TLE9872QTW40 [INFINEON]

The TLE9872QTW40 is part of the MOTIX™ TLE987x product family. The TLE9872QTW40 is a single chip;
TLE9872QTW40
型号: TLE9872QTW40
厂家: Infineon    Infineon
描述:

The TLE9872QTW40 is part of the MOTIX™ TLE987x product family. The TLE9872QTW40 is a single chip

文件: 总129页 (文件大小:3388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9872QTW40  
Microcontroller with LIN and BLDC MOSFET Driver for Automotive  
Applications  
A-Step  
Extended operating temperature range (grade 0)  
Features  
32-bit Arm®* Cortex®-M3 core  
256 KB flash  
8 KB RAM  
On-chip OSC and PLL for clock generation  
MOSFET driver including charge pump  
1 LIN 2.2 transceiver  
High-speed operational amplifier for motor current sensing via shunt  
Single power supply from 5.5 V to 27 V  
Temperature range Tj = -40°C to +175°C  
Potential applications  
Wiper  
Aux. pumps  
Fans  
Window lift  
Sunroof  
Tailgate  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100/101.  
Description  
Type  
Package  
Marking  
TLE9872QTW40  
TQFP-48-10  
*
Arm and Cortex are registered trademarks of Arm Limited, UK  
Datasheet  
www.infineon.com  
Rev. 1.0  
2020-07-23  
1
TLE9872QTW40  
Table of contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
3.1  
3.2  
Device pinout and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4
Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.3  
5.3.1  
5.3.2  
5.3.3  
Power management unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PMU modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power supply generation unit (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Voltage regulator 5.0 V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Voltage regulator 1.5 V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
External voltage regulator 5.0 V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6
6.1  
6.2  
6.2.1  
6.3  
System control unit – digital modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Clock generation unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Low-precision clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.3.1  
7
System control unit – power modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.1  
7.2  
7.2.1  
8
Arm® Cortex®-M3 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.1  
8.2  
8.2.1  
9
9.1  
9.2  
9.2.1  
9.3  
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DMA mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.3.1  
10  
Address space organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
11  
Memory control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
NVM module (flash memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
11.1  
11.2  
11.2.1  
11.3  
Datasheet  
2
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
12  
Interrupt system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
12.1  
12.2  
12.2.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
13  
13.1  
13.2  
Watchdog timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
14  
14.1  
14.2  
GPIO ports and peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Port 0 and port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
TLE9872QTW40 port module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 0 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port 1 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Port 2 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
14.2.1  
14.2.2  
14.3  
14.3.1  
14.3.1.1  
14.3.2  
14.3.2.1  
14.3.3  
14.3.3.1  
15  
15.1  
General-purpose timer units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Features of block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Features of block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Block diagram of GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Block diagram of GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
15.1.1  
15.1.2  
15.2  
15.2.1  
15.2.2  
16  
Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Timer2 and Timer21 mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
16.1  
16.2  
16.2.1  
17  
Timer3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Timer3 modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
17.1  
17.2  
17.3  
17.3.1  
18  
Capture/compare unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Feature set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
18.1  
18.2  
18.2.1  
19  
UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
UART modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
19.1  
19.2  
19.2.1  
19.3  
20  
LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Datasheet  
3
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
20.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
20.2  
20.2.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
21  
High-speed synchronous serial interface (SSC1/SSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
21.1  
21.2  
21.2.1  
22  
22.1  
22.2  
22.2.1  
22.2.1.1  
Measurement unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
BEMF comparator block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
23  
Core measurement module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Core measurement module mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
23.1  
23.2  
23.2.1  
23.2.2  
24  
10-bit analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
24.1  
24.2  
24.2.1  
25  
High-voltage monitor input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
25.1  
25.2  
25.2.1  
26  
Bridge driver (incl. charge pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
26.1  
26.2  
26.2.1  
26.2.2  
27  
Current sense amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
27.1  
27.2  
27.2.1  
28  
28.1  
28.2  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
BLDC driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
ESD immunity according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
29  
29.1  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
29.1.1  
29.1.2  
29.1.3  
29.1.4  
29.1.5  
Datasheet  
4
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
29.2  
Power management unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
29.2.1  
29.2.2  
29.2.3  
29.2.4  
29.2.4.1  
29.2.5  
29.3  
29.3.1  
29.3.2  
29.4  
29.4.1  
29.5  
29.5.1  
29.5.2  
29.5.3  
29.6  
PMU I/O supply (VDDP) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
PMU core supply (VDDC) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
VDDEXT voltage regulator (5.0 V) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
VPRE voltage regulator (PMU subblock) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Load-sharing scenario for the VPRE regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Power-down voltage regulator (PMU subblock) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
System clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Parameters of oscillators and PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
External clock parameters XTAL1, XTAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Flash parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Parallel ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Description of the keep and force currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
DC parameters of port 0, port 1, TMS, and reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
DC parameters of port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
High-speed synchronous serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
SSC timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Measurement unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
System voltage measurement parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Central temperature sensor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
ADC2 VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
ADC2 reference voltage VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
ADC2 specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
ADC1 reference voltage - VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Electrical characteristics of VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Electrical characteristics of the ADC1 (10-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
High-voltage monitoring input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
MOSFET driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
29.6.1  
29.7  
29.7.1  
29.8  
29.8.1  
29.8.2  
29.8.3  
29.8.3.1  
29.8.3.2  
29.9  
29.9.1  
29.9.2  
29.10  
29.11  
29.11.1  
29.12  
29.12.1  
29.13  
29.13.1  
30  
31  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Datasheet  
5
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Overview  
1
Overview  
Summary of Features  
32-bit Arm® Cortex®-M3 core  
Up to 40 MHz clock frequency  
One clock per machine cycle architecture  
On-chip memory  
256 KB flash including  
4 KB EEPROM (emulated in flash)  
512 byte 100-time programmable memory (100TP)  
8 KB RAM  
Boot ROM for startup firmware and flash routines  
On-chip OSC and PLL for clock generation  
PLL loss-of-lock detection  
MOSFET driver including charge pump  
10 general-purpose I/O Ports (GPIO)  
5 analog inputs, 10-bit A/D Converter (ADC1)  
16-bit timers - GPT12, Timer2, Timer21, and Timer3  
Capture/compare unit for PWM signal generation (CCU6)  
2 full-duplex serial interfaces (UART) with LIN support (for UART1 only)  
2 synchronous serial channels (SSC)  
On-chip debug support via 2-wire SWD  
1 LIN 2.2 transceiver  
1 high-voltage monitoring input  
Single power supply from 5.5 V to 27 V  
Extended power supply voltage range from 3 V to 28 V  
Low-dropout voltage regulators (LDO)  
High-speed operational amplifier for motor current sensing via shunt  
5 V voltage supply for external loads (e.g., Hall sensor)  
Core logic supply at 1.5 V  
Programmable window watchdog (WDT1) with independent on-chip clock source  
Power-saving modes  
MCU slow-down mode  
Sleep mode  
Stop mode  
Cyclic wake-up sleep mode  
Power-on and undervoltage/brownout reset generator  
Overtemperature protection  
Short-circuit protection  
Loss of clock detection with fail-safe mode entry for low system power consumption  
Temperature range Tj = -40°C to +175°C  
Datasheet  
6
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Overview  
Package TQFP-48  
Green package (RoHS compliant)  
AEC-qualified  
Datasheet  
7
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Overview  
1.1  
Abbreviations  
The following acronyms and terms are used within this document. List see in Table 1.  
Table 1  
Acronyms  
AHB  
APB  
Acronyms  
Name  
Advanced High-performance Bus  
Advanced Peripheral Bus  
Capture compare unit 6  
Clock generation unit  
CCU6  
CGU  
CMU  
CP  
Cyclic management unit  
Charge pump for MOSFET driver  
Current-sense amplifier  
Data post-processing  
CSA  
DPP  
ECC  
Error correction code  
EEPROM  
EIM  
Electrically erasable programmable read only memory  
Exceptional interrupt measurement  
Finite state machine  
FSM  
GPIO  
H-Bridge  
ICU  
General-purpose input/output  
Half-bridge  
Interrupt control unit  
IEN  
Interrupt enable  
IIR  
Infinite impulse response  
Load instruction  
LDM  
LDO  
LIN  
Low-dropout voltage regulator  
Local interconnect network  
Least significant bit  
LSB  
LTI  
Lead tip inspection  
MCU  
MF  
Microcontroller unit  
Measurement functions  
Most significant bit  
MSB  
MPU  
MRST  
MTSR  
MU  
Memory protection unit  
Master receive, slave transmit  
Master transmit, slave receive  
Measurement unit  
NMI  
Non-maskable interrupt  
Nested vector interrupt controller  
Non-volatile memory  
NVIC  
NVM  
OTP  
OSC  
PBA  
One-time programmable  
Oscillator  
Peripheral bridge  
Datasheet  
8
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Overview  
Table 1  
Acronyms  
PCU  
Acronyms (cont’d)  
Name  
Power control unit  
PD  
Pull-down  
PGU  
Power supply generation unit  
Phase-locked loop  
PLL  
PPB  
Private Peripheral Bus  
Pull-up  
PU  
PWM  
RAM  
Pulse-width modulation  
Random-access memory  
Reset control unit  
RCU  
RMU  
ROM  
SCU-DM  
SCU-PM  
SFR  
Reset management unit  
Read-only memory  
System control unit – digital modules  
System control unit – power modules  
Special function register  
Short open window (for WDT)  
Serial Peripheral Interface  
Synchronous serial channel  
Store instruction  
SOW  
SPI  
SSC  
STM  
SWD  
TCCR  
TMS  
Arm® Serial Wire Debug  
Temperature compensation control register  
Test mode select  
TSD  
Thermal shut-down  
UART  
VBG  
Universal asynchronous receiver-transmitter  
Voltage reference bandgap  
Voltage-controlled oscillator  
Preregulator  
VCO  
VPRE  
WDT  
WDT1  
WMU  
100TP  
Watchdog timer in SCU-DM  
Watchdog timer in SCU-PM  
Wake-up management unit  
100-time programmable  
Datasheet  
9
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Block diagram  
2
Block diagram  
TMS  
P0.0  
TEST / DEBUG  
INTERFACE  
Arm®  
µDMA  
CONTROLLER  
FLASH  
slave  
SRAM  
slave  
ROM  
slave  
Cortex®-M3  
system bus  
slave  
Multilayer AHB matrix  
slave  
PBA0  
slave  
PBA1  
VAREF  
GND_REF  
MU-VAREF  
SCU_DM  
PLL  
P2.0, P2.2, P2.3, P2.4, P2.5  
(AN0, AN2, AN3, AN4, AN5)  
ADC 1  
DPP1  
GPT12  
CCU6  
XTAL1  
XTAL2  
UART1  
UART2  
SSC1  
SSC2  
T2  
P0.1 – P0.4  
P1.0 – P1.4  
VDH  
GH3  
SH3  
GL3  
GH2  
SH2  
GL2  
GH1  
SH1  
GPIO  
LIN  
LIN  
GND_LIN  
MOSFET  
driver  
MU  
MF / ADC2  
T21  
DPP2  
SCU_DM  
WDT  
OP1  
OP2  
OP AMP  
GL1  
SL  
VS  
SCU_PM  
WDT1/  
CLKWDT  
PMU –  
power  
control  
system  
functions  
RESET  
VDDEXT  
VDDP  
VDDC  
VCP  
VSD  
CP2H  
CP2L  
CP1H  
CP1L  
CP  
µ
DMA  
controller  
MON  
MON  
T3  
Figure 1  
Block diagram  
Datasheet  
10  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Device pinout and pin configuration  
3
Device pinout and pin configuration  
3.1  
Device pinout  
OP1 37  
24 P0.3  
EP  
VDDC 38  
23 P0.1  
22 RESET  
GND 39  
VDDP 40  
VDDEXT 41  
GND_LIN 42  
LIN 43  
21 P0.0  
20 TMS  
19 GND  
18 P0.4  
17 P1. 2  
16 P1.1  
15 P1.0  
TLE 987x  
VDH 44  
VS 45  
SH3 46  
VSD 47  
14 MON  
13 GL1  
CP1H 48  
Note:  
= Low voltage pins  
Figure 2  
Device pinout  
Datasheet  
11  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Device pinout and pin configuration  
3.2  
Pin configuration  
After a reset, all pins are configured as input (except supply and LIN pins) with one of the following settings:  
Pull-up device enabled only (PU)  
Pull-down device enabled only (PD)  
Input with both pull-up and pull-down devices disabled (I)  
Output with output stage deactivated = high-impedance state (Hi-Z)  
The functions and default states of the TLE9872QTW40 external pins are provided in the following table.  
Type: indicates the pin type.  
I/O: Input or output  
I: Input only  
O: Output only  
P: Power supply  
Not all alternate functions are listed.  
Table 2  
Symbol  
Pin definitions and functions  
Pin  
Type Reset Function  
number  
state1)  
P0  
Port 0  
Port 0 is a 5-bit bidirectional general-purpose I/O port.  
Alternate functions can be assigned and are listed in the port  
description. The main functions are listed below.  
P0.0  
P0.1  
21  
23  
I/O  
I/O  
I/PU  
I/PU  
SWD  
GPIO  
Serial wire debug clock  
General-purpose I/O  
Alternate function mapping see Table 7.  
P0.2  
25  
I/O  
I/PD  
GPIO  
General-purpose I/O  
Alternate function mapping see Table 7.  
Note:  
For a functional SWD connection,  
this GPIO must be tied to zero.  
P0.3  
P0.4  
P1  
24  
18  
I/O  
I/O  
I/PU  
I/PD  
GPIO  
GPIO  
Port 1  
General-purpose I/O  
Alternate function mapping see Table 7.  
General-purpose I/O  
Alternate function mapping see Table 7.  
Port 1 is a 5-bit bidirectional general-purpose I/O port.  
Alternate functions can be assigned and are listed in the port  
description. The main functions are listed below.  
P1.0  
P1.1  
P1.2  
15  
16  
17  
I/O  
I/O  
I/O  
I
I
I
GPIO  
GPIO  
GPIO  
General-purpose I/O  
Alternate function mapping see Table 7.  
General-purpose I/O  
Alternate function mapping see Table 8.  
General-purpose I/O  
Alternate function mapping see Table 8.  
Datasheet  
12  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Device pinout and pin configuration  
Table 2  
Symbol  
Pin definitions and functions (cont’d)  
Pin  
Type Reset Function  
state1)  
number  
P1.3  
P1.4  
P2  
26  
I/O  
I
GPIO  
GPIO  
Port 2  
General-purpose I/O, used for inrush transistor  
Alternate function mapping see Table 8.  
27  
I/O  
I
General-purpose I/O  
Alternate function mapping see Table 8.  
Port 2 is a 5-bit general-purpose input-only port.  
Alternate functions can be assigned and are listed in the port  
description. The main functions are listed below.  
P2.0/XTAL1  
P2.2/XTAL2  
P2.3  
29  
30  
35  
32  
31  
I/I  
I
I
I
I
I
AN0  
AN2  
AN3  
AN4  
AN5  
ADC analog input 0  
Alternate function mapping see Table 9.  
I/O  
ADC analog input 2  
Alternate function mapping see Table 9.  
I
I
I
ADC analog input 3  
Alternate function mapping see Table 9.  
P2.4  
ADC analog input 4  
Alternate function mapping see Table 9.  
P2.5  
ADC analog input 5  
Alternate function mapping see Table 9.  
Power supply  
VS  
45  
40  
38  
P
P
P
Battery supply input  
2)I/O port supply (5.0 V). Connect external buffer capacitor.  
3)Core supply (1.5 V in Active mode).  
Do not connect external loads, but connect an external buffer  
capacitor.  
VDDP  
VDDC  
VDDEXT  
GND  
41  
19  
28  
39  
P
P
P
P
External voltage supply output (5.0 V, 20 mA)  
GND digital  
GND digital  
GND analog  
GND  
GND  
Monitor input  
MON  
14  
I
High voltage monitor input  
LIN interface  
LIN  
43  
42  
I/O  
P
LIN bus interface input/output  
LIN ground  
GND_LIN  
Charge pump  
CP1H  
48  
1
P
P
P
P
P
Charge pump capacity 1 high, connect external C  
Charge pump capacity 1 low, connect external C  
Charge pump capacity 2 high, connect external C  
Charge pump capacity 2 low, connect external C  
Charge pump capacity  
CP1L  
CP2H  
3
CP2L  
4
VCP  
2
Datasheet  
13  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Device pinout and pin configuration  
Table 2  
Symbol  
Pin definitions and functions (cont’d)  
Pin  
Type Reset Function  
state1)  
number  
VSD  
47  
P
Battery supply input for charge pump  
MOSFET driver  
VDH  
44  
46  
6
P
P
P
P
P
P
P
P
P
P
P
Voltage drain high-side MOSFET driver  
Source high-side FET 3  
Source high-side FET 2  
Gate high-side FET 2  
Source high-side FET 1  
Gate high-side FET 1  
Source low-side FET  
SH3  
SH2  
GH2  
7
SH1  
8
GH1  
9
SL  
10  
12  
13  
5
GL2  
Gate low-side FET 2  
GL1  
Gate low-side FET 1  
GH3  
Gate high-side FET 3  
Gate low-side FET 3  
GL3  
11  
Others  
GND_REF  
VAREF  
OP1  
33  
34  
37  
36  
20  
P
GND for VAREF  
I/O  
5V ADC1 reference voltage, optional buffer or input  
Negative operational amplifier input  
Positive operational amplifier input  
I
I
OP2  
TMS  
I
I/PD  
TMS  
SWD  
Test mode select input  
Serial Wire Debug input/output  
I/O  
RESET  
EP  
22  
I/O  
Reset input, not available during sleep mode  
Exposed pad, connect to GND  
1) Only valid for digital IO.  
2) Also named VDD5V.  
3) Also named VDD1V5.  
Datasheet  
14  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Modes of operation  
4
Modes of operation  
The TLE9872QTW40 highly integrated circuit contains analog and digital functional blocks. An embedded 32-  
bit microcontroller is available for system and interface control. On-chip, low-dropout regulators are provided  
for internal and external power supply. An internal oscillator provides a cost-effective clock that is particularly  
well suited for LIN communications. A LIN transceiver is available as a communication interface. Driver stages  
for a motor bridge or BLDC motor bridge with external MOSFET are integrated, featuring PWM capability,  
protection features, and a charge pump for operation at low supply voltage. A 10-bit SAR ADC implemented  
for high-precision sensor measurement. An 8-bit ADC is used for diagnostic measurements.  
The Micro controller unit supervision and system protection (including a reset feature) is complemented by a  
programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated  
temperature sensors are available on-chip.  
All relevant modules offer power saving modes in order to support automotive applications connected to  
terminal 30. A wake-up from power-save mode is possible via a LIN bus message, via the monitoring input, or  
using a programmable time period (cyclic wake-up).  
The TLE9872QTW40 has several operation modes mainly to support low power consumption requirements.  
Reset mode  
The Reset mode is a transition mode used, e.g., during power-up of the device after a power-on reset, or after  
wake-up from Sleep mode. In this mode, the on-chip power supplies are enabled and all other modules are  
initialized. Once the core supply VDDC is stable, the device enters Active mode. If the watchdog timer WDT1  
fails more than four times, the device performs a fail-safe transition to Sleep mode.  
Active mode  
In Active mode, all modules are activated and the TLE9872QTW40 is fully operational.  
Stop mode  
Stop mode is one of two major low-power modes. The transition to the low-power modes is performed by  
setting the corresponding bits in the mode control register. In Stop mode, the embedded microcontroller is  
still powered, allowing for shorter wake-up response times. Wake-up from this mode is possible through LIN  
bus activity, by using the high-voltage monitoring pin, or through the corresponding 5 V GPIOs.  
Stop mode with cyclic wake-up  
The Cyclic Wake-Up mode is a special operating mode of the Stop mode. The transition to the Cyclic Wake-Up  
mode is performed by first setting the corresponding bits in the mode control register, followed by the Stop  
Mode command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period),  
asynchronous wake events via the activated sources (LIN and/or MON) are available, as in normal Stop mode.  
Sleep mode  
The Sleep mode is a low-power mode. The transition to the low-power mode is performed by setting the  
corresponding bits in the MCU mode control register or in case of failure (see below). In Sleep mode the  
embedded microcontroller power supply is deactivated, allowing for the lowest system power consumption.  
A wake-up from this mode is possible by LIN bus activity, the High Voltage Monitor Input pin, or through cyclic  
wake-up.  
Sleep mode in case of failure  
Sleep mode is activated after 5 consecutive watchdog failures or in case of supply failure (5 times). In this case,  
MON is enabled as the wake source and cyclic wake-up is activated with 1 s of dead time.  
Datasheet  
15  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Modes of operation  
Sleep Mode with cyclic wake-up  
The Cyclic Wake-Up mode is a special operating mode of the Sleep mode. The transition to Cyclic Wake-Up  
mode is performed by first setting the corresponding bits in the mode control register followed by the Sleep  
Mode and Stop Mode commands. In addition to the cyclic wake-up behavior (wake-up after a programmable  
time period), asynchronous wake events via the activated sources (LIN and/or MON) are available, as in  
normal Sleep mode.  
When using Sleep mode with cyclic wake-up, the voltage regulator is switched off and started again with the  
wake. A limited number of registers is buffered during sleep, and can be used by software, e.g., for counting  
sleep/wake cycles.  
MCU Slow Down mode  
In MCU Slow Down mode the MCU frequency is reduced to save power during operation. LIN communication  
is still possible. LS MOSFET can be activated.  
Wake-up source prioritization  
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up  
sources, the first wake-up signal will initiate the wake-up sequence. Nevertheless, all wake-up sources are  
latched in order to provide all wake-up events to the application software. The software can clear the wake-  
up source flags. This is to ensure that no wake-up event is lost.  
As the default wake-up source, the MON input is activated after power-on reset only. Additionally, the device  
is in Cyclic Wake-Up mode with the configurable dead time setting.  
The following table shows the possible power mode configurations including the Stop mode.  
Table 3  
Power mode configurations  
Module/function  
Active mode  
Stop mode  
Sleep mode  
Comment  
VDDEXT  
ON/OFF  
ON (no dynamic  
load)/OFF  
OFF  
Bridge Driver  
LIN TRx  
ON/OFF  
ON/OFF  
OFF  
OFF  
Wake-up only/OFF Wake-up only/OFF  
Brownout detection POR on VS  
VS sense  
ON/OFF  
Brownoutdetection  
performed in PCU  
Brownout detection  
GPIO 5V (wake-up) n.a.  
Disabled/static  
OFF  
OFF  
OFF  
GPIO 5V (active)  
WDT1  
ON  
ON  
n.a.  
ON  
OFF  
CYCLIC WAKE  
Cyclic wake-up/  
cyclic sense/OFF  
Cyclic wake-up/OFF –  
Measurement  
MCU  
ON1)  
OFF  
OFF  
ON/slow-down/STOP STOP2)  
OFF  
CLOCK GEN (MC)  
LP_CLK (18 MHz)  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
WDT1  
LP_CLK2 (100 kHz) ON/OFF  
ON/OFF  
ON/OFF  
For cyclic wake-up  
1) May not be switched off due to safety reasons.  
2) MC PLL clock disabled, MC supply reduced to VDDCOUT_Stop_Red  
.
Datasheet  
16  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Modes of operation  
Wake-up levels and transitions  
The wake-up can be triggered by rising, falling, or both signal edges for the monitor input, GPIOs, by LIN, or by  
cyclic wake-up.  
Datasheet  
17  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Power management unit (PMU)  
5
Power management unit (PMU)  
5.1  
Features  
System mode control (startup, sleep, stop and active)  
Power management (cyclic wake-up)  
Control of system voltage regulators with diagnosis (overload, short, overvoltage)  
Fail-safe mode detection and operation in case of system errors (watchdog fail)  
Wake-up sources configuration and management (LIN, MON, GPIOs)  
System error logging  
5.2  
Introduction  
The power management unit is responsible for generating all required voltage supplies for the embedded  
MCU (VDDC, VDDP) and the external supply (VDDEXT). The power management unit is designed to ensure fail-  
safe behavior of the system IC by controlling all system modes, including the corresponding transitions.  
Additionally, the PMU provides well-defined sequences for the system mode transitions and generates  
hierarchical reset priorities. The reset priorities control the reset behavior of all system functions, especially  
the reset behavior of the embedded MCU. All these functions are controlled by a state machine. The system  
master function of the PMU uses an independent logic supply and system clock. For this reason, the PMU has  
an "Internal logic supply and system clock" module which works independently of the MCU clock.  
Datasheet  
18  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Power management unit (PMU)  
5.2.1  
Block diagram  
The following figure shows the structure of the power management unit. Table 4 describes the submodules in  
more detail.  
VS  
Power-down supply  
VDDP  
VDDC  
Power supply generation unit  
(PGU)  
I
N
T
E
R
N
A
L
e.g. for WDT1  
LP_CLK  
Peripherals  
LDO for external supply  
VDDEXT  
VDDEXT  
e.g. for cyclic  
wake and sense  
LP_CLK2  
B
U
S
PMU-PCU  
PMU-SFR  
MON  
LIN  
PMU-CMU  
PMU-RMU  
PMU-WMU  
P0.0...P0.4  
P1.0...P1.4  
PMU control  
Power management unit  
Figure 3  
Table 4  
Power management unit block diagram  
Description of PMU submodules  
Module name Modules  
Functions  
Power-down Independent supply voltage  
This supply is dedicated to the PMU to ensure an  
operation independently of generated power  
supplies (VDDP, VDDC).  
supply  
generation for PMU.  
Clock source for all PMU  
submodules.  
LP_CLK  
(18 MHz)  
This ultra-low-power oscillator generates the clock  
for the PMU.  
This clock is also used as the backup clock for the  
system in case of PLL clock failures and as an  
independent clock source for WDT1.  
Backup clock source for the  
system.  
Clock source for WDT1.  
LP_CLK2  
(100 kHz)  
Clock source for PMU.  
This ultra-low-power oscillator generates the clock  
for the PMU in Stop mode and in the cyclic modes.  
Peripherals  
Peripheral blocks of PMU.  
These blocks include the analog peripherals to  
ensure a stable and fail-safe PMU startup and  
operation (bandgap, bias).  
Datasheet  
19  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Power management unit (PMU)  
Table 4  
Description of PMU submodules (cont’d)  
Module name Modules  
Power supply Voltage regulators for VDDP and  
Functions  
This block includes the voltage regulators for the pad  
supply (VDDP) and the core supply (VDDC).  
generation  
unit (PGU)  
VDDC.  
VDDEXT  
Voltage regulator for VDDEXT to  
supply external modules (e.g.,  
sensors).  
This voltage regulator is a dedicated supply for  
external modules and can also be used for cyclic  
sense operations (e.g., with hall sensor).  
PMU-SFR  
PMU-PCU  
All extended special function registers This module contains all registers needed to control  
that are relevant to the PMU.  
and monitor the PMU.  
Power control unit of the PMU.  
This block is responsible for controlling all power-  
related actions within the PGU module. It also  
contains all regulator-related diagnostics such as  
undervoltage and overvoltage detection as well as  
overcurrent and short-circuit diagnostics.  
PMU-WMU  
PMU-CMU  
PMU-RMU  
Wake-up management unit of the  
PMU.  
This block is responsible for controlling all actions  
related to wake-up within the PMU module.  
Cyclic management unit of the PMU. This block is responsible for controlling all actions in  
cyclic mode.  
Reset management unit of the PMU. This block generates resets triggered by the PMU,  
such as undervoltage or short-circuit reset, and  
passes all resets to the relevant modules and their  
registers.  
Datasheet  
20  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Power management unit (PMU)  
5.2.2  
PMU modes overview  
The following state diagram shows the available modes of the device.  
VS > 4 V and VS ramp-up  
or  
VS < 3 V and VS ramp-down  
LIN-wake or  
MON-wake or  
cyclic-wake  
start-up  
VDDC = stable and  
error_supp < 5  
VDDC / VDDP =  
fail (short-circuit)  
error_supp ++  
error_supp=5  
sleep  
active  
Sleep command (from MCU) or  
WDT1_SEQ_FAIL = 1 (error_wdt = 5) or  
VDDC / VDDP = overload or  
system overtemperature  
LIN-wake or  
MON-wake or  
GPIO-wake or  
cyclic_wake or  
PMU_PIN = 1 or  
SUP_TMOUT = 1  
PMU_PIN = 1 or  
PMU_SOFT = 1 or  
(PMU_Ext_WDT = 1 and  
WDT1_SEQ_FAIL = 0  
error_wdt ++)  
Stop  
command  
(from MCU)  
stop  
cyclic-sense  
Figure 4  
Power management unit system modes  
Datasheet  
21  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Power management unit (PMU)  
5.3  
Power supply generation unit (PGU)  
5.3.1  
Voltage regulator 5.0 V (VDDP)  
This module represents the 5 V voltage regulator, which provides the pad supply for the parallel port pins and  
other 5 V analog functions (e.g. LIN transceiver).  
Features  
5 V low-drop voltage regulator  
Overcurrent monitoring and shutdown with MCU signaling (interrupt)  
Overvoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with reset (undervoltage reset, VDDPUV  
Preregulator for the VDDC regulator  
GPIO supply  
)
Pull-down current source at the output for Sleep mode only (typ. 5 mA)  
The output capacitor CVDDP is mandatory to ensure proper regulator functionality.  
VDDP regulator  
VS  
VDDP  
CVDDP  
VPRE  
A
V
GND (pin 39)  
I
5 V LDO  
LDO supervision  
Figure 5  
Module block diagram of the VDDP voltage regulator  
Datasheet  
22  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Power management unit (PMU)  
5.3.2  
Voltage regulator 1.5 V (VDDC)  
This module represents the 1.5 V voltage regulator, which provides the supply for the microcontroller core, the  
digital peripherals, and other internal analog 1.5 V functions (e.g., ADC2) of the chip. To further reduce the  
current consumption of the MCU during Stop mode the output voltage can be lowered to VDDCOUT_Stop_Red  
.
Features  
1.5 V low-drop voltage regulator  
Overcurrent monitoring and shutdown with MCU signaling (interrupt)  
Overvoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with reset  
Pull-down current source at the output for Sleep mode only (typ. 100 μA)  
The output capacitor CVDDC is mandatory to ensure a proper regulator functionality.  
VDDC regulator  
VDDP (5 V)  
VDDC (1.5 V)  
A
V
CVDDP  
CVDDC  
GND (pin 39)  
I
1.5 V LDO  
LDO supervision  
Figure 6  
Module block diagram of the VDDC voltage regulator  
Datasheet  
23  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Power management unit (PMU)  
5.3.3  
External voltage regulator 5.0 V (VDDEXT)  
This module represents the 5 V voltage regulator, which serves as a supply for external circuits. It can be used,  
e.g., to supply an external sensor, LEDs, or potentiometers.  
Features  
Switchable +5 V, low-drop voltage regulator  
Switch-on overcurrent blanking time in order to drive small capacitive loads  
Overcurrent monitoring and shutdown with MCU signaling (interrupt)  
Overvoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with MCU signaling (interrupt)  
Pull-down current source at the output for Sleep mode only (typ. 100 μA)  
Cyclic sense option together with GPIOs  
The output capacitor CVDDEXT is mandatory to ensure a proper regulator functionality.  
VDDEXT regulator  
VS  
VDDEXT  
CVDDEXT  
VPRE  
A
V
GND (pin 39)  
I
5 V LDO  
LDO supervision  
Figure 7  
Module block diagram of the external voltage regulator  
Datasheet  
24  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
System control unit – digital modules (SCU-DM)  
6
System control unit – digital modules (SCU-DM)  
6.1  
Features  
Flexible clock configuration features  
Reset management of all system resets  
System modes control for all power modes (Active mode, Stop mode, Sleep mode)  
Enabling interrupts for many system peripherals  
General-purpose input/output control  
Debug mode control of system peripherals  
6.2  
Introduction  
The system control unit (SCU) supports all central control tasks in the TLE9872QTW40. The SCU is made up of  
the following submodules:  
Clock system and control  
Reset control  
Power management  
Interrupt management  
General port control  
Flexible peripheral management  
Module suspension control  
Watchdog timer  
Error detection and correction in data memory  
Miscellaneous control  
Datasheet  
25  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
System control unit – digital modules (SCU-DM)  
6.2.1  
Block diagram  
"On" signals to digital  
peripherals;  
status signalsfrom  
digital peripherals  
AHB  
PMCU  
WDT  
fSYS  
I
N
T
E
R
N
A
L
CGU  
fOSC  
XTAL1  
XTAL2  
OSC_HP  
PLL  
NMI  
ICU  
fPLL  
LP_CLK  
fSYS  
INTISR<15:0>  
CG  
fPCLK  
fMI_CLK  
B
U
S
fTF ILT_CLK  
PMU_1V5DidPOR  
PMU_PIN  
PMU_ExtWDT  
PMU_IntWDT  
PMU_SOFT  
Misc. control  
MODPISELx  
RCU  
PMU_Wake  
RESET_TYPE_3  
RESET_TYPE_4  
P0_POCONy.PDMx  
P1_POCONy.PDMx  
Portcontrol  
System control unit – digital modules  
Figure 8  
System control unit – digital modules block diagram  
AHB (Advanced High-Performance Bus)  
PMCU (power module control unit)  
WDT (watchdog timer in SCU-DM)  
fSYS: System clock  
Datasheet  
26  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
System control unit – digital modules (SCU-DM)  
CGU (clock generation unit)  
f
SYS: System clock  
fPCLK: Peripheral clock  
f
f
MI_CLK: Measurement interface clock  
TFILT_CLK: Analog module filter clock  
LP_CLK Clock source for all PMU submodules and WDT1  
ICU (interrupt control unit)  
NMI (non-maskable interrupt)  
INTISR<15,13:4,1,0> External interrupt signals  
RCU (reset control unit)  
PMU_1V5DidPOR Undervoltage reset of power-down supply  
PMU_PIN Reset generated by reset pin  
PMU_ExtWDT WDT1 reset  
PMU_IntWDT WDT (SCU) reset  
PMU_SOFT Software reset  
PMU_Wake Sleep mode/Stop mode exit with reset  
RESET_TYPE_3 Peripheral reset (contains all resets)  
RESET_TYPE_4 Peripheral reset (without SOFT and WDT reset)  
Port control  
P0_POCONy.PDMx Driver strength control  
P1_POCONy.PDMx Driver strength control  
Miscellaneous control  
MODPISELx mode selection registers for UART (source section) and timer (trigger or count selection)  
Datasheet  
27  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
System control unit – digital modules (SCU-DM)  
6.3  
Clock generation unit  
The clock generation unit (CGU) enables a flexible clock generation for the TLE9872QTW40. During user  
program execution, the frequency can be modified to optimize the performance/power consumption ratio,  
allowing power consumption to be adapted to the actual application state.  
The CGU in the TLE9872QTW40 consists of one oscillator circuit (OSC_HP), a phase-locked loop (PLL) module  
with an internal oscillator (OSC_PLL), and a clock control unit (CCU). The CGU can convert a low-frequency  
input/external clock signal to a high-frequency internal clock.  
The system clock fSYS is generated from one of the following selectable clocks:  
PLL clock output fPLL  
Direct clock from oscillator OSC_HP fOSC  
Low-precision clock fLP_CLK (hardware-enabled for startup after reset and during power-down wake-up  
sequence)  
CGU  
PLL_CON  
CMCON1  
OSC_CON  
SYSCON0  
XTAL1  
XTAL2  
PLL  
f
PLL  
OSC_HP  
0
1
f
OSC_int  
f
SYS  
f
LP_CLK  
2
3
LP_CLK  
f
LP_CLK  
PMU  
Figure 9  
Clock generation unit block diagram  
The following sections describe the different parts of the CGU.  
6.3.1  
Low-precision clock  
The clock source LP_CLK is a low-precision RC oscillator (LP-OSC) with a nominal frequency of 18 MHz that is  
enabled by hardware as an independent clock source for the TLE9872QTW40 startup after reset and during the  
power-down wake-up sequence. fLP_CLK is not user-configurable.  
Datasheet  
28  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
System control unit – power modules (SCU-PM)  
7
System control unit – power modules (SCU-PM)  
7.1  
Features  
Clock watchdog unit (CWU): Supervises all clocks with NMI signaling relevant to power modules.  
Interrupt control unit (ICU): All interrupt flags and status flags with system relevance.  
Power control unit (PCU): Takes over control when device enters and exits Sleep and Stop mode.  
External watchdog (WDT1): Independent system watchdog for monitoring system activity.  
7.2  
Introduction  
7.2.1  
Block diagram  
The system control unit of the power modules consists of the submodules in the figure shown below:  
"On" signals to analog  
peripherals;  
status signalsfrom  
analog peripherals  
AHB  
I
N
T
PCU  
WDT1  
LP_CLK  
E
R
N
A
L
fSYS  
MI_CLK  
PREWARN_SUP_NMI  
PREWARN_SUP_INT  
INT<n:0>  
B
U
S
CWU  
ICU  
TFILT_CLK  
System control unit – power modules  
Figure 10 Block diagram of system control unit – power modules  
AHB (Advanced High-performance Bus)  
CWU (clock watchdog unit)  
fsys: System frequency  
MI_CLK: Measurement interface clock (analog clock), derived from fsys using division factors 1/2/3/4  
TFILT_CLK: Clock used for digital filters, derived from fsys using configurable division factors  
Datasheet  
29  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
System control unit – power modules (SCU-PM)  
WDT1 (system watchdog)  
LP_CLK Clock source for all PMU submodules and WDT1  
ICU (interrupt control unit)  
PREWARN_SUP_NMI Supply prewarning NMI request  
PREWARN_SUP_INT Supply prewarning interrupt  
Grouping of peripheral interrupts for external interupt nodes:  
Grouping single peripheral interrupts for interrupt node INT<2> (measurement unit (MU))  
Grouping single peripheral interrupts for interrupt node INT<3> (ADC1-VAREF)  
Grouping single peripheral interrupts for interrupt node INT<10> (UART1-LIN transceiver)  
Grouping single peripheral interrupts for interrupt node INT<14> (bridge driver)  
Datasheet  
30  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Arm® Cortex®-M3 core  
8
Arm® Cortex®-M3 core  
8.1  
Features  
The key features of the Arm® Cortex®-M3 implemented are listed below.  
Processor core: a low-gate-count core, with low-latency interrupt processing  
A subset of the Thumb®-2 instruction set  
Banked stack pointer (SP) only  
32-bit hardware divide instructions, SDIV and UDIV (Thumb-2 instructions)  
Handler and thread modes  
Thumb and debug states  
Interruptible-continued instructions LDM/STM, push/pop for low interrupt latency  
Automatic processor state saving and restoration for low-latency interrupt service routine (ISR) entry and  
exit  
Arm® architecture v7-M Style BE8/LE support  
Arm®v6 unaligned accesses  
Nested vectored interrupt controller (NVIC) closely integrated with the processor core to achieve low  
latency interrupt processing  
Interrupts, configurable from 1 to 16  
Bits of priority (4)  
Dynamic reprioritization of interrupts  
Priority grouping. This enables selection of preemptive interrupt levels and non-preemptive interrupt  
levels.  
Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing  
without the overhead of state-saving and restoration between interrupts.  
Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction  
overhead.  
Bus interfaces  
Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode, DCode, and system bus interface  
Memory access alignment  
Write buffer for buffering of write data  
Datasheet  
31  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Arm® Cortex®-M3 core  
8.2  
Introduction  
The Arm® Cortex®-M3 processor is a leading 32-bit processor and provides a high-performance and cost-  
optimized platform for a broad range of applications including microcontrollers, automotive body systems  
and industrial control systems. Like the other Arm® Cortex® family processors, the Arm® Cortex®-M3 processor  
implements the Thumb®-2 instruction set architecture. With the optimized feature set the Arm® Cortex®-M3  
delivers 32-bit performance in an application space that is usually associated with 8- and 16-bit  
microcontrollers.  
8.2.1  
Block diagram  
Figure 11 shows the functional blocks of the Arm® Cortex®-M3.  
Arm® Cortex®-M3 processor  
Nested vectored  
interrupt  
Arm® Cortex®-M3  
processor  
core  
Interrupt and  
power control  
controller  
(NVIC)  
AHB  
access port  
(AHB-AP)  
Serial-wire  
(SW-DP)  
Bus matrix  
ICode  
DCode  
AHB-Lite  
data  
System bus  
ICode  
Serial-wire debug  
interface  
AHB-Lite  
instruction  
interface  
PBA0  
PBA1  
interface  
Figure 11 Arm® Cortex®-M3 block diagram  
Datasheet  
32  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
DMA controller  
9
DMA controller  
Figure 12 shows the top level block diagram of the TLE9872QTW40.  
The bus matrix allows the μDMA to access the PBA0, PBA1, and RAM.  
9.1  
Features  
The principal features of the DMA Controller are:  
It is compatible with AHB-Lite for DMA transfers.  
It is compatible with APB for register programming.  
It has a single AHB-Lite master for transferring data using a 32-bit address bus and a 32-bit data bus.  
It supports 13 DMA channels.  
Each DMA channel has dedicated handshake signals.  
Each DMA channel has a programmable priority level.  
Each priority level arbitrates using a fixed priority that is determined by the DMA channel number. The DMA  
also supports multiple transfer types:  
- Memory-to-memory  
- Memory-to-peripheral  
- Peripheral-to-memory  
It supports multiple DMA cycle types.  
It supports multiple DMA transfer data widths.  
Each DMA channel can access a primary and an alternate channel control data structure.  
All the channel control data is stored in system memory (RAM) in little-endian format.  
It performs all DMA transfers using the single AHB-Lite burst type. The destination data width is equal to  
the source data width.  
The number of transfers in a single DMA cycle can be programmed from 1 to 1024.  
The transfer address increment can be greater than the data width.  
Datasheet  
33  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
DMA controller  
9.2  
Introduction  
Please also refer to Chapter 9.3, Functional description.  
9.2.1  
Block diagram  
SSC1  
ADC1  
Timer3  
DMA requests  
DMA requests  
DMA requests  
DMA controller  
Bus matrix  
S
PBA1  
S
AHB2APB  
AHB-Lite  
M
M
AHB-Lite  
APB interface  
interrupts  
SCU_DM  
PBA0  
S
AHB-Lite  
AHB-Lite  
M
M
RAM  
S
Arm® core  
interrupts  
S
S
S
M
M
M
AHB-Lite  
AHB-Lite  
Figure 12  
DMA controller top level block diagram  
Datasheet  
34  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
DMA controller  
9.3  
Functional description  
9.3.1  
DMA mode overview  
The DMA controller implements the following 13 hardware DMA requests:  
ADC1 complete sequence 1 done: DMA transfer is requested on completion of the ADC1 channel conversion  
sequence.  
ADC1 exceptional sequence 2 (ESM) done: DMA transfer is requested on completion of the ADC1 conversion  
sequence triggered by an exceptional measurement request.  
SSC1/2 transmit byte: DMA transfer is requested upon the completion of data transmission via SSC1/2.  
SSC1/2: receive byte: DMA transfer is requested upon the completion of data reception via SSC1/2.  
ADC1 channel 0 conversion done: DMA transfer is requested on completion of the ADC1 channel 0  
conversion.  
ADC1 channel 1 conversion done: DMA transfer is requested on completion of the ADC1 channel 1  
conversion.  
ADC1 channel 2 conversion done: DMA transfer is requested on completion of the ADC1 channel 2  
conversion.  
ADC1 channel 3 conversion done: DMA transfer is requested on completion of the ADC1 channel 3  
conversion.  
ADC1 channel 4 conversion done: DMA transfer is requested on completion of the ADC1 channel 4  
conversion.  
ADC1 channel 5 conversion done: DMA transfer is requested on completion of the ADC1 channel 5  
conversion.  
ADC1 channel 6 conversion done: DMA transfer is requested on completion of the ADC1 channel 6  
conversion.  
ADC1 channel 7 conversion done: DMA transfer is requested on completion of the ADC1 channel 7  
conversion.  
Timer3 ccu6_int: DMA transfer is requested following a timer trigger.  
Datasheet  
35  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Address space organization  
10  
Address space organization  
The TLE9872QTW40 manipulates operands in the following memory spaces:  
256 KB (incl. 4 KByte emulated EEPROM) of flash memory in code space  
32 KB Boot ROM memory in code space (used for boot code and IP storage)  
8 KB RAM memory in code space and data space (RAM can be read/written as program memory or external  
data memory)  
Special function registers (SFRs) in peripheral space  
The figure below shows the detailed address alignment of the TLE9872QTW40:  
00000000H  
Reserved (boot ROM)  
00007FFFH  
10FFFFFFH  
00008000H  
Reserved  
11000000H  
Flash, 256 KB  
1103FFFFH  
11040000H  
Reserved  
17FFFFFFH  
18001FFFH  
18000000H  
SRAM, 8 KB  
18002000H  
Reserved  
3FFFFFFFH  
47FFFFFFH  
40000000H  
PBA0  
48000000H  
PBA1  
5FFFFFFFH  
DFFFFFFFH  
60000000H  
Reserved  
E0000000H  
Private Peripheral Bus  
E00FFFFFH  
FFFFFFFFH  
E0100000H  
Reserved  
Figure 13 Memory map  
Datasheet  
36  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Memory control unit  
11  
Memory control unit  
11.1  
Features  
Handles all system memory types and their interaction with the CPU  
Memory protection functions for all system memory types (D-flash, P-flash, RAM)  
Address management with access violation detection including reporting  
Linear address range for all memory types (no paging)  
11.2  
Introduction  
11.2.1  
Block diagram  
The memory control unit is divided into the following submodules:  
NVM memory module (embedded flash memory)  
RAM memory module  
BootROM memory module  
Memory protection unit (MPU) module  
Peripheral bridge PBA0  
Datasheet  
37  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Memory control unit  
NVM  
S0  
RAM  
S1  
BROM  
S2  
PBA0  
S3  
Memory protection  
unit  
Sx: Bus slave  
Mx: Bus master  
M0  
M1  
M2  
M3  
Bus matrix  
Figure 14 Block diagram of the memory control unit  
Datasheet  
38  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Memory control unit  
11.3  
NVM module (flash memory)  
The flash memory provides embedded user-programmable non-volatile memory, allowing fast and reliable  
storage of user code and data.  
Features  
In-system programming via LIN (flash mode) and SWD.  
Error correction code (ECC) for detection of single-bit and double-bit errors and dynamic correction of  
single-bit errors.  
Interrupts and signals double-bit errors by the NMI.  
Program width of 128 byte (page).  
Minimum erase width of 128 bytes (page).  
Integrated hardware support for EEPROM emulation.  
8-byte read access.  
Physical read access time: 75 ns.  
Code-read access acceleration integrated; read buffer and automatic pre-fetch.  
Page-program time: tPR  
.
Page-erase (128 bytes) and sector-erase (4 KB) time: tER.  
Erased bit (cell) is read as ‘1’, for code flash and 100TP.  
Erased bit (cell) is read as ‘0’ plus NMIMAP request, for data flash.  
Note:  
The user has to ensure that no flash operations which change the content of the flash get interrupted  
at any time.  
The clock for the NVM is supplied with the system frequency fsys. Integrated firmware routines for erasing NVM,  
EEPROM emulation, and other operations are provided.  
Datasheet  
39  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Interrupt system  
12  
Interrupt system  
12.1  
Features  
Up to 16 interrupt nodes for on-chip peripherals  
Up to 8 NMI nodes for critical system events  
Maximum flexibility for all 16 interrupt nodes  
12.2  
Introduction  
Before enabling an interrupt, all corresponding interrupt status flags must be cleared.  
12.2.1  
Overview  
The TLE9872QTW40 supports 16 interrupt vectors with 16 priority levels. Fifteen of these interrupt vectors are  
assigned to the on-chip peripherals: GPT12, SSC, CCU6, DMA, bridge driver and A/D converter are each  
assigned to one dedicated interrupt vector; while UART1 and Timer2, as well as UART2, external interrupt 2  
and Timer21 share interrupt vectors. Two vectors are dedicated for external interrupt 0 and 1.  
Table 5  
Interrupt vector table  
Service request Node ID Description  
GPT12  
MU-ADC2/T3  
ADC1  
0/1  
2
GPT interrupt (T2-T6, CAPIN)  
Measurement unit, VBG, Timer3, BEMF  
ADC1 interrupt / VREF5V overload / VREF5V OV/UV  
CCU6 node 0 interrupt  
3
CCU0  
4
CCU1  
5
CCU6 node 1 interrupt  
CCU2  
6
CCU6 node 2 interrupt  
CCU3  
7
CCU6 node 3 interrupt  
SSC1  
8
SSC1 interrupt (receive, transmit, error)  
SSC2 interrupt (receive, transmit, error)  
UART1 (ASC-LIN) interrupt (receive, transmit), Timer2, linsync1, LIN  
UART2 interrupt (receive, transmit), Timer21, external interrupt (EINT2)  
External interrupt (EINT0), MON  
SSC2  
9
UART1  
UART2  
EXINT0  
EXINT1  
BDRV/CP  
DMA  
10  
11  
12  
13  
14  
15  
External interrupt (EINT1)  
Bridge driver / charge pump  
DMA controller  
Datasheet  
40  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Interrupt system  
Table 6  
NMI interrupt table  
Service request  
Node  
NMI  
NMI  
NMI  
NMI  
NMI  
NMI  
NMI  
NMI  
Description  
Watchdog timer NMI  
PLL NMI  
Watchdog timer overflow  
PLL loss-of-lock  
NVM operation complete NMI  
Overtemperature NMI  
Oscillator watchdog NMI  
NVM map error NMI  
ECC error NMI  
NVM operation complete  
System overtemperature  
Oscillator watchdog / MI_CLK watchdog timer overflow  
NVM map error  
RAM/NVM uncorrectable ECC error  
Supply prewarning  
Supply prewarning NMI  
Datasheet  
41  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Watchdog timer (WDT1)  
13  
Watchdog timer (WDT1)  
13.1  
Features  
There are two watchdog timers in the system. The watchdog timer (WDT) within the system control unit –  
digital modules (see SCU_DM) and the Watchdog Timer (WDT1) located within the system control unit – power  
modules (see SCU_PM). The watchdog timer WDT1 is described in this section.  
In Active mode, the WDT1 acts as a windowed watchdog timer, which provides a highly reliable and safe way  
to recover from software or hardware failures.  
The WDT1 is always enabled in Active mode. In Sleep mode, Stop Mode and SWD mode (Debug mode), the  
WDT1 is automatically disabled.  
Functional Features  
Windowed watchdog timer with programmable timing in Active mode.  
Long-open window (typ. 80 ms) after power-up, reset, wake-up.  
Short-open window (typ. 30 ms) to facilitate flash programming.  
Disabled during debugging.  
Safety shutdown to Sleep mode after 5 missed WDT1 services.  
Datasheet  
42  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Watchdog timer (WDT1)  
13.2  
Introduction  
The behavior of the watchdog timer in Active mode is illustrated in Figure 15.  
Reset  
Always  
Long  
Open Window  
Trigger and  
count_SOW = 0  
Normal  
Short  
"windowed"  
operation  
open window  
and SOW  
Trigger and  
count_SOW = 0  
Trigger SOW and  
count_SOW++  
Trigger and  
count_SOW = 0  
Figure 15 Watchdog timer behavior  
Datasheet  
43  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
GPIO ports and peripheral I/O  
14  
GPIO ports and peripheral I/O  
The TLE9872QTW40 has 15 port pins organized into three parallel ports: Port 0 (P0), port 1 (P1) and port 2 (P2).  
Each port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled.  
P0 and P1 are bidirectional and can be used as general-purpose input/output (GPIO) or to perform alternate  
input/output functions for the on-chip peripherals. For ports configured as an output, the open drain mode  
can be selected. On port 2 (P2), analog inputs are shared with general-purpose inputs.  
14.1  
Features  
Features of bidirectional ports (P0, P1)  
Configurable pin direction  
Configurable pull-up/pull-down devices  
Configurable open-drain mode  
Configurable drive strength  
Transfer of data through digital inputs and outputs (general-purpose I/O)  
Alternate input/output for on-chip peripherals  
Features of the analog port (P2)  
Configurable pull-up/pull-down devices  
Transfer of data through digital inputs  
Alternate inputs for on-chip peripherals  
14.2  
Introduction  
14.2.1  
Port 0 and port 1  
Figure 16 shows the block diagram of a TLE9872QTW40 bidirectional port pin. Each port pin is equipped with  
a number of control and data bits, thus enabling very flexible usage of the pin. By defining the contents of the  
control register, each individual pin can be configured as an input or an output. The user can also configure  
each pin as an open-drain pin with or without an internal pull-up/pull-down.  
Each bidirectional port pin can be configured for input or output operation. Switching between input and  
output mode is accomplished through the register Px_DIR (x = 0 or 1), which enables or disables the output  
and input drivers. A port pin can only be configured as either input or output at any one time.  
In input mode (default after reset), the output driver is switched off (high-impedance). The voltage level  
present at the port pin is translated into a logical 0 or 1 via a Schmitt trigger device and can be read via the  
register Px_DATA.  
In output mode, the output driver is activated and drives the value supplied through the multiplexer to the  
port pin. In the output driver, each port line can be switched to open-drain mode or normal mode (push-pull  
mode) via the register Px_OD.  
The output multiplexer in front of the output driver enables the port output function to be used for different  
purposes. If the pin is used for general-purpose output, the multiplexer is switched by software to the data  
register Px_DATA. Software can set or clear the bit in Px_DATA and therefore directly influence the state of the  
port pin. If an on-chip peripheral uses the pin for output signals, alternate output lines (AltDataOut) can be  
switched via the multiplexer to the output driver circuitry. Selection of the alternate output function is defined  
Datasheet  
44  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
GPIO ports and peripheral I/O  
in registers Px_ALTSEL0 and Px_ALTSEL1. When a port pin is used in an alternate function, its direction must  
be set accordingly in the register Px_DIR.  
Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register  
Px_PUDSEL selects whether a pull-up or pull-down device is activated, while register Px_PUDEN enables or  
disables the pull device.  
PUDSEL  
Pull-up / pull-down  
select register  
Pull-up / pull-down  
control logic  
PUDEN  
Pull-up / pull-down  
enable register  
TCCR  
Temperature compensation  
control register  
Px_POCONy  
Port output  
driver control registers  
I
N
T
E
R
N
A
L
OD  
Open-drain  
control register  
DIR  
Direction register  
ALTSEL0  
Alternate select  
register 0  
B
U
S
ALTSEL1  
Alternate select  
register 1  
Pull device  
AltDataOut 3  
AltDataOut 2  
AltDataOut 1  
11  
10  
Output  
driver  
01  
00  
Out  
In  
Px_DATA  
Data register  
Input  
driver  
AltDataIn  
Schmitt trigger  
Pad  
Figure 16 General structure of a bidirectional port (P0, P1)  
Datasheet  
45  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
GPIO ports and peripheral I/O  
14.2.2  
Port 2  
Figure 17 shows the structure of an input-only port pin. Each P2 pin can only function in input mode. Register  
P2_DIR is provided to enable or disable the input driver. When the input driver is enabled, the actual voltage  
level present at the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via  
register P2_DATA. Each pin can also be programmed to activate an internal weak pull-up or pull-down device.  
Register P2_PUDSEL selects whether a pull-up or the pull-down device is activated, while register P2_PUDEN  
enables or disables the pull device. The analog input (AnalogIn) bypasses the digital circuitry and Schmitt  
trigger device for direct feed-through to the ADC input channels.  
PUDSEL  
Pull-up / pull-down  
select register  
Pull-up / pull-down  
control logic  
I
N
T
E
R
N
A
L
PUDEN  
Pull-up / pull-down  
enable register  
DIR  
Direction register  
Pull device  
B
U
S
Input  
driver  
In  
DATA  
Data register  
Schmitt  
trigger  
Pad  
AltDataIn  
AnalogIn  
Figure 17 General structure of input port (P2)  
Datasheet  
46  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
GPIO ports and peripheral I/O  
14.3  
TLE9872QTW40 port module  
14.3.1  
Port 0  
14.3.1.1 Port 0 functions  
Table 7  
Port pin  
P0.0  
Port 0 input/output functions  
Input/output  
Select  
GPI  
Connected signals  
P0_DATA.P0  
SWCLK / TCK_0  
T12HR_0  
T4INA  
From/to module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
SW  
CCU6  
GPT12T4  
Timer2  
T2_0  
EXINT2_3  
P0_DATA.P0  
T3OUT  
SCU  
Output  
Input  
GPT12T3  
Timer 21  
UART2  
EXF21_0  
RXDO_2  
P0_DATA.P1  
T13HR_0  
TxD1  
P0.1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
CCU6  
LIN_TxD  
GPT12CAP  
Timer21  
GPT12T4  
SSC1  
CAPINA  
T21_0  
T4INC  
MRST_1_2  
EXINT0_2  
P0_DATA.P1  
TxD1  
SCU  
Output  
UART1 / LIN_TxD  
T6OUT  
GPT12T6  
Datasheet  
47  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
GPIO ports and peripheral I/O  
Table 7  
Port pin  
P0.2  
Port 0 input/output functions (cont’d)  
Input/output  
Select  
GPI  
Connected signals  
P0_DATA.P2  
CCPOS2_1  
T2EUDA  
From/to module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
CCU6  
GPT12T2  
SSC1  
MTSR_1  
T21EX_0  
Timer21  
GPT12T6  
T6INA  
Output  
Input  
P0_DATA.P2  
COUT60_0  
MTSR_1  
CCU6  
SSC1  
EXF2_0  
Timer2  
P0.3  
P0_DATA.P3  
SCK_1  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
SSC1  
CAPINB  
GPT12  
GPT12T5  
GPT12T4  
CCU6  
T5INA  
T4EUDA  
CCPOS0_1  
P0_DATA.P3  
SCK_1  
Output  
Input  
SSC1  
EXF21_2  
Timer21  
GPT12T6  
T6OUT  
P0.4  
P0_DATA.P4  
MRST_1_0  
CC60_0  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
SSC1  
CCU6  
Timer21  
SCU  
T21_2  
EXINT2_2  
T3EUDA  
GPT12T3  
CCU6  
CCPOS1_1  
P0_DATA.P4  
MRST_1_0  
CC60_0  
Output  
SSC1  
CCU6  
SCU  
CLKOUT_0  
Datasheet  
48  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
GPIO ports and peripheral I/O  
14.3.2  
Port 1  
14.3.2.1 Port 1 functions  
Table 8  
Port pin  
P1.0  
Port 1 input/output functions  
Input/output  
Select  
GPI  
Connected signals  
P1_DATA.P0  
T3INC  
From/to module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12T3  
GPT12T4  
CCU6  
SSC2  
SCU  
T4EUDB  
CC61_0  
SCK_2  
EXINT1_2  
P1_DATA.P0  
SCK_2  
Output  
Input  
SSC2  
CCU6  
Timer21  
CC61_0  
EXF21_3  
P1_DATA.P1  
P1.1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
T6EUDA  
GPT12T6  
MTSR_2  
T21_1  
SSC2  
Timer21  
SCU  
EXINT1_0  
P1_DATA.P1  
MTSR_2  
COUT61_0  
TXD2_0  
Output  
Input  
SSC2  
CCU6  
UART2  
P1.2  
P1_DATA.P2  
T2INA  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
GPT12T2  
Timer2  
Timer21  
SSC2  
UART2  
CCU6  
SCU  
T2EX_1  
T21EX_3  
MRST_2_0  
RXD2_0  
CCPOS2_2  
EXINT0_1  
P1_DATA.P2  
MRST_2_0  
COUT63_0  
T3OUT  
Output  
SSC2  
CCU6  
GPT12T3  
Datasheet  
49  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
GPIO ports and peripheral I/O  
Table 8  
Port pin  
P1.3  
Port 1 input/output functions (cont’d)  
Input/output  
Select  
GPI  
Connected signals  
P1_DATA.P3  
T6INB  
From/to module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12T6  
CC62_0  
CCU6  
GPT12T6  
T6EUDB  
CCPOS0_2  
EXINT1_1  
P1_DATA.P3  
EXF21_1  
CC62_0  
CCU6  
SCU  
Output  
Input  
Timer21  
CCU6  
UART2  
TXD2_1  
P1.4  
P1_DATA.P4  
EXINT2_1  
T21EX_1  
T5EUDA  
RxD1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
SCU  
Timer21  
GPT12T5  
UART1  
GPT12T2  
CCU6  
SSC1  
T2INB  
CCPOS1_2  
MRST_1_3  
P1_DATA.P4  
CLKOUT_1  
COUT62_0  
RxD1  
Output  
SCU  
CCU6  
UART1 / LIN_RxD  
Datasheet  
50  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
GPIO ports and peripheral I/O  
14.3.3  
Port 2  
14.3.3.1 Port 2 functions  
Table 9  
Port pin  
P2.0  
Port 2 input functions  
Input/output  
Select  
Connected signals  
P2_DATA.P0  
CCPOS0_3  
-
From/to module  
Input  
GPI  
INP1  
INP2  
INP3  
INP4  
INP5  
ANALOG  
GPI  
CCU6  
T12HR_2  
EXINT0_0  
CC61_2  
CCU6  
SCU  
CCU6  
ADC1  
AN0  
P2.2  
P2.3  
Input  
Input  
P2_DATA.P2  
CCPOS2_3  
T13HR_2  
INP1  
INP2  
INP3  
INP4  
ANALOG  
GPI  
CCU6  
CCU6  
CC62_2  
CCU6  
ADC1  
AN2  
P2_DATA.P3  
CCPOS1_0  
CTRAP#_1  
T21EX_2  
CC60_1  
INP1  
INP2  
INP3  
INP4  
INP5  
ANALOG  
GPI  
CCU6  
CCU6  
Timer21  
CCU6  
SCU  
EXINT0_3  
AN3  
ADC1  
P2.4  
P2.5  
Input  
Input  
P2_DATA.P4  
CTRAP#_0  
T2EUDB  
MRST_1_1  
EXINT1_3  
AN4  
INP1  
INP2  
INP3  
INP4  
ANALOG  
GPI  
CCU6  
GPT12T2  
SSC1  
SCU  
ADC1  
P2_DATA.P5  
RXD2_1  
INP1  
INP2  
INP3  
INP4  
ANALOG  
UART2  
GPT12T3  
SSC2  
Timer 2  
ADC1  
T3EUDB  
MRST_2_1  
T2_1  
AN5  
Datasheet  
51  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
General-purpose timer units (GPT12)  
15  
General-purpose timer units (GPT12)  
15.1  
Features  
15.1.1  
Features of block GPT1  
The following list summarizes the supported features:  
fGPT is derived from PCLK  
fGPT/4 maximum resolution  
3 independent timers/counters  
Timers/counters can be concatenated  
4 Operating modes:  
Timer mode  
Gated Timer mode  
Counter mode  
Incremental Interface mode  
Reload and capture functionality  
Shared interrupt: node 0  
15.1.2  
Features of block GPT2  
The following list summarizes the supported features:  
f
f
GPT is derived from PCLK  
GPT/2 maximum resolution  
2 independent timers/counters  
Timers/counters can be concatenated  
3 Operating modes:  
Timer mode  
Gated Timer mode  
Counter mode  
Extended capture/reload functions via 16-bit capture/reload register CAPREL  
Shared interrupt: node 1  
Datasheet  
52  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
General-purpose timer units (GPT12)  
15.2  
Introduction  
The general-purpose timer unit blocks GPT1 and GPT2 have very flexible multifunctional timer structures  
which may be used for timing, event counting, pulse-width measurement, pulse generation, frequency  
multiplication, and other purposes.  
They incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in  
each block may operate independently in a number of different modes such as Gated Timer or Counter mode,  
or may be concatenated with another timer of the same block.  
Each block has alternate input/output functions and specific interrupts associated with it. Input signals can  
be selected from several sources through the PISEL register.  
The GPT module is clocked with clock fGPT. fGPT is a clock derived from PCLK.  
Datasheet  
53  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
General-purpose timer units (GPT12)  
15.2.1  
Block diagram of GPT1  
The GPT1 block contains three timers/counters: The core timer T3 and the two auxiliary timers T2 and T4. The  
maximum resolution is fGPT/4. The auxiliary timers of GPT1 may optionally be configured as reload or capture  
registers for the core timer.  
T3CON.BPS1  
2n : 1  
Basic clock  
fGPT  
Interrupt request  
(T2IRQ)  
Aux. timer T2  
Core timer T3  
Aux. timer T4  
U/D  
T2IN  
T2  
mode  
control  
Capture  
Reload  
T2EUD  
Toggle Latch  
T3  
mode  
control  
T3IN  
T3OTL  
T3OUT  
U/D  
T3EUD  
Interrupt request  
(T3IRQ)  
Capture  
Reload  
T4IN  
T4  
mode  
control  
T4EUD  
Interrupt request  
(T4IRQ)  
U/D  
Figure 18 GPT1 block diagram (n = 2 … 5)  
Datasheet  
54  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
General-purpose timer units (GPT12)  
15.2.2  
Block diagram of GPT2  
The GPT2 block contains two timers/counters: The core timer T6 and the auxiliary timer T5. The maximum  
resolution is fGPT/2. An additional capture/reload register (CAPREL) supports capture and reload operation  
with extended functionality.  
T6CON.BPS2  
2n : 1  
Basic clock  
fGPT  
Toggle FF  
T2  
mode  
control  
U/D  
Interrupt request  
(T5IRQ)  
GPT2 timer T5  
T5IN  
Clear  
T5EUD  
Capture  
CAPIN  
CAPREL  
mode  
control  
GPT2 CAPREL  
T3IN/  
T3EUD  
Interrupt request  
(CRIRQ)  
Reload  
Interrupt request  
(T6IRQ)  
Clear  
U/D  
T6  
mode  
control  
GPT2 timer T6  
T6OTL  
T6OUT  
T6OUF  
T6IN  
T6EUD  
Figure 19 GPT2 block diagram (n = 1 … 4)  
Datasheet  
55  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Timer2 and Timer21  
16  
Timer2 and Timer21  
16.1  
Features  
16-bit auto-reload mode  
Selectable up- or down-counting  
One-channel 16-bit capture mode  
16.2  
Introduction  
The timer modules are general-purpose 16-bit timers. Timer 2 and Timer 21 can function as timers or counters  
in each of their modes. As timers, they count with an input clock of fPCLK/12 (if the prescaler is disabled). As a  
counter, Timer2 counts 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for  
counting is fPCLK/24 (if the prescaler is disabled).  
16.2.1  
Timer2 and Timer21 mode overview  
Table 10  
Mode  
Timer2 and Timer21 modes  
Description  
Auto-reload  
Up/down-count-disabled  
Counting up only.  
Counting starts from the 16-bit reload value, overflow at FFFFH.  
The reload event can be configured to be triggered only by the overflow condition  
or by a negative or positive edge at the input pin T2EX as well.  
Programmable reload value in register RC2.  
Interrupt is generated with reload events.  
Datasheet  
56  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Timer2 and Timer21  
Table 10  
Mode  
Timer2 and Timer21 modes (cont’d)  
Description  
Auto-reload  
Up/down-count-enabled  
Counting up or down, direction determined by level at input pin T2EX.  
No interrupt is generated.  
Counting up  
Counting starts from the 16-bit reload value, overflow at FFFFH.  
Reload event triggered by overflow condition.  
Programmable reload value in register RC2.  
Counting down  
Counting starts from FFFFH, underflow at value defined in register RC2.  
Reload event triggered by underflow condition.  
Reload value fixed at FFFFH.  
Counting up only.  
Channel capture  
Counting starts from 0000H, overflow at FFFFH.  
Reload event triggered by overflow condition.  
Reload value fixed at 0000H.  
Capture event triggered by falling/rising edge at pin T2EX.  
Captured timer value stored in register RC2.  
Reload or capture events generate interrupts.  
Datasheet  
57  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Timer3  
17  
Timer3  
17.1  
Features  
16-bit incremental timer/counter (counting up)  
Counting frequency up to fsys  
Selectable clock prescaler  
Six operating modes  
Interrupt on overflow  
Interrupt on compare  
17.2  
Introduction  
The possible applications for this timer include measuring the time interval between events, counting events,  
and generating a signal at regular intervals.  
Timer3 can function as a timer or a counter. When functioning as a timer, Timer3 is incremented in periods  
based on the MI_CLK or LP_CLK clocks. When functioning as a counter, Timer3 is incremented in response to  
a 1-to-0 transition (falling edge) at its configured input. Timer3 can be configured in four different operating  
modes for a variety of applications (see Table 11).  
The different operating modes allow the timer to be used for tasks such as:  
Simple measurements of the times between two events.  
Triggering the measuring unit upon PWM/CCU6 unit  
Measurement of the 100 kHz LP_CLK2  
17.3  
Functional description  
Six modes of operation are provided to enable using this timer for various tasks. In every mode, the clocking  
source can be selected from MI_CLK and LP_CLK. In addition, a prescaler provides the capability to divide the  
selected clock source by 2, 4, or 8. The timer counts upwards, starting with the value in the timer count  
registers, up to the maximum count value, which depends on the selected mode of operation. Timer 3  
provides two individual interrupts on counter overflow, one for the low-byte and one for the high-byte counter  
register.  
17.3.1  
Timer3 modes overview  
The following table provides an overview of the timer modes together with the reasonable configuration  
options in Table 11.  
Table 11  
Timer3 modes  
Mode Submode Operation  
0
1
No  
13-bit timer  
submode The timer essentially operates an 8-bit counter with a divide-by-32 prescaler.  
a
16-bit timer  
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter.  
Datasheet  
58  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Timer3  
Table 11  
Timer3 modes (cont’d)  
Mode Submode Operation  
1
b
16-bit timer triggered by an event  
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter, which is  
triggered by an event to enable a single-shot measurement on a preset channel with the  
measurement unit.  
2
3
3
No  
8-bit timer with auto-reload  
submode The timer register TL3 is reloaded with a user-defined 8-bit value in TH3 on overflow.  
a
b
Timer3 operating as two 8-bit timers  
The timer registers TL3 and TH3, operate as two separate 8-bit counters.  
Timer3 operating as two 8-bit timers for clock measurement  
The timer registers, TL3 and TH3, operate as two separate 8-bit counters. In this mode, the  
LP_CLK2 low power clock can be measured. TL3 acts as an edge counter for the clock  
edges and TH3 measures the interval between the edges.  
Datasheet  
59  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Capture/compare unit 6 (CCU6)  
18  
Capture/compare unit 6 (CCU6)  
18.1  
Feature set overview  
This section gives an overview over the different building blocks and their main features.  
Timer 12 block features  
Three capture/compare channels. Each channel can be used either as capture or as compare channel.  
Supports three-phase PWM (six outputs with separate signals for high-side and low-side switches).  
16-bit resolution, maximum count frequency = peripheral clock.  
Dead-time control for each channel to avoid short-circuits in the power stage.  
Concurrent update of the T12 registers.  
Center-aligned and edge-aligned PWM can be generated.  
Single-shot mode is supported.  
Start can be controlled by external events.  
External events can be counted.  
Multiple interrupt request sources.  
Hysteresis-like control mode.  
Timer 13 block features  
One independent compare channel with one output.  
16-bit resolution, maximum count frequency = peripheral clock.  
Concurrent update of T13 registers.  
Can be synchronized to T12.  
Interrupt generation at period-match and compare-match.  
Single-shot mode is supported.  
Start can be controlled by external events.  
Capability of counting external events.  
Additional specific functions  
Block commutation for brushless DC-drives implemented.  
Position detection via hall-sensor pattern.  
Noise filter for position input signals supported.  
Automatic rotational speed measurement and commutation control for block commutation.  
Integrated error handling.  
Fast emergency stop without CPU load via external signal (CTRAP).  
Control modes for multi-channel AC drives.  
Output levels can be selected and adapted to the power stage.  
Datasheet  
60  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Capture/compare unit 6 (CCU6)  
18.2  
Introduction  
The CCU6 unit is made up of the T12 timer block with three capture/compare channels and the T13 timer block  
with one compare channel. The T12 channels can independently generate PWM signals or accept capture  
triggers, or they can jointly generate control signal patterns to drive DC motors or inverters.  
A rich set of status bits, synchronized updating of parameter values via shadow registers, and flexible  
generation of interrupt request signals provide efficient software control.  
Note:  
The capture/compare module itself is referred to as CCU6 (capture/compare unit 6). A  
capture/compare channel inside this module is referred to as CC6x.  
The timer T12 can work in capture and/or compare mode for its three channels. The modes can also be  
combined (e.g., a channel works in compare mode, whereas another channel works in capture mode). The  
timer T13 can work only in compare mode. The multi-channel control unit generates output patterns which  
can be modulated by T12 and/or T13. The modulation sources can be selected and combined for modulating  
signals.  
Datasheet  
61  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Capture/compare unit 6 (CCU6)  
18.2.1  
Block diagram  
CCU6 Module Kernel  
Compare  
CC60  
CC61  
CC62  
1
T12SUSP  
Dead-  
Multi-  
channel  
control  
Debug  
suspend  
Trap  
control  
T12  
T13  
time  
1
1
T13SUSP  
control  
fCC6  
Clock  
control  
CC63  
1
3
2
2
2
3
1
SR[3:0]  
Interrupt  
control  
Input/output control  
Port control  
P0.x  
P1.x  
P2.x  
Figure 20 CCU6 block diagram  
Datasheet  
62  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
UART1/UART2  
19  
UART1/UART2  
The description in this chapter applies to both UART1 and UART2.  
19.1  
Features  
Full-duplex asynchronous modes  
8-bit or 9-bit data frames, LSB first.  
Fixed or variable baud rate.  
Receive-buffered.  
Multiprocessor communication.  
Interrupt are generated when data transmission or receptions are complete.  
Baud-rate generator with fractional divider for generating a wide range of baud rates.  
Hardware logic for break and synch byte detection.  
19.2  
Introduction  
The UART provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive  
simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a  
previously received byte has been read from the receive register. However, if the first byte still has not been  
read by the time when the reception of the second byte is complete, one of the bytes will be lost. The serial  
port receive and transmit registers are both accessed through the special function register (SFR) SBUF. Writing  
to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.  
19.2.1  
Block diagram  
UART disreq from SCU_DM  
TXD  
RXD  
RI  
TI  
TXD  
SCU_DM  
Interrupt  
control  
RXD_0  
RXD_1  
URIOS  
SCU_DM  
P0.x  
UART  
module  
Portcontrol  
P1.x  
P2.x  
fUART2  
Clock  
control  
Baud rate  
generator  
f
BR  
Address  
decoder  
RXDO_2  
SCU_DM  
AHB interface  
UART  
GPIOs  
Figure 21 UART block diagram  
Datasheet  
63  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
UART1/UART2  
19.3  
UART modes  
The UART can be used in four different modes. In mode 0, it operates as an 8-bit shift register. In mode 1, it  
operates as an 8-bit serial port. In modes 2 and 3, it operates as a 9-bit serial port. The only difference between  
mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable baud rate is  
set by the underflow rate on the dedicated baud-rate generator.  
The different modes are selected by setting bits SM0 and SM1 to the appropriate values, as shown in Table 12.  
Table 12  
UART modes  
SM0  
SM1  
Operating mode  
Baud rate  
PCLK/2  
Variable  
PCLK/64  
Variable  
0
0
1
1
0
1
0
1
Mode 0: 8-bit shift register  
Mode 1: 8-bit shift UART  
Mode 2: 9-bit shift UART  
Mode 3: 9-bit shift UART  
f
f
UART1 is connected to the integrated LIN transceiver, and to GPIO for test purposes. UART2 is connected to  
GPIO only.  
Datasheet  
64  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
LIN transceiver  
20  
LIN transceiver  
20.1  
Features  
General functional features  
Compliant with the LIN2.2 standard, backward-compatible with LIN1.3, LIN2.0, and LIN 2.1  
Compliant with SAE J2602 (slew rate, receiver hysteresis)  
Special features  
Measurement of the LIN master baudrate via Timer2  
LIN can be used as input/output with SFR bits  
TxD timeout feature (optional, on by default)  
Operation mode features  
LIN Sleep mode (LSLM)  
LIN Receive-Only mode (LROM)  
LIN Normal mode (LNM)  
High voltage input/output mode (LHVIO)  
Supported baud rates  
Mode for transmission with up to 10.4 kilobaud  
Mode for transmission with up to 20 kilobaud  
Mode for transmission with up to 40 kilobaud  
Mode for transmission with up to 115.2 kilobaud  
Slope mode features  
Normal Slope mode (20 kbit/s)  
Low Slope mode (10.4 kbit/s)  
Flash mode (115.2 kbit/s)  
Wake-up features  
LIN bus wake-up  
20.2  
Introduction  
The LIN module is a transceiver for the Local Interconnect Network (LIN), compliant with the LIN2.2 standard  
and backward-compatible with LIN1.3, LIN2.0 and LIN2.1. It operates as a bus driver between the protocol  
controller and the physical network. The LIN bus is a single-wire, bidirectional bus typically used for in-vehicle  
networks, using baud rates between 2.4 kilobaud and 20 kilobaud. Additionally, baud rates up to  
115.2 kilobaud are implemented.  
The LIN module offers several different operation modes, including a LIN Sleep mode and the LIN Normal  
mode. The integrated slope control allows using several data transmission rates with optimized EMC  
performance. For data transfer at the end of line, a Flash mode up to 115.2 kilobaud is implemented. In  
Datasheet  
65  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
LIN transceiver  
specific conditions, this Flash mode supports data rates of up to 250 kbit/s. (In production environments, in  
point-to-point communications with reduced wire lengths and limited supply voltages.).  
20.2.1  
Block diagram  
VS  
LIN transceiver  
RBUS  
LIN.CTRL_STS  
LIN-FSM  
LIN  
CTRL  
TxD_1  
from UART  
Driver, current  
limiter, and TSD  
STATUS  
GND_LIN  
Transmitter  
RxD_1 to UART  
and TIMER2,  
pin T2EX  
Filter  
(T2EXCON=0,  
T2EXIS=0)  
Receiver  
Filter  
LIN_Wake  
Sleep comparator  
GND_LIN  
Figure 22 LIN transceiver block diagram  
Datasheet  
66  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
High-speed synchronous serial interface (SSC1/SSC2)  
21  
High-speed synchronous serial interface (SSC1/SSC2)  
21.1  
Features  
Master and Slave mode operation  
Full-duplex or half-duplex operation  
Transmit- and receive-buffered  
Flexible data format  
Programmable number of data bits: 2 to 16 bits  
Programmable shift direction: least significant bit (LSB) or most significant bit (MSB) shift first  
Programmable clock polarity: idle low or high state for the shift clock  
Programmable clock/data phase: data shift with leading or trailing edge of the shift clock  
Variable baud rate  
Compatible with Serial Peripheral Interface (SPI)  
Interrupt generation  
On a “transmitter empty” condition  
On a “receiver full” condition  
On an error condition (receive, phase, baud rate, or transmission error)  
Datasheet  
67  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
High-speed synchronous serial interface (SSC1/SSC2)  
21.2  
Introduction  
The high-speed synchronous serial interface (SSC) supports both full-duplex and half-duplex serial  
synchronous communication. The serial clock signal can be generated by the SSC internally (Master mode),  
using its own 16-bit baud rate generator, or can be received from an external master (Slave mode). Data width,  
shift direction, clock polarity, and phase are programmable. This allows communication with SPI-compatible  
devices as well as devices using other synchronous serial interfaces.  
Data is transmitted or received on the TXD and RXD lines, which are normally connected to the MTSR (Master  
Transmit, Slave Receive) and MRST (Master Receive, Slave Transmit) pins. The clock signal is output via the  
MS_CLK (Master Serial Shift Clock) line or input via the SS_CLK (Slave Serial Shift Clock) line. Both lines are  
normally connected to the SCLK pin. Transmission and reception of data are double-buffered.  
21.2.1  
Block diagram  
Figure 23 shows all functionally relevant interfaces associated with the SSC kernel.  
MRSTA  
MRSTB  
EIR  
MTSR  
SCU_DM  
interrupt  
control  
RIR  
TIR  
MTSRA  
MTSRB  
P0.x  
P1.x  
P2.x  
SSC  
module  
Port  
control  
MRST  
fhw_clk  
Clock  
control  
SCLKA  
SCLKB  
Address  
decoder  
SCLK  
AHB interface  
Module  
Product interface  
Figure 23 SSC interface diagram  
Datasheet  
68  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Measurement unit  
22  
Measurement unit  
22.1  
Features  
1 x 8-bit ADC with 10 inputs. Attenuators allow measuring high-voltage input signals.  
Supply voltage attenuators for attenuating VS, VDDP and VDDC.  
VBG monitoring of the 8-bit ADC to guarantee functional safety requirements.  
Bridge driver diagnosis measurement (VDH, VCP).  
Temperature sensor for monitoring the chip temperature and PMU regulator temperature.  
BEMF comparators for triggering commutation in BLDC applications.  
Supplement block with reference voltage generation, bias current generation, voltage buffer for NVM  
reference voltage, voltage buffer for analog module reference voltage, and a test interface.  
22.2  
Introduction  
The measurement unit is a functional unit that comprises the following submodules:  
Table 13  
Measurement functions and associated modules  
Module name  
Module  
Functions  
Central function Bandgap reference circuit  
unit  
The bandgap reference submodule provides two  
reference voltages:  
1. A trimmable reference voltage for the 8-bit ADC. A  
local dedicated bandgap circuit ensures that the  
reference voltage does not drop, e.g., because of  
crosstalk or ground voltage shift.  
2. The reference voltage for the NVM module.  
5 high-voltage inputs supporting the full supply  
range (2.5 V...30.7 V(FS))  
8-bit ADC (ADC2) 8-bit ADC module with 10  
multiplexed inputs and including  
high-voltage input attenuators  
2 medium-voltage inputs (0..5 V/7 V FS).  
3 low-voltage inputs (0..1.2 V/1.6 V FS)  
(See the following figure for the allocation of the  
inputs).  
10-bit ADC (ADC1) 10-bit ADC module with 8  
multiplexed inputs  
Five (5 V) analog inputs from port 2.x.  
VDH input  
voltage  
VDH input voltage attenuator  
Scales down (VDH) to the input voltage range of  
ADC1.CH6.  
attenuator  
Temperature  
sensor  
Temperature sensor with two  
multiplexed sensing elements:  
Generates an output voltage that is a linear function  
of the local chip (junction) temperature.  
Sensor located on the PMU  
Sensor located on the central  
chip  
Datasheet  
69  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Measurement unit  
Table 13  
Measurement functions and associated modules (cont’d)  
Module name  
Module  
Functions  
BEMF  
comparators  
Back electromotive force  
comparators  
Comparators are used to detect the back  
electromotive force (zero-crossing event), which can  
be used as a commutation trigger for BLDC  
applications.  
1. Generates the control signal for the 8-bit ADC2  
and the synchronous clock for the switched  
capacitor circuits.  
Core  
measurement  
module  
Digital signal processing and ADC2  
control unit  
2. Performs digital signal processing functions and  
provides status outputs for interrupt generation.  
22.2.1  
Block diagram  
GND_REF  
VS  
VAREF  
P2.0  
OP1  
CH0  
CH1  
CH2  
CH3  
VARE F  
GND_SENSE  
CSA  
OP2  
P2.2  
10  
/
MUX  
SFR  
A
D
Channel sequencer  
P2.3  
P2.4  
P2.5  
CH4  
CH5  
CH6  
CH7  
ADC 1  
ATTVDH_1  
ATTVDH_2  
ATTVDH_3  
VDH  
rfu  
10 Bit ADC + DPP1  
Programmable  
range setting  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
rfu  
ATTVS_1  
ATTVS_2  
VBG  
VSD  
ATTVSD  
ATTVCP  
VCP  
MON  
VDDP  
Calibration and filter  
unit with  
upper and lower  
threshold  
ATTMON  
ATTVDDP  
ATTVAREF  
8
/
SFR  
MUX  
A
D
detection and interrupt  
CH6  
CH7  
CH8  
CH9  
VAREF  
ADC 2  
ATTVBG  
PMU-VBG  
ATTVDDC  
VDDC  
Temperature  
sensor  
8 Bit ADC + DPP2  
Measurement unit  
Figure 24 Measurement unit, overview (with opamp)  
Datasheet  
70  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Measurement unit  
22.2.1.1 BEMF comparator block diagram  
V phase U  
W
V
U
VS/2  
SH3  
SH2  
R
R
R
R
Blank filter  
BEMF comparator  
Spike filter  
BEMF OUT  
SH1  
BEMF IN  
t
Measurement unit, BEMF comparators  
Figure 25 BEMF comparator (applies to each of the three comparators)  
Datasheet  
71  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Core measurement module (incl. ADC2)  
23  
Core measurement module (incl. ADC2)  
23.1  
Features  
10 individually programmable channels, split into two groups of user-configurable and non-configurable  
channels, respectively.  
Individually programmable channel prioritization scheme for the measurement unit.  
Two independent filter stages with programmable low-pass and time filter characteristics for each  
channel.  
Two channel configurations:  
Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis.  
Two individually programmable trigger thresholds with limit hysteresis settings.  
Individually programmable interrupts and statuses for all channel thresholds.  
23.2  
Introduction  
The basic function of this block is the digital postprocessing of several digitized analog measurement signals  
by filtering, level comparison, and interrupt generation. The measurement postprocessing block consists of  
ten identical channel units attached to the outputs of the 10-channel 8-bit ADC (ADC2). It processes ten  
channels, where the channel sequence and prioritization is programmable within a wide range.  
23.2.1  
Block diagram  
4
/
Core measurement module  
MUX_SEL<3:0>  
Channel controller  
(sequencer)  
ADC2 - SFR  
rfu  
VS  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
CH9  
VSD  
VCP  
First-order IIR  
1
/
+
-
8-bit ADC  
ADC2_CHx_UPPER_STS  
ADC2_CHx_LOWER_STS  
+ / -  
+ / -  
Calibration unit:  
y= a + (1+b)*x  
THy_z_UPPER.  
CHx  
8
/
10  
/
8
/
MON  
MUX  
A
D
VDDP  
1
/
THy_z_LOWER.  
CHx  
-
VAREF  
+
PMU-VBG  
VDDC  
Digital signal processing  
Temperature sensor  
TSENSE  
Figure 26 Module block diagram  
Datasheet  
72  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Core measurement module (incl. ADC2)  
23.2.2  
Core measurement module mode overview  
The basic function of this unit is the digital signal processing of several digitized analog measurement signals  
by filtering, level comparison, and interrupt generation. The core measurement module processes ten  
channels in a quasi-parallel process.  
As shown in the figure above, the ADC2 postprocessing unit consists of a channel controller (sequencer), a 10-  
channel demultiplexer, and the signal-processing block, which filters and compares the sampled ADC2 values  
for each channel individually. The channel control block controls the multiplexer sequencing on the analog  
side, before the ADC2, and in the digital domain, behind the ADC2. The channel sequence can be controlled in  
a flexible way, which allows a certain degree of channel prioritization.  
This capability can be used, e.g., to give supply voltage channels a higher priority than the other channel  
measurements. In addition, the core measurement module offers two different postprocessing measurement  
modes for over- and undervoltage detection and for two-level threshold detection.  
The channel controller (sequencer) runs in one of the following modes:  
Normal Sequencer: Channels are selected according to the 10 sequence registers which contain individual  
enablers for each of the 10 channels.  
Exceptional Interrupt Measurement: Following a hardware event, a high-priority channel is inserted into  
the current sequence. The current actual measurement is not destroyed.  
Exceptional Sequence Measurement: Following a hardware event, a complete sequence is inserted after  
the current measurement is finished. The current sequence is interrupted by the exception sequence.  
Datasheet  
73  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
10-bit analog-to-digital converter (ADC1)  
24  
10-bit analog-to-digital converter (ADC1)  
24.1  
Features  
The principal features of the ADC1 are:  
Up to 8 analog input channels (channel 7 reserved for future use).  
Flexible results handling  
10-bit resolution.  
Flexible source selection due to sequencer:  
Insert one exceptional sequence (ESM).  
Insert one interrupt measurement into the current sequence (EIM), single or up to 128 times.  
Software mode.  
Conversion sample time (separate for each channel) adjustable to adapt to sensors and reference.  
Standard external reference (VAREF) to support ratiometric measurements and different signal scales.  
DMA support, transfer ADC conversion results via DMA into RAM.  
Support of suspended and power-saving modes.  
Result data protection for slow CPU access (Wait-for-Read mode).  
Programmable clock divider.  
Integrated sample and hold circuitry.  
24.2  
Introduction  
The TLE9872QTW40 includes a high-performance 10-bit analog-to-digital converter (ADC1) with eight  
multiplexed analog input channels. The ADC1 uses a successive approximation technique to convert the  
analog voltage levels from up to eight different sources. The analog input channels of the ADC1 are available  
at AN0 and AN2 to AN5.  
Datasheet  
74  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
10-bit analog-to-digital converter (ADC1)  
24.2.1  
Block diagram  
3
/
3
/
MUX_SEL <2:0>  
Channel controller  
(sequencer)  
ADC1 - SFR  
10  
10  
10  
10  
10  
10  
10  
10  
10  
/
/
/
/
/
/
/
/
/
ADC1_OUT_CH0  
ADC1_OUT_CH1  
ADC1_OUT_CH2  
ADC1_OUT_CH3  
ADC1_OUT_CH4  
ADC1_OUT_CH5  
ADC1_OUT_CH6  
ADC1_OUT_CH7  
ADC1_RES_OUT_EIM  
P2.0  
CH0  
CH1  
CH2  
CH3  
ADC1  
P2.2  
P2.3  
P2.4  
P2.5  
VDH  
rfu  
10  
MUX  
A
D
/
MUX  
CH4  
CH5  
CH6  
CH7  
OP1  
OP2  
OPA  
Figure 27  
ADC1 top-level block diagram  
As shown in the figure above, the ADC1 postprocessing block consists of a channel controller (Sequencer) and  
an 8-channel demultiplexer. The channel control block controls the multiplexer sequencing on the analog  
side, before the ADC1, and in the digital domain, behind the ADC1. The channel sequence can be controlled in  
a flexible way, which allows a certain degree of channel prioritization.  
This capability can be used, e.g., to give supply voltage channels a higher priority than the other channel  
measurements.  
Datasheet  
75  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
High-voltage monitor input  
25  
High-voltage monitor input  
25.1  
Features  
High-voltage input with VMONth threshold voltage  
Integrated selectable pull-up and pull-down current sources  
Wake capability for power-saving modes  
Level change sensitivity configurable for transitions from low to high, high to low, or both directions  
25.2  
Introduction  
This module is dedicated to monitor external voltage levels above or below a specified threshold or it can be  
used to detect a wake-up event at the high-voltage MON pin in low-power mode. The input level can be  
monitored if the module is enabled (PMU_MON_CNF).  
To use the Wake function when the IC is in a low-power mode, the monitoring pin is switched to Sleep mode  
via the SFR bit EN.  
25.2.1  
Block diagram  
VS  
MON  
+
-
Filter  
to internal  
circuitry  
MON  
Logic  
SFR  
Figure 28 High-voltage monitor input block diagram  
Datasheet  
76  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Bridge driver (incl. charge pump)  
26  
Bridge driver (incl. charge pump)  
26.1  
Features  
The MOSFET driver is intended to drive external normal-level NFET transistors in bridge configurations. The  
driver provides many diagnostic functions for detecting faults.  
Functional features  
External power NFET transistor driver stage with driver capability of Qtot_max.  
Adjustable cross-conduction protection.  
Supply voltage (VSD) monitoring incl. adjustable over- and undervoltage shutdown with configurable  
interrupt signalling.  
VSD operating range: VSD_AM.  
VDS comparators for short-circuit-detection in both on- and off-states.  
Open-load detection in the off-state.  
Flexible PWM frequency range. Rates above 25 kHz require power dissipation and duty-cycle resolution  
analysis.  
26.2  
Introduction  
The MOSFET driver stage can be used for controlling external power NFET transistors (normal level). The  
module output is controlled by the SFR or the System PWM Machine (CCU6).  
Datasheet  
77  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Bridge driver (incl. charge pump)  
26.2.1  
Block diagram  
VDH  
VCP  
PWM unit  
CCU6  
(not part of the module)  
Predriver  
BDRV.TRIM_DRVx.  
LSDRV_DS_TFILT_SEL LS_HS_BT_TFILT_SEL  
BDRV.TRIM_DRVx.  
BDRV.CTRL3.  
DSMONVTH  
+
Spike  
filter  
Blank  
filter  
VDS  
High-side  
-
driver 1)  
1
0
GHx  
VREF  
RGG ND  
BDRV.CTRL1.HSx_PWM  
SFR  
SHx  
1
IPDDiag  
0
Low-side  
driver 1)  
BDRV.CTRL1.LSx_PWM  
+
Blank  
filter  
Spike  
filter  
VDS  
GLx  
SL  
-
RGG ND  
BDRV.TRIM_DRVx.  
BDRV.TRIM_DRVx.  
LSDRV_DS_TFILT_SEL LS_HS_BT_TFILT_SEL  
BDRV.CTRL3.  
DSMONVTH  
VREF  
1) The VGSx limiter and fast discharge functions are implemented in this block.  
Figure 29 Bridge driver module block diagram (incl. system connections)  
26.2.2  
General  
The bridge driver can be controlled in two different ways:  
In Normal mode, the output stage is fully controllable through the SFR registers CTRLx (x = 1,2,3).  
Protection functions such as overcurrent and open-load detection are available.  
The PWM mode can be enabled by setting the corresponding bit in CTRL1 and CTRL2. The PWM must be  
configured in the System PWM Module (CCU6). All protection functions are available in PWM mode as well.  
Protection functions  
Overcurrent detection and shutdown feature for external MOSFET based on drain-source measurements.  
Programmable minimum cross-current protection time.  
Open-load detection feature in the off-state for external MOSFET.  
Datasheet  
78  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Current sense amplifier  
27  
Current sense amplifier  
27.1  
Features  
Main features  
Programmable gain settings: G  
Differential input voltage: VIX  
Wide common-mode input range: VCM  
Low setting time: TSET  
27.2  
Introduction  
The current sense amplifier in the following figure can be used to measure near-ground differential voltages  
via the 10-bit ADC. Its gain is digitally programmable through internal control registers.  
Linear calibration has to be applied to achieve high gain accuracy, e.g., end-of-line calibration using the shunt  
resistor.  
The following figure shows how the current sense amplifier can be used as a low-side current sense amplifier  
where the motor current is converted to a voltage by means of a shunt resistor RSH. A differential amplifier  
input is used to eliminate measurement errors caused by a voltage drop across the stray resistance RStray and  
differences between the external and internal grounds. If the voltage at one or both inputs is outside the  
operating range, the input circuit is overloaded and requires a certain specified recovery time.  
In general, an external low-pass filter should suppress of EMI.  
Datasheet  
79  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Current sense amplifier  
27.2.1  
Block diagram  
VDH  
VAREF or  
VREF5V  
VZERO  
CSAb CTRL.VZERO  
MOSFET  
bridge  
Low-pass filter  
Input  
offset  
ROPAFILT  
G = 10/20/40/60  
OP2  
Vzero  
+
Rin_OP2  
+
G
-
(VOP2 -VOP1)*G  
10-bit ADC  
COPAFILT  
ROPAFILT  
RSH  
+
Rin_OP1  
OP1  
CSA_CTRL  
RStray  
AHB  
CSA  
GND  
Figure 30 Current sense amplifier block diagram  
Datasheet  
80  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Application information  
28  
Application information  
28.1  
BLDC driver  
The following figure shows the TLE9872QTW40 in an electric drive application setup controlling a BLDC motor.  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition, or quality of the  
device.  
Rev. polarity protection  
LPF  
ILT  
VBAT  
CPF  
CPF  
ILT1  
ILT1  
CVDDP2  
CVD DP1  
CVDDC1  
CVDDC2  
EMC filter  
DVS  
VDDP VDDC  
VS  
CP1H  
CP1L  
CP2H  
CCPS1  
CVS 2  
CVS1  
CCPS2  
CP2L  
VCP  
RMON  
IGN  
LIN  
MON  
LIN  
RVS D  
CVC P  
CMON  
VSD  
CVS D  
RVDH  
VDH  
CVDH  
RGATE  
CLIN  
D
S
GND_LIN  
G
GH1  
SH1  
TH1  
CPH 1  
VAREF  
GND_REF 1)  
RGS  
CGS  
CVA REF  
D
S
G
CEM  
CEM  
CEM  
CP1  
CP2  
CP3  
TH2  
CPH 2  
RGATE  
VDDEXT  
P0.3  
RGS  
CGS  
GH2  
SH2  
CVDD_EXT2  
CVDD_EXT1  
RVDDPU  
D
S
TLE4946-2K  
Hall  
G
RADC  
CADC  
RGATE  
TH3  
CPH3  
RVDDPU  
RGS  
CGS  
GH3  
SH3  
TLE4946-2K  
Hall  
P1.4  
P0.2  
RADC  
U
V
CADC  
RVDDPU  
D
S
RGATE  
TLE4946-2K  
Hall  
G
W
GL1  
GL2  
GL3  
RADC  
TL1  
TLE987x  
CADC  
RGS  
CGS  
D
S
M
RGATE  
G
TL2  
Temperature  
sensor  
RGS  
CGS  
P2.2  
P1.2  
D
S
RGATE  
G
TL3  
RGS  
CGS  
SL  
ROPAFIL  
T
OP2  
RShunt  
COPAFILT  
OP1  
P1.0  
ROPAFIL  
T
P1.1  
Input protection  
circuit  
P2.0  
P2.3  
P2.4  
RESET  
Input protection  
circuit  
Input protection  
circuit  
TMS  
P0.0  
Debug connector  
P0.1  
P0.4  
P2.5  
P1.3  
GND  
RTM  
S
GND  
BLDC system  
1) Note: Not connected to board GND.  
Figure 31 Simplified sample application diagram  
Note:  
This is a very simplified example of an application circuit and bill of materials. The function must be  
verified in the actual application.  
Datasheet  
81  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Application information  
Table 14  
Symbol  
CVS1  
External components (BOM)  
Function  
Component  
Blocking capacitor at VS pin  
Blocking capacitor at VS pin  
Blocking capacitor at VDDP pin  
Blocking capacitor at VDDEXT pin  
Blocking capacitor at VDDC pin  
Blocking capacitor at VAREF pin  
Standard C for LIN slave  
Filter C for charge pump end driver  
Charge pump capacitor  
Charge pump capacitor  
Charge pump capacitor  
Filter C for ISO pulses  
Capacitor  
100 nF ceramic, ESR < 1 Ω  
> 2.2 µF Elco1)  
CVS2  
CVDDP  
CVDD_EXT  
CVDDC  
CVAREF  
CLIN  
See P_2.1.2 and P_2.1.20  
See P_2.3.22 and P_2.3.20  
See P_2.2.1 and P_2.2.17  
See P_9.1.1  
220 pF  
1 µF  
CVSD  
CCPS1  
CCP2S  
CVCP  
220 nF  
220 nF  
470 nF  
10 nF  
CMON  
CVDH  
3.3 nF  
220 µF  
220 µF  
220 µF  
1 nF  
CPH1  
Capacitor  
CPH2  
Capacitor  
CPH3  
Capacitor  
COPAFILT  
CEMCP1  
CEMCP2  
CEMCP3  
Capacitor  
Capacitor  
1 nF  
Capacitor  
1 nF  
Capacitor  
1 nF  
CPFILT1, CPFILT2  
Capacitor  
RMON  
RVSD  
Resistor at MON pin  
3.9 kΩ  
2 Ω  
Limitation of reverse current due to  
transient (-2 V, 8 ms).  
Max. ratings of the VSD pin has to be  
met, alternatively the resistor shall be  
replaced by a diode  
RVDH  
RGATE  
ROPAFILT  
RSH1  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
1 kΩ  
2 Ω  
12 Ω  
Optional  
Optional  
Optional  
RSH2  
RSH3  
LPFILT  
DVS  
Reverse-polarity protection diode  
1) The capacitor must be dimensioned so as to ensure that operations which modify the content of the flash are never  
interrupted (e.g., in case of power loss).  
Datasheet  
82  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Application information  
28.2  
ESD immunity according to IEC61000-4-2  
Note:  
Tests for ESD immunity according to IEC61000-4-2 “gun test” (150 pF, 330 ) have been performed.  
The results and test conditions will be available in a test report.  
Table 15  
ESD “gun test”  
Performed test  
Result  
> 6  
Unit  
kV  
Remarks  
ESD at pin LIN, versus GND1)  
ESD at pin LIN, versus GND1)  
Positive pulse  
Negative pulse  
< -6  
kV  
1) ESD test “ESD GUN” is specified with external components; see application diagram:  
MON = 100 nF, RMON = 1 k, CLIN = 220 pF, CVS = > 20 µF ELCO + 100 nF ESR < 1 , CVSD = 1 µF, RVSD = 2 .  
C
Datasheet  
83  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29  
Electrical characteristics  
This chapter includes all relevant electrical characteristics of the product TLE9872QTW40.  
29.1  
General characteristics  
29.1.1  
Absolute maximum ratings  
Table 16  
Absolute maximum ratings1)  
Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltages – supply pins  
Supply voltage VS  
VS  
-0.3  
-0.3  
-2.8  
40  
48  
48  
V
V
V
Load dump  
P_1.1.1  
P_1.1.2  
P_1.1.32  
Supply voltage VSD  
Supply voltage VSD  
VSD  
VSD_max_extend  
Series resistor  
R
VSD = 2.2 , t = 8 ms 2)  
Voltage range VDDP  
Voltage range VDDP  
VDDP  
-0.3  
5.5  
7
V
V
P_1.1.3  
VDDP_max_extend -0.3  
In case of voltage  
transients on VS with  
VS/t 1 V/µs;  
P_1.1.41  
duration: t 150 µs;  
C
VDDP 570 nF  
Voltage range VDDEXT  
Voltage range VDDEXT  
VDDEXT  
-0.3  
5.5  
7
V
V
P_1.1.4  
VDDEXT_max_extend -0.3  
In case of voltage  
transients on VS with  
VS/t 1 V/µs;  
P_1.1.42  
duration: t 150 µs;  
C
VDDEXT 570 nF  
Voltage range VDDC  
VDDC  
-0.3  
1.6  
V
P_1.1.5  
Voltages – high-voltage pins  
Input voltage at LIN  
VLIN  
-28  
40  
40  
40  
48  
14  
48  
48  
48  
14  
V
V
V
V
V
V
V
V
V
P_1.1.7  
3)  
Input voltage at MON  
Input voltage at VDH  
Voltage range at GHx  
VMON_maxrate  
VVDH_maxrate  
VGH  
-28  
P_1.1.8  
4)  
5)  
-2.8  
-8.0  
-0.3  
-8.0  
-8.0  
-8.0  
-0.3  
P_1.1.38  
P_1.1.9  
Voltage range at GHx vs. SHx VGHvsSH  
P_1.1.44  
P_1.1.11  
P_1.1.48  
P_1.1.13  
P_1.1.45  
Voltage range at SHx  
Voltage range at SLx  
Voltage range at GLx  
Voltage range at GLx vs. SL  
VSH  
VSL  
6)  
VGL  
VGLvsSL  
Datasheet  
84  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 16  
Absolute maximum ratings1) (cont’d)  
Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
7)  
Voltage range at charge pump VCPx  
pins CP1H, CP1L, CP2H, CP2L,  
VCP  
-0.3  
48  
V
P_1.1.15  
Voltages – GPIOs  
Voltage on any port pin8)  
9)  
Vin  
-0.3  
-15  
VDDP  
+0.3  
V
V
< VDDPmax  
P_1.1.16  
P_1.1.35  
IN  
Current at VCP pin  
Max. current at VCP pin  
Injection current at GPIOs  
IVCP  
mA  
10)  
10)  
10)  
Injection current on any port IGPIONM  
pin  
-5  
5
mA  
mA  
µA  
P_1.1.34  
P_1.1.30  
P_1.1.36  
Sum of all injected currents in IGPIOAM_sum  
Normal mode  
-50  
50  
50  
Sum of all injected currents in IGPIOPD_sum  
Power-down mode (Stop  
mode)  
-5000 –  
10)  
Sum of all injected currents in IGPIOSleep_sum  
-5  
5
mA  
P_1.1.37  
Sleep mode  
Other voltages  
Input voltage VAREF  
VAREF  
VOAI  
-0.3  
-7  
VDDP  
+0.3  
V
V
P_1.1.17  
P_1.1.23  
Input voltage  
OP1, OP2  
7
Temperatures  
Junction temperature  
Storage temperature  
ESD susceptibility  
Tj  
-40  
-55  
175  
150  
°C  
°C  
P_1.1.18  
P_1.1.19  
Tstg  
ESD susceptibility  
all pins  
VESD1  
-2  
2
kV  
kV  
kV  
V
HBM 11)  
HBM 12)  
P_1.1.20  
P_1.1.21  
P_1.1.22  
P_1.1.28  
P_1.1.43  
ESD susceptibility  
pins MON, VS, VSD vs.GND  
VESD2  
-4  
4
ESD susceptibility  
pins LIN vs. GND_LIN  
VESD3  
-6  
6
HBM 11)  
13)  
ESD susceptibility CDM  
all pins vs. GND  
VESD_CDM1  
VESD_CDM2  
-500  
-750  
500  
750  
13)  
ESD susceptibility CDM  
pins 1, 12, 13, 24, 25, 36, 37, 48  
(corner pins) vs. GND  
V
Datasheet  
85  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
1) Not subject to production test, specified by design.  
2) Conditions and minimum values are derived from application conditions for reverse polarity events.  
3) The minimum voltage of -28 V applies only with an external 3.9 kseries resistor.  
4) The minimum voltage of -2.8 V applies only with an external 1 kseries resistor.  
5) To achieve the maximum ratings on this pin, the following relationships with parameter P_1.1.44 have to be  
observed: VGH < VSH + VGHvsSH_min and VSH < VGH + 0.3 V.  
6) To achieve the maximum ratings on this pin, the following relationships with parameter P_1.1.45 have to be  
observed: VGL < VSL + VGLvsSL_min and VSL < VGL + 0.3 V.  
7) These limits can be kept if the maximum current drawn out of the pin does not exceed the limit of 200 µA.  
8) See the XTAL parameter specification, when GPIOs (Port pins P2.0 and P2.2) are used as XTAL.  
9) Includes TMS and RESET.  
10) P_1.1.16 must not been exceeded in the injection current.  
11) ESD susceptibility based on the HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 k, 100 pF).  
12) MON with external circuitry of a series resistor with 3.9 kand 10 nF (at connector); VS with an external ceramic  
capacitor with 100 nF; VSD with an external capacitor with 470 nF; VDH with external circuitry of a series resistor with  
1 kand 3.3 nF (at pin).  
13) ESD susceptibility based on the HBM according to ANSI/ESDA/JEDEC JESD22-C101F.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect the reliability of the device.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered to be outside the normal operating range. Protection functions  
are not designed for continuous repetitive operation.  
Datasheet  
86  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.1.2  
Functional range  
Table 17  
Functional range  
Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Supply voltage in Active mode  
VS_AM  
5.5  
28  
40  
V
V
P_1.2.1  
Extended supply voltage in Active VS_AM_extend 28  
mode  
1)2) Extended supply P_1.2.16  
range leads to  
parameter deviation.  
Supply voltage in Active mode for VSD_AM  
MOSFET driver supply  
5.4  
28  
32  
V
V
P_1.2.18  
Extended supply voltage in Active VSD_AM_extend 28  
mode for MOSFET driver supply  
1)2)5) Extended supply P_1.2.17  
range leads to  
parameter deviation.  
Specified supply voltage for LIN  
transceiver  
VS_AM_LIN  
VS_AM_LIN  
5.5  
4.8  
18  
28  
V
V
Parameter  
specification.  
3) Extended supply  
range leads to  
parameter deviation.  
4)  
P_1.2.2  
Extended supply voltage for LIN  
transceiver  
P_1.2.14  
Supply voltage in Active mode with VS_AMmin  
reduced functionality (retaining full  
operation for microcontroller and  
flash)  
3.0  
5.5  
V
P_1.2.3  
Supply voltage in Sleep mode  
VS_Sleep  
3.0  
-1  
28  
1
V
P_1.2.4  
P_1.2.5  
P_1.2.7  
5)  
Supply voltage transients slew rate VS/t  
V/µs  
mA  
5)  
Output sum current for all GPIO  
pins  
IGPIO,sum  
-50  
50  
Junction temperature range 1  
Junction temperature range 2  
Tj_extend_1  
Tj_extend_2  
-40  
-40  
150  
165  
°C  
°C  
P_1.2.22  
P_1.2.23  
5) Incl. flash  
read/write/erase  
Junction temperature range 3  
Tj_extend_3  
165  
175  
°C  
5) Incl. flash read  
P_1.2.24  
1) This operation voltage range is only allowed for a short duration: tmax 400 ms (continuous operation at this voltage  
is not allowed), fsys = 24 MHz, IVDDP = 10 mA, IVDDEXT = 5 mA. In addition, the power dissipation caused by the charge  
pump and the MOSFET driver has to be considered. Charge pump and MOSFET driver operation above the specified  
voltage range is not allowed.  
2) Parameter deviations mean that the electrical parameters of the device may present values outside the range  
specified within the minimum and maximum values.  
3) Parameter deviations mean that the electrical parameters of the device may present values outside the range  
specified within the minimum and maximum values.  
4) Functionality is reduced (for example, cranking pulse); parameter deviations are possible: The electrical parameters  
of the device may present values outside the range specified within the minimum and maximum values.  
5) Not subject to production test, specified by design.  
Datasheet  
87  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.1.3  
Current consumption  
Table 18  
Electrical characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current consumption at VS pin  
Currentconsumptionin IVs  
Active mode at VS pin  
30  
35  
mA fsys = 20 MHz  
No loads on pins,  
P_1.3.1  
LIN in recessive state 1)  
Currentconsumptionin IVSD  
Active mode at VSD pin  
40  
35  
mA 20 kHz  
P_1.3.8  
PWM on bridge driver  
Currentconsumptionin ISDM_3P  
mA fsys = 5 MHz;  
P_1.3.19  
Slow-down mode  
LIN communication running;  
charge pump on (reverse polarity  
FET on), external low-side FET  
static on (Motor Break mode);  
VDDEXT on; all other modules set  
to power down;  
VS = 13.5 V  
Currentconsumptionin ISleep  
Sleep mode  
30  
90  
35  
µA System in Sleep mode,  
microcontroller not powered,  
wake-capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
P_1.3.3  
-40°C Tj 85°C;  
VS = 5.5 V to 18 V 2)  
Currentconsumptionin ISleep_extend_1  
Sleep mode, extended  
temperature 1  
200 µA System in Sleep mode,  
microcontroller not powered,  
wake-capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
P_1.3.15  
P_1.3.16  
-40°C Tj 150°C;  
VS = 5.5 V to 18 V 2)  
Currentconsumptionin ISleep_extend_2  
Sleep mode, extended  
temperature 2  
300 500 µA System in Sleep mode,  
microcontroller not powered,  
wake-capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
150°C Tj 175°C;  
VS = 5.5 V to 18 V 2)  
Datasheet  
88  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 18  
Electrical characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Currentconsumptionin ISleep  
Sleep mode  
33  
µA System in Sleep mode,  
microcontroller not powered,  
wake-capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
P_1.3.9  
-40°C Tj 40°C;  
VS = 5.5 V to 18 V 2)  
Currentconsumptionin ICyclic  
Sleep mode with cyclic  
wake  
110 µA -40°C Tj 85°C;  
VS = 5.5 V to 18 V;  
P_1.3.4  
t
Cyclic_ON = 4 ms;  
tCyclic_OFF = 2048 ms 2)  
Currentconsumptionin ICyclic_extend  
Sleep mode with cyclic  
wake, extended  
600 µA -40°C Tj 175°C;  
VS = 5.5 V to 18 V;  
P_1.3.18  
P_1.3.10  
t
t
Cyclic_ON = 4 ms;  
temperature range  
Cyclic_OFF = 2048 ms 2)  
Currentconsumptionin IStop  
Stop mode  
110 160 µA System in Stop mode,  
microcontroller not clocked,  
wake-capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND;  
-40°C Tj 85°C;  
VS = 5.5 V to 18 V  
Currentconsumptionin IStop_extend  
Stop mode, extended  
temperature range 1  
600 1800 µA System in Stop mode,  
microcontroller not clocked,  
wake-capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND;  
P_1.3.20  
-40°C Tj 150°C;  
VS = 5.5 V to 18 V  
1) Current on VS, ADC1/2 active, timer running, LIN active (recessive).  
2) Incl. leakage currents from VDH, VSD and MON.  
Note:  
Within the functional range, the IC operates as described in the circuit description. The electrical  
characteristics are specified under the conditions noted in the related electrical characteristics  
table.  
Datasheet  
89  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.1.4  
Thermal resistance  
Table 19  
Thermal resistance  
Parameter  
Symbol  
Values  
Typ.  
6
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Junction to soldering point  
RthJSP  
K/W 1) Measured to  
exposed pad  
P_1.4.1  
1)2)  
Junction to ambient  
Junction to top  
RthJA  
33  
8
K/W  
P_1.4.2  
P_1.4.3  
1)2)  
ΨJTOP 2s2p  
K/W  
1) Not subject to production test, specified by design.  
2) According to Jedec JESD51-2,-5,-7 with natural convection on an FR4 2s2p board. Board: 76.2 × 114.3 × 1.5 mm3 with  
two inner copper layers (35 µm strong), with thermal dissipation via array under the exposed pad contacting the first  
inner copper layer and 300 mm2 of cooling area on the bottom layer (70 µm).  
29.1.5  
Timing characteristics  
The transition times between the system modes are specified here. Generally, the timings are defined from the  
time when the corresponding bits in register PMCON0 are set until the sequence is terminated.  
Table 20  
System timing1)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Wake-up time when  
running on battery  
tstart  
3
ms  
ms  
Battery ramp-up time until  
the start of code execution  
P_1.5.6  
P_1.5.1  
Wake-up time when  
running on battery  
tstartSW  
1.5  
Battery ramp-up time until  
the MCU reset is released;  
VS > 3 V and RESET = 1  
Time to exit sleep  
tsleep - exit  
1.5  
ms  
Rising/falling edge of any  
wake-up signal (LIN, MON)  
until the MCU reset is  
released  
P_1.5.2  
P_1.5.3  
2)  
Time to enter sleep  
tsleep -  
330  
µs  
entry  
1) Not subject to production test, specified by design.  
2) Wake events during sleep entry are stored and lead to wake-up after Sleep mode is reached.  
Datasheet  
90  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.2  
Power management unit (PMU)  
This chapter includes all electrical characteristics of the power management unit.  
29.2.1  
PMU I/O supply (VDDP) parameters  
This chapter describes electrical parameters which are observable on the SoC level. The pad-supply VDDP and  
the transition times between the system modes are specified in the following table.  
Table 21  
Electrical characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
1)  
Specified output current  
Specified output current  
IVDDP  
0
50  
30  
2.2  
mA  
mA  
P_2.1.1  
P_2.1.22  
P_2.1.2  
1)2)  
IVDDP  
0
Required decoupling  
capacitance  
CVDDP1  
0.47  
µF 3)4)5) ESR < 1 Ω  
3)4)5)  
Required buffer capacitance CVDDP2  
for stability (load jumps)  
1
2.2  
5.1  
µF  
P_2.1.20  
P_2.1.3  
6)  
Output voltage including line VDDPOUT  
and load regulation in Active  
mode  
4.9  
5.0  
V
V
V
V
I
< 90 mA;  
load  
VS > 5.5 V  
2)6)  
Output voltage including line VDDPOUT  
and load regulation in Active  
mode  
4.9  
4.5  
5.0  
5.0  
5.0  
5.1  
5.5  
5.8  
I
< 70 mA;  
P_2.1.23  
P_2.1.21  
P_2.1.29  
load  
VS > 5.5 V  
6)  
Output voltage including line VDDPOUTSTOP  
and load regulation in Stop  
mode  
I
is only internal;  
load  
VS > 5.5 V;  
-40°C Tj -150°C  
6)  
Output voltage including line VDDPOUTSTOP_HT 3.5  
and load regulation in Stop  
mode, extended temperature  
range  
I
is only internal;  
load  
VS > 5.5 V;  
150°C < Tj 175°C  
Output drop in Active mode  
VSVDDPout  
50  
400 mV IVDDP = 30 mA7);  
3.5 V < VS < 5.0 V  
P_2.1.4  
P_2.1.5  
Load regulation in Active  
mode  
VVDDPLOR  
-50  
50  
mV 2 mA … 90 mA;  
C = 570 nF;  
-40°C < Tj 150°C  
Load regulation in Active  
mode, extended temperature  
range  
VVDDPLOR_HT  
-70  
70  
mV 2 mA … 90 mA;  
C = 570 nF;  
P_2.1.30  
150°C < Tj 175°C  
Line regulation in Active mode VVDDPLIR  
-50  
50  
mV VS = 5.5 V … 28 V  
P_2.1.6  
P_2.1.7  
Overvoltage detection  
VDDPOV  
5.14  
5.4  
V
VS > 5.5 V;  
Overvoltage leads to  
SUPPLY_NMI  
Datasheet  
91  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 21  
Electrical characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
3)8)  
Overvoltage detection filter  
time  
tFILT_VDDPOV  
VDDPOK  
735  
µs  
V
P_2.1.24  
P_2.1.25  
P_2.1.26  
3)  
3)  
Voltage OK detection  
threshold  
3
Voltage stable detection  
range9)  
VDDPSTB  
-220  
220 mV  
Undervoltage reset  
VDDPUV  
IVDDPOC  
2.5  
91  
2.6  
2.7  
V
P_2.1.8  
P_2.1.9  
P_2.1.27  
Overcurrent diagnostic  
220 mA  
3)8)  
Overcurrent diagnostic filter tFILT_VDDPOC  
time  
27  
µs  
µs  
3)8)10)  
Overcurrent diagnostic  
shutdown time  
tFILT_VDDPOC_SD  
100  
P_2.1.28  
1) Specified output current for port supply and additional other external loads, already excluding VDDC current.  
2) This use case applies when the output current on VDDEXT does not exceed 40 mA.  
3) Not subject to production test, specified by design.  
4) Ceramic capacitor.  
5) Ranges of P_2.1.2 and P_2.1.20 can be added to one ceramic capacitor with ESR < 1 Ω.  
6) Load current includes internal supply.  
7) Output drop for IVDDP without internal supply current.  
8) This filter time is derived from the time base tLP_CLK = 1 / fLP_CLK  
9) The absolute voltage value is the sum of parameters VDDP + VDDPSTB  
10) When tFILT_VDDCOC_SD is passed and the overcurrent condition is still present, the device will enter Sleep mode.  
.
.
Datasheet  
92  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.2.2  
PMU core supply (VDDC) parameters  
This chapter describes electrical parameters which are observable on the SoC level. The core-supply VDDC  
and the transition times between the system modes are specified in the following table.  
Table 22  
Electrical characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Required decoupling capacitance CVDDC1  
0.1  
1
1
µF  
µF  
1)2)3) ESR < 1 Ω  
2)3)  
P_2.2.1  
Required buffer capacitance for CVDDC2  
0.33  
P_2.2.17  
stability (load jumps)  
Output voltage including line  
regulation in Active mode  
VDDCOUT  
1.44 1.5 1.56  
V
V
Iload < 40 mA  
P_2.2.2  
Reduced output voltage  
including line regulation in Stop  
mode  
VDDCOUT_Stop_Red 0.95 1.1 1.3  
With internal VDDC P_2.2.23  
load only:  
Iload_internal < 1.5 mA  
Load regulation in Active mode VDDCLOR  
-50  
-25  
50  
25  
mV 2 mA … 40 mA;  
P_2.2.3  
C = 430 nF  
Line regulation in Active mode  
Overvoltage detection  
VDDCLIR  
VDDCOV  
mV VDDP = 2.5 V … 5.5 V P_2.2.4  
1.59 1.62 1.68  
V
Overvoltageleadsto P_2.2.5  
SUPPLY_NMI  
1)4)  
Overvoltage detection filter time tFILT_VDDCOV  
Voltage OK detection range5)  
VDDCOK  
Voltage stable detection range6) VDDCSTB  
735  
µs  
P_2.2.18  
1)  
-280  
-110  
280 mV  
110 mV  
P_2.2.19  
1)  
P_2.2.20  
Undervoltage reset  
VDDVUV  
IVDDCOC  
1.136 1.20 1.264 V  
P_2.2.6  
P_2.2.7  
P_2.2.21  
P_2.2.22  
Overcurrent diagnostic  
45  
100 mA  
1)4)  
Overcurrent diagnostic filter time tFILT_VDDCOC  
27  
290  
µs  
µs  
1)4)7)  
Overcurrent diagnostic  
shutdown time  
tFILT_VDDCOC_SD  
1) Not subject to production test, specified by design.  
2) Ceramic capacitor.  
3) Ranges of P_2.2.1 and P_2.2.17 can be added to one ceramic capacitor with ESR < 1 Ω.  
4) This filter time is derived from the time base tLP_CLK = 1 / fLP_CLK  
5) This absolute voltage value is the sum of parameters VDDC + VDDCSTB  
6) This absolute voltage value is the sum of parameters VDDC + VDDCOK  
7) When tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter Sleep mode.  
.
.
.
Datasheet  
93  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.2.3  
VDDEXT voltage regulator (5.0 V) parameters  
Table 23  
Electrical characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Specified output current  
Specified output current  
IVDDEXT  
IVDDEXT  
CVDDEXT1  
0
20  
40  
2.2  
mA  
mA  
µF  
P_2.3.1  
1)  
0
P_2.3.21  
P_2.3.22  
Required decoupling  
capacitance  
0.1  
2)3)4) ESR < 1 Ω  
2)3)4)  
Required buffer capacitance for CVDDEXT2  
stability (load jumps)  
1
2.2  
5.1  
5.2  
µF  
V
P_2.3.20  
P_2.3.3  
P_2.3.23  
P_2.3.4  
P_2.3.14  
P_2.3.5  
4)  
Output voltage including line  
and load regulation  
VDDEXT  
4.9 5.0  
I
< 20 mA;  
load  
VS > 5.5 V  
Output voltage including line  
and load regulation  
VDDEXT  
4.8 5.0  
V
Iload < 40 mA;  
VS > 5.5 V  
4)  
Output drop in Active mode  
VS-VDDEXT  
VS-VDDEXT  
50  
300 mV  
I
< 20 mA;  
load  
3 V < VS < 5.0 V  
Output drop in Active mode  
400 mV Iload < 40 mA;  
3 V < VS < 5.0 V  
Load regulation in Active mode VDDEXTLOR  
Line regulation in Active mode VVDDEXTLIR  
-50  
50  
mV 2 mA … 40 mA;  
C = 200 nF  
-50  
50  
50  
mV VS = 5.5 V … 28 V  
P_2.3.6  
P_2.3.7  
Power supply ripple rejection in PSSRVDDEXT  
Active mode  
dB  
4) VS = 13.5 V;  
f = 0 kHz … 1 kHz;  
Vr = 2 Vpp  
Overvoltage detection  
VVDDEXTOV  
5.18  
5.4  
V
VS > 5.5 V  
P_2.3.8  
4)5)  
Overvoltage detection filter time tFILT_VDDEXTOV  
Voltage OK detection threshold VVDDEXTOK  
Voltage stable detection range6) VVDDEXTSTB  
735  
3
µs  
V
P_2.3.24  
P_2.3.25  
P_2.3.26  
P_2.3.9  
4)  
4)  
7)  
-220  
220 mV  
3.0  
160 mA  
Undervoltage trigger  
VVDDEXTUV  
2.6 2.8  
V
Overcurrent diagnostic  
IVDDEXTOC  
50  
4)5)  
P_2.3.10  
P_2.3.27  
Overcurrent diagnostic filter  
time  
tFILT_VDDEXTOC  
27  
µs  
4)5)  
Overcurrent diagnostic  
shutdown time  
tFILT_VDDEXTOC_SD  
100  
µs  
P_2.3.28  
1) This use case requires the reduced utilization of VDDP output current by 20 mA, see P_2.1.22.  
2) Ceramic capacitor.  
3) Ranges of P_2.3.22 and P_2.3.20 can be added to one ceramic capacitor with ESR < 1 Ω.  
4) Not subject to production test, specified by design.  
5) This filter time is derived from the time base tLP_CLK = 1 / fLP_CLK  
6) The absolute voltage value is the sum of parameters VDDEXT + VDDEXTSTB  
7) When the undervoltage condition is met, the VDDEXT_CTRL.bit.SHORT bit is set.  
.
.
Datasheet  
94  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.2.4  
VPRE voltage regulator (PMU subblock) parameters  
The PMU VPRE regulator acts as a supply for the VDDP and VDDEXT voltage regulators.  
Table 24  
Functional range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Specified output current  
IVPRE  
110  
mA  
P_2.4.1  
1) Not subject to production test, specified by design.  
29.2.4.1 Load-sharing scenario for the VPRE regulator  
The figure below shows the load-sharing scenario for VPRE regulator.  
VS  
VPRE  
VDDEXT  
VDDP  
VDDC  
VDDEXT  
5 V  
VDDP  
5 V  
CVDDEXT  
CVDDP  
GND (pin 39)  
GND (pin 39)  
VDDC  
1.5 V  
CVDDC  
GND (pin 39)  
Figure 32 Load-sharing scenario for the VPRE regulator  
Datasheet  
95  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.2.5  
Power-down voltage regulator (PMU subblock) parameters  
The PMU power-down voltage regulator consists of two subblocks:  
Power-down preregulator: VDD5VPD  
Power-down core regulator: VDD1V5_PD (Supply used for the GPUDATAxy registers)  
Both regulators are used as purely internal supplies. The following table contains all relevant parameters.  
Table 25  
Functional range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VDD1V5_PD  
1)  
Power-on reset threshold  
VDD1V5_PD_RSTTH 1.2  
1.5  
V
P_2.5.1  
1) Not subject to production test, specified by design.  
Datasheet  
96  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.3  
System clocks  
29.3.1  
Parameters of oscillators and PLLs  
Table 26  
Electrical characteristics of the system clocks  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min.  
PMU oscillators (power management unit)  
Typ. Max.  
Frequency of LP_CLK fLP_CLK  
14  
18  
22  
MHz This clock is used during  
startup and can be used  
when the PLL fails.  
P_3.1.1  
Frequency of LP_CLK2 fLP_CLK2  
70  
100  
130  
kHz This clock is used for cyclic P_3.1.2  
wakes.  
CGU oscillator (clock generation unit microcontroller)  
Short-term frequency fTRIMST  
-0.4  
0.4  
%
2)3) Within any 10 ms, e.g., P_3.1.3  
after synchronization to a  
LIN frame. (The PLL  
deviation1)  
settings must not change  
in these 10 ms.)  
Absolute accuracy  
fTRIMABSA  
-1.5  
1.5  
2.0  
10  
%
%
µs  
Including temperature and P_3.1.4  
lifetime deviation;  
-40°C Tj 150°C  
Absolute accuracy,  
extended temperature  
range  
fTRIMABSA_HT -2.0  
Including temperature and P_3.1.18  
lifetime deviation;  
150°C Tj 175°C  
3) Start-up time OSC from P_3.1.5  
Sleep mode, power supply  
stable  
CGU-OSC start-up time tOSC  
PLL (clock generation unit microcontroller) 3)  
VCO frequency range fVCO-0  
mode 0  
48  
112  
160  
MHz VCOSEL = ”0”  
MHz VCOSEL = ”1”  
P_3.1.6  
P_3.1.7  
VCO frequency range fVCO-1  
96  
mode 1  
Input frequency range fOSC  
4
4
16  
16  
MHz  
MHz  
P_3.1.8  
P_3.1.9  
XTAL1 input frequency fOSC  
range  
Output frequency  
range  
fPLL  
0.04687 –  
80  
38  
MHz  
P_3.1.10  
P_3.1.11  
Free-running  
fVCOfree_0  
MHz VCOSEL = ”0”  
frequency mode 0  
Datasheet  
97  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 26  
Electrical characteristics of the system clocks (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min.  
Typ. Max.  
Free-running  
frequency mode 1  
fVCOfree_1  
thigh/low  
76  
MHz VCOSEL = ”1”  
P_3.1.12  
P_3.1.13  
Input clock high/low  
time  
10  
ns  
Peak period jitter  
Accumulated jitter  
Lock-in time  
tjp  
-500  
500  
5
ps  
ns  
µs  
4) for K = 1  
4) for K = 1  
P_3.1.14  
P_3.1.15  
P_3.1.16  
jacc  
tL  
200  
1) The typical oscillator frequency is 5 MHz.  
2) VDDC = 1.5 V, Tj = 25°C.  
3) Not subject to production test, specified by design.  
4) This parameter is valid for PLL operation with an external clock source and thus reflects the real PLL performance.  
29.3.2  
External clock parameters XTAL1, XTAL2  
Table 27  
Functional range  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
2)  
Input voltage range limits VIX1_SR  
-1.7 + VDDC  
1.7  
V
P_3.2.1  
for signal on XTAL1  
Input voltage (amplitude) VAX1_SR  
on XTAL1  
0.3 × VDDC  
V
3) Peak-to-peak P_3.2.2  
voltage  
XTAL1 input current  
Oscillator frequency  
Oscillator frequency  
IIL  
4
4
±20  
24  
µA 0 V < VIN < VDDI  
P_3.2.3  
P_3.2.4  
P_3.2.5  
fOSC  
fOSC  
MHz Clock signal  
16  
MHz Crystal or  
resonator  
High time  
Low time  
Rise time  
Fall time  
t1  
t2  
t3  
t4  
6
6
8
8
8
8
ns  
ns  
ns  
ns  
P_3.2.6  
P_3.2.7  
P_3.2.8  
P_3.2.9  
1) This parameter table is not subject to production test, specified by design.  
2) Overload conditions must not occur on pin XTAL1.  
3) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation  
and the resulting voltage peaks must remain within the limits defined by VIX1  
.
Datasheet  
98  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.4  
Flash memory  
This chapter includes the parameters for the 256 kByte embedded flash module.  
29.4.1  
Flash parameters  
Table 28  
Flash characteristics1)  
VS = 3.0 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit  
Note or  
Number  
Test Condition  
Min. Typ. Max.  
Programming time per 128 byte tPR  
page  
32)  
3.5  
ms  
3) 3 V VS 28 V  
P_4.1.1  
P_4.1.2  
Erase time per sector or page  
Data retention time  
tER  
42)  
4.5  
ms  
3) 3 V VS 28 V  
tRET  
20  
year  
1,000 erase/program P_4.1.3  
cycles  
Data retention time  
tRET  
50  
year  
1,000 erase/program P_4.1.9  
cycles  
Tj = 30°C 4)  
Flash erase endurance for pages NER  
in user sectors  
30  
10  
32  
kilocycles Data retention time P_4.1.4  
5 years  
Flash erase endurance for  
security pages  
NSEC  
NDD  
cycles  
5) Data retention time P_4.1.5  
20 years  
6)  
Drain disturb limit  
kilocycles  
P_4.1.6  
Junction temperature range 1  
Junction temperature range 2  
Tj_extend_1 -40  
Tj_extend_2 -40  
150 °C  
165 °C  
P_4.1.10  
P_4.1.11  
1) Incl. flash  
erase/write/read  
Junction temperature range 3  
Tj_extend_3 165  
175 °C  
1) Incl. flash read  
P_4.1.12  
1) Not subject to production test, specified by design.  
2) Programming and erase times depend on the internal flash clock source. The control state machine needs a few  
system clock cycles. The requirement is only relevant for extremely low system frequencies.  
3) While the flash memory is being programmed or erased, flash read operation is not possible to be performed.  
4) Determined by extrapolating of lifetime tests.  
5) Tj = 25°C.  
6) This parameter limits the number of subsequent programming operations within a physical sector without a given  
page in this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly.  
For normal sector erase/program cycles, this limit will not be violated. For data sectors, the integrated EEPROM  
emulation firmware routines handle this limit automatically. For wordline erases in code sectors (without EEPROM  
emulation), it is recommended to execute a software-based refresh, which use of the integrated NVMBRNG random  
number generator to statistically start a refresh.  
Datasheet  
99  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.5  
Parallel ports (GPIO)  
29.5.1  
Description of the keep and force currents  
VDDP  
keeper  
current  
PU device  
PUDSEL  
P1.x  
P0.x  
\PUDSEL  
keeper  
current  
PD device  
VSS  
Figure 33 Pull-up/down device  
U
GPIO  
Logical 1  
Undefined  
Logical 0  
7.5 (equivalent)  
(1.5 V / 200 μA)  
VIH - VDDP  
VIL - VDDP  
2.33 (equivalent)  
(3.5 V / 1.5 mA)  
I
-IPLF  
-IPLK  
Figure 34 Pull-up keep and force currents  
U
GPIO  
Logical 1  
Undefined  
Logical 0  
2.33 (equivalent)  
VIH  
VIL  
(3.5 V / 1.5 mA)  
7.5 (equivalent)  
(1.5 V / 200 μA)  
I
IPLK  
IPLF  
Figure 35 Pull-down keep and force currents  
Datasheet  
100  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.5.2  
DC parameters of port 0, port 1, TMS, and reset  
Note:  
Operating conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
maximum allowed current that can be taken out of VDDP.  
Table 29  
Current limits for port output drivers1)  
Port output driver mode Maximum output current  
Maximum output current  
Number  
(IOLmax, - IOHmax)  
(IOLnom, - IOHnom)  
VDDP 4.5 V 2.6 V < VDDP < 4.5 V VDDP 4.5 V 2.6 V < VDDP < 4.5 V  
Strong driver2)  
Medium driver3)  
Weak driver3)  
5 mA  
3 mA  
1.6 mA  
1.0 mA  
0.25 mA  
1.0 mA  
0.8 mA  
0.15 mA  
P_5.1.15  
P_5.1.1  
P_5.1.2  
3 mA  
1.8 mA  
0.3 mA  
0.5 mA  
1) Not subject to production test, specified by design.  
2) Not available for port pins P0.4, P1.0, P1.1, and P1.2.  
3) All P0.x and P1.x pins.  
Table 30  
DC characteristics of port0 and port1  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input hysteresis  
HYSP0_P1  
0.11 × VDDP  
V
1) Series  
P_5.1.5  
resistance = 0 ;  
4.5 V VDDP 5.5 V  
Input hysteresis  
HYSP0_P1_exend  
0.09 × VDDP  
V
1) Series  
P_5.1.16  
resistance = 0 ;  
2.6 V VDDP 4.5 V  
Input low voltage  
Input low voltage  
Input high voltage  
Input high voltage  
Output low voltage  
Output low voltage  
VIL  
-0.3  
0.3 × VDDP  
V
V
2) 4.5 V VDDP 5.5 V P_5.1.3  
1) 2.6 V VDDP 4.5 V P_5.1.17  
2) 4.5 V VDDP 5.5 V P_5.1.4  
VIL_extend  
VIH  
VIH_extend  
VOL  
-0.3  
0.42 × VDDP  
0.7 × VDDP  
VDDP + 0.3 V  
0.52 × VDDP VDDP + 0.3 V  
1) 2.6 V VDDP 4.5 V P_5.1.18  
3)4)  
1.0  
0.4  
V
V
V
V
I
I
I
I
IOLmax  
IOLnom  
IOHmax  
IOHnom  
P_5.1.6  
P_5.1.7  
P_5.1.8  
P_5.1.9  
P_5.1.20  
OL  
OL  
OH  
OH  
3)5)  
3)4)  
3)5)  
VOL  
Output high voltage VOH  
Output high voltage VOH  
Input leakage current IOZ_extend1  
VDDP - 1.0  
VDDP - 0.4  
-500  
500  
nA -40°C Tj 25°C,  
0.45 V < VIN < VDDP  
Input leakage current IOZ1  
-5  
5
µA 6) 25°C < TJ 85°C, P_5.1.10  
0.45 V < VIN < VDDP  
Input leakage current IOZ_extend2  
-15  
15  
µA 85°C < TJ 150°C, P_5.1.21  
0.45 V < VIN < VDDP  
Datasheet  
101  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 30  
DC characteristics of port0 and port1 (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input leakage current IOZ_extend3  
-20  
20  
µA 85°C < TJ 175°C, P_5.1.11  
0.45 V < VIN < VDDP  
7)  
Pull level keep  
current  
IPLK  
IPLF  
CIO  
-200  
-1.5  
200  
1.5  
10  
µA  
mA  
pF  
V
VIH (up)  
P_5.1.12  
P_5.1.13  
P_5.1.14  
PIN  
V
PIN VIL (down)  
7)  
Pull level force  
current  
V
VIL (up)  
PIN  
VPIN VIH (down)  
1)  
1)  
Pin capacitance  
Reset pin timing  
Reset pin input filter tfilt_RESET  
5
µs  
P_5.1.19  
time  
1) Not subject to production test, specified by design.  
2) Tested at VDDP = 5 V, specified for 4.5 V < VDDP < 5.5 V.  
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for  
pin groups must be respected.  
4) Tested at 4.9 V < VDDP < 5.1 V, IOL = 4 mA, IOH = -4 mA, specified for 4.5 V < VDDP < 5.5 V.  
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOLGND, VOHVDDP).  
Tested at 4.9 V < VDDP < 5.1 V, IOL = 1 mA, IOH = -1 mA.  
6) The given values are worst-case values. In production tests, this leakage current is only tested at 150°C; other values  
are ensured by correlation. For derating, please refer to the following descriptions:  
Leakage derating depending on temperature (TJ = junction temperature [°C]):  
I
OZ = 0.05 × e(1.5 + 0.028×Tj) [µA]. For example, at a temperature of 95°C, the resulting leakage current is 3.2 µA.  
Leakage derating depending on the voltage level (DV = VDDP - VPIN [V]):  
OZ = IOZtempmax - (1.6 × DV) [µA]  
I
This voltage derating formula is an approximation which applies for the maximum temperature.  
7) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the  
default pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the  
enabled pull device: VPIN VIL for a pull-up; VPIN VIH for a pull-down.  
These values apply to the fixed pull devices in dedicated pins and to the user-selectable pull devices in general-  
purpose IO pins.  
Datasheet  
102  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.5.3  
DC parameters of port 2  
These parameters apply to the IO voltage range 4.5 V VDDP 5.5 V.  
Note:  
Operating conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
overload current IOV  
.
Table 31  
DC characteristics of port 2  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
0.3 × VDDP  
Input low voltage  
Input low voltage  
Input high voltage  
Input high voltage  
Input hysteresis  
VIL  
-0.3  
V
V
1) 4.5 V VDDP 5.5 V P_5.2.1  
2) 2.6 V VDDP 4.5 V P_5.2.10  
1) 4.5 V VDDP 5.5 V P_5.2.2  
2) 2.6 V VDDP 4.5 V P_5.2.11  
VIL_extend  
VIH  
-0.3  
0.42 × VDDP  
0.7 × VDDP  
VDDP + 0.3 V  
VIH_extend  
HYSP2  
0.52 × VDDP VDDP + 0.3 V  
0.11 × VDDP  
V
2) Series  
P_5.2.3  
P_5.2.12  
P_5.2.4  
resistance = 0 ;  
4.5 V VDDP 5.5 V  
Input hysteresis  
HYSP2_extend  
0.09 × VDDP  
V
2) Series  
resistance = 0 ;  
2.6 V VDDP < 4.5 V  
nA 3) TJ 85°C,  
0 V < VIN < VDDP  
nA 3) 85°C < Tj 175°C, P_5.2.14  
0 V < VIN < VDDP  
Input leakage current IOZ2  
-400  
400  
Input leakage current, IOZ2_HT_P2_0 -2500  
extended temperature  
2500  
range for port pin P2.0  
Input leakage current, IOZ2_HT_P2_x -1500  
extended temperature  
range for all other P2.x  
1500  
30  
nA 3) 85°C < Tj 175°C, P_5.2.13  
0 V < VIN < VDDP  
Pull-level keep current IPLK  
-30  
-27  
µA 4) -40°C < Tj 150°C, P_5.2.5  
V
PIN VIH (up)  
VPIN VIL (down)  
Pull-level keep current, IPLK_HT_P2  
extended temperature  
range  
27  
µA 4) 150°C<Tj 175°C, P_5.2.15  
VPIN VIH (up)  
V
4)  
PIN VIL (down)  
Pull-level force current IPLF  
-750  
750  
10  
µA  
pF  
V
VIL (up)  
P_5.2.6  
P_5.2.7  
PIN  
VPIN VIH (down)  
2)  
Pin capacitance(digital CIO  
inputs/outputs)  
1) Tested at VDDP = 5 V, specified for 4.5 V < VDDP < 5.5 V.  
2) Not subject to production test, specified by design.  
3) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.  
Datasheet  
103  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
4) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the  
default pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the  
enabled pull device: VPIN VIL for a pull-up; VPIN VIH for a pull-down.  
Datasheet  
104  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.6  
LIN transceiver  
29.6.1  
Electrical characteristics  
Table 32  
Electrical characteristics of the LIN transceiver  
Vs = 5.5 V to 18 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
Bus receiver interface  
Receiver threshold  
voltage, recessive to  
dominant edge  
Vth_dom 0.4 × VS 0.45 × VS 0.53 × VS  
V
SAE J2602  
P_6.1.1  
Receiver dominant state VBUSdom -27  
0.4 × VS  
V
V
LIN spec 2.2 (par. 17)  
SAE J2602  
P_6.1.2  
P_6.1.3  
Receiver threshold  
voltage, dominant to  
recessive edge  
Vth_rec  
0.47 × VS 0.55 × VS 0.6 × VS  
Receiver recessive state  
Receiver center voltage  
VBUSrec 0.6 × VS  
1.15 × VS  
V
V
1) LIN spec 2.2 (par. 18) P_6.1.4  
2) LIN spec 2.2 (par. 19) P_6.1.5  
VBUS_CNT 0.475  
× VS  
0.5 × VS 0.525  
× VS  
Receiver hysteresis  
VHYS  
0.07 × VS 0.12 × VS 0.175  
× VS  
V
V
3) LIN spec 2.2 (par. 20) P_6.1.6  
Wake-up threshold  
voltage  
VBUS,wk 0.4 × VS 0.5 × VS 0.6 × VS  
P_6.1.7  
P_6.1.8  
Dominant time for bus  
wake-up (internal analog  
filter delay)  
tWK,bus  
3
15  
µs The overall dominant  
time for bus wake-up is  
the sum of tWK,bus and  
the adjustable digital  
filter time. The digital  
filter time can be  
adjusted by setting the  
PMU.CNF_WAKE_FILTE  
R.CNF_LIN_FT register  
Bus transmitter interface  
Bus recessive output  
voltage  
VBUS,ro 0.8 × VS  
VBUS,do  
VS  
V
V
VTxD = high level  
P_6.1.9  
Bus dominant output  
voltage  
0.22 × VS  
Driverdominantvoltage P_6.1.78  
RL = 500 Ω  
Datasheet  
105  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 32  
Electrical characteristics of the LIN transceiver (cont’d)  
Vs = 5.5 V to 18 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
Bus short circuit current  
IBUS,sc  
40  
100  
150  
mA Current limitation for  
driver-dominant state  
driver on VBUS = 18 V;  
P_6.1.10  
LIN spec 2.2 (par. 12)  
Bus short circuit filter time tBUS,sc  
5
µs 6) The overall bus short P_6.1.71  
circuit filter time is the  
sum of tBUS,sc and the  
digital filter time. The  
digital filter time is 4 µs  
(typ.)  
Leakage current (loss of  
ground)  
IBUS_NO_ -1000  
-450  
1000  
µA VS = 12 V;  
0 V < VBUS < 18 V;  
P_6.1.11  
GND  
LIN spec 2.2 (par. 15)  
Leakage current  
Leakage current  
Leakage current  
Bus pull-up resistance  
IBUS_NO_  
10  
20  
µA VS = 0 V; VBUS = 18 V;  
P_6.1.12  
P_6.1.13  
P_6.1.14  
P_6.1.15  
LIN spec 2.2 (par. 16)  
BAT  
IBUS_PAS_ -1  
mA VS = 18 V; VBUS = 0 V;  
LIN spec 2.2 (par. 13)  
dom  
IBUS_PAS_  
20  
47  
µA VS = 8 V; VBUS = 18 V;  
LIN spec 2.2 (par. 14)  
rec  
RBUS  
20  
30  
kNormal mode,  
LIN spec 2.2 (par. 26)  
AC characteristics - transceiver Normal Slope mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
6
6
2
µs LIN spec 2.2 (par. 31)  
µs LIN spec 2.2 (par. 31)  
P_6.1.16  
P_6.1.17  
P_6.1.18  
P_6.1.19  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
0.1  
Receiver delay symmetry tsym,R  
-2  
µs tsym,R = td(L),R - td(H),R;  
LIN spec 2.2 (par. 32)  
4) Duty cycle D1  
Duty cycle D1  
tduty1  
0.396  
Normal Slope mode  
(for worst case at 20 kbit/s)  
THRec(max) = 0.744 × VS;  
THDom(max) = 0.581 × VS;  
VS = 5.5 V … 18 V;  
t
bit = 50 µs;  
D1 = tbus_rec(min) / 2 tbit  
;
LIN spec 2.2 (par. 27)  
Datasheet  
106  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 32  
Electrical characteristics of the LIN transceiver (cont’d)  
Vs = 5.5 V to 18 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
Duty cycle D2  
tduty2  
0.581  
4) Duty cycle D2  
P_6.1.20  
Normal Slope mode  
(for worst case at 20 kbit/s)  
THRec(min) = 0.422 × VS;  
THDom(min) = 0.284 × VS;  
VS = 5.5 V … 18 V;  
t
bit = 50 µs;  
D2 = tbus_rec(max) / 2 tbit  
;
LIN spec 2.2 (par. 28)  
AC characteristics - transceiver Low Slope mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
6
6
2
µs LIN spec 2.2 (par. 31)  
µs LIN spec 2.2 (par. 31)  
P_6.1.21  
P_6.1.22  
P_6.1.23  
P_6.1.24  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
0.1  
Receiver delay symmetry tsym,R  
-2  
µs tsym,R = td(L),R - td(H),R;  
LIN spec 2.2 (par. 32)  
4) Duty cycle D3  
THRec(max) = 0.778 × VS;  
THDom(max) = 0.616 × VS;  
VS = 5.5 V … 18 V;  
Duty cycle D3  
(for worst case at  
10.4 kbit/s)  
tduty1  
0.417  
t
bit = 96 µs;  
D3 = tbus_rec(min) / 2 tbit  
;
LIN spec 2.2 (par. 29)  
Duty cycle D4  
(for worst case at  
10.4 kbit/s)  
tduty2  
0.590  
4) Duty cycle D4  
THRec(min) = 0.389 × VS;  
THDom(min) = 0.251 × VS;  
VS = 5.5 V … 18 V;  
P_6.1.25  
t
bit = 96 µs;  
D4 = tbus_rec(max) / 2 tbit  
;
LIN spec 2.2 (par. 30)  
AC characteristics - transceiver Fast Slope mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
0.1  
-1.5  
6
µs  
µs  
P_6.1.26  
P_6.1.27  
P_6.1.28  
P_6.1.74  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
6
Receiver delay symmetry tsym,R  
1.5  
2.0  
µs tsym,R = td(L),R - td(H),R  
;
;
-40°C Tj 150°C  
Receiver delay symmetry- tsym,R_HT -2.0  
Extended temperature  
range  
µs tsym,R = td(L),R - td(H),R  
150°C < Tj 175°C  
Datasheet  
107  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 32  
Electrical characteristics of the LIN transceiver (cont’d)  
Vs = 5.5 V to 18 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
AC characteristics - Flash mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
0.1  
6
6
µs  
µs  
P_6.1.31  
P_6.1.32  
Propagation delay  
td(H),R  
bus recessive to RxD HIGH  
Receiver delay symmetry tsym,R  
-1.0  
1.5  
µs tsym,R = td(L),R - td(H),R  
P_6.1.33  
P_6.1.34  
Duty cycle D7 (for worst  
case at 115 kbit/s)  
for +1 µs receiver delay  
symmetry  
tduty1  
0.399  
5) Duty cycle D7  
THRec(max) = 0.744 × VS;  
THDom(max) = 0.581 × VS;  
VS = 13.5 V;  
t
bit = 8.7 µs;  
D7 = tbus_rec(min) / 2 tbit  
Duty cycle D8 (for worst  
case at 115 kbit/s)  
for +1 µs receiver delay  
symmetry  
tduty2  
0.578  
5) Duty cycle D8  
THRec(min) = 0.422 × VS;  
THDom(min) = 0.284 × VS;  
VS = 13.5 V;  
P_6.1.35  
tbit = 8.7 µs;  
D8 = tbus_rec(max) / 2 tbit  
6)  
LIN input capacity  
CLIN_IN  
ttimeout  
6
15  
12  
30  
20  
pF  
P_6.1.69  
P_6.1.36  
TxD dominant time out  
ms VTxD = 0 V  
Thermal shutdown (junction temperature)  
6)  
Thermal shutdown  
temperature  
TjSD  
190  
200  
10  
215  
°C  
P_6.1.65  
P_6.1.66  
6)  
Thermal shutdown  
hysteresis  
T  
K
1) Maximum limit specified by design.  
2) VBUS_CNT = (Vth_dom + Vth rec)/ 2.  
3) VHYS = VBUSrec - VBUSdom  
.
4) Bus load concerning LIN spec 2.2:  
Load 1 = 1 nF / 1 k= CBUS / RBUS  
Load 2 = 6.8 nF / 660 = CBUS / RBUS  
Load 3 = 10 nF / 500 = CBUS / RBUS  
5) Bus load  
Load 1 = 1 nF / 500 = CBUS / RBUS  
.
6) Not subject to production test, specified by design.  
Datasheet  
108  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.7  
High-speed synchronous serial interface  
29.7.1  
SSC timing parameters  
The table below provides the SSC timing in the TLE9872QTW40.  
Table 33 SSC master mode timing (operating conditions apply; CL = 50 pF)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
1) 2 × TSSC  
10  
Typ.  
Max.  
2)  
2)  
2)  
2)  
SCLK clock period  
t0  
t1  
t2  
t3  
V
V
V
V
> 2.7 V  
> 2.7 V  
> 2.7 V  
> 2.7 V  
P_7.1.1  
P_7.1.2  
P_7.1.3  
P_7.1.4  
DDP  
DDP  
DDP  
DDP  
MTSR delay from SCLK  
MRST setup to SCLK  
MRST hold from SCLK  
ns  
ns  
ns  
10  
15  
1) TSSCmin = TCPU = 1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.  
2) Not subject to production test, specified by design.  
t0  
SCLK 1)  
t1  
t1  
MTSR 1)  
MRST1)  
t2  
t3  
Data  
valid  
t1  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
Figure 36 SSC master mode timing  
Datasheet  
109  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.8  
Measurement unit  
29.8.1  
System voltage measurement parameters  
Table 34  
Supply voltage signal conditioning  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Measurement output  
voltage range at VAREF5  
VA5  
0
5
V
V
P_8.1.15  
P_8.1.16  
Measurement output  
voltage range at  
VAREF1V2  
VA1V2  
0
1.23  
Battery/supply voltage measurement  
Input-to-output voltage ATTVS_1  
attenuation: VS  
3
0.055  
SFR setting 1  
P_8.1.41  
P_8.1.1  
Nominal operating input VS,range1  
voltage range VS  
22  
V
1) SFR setting 1;  
max. value corresponds  
to typ. ADC full scale  
input;  
3 V < VS < 28 V  
Accuracy of VS after  
calibration  
VS,range1  
-312  
312 mV SFR setting 1,  
P_8.1.83  
P_8.1.42  
P_8.1.40  
VS = 5.5 V to 18 V  
Input-to-output voltage ATTVS_2  
attenuation: VS  
3
0.039  
SFR setting 2  
Nominal operating input VS,range2  
voltage range VS  
31  
V
1) SFR setting 2;  
max. value corresponds  
to typ. ADC full scale  
input  
3 V < VS < 28 V  
Accuracy of VS after  
VS,range2  
-440  
440 mV SFR setting 2,  
P_8.1.84  
calibration  
VS = 5.5 V to 18 V  
Drivers supply voltage measurement VSD  
Input-to-output voltage ATTVSD  
attenuation: VSD  
0.039  
P_8.1.21  
P_8.1.2  
1)  
Nominal operating input VSD,range  
voltage range VSD  
2.5  
-440  
31  
V
Accuracy of VSD sense  
VSD  
440 mV VS = 5.5 V to 18 V  
P_8.1.47  
after calibration  
Charge pump voltage measurement VCP  
Input-to-output voltage ATTVCP  
attenuation: VCP  
0.023  
P_8.1.56  
Datasheet  
110  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 34  
Supply voltage signal conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
1)  
Nominal operating input VCP,range  
voltage range VCP  
2.5  
52  
V
P_8.1.7  
AccuracyofVCP sense after VCP  
-747  
747 mV VS = 5.5 V to 18 V  
P_8.1.62  
calibration  
Monitoring input voltage measurement VMON  
Input-to-output voltage ATTVMON  
attenuation: VMON  
0.039  
P_8.1.49  
P_8.1.8  
1)  
Nominal operating input VMON,range  
voltage range VMON  
2.5  
-440  
31  
V
Accuracy of VMON sense  
VMON  
440 mV VS = 5.5 V to 18 V  
P_8.1.68  
after calibration  
Pad supply voltage measurement VVDDP  
Input-to-output voltage ATTVDDP  
attenuation: VDDP  
0.164  
P_8.1.33  
P_8.1.50  
P_8.1.5  
1)  
Nominal operating input VDDP,range  
voltage range VDDP  
0
7.50 V  
Accuracy of VDDP sense  
VDDP_SENSE  
-105  
105 mV 2) VS = 5.5 V to 18 V  
after calibration  
10-bit ADC reference voltage measurement VAREF  
Input-to-output voltage ATTVAREF  
attenuation: VAREF  
0.219  
P_8.1.22  
P_8.1.51  
P_8.1.48  
1)  
Nominal operating input VAREF,range  
voltage range VAREF  
0
5.62  
79  
V
Accuracy of VAREF sense  
VAREF  
-79  
mV VS = 5.5 V to 18 V  
after calibration  
8-bit ADC reference voltage measurement VBG  
Input-to-output voltage ATTVBG  
attenuation: VBG  
0.75  
P_8.1.57  
P_8.1.52  
P_8.1.73  
1)  
Nominal operating input VBG,range  
voltage range VBG  
0.8  
1.64  
1.18  
V
Value of ADC2-VBG  
measurement after  
calibration  
VBG_PMU  
1.01 1.07  
1.01 1.07  
V
V
-40°C Tj 150°C  
150°C < Tj 175°C  
Value of ADC2-VBG  
measurement after  
calibration, extended  
temperature range  
VBG_PMU_HT  
1.44  
P_8.1.75  
Datasheet  
111  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 34  
Supply voltage signal conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Core supply voltage measurement VDDC  
Input-to-output voltage ATTVDDC  
attenuation: VDDC  
0.75  
P_8.1.34  
P_8.1.53  
P_8.1.6  
1)  
Nominal operating input VDDC,range  
voltage range VDDC  
0.8  
-22  
1.64  
22  
V
Accuracy of VDDC sense  
VDDC_SENSE  
mV VS = 5.5 V to 18 V  
after calibration  
VDH input voltage measurement VVDH10BITADC  
VDH input-to-output  
voltage attenuation  
ATTVDH_1  
ATTVDH_2  
ATTVDH_3  
0.166  
0.224  
0.226  
SFR setting 1  
SFR setting 2  
P_8.1.64  
P_8.1.65  
P_8.1.81  
P_8.1.66  
VDH input-to-output  
voltage attenuation  
VDH input-to-output  
voltage attenuation  
1) SFR setting 2,  
-40°C Tj 85°C  
Nominal operating input VVDH,range1  
voltage range VVDH  
30  
V
V
SFR setting 1  
,
attenuation range 1  
Nominal operating input VVDH,range2  
20  
SFR setting 2  
P_8.1.67  
voltage range VVDH  
attenuation range 2  
VDH 10-bit ADC, range 1  
,
V
VVDHADC10B  
VVDHADC10B  
-300  
-800  
300 mV VVDH = 5.5 V to 17.5 V,  
-40°C Tj 150°C  
P_8.1.39  
P_8.1.77  
Accuracy of VVDH-10-bit  
ADC, ATTVDH_1, extended  
temperature range  
800 mV VVDH = 5.5 V to 17.5 V,  
-40°C Tj 175°C  
1)  
Accuracy of VVDH 10-bit  
ADC, ATTVDH_3  
VVDHADC10B  
-200  
200 mV  
V
= 5.5 V to 17.5 V,  
P_8.1.80  
VDH  
-40°C Tj 85°C  
ATTVDH_3  
Accuracy of VVDH 10-bit  
ADC, ATTVDH_2  
VVDHADC10B  
VVDHADC10B  
-400  
-1.5  
400 mV VVDH = 5.5 V to 17.5 V,  
-40°C Tj 150°C  
P_8.1.71  
P_8.1.78  
Accuracy of VVDH 10-bit  
ADC, ATTVDH_2, extended  
temperature range  
1.5  
V
VVDH = 5.5 V to 17.5 V,  
-40°C Tj 175°C  
10-bit ADC measurement- Rin_VDH,measure 200 390  
470 kPD_N = 1 (on-state)  
P_8.1.3  
input resistance for VDH  
Datasheet  
112  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 34  
Supply voltage signal conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Measurement input  
leakage current for VVDH  
Ileak_VDH, measure -0.05  
2.0 µA PD_N = 0 (off-state),  
P_8.1.10  
P_8.1.79  
-40°C Tj 150°C  
Measurement input  
leakage current for VVDH  
extended temperature  
range  
Ileak_VDH,  
-0.05  
4.0 µA PD_N = 0 (off-state),  
,
150°C Tj 175°C  
measure_HT  
1) Not subject to production test, specified by design.  
2) Accuracy is valid for a calibrated device.  
Datasheet  
113  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.8.2  
Central temperature sensor parameters  
Table 35  
Electrical characteristics of the temperature sensor module  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Output voltage VTEMP at  
T0 = 273 K (0°C)  
a
0.666  
V
1) T0 = 273 K (0°C)  
P_8.2.2  
1)  
Temperature sensitivity b  
Accuracy_1  
b
2.31  
mV/K  
°C  
P_8.2.4  
P_8.2.5  
P_8.2.6  
P_8.2.7  
Acc_1  
Acc_2  
Acc_3  
-10  
-10  
-5  
10  
10  
5
1)2) -40°C Tj 85°C  
1)2) 125°C < Tj 175°C  
1)2) 85°C < Tj 125°C  
Accuracy_2  
°C  
Accuracy_3  
°C  
1) Not subject to production test, specified by design.  
2) Accuracy with reference to on-chip temperature calibration measurement, valid for Mode1.  
Datasheet  
114  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.8.3  
ADC2 VBG  
29.8.3.1 ADC2 reference voltage VBG  
Table 36  
DC specifications  
VS = 3.0 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Reference voltage  
VBG  
1.199  
1.211  
1.223  
V
P_8.3.1  
1) Not subject to production test, specified by design.  
29.8.3.2 ADC2 specifications  
Table 37  
DC specifications  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
8
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Resolution  
RES  
bit  
Full  
P_8.3.18  
P_8.3.19  
P_8.3.20  
P_8.3.21  
Guaranteed offset error EAOFF_8Bit  
Gain error EAGain_8Bit  
-2.0  
-2.0  
-0.8  
±0.3  
±0.5  
±0  
2.0  
2.0  
0.8  
LSB  
%FSR  
LSB  
Not calibrated  
Not calibrated  
Differential non-linearity EADNL_8Bit  
Full;  
(DNL)  
-40°C Tj 150°C  
Differential non-linearity EADNL_8Bit_HT -1.2  
(DNL), extended  
±0  
1.2  
LSB  
Full;  
P_8.3.28  
150°C < Tj 175°C  
temperature range  
Integral non-linearity  
(INL)  
EAINL_8Bit  
-1.2  
±0  
±0  
1.2  
LSB  
LSB  
Full;  
-40°C Tj 150°C  
P_8.3.22  
P_8.3.29  
Integral non-linearity  
(INL), extended  
EAINL_8Bit_HT -1.50  
1.50  
Full;  
150°C < Tj 175°C  
temperature range  
Datasheet  
115  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.9  
ADC1 reference voltage - VAREF  
29.9.1  
Electrical characteristics of VAREF  
Table 38  
Electrical characteristics of VAREF  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Required buffer capacitance CVAREF  
Reference output voltage VAREF  
0.1  
5
1
µF  
V
ESR < 1 Ω  
P_9.1.1  
P_9.1.2  
P_9.1.3  
P_9.1.4  
4.95  
5.05  
VS > 5.5 V  
1)  
DC supply voltage rejection DCPSRVAREF 30  
dB  
dB  
Supply voltage ripple  
rejection  
ACPSRVAREF 26  
1) VS = 13.5 V;  
f = 0 kHz … 1 kHz;  
Vr = 2 Vpp  
1)  
Turn-on time  
tso  
200 µs  
C
= 100 nF  
P_9.1.5  
ext  
PD_N to 99.9% of final  
value  
1) Input impedance in case P_9.1.20  
of VAREF is applied from  
external input  
Input resistance at VAREF pin RIN,VAREF  
100  
kΩ  
1) Not subject to production test, specified by design.  
Datasheet  
116  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.9.2  
Electrical characteristics of the ADC1 (10-bit)  
These parameters describe the conditions for optimum ADC performance.  
Note:  
Operating conditions apply.  
Table 39  
A/D converter characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Analog reference supply VAREF  
VAGND  
+ 1.0  
VDDPA  
+ 0.05  
V
V
V
P_9.2.1  
P_9.2.2  
P_9.2.3  
Analog reference  
ground  
VAGND  
VAIN  
VSS  
- 0.05  
1.5  
2)  
Analog input voltage  
range  
VAGND  
VAREF  
3)  
Analog clock frequency fADCI  
5
24  
MHz  
P_9.2.4  
P_9.2.5  
1)4)  
Conversion time for  
10-bit result  
tC10  
(13 + STC) (13 + STC) (13 + STC)  
× tADCI  
× tADCI  
× tADCI  
+ 2 × tSYS  
+ 2 × tSYS + 2 × tSYS  
1)  
Conversion time for  
8-bit result  
tC8  
(11 + STC) (11 + STC) (11 + STC)  
P_9.2.6  
P_9.2.7  
P_9.2.8  
× tADCI  
+ 2 × tSYS  
× tADCI  
+ 2 × tSYS + 2 × tSYS  
× tADCI  
1)  
Wake-up time from  
analog power-down,  
fast mode  
tWAF  
4
µs  
µs  
1)5)  
Wake-up time from  
analog power-down,  
slow mode  
tWAS  
15  
Total unadjusted error TUE8B  
(8 bit)  
-2  
±1  
±6  
2
counts 6)7) Reference is P_9.2.9  
internal VAREF  
counts 8)9) Reference is P_9.2.22  
Total unadjusted error TUE10B  
-12  
12  
(10 bit)  
internal VAREF  
DNL error  
INL error  
EADNL  
-3  
±0.8  
±0.8  
3
5
counts –  
P_9.2.10  
P_9.2.11  
EAINL_int_V -5  
counts Reference is  
internal VAREF  
AREF  
Gain error  
EAGAIN_int_ -10  
±0.4  
10  
counts Reference is  
P_9.2.12  
internal VAREF  
VAREF  
Offset error  
EAOFF  
CAINT  
-2  
±0.5  
2
counts –  
P_9.2.13  
P_9.2.14  
1)5)10)  
Total capacitance  
of an analog input  
10  
pF  
1)5)10)  
Switched capacitance  
of an analog input  
CAINS  
4
pF  
P_9.2.15  
Datasheet  
117  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 39  
A/D converter characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
1)5)10)  
1)5)10)  
1)5)10)  
1)5)10)  
Resistance of  
the analog input path  
RAIN  
2
kΩ  
pF  
pF  
kΩ  
P_9.2.16  
P_9.2.17  
P_9.2.18  
P_9.2.19  
Total capacitance  
of the reference input  
CAREFT  
CAREFS  
RAREF  
15  
7
Switched capacitance  
of the reference input  
Resistance of  
2
the reference input path  
1) Not subject to production test, specified by design.  
2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion results in these cases  
will be 0000H or 03FFH, respectively.  
3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.  
4) This parameter includes the sample time (and the additional sample time specified by STC), the time to determine  
the digital results and the time to load the result register with the conversion result.  
5) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a  
conversion rate of not more than 500 µs.  
6) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual  
errors.  
All error specifications are based on measurement methods standardized by IEEE 1241.2000.  
7) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed  
10 mA, and if VAREF and VAGND remain stable during the measurement time.  
8) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed  
10 mA, and if VAREF and VAGND remain stable during the measurement time.  
9) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual  
errors.  
All error specifications are based on measurement methods standardized by IEEE 1241.2000.  
10) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature,  
supply voltage), typical values can be used for the calculation. At room temperature and nominal supply voltage, the  
following typical values can be used:  
C
AINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 kΩ, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 k.  
29.10  
Reserved  
Datasheet  
118  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.11  
High-voltage monitoring input  
29.11.1 Electrical characteristics  
Table 40  
Electrical characteristics of the monitoring input  
Tj = -40°C to +175°C; VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
MON input pin characteristics  
Wake-up/monitoring  
threshold voltage  
VMONth  
0.4 × VS 0.5 × VS 0.675 ×  
V
V
Without external serial P_11.1.1  
resistor Rs  
(with Rs: DV = IPD/PU × Rs)  
VS  
Threshold hysteresis  
VMONth,hys 0.015 × 0.05 × 0.1 × VS  
VS VS  
In all modes; without  
external serial resistor Rs  
(with Rs: dV = IPD/PU × Rs);  
VS = 5.5 V to 18 V  
P_11.1.12  
Threshold hysteresis  
VMONth,hys 0.02 × 0.06 × 0.12 ×  
V
In all modes; without  
external serial resistor Rs  
(with Rs: dV = IPD/PU × Rs);  
VS = 18 V to 28 V  
P_11.1.2  
VS  
VS  
VS  
Pull-up current  
Pull-down current  
Input leakage current  
Timing  
IPU, MON  
IPD, MON  
ILK,MON  
-20  
3
-10  
10  
-1  
µA  
µA  
µA  
0.6 × VS  
P_11.1.3  
P_11.1.4  
P_11.1.5  
20  
2.5  
0.4 × VS  
1) 0 V < VMON_IN < 28 V  
-2.5  
Wake-up filter time  
(internal analog filter  
delay)  
tFT,MON  
500  
ns  
2) The overall filter time P_11.1.6  
for MON wake-up is the  
sum of tFT,MON and the  
adjustable digital filter  
time. The digital filter  
time can be adjusted by  
setting the  
PMU.CNF_WAKE_FILTER  
.CNF_MON_FT register  
1) Input leakage is valid for the disabled state.  
2) With pull-up, pull-down current disabled.  
Datasheet  
119  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.12  
MOSFET driver  
29.12.1 Electrical characteristics  
Table 41  
Electrical characteristics of the MOSFET driver  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
MOSFET driver output  
Maximum total charge  
driver capability  
Qtot_max  
100 nC  
1) Due to charge pump  
current capability, six  
MOSFETs and additional  
external capacitors with a  
total charge of maximal  
100 nC can be driven  
P_12.1.20  
simultaneously at a PWM  
frequency of 25 kHz  
Maximum total charge  
driver capability (three-  
phase PWM)  
Qtot_max,20kHz  
150 nC  
1) Due to charge pump  
current capability, six  
MOSFETs and additional  
external capacitors with a  
total charge of maximal  
150 nC can be driven  
P_12.1.120  
simultaneously at a PWM  
frequency of 20 kHz.  
V
V
SD,min 6.5 V for  
GS,min 7 V  
Source current - charge  
current (low gate voltage)  
high-side driver  
ISoumax_HS  
ISinkmax_HS  
ISoumax_LS  
ISinkmax_LS  
230 345 450 mA VSD 8 V, CLoad = 10 nF,  
Sou = CLoad × slew rate  
(= 20% to 50% of VGHx1),  
CHARGE = IDISCHG = 31(max)  
230 330 450 mA VSD 8 V, CLoad = 10 nF,  
Sink = CLoad × slew rate  
(from 80% to 50% of VGHx1),  
CHARGE = IDISCHG = 31(max)  
200 295 375 mA VSD 8 V, CLoad = 10 nF,  
Sou = CLoad × slew rate  
P_12.1.78  
P_12.1.79  
P_12.1.80  
P_12.1.81  
I
I
Sink current - discharge  
current - high-side driver  
I
I
Source current - charge  
current (low gate voltage)  
low-side driver  
I
(= 20% to 50% of VGLx1),  
ICHARGE = IDISCHG = 31(max)  
Sink current - discharge  
current - low-side driver  
200 314 375 mA VSD 8 V, CLoad = 10 nF,  
ISink = CLoad × slew rate  
(from 80% to 50% of VGLx1),  
ICHARGE = IDISCHG = 31(max)  
Datasheet  
120  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 41  
Electrical characteristics of the MOSFET driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
High-level output voltage  
Gxx vs. Sxx  
VGxx1  
VGxx2  
VGxx3  
VGxx6  
VGxx7  
trise3_3nf  
10  
14  
14  
14  
14  
14  
V
VSD 8 V, CLoad = 10 nF,  
CP = 2.5 mA2)  
P_12.1.3  
I
High-level output voltage  
GHx vs. SHx  
8
V
VSD = 6.4 V1), CLoad = 10 nF, P_12.1.4  
CP = 2.5 mA2)  
VSD = 5.4 V, CLoad = 10 nF,  
CP = 2.5 mA2)  
VSD = 6.4 V1), CLoad = 10 nF, P_12.1.6  
CP = 2.5 mA2)  
VSD = 5.4 V, CLoad = 10 nF,  
CP = 2.5 mA2)  
I
High-level output voltage  
GHx vs. SHx  
7
V
P_12.1.5  
I
High-level output voltage  
GLx vs. GND  
8
V
I
High-level output voltage  
GLx vs. GND  
7
V
P_12.1.7  
P_12.1.8  
I
1)  
Rise time  
Fall time  
Rise time  
Fall time  
Rise time  
Fall time  
200  
ns  
C
= 3.3 nF,  
Load  
V
SD 8 V,  
25% to 75% of VGxx1  
ICHARGE = IDISCHG = 31(max)  
1)  
,
tfall3_3nf  
trisemax  
tfallmax  
200  
ns  
C
= 3.3 nF,  
P_12.1.9  
Load  
VSD 8 V,  
75% to 25% of VGxx1  
,
ICHARGE = IDISCHG = 31(max)  
100 250 450 ns  
100 250 450 ns  
CLoad = 10 nF,  
SD 8 V,  
25% to 75% of VGxx1  
P_12.1.57  
P_12.1.58  
P_12.1.14  
P_12.1.15  
P_12.1.35  
V
,
I
CHARGE = IDISCHG = 31(max)  
CLoad = 10 nF,  
SD 8 V,  
75% to 25% of VGxx1  
V
,
ICHARGE = IDISCHG = 31(max)  
1)  
trisemin  
1.25 2.5  
1.25 2.5  
5
5
µs  
µs  
C
= 10 nF,  
Load  
VSD 8 V,  
25% to 75% of VGxx1  
ICHARGE = IDISCHG = 3(min)  
1)  
,
tfallmin  
C
= 10 nF,  
Load  
VSD 8 V,  
75% to 25% of VGxx1  
,
ICHARGE = IDISCHG = 3(min)  
Absolute difference  
between rise and fall for all  
LSx  
tr_f(diff)LSx  
100 ns  
CLoad = 10 nF,  
SD 8 V,  
25% to 75% of VGxx1  
V
,
ICHARGE = IDISCHG = 31(max)  
Datasheet  
121  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 41  
Electrical characteristics of the MOSFET driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Absolute difference  
between rise and fall for all  
HSx  
tr_f(diff)HSx  
100 ns  
CLoad = 10 nF,  
SD 8 V,  
25% to 75% of VGxx1  
P_12.1.36  
V
,
ICHARGE = IDISCHG = 31(max)  
1)  
Resistor between GHx/GLx RGGND  
and GND  
30  
30  
40  
40  
50  
50  
kΩ  
P_12.1.11  
P_12.1.10  
Resistor between SHx and RSHGN  
GND  
k1)3) This resistance is the  
resistance between GHx  
and GND connected  
through a diode to SHx. As  
a consequence, the  
voltage at SHx can rise up  
to 0.6 V typ. before it is  
discharged through the  
resistor  
Low-RDSON mode  
(boosted discharge mode)  
RONCCP  
9
9
12  
VVSD = 13.5 V,  
VCP = VVSD + 14.0 V;  
CHARGE = IDISCHG = 31(max);  
50 mA forced into Gx, Sx  
grounded  
P_12.1.50  
P_12.1.84  
V
I
-40°C Tj 150°C  
Low-RDSON mode  
(boosted discharge mode),  
extended temperature  
range  
RONCCP_HT  
14.5  
VVSD = 13.5 V,  
V
VCP = VVSD + 14.0 V;  
ICHARGE = IDISCHG = 31(max);  
50 mA forced into Gx, Sx  
grounded  
150°C < Tj 175°C  
1)  
Resistance between VDH  
and VSD  
IBSH  
4
3
kΩ  
P_12.1.24  
P_12.1.37  
1)  
Input propagation time  
(LS on)  
tP(ILN)min  
1.5  
µs  
C
= 10 nF,  
Load  
ICharge = 3(min),  
25% of VGxx1  
1)  
Input propagation time  
(LS off)  
tP(ILF)min  
tP(IHN)min  
tP(IHF)min  
1.5  
1.5  
1.5  
3
3
3
µs  
µs  
µs  
C
= 10 nF,  
P_12.1.38  
P_12.1.39  
P_12.1.40  
Load  
IDischarge = 3(min),  
75% of VGxx1  
1)  
Input propagation time  
(HS on)  
C
= 10 nF,  
Load  
ICharge = 3(min),  
25% of VGxx1  
1)  
Input propagation time  
(HS off)  
C
= 10 nF,  
Load  
IDischarge = 3(min),  
75% of VGxx1  
Datasheet  
122  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 41  
Electrical characteristics of the MOSFET driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Input propagation time  
(LS on)  
tP(ILN)max  
200 350 ns  
CLoad = 10 nF,  
P_12.1.26  
ICharge = 31(max),  
25% of VGxx1  
Input propagation time  
(LS off)  
tP(ILF)max  
tP(IHN)max  
tP(IHF)max  
200 300 ns  
200 350 ns  
200 300 ns  
CLoad = 10 nF,  
P_12.1.27  
P_12.1.28  
P_12.1.29  
P_12.1.30  
IDischarge = 31(max),  
75% of VGxx1  
Input propagation time  
(HS on)  
CLoad = 10 nF,  
ICharge = 31(max),  
25% of VGxx1  
Input propagation time  
(HS off)  
CLoad = 10 nF,  
IDischarge = 31(max),  
75% of VGxx1  
Absolute input propagation tPon(diff)LSx  
time difference between  
propagation times for all  
LSx (LSx on)  
100 ns  
100 ns  
100 ns  
100 ns  
CLoad = 10 nF,  
ICharge = 31(max),  
25% of VGxx1  
Absolute input propagation tPoff(diff)LSx  
time difference between  
propagation times for all  
LSx (LSx off)  
CLoad = 10 nF,  
P_12.1.41  
P_12.1.42  
P_12.1.43  
IDischarge = 31(max),  
75% of VGxx1  
Absolute input propagation tPon(diff)HSx  
time difference between  
propagation times for all  
HSx (HSx on)  
CLoad = 10 nF,  
ICharge = 31(max),  
25% of VGxx1  
Absolute input propagation tPoff(diff)HSx  
time difference between  
propagation times for all  
HSx (HSx off)  
CLoad = 10 nF,  
IDischarge = 31(max),  
75% of VGxx1  
Drain source monitoring  
Drain source monitoring  
threshold  
VDSMONVTH  
V
DRV_CTRL3.DSMONVTH<2 P_12.1.46  
:0> xxx  
000  
001  
010  
011  
100  
101  
110  
111  
0.07 0.25 0.40  
0.35 0.50 0.650  
0.55 0.75 0.90  
0.65 1.00 1.25  
0.90 1.25 1.45  
1.00 1.5 1.80  
1.20 1.75 2.10  
1.40 2.00 2.40  
Datasheet  
123  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 41  
Electrical characteristics of the MOSFET driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Open load diagnostic currents  
Pull-up diagnostic current IPUDiag  
-220 -370 -520 µA  
650 900 1100 µA  
IDISCHG = 1; VSHx = 5.0 V  
IDISCHG = 1; VSHx = 5.0 V  
P_12.1.47  
P_12.1.48  
Pull-down diagnostic  
current  
IPDDiag  
Charge pump  
Output voltage  
VCP vs. VSD  
VCPmin1  
8.5  
8.4  
V
V
VVSD = 5.4 V,  
P_12.1.53  
P_12.1.85  
ICP = 5 mA,  
C
CP1, CCP2 = 220 nF,  
bridge driver enabled,  
-40°C Tj 150°C  
Output voltage  
VCPmin1_HT  
VVSD = 5.4 V,  
VCP vs. VSD, extended  
temperature range  
I
C
CP = 5 mA,  
CP1, CCP2 = 220 nF,  
bridge driver enabled,  
150°C < Tj 175°C  
Regulated output voltage  
VCP vs. VSD  
VCP  
12  
10  
20  
14  
24  
60  
16  
40  
88  
V
8 V VVSD 28 V,  
P_12.1.49  
P_12.1.59  
P_12.1.60  
ICP = 10 mA,  
C
CP1, CCP2 = 220 nF,  
fCP = 250 kHz  
Turn-on time  
Rise time  
tON_VCP  
us  
us  
8 V VVSD 28 V,  
1)4)  
(25%) of VCP  
,
C
CP1, CCP2 = 220 nF,  
f
CP = 250 kHz  
trise_VCP  
8 V VVSD 28 V,  
(25% to 75%) of VCP  
CCP1, CCP2 = 220 nF,  
1)5)  
,
f
CP = 250 kHz  
1) Not subject to production test.  
2) The condition ICP = 2.5 mA emulates a BLDC Driver with 6 MOSFETs switching at 20 kHz with a CLoad = 3.3 nF. Test  
condition: IGx = - 100 µA, ICHARGE = IDISCHARGE = 31(max), IDISCHARGEDIV2_N = 1 and ICHARGEDIV2_N = 1.  
3) This resistance is connected through a diode between SHx and GHx to ground.  
4) This time applies when the DRV_CP_CTRL_STS.bit.CP_EN bit is set.  
5) This time applies when the DRV_CP_CLK_CTRL.bit.CPCLK_EN bit is set.  
Datasheet  
124  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
29.13  
Operational amplifier  
29.13.1 Electrical characteristics  
Table 42  
Electrical characteristics of the operational amplifier  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
Differential gain  
(uncalibrated)  
G
Gain settings GAIN<1:0>: P_13.1.6  
9.5  
19  
38  
57  
10  
20  
40  
60  
10.5  
21  
42  
00  
01  
10  
11  
63  
Differentialinputoperating VIX  
voltage range OP2 - OP1  
-1.5 / G –  
1.5 / G  
V
V
G is the gain specified  
below  
P_13.1.1  
Operating: common mode VCM  
input voltage range  
(referred to GND: OP2 -  
GND or OP1 - GND  
-2.0  
2.0  
Inputcommonmodehas P_13.1.2  
to be checked in  
evaluation if it fits the  
required range  
Max. input voltage range  
(referred to GND: OP_2 -  
GND or OP1 - GND  
VIX_max -7.0  
7.0  
V
Max. rating of  
P_13.1.3  
operational amplifier  
inputs when no  
measurement is  
performed  
Single-ended output  
voltage range (linear  
range)  
VOUT  
VZERO  
- 1.5  
VZERO  
+ 1.5  
V
1)2) Offset output voltage P_13.1.4  
2 V ±1.5 V  
Linearity error  
EPWM  
-15  
15  
mV  
Maximum deviation  
from best-fit straight line  
divided by the maximum  
value of the differential  
output voltage range  
(0.5 V - 3.5 V); this  
P_13.1.5  
parameter is determined  
with G = 10  
Linearity error  
EPWM_% -1.0  
1.0  
%
Maximum deviation  
from best fit straight line  
divided by the maximum  
value of the differential  
output voltage range  
(0.5 V - 3.5 V); this  
P_13.1.24  
parameter is determined  
with G = 10  
Datasheet  
125  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Electrical characteristics  
Table 42  
Electrical characteristics of the operational amplifier (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
Gain drift  
-1  
1
%
Gain drift after  
P_13.1.7  
calibration with G = 10  
Adjusted output offset  
voltage  
VOOS  
-40  
10  
10  
80  
40  
50  
mV  
VAIP= VAIN = 0 V and  
G = 40,  
-40°C < Tj 150°C  
P_13.1.17  
Adjusted output offset  
voltage, extended  
temperature range  
VOOS_HT -50  
mV  
dB  
VAIP= VAIN = 0 V and  
G = 40,  
150°C < Tj 175°C  
P_13.1.28  
P_13.1.8  
DC input voltage common DC-  
mode rejection ratio  
58  
CMRR (in dB) = -20*log  
(differential mode gain /  
common mode gain)  
CMRR  
V
CMI = -2 V … 2 V,  
VAIP - VAIN= 0 V,  
-40°C Tj 150°C  
DC input voltage common DC-  
57  
80  
dB  
CMRR (in dB) = -20*log  
(differential mode gain /  
common mode gain)  
VCMI = -2 V … 2 V,  
P_13.1.27  
mode rejection ratio,  
extended temperature  
range  
CMRR_  
HT  
V
AIP - VAIN = 0 V,  
150°C Tj 175°C  
Settling time to 98%  
TSET  
1
800  
1400  
1.5  
ns  
2) Derived from 80% -  
20% rise fall times for  
±2 V overload condition  
(3 Tau value of settling  
time constant)  
P_13.1.9  
2)  
Current sense amplifier  
input resistance at OP1,  
OP2  
Rin_OP1_  
1.25  
kΩ  
P_13.1.25  
OP2  
1) Typical VZERO = 0,4 × VAREF  
.
2) Not subject to production test, specified by design.  
Datasheet  
126  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Package information  
30  
Package information  
12°  
H
+0.075  
-0.035  
0.5  
0.08  
48x  
C
C
12°  
0.125  
Seating Plane  
Coplanarity  
11 x 0.5 = 5.5  
0.2 MIN.  
0.15  
0.05  
0.6  
0.22  
M
0.08  
A-B D C 48x  
(1)  
9
0.2 A-B D 48x  
0.2 A-B D H 4x  
1)  
7
5
42)  
D
Exposed Diepad  
A
B
48  
48  
1
1
Index Marking  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
2) Exposed pad for soldering purpose  
Figure 37 Package outline TQFP-48-10 1)  
Green product (RoHS-compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations, the device is available as a green product. Green products are RoHS-compliant  
(i.e., Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Datasheet  
127  
Rev. 1.0  
2020-07-23  
TLE9872QTW40  
Revision history  
31  
Revision history  
Revision Date  
Changes  
Rev. 1.0 2020-07-23 Datasheet initial release.  
Datasheet  
128  
Rev. 1.0  
2020-07-23  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2020-07-23  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2020 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  
Z8F65212945  

相关型号:

TLE9873QXW40

TLE9873QXW40 是TLE987x产品系列的组成部分。TLE9873QXW40是一款单芯片三相电机驱动器,集成了行业标准的Arm®Cortex®-M3内核,可实现先进的电机控制算法,如磁场定向控等制。它包括6个完全集成的NFET驱动器,经过优化,可通过6个外部电源NFET驱动3相电机,其电压泵可实现低电压操作和可编程电流以及电流斜坡控制,从而优化EMC性能。其外设集包括电流传感器、用于实现PWM控制的采集和比较单元同步的逐次逼近ADC以及16位定时器。还集成了LIN收发器,以实现与器件的通信,同时还具有大量通用I/O。它包括一个片上线性稳压器,为外部负载供电。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QTW40

The TLE9877QTW40 is part of the TLE987x product family. The TLE9877QTW40 is a single chip 3-Phase

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA20

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA20_15

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA20_17

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA40

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA40_15

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXA40_17

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9877QXW40

TLE9877QXW40 是TLE987x产品系列的组成部分。TLE9877QXW40是一款单芯片三相电机驱动器,集成了行业标准的Arm®Cortex®-M3内核,可实现先进的电机控制算法,如磁场定向控等制。它包括6个完全集成的NFET驱动器,经过优化,可通过6个外部电源NFET驱动3相电机,其电压泵可实现低电压操作和可编程电流以及电流斜坡控制,从而优化EMC性能。其外设集包括电流传感器、用于实现PWM控制的采集和比较单元同步的逐次逼近ADC以及16位定时器。还集成了LIN收发器,以实现与器件的通信,同时还具有大量通用I/O。它包括一个片上线性稳压器,为外部负载供电。 

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9879-2QXA40

TLE9879-2QXA40 属于 MOTIX™ TLE987x 产品系列。TLE9879-2QXA40 是单芯片三相电机驱动器,集成工业标准 Arm® Cortex™ M3 核心,支持实施磁场定向控制等高级电机控制算法。该器件包括 6 个经过优化的全集成 NFET 驱动器,通过 6 个外部功率 NFET 驱动三相电机,其电荷泵支持低电压运行,可编程电流以及电流斜率控制实现优化 EMC 行为。外设包括电流传感器、同步逐次逼近 ADC、用于 PWM 控制的捕捉和比较单元以及 16 位定时器。除 TLE987x 产品系列其他产品外,TLE9879-2QXA40 还集成两个 14 位 Sigma-Delta ADC,为外部 GMR/TMR 构建传感器接口。此外还集成 LIN 收发器,通过多个通用 I/O 支持器件通信。该器件还配备片上线性电压调节器,为外部负载供电。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9879QTW40

The TLE9879QTW40 is part of the TLE987x product family. The TLE9879QTW40 is a single chip 3-Phase

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9879QXA20

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON