1.21  
P_2.1.4  
Output voltage including line  
and load regulation @ Stop  
Mode  
VDDPOUTS 4.5  
V
5) Iload is only internal;  
VS > 5.5V  
TOP  
Output drop @ Active Mode  
VSVDDPout  
mV  
I
VDDP = 30mA6);  
3.5V < VS < 5.0V  
2 ... 90mA; C = 570nF  
VS = 5.5 ... 28V  
Load regulation @ Active Mode VVDDPLOR -50  
Line regulation @ Active Mode VVDDPLIR -50  
50  
50  
5.4  
mV  
mV  
V
P_2.1.5  
P_2.1.6  
Overvoltage detection  
VDDPOV  
5.14  
VS > 5.5V; Overvoltage P_2.1.7  
leads to SUPPLY_NMI  
3)7)  
Overvoltage detection filter time tFILT_VDDP  
735  
µs  
V
P_2.1.24  
OV  
3)  
Voltage OK detection  
VDDPOK  
3
P_2.1.25  
3)  
Voltage stable detection range8) VDDPSTB - 220  
+ 220 mV  
P_2.1.26  
Undervoltage reset  
VDDPUV  
IVDDPOC  
2.5  
91  
2.6  
2.7  
V
P_2.1.8  
P_2.1.9  
Overcurrent diagnostic  
220  
mA  
Data Sheet  
86  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 22  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
3)7)  
Overcurrent diagnostic filter  
time  
tFILT_VDDP  
27  
µs  
P_2.1.27  
P_2.1.28  
OC  
3)7)9)  
Overcurrent diagnostic  
shutdown time  
tFILT_VDDP  
290  
µs  
OC_SD  
1) Specified output current for port supply and additional other external loads already excluding VDDC current.  
2) This use case applies to cases where output current on VDDEXT is max. 40 mA.  
3) Not subject to production test, specified by design.  
4) Ceramic capacitor.  
5) Load current includes internal supply.  
6) Output drop for IVDDP without internal supply current.  
7) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK  
8) The absolute voltage value is the sum of parameters VDDP + VDDPSTB  
9) After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter sleep mode.  
.
.
Data Sheet  
87  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.2.2  
PMU Core Supply (VDDC) Parameters  
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the core-  
supply VDDC and the transition times between the system modes are specified here.  
Table 23  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note /  
Test Condition  
Number  
Max.  
Required decoupling capacitance CVDDC1  
0.1  
1
µF  
1)2) ESR < 1; the  
specified capacitor  
value is a typical  
value.  
P_2.2.1  
Required buffer capacitance for  
stability (load jumps)  
CVDDC2  
0.33  
1
µF  
V
2)the specified  
capacitor value is a  
typical value.  
P_2.2.17  
P_2.2.2  
Output voltage including line  
regulation @ Active Mode/Stop  
Mode  
VDDCOUT 1.44 1.5  
1.56  
Iload < 40mA  
Load Regulation @ Active Mode  
Line regulation @ Active Mode  
Overvoltage detection  
VDDCLOR -50  
VDDCLIR -25  
VDDCOV  
50  
mV  
mV  
V
2 ... 40mA; C =430nF P_2.2.3  
DDP = 2.5 ... 5.5V P_2.2.4  
25  
V
1.59 1.62  
1.68  
Overvoltage leads to P_2.2.5  
SUPPLY_NMI  
1)3)  
Overvoltage detection filter time  
tFILT_VDDC  
735  
µs  
P_2.2.18  
OV  
1)  
Voltage OK detection range4)  
Voltage stable detection range5)  
Undervoltage reset  
VDDCOK - 280  
VDDCSTB - 110  
+ 280 mV  
+ 110 mV  
P_2.2.19  
1)  
P_2.2.20  
VDDVUV  
1.136 1.20  
1.264  
100  
V
P_2.2.6  
P_2.2.7  
P_2.2.21  
Overcurrent diagnostic  
IVDDCOC 45  
mA  
µs  
1)3)  
Overcurrent diagnostic filter time tFILT_VDDC  
27  
OC  
1)3)6)  
Overcurrent diagnostic shutdown tFILT_VDDC  
290  
µs  
P_2.2.22  
time  
OC_SD  
1) Not subject to production test, specified by design.  
2) Ceramic capacitor.  
3) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK  
4) The absolute voltage value is the sum of parameters VDDC + VDDCSTB  
5) The absolute voltage value is the sum of parameters VDDC + VDDCOK  
6) After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter sleep mode.  
.
.
.
Data Sheet  
88  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.2.3  
VDDEXT Voltage Regulator (5.0V) Parameters  
Table 24  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
0
Typ. Max.  
Specified output current  
Specified output current  
IVDDEXT  
IVDDEXT  
20  
40  
2.2  
mA  
mA  
µF  
1)  
P_2.3.1  
0
P_2.3.21  
P_2.3.22  
Required decoupling capacitance CVDDEXT1  
0.1  
3) 2)ESR < 1 ; the  
specified capacitor  
value is a typical  
value.  
Required buffer capacitance for  
stability (load jumps)  
CVDDEXT2  
1
2.2  
µF  
3)2)the specified  
capacitor value is a  
typical value.  
P_2.3.20  
Output voltage including line and VDDEXT  
load regulation  
4.9  
4.8  
5.0  
5.0  
50  
5.1  
5.2  
V
V
3) Iload<20mA; VS >  
5.5V  
P_2.3.3  
P_2.3.23  
P_2.3.4  
P_2.3.14  
Output voltage including line and VDDEXT  
load regulation  
Iload<40mA; VS >  
5.5V  
3) Iload < 20mA;  
3V < VS < 5.0V  
Output drop @ Active Mode  
Output drop @ Active Mode  
VS-VDDEXT  
VS-VDDEXT  
+300 mV  
+400 mV  
I
load < 40mA;  
3V < VS < 5.0V  
2 ... 40mA; C =200nF P_2.3.5  
VS = 5.5 ... 28V P_2.3.6  
Load regulation @ Active Mode  
Line regulation @ Active Mode  
VDDEXTLOR -50  
VVDDEXTLIR -50  
50  
50  
mV  
mV  
dB  
Power supply ripple rejection @ PSSRVDDEXT 50  
3) VS = 13.5V; f =0 ... P_2.3.7  
Active Mode  
1KHz; Vr=2Vpp  
Overvoltage detection  
VVDDEXTOV 5.18  
5.4  
V
VS > 5.5V  
3)4)  
P_2.3.8  
Overvoltage detection filter time tFILT_VDDEXT  
735  
µs  
P_2.3.24  
OV  
3)  
3)  
Voltage OK detection range  
Voltage stable detection range5) VVDDEXTST - 220  
VVDDEXTOK  
3
V
P_2.3.25  
P_2.3.26  
+ 220 mV  
B
6)  
Undervoltage trigger  
VVDDEXTUV 2.6  
IVDDEXTOC 50  
2.8  
3.0  
160  
V
P_2.3.9  
Overcurrent diagnostic  
mA  
µs  
µs  
3)4)  
P_2.3.10  
P_2.3.27  
P_2.3.28  
Overcurrent diagnostic filter time tFILT_VDDCOC  
Overcurrent diagnostic shutdown tFILT_VDDCOC  
27  
290  
3)4)  
time  
_SD  
1) This use case requires the reduced utilization of VDDP output current by 20 mA, see P_2.1.22.  
2) Ceramic capacitor.  
3) Not subject to production test, specified by design.  
4) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK  
.
Data Sheet  
89  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
5) The absolute voltage value is the sum of parameters VDDEXT + VDDEXTSTB  
.
6) When the condition is met, the Bit VDDEXT_CTRL.bit.SHORT will be set.  
Data Sheet  
90  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.2.4  
VPRE Voltage Regulator (PMU Subblock) Parameters  
The PMU VPRE Regulator acts as a supply of VDDP and VDDEXT voltage regulators.  
Table 25  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note / Test Condition Number  
Min.  
Typ. Max.  
1)  
Specified output current  
IVPRE  
110  
mA  
P_2.4.1  
1) Not subject to production test, specified by design.  
29.2.4.1 Load Sharing Scenarios of VPRE Regulator  
The figure below shows the possible load sharing scenarios of VPRE regulator.  
VS  
VPRE  
max. 110 mA  
VDDEXT - 5V  
1: max. 20 mA  
2: max. 40 mA  
VDDP - 5V  
1: max. 90 mA  
2: max. 70 mA  
VDDEXT  
VDDP  
VDDC  
CVDDEXT  
CVDDP  
GND (Pin 39)  
GND (Pin 39)  
VDDC - 1.5V  
max. 40 mA  
CVDDC  
GND (Pin 39)  
Load Sharing VPRE – Scenarios 1 & 2  
Load_Sharing_VPRE.vsd  
Figure 32 Load Sharing Scenarios of VPRE Regulator  
29.2.5  
Power Down Voltage Regulator (PMU Subblock) Parameters  
The PMU Power Down voltage regulator consists of two subblocks:  
Power Down Pre regulator: VDD5VPD  
Power Down Core regulator: VDD1V5_PD (Supply used for GPUDATAxy registers)  
Both regulators are used as purely internal supplies. The following table contains all relevant parameters:  
Data Sheet  
91  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 26  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note / Test Condition Number  
Min.  
Typ. Max.  
VDD1V5_PD  
1)  
Power-On Reset Threshold  
VDD1V5_PD_ 1.2  
1.5  
V
P_2.5.1  
RSTTH  
1) Not subject to production test, specified by design  
Data Sheet  
92  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.3  
System Clocks  
29.3.1  
Oscillators and PLL Parameters  
Table 27  
Electrical Characteristics System Clocks  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Number  
Min.  
PMU Oscillators (Power Management Unit)  
Max.  
Frequency of LP_CLK fLP_CLK  
14  
18  
22  
MHz This clock is used at startup P_3.1.1  
and can be used in case the  
PLL fails  
Frequency of LP_CLK2 fLP_CLK2  
70  
100  
130  
kHz This clock is used for cyclic P_3.1.2  
wake  
CGU Oscillator (Clock Generation Unit Microcontroller)  
Short term frequency  
deviation1)  
fTRIMST  
-0.4  
+0.4  
%
2)3) Within any 10 ms, e.g.  
after synchronization to a  
LIN frame (PLL settings  
untouched within 10 ms)  
P_3.1.3  
Absolute accuracy  
fTRIMABSA -1.5  
tOSC  
+1.5  
10  
%
Including temperature and P_3.1.4  
lifetime deviation  
CGU-OSC Start-up  
time  
µs  
3) Startup time OSC from  
Sleep Mode, power supply  
stable  
P_3.1.5  
PLL (Clock Generation Unit Microcontroller) 3)  
VCO frequency range fVCO-0  
Mode 0  
48  
112  
160  
MHz VCOSEL =”0”  
MHz VCOSEL =”1”  
P_3.1.6  
P_3.1.7  
VCO frequency range fVCO-1  
96  
Mode 1  
Input frequency range fOSC  
XTAL1 input freq. range fOSC  
4
4
16  
16  
80  
38  
MHz  
MHz  
MHz  
P_3.1.8  
P_3.1.9  
P_3.1.10  
P_3.1.11  
Output freq. range  
fPLL  
0.04687 –  
Free-running frequency fVCOfree_0  
Mode 0  
MHz VCOSEL =”0”  
Free-running frequency fVCOfree_1  
Mode 1  
76  
MHz VCOSEL =”1”  
P_3.1.12  
P_3.1.13  
Input clock high/low  
time  
thigh/low  
10  
ns  
Peak period jitter  
Accumulated jitter  
Lock-in time  
tjp  
-500  
500  
5
ps  
ns  
µs  
4) for K=1  
4) for K=1  
P_3.1.14  
P_3.1.15  
P_3.1.16  
jacc  
tL  
200  
Data Sheet  
93  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
1) The typical oscillator frequency is 5 MHz  
2) VDDC = 1.5 V, Tj = 25°C  
3) Not subject to production test, specified by design.  
4) This parameter is valid for PLL operation with an external clock source and thus reflects the real PLL performance.  
29.4  
Flash Memory  
This chapter includes the parameters for the 128 kByte embedded flash module.  
29.4.1  
Flash Parameters  
Table 28  
Flash Characteristics1)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit  
Note /  
Number  
Test Condition  
Min.  
Typ. Max.  
Programming time per 128 byte page tPR  
32)  
42)  
3.5  
4.5  
ms  
3V < VS < 28V P_4.1.1  
3V < VS < 28V P_4.1.2  
Erase time per sector/page  
Data retention time  
tER  
ms  
tRET  
20  
years  
1,000 erase /  
P_4.1.3  
program cycles  
Data retention time  
tRET  
50  
years  
1,000 erase /  
program cycles  
Tj = 30°C3)  
P_4.1.9  
Flash erase endurance for user sectors NER  
30  
10  
32  
kcycles Data retention P_4.1.4  
time 5 years  
cycles 4)Data retention P_4.1.5  
Flash erase endurance for security  
pages  
NSEC  
NDD  
time 20 years  
5)  
Drain disturb limit  
kcycles  
P_4.1.6  
1) Not subject for production test, specified by design.  
2) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system  
clock cycles. The requirement is only relevant for extremely low system frequencies.  
3) Derived by extrapolation of lifetime tests.  
4) Temperature: 25 °C  
5) This parameter limits the number of subsequent programming operations within a physical sector without a given page in  
this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal  
sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM emulation firmware  
routines handle this limit automatically, for wordline erases in code sectors (without EEPROM emulation) it is  
recommended to execute a software based refresh, which may make use of the integrated random number generator  
NVMBRNG to statistically start a refresh.  
Data Sheet  
94  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.5  
Parallel Ports (GPIO)  
29.5.1  
Description of Keep and Force Current  
VDDP  
keeper  
current  
PU Device  
PUDSEL  
P1.x  
P0.x  
\PUDSEL  
keeper  
current  
PD Device  
VSS  
Pull-Up-Down.vsd  
Figure 33 Pull-Up/Down Device  
UGPIO  
Logical "1"  
Undefined  
Logical "0"  
7.5 kOhm (equivalent)  
(1.5V / 200uA)  
VIH - VDDP  
VIL - VDDP  
2.33 kOhm (equivalent)  
(3.5V / 1.5mA)  
I
-IPLF  
-IPLK  
Current_Diag.vsd  
Figure 34 Pull-Up Keep and Forced Current  
Data Sheet  
95  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
UGPIO  
Logical "1"  
Undefined  
Logical "0"  
2.33 kOhm (equivalent)  
(3.5V / 1.5mA)  
VIH  
VIL  
7.5 kOhm (equivalent)  
(1.5V / 200uA)  
I
IPLK  
IPLF  
Current_Diag-Pull_down.vsd  
Figure 35 Pull-Down Keep and Force Current  
29.5.2  
DC Parameters of Port 0, Port 1, TMS and Reset  
Note:Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.  
For signal levels outside these specifications, also refer to the specification of the maximum allowed ocurrent  
which can be taken out of VDDP.  
Table 29  
Port Output Driver Mode  
Current Limits for Port Output Drivers1)  
Maximum Output Current  
(IOLmax , - IOHmax)  
DDP 4.5V  
Maximum Output Current  
(IOLnom , - IOHnom)  
Number  
V
2.6V < VDDP < VDDP 4.5V 2.6V < VDDP <  
4.5V  
4.5V  
Strong driver2)  
Medium driver3)  
Weak driver3)  
5 mA  
3 mA  
1.6 mA  
1.0 mA  
0.25 mA  
1.0 mA  
0.8 mA  
0.15 mA  
P_5.1.15  
P_5.1.1  
P_5.1.2  
3 mA  
1.8 mA  
0.3 mA  
0.5 mA  
1) Not subject to production test, specified by design.  
2) Not available for port pins P0.4, P1.0, P1.1 and P1.2  
3) All P0.x and P1.x  
Table 30  
DC Characteristics Port0, Port1  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
HYSP0_P1 0.11 x VDDP  
Max.  
Input hysteresis  
V
1) Series  
P_5.1.5  
resistance = 0 ;  
4.5V VDDP  
5.5V  
Input hysteresis  
Data Sheet  
HYSP0_P1  
0.09 x  
VDDP  
V
1) Series  
resistance = 0 ;  
2.6V VDDP  
4.5V  
P_5.1.16  
_exend  
96  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 30  
DC Characteristics Port0, Port1 (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Input low voltage  
Input low voltage  
Input high voltage  
Input high voltage  
VIL  
-0.3  
0.3 x VDDP  
V
2)4.5V VDDP  
P_5.1.3  
P_5.1.17  
P_5.1.4  
P_5.1.18  
5.5V  
VIL_extend -0.3  
0.42 x  
VDDP  
V
1)2.6V VDDP  
4.5V  
VIH  
0.7 x VDDP  
V
DDP + 0.3 V  
2)4.5V VDDP  
5.5V  
VIH_extend  
0.52 x VDDP + 0.3 V  
1)2.6V VDDP  
VDDP  
4.5V  
Output low voltage  
Output low voltage  
Output high voltage  
Output high voltage  
Input leakage current  
VOL  
VOL  
VOH  
VOH  
IOZ2  
1.0  
0.4  
V
V
V
V
3) 4) IOL IOLmax P_5.1.6  
3) 5) IOL IOLnom P_5.1.7  
3) 4) IOH IOHmax P_5.1.8  
3) 5) IOH IOHnom P_5.1.9  
V
V
DDP - 1.0  
DDP - 0.4  
-5  
+5  
µA 6) TJ 85°C,  
0.45 V < VIN  
< VDDP  
P_5.1.10  
Input leakage current  
IOZ2  
-15  
+15  
µA TJ 150°C,  
0.45 V < VIN  
< VDDP  
P_5.1.11  
Pull level keep current  
Pull level force current  
IPLK  
IPLF  
CIO  
-200  
-1.5  
+200  
+1.5  
10  
µA 7) VPIN VIH (up) P_5.1.12  
PIN VIL (dn)  
mA 7) VPIN VIL (up) P_5.1.13  
V
VPIN VIH (dn)  
1)  
Pin capacitance  
pF  
µs  
P_5.1.14  
P_5.1.19  
Reset Pin Timing  
1)  
Reset Pin Input Filter Time Tfilt_RESET  
5
1) Not subject to production test, specified by design.  
2) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.  
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for pin  
groups must be respected.  
4) Tested at 4.9V < VDDP < 5.1V, IOL = 4mA, IOH = -4mA, specified for 4.5V < VDDP < 5.5V.  
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOLGND, VOHVDDP).  
Tested at 4.9V < VDDP < 5.1V, IOL = 1mA, IOH = -1mA.  
6) The given values are worst-case values. In production tests, this leakage current is only tested at 150°C; other values are  
ensured by correlation. For derating, please refer to the following descriptions:  
Leakage derating depending on temperature (TJ = junction temperature [°C]):  
I
OZ = 0.05 × e(1.5 + 0.028×TJ) [µA]. For example, at a temperature of 95°C the resulting leakage current is 3.2 µA.  
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):  
OZ = IOZtempmax - (1.6 × DV) [µA]  
This voltage derating formula is an approximation which applies for maximum temperature.  
I
Data Sheet  
97  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
7) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default  
pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled  
pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.  
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose  
IO pins.  
29.5.3  
DC Parameters of Port 2  
These parameters apply to the IO voltage range, 4.5 V VDDP 5.5 V.  
Note:Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.  
For signal levels outside these specifications, also refer to the specification of the overload current IOV  
.
Table 31 DC Characteristics Port 2  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Input low voltage  
Input low voltage  
Input high voltage  
Input high voltage  
Input hysteresis  
VIL  
-0.3  
0.3 x VDDP  
V
1)4.5V VDDP  
5.5V  
2)2.6V VDDP  
4.5V  
1)4.5V VDDP  
5.5V  
2)2.6V VDDP  
P_5.2.1  
P_5.2.10  
P_5.2.2  
P_5.2.11  
P_5.2.3  
VIL_extend -0.3  
0.42 x  
VDDP  
V
VIH  
0.7 x VDDP  
V
DDP + 0.3 V  
VIH_extend  
HYSP2  
0.52 x VDDP + 0.3 V  
VDDP  
4.5V  
0.11 x VDDP  
V
2)Series  
resistance = 0 ;  
4.5V VDDP  
5.5V  
Input hysteresis  
HYSP2_ext  
0.09 x  
V
2)Series  
P_5.2.12  
VDDP  
resistance = 0 ;  
2.6V VDDP <  
4.5V  
end  
Input leakage current  
Pull level keep current  
Pull level force current  
IOZ1  
IPLK  
IPLF  
CIO  
-400  
-30  
-750  
+400  
+30  
+750  
10  
nA TJ 85°C,  
0 V < VIN < VDDP  
µA 3) VPIN VIH (up) P_5.2.5  
PIN VIL (dn)  
µA 3) VPIN VIL (up) P_5.2.6  
P_5.2.4  
V
VPIN VIH (dn)  
2)  
Pin capacitance  
pF  
P_5.2.7  
(digital inputs/outputs)  
1) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.  
2) Not subject to production test, specified by design.  
3) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default  
pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled  
pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.  
Data Sheet  
98  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.6  
LIN Transceiver  
29.6.1  
Electrical Characteristics  
Table 32  
Electrical Characteristics LIN Transceiver  
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition Number  
Min.  
Max.  
Bus Receiver Interface  
Receiver threshold voltage, Vth_dom 0.4 ×VS 0.45 ×VS 0.53 x VS  
V
SAE J2602  
P_6.1.1  
recessive to dominant edge  
Receiver dominant state  
VBUSdom -27  
0.4 ×VS  
V
V
LIN Spec 2.2 (Par. 17) P_6.1.2  
SAE J2602 P_6.1.3  
Receiver threshold voltage, Vth_rec  
0.47 x 0.55 ×VS 0.6 ×VS  
dominant to recessive edge  
VS  
Receiver recessive state  
Receiver center voltage  
VBUSrec 0.6 ×VS  
1.15 ×VS  
V
V
1) LIN Spec 2.2 (Par. 18) P_6.1.4  
2) LIN Spec 2.2 (Par. 19) P_6.1.5  
VBUS_CN 0.475  
0.5 ×VS 0.525  
× VS  
× VS  
T
Receiver hysteresis  
VHYS  
0.07 VS 0.12 ×VS 0.175  
× VS  
V
3) LIN Spec 2.2 (Par. 20) P_6.1.6  
Wake-up threshold voltage VBUS,wk 0.4 ×VS 0.5 ×VS 0.6 ×VS  
V
P_6.1.7  
P_6.1.8  
Dominant time for bus wake- tWK,bus  
up (internal analog filter  
delay)  
3
15  
µs  
The overall dominant  
time for bus wake-up is  
a sum of tWK,bus  
+
adjustable digital filter  
time. The digital filter  
time can be adjusted by  
PMU.CNF_WAKE_FIL  
TER.CNF_LIN_FT;  
Bus Transmitter Interface  
Bus recessive output  
voltage  
VBUS,ro 0.8 ×VS  
VS  
V
V
TxD = high Level  
P_6.1.9  
Bus short circuit current  
IBUS,sc  
40  
100  
150  
mA Current Limitation for  
driver dominant state  
driver on  
P_6.1.10  
V
BUS = 18 V; LIN Spec  
2.2 (Par. 12)  
Bus short circuit filter time  
tBUS,sc  
1
µs  
The overall bus short  
circuit filter time is a sum  
of tBUS,sc + digital filter  
time. The digital filter  
time is 4 µs (typ.)  
P_6.1.71  
Data Sheet  
99  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 32  
Electrical Characteristics LIN Transceiver (cont’d)  
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition Number  
Min.  
Max.  
Leakage current (loss of  
ground)  
IBUS_NO_ -1000  
-450  
1000  
µA VS = 12 V; 0 < VBUS  
<
P_6.1.11  
18 V; LIN Spec 2.2 (Par.  
15)  
GND  
Leakage current  
Leakage current  
Leakage current  
Bus pull-up resistance  
IBUS_NO_  
10  
20  
µA VS = 0 V; VBUS = 18 V; P_6.1.12  
LIN Spec 2.2 (Par. 16)  
BAT  
IBUS_PAS -1  
mA VS = 18 V; VBUS = 0 V; P_6.1.13  
LIN Spec 2.2 (Par. 13)  
_dom  
IBUS_PAS  
20  
47  
µA VS = 8 V; VBUS = 18 V; P_6.1.14  
LIN Spec 2.2 (Par. 14)  
_rec  
RBUS  
20  
30  
kNormal mode LIN Spec P_6.1.15  
2.2 (Par. 26)  
AC Characteristics - Transceiver Normal Slope Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
td(H),R  
tsym,R  
tduty1  
0.1  
6
6
2
µs  
µs  
µs  
LIN Spec 2.2  
(Param. 31)  
P_6.1.16  
P_6.1.17  
P_6.1.18  
P_6.1.19  
Propagation delay  
bus recessive to RxD HIGH  
0.1  
LIN Spec 2.2  
(Param. 31)  
Receiver delay symmetry  
-2  
tsym,R = td(L),R - td(H),R;  
LIN Spec 2.2 (Par. 32)  
4) duty cycle 1  
THRec(max) =  
0.744 ×VS;  
Duty cycle D1  
Normal Slope Mode  
(for worst case at 20 kbit/s)  
0.396  
THDom(max) =  
0.581 ×VS; VS = 5.5 …  
18 V;  
tbit = 50 µs;  
D1 = tbus_rec(min)/2 tbit;  
LIN Spec 2.2 (Par. 27)  
Duty cycle D2  
tduty2  
0.581  
4) duty cycle 2  
P_6.1.20  
Normal Slope Mode  
(for worst case at 20 kbit/s)  
THRec(min) = 0.422 ×VS;  
THDom(min) =  
0.284 ×VS;  
VS = 5.5 … 18 V;  
tbit = 50 µs;  
D2 = tbus_rec(max)/2 tbit;  
LIN Spec 2.2 (Par. 28)  
AC Characteristics - Transceiver Low Slope Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
6
6
µs  
µs  
LIN Spec 2.2  
(Param. 31)  
P_6.1.21  
P_6.1.22  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
0.1  
LIN Spec 2.2  
(Param. 31)  
Data Sheet  
100  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 32  
Electrical Characteristics LIN Transceiver (cont’d)  
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition Number  
Min.  
Max.  
Receiver delay symmetry  
tsym,R  
tduty1  
-2  
2
µs  
t
sym,R = td(L),R - td(H),R  
;
P_6.1.23  
P_6.1.24  
LIN Spec 2.2 (Par. 32)  
Duty cycle D3  
(for worst case at  
10,4 kbit/s)  
0.417  
4) duty cycle 3  
THRec(max) =  
0.778 ×VS;  
THDom(max) =  
0.616 ×VS; VS = 5.5 …  
18 V;  
tbit = 96 µs;  
D3 = tbus_rec(min)/2 tbit;  
LIN Spec 2.2 (Par. 29)  
Duty cycle D4  
(for worst case at  
10,4 kbit/s)  
tduty2  
0.590  
4) duty cycle 4  
THRec(min) = 0.389 ×VS;  
THDom(min) =  
P_6.1.25  
0.251 ×VS;  
VS = 5.5 … 18 V;  
tbit = 96 µs;  
D4 = tbus_rec(max)/2 tbit;  
LIN Spec 2.2 (Par. 30)  
AC Characteristics - Transceiver Fast Slope Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
td(H),R  
tsym,R  
0.1  
0.1  
-1.5  
6
µs  
µs  
µs  
P_6.1.26  
P_6.1.27  
P_6.1.28  
Propagation delay  
bus recessive to RxD HIGH  
6
Receiver delay symmetry  
1.5  
t
sym,R = td(L),R - td(H),R  
;
AC Characteristics - Flash Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
td(H),R  
tsym,R  
0.1  
0.1  
-1.0  
6
µs  
µs  
µs  
P_6.1.31  
P_6.1.32  
P_6.1.33  
Propagation delay  
bus recessive to RxD HIGH  
6
Receiver delay symmetry  
1.5  
tsym,R = td(L),R - td(H),R  
;
Data Sheet  
101  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 32  
Electrical Characteristics LIN Transceiver (cont’d)  
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition Number  
Min.  
Max.  
Duty cycle D7 (for worst  
case at 115 kbit/s)  
for +1 µs Receiver delay  
symmetry  
tduty1  
0.399  
5) duty cycle D7  
THRec(max) =  
0.744 ×VS;  
P_6.1.34  
THDom(max) =  
0.581 ×VS; VS = 13.5 V;  
tbit = 8.7 µs;  
D7 = tbus_rec(min)/2 tbit;  
Duty cycle D8 (for worst  
case at 115 kbit/s)  
for +1 µs Receiver delay  
symmetry  
tduty2  
0.578  
5) duty cycle 8  
THRec(min) = 0.422 ×VS;  
THDom(min) =  
0.284 ×VS;VS = 13.5 V;  
tbit = 8.7 µs;  
P_6.1.35  
D8 = tbus_rec(max)/2 tbit;  
6)  
LIN input capacity  
CLIN_IN  
ttimeout  
6
15  
12  
30  
20  
pF  
P_6.1.69  
P_6.1.36  
TxD dominant time out  
ms  
V
TxD = 0 V  
Thermal Shutdown (Junction Temperature)  
6)  
6)  
Thermal shutdown temp.  
Thermal shutdown hyst.  
TjSD  
160  
180  
10  
200  
°C  
K
P_6.1.65  
P_6.1.66  
T  
1) Maximum limit specified by design.  
2) VBUS_CNT = (Vth_dom +Vth rec)/2  
3) VHYS = VBUSrec - VBUSdom  
4) Bus load concerning LIN Spec 2.2:  
Load 1 = 1 nF / 1 k= CBUS / RBUS  
Load 2 = 6.8 nF / 660 = CBUS / RBUS  
Load 3 = 10 nF / 500 = CBUS / RBUS  
5) Bus load  
Load 1 = 1 nF / 500 = CBUS / RBUS  
6) Not subject to production test, specified by design.  
Data Sheet  
102  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.7  
High-Speed Synchronous Serial Interface  
SSC Timing Parameters  
29.7.1  
The table below provides the SSC timing in the TLE9869QXA20.  
Table 33 SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit  
Note /  
Number  
Test Condition  
Min.  
Typ.  
Max.  
SCLK clock period  
t0  
t1  
t2  
t3  
1) 2 * TSSC  
2) VDDP > 2.7 V P_7.1.1  
2) VDDP > 2.7 V P_7.1.2  
2) VDDP > 2.7 V P_7.1.3  
2) VDDP > 2.7 V P_7.1.4  
MTSR delay from SCLK  
MRST setup to SCLK  
MRST hold from SCLK  
10  
10  
15  
ns  
ns  
ns  
1) TSSCmin = TCPU = 1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.  
2) Not subject to production test, specified by design.  
t0  
SCLK1)  
t1  
t1  
1)  
MTSR  
t2  
t3  
Data  
valid  
MRST1)  
t1  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_Tmg1  
Figure 36 SSC Master Mode Timing  
Data Sheet  
103  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.8  
Measurement Unit  
29.8.1  
System Voltage Measurement Parameters  
Table 34  
Supply Voltage Signal Conditioning  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note / Test Condition  
Number  
Max.  
Measurement output  
voltage range @ VAREF5  
VA5  
0
5
V
V
P_8.1.15  
P_8.1.16  
Measurement output  
voltage range @  
VAREF1V2  
VA1V2  
0
1.23  
Battery / Supply Voltage Measurement VBAT_SENSE / VS  
Input to output voltage  
attenuation:  
VS  
ATTVS_1  
3
0.055  
0.055  
SFR setting 1  
SFR setting 1  
P_8.1.41  
P_8.1.60  
P_8.1.1  
Input to output voltage  
attenuation:  
VBAT_SENSE  
ATTVBAT_SENSE  
_1  
Nominal operating input  
voltage rangeVBAT_SENSE  
and VS  
VBAT_SENSE  
,range1 , VS,range1  
22  
V
1)SFR setting 1;  
Max. value corresponds  
to typ. ADC full scale  
input; 3V < VBAT_SENSE/ VS  
< 28V  
Accuracy of VBAT_SENSE/ VS ΔVBAT_SENSE  
-220  
220 mV SFR setting 1, VS = 5.5 V P_8.1.70  
after calibration  
,range1 , VS,range1  
to 18V,  
Tj = -40..85°C  
Input to output voltage  
attenuation:  
VS  
ATTVS_2  
3
0.039  
0.039  
SFR setting 2  
SFR setting 2  
P_8.1.42  
P_8.1.61  
P_8.1.40  
Input to output voltage  
attenuation:  
VBAT_SENSE  
ATTVBAT_SENSE  
_2  
Nominal operating input  
VBAT_SENSE  
31  
V
1)SFR setting 2;  
voltage range VBAT_SENSE ,range2 ,VS,range2  
and VS  
Max. value corresponds  
to typ. ADC full scale input  
3V < VBAT_SENSE/ VS <  
28V  
Data Sheet  
104  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 34  
Supply Voltage Signal Conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note / Test Condition  
Number  
Max.  
Accuracy of VBAT_SENSE  
VS after calibration  
/
ΔVBAT_SENSE  
,range2 , VS,range2  
-370  
370 mV SFR setting 2, VS = 5.5V P_8.1.44  
to 18V,  
Tj = -40..85°C  
Measurement input  
leakage current for  
VBAT_SENSE  
Ileak_VBAT_SENSE  
0
4.0  
µA PD_N=0 (off-state),  
P_8.1.72  
P_8.1.21  
V
BAT_SENSE = 13.5V  
, measure  
Driver Supply Voltage Measurement VSD  
Input to output voltage  
attenuation:  
VSD  
ATTVSD  
0.039  
1)  
Nominal operating input  
voltage range VSD  
VSD,range  
2.5  
31  
V
P_8.1.2  
Accuracy of VSD sense  
after calibration  
VSD  
-440  
440 mV VS = 5.5V to 18V,  
Tj = -40..85°C  
P_8.1.47  
Charge Pump Voltage Measurement VCP  
Input to output voltage  
attenuation:  
VCP  
ATTVCP  
0.023  
P_8.1.56  
1)  
Nominal operating input  
voltage range VCP  
VCP,range  
2.5  
52  
V
P_8.1.7  
Accuracy of VCP sense  
after calibration  
VCP  
-747  
747 mV VS = 5.5V to 18V,  
Tj = -40..85°C  
P_8.1.62  
Monitoring Input Voltage Measurement VMON  
Input to output voltage  
attenuation:  
ATTVMON  
0.039  
P_8.1.49  
VMON  
1)  
Nominal operating input  
voltage range VMON  
VMON,range  
2.5  
31  
V
P_8.1.8  
Accuracy of VMON sense  
after calibration  
VMON  
-440  
440 mV VS = 5.5V to 18V,  
Tj = -40..85°C  
P_8.1.68  
Pad Supply Voltage Measurement VVDDP  
Input-to-output voltage  
attenuation:  
VDDP  
ATTVDDP  
0
0.164  
P_8.1.33  
P_8.1.50  
1)  
Nominal operating input  
VDDP,range  
7.50  
V
voltage range VDDP  
Data Sheet  
105  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 34  
Supply Voltage Signal Conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Min. Typ.  
-105  
Unit Note / Test Condition  
Number  
Max.  
Accuracy of VDDP sense  
after calibration  
VDDP_SENSE  
105 mV 2)VS = 5.5 to 18V,  
Tj = -40..85°C  
P_8.1.5  
10-Bit ADC Reference Voltage Measurement VAREF  
Input to output voltage  
attenuation:  
ATTVAREF  
0.219  
P_8.1.22  
VAREF  
1)  
Nominal operating input  
voltage range VAREF  
VAREF,range  
0
5.62  
79  
V
P_8.1.51  
P_8.1.48  
Accuracy of VAREF sense VAREF  
after calibration  
-79  
mV VS = 5.5V to 18V,  
Tj = -40..85°C  
8-Bit ADC Reference Voltage Measurement VBG  
Input-to-output voltage  
attenuation:  
VBG  
ATTVBG  
0.75  
P_8.1.57  
P_8.1.52  
1)  
Nominal operating input  
VBG,range  
0.8  
1.64  
V
voltage range VBG  
Core supply Voltage Measurement VDDC  
Input-to-output voltage  
attenuation:  
ATTVDDC  
0.75  
P_8.1.34  
VDDC  
1)  
Nominal operating input  
voltage range VDDC  
VDDC,range  
0.8  
-22  
1.64  
22  
V
P_8.1.53  
P_8.1.6  
Accuracy of VDDC sense  
after calibration  
VDDC_SENSE  
mV VS = 5.5 to 18V,  
Tj = -40..85°C  
VDH Input Voltage Measurement VVDH10BITADC  
VDH Input to output  
voltage attenuation:  
ATTVDH_1  
ATTVDH_2  
VVDH,range1  
0.1666 –  
667  
SFR setting 1  
SFR setting 2  
SFR setting 1  
P_8.1.64  
P_8.1.65  
P_8.1.66  
VDH Input to output  
voltage attenuation:  
0.2260 –  
0
Nominal operating input  
30  
voltage range VVDH, Range  
1
Nominal operating input  
VVDH,range2  
20  
SFR setting 2  
P_8.1.67  
voltage range VVDH, Range  
2
V
VDH 10-bit ADC, Range 1 VVDHADC10B  
VDH 10-bit ADC, Range 2 VVDHADC10B  
-300  
-200  
300 mV VS= 5.5 to 18V,  
Tj = -40..85°C  
P_8.1.39  
P_8.1.71  
V
200 mV VS= 5.5V to 18V,  
Tj = -40..85°C  
Data Sheet  
106  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 34  
Supply Voltage Signal Conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ.  
Max.  
470 kPD_N=1 (on-state)  
10-Bit ADC measurement Rin_VDH,measure 200  
390  
P_8.1.3  
input resistance for VDH  
Measurement input  
leakage current for VVDH  
Ileak_VDH, measure  
0
2.0  
µA PD_N=0 (off-state),  
MON = 13.5V  
P_8.1.10  
V
1) Not subject to production test, specified by design.  
2) Accuracy is valid for a calibrated device.  
Data Sheet  
107  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.8.2  
Central Temperature Sensor Parameters  
Table 35  
Electrical Characteristics Temperature Sensor Module  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition Number  
Min.  
Max.  
1)  
Output voltage VTEMP at  
T0=273 K (0°C)  
a
0.666  
V
P_8.2.2  
T0=273 K (0°C)  
1)  
Temperature sensitivity b  
Accuracy_1  
b
2.31  
mV/K  
°C  
P_8.2.4  
Acc_1  
Acc_2  
Acc_3  
-10  
-10  
-5  
10  
10  
5
2)1) -40°C < Tj < 85°C  
2)1) 125°C < Tj < 150°C P_8.2.6  
2)1) 85°C < Tj < 125°C  
P_8.2.7  
P_8.2.5  
Accuracy_2  
°C  
Accuracy_3  
°C  
1) Not subject to production test, specified by design  
2) Accuracy with reference to on-chip temperature calibration measurement, valid for Mode1  
29.8.3  
ADC2  
29.8.3.1 ADC2 Specifications  
Table 36  
DC Specifications  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
8
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
Resolution  
RES  
Bits  
Full  
P_8.3.18  
P_8.3.19  
P_8.3.20  
P_8.3.21  
Guaranteed offset error  
Gain error  
-2.0  
-2.0  
-0.8  
±0.3  
±0.5  
±0  
2.0  
2.0  
0.8  
LSB  
not calibrated  
not calibrated  
Full  
%FSR  
LSB  
Differential non-linearity  
(DNL)  
Integral non-linearity (INL) –  
Input referred noise  
-1.2  
±0  
1.2  
1.5  
LSB  
P_8.3.22  
P_8.3.23  
0.5  
LSBrms 1)@ TJ = 27°C  
1) Not subject to production test, specified by design.  
Data Sheet  
108  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.9  
ADC1 - VAREF  
29.9.1  
Electrical Characteristics VAREF  
Table 37  
Electrical Characteristics VAREF  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Required buffer  
capacitance  
CVAREF  
0.1  
1
µF  
ESR < 1Ω  
VS > 5.5V  
P_9.1.1  
Reference output voltage VAREF  
4.95  
5
5.05  
V
P_9.1.2  
P_9.1.3  
1)  
DC supply voltage  
rejection  
DCPSRVAREF 30  
dB  
1)  
Supply voltage ripple  
rejection  
ACPSRVAREF 26  
dB  
µs  
VS = 13.5V; f = 0 ... 1KHz; P_9.1.4  
Vr = 2Vpp  
Turn ON time  
tso  
200  
1) Cext = 100nF  
PD_N to 99.9% of final value  
1)input impedance in case of P_9.1.20  
VAREF is applied from  
external  
P_9.1.5  
Input resistance at VAREF RIN,VAREF  
Pin  
100  
kΩ  
1) Not subject to production test, specified by design.  
Data Sheet  
109  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.9.2  
Electrical Characteristics ADC1 (10-Bit)  
These parameters describe the conditions for optimum ADC performance.  
Note:Operating Conditions apply.  
Table 38  
A/D Converter Characteristics  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
1)  
Analog reference supply VAREF  
Analog reference ground VAGND  
VAGND  
+ 1.0  
VDDPA  
+ 0.05  
V
P_9.2.1  
P_9.2.2  
P_9.2.3  
VSS  
- 0.05  
1.5  
V
2)  
Analog input voltage  
range  
VAIN  
VAGND  
VAREF  
24  
V
3)  
4)  
Analog clock frequency fADCI  
5
MHz  
P_9.2.4  
P_9.2.5  
Conversion time for 10- tC10  
bit result  
(13 + STC) (13 + STC (13 + STC –  
× tADCI ) × tADCI ) × tADCI  
+ 2 x tSYS + 2 x tSYS + 2 x tSYS  
Conversion time for 8-bit tC8  
result  
(11 + STC) (11 + STC (11 + STC –  
P_9.2.6  
P_9.2.7  
P_9.2.8  
× tADCI  
) × tADCI  
) × tADCI  
+ 2 × tSYS + 2 × tSYS + 2 × tSYS  
1)  
Wakeup time from  
analog powerdown, fast  
mode  
tWAF  
4
µs  
µs  
5)  
Wakeup time from  
analog powerdown, slow  
mode  
tWAS  
15  
Total unadjusted error (8 TUE8B  
bit)  
±1  
±6  
±2  
counts 6)7)VAREF = 5.0 V P_9.2.9  
counts 7)8)VAREF = 5.0 V P_9.2.22  
Total unadjusted error  
(10 bit)  
TUE10B  
±12  
DNL error  
EADNL  
±0.8  
±0.8  
±3  
±5  
counts –  
counts –  
P_9.2.10  
P_9.2.11  
INL error with internal 5V EAINL_int_V  
reference VAREF  
AREF  
Gain error with internal  
5V reference VAREF  
EAGAIN_int_  
±0.4  
±10  
counts –  
counts –  
P_9.2.12  
VAREF  
Offset error  
EAOFF  
±0.5  
±2  
10  
P_9.2.13  
P_9.2.14  
5)9)  
Total capacitance  
of an analog input  
CAINT  
CAINS  
RAIN  
pF  
pF  
kΩ  
5)9)  
5)9)  
Switched capacitance  
of an analog input  
4
2
P_9.2.15  
P_9.2.16  
Resistance of  
the analog input path  
Data Sheet  
110  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 38  
A/D Converter Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
5)9)  
5)9)  
5)9)  
Total capacitance  
of the reference input  
CAREFT  
CAREFS  
RAREF  
15  
pF  
pF  
kΩ  
P_9.2.17  
P_9.2.18  
P_9.2.19  
Switched capacitance  
of the reference input  
7
2
Resistance of  
the reference input path  
1) Not subject to production test, specified by design.  
2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion result in these cases will  
be 0000H or 03FFH, respectively.  
3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.  
4) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the  
digital result and the time to load the result register with the conversion result.  
5) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion  
rate of not more than 500 µs.  
6) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual  
errors.  
All error specifications are based on measurement methods standardized by IEEE 1241.2000.  
7) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed  
10 mA, and if VAREF and VAGND remain stable during the measurement time.  
8) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual  
errors.  
All error specifications are based on measurement methods standardized by IEEE 1241.2000.  
9) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply  
voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical  
values can be used:  
CAINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 k, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 k.  
29.10  
Reserved  
Data Sheet  
111  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.11  
High-Voltage Monitoring Input  
29.11.1 Electrical Characteristics  
Table 39  
Electrical Characteristics Monitoring Input  
Tj = -40 °C to +150 °C; VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Number  
Min.  
Max.  
MON Input Pin characteristics  
Wake-up/monitoring  
threshold voltage  
VMONth  
0.4*VS 0.5*VS 0.6*VS  
V
Without external serial  
resistor Rs (with Rs:DV =  
P_11.1.1  
I
PD/PU * Rs); VS = 5.5V to  
18V;  
TJ = -40°C to 85°C  
Wake-up/monitoring  
threshold voltage  
extended range  
VMONth_ext 0.44*VS 0.53*V 0.64*VS  
V
V
Without external serial  
resistor Rs (with Rs:DV =  
P_11.1.11  
P_11.1.12  
end  
S
I
PD/PU * Rs)  
Threshold hysteresis  
VMONth,hys 0.015* 0.05*  
VS VS  
0.1*VS  
In all modes; without  
external serial resistor Rs  
(with Rs:dV = IPD/PU * Rs);  
VS = 5.5V to 18V;  
Threshold hysteresis  
VMONth,hys 0.02*VS 0.06*  
0.12*VS  
V
In all modes; without  
external serial resistor Rs  
(with Rs:dV = IPD/PU * Rs);  
VS = 18V to 28V;  
P_11.1.2  
VS  
Pull-up current  
Pull-down current  
Input leakage current  
Timing  
IPU, MON -20  
-10  
10  
-1  
µA  
µA  
µA  
0.6*VS  
P_11.1.3  
P_11.1.4  
P_11.1.5  
IPD, MON  
ILK,MON  
3
20  
2.5  
0.4*VS  
1) 0 V < VMON_IN < 28 V  
-2.5  
Wake-up filter time  
(internal analog filter  
delay)  
tFT,MON  
500  
ns  
2) The overall filter time for P_11.1.6  
MON wake-up is a sum of  
t
FT,MON + adjustable digital  
filter time. The digital filter  
time can be adjusted by  
PMU.CNF_WAKE_FILTE  
R.CNF_MON_FT;  
1) Input leakage is valid for disabled state.  
2) With pull-up, pull down current disabled.  
Data Sheet  
112  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.12  
MOSFET Driver  
29.12.1 Electrical Characteristics  
Table 40  
Electrical Characteristics MOSFET Driver  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
MOSFET Driver Output  
Source current - Charge  
current (low gate voltage)  
ISoumax  
200  
250 420  
250 420  
mA  
mA  
V
I
SD > 8 V, CLoad = 10 nF, P_12.1.44  
SOU = CLoad * slew rate, ( =  
(20%-50%) / tSLEW),  
CHARGE = IDISCHG  
31(max)  
SD > 8 V, CLoad = 10 nF, P_12.1.45  
SOU = CLoad * slew rate, ( =  
(50%-20%) / tSLEW),  
CHARGE = IDISCHG  
31(max)  
I
=
Sink current - Discharge  
current  
ISinkmax  
200  
V
I
I
=
High level output voltage  
Gxx vs. Sxx  
VGxx1  
VGxx2  
VGxx3  
VGxx6  
VGxx7  
trise3_3nf  
10  
8
14  
V
V
V
V
V
ns  
V
V
SD > 8V1), CLoad = 10 nF P_12.1.3  
High level output voltage  
GHx vs. SHx  
SD = 6.4 V1)2), CLoad = 10 P_12.1.4  
nF  
High level output voltage  
GHx vs. SHx  
7
V
nF  
SD = 5.4 V1), CLoad = 10  
P_12.1.5  
High level output voltage  
GLx vs. GND  
8
V
SD = 6.4 V1)2), CLoad = 10 P_12.1.6  
nF  
High level output voltage  
GLx vs. GND  
7
V
nF  
SD = 5.4 V1), CLoad = 10  
P_12.1.7  
Rise time  
Fall time  
Rise time  
200  
2)CLoad = 3.3 nF,  
V
25-75%, ICHARGE = IDISCHG  
= 31(max)  
2)CLoad = 3.3 nF,  
V
75-25%, ICHARGE = IDISCHG  
= 31(max)  
P_12.1.8  
SD > 8 V,  
tfall3_3nf  
200  
ns  
ns  
P_12.1.9  
SD > 8 V,  
trisemax  
100  
250 450  
C
Load = 10 nF,  
P_12.1.57  
V
SD > 8 V,  
25-75%, ICHARGE = IDISCHG  
= 31(max)  
Data Sheet  
113  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 40  
Electrical Characteristics MOSFET Driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Fall time  
tfallmax  
100  
250 450  
ns  
µs  
µs  
ns  
ns  
C
Load = 10 nF,  
P_12.1.58  
V
SD > 8 V,  
75-25%, ICHARGE = IDISCHG  
= 31(max)  
2)CLoad = 10 nF,  
Rise time  
Fall time  
trisemin  
1.25 2.5  
1.25 2.5  
5
P_12.1.14  
P_12.1.15  
P_12.1.35  
P_12.1.36  
P_12.1.11  
V
SD > 8 V,  
25-75%,  
CHARGE = IDISCHG = 3(min)  
2)CLoad = 10 nF,  
SD > 8 V,  
75-25%,  
CHARGE = IDISCHG = 3(min)  
Load = 10 nF,  
SD > 8 V,  
I
tfallmin  
5
V
I
Absolute rise - fall time  
difference for all LSx  
tr_f(diff)LSx  
100  
100  
C
V
25-75%, ICHARGE = IDISCHG  
= 31(max)  
Absolute rise - fall time  
difference for all HSx  
tr_f(diff)HSx  
CLoad = 10 nF,  
V
SD > 8 V,  
25-75%, ICHARGE = IDISCHG  
= 31(max)  
2)  
Resistor between GHx/GLx RGGND  
and GND  
30  
30  
40  
40  
50  
50  
kꢀ  
kꢀ  
Resistor between SHx and  
GND  
RSHGN  
2)3) This resistance is the P_12.1.10  
resistance between GHx  
and GND connected  
through a diode to SHx. As  
a consequence, the  
voltage at SHx can rise up  
to 0,6V typ. before it is  
discharged through the  
resistor.  
Low RDSON mode  
(boosted discharge mode)  
RONCCP  
9
12  
V
V
VSD = 13.5 V,  
VCP = VVSD + 14.0 V;  
P_12.1.50  
I
CHARGE = IDISCHG =  
31(max); 50mA forced into  
Gx, Sx grounded  
2)  
Resistance between VDH  
and VSD  
IBSH  
4
3
kꢀ  
P_12.1.24  
P_12.1.37  
Input propagation time (LS  
on)  
tP(ILN)min  
1.5  
µs  
C = 10 nF, (25%) /  
tSLEWon  
2)4)  
Data Sheet  
114  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 40  
Electrical Characteristics MOSFET Driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Input propagation time (LS  
off)  
tP(ILF)min  
tP(IHN)min  
tP(IHF)min  
tP(ILN)max  
tP(ILF)max  
tP(IHN)max  
tP(IHF)max  
tPon(diff)LSx  
1.5  
1.5  
1.5  
3
3
3
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
C = 10 nF, (75%) /  
tSLEWoff  
P_12.1.38  
P_12.1.39  
P_12.1.40  
P_12.1.26  
P_12.1.27  
P_12.1.28  
P_12.1.29  
P_12.1.30  
2)4)  
Input propagation time (HS  
on)  
C = 10 nF, (25%) /  
2)4)  
tSLEWon  
Input propagation time (HS  
off)  
C = 10 nF, (75%) /  
2)4)  
tSLEWoff  
Input propagation time (LS  
on)  
200 350  
200 300  
200 350  
200 300  
C = 10 nF, (25%) /  
5)  
tSLEWon  
Input propagation time (LS  
off)  
C = 10 nF, (75%) /  
5)  
tSLEWoff  
Input propagation time (HS  
on)  
C = 10 nF, (25%) /  
5)  
tSLEWon  
Input propagation time (HS  
off)  
C = 10 nF, (75%) /  
5)  
tSLEWoff  
Absolute input propagation  
time difference between  
propagation times for all LSx  
(LSx on)  
100  
100  
100  
100  
C = 10 nF, (25%) /  
5)  
tSLEWon  
Absolute input propagation  
time difference between  
propagation times for all LSx  
(LSx off)  
tPoff(diff)LSx  
tPon(diff)HSx  
tPoff(diff)HSx  
ns  
ns  
ns  
C = 10 nF, (75%) /  
P_12.1.41  
P_12.1.42  
P_12.1.43  
5)  
tSLEWoff  
Absolute input propagation  
time difference between  
propagation times for all HSx  
(HSx on)  
C = 10 nF, (25%) /  
5)  
tSLEWon  
Absolute input propagation  
time difference between  
propagation times for all HSx  
(HSx off)  
C = 10 nF, (75%) /  
5)  
tSLEWoff  
Drain source monitoring  
Drain source monitoring  
threshold  
VDSMONVTH  
V
DRV_CTRL3.DSMONVT P_12.1.46  
H<2:0>  
000  
001  
010  
011  
100  
101  
0.25  
0.50  
0.75  
1.00  
1.25  
1.5  
1.75  
2.00  
110  
111  
Data Sheet  
115  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 40  
Electrical Characteristics MOSFET Driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Open load diagnosis currents  
Pull-up diagnosis current  
Pull-down diagnosis current IPDDiag  
Charge pump  
IPUDiag  
-220 -370 -520 µA  
I
I
DISCHG = 1; VSHx = 5.0 V  
DISCHG = 1; VSHx = 5.0 V  
P_12.1.47  
P_12.1.48  
650  
900 1100 µA  
Output voltage  
VCP vs. VSD  
VCPmin1  
8.5  
12  
80  
V
V
VSD = 5.4V, ICP=5 mA,  
P_12.1.53  
P_12.1.49  
P_12.1.59  
Bridge Driver enabled  
Regulated output voltage  
VCP vs. VSD  
VCP  
14  
88  
16  
120  
V
8 V < VVSD < 28,  
ICP=10mA, @250kHz fCP  
Turn ON Time  
tON_VCP  
us  
8 V < VVSD < 28,  
(25%)2)6)  
,
C
CP1, CCP2 = 220 nF,  
CP = 250kHz  
8 V < VVSD < 28,  
(25-75%)2)7)  
CP1, CCP2 = 220 nF,  
CP = 250kHz  
f
Rise time  
trise_VCP  
60  
72  
88  
us  
P_12.1.60  
,
C
f
1) Specification for H-Bridge Drive, 6 MOSFET switching with 25 KHz. Test condition: IGx = - 100 µA, ICHARGE =  
IDISCHARGE = 31(max), IDISCHARGEDIV2_N = 1 and ICHARGEDIV2_N = 1.  
2) Not subject to production test.  
3) This resistance is connected through a diode between SHx and GHx to ground.  
4) ICHARGE = IDISCHARGE = 3(min).  
5) ICHARGE = IDISCHARGE = 31(max).  
6) This time applies when Bit DRV_CP_CTRL_STS.bit.CP_EN is set  
7) This time applies when Bit DRV_CP_CLK_CTRL.bit.CPCLK_EN is set  
Data Sheet  
116  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
29.13  
Operational Amplifier  
29.13.1 Electrical Characteristics  
Table 41  
Electrical Characteristics Operational Amplifier  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note / Test Condition  
Number  
Min.  
Max.  
Differential gain  
(uncalibrated)  
G
Gain settings GAIN<1:0>: P_13.1.6  
9.5  
19  
38  
57  
10  
20  
40  
60  
10.5  
21  
42  
00  
01  
10  
11  
63  
Differential input operating VIX  
voltage range OP2 - OP1  
-1.5 / G –  
1.5 / G  
2.0  
V
V
G is the Gain specified  
below  
P_13.1.1  
Operating. common mode VCM  
inputvoltage range (referred  
to GND (OP2 - GND) or  
(OP1 - GND)  
-2.0  
-7.0  
Input common mode has P_13.1.2  
to be checked in  
evaluation if it fits the  
required range  
Max. input voltage range  
(referred to GND (OP_2 -  
GND) or (OP1 - GND)  
VIX  
7.0  
V
Max. rating of operational P_13.1.3  
amplifier inputs, where  
measurement is not done  
Single ended output voltage VOUT  
range (linear range)  
VZERO  
- 1.5  
VZERO  
+ 1.5  
V
1)2) Offset output voltage 2 P_13.1.4  
V ± 1.5V  
Linearity error  
Linearity error  
Gain drift  
EPWM  
-15  
15  
1.0  
1
mV  
Maximum deviation from P_13.1.5  
best fit straight line  
divided by max. value of  
differential output voltage  
range (0.5V - 3.5V); this  
parameter is determined  
at G = 10.  
EPWM_% -1.0  
%
%
Maximum deviation from P_13.1.24  
best fit straight line  
divided by max. value of  
differential output voltage  
range (0.5V - 3.5V); this  
parameter is determined  
at G = 10.  
-1  
Gain drift after calibration P_13.1.7  
at G = 10.  
Data Sheet  
117  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Electrical Characteristics  
Table 41  
Electrical Characteristics Operational Amplifier (cont’d)  
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
80  
Unit Note / Test Condition  
Number  
Min.  
Max.  
DC input voltage common  
mode rejection ratio  
DC-  
CMRR  
58  
dB  
ns  
CMRR (in dB)=-20*log  
(differential mode gain/  
common mode gain)  
P_13.1.8  
V
V
CMI= -2V... 2V,  
AIP-VAIN=0V  
Settling time to 98%  
TSET  
1
800  
1400  
1.5  
Derived from 80 - 20 %  
rise fall times for ± 2V  
overload condition (3 Tau  
value of settling time  
constant)2)  
P_13.1.9  
2)  
Current Sense Amplifier  
Input Resistance @ OP1,  
OP2  
Rin_OP1_  
1.25  
kꢀ  
P_13.1.25  
OP2  
1) Typical VZERO = 0,4 * VAREF.  
2) This parameter is not subject to production test.  
Data Sheet  
118  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Package Outlines  
30  
Package Outlines  
0ꢀ9 MAXꢀ  
(0ꢀ65)  
11 x 0ꢀ5 = 5ꢀ5  
0ꢀ5  
0ꢀ1  
7
A
0ꢀ03  
6ꢀ8  
0ꢀ1  
+0ꢀ031)  
2)  
37  
B
36  
25  
24  
48x  
0ꢀ08  
48  
13  
1
12  
Index Marking  
48x  
0ꢀ1  
0ꢀ4 x 45°  
0ꢀ05  
Index Marking  
0ꢀ23  
(0ꢀ35)  
M
A B C  
(0ꢀ2)  
0ꢀ05 MAXꢀ  
(5ꢀ2)  
(6)  
C
1) Vertical burr 0ꢀ03 maxꢀ, all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 37 Package outline VQFN-48-31 (with LTI)  
Notes  
1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:  
http://www.infineon.com/products.  
2. Dimensions in mm.  
Data Sheet  
119  
Rev. 1.0, 2015-04-30  
TLE9869QXA20  
Revision History  
31  
Revision History  
Revision History  
Page or Item  
Rev. 1.0, 2015-04-30  
all  
Subjects (major changes since previous revision)  
Initial Release.  
Data Sheet  
120  
Rev. 1.0, 2015-04-30  
Edition 2015-04-30  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2015 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  
Doc_Number  

相关型号:

TLE9869QXA20_15

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9869QXA20_17

Microcontroller with LIN and H-Bridge MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9871QXA20

Microcontroller with PWM Interface and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9871QXA20_15

Microcontroller with PWM Interface and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9871QXA20_17

Microcontroller with PWM Interface and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9872QTW40

The TLE9872QTW40 is part of the MOTIX™ TLE987x product family. The TLE9872QTW40 is a single chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9873QXW40

TLE9873QXW40 是TLE987x产品系列的组成部分。TLE9873QXW40是一款单芯片三相电机驱动器,集成了行业标准的Arm®Cortex®-M3内核,可实现先进的电机控制算法,如磁场定向控等制。它包括6个完全集成的NFET驱动器,经过优化,可通过6个外部电源NFET驱动3相电机,其电压泵可实现低电压操作和可编程电流以及电流斜坡控制,从而优化EMC性能。其外设集包括电流传感器、用于实现PWM控制的采集和比较单元同步的逐次逼近ADC以及16位定时器。还集成了LIN收发器,以实现与器件的通信,同时还具有大量通用I/O。它包括一个片上线性稳压器,为外部负载供电。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QTW40

The TLE9877QTW40 is part of the TLE987x product family. The TLE9877QTW40 is a single chip 3-Phase

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA20

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA20_15

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA20_17

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA40

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON