TLE9879-2QXA40 [INFINEON]

TLE9879-2QXA40 属于 MOTIX™ TLE987x 产品系列。TLE9879-2QXA40 是单芯片三相电机驱动器,集成工业标准 Arm® Cortex™ M3 核心,支持实施磁场定向控制等高级电机控制算法。该器件包括 6 个经过优化的全集成 NFET 驱动器,通过 6 个外部功率 NFET 驱动三相电机,其电荷泵支持低电压运行,可编程电流以及电流斜率控制实现优化 EMC 行为。外设包括电流传感器、同步逐次逼近 ADC、用于 PWM 控制的捕捉和比较单元以及 16 位定时器。除 TLE987x 产品系列其他产品外,TLE9879-2QXA40 还集成两个 14 位 Sigma-Delta ADC,为外部 GMR/TMR 构建传感器接口。此外还集成 LIN 收发器,通过多个通用 I/O 支持器件通信。该器件还配备片上线性电压调节器,为外部负载供电。;
TLE9879-2QXA40
型号: TLE9879-2QXA40
厂家: Infineon    Infineon
描述:

TLE9879-2QXA40 属于 MOTIX™ TLE987x 产品系列。TLE9879-2QXA40 是单芯片三相电机驱动器,集成工业标准 Arm® Cortex™ M3 核心,支持实施磁场定向控制等高级电机控制算法。该器件包括 6 个经过优化的全集成 NFET 驱动器,通过 6 个外部功率 NFET 驱动三相电机,其电荷泵支持低电压运行,可编程电流以及电流斜率控制实现优化 EMC 行为。外设包括电流传感器、同步逐次逼近 ADC、用于 PWM 控制的捕捉和比较单元以及 16 位定时器。除 TLE987x 产品系列其他产品外,TLE9879-2QXA40 还集成两个 14 位 Sigma-Delta ADC,为外部 GMR/TMR 构建传感器接口。此外还集成 LIN 收发器,通过多个通用 I/O 支持器件通信。该器件还配备片上线性电压调节器,为外部负载供电。

通信 电机 驱动 泵 传感器 驱动器 调节器
文件: 总133页 (文件大小:3766K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9879-2QXA40  
Microcontroller with LIN and BLDC MOSFET Driver  
for Automotive Applications  
BF-Step  
Features  
32-bit ARM Cortex M3 Core  
128 KByte Flash  
6 KByte RAM  
On-chip OSC and PLL for clock generation  
MOSFET driver including charge pump for B6-Bridge Motor Application  
1 LIN 2.2 transceiver  
2 differential Sigma Delta 14-bit ADC  
High speed operational amplifier for motor current sensing via shunt  
Single power supply from 5.5 V to 27 V  
Temperature Range Tj = -40°C to +150°C  
Potential applications  
KL30  
Computation  
Reverse  
Polarity  
TMS  
SWD  
ARM®  
Cortex™-M3  
DMA  
FLASH  
SRAM  
ROM  
VCP  
Debug  
NVIC  
VS  
System  
Timer  
Motor Control  
CAPCOM6  
VDH/VSD  
Internal  
Supply  
VDDP  
VDDC  
VDDEXT  
SYSTICK  
T2/T21  
Diagnostic  
ADC  
8 Bit  
B6-Bridge  
External  
Supply  
2x WDT  
T3  
3~ Bridge Driver  
GHx  
SHx  
GLx  
GPT12  
PLL  
Fail Safe  
M
N-FET  
Stage  
Charge  
Pump  
Communication  
Sensor Interface  
UART1  
UART2  
VDDEXT  
Meas-ADC  
Sigma Delta  
ADC 14 Bit  
SL  
OP2  
SSC1  
LIN  
LIN  
10 Bit  
LIN TRX  
SSC2  
Comparator  
Amplifier  
OP1  
Input/Output  
BEMF  
Comparator  
KL15  
MON  
MON  
GPIO  
GPI / Analog In  
5x Analog In*  
RESET  
10x  
GPIO  
ADC3_p/_n  
ADC4_p/_n  
*) four inputs shared with SDADC  
Figure 1  
TLE9879-2QXA40 simplified application diagram  
Data Sheet  
www.infineon.com  
Rev. 1.0  
2018-01-16  
1
TLE9879-2QXA40  
Product validation  
Qualified for Automotive Applications. Product Validation according to AEC-Q100/101.  
Description  
Type  
Package  
Marking  
TLE9879-2QXA40  
VQFN-48-31  
Data Sheet  
2
Rev.1.0  
2018-01-16  
TLE9879-2QXA40  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
3.1  
3.2  
Device Pinout and Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.3  
5.3.1  
5.3.2  
5.3.3  
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PMU Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power Supply Generation Unit (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6
6.1  
6.2  
6.2.1  
6.3  
System Control Unit - Digital Modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Low Precision Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.3.1  
7
System Control Unit - Power Modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.1  
7.2  
7.2.1  
8
ARM Cortex-M3 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.1  
8.2  
8.2.1  
9
9.1  
9.2  
9.2.1  
9.3  
DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
DMA Mode Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.3.1  
10  
Address Space Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
11  
Memory Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
NVM Module (Flash Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
11.1  
11.2  
11.2.1  
11.3  
Data Sheet  
3
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
12  
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
12.1  
12.2  
12.2.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
13  
13.1  
13.2  
Watchdog Timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
14  
14.1  
14.2  
GPIO Ports and Peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Port 0 and Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
TLE9879-2QXA40 Port Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Port 0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Port 1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Port 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
14.2.1  
14.2.2  
14.3  
14.3.1  
14.3.1.1  
14.3.2  
14.3.2.1  
14.3.3  
14.3.3.1  
15  
15.1  
General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Features Block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Features Block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Block Diagram GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Block Diagram GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
15.1.1  
15.1.2  
15.2  
15.2.1  
15.2.2  
16  
Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Timer2 and Timer21 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
16.1  
16.2  
16.2.1  
17  
Timer3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Timer3 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
17.1  
17.2  
17.3  
17.3.1  
18  
Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Feature Set Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
18.1  
18.2  
18.2.1  
19  
UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
UART Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
19.1  
19.2  
19.2.1  
19.3  
20  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Data Sheet  
4
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
20.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
20.2  
20.2.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
21  
High-Speed Synchronous Serial Interface (SSC1/SSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
21.1  
21.2  
21.2.1  
22  
22.1  
22.2  
22.2.1  
22.2.1.1  
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Block Diagram BEMF Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
23  
Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Measurement Core Module Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
23.1  
23.2  
23.2.1  
23.2.2  
24  
10-Bit Analog Digital Converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
24.1  
24.2  
24.2.1  
25  
14-Bit Sigma Delta ADC (ADC3 / ADC4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Input Voltage Range of SD ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Interpretation of ADC output code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
25.1  
25.2  
25.2.1  
25.2.2  
26  
High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
26.1  
26.2  
26.2.1  
27  
Bridge Driver (incl. Charge Pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
27.1  
27.2  
27.2.1  
27.2.2  
28  
Current Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
28.1  
28.2  
28.2.1  
29  
29.1  
29.2  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
BLDC Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
ESD Immunity According to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
30  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
30.1  
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Data Sheet  
5
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
30.1.1  
30.1.2  
30.1.3  
30.1.4  
30.1.5  
30.2  
30.2.1  
30.2.2  
30.2.3  
30.2.4  
30.2.4.1  
30.2.5  
30.3  
30.3.1  
30.4  
30.4.1  
30.5  
30.5.1  
30.5.2  
30.5.3  
30.6  
30.6.1  
30.7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
PMU I/O Supply (VDDP) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
PMU Core Supply (VDDC) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
VDDEXT Voltage Regulator (5.0V) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
VPRE Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Load Sharing Scenarios of VPRE Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Power Down Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Oscillators and PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Description of Keep and Force Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
DC Parameters of Port 0, Port 1, TMS and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
DC Parameters of Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
SSC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
System Voltage Measurement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Central Temperature Sensor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
ADC2-VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
ADC2 Reference Voltage VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
ADC2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
ADC1 Reference Voltage - VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Electrical Characteristics VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Electrical Characteristics ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
14-Bit Sigma Delta ADC (ADC3 / ADC4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
High-Voltage Monitoring Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
30.7.1  
30.8  
30.8.1  
30.8.2  
30.8.3  
30.8.3.1  
30.8.3.2  
30.9  
30.9.1  
30.9.2  
30.10  
30.10.1  
30.11  
30.11.1  
30.12  
30.12.1  
30.13  
30.13.1  
31  
32  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Data Sheet  
6
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Overview  
1
Overview  
Summary of Features  
32-bit ARM Cortex M3 Core  
up to 40 MHz clock frequency  
one clock per machine cycle architecture  
On-chip memory  
128 KByte Flash including  
4 KByte EEPROM (emulated in Flash)  
512 Byte 100 Time Programmable Memory (100TP)  
6 KByte RAM  
Boot ROM for startup firmware and Flash routines  
On-chip OSC and PLL for clock generation  
PLL loss-of-lock detection  
MOSFET driver including charge pump  
10 general-purpose I/O Ports (GPIO)  
5 analog inputs, 10-bit A/D Converter (ADC1)  
2 differential Sigma Delta 14-bit ADC (ADC3/4)  
16-bit timers - GPT12, Timer 2, Timer 21 and Timer 3  
Capture/compare unit for PWM signal generation (CCU6)  
2 full duplex serial interfaces (UART) with LIN support (for UART1 only)  
2 synchronous serial channels (SSC)  
On-chip debug support via 2-wire SWD  
1 LIN 2.2 transceiver  
1 high voltage monitoring input  
Single power supply from 5.5 V to 27 V  
Extended power supply voltage range from 3 V to 28 V  
Low-dropout voltage regulators (LDO)  
High speed operational amplifier for motor current sensing via shunt  
5 V voltage supply for external loads (e.g. Hall sensor)  
Core logic supply at 1.5 V  
Programmable window watchdog (WDT1) with independent on-chip clock source  
Power saving modes  
MCU slow-down Mode  
Sleep Mode  
Stop Mode  
Cyclic wake-up Sleep Mode  
Power-on and undervoltage/brownout reset generator  
Overtemperature protection  
Short circuit protection  
Data Sheet  
7
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Overview  
Loss of clock detection with fail safe mode entry for low system power consumption  
Temperature Range Tj = -40°C to +150°C  
Package VQFN-48 with LTI feature  
Green package (RoHS compliant)  
AEC qualified  
Data Sheet  
8
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Overview  
1.1  
Abbreviations  
The following acronyms and terms are used within this document. List see in Table 1.  
Table 1  
Acronyms  
AHB  
APB  
Acronyms  
Name  
Advanced High-Performance Bus  
Advanced Peripheral Bus  
Capture Compare Unit 6  
Clock Generation Unit  
Cyclic Management Unit  
Charge Pump for MOSFET driver  
Current Sense Amplifier  
Data Post Processing  
CCU6  
CGU  
CMU  
CP  
CSA  
DPP  
ECC  
Error Correction Code  
EEPROM  
EIM  
Electrically Erasable Programmable Read Only Memory  
Exceptional Interrupt Measurement  
Finite State Machine  
FSM  
GPIO  
H-Bridge  
ICU  
General Purpose Input Output  
Half Bridge  
Interrupt Control Unit  
IEN  
Interrupt Enable  
IIR  
Infinite Impulse Response  
Load Instruction  
LDM  
LDO  
LIN  
Low DropOut voltage regulator  
Local Interconnect Network  
Least Significant Bit  
LSB  
LTI  
Lead Tip Inspection  
MCU  
MF  
Memory Control Unit  
Measurement Functions  
Most Significant Bit  
MSB  
MPU  
MRST  
MTSR  
MU  
Memory Protection Unit  
Master Receive Slave Transmit  
Master Transmit Slave Receive  
Measurement Unit  
NMI  
Non Maskable Interrupt  
Nested Vector Interrupt Controller  
Non-Volatile Memory  
NVIC  
NVM  
OTP  
One Time Programmable  
Oscillator  
OSC  
Data Sheet  
9
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Overview  
Table 1  
Acronyms  
PBA  
Acronyms  
Name  
Peripheral Bridge  
PCU  
Power Control Unit  
PD  
Pull Down  
PGU  
Power supply Generation Unit  
Phase Locked Loop  
PLL  
PPB  
Private Peripheral Bus  
Pull Up  
PU  
PWM  
RAM  
Pulse Width Modulation  
Random Access Memory  
Reset Control Unit  
RCU  
RMU  
ROM  
SCU-DM  
SCU-PM  
SFR  
Reset Management Unit  
Read Only Memory  
System Control Unit - Digital Modules  
System Control Unit - Power Modules  
Special Function Register  
Short Open Window (for WDT)  
Serial Peripheral Interface  
Synchronous Serial Channel  
Store Instruction  
SOW  
SPI  
SSC  
STM  
SWD  
TCCR  
TMS  
ARM Serial Wire Debug  
Temperature Compensation Control Register  
Test Mode Select  
TSD  
Thermal Shut Down  
UART  
VBG  
Universal Asynchronous Receiver Transmitter  
Voltage reference Band Gap  
Voltage Controlled Oscillator  
Pre Regulator  
VCO  
VPRE  
WDT  
WDT1  
WMU  
100TP  
Watchdog Timer in SCU-DM  
Watchdog Timer in SCU-PM  
Wake-up Management Unit  
100 Time Programmable  
Data Sheet  
10  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Block Diagram  
2
Block Diagram  
TMS  
P0.0  
TEST / DEBUG  
INTERFACE  
ARM  
CORTEX-M3  
µDMA  
CONTROLLER  
FLASH  
slave  
SRAM  
slave  
ROM  
slave  
systembus  
slave  
Multilayer AHB Matrix  
slave  
PBA0  
slave  
PBA1  
VAREF  
GND_REF  
MU-VAREF  
ADC 3/4  
SCU_DM  
PLL  
UART1  
UART2  
SSC1  
SSC2  
T2  
P2.0, P2.2, P2.3, P2.4, P2.5  
(AN0, AN2, AN3, AN4, AN5)  
ADC 1  
DPP1  
GPT12  
CCU6  
P0.1 – P0.4  
P1.0 – P1.4  
GPIO  
LIN  
VDH  
GH3  
SH3  
GL3  
GH2  
SH2  
GL2  
GH1  
SH1  
LIN  
GND_LIN  
MU  
MF / ADC2  
MOSFET  
Driver  
T21  
DPP2  
SCU_DM  
WDT  
OP1  
OP2  
OP AMP  
VS  
GL1  
SL  
SCU_PM  
WDT1/  
CLKWDT  
PMU –  
Power  
Control  
System  
Functions  
RESET  
VDDEXT  
VDDP  
VDDC  
VCP  
VSD  
CP2H  
CP2L  
CP1H  
CP1L  
µ
DMA  
CP  
Controller  
MON  
MON  
T3  
Figure 2  
Block Diagram  
Data Sheet  
11  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Device Pinout and Pin Configuration  
3
Device Pinout and Pin Configuration  
3.1  
Device Pinout  
OP1 37  
24 P0.3  
EP  
VDDC 38  
23 P0.1  
22 RESET  
GND 39  
VDDP 40  
VDDEXT 41  
GND_LIN 42  
LIN 43  
21 P0.0  
20 TMS  
19 GND  
18 P0.4  
17 P1.2  
16 P1.1  
15 P1.0  
TLE 9879-2  
VDH 44  
VS 45  
SH3 46  
VSD 47  
14 MON  
13 GL1  
CP1H 48  
Note:  
= Low voltage pins  
Figure 3  
Device Pinout  
Data Sheet  
12  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Device Pinout and Pin Configuration  
3.2  
Pin Configuration  
After reset, all pins are configured as input (except supply and LIN pins) with one of the following settings:  
Pull-up device enabled only (PU)  
Pull-down device enabled only (PD)  
Input with both pull-up and pull-down devices disabled (I)  
Output with output stage deactivated = high impedance state (Hi-Z)  
The functions and default states of the TLE9879-2QXA40 external pins are provided in the following table.  
Type: indicates the pin type.  
I/O: Input or output  
I: Input only  
O: Output only  
P: Power supply  
Not all alternate functions listed.  
Table 2  
Symbol  
Pin Definitions and Functions  
Pin  
Type Reset Function  
State1)  
Number  
P0  
Port 0  
Port 0 is a 5-bit bidirectional general purpose I/O port.  
Alternate functions can be assigned and are listed in the port  
description. Main function is listed below.  
P0.0  
P0.1  
21  
23  
I/O  
I/O  
I/PU  
I/PU  
SWD  
GPIO  
Serial Wire Debug Clock  
General Purpose IO  
Alternate function mapping see Table 7  
P0.2  
25  
I/O  
I/PD  
GPIO  
General Purpose IO  
Alternate function mapping see Table 7  
Note:  
For a functional SWD connection  
this GPIO must be tied to zero!  
P0.3  
P0.4  
P1  
24  
18  
I/O  
I/O  
I/PU  
I/PD  
GPIO  
GPIO  
Port 1  
General Purpose IO  
Alternate function mapping see Table 7  
General Purpose IO  
Alternate function mapping see Table 7  
Port 1 is a 5-bit bidirectional general purpose I/O port.  
Alternate functions can be assigned and are listed in the Port  
description. The principal functions are listed below.  
P1.0  
P1.1  
P1.2  
15  
16  
17  
I/O  
I/O  
I/O  
I
I
I
GPIO  
GPIO  
GPIO  
General Purpose IO  
Alternate function mapping see Table 8  
General Purpose IO  
Alternate function mapping see Table 8  
General Purpose IO  
Alternate function mapping see Table 8  
Data Sheet  
13  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Device Pinout and Pin Configuration  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin  
Type Reset Function  
State1)  
Number  
P1.3  
P1.4  
P2  
26  
I/O  
I
GPIO  
GPIO  
Port 2  
General Purpose IO, used for Inrush Transistor  
Alternate function mapping see Table 8  
27  
I/O  
I
General Purpose IO  
Alternate function mapping see Table 8  
Port 2 is a 5-bit general purpose input-only port.  
Alternate functions can be assigned and are listed in the Port  
description. Main function is listed below.  
P2.0/ADC3.P  
P2.2/ADC3.N  
P2.3  
29  
30  
35  
32  
31  
I/I  
I
I
I
I
I
AN0  
AN2  
AN3  
AN4  
AN5  
ADC analog input 0 (Sensor), ADC3+  
Alternate function mapping see Table 9  
I/O  
ADC analog input 2 (Sensor), ADC3-  
Alternate function mapping see Table 9  
I
I
I
ADC analog input 3 (Sensor),  
Alternate function mapping see Table 9  
P2.4/ADC4.P  
P2.5/ADC4.N  
ADC analog input 4 (Sensor), ADC4+  
Alternate function mapping see Table 9  
ADC analog input 5 (Sensor), ADC4-  
Alternate function mapping see Table 9  
Power Supply  
VS  
45  
40  
38  
P
P
P
Battery supply input  
2)I/O port supply (5.0 V). Connect external buffer capacitor.  
3)Core supply (1.5 V during Active Mode).  
Do not connect external loads, connect external buffer  
capacitor.  
VDDP  
VDDC  
VDDEXT  
GND  
41  
19  
28  
39  
P
P
P
P
External voltage supply output (5.0 V, 20 mA)  
GND digital  
GND digital  
GND analog  
GND  
GND  
Monitor Input  
MON  
14  
I
High Voltage Monitor Input  
LIN Interface  
LIN  
43  
42  
I/O  
P
LIN bus interface input/output  
LIN ground  
GND_LIN  
Charge Pump  
CP1H  
48  
1
P
P
P
P
P
Charge Pump Capacity 1 High, connect external C  
Charge Pump Capacity 1 Low, connect external C  
Charge Pump Capacity 2 High, connect external C  
Charge Pump Capacity 2 Low, connect external C  
Charge Pump Capacity  
CP1L  
CP2H  
3
CP2L  
4
VCP  
2
Data Sheet  
14  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Device Pinout and Pin Configuration  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin  
Type Reset Function  
State1)  
Number  
VSD  
47  
P
Battery supply input for Charge Pump  
MOSFET Driver  
VDH  
44  
46  
6
P
P
P
P
P
P
P
P
P
P
P
Voltage Drain High Side MOSFET Driver  
Source High Side FET 3  
Source High Side FET 2  
Gate High Side FET 2  
SH3  
SH2  
GH2  
7
SH1  
8
Source High Side FET 1  
Gate High Side FET 1  
GH1  
9
SL  
10  
12  
13  
5
Source Low Side FET  
Gate Low Side FET 2  
GL2  
GL1  
Gate Low Side FET 1  
GH3  
Gate High Side FET 3  
GL3  
11  
Gate Low Side FET 3  
Others  
GND_REF  
VAREF  
OP1  
33  
34  
37  
36  
20  
P
GND for VAREF  
I/O  
5V ADC1 reference voltage, optional buffer or input  
Negative operational amplifier input  
Positive operational amplifier input  
I
I
OP2  
TMS  
I
I/PD  
TMS  
SWD  
Test Mode Select input  
Serial Wire Debug input/output  
I/O  
RESET  
EP  
22  
I/O  
Reset input, not available during Sleep Mode  
Exposed Pad, connect to GND  
1) Only valid for digital IOs  
2) Also named VDD5V.  
3) Also named VDD1V5.  
Data Sheet  
15  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Modes of Operation  
4
Modes of Operation  
This highly integrated circuit contains analog and digital functional blocks. An embedded 32-bit  
microcontroller is available for system and interface control. On-chip, low-dropout regulators are provided for  
internal and external power supply. An internal oscillator provides a cost effective clock that is particularly  
well suited for LIN communications. A LIN transceiver is available as a communication interface. Driver stages  
for a Motor Bridge or BLDC Motor Bridge with external MOSFET are integrated, featuring PWM capability,  
protection features and a charge pump for operation at low supply voltage. A 10-bit SAR ADC and two  
differential 14-bit Sigma Delta ADCs are implemented for high precision sensor measurement. An 8-bit ADC is  
used for diagnostic measurements.  
The Micro Controller Unit supervision and system protection (including a reset feature) is complemented by a  
programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated  
temperature sensors are available on-chip.  
All relevant modules offer power saving modes in order to support automotive applications connected to  
terminal 30. A wake-up from power-save mode is possible via a LIN bus message, via the monitoring input or  
using a programmable time period (cyclic wake-up).  
Featuring LTI, the integrated circuit is available in a VQFN-48-31 package with 0.5 mm pitch, and is designed  
to withstand the severe conditions of automotive applications.  
The TLE9879-2QXA40 has several operation modes mainly to support low power consumption requirements.  
Reset Mode  
The Reset Mode is a transition mode used e.g. during power-up of the device after a power-on reset, or after  
wake-up from Sleep Mode. In this mode, the on-chip power supplies are enabled and all other modules are  
initialized. Once the core supply VDDC is stable, the device enters Active Mode. If the watchdog timer WDT1  
fails more than four times, the device performs a fail-safe transition to Sleep Mode.  
Active Mode  
In Active Mode, all modules are activated and the TLE9879-2QXA40 is fully operational.  
Stop Mode  
Stop Mode is one of two major low power modes. The transition to the low power modes is performed by  
setting the corresponding bits in the mode control register. In Stop Mode the embedded microcontroller is still  
powered, allowing faster wake-up response times. Wake-up from this mode is possible through LIN bus  
activity, by using the high-voltage monitoring pin or the corresponding 5V GPIOs.  
Stop Mode with Cyclic Wake-Up  
The Cyclic Wake-Up Mode is a special operating mode of the Stop Mode. The transition to the Cyclic Wake-Up  
Mode is done by first setting the corresponding bits in the mode control register followed by the Stop Mode  
command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period),  
asynchronous wake events via the activated sources (LIN and/or MON) are available, as in normal Stop Mode.  
Sleep Mode  
The Sleep Mode is a low-power mode. The transition to the low-power mode is done by setting the  
corresponding bits in the MCU mode control register or in case of failure, see below. In Sleep Mode the  
embedded microcontroller power supply is deactivated allowing the lowest system power consumption. A  
wake-up from this mode is possible by LIN bus activity, the High Voltage Monitor Input pin or Cyclic Wake-up.  
Data Sheet  
16  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Modes of Operation  
Sleep Mode in Case of Failure  
Sleep Mode is activated after 5 consecutive watchdog failures or in case of supply failure (5 times). In this case,  
MON is enabled as the wake source and Cyclic Wake-Up is activated with 1s of wake time.  
Sleep Mode with Cyclic Wake-Up  
The Cyclic Wake-Up Mode is a special operating mode of the Sleep Mode. The transition to Cyclic Wake-Up  
Mode is performed by first setting the corresponding bits in the mode control register followed by the Sleep  
and Stop Mode command. In addition to the cyclic wake-up behavior (wake-up after a programmable time  
period), asynchronous wake events via the activated sources (LIN and/or MON) are available, as in normal  
Sleep Mode.  
When using Sleep Mode with cyclic wake-up the voltage regulator is switched off and started again with the  
wake. A limited number of registers is buffered during sleep, and can be used by SW e.g. for counting  
sleep/wake cycles.  
MCU Slow Down Mode  
In MCU Slow Down Mode the MCU frequency is reduced for saving power during operation. LIN  
communication is still possible. LS MOSFET can be activated.  
Wake-Up Source Prioritization  
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up  
sources, the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are  
latched in order to provide all wake-up events to the application software. The software can clear the wake-  
up source flags. This is to ensure that no wake-up event is lost.  
As default wake-up source, the MON input is activated after power-on reset only. Additionally, the device is in  
Cyclic Wake-Up Mode with the max. configurable dead time setting.  
The following table shows the possible power mode configurations including the Stop Mode.  
Table 3  
Power Mode Configurations  
Module/Function  
Active Mode Stop Mode  
Sleep Mode  
Comment  
VDDEXT  
ON/OFF  
ON (no dynamic  
OFF  
load)/OFF  
Bridge Driver  
LIN TRx  
ON/OFF  
ON/OFF  
OFF  
OFF  
wake-up only/  
OFF  
wake-up only/  
OFF  
VS sense  
ON/OFF  
brownout  
detection  
brownout detection POR on VS  
brownout det. done  
in PCU  
GPIO 5V (wake-up)  
GPIO 5V (active)  
WDT1  
n.a.  
ON  
ON  
n.a.  
disabled/static  
OFF  
OFF  
OFF  
ON  
OFF  
CYCLIC WAKE  
cyclic wake-up/  
cyclic sense/OFF  
cyclic wake-up/  
OFF  
Measurement  
MCU  
ON1)  
OFF  
STOP2)  
OFF  
OFF  
ON/slow-  
down/STOP  
Data Sheet  
17  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Modes of Operation  
Table 3  
Power Mode Configurations (cont’d)  
Module/Function  
CLOCK GEN (MC)  
LP_CLK (18 MHz)  
LP_CLK2 (100 kHz)  
Active Mode Stop Mode  
Sleep Mode  
OFF  
Comment  
ON  
OFF  
ON  
OFF  
OFF  
WDT1  
ON/OFF  
ON/OFF  
ON/OFF  
for cyclic wake-up  
1) May not be switched off due to safety reasons  
2) MC PLL clock disabled, MC supply reduced to 1.1 V  
Wake-Up Levels and Transitions  
The wake-up can be triggered by rising, falling or both signal edges for the monitor input, by LIN or by cyclic  
wake-up.  
Data Sheet  
18  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Power Management Unit (PMU)  
5
Power Management Unit (PMU)  
5.1  
Features  
System modes control (startup, sleep, stop and active)  
Power management (cyclic wake-up)  
Control of system voltage regulators with diagnosis (overload, short, overvoltage)  
Fail safe mode detection and operation in case of system errors (watchdog fail)  
Wake-up sources configuration and management (LIN, MON, GPIOs)  
System error logging  
5.2  
Introduction  
The power management unit is responsible for generating all required voltage supplies for the embedded  
MCU (VDDC, VDDP) and the external supply (VDDEXT). The power management unit is designed to ensure fail-  
safe behavior of the system IC by controlling all system modes including the corresponding transitions.  
Additionally, the PMU provides well defined sequences for the system mode transitions and generates  
hierarchical reset priorities. The reset priorities control the reset behavior of all system functionalities  
especially the reset behavior of the embedded MCU. All these functions are controlled by a state machine. The  
system master functionality of the PMU make use of an independent logic supply and system clock. For this  
reason, the PMU has an "Internal logic supply and system clock" module which works independently of the  
MCU clock.  
Data Sheet  
19  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Power Management Unit (PMU)  
5.2.1  
Block Diagram  
The following figure shows the structure of the Power Management Unit. Table 4 describes the submodules  
in more detail.  
VS  
Power Down Supply  
VDDP  
VDDC  
Power SupplyGeneration Unit  
(PGU)  
I
N
T
E
R
N
A
L
e.g. for WDT1  
LP_CLK  
Peripherals  
LDO for External Supply  
VDDEXT  
VDDEXT  
e.g. for cyclic  
wake and sense  
LP_CLK2  
B
U
S
PMU-PCU  
PMU-SFR  
MON  
LIN  
P0.0...P0.4  
P1.0...P1.4  
PMU-CMU  
PMU-RMU  
PMU-WMU  
PMU-Control  
Power Management Unit  
Power_Management_7x.vsd  
Figure 4  
Table 4  
Power Management Unit Block Diagram  
Description of PMU Submodules  
Mod.  
Modules  
Functions  
Name  
Power Down Independent supply voltage  
This supply is dedicated to the PMU to ensure an  
independent operation from generated power supplies  
(VDDP, VDDC).  
Supply  
generation for PMU  
LP_CLK  
(= 18 MHz)  
- Clock source for all PMU  
submodules  
This ultra low power oscillator generates the clock for  
the PMU.  
- Backup clock source for System This clock is also used as backup clock for the system in  
- Clock source for WDT1  
Clock source for PMU  
Peripheral blocks of PMU  
case of PLL Clock failure and as an independent clock  
source for WDT1.  
LP_CLK2  
(= 100 kHz)  
This ultra low power oscillator generates the clock for  
the PMU in Stop Mode and in the cyclic modes.  
Peripherals  
These blocks include the analog peripherals to ensure a  
stable and fail-safe PMU startup and operation  
(bandgap, bias).  
Data Sheet  
20  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Power Management Unit (PMU)  
Table 4  
Description of PMU Submodules (cont’d)  
Mod.  
Modules  
Functions  
Name  
Power Supply Voltage regulators for VDDP and  
This block includes the voltage regulators for the pad  
supply (VDDP) and the core supply (VDDC).  
Generation  
Unit (PGU)  
VDDC  
VDDEXT  
Voltage regulator for VDDEXT to  
supply external modules (e.g.  
sensors)  
This voltage regulator is a dedicated supply for external  
modules and can also be used for cyclic sense  
operations (e.g. with hall sensor).  
PMU-SFR  
PMU-PCU  
All Extended Special Function  
registers that are relevant to the  
PMU.  
This module contains all registers needed to control and  
monitor the PMU.  
Power Control Unit of the PMU  
This block is responsible for controlling all power  
related actions within the PGU Module. It also contains  
all regulator related diagnostics such as undervoltage  
and overvoltage detection as well as overcurrent and  
short circuit diagnostics.  
PMU-WMU  
PMU-CMU  
PMU-RMU  
Wake-Up Management Unit of the This block is responsible for controlling all wake-up  
PMU  
related actions within the PMU Module.  
Cyclic Management Unit of the  
PMU  
This block is responsible for controlling all actions in  
cyclic mode.  
Reset Management Unit of the PMU This block generates resets triggered by the PMU such as  
undervoltage or short circuit reset, and passes all resets  
to the relevant modules and their register.  
Data Sheet  
21  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Power Management Unit (PMU)  
5.2.2  
PMU Modes Overview  
The following state diagram shows the available modes of the device.  
VS > 4V and VS ramp up  
or  
VS < 3V and VS ramp down  
LIN-wake or  
MON-wake  
or  
cyclic -wake  
start-up  
VDDC =stable and  
error_supp<5  
VDDC / VDDP =  
fail (short circuit)  
Æ error_supp ++  
error_supp=5  
sleep  
active  
Sleep command (from MCU) or  
WDT1_SEQ_FAIL = 1 (Æ error_wdt = 5)  
or  
VDDC / VDDP = overload  
LIN-wake or  
MON-wake or  
GPIO-wake or  
cyclic _wake or  
PMU_PIN = 1 or  
PMU_PIN = 1 or  
PMU_SOFT = 1 or  
(PMU_Ext_WDT = 1 and  
WDT1_SEQ_FAIL = 0  
Æ error_wdt ++)  
SUP_TMOUT = 1  
Stop  
command  
(from MCU)  
stop  
cyclic -sense  
Figure 5  
Power Management Unit System Modes  
Data Sheet  
22  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Power Management Unit (PMU)  
5.3  
Power Supply Generation Unit (PGU)  
5.3.1  
Voltage Regulator 5.0V (VDDP)  
This module represents the 5 V voltage regulator, which provides the pad supply for the parallel port pins and  
other 5 V analog functions (e.g. LIN Transceiver).  
Features  
5 V low-drop voltage regulator  
Overcurrent monitoring and shutdown with MCU signaling (interrupt)  
Overvoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with reset (Undervoltage Reset, VDDPUV  
Pre-Regulator for VDDC Regulator  
GPIO Supply  
)
Pull Down Current Source at the output for Sleep Mode only (typ. 5 mA)  
The output capacitor CVDDP is mandatory to ensure proper regulator functionality.  
VDDP Regulator  
VS  
VDDP  
VPRE  
A
CVDDP  
V
GND (Pin 39)  
I
5V LDO  
LDO Supervision  
Figure 6  
Module Block Diagram of VDDP Voltage Regulator  
Data Sheet  
23  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Power Management Unit (PMU)  
5.3.2  
Voltage Regulator 1.5V (VDDC)  
This module represents the 1.5 V voltage regulator, which provides the supply for the microcontroller core, the  
digital peripherals and other internal analog 1.5 V functions (e.g. ADC2) of the chip. To further reduce the  
current consumption of the MCU during Stop Mode the output voltage can be lowered to 1.1 V.  
Features  
1.5 V low-drop voltage regulator  
Overcurrent monitoring and shutdown with MCU signaling (interrupt)  
Overvoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with reset  
Pull Down Current Source at the output for Sleep Mode only (typ. 100 μA)  
The output capacitor CVDDC is mandatory to ensure a proper regulator functionality.  
VDDC Regulator  
VDDP (5V)  
VDDC (1.5V)  
A
V
CVDDP  
CVDDC  
GND (Pin 39)  
I
1.5V LDO  
LDO Supervision  
Figure 7  
Module Block Diagram of VDDC Voltage Regulator  
Data Sheet  
24  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Power Management Unit (PMU)  
5.3.3  
External Voltage Regulator 5.0V (VDDEXT)  
This module represents the 5 V voltage regulator, which serves as a supply for external circuits. It can be used  
e.g. to supply an external sensor, LEDs or potentiometers. VDDEXT can be used as reference for ADC3/4.  
Features  
Switchable +5 V, low-drop voltage regulator  
Switch-on overcurrent blanking time in order to drive small capacitive loads  
Overcurrent monitoring and shutdown with MCU signaling (interrupt)  
Overvoltage monitoring with MCU signaling (interrupt)  
Undervoltage monitoring with MCU signaling (interrupt)  
Pull Down current source at the output for Sleep Mode only (typ. 100 μA)  
Cyclic sense option together with GPIOs  
The output capacitor CVDDEXT is mandatory to ensure a proper regulator functionality.  
VDDEXT Regulator  
VS  
VDDEXT  
CVDDEXT  
VPRE  
A
V
GND (Pin 39)  
I
5V LDO  
LDO Supervision  
Figure 8  
Module Block Diagram of External Voltage Regulator  
Data Sheet  
25  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
System Control Unit - Digital Modules (SCU-DM)  
6
System Control Unit - Digital Modules (SCU-DM)  
6.1  
Features  
Flexible clock configuration features  
Reset management of all system resets  
System modes control for all power modes (active, power down, sleep)  
Interrupt enabling for many system peripherals  
General purpose input output control  
Debug mode control of system peripherals  
6.2  
Introduction  
The System Control Unit (SCU) supports all central control tasks in the TLE9879-2QXA40. The SCU is made up  
of the following sub-modules:  
Clock System and Control  
Reset Control  
Power Management  
Interrupt Management  
General Port Control  
Flexible Peripheral Management  
Module Suspend Control  
Watchdog Timer  
Error Detection and Correction in Data Memory  
Miscellaneous Control  
Data Sheet  
26  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
System Control Unit - Digital Modules (SCU-DM)  
6.2.1  
Block Diagram  
On signals to digital  
peripherals;  
status signals from  
digital peripherals  
AHB  
PMCU  
WDT  
ICU  
f
SYS  
I
N
T
E
R
N
A
L
CGU  
fOSC  
OSC  
PLL  
NMI  
LP_CLK  
fPLL  
f
SYS  
INTISR <9:0>  
CG  
fPCLK  
fMI_CLK  
B
U
S
fTFILT _CLK  
PMU_1V5DidPOR  
PMU_PIN  
PMU_ExtWDT  
PMU_IntWDT  
PMU_SOFT  
MISCControl  
MODPISELx  
RCU  
PMU_Wake  
RESET_TYPE_3  
RESET_TYPE_4  
P0_POCONy.PDMx  
P1_POCONy.PDMx  
Port Control  
System Control Unit -Digital Modules  
Figure 9  
System Control Unit - Digital Modules Block Diagram  
AHB (Advanced High-Performance Bus)  
PMCU (Power Module Control Unit)  
WDT (Watchdog Timer in SCU-DM)  
f
SYS System clock  
CGU (Clock Generation Unit)  
f
f
SYS System clock  
PCLK Peripheral clock  
Data Sheet  
27  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
System Control Unit - Digital Modules (SCU-DM)  
fMI_CLK Measurement interface clock  
fTFILT_CLK Analog module filter clock  
LP_CLK Clock source for all PMU submodules and WDT1  
ICU (Interrupt Control Unit)  
NMI (Non-Maskable Interrupt)  
INTISR<15,13:4,1,0> External interrupt signals  
RCU (Reset Control Unit)  
PMU_1V5DidPOR Undervoltage reset of power down supply  
PMU_PIN Reset generated by reset pin  
PMU_ExtWDT WDT1 reset  
PMU_IntWDT WDT (SCU) reset  
PMU_SOFT Software reset  
PMU_Wake Sleep Mode/Stop Mode exit with reset  
RESET_TYPE_3 Peripheral reset (contains all resets)  
RESET_TYPE_4 Peripheral reset (without SOFT and WDT reset)  
Port Control  
P0_POCONy.PDMx driver strength control  
P1_POCONy.PDMx driver strength control  
MISC Control  
MODPISELx Mode selection registers for UART (source section) and Timer (trigger or count selection)  
6.3  
Clock Generation Unit  
The Clock Generation Unit (CGU) enables a flexible clock generation for TLE9879-2QXA40. During user  
program execution, the frequency can be modified to optimize the performance/power consumption ratio,  
allowing power consumption to be adapted to the actual application state.  
The CGU in the TLE9879-2QXA40 consists of one oscillator circuit (OSC_HP), a Phase-Locked Loop (PLL)  
module with an internal oscillator (OSC_PLL), and a Clock Control Unit (CCU). The CGU can convert a low-  
frequency input/external clock signal to a high-frequency internal clock.  
The system clock fSYS is generated from of the following selectable clocks:  
PLL clock output fPLL  
Direct clock from oscillator OSC_HP  
Low precision clock fLP_CLK (HW-enabled for startup after reset and during power-down wake-up sequence)  
Data Sheet  
28  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
System Control Unit - Digital Modules (SCU-DM)  
CGU  
PLLCON  
CMCON  
OSC_CON  
SYSCON0  
PLL  
OSC_HP  
f
f
SYS  
OSC  
CCU  
f
LP_CLK  
LP_CLK  
PMU  
CGU_block  
Figure 10 Clock Generation Unit Block Diagram  
The following sections describe the different parts of the CGU.  
6.3.1  
Low Precision Clock  
The clock source LP_CLK is a low-precision RC oscillator (LP-OSC) with a nominal frequency of 18 MHz that is  
enabled by hardware as an independent clock source for the TLE9879-2QXA40 startup after reset and during  
the power-down wake-up sequence. fLP_CLK is not user configurable.  
Data Sheet  
29  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
System Control Unit - Power Modules (SCU-PM)  
7
System Control Unit - Power Modules (SCU-PM)  
7.1  
Features  
Clock Watchdog Unit (CWU): supervision of all clocks with NMI signaling relevant to power modules  
Interrupt Control Unit (ICU): all interrupt flags and status flags with system relevance  
Power Control Unit (PCU): takes over control when device enters and exits Sleep and Stop Mode  
External Watchdog (WDT1): independent system watchdog for monitoring system activity  
7.2  
Introduction  
7.2.1  
Block Diagram  
The System Control Unit of the power modules consists of the sub-modules in the figure shown below:  
On signals to analog  
peripherals;  
status signals from  
analog peripherals  
AHB  
I
N
T
PCU  
WDT1  
LP_CLK  
E
R
N
A
L
fsys  
MI_CLK  
PREWARN_SUP_NMI  
PREWARN_SUP_INT  
INT<n:0>  
B
U
S
CWU  
ICU  
TFILT_CLK  
System Control Unit -Power Modules  
Figure 11 Block diagram of System Control Unit - Power Modules  
AHB (Advanced High-Performance Bus)  
CWU (Clock Watchdog Unit)  
fsys system frequency: PLL output  
MI_CLK measurement interface clock (analog clock): derived from fsys using division factors 1/2/3/4  
TFILT_CLK clock used for digital filters: derived from fsys using configurable division factors  
Data Sheet  
30  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
System Control Unit - Power Modules (SCU-PM)  
WDT1 (System Watchdog)  
LP_CLK clock source for all PMU submodules and WDT1  
ICU (Interrupt Control Unit)  
PREWARN_SUP_NMI supply prewarning NMI request  
PREWARN_SUP_INT supply prewarning interrupt  
grouping of peripheral interrupts for external interupt nodes:  
grouping single peripheral interrupts for interrupt node INT<2> (Measurement Unit (MU))  
grouping single peripheral interrupts for interrupt node INT<3> (ADC1-VAREF)  
grouping single peripheral interrupts for interrupt node INT<10> (UART1-LIN Transceiver)  
grouping single peripheral interrupts for interrupt node INT<14> (Bridge Driver)  
Data Sheet  
31  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
ARM Cortex-M3 Core  
8
ARM Cortex-M3 Core  
8.1  
Features  
The key features of the Cortex-M3 implemented are listed below.  
Processor Core; a low gate count core, with low latency interrupt processing:  
A subset of the Thumb®-2 Instruction Set  
Banked stack pointer (SP) only  
32-bit hardware divide instructions, SDIV and UDIV (Thumb-2 instructions)  
Handler and Thread Modes  
Thumb and debug states  
Interruptible-continued instructions LDM/STM, Push/Pop for low interrupt latency  
Automatic processor state saving and restoration for low latency Interrupt Service Routine (ISR) entry and  
exit  
ARM architecture v7-M Style BE8/LE support  
ARMv6 unaligned accesses  
Nested Vectored Interrupt Controller (NVIC) closely integrated with the processor core to achieve low  
latency interrupt processing:  
Interrupts, configurable from 1 to 16  
Bits of priority (4)  
Dynamic reprioritization of interrupts  
Priority grouping. This enables selection of preemptive interrupt levels and non-preemptive interrupt  
levels  
Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing  
without the overhead of state saving and restoration between interrupts.  
Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction  
overhead  
Bus interfaces  
Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode, DCode, and System bus interface  
Memory access alignment  
Write buffer for buffering of write data  
Data Sheet  
32  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
ARM Cortex-M3 Core  
8.2  
Introduction  
The ARM Cortex-M3 processor is a leading 32-bit processor and provides a high-performance and cost-  
optimized platform for a broad range of applications including microcontrollers, automotive body systems  
and industrial control systems. Like the other Cortex family processors, the Cortex-M3 processor implements  
the Thumb®-2 instruction set architecture. With the optimized feature set the Cortex-M3 delivers 32-bit  
performance in an application space that is usually associated with 8- and 16-bit microcontrollers.  
8.2.1  
Block Diagram  
Figure 12 shows the functional blocks of the Cortex-M3.  
Cortex-M3 Processor  
Nested Vectored  
Interrupt  
Cortex-M3  
Processor  
Core  
Interrupt and  
Power Control  
Controller  
(NVIC)  
AHB  
Access Port  
(AHB-AP)  
Serial-Wire  
(SW-DP)  
Bus Matrix  
ICode  
AHB-Lite  
Instruction  
Interface  
DCode  
AHB-Lite  
Data  
System Bus  
ICode  
Serial-Wire Debug  
Interface  
PBA0  
PBA1  
Interface  
Cortex_M3_Block_diagram.vsd  
Figure 12 Cortex-M3 Block Diagram  
Data Sheet  
33  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
DMA Controller  
9
DMA Controller  
Figure 13 shows the Top Level Block Diagram of the TLE9879-2QXA40.  
The bus matrix allows the μDMA to access the PBA0, PBA1 and RAM.  
9.1  
Features  
The principal features of the DMA Controller are that:  
it is compatible with AHB-Lite for the DMA transfers  
it is compatible with APB for programming the registers  
it has a single AHB-Lite master for transferring data using a 32-bit address bus and 32-bit data bus  
it supports 14 DMA channels  
each DMA channel has dedicated handshake signals  
each DMA channel has a programmable priority level  
each priority level arbitrates using a fixed priority that is determined by the DMA channel number. The DMA  
also supports multiple transfer types:  
- memory-to-memory  
- memory-to-peripheral  
- peripheral-to-memory  
it supports multiple DMA cycle types  
it supports multiple DMA transfer data widths  
each DMA channel can access a primary, and alternate, channel control data structure  
all the channel control data is stored in system memory (RAM) in little-endian format  
it performs all DMA transfers using the single AHB-Lite burst type. The destination data width is equal to  
the source data width.  
the number of transfers in a single DMA cycle can be programmed from 1 to 1024  
the transfer address increment can be greater than the data width  
Data Sheet  
34  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
DMA Controller  
9.2  
Introduction  
Please also refer to Chapter 9.3, Functional Description.  
9.2.1  
Block Diagram  
SSC1  
Timer3  
ADC1  
DMA requests  
DMA requests  
DMA requests  
DMA Controller  
Bus Matrix  
S
PBA1  
S
AHB2APB  
M
AHB lite  
M
AHB lite  
APB Interface  
interrupts  
SCU_DM  
PBA0  
S
AHB lite  
AHB lite  
M
M
RAM  
S
ARM Core  
interrupts  
S
S
S
M
M
M
AHB lite  
AHB lite  
AHB lite  
Figure 13  
DMA Controller Top Level Block Diagram  
Data Sheet  
35  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
DMA Controller  
9.3  
Functional Description  
9.3.1  
DMA Mode Overview  
The DMA controller implements the following 14 hardware DMA requests:  
ADC1 complete sequence 1 done: DMA transfer is requested on completion of the ADC1 channel conversion  
sequence.  
ADC1 exceptional sequence 2 (ESM) done: DMA transfer is requested on completion of the ADC1 conversion  
sequence triggered by an exceptional measurement request.  
SSC1/2 transmit byte: DMA transfer is requested upon the completion of data transmission via SSC1/2  
SSC1/2: receive byte: DMA transfer is requested upon the completion of data reception via SSC1/2.  
ADC1 channel 0 conversion done: DMA transfer is requested on completion of the ADC1 channel 0  
conversion.  
ADC1 channel 1 conversion done: DMA transfer is requested on completion of the ADC1 channel 1  
conversion.  
ADC1 channel 2 conversion done: DMA transfer is requested on completion of the ADC1 channel 2  
conversion.  
ADC1 channel 3 conversion done: DMA transfer is requested on completion of the ADC1 channel 3  
conversion.  
ADC1 channel 4 conversion done: DMA transfer is requested on completion of the ADC1 channel 4  
conversion.  
ADC1 channel 5 conversion done: DMA transfer is requested on completion of the ADC1 channel 5  
conversion.  
ADC1 channel 6 conversion done: DMA transfer is requested on completion of the ADC1 channel 6  
conversion.  
ADC1 channel 7 conversion done: DMA transfer is requested on completion of the ADC1 channel 7  
conversion.  
Timer3 ccu6_int: DMA transfer is requested following a timer trigger.  
SDADC, conversion done: DMA transfer is requested on completion of the SDADC (ADC3/4) conversion.  
Data Sheet  
36  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Address Space Organization  
10  
Address Space Organization  
The TLE9879-2QXA40 manipulates operands in the following memory spaces:  
128 KByte of Flash memory in code space  
32 KByte Boot ROM memory in code space (used for boot code and IP storage)  
6 KByte RAM memory in code space and data space (RAM can be read/written as program memory or  
external data memory)  
Special function registers (SFRs) in peripheral space  
The figure below shows the detailed address alignment of TLE9879-2QXA40:  
00000000H  
Reserved (BootROM)  
00008000H / 10FFFFFFH  
11000000H / 1101FFFFH  
Flash, 128K  
Reserved  
11020000H / 17FFFFFFH  
18000000H / 180017FFH  
SRAM, 6K  
Reserved  
18001800H / 3FFFFFFFH  
40000000H / 47FFFFFFH  
PBA0  
PBA1  
48000000H / 5FFFFFFFH  
60000000H/ DFFFFFFFH  
E0000000H / E00FFFFFH  
FFFFFFFFH  
Reserved  
Private Peripheral Bus  
Reserved  
Figure 14 TLE9879-2QXA40 Memory Map  
Data Sheet  
37  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Memory Control Unit  
11  
Memory Control Unit  
11.1  
Features  
Handles all system memories and their interaction with the CPU  
Memory protection functions for all system memories (D-Flash, P-Flash, RAM)  
Address management with access violation detection including reporting  
Linear address range for all memories (no paging)  
11.2  
Introduction  
11.2.1  
Block Diagram  
The Memory Control Unit (MCU) is divided in the following sub-modules:  
NVM memory module (embedded Flash Memory)  
RAM memory module  
BootROM memory module  
Memory Protection Unit (MPU) module  
Peripheral Bridge PBA0  
Data Sheet  
38  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Memory Control Unit  
NVM  
S0  
RAM  
S1  
BROM  
S2  
PBA0  
S3  
Memory Protection  
Unit  
Sx: BusSlave  
Mx: Bus Master  
M0  
M1  
M2  
M3  
Bus Matrix  
MCU_Block_Diagram_overview.vsd  
Figure 15 MCU Block View  
Data Sheet  
39  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Memory Control Unit  
11.3  
NVM Module (Flash Memory)  
The Flash Memory provides an embedded user-programmable non-volatile memory, allowing fast and  
reliable storage of user code and data.  
Features  
In-system programming via LIN (Flash Mode) and SWD  
Error Correction Code (ECC) for detection of single-bit and double-bit errors and dynamic correction of  
single Bit errors.  
Interrupts and signals double-bit error by NMI  
Program width of 128 byte (page)  
Minimum erase width of 128 bytes (page)  
Integrated hardware support for EEPROM emulation  
8 byte read access  
Physical read access time: 75 ns  
Code read access acceleration integrated; read buffer and automatic pre-fetch  
Page program time: 3 ms  
Page erase (128 bytes) and sector erase (4K bytes) time: 4ms  
Note:  
The user has to ensure that no flash operations which change the content of the flash get  
interrupted at any time.  
The clock for the NVM is supplied with the system frequency fsys. Integrated firmware routines are provided  
to erase NVM, and other operations including EEPROM emulation are provided as well.  
Data Sheet  
40  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Interrupt System  
12  
Interrupt System  
12.1  
Features  
Up to 16 interrupt nodes for on-chip peripherals  
Up to 8 NMI nodes for critical system events  
Maximum flexibility for all 16 interrupt nodes  
12.2  
Introduction  
Before enabling an interrupt, all corresponding interrupt status flags should be cleared.  
12.2.1  
Overview  
The TLE9879-2QXA40 supports 16 interrupt vectors with 16 priority levels. Fifteen of these interrupt vectors  
are assigned to the on-chip peripherals: GPT12, SSC, CCU6, DMA, Bridge Driver and A/D Converter are each  
assigned to one dedicated interrupt vector; while UART1 and Timer2 or UART2, External Interrupt 2 and  
Timer21 share interrupt vectors. Two vectors are dedicated for External Interrupt 0 and 1.  
Table 5  
Interrupt Vector Table  
Service Request  
GPT12  
Node ID  
Description  
0/1  
2
GPT interrupt (T2-T6, CAPIN)  
Measurement Unit, VBG, SD-ADC, Timer3, BEMF  
ADC1 interrupt / VREF5V Overload / VREF5V OV/UV  
CCU6 node 0 interrupt  
MU- ADC8/T3  
ADC1  
3
CCU0  
4
CCU1  
5
CCU6 node 1 interrupt  
CCU2  
6
CCU6 node 2 interrupt  
CCU3  
7
CCU6 node 3 interrupt  
SSC1  
8
SSC1 interrupt (receive, transmit, error)  
SSC2 interrupt (receive, transmit, error)  
SSC2  
9
UART1  
10  
UART1 (ASC-LIN) interrupt (receive, transmit), Timer2, linsync1,  
LIN  
UART2  
11  
UART2 interrupt (receive, transmit), Timer21, External interrupt  
(EINT2)  
EXINT0  
EXINT1  
BDRV/CP  
DMA  
12  
13  
14  
15  
External interrupt (EINT0), MON  
External interrupt (EINT1)  
Bridge Driver / Charge Pump  
DMA Controller  
Data Sheet  
41  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Interrupt System  
Table 6  
NMI Interrupt Table  
Service Request  
Watchdog Timer NMI  
PLL NMI  
Node  
NMI  
Description  
Watchdog Timer overflow  
PLL Loss-of-Lock  
NMI  
NVM Operation  
Complete NMI  
NMI  
NVM Operation Complete  
Overtemperature NMI NMI  
System Overtemperature  
Oscillator Watchdog  
NMI  
NMI  
Oscillator Watchdog / MI_CLK Watchdog Timer Overflow  
NVM Map Error NMI  
ECC Error NMI  
NMI  
NMI  
NVM Map Error  
RAM / NVM Uncorrectable ECC Error  
Supply Prewarning  
Supply Prewarning NMI NMI  
Data Sheet  
42  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Watchdog Timer (WDT1)  
13  
Watchdog Timer (WDT1)  
13.1  
Features  
There are two watchdog timers in the system. The Watchdog Timer (WDT) within the System Control Unit -  
Digital Modules (see SCU_DM) and the Watchdog Timer (WDT1) located within the System Control Unit - Power  
Modules (see SCU_PM). The Watchdog Timer WDT1 is described in this section.  
In Active Mode, the WDT1 acts as a windowed watchdog timer, which provides a highly reliable and safe way  
to recover from software or hardware failures.  
The WDT1 is always enabled in Active Mode. In Sleep Mode, Low Power Mode and SWD Mode the WDT1 is  
automatically disabled.  
Functional Features  
Windowed Watchdog Timer with programmable timing in Active Mode  
Long open window (typ. 80ms) after power-up, reset, wake-up  
Short open window (typ. 30ms) to facilitate Flash programming  
Disabled during debugging  
Safety shutdown to Sleep Mode after 5 missed WDT1 services  
Data Sheet  
43  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Watchdog Timer (WDT1)  
13.2  
Introduction  
The behavior of the Watchdog Timer in Active Mode is illustrated in Figure 16.  
Power-up  
Reset  
RESET  
always  
Timeout  
Timeout  
RESET  
Trigger SOW  
Maximum number  
of count_SOW  
Timeout  
or  
Trigger in closed window  
RESET  
Long  
Open Window  
Trigger&  
count_SOW = 0  
Trigger SOW&  
count_SOW++  
Normal  
„windowed“  
operation  
Short  
open window  
& SOW  
Trigger &  
count_SOW = 0  
Trigger SOW &  
count_SOW++  
Trigger&  
count_SOW = 0  
Figure 16 Watchdog Timer Behavior  
Data Sheet  
44  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
GPIO Ports and Peripheral I/O  
14  
GPIO Ports and Peripheral I/O  
The TLE9879-2QXA40 has 15 port pins organized into three parallel ports: Port 0 (P0), Port 1 (P1) and Port 2  
(P2). Each port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or  
disabled. P0 and P1 are bidirectional and can be used as general purpose input/output (GPIO) or to perform  
alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain  
mode can be selected. On Port 2 (P2) analog inputs are shared with general purpose input.  
14.1  
Features  
Bidirectional Port Features (P0, P1)  
Configurable pin direction  
Configurable pull-up/pull-down devices  
Configurable open drain mode  
Configurable drive strength  
Transfer of data through digital inputs and outputs (general purpose I/O)  
Alternate input/output for on-chip peripherals  
Analog Port Features (P2)  
Configurable pull-up/pull-down devices  
Transfer of data through digital inputs  
Alternate inputs for on-chip peripherals  
14.2  
Introduction  
14.2.1  
Port 0 and Port 1  
Figure 17 shows the block diagram of an TLE9879-2QXA40 bidirectional port pin. Each port pin is equipped  
with a number of control and data bits, thus enabling very flexible usage of the pin. By defining the contents  
of the control register, each individual pin can be configured as an input or an output. The user can also  
configure each pin as an open drain pin with or without internal pull-up/pull-down device.  
Each bidirectional port pin can be configured for input or output operation. Switching between input and  
output mode is accomplished through the register Px_DIR (x = 0 or 1), which enables or disables the output  
and input drivers. A port pin can only be configured as either input or output mode at any one time.  
In input mode (default after reset), the output driver is switched off (high-impedance). The voltage level  
present at the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via the  
register Px_DATA.  
In output mode, the output driver is activated and drives the value supplied through the multiplexer to the  
port pin. In the output driver, each port line can be switched to open drain mode or normal mode (push-pull  
mode) via the register Px_OD.  
The output multiplexer in front of the output driver enables the port output function to be used for different  
purposes. If the pin is used for general purpose output, the multiplexer is switched by software to the data  
register Px_DATA. Software can set or clear the bit in Px_DATA and therefore directly influence the state of the  
Data Sheet  
45  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
GPIO Ports and Peripheral I/O  
port pin. If an on-chip peripheral uses the pin for output signals, alternate output lines (AltDataOut) can be  
switched via the multiplexer to the output driver circuitry. Selection of the alternate output function is defined  
in registers Px_ALTSEL0 and Px_ALTSEL1. When a port pin is used as an alternate function, its direction must  
be set accordingly in the register Px_DIR.  
Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register  
Px_PUDSEL selects whether a pull-up or the pull-down device is activated while register Px_PUDEN enables  
or disables the pull device.  
PUDSEL  
Pull-up / Pull-down  
Select Register  
Pull-up / Pull-down  
Control Logic  
PUDEN  
Pull-up / Pull-down  
Enable Register  
TCCR  
Temperature Compensation  
Control Register  
Px_POCONy  
Port Output  
Driver Control Registers  
I
N
T
E
R
N
A
L
OD  
Open Drain  
Control Register  
DIR  
Direction Register  
ALTSEL0  
Alternate Select  
Register 0  
B
U
S
ALTSEL1  
Alternate Select  
Register 1  
Pull Device  
AltDataOut 3  
AltDataOut 2  
AltDataOut 1  
11  
10  
Output  
Driver  
01  
00  
Out  
In  
Px_DATA  
Data Register  
Input  
Driver  
AltDataIn  
Schmitt  
Trigger  
Pad  
Figure 17 General Structure of Bidirectional Port (P0, P1)  
Data Sheet  
46  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
GPIO Ports and Peripheral I/O  
14.2.2  
Port 2  
Figure 18 shows the structure of an input-only port pin. Each P2 pin can only function in input mode. Register  
P2_DIR is provided to enable or disable the input driver. When the input driver is enabled, the actual voltage  
level present at the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via  
register P2_DATA. Each pin can also be programmed to activate an internal weak pull-up or pull-down device.  
Register P2_PUDSEL selects whether a pull-up or the pull-down device is activated while register P2_PUDEN  
enables or disables the pull device. The analog input (AnalogIn) bypasses the digital circuitry and Schmitt  
trigger device for direct feed-through to the ADC input channels.  
PUDSEL  
Pull-up / Pull-down  
SelectRegister  
Pull-up / Pull-down  
Control Logic  
I
N
T
E
R
N
A
L
PUDEN  
Pull-up / Pull-down  
Enable Register  
Pull Device  
B
U
S
Input  
Driver  
In  
DATA  
Data Register  
Schmitt  
Trigger  
Pad  
AltDataIn  
AnalogIn  
Figure 18 General Structure of Input Port (P2)  
Data Sheet  
47  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
GPIO Ports and Peripheral I/O  
14.3  
TLE9879-2QXA40 Port Module  
14.3.1  
Port 0  
14.3.1.1 Port 0 Functions  
Table 7  
Port Pin  
P0.0  
Port 0 Input/Output Functions  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P0  
SWCLK / TCK_0  
T12HR_0  
T4INA  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
SW  
CCU6  
GPT12T4  
Timer 2  
T2_0  
EXINT2_3  
P0_DATA.P0  
T3OUT  
SCU  
Output  
Input  
GPT12T3  
Timer 21  
UART2  
EXF21_0  
RXDO_2  
P0_DATA.P1  
T13HR_0  
TxD1  
P0.1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
CCU6  
LIN_TxD  
GPT12CAP  
Timer 21  
GPT12T4  
SSC1  
CAPINA  
T21_0  
T4INC  
MRST_1_2  
EXINT0_2  
P0_DATA.P1  
TxD1  
SCU  
Output  
UART1 / LIN_TxD  
T6OUT  
GPT12T6  
Data Sheet  
48  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
GPIO Ports and Peripheral I/O  
Table 7  
Port Pin  
P0.2  
Port 0 Input/Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P0_DATA.P2  
CCPOS2_1  
T2EUDA  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
CCU6  
GPT12T2  
SSC1  
MTSR_1  
T21EX_0  
Timer 21  
GPT12T6  
T6INA  
Output  
Input  
P0_DATA.P2  
COUT60_0  
MTSR_1  
CCU6  
SSC1  
EXF2_0  
Timer 2  
P0.3  
P0_DATA.P3  
SCK_1  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
SSC1  
CAPINB  
GPT12  
GPT12T5  
GPT12T4  
CCU6  
T5INA  
T4EUDA  
CCPOS0_1  
P0_DATA.P3  
SCK_1  
Output  
Input  
SSC1  
EXF21_2  
Timer 21  
GPT12T6  
T6OUT  
P0.4  
P0_DATA.P4  
MRST_1_0  
CC60_0  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
SSC1  
CCU6  
T21_2  
Timer 21  
SCU  
EXINT2_2  
T3EUDA  
GPT12T3  
CCU6  
CCPOS1_1  
P0_DATA.P4  
MRST_1_0  
CC60_0  
Output  
SSC1  
CCU6  
SCU  
CLKOUT_0  
Data Sheet  
49  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
GPIO Ports and Peripheral I/O  
14.3.2  
Port 1  
14.3.2.1 Port 1 Functions  
Table 8  
Port Pin  
P1.0  
Port 1 Input / Output Functions  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P1_DATA.P0  
T3INC  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12T3  
GPT12T4  
CCU6  
T4EUDB  
CC61_0  
SCK_2  
SSC2  
EXINT1_2  
P1_DATA.P0  
SCK_2  
SCU  
Output  
Input  
SSC2  
CC61_0  
CCU6  
EXF21_3  
P1_DATA.P1  
Timer 21  
P1.1  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
T6EUDA  
GPT12T6  
-
MTSR_2  
SSC2  
Timer 21  
SCU  
T21_1  
EXINT1_0  
P1_DATA.P1  
MTSR_2  
Output  
Input  
SSC2  
CCU6  
UART2  
COUT61_0  
TXD2_0  
P1.2  
P1_DATA.P2  
T2INA  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
GPT12T2  
Timer 2  
Timer 21  
SSC2  
T2EX_1  
T21EX_3  
MRST_2_0  
RXD2_0  
UART2  
CCU6  
CCPOS2_2  
EXINT0_1  
P1_DATA.P2  
MRST_2_0  
COUT63_0  
T3OUT  
SCU  
Output  
SSC2  
CCU6  
GPT12T3  
Data Sheet  
50  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
GPIO Ports and Peripheral I/O  
Table 8  
Port Pin  
P1.3  
Port 1 Input / Output Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P1_DATA.P3  
T6INB  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
GPI  
GPT12T6  
CC62_0  
CCU6  
T6EUDB  
GPT12T6  
CCPOS0_2  
EXINT1_1  
P1_DATA.P3  
EXF21_1  
CC62_0  
CCU6  
SCU  
Output  
Input  
Timer 21  
CCU6  
TXD2_1  
UART2  
P1.4  
P1_DATA.P4  
EXINT2_1  
T21EX_1  
T5EUDA  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
GPO  
ALT1  
ALT2  
ALT3  
SCU  
Timer 21  
GPT12T5  
UART1  
GPT12T2  
CCU6  
RxD1  
T2INB  
CCPOS1_2  
MRST_1_3  
P1_DATA.P4  
CLKOUT_1  
COUT62_0  
RxD1  
SSC1  
Output  
SCU  
CCU6  
UART1 / LIN_RxD  
Data Sheet  
51  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
GPIO Ports and Peripheral I/O  
14.3.3  
Port 2  
14.3.3.1 Port 2 Functions  
Table 9  
Port Pin  
P2.0  
Port 2 Input Functions  
Input/Output  
Select  
Connected Signal(s)  
P2_DATA.P0  
CCPOS0_3  
-
From/to Module  
Input  
GPI  
INP1  
INP2  
INP3  
INP4  
INP5  
ANALOG  
IN  
CCU6  
-
T12HR_2  
EXINT0_0  
CC61_2  
CCU6  
SCU  
CCU6  
ADC1  
SD-ADC  
AN0  
ADC3.P  
P2.2  
P2.3  
P2.4  
Input  
Input  
Input  
GPI  
P2_DATA.P2  
CCPOS2_3  
T13HR_2  
INP1  
INP2  
INP3  
INP4  
ANALOG  
IN  
CCU6  
CCU6  
CC62_2  
CCU6  
AN2  
ADC1  
ADC3.N  
SD-ADC  
GPI  
P2_DATA.P3  
CCPOS1_0  
CTRAP#_1  
T21EX_2  
CC60_1  
INP1  
INP2  
INP3  
INP4  
INP5  
ANALOG  
GPI  
CCU6  
CCU6  
Timer 21  
CCU6  
SCU  
EXINT0_3  
AN3  
ADC1  
P2_DATA.P4  
CTRAP#_0  
T2EUDB  
MRST_1_1  
EXINT1_3  
AN4  
INP1  
INP2  
INP3  
INP4  
ANALOG  
IN  
CCU6  
GPT12T2  
SSC1  
SCU  
ADC1  
ADC4.P  
SD-ADC  
Data Sheet  
52  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
GPIO Ports and Peripheral I/O  
Table 9  
Port Pin  
P2.5  
Port 2 Input Functions (cont’d)  
Input/Output  
Select  
GPI  
Connected Signal(s)  
P2_DATA.P5  
RXD2_1  
From/to Module  
Input  
INP1  
INP2  
INP3  
INP4  
ANALOG  
IN  
UART2  
GPT12T3  
SSC2  
T3EUDB  
MRST_2_1  
T2_1  
Timer 2  
ADC1  
AN5  
ADC4.N  
SD-ADC  
Data Sheet  
53  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
General Purpose Timer Units (GPT12)  
15  
General Purpose Timer Units (GPT12)  
15.1  
Features  
15.1.1  
Features Block GPT1  
The following list summarizes the supported features:  
fGPT is derived from PCLK  
fGPT/4 maximum resolution  
3 independent timers/counters  
Timers/counters can be concatenated  
4 operating modes:  
Timer Mode  
Gated Timer Mode  
Counter Mode  
Incremental Interface Mode  
Reload and Capture functionality  
Shared interrupt: Node 0  
15.1.2  
Features Block GPT2  
The following list summarizes the supported features:  
f
f
GPT is derived from PCLK  
GPT/2 maximum resolution  
2 independent timers/counters  
Timers/counters can be concatenated  
3 operating modes:  
Timer Mode  
Gated Timer Mode  
Counter Mode  
Extended capture/reload functions via 16-bit capture/reload register CAPREL  
Shared interrupt: Node 1  
15.2  
Introduction  
The General Purpose Timer Unit blocks GPT1 and GPT2 have very flexible multifunctional timer structures  
which may be used for timing, event counting, pulse width measurement, pulse generation, frequency  
multiplication, and other purposes.  
They incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in  
each block may operate independently in a number of different modes such as Gated timer or Counter Mode,  
or may be concatenated with another timer of the same block.  
Each block has alternate input/output functions and specific interrupts associated with it. Input signals can  
be selected from several sources by register PISEL.  
Data Sheet  
54  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
General Purpose Timer Units (GPT12)  
The GPT module is clocked with clock fGPT. fGPT is a clock derived from PCLK.  
15.2.1  
Block Diagram GPT1  
Block GPT1 contains three timers/counters: The core timer T3 and the two auxiliary timers T2 and T4. The  
maximum resolution is fGPT/4. The auxiliary timers of GPT1 may optionally be configured as reload or capture  
registers for the core timer.  
T3CON.BPS1  
2n : 1  
Basic clock  
fGPT  
Interrupt Request  
(T2IRQ)  
Aux. Timer T2  
Core Timer T3  
Aux. Timer T4  
U/D  
T2IN  
T2  
Mode  
Control  
Capture  
Reload  
T2EUD  
Toggle Latch  
T3  
Mode  
Control  
T3IN  
T3OTL  
T3OUT  
U/D  
T3EUD  
Interrupt Request  
(T3IRQ)  
Capture  
Reload  
T4IN  
T4  
Mode  
Control  
T4EUD  
Interrupt Request  
(T4IRQ)  
U/D  
MC _GPT0101_bldiax1.vsd  
Figure 19 GPT1 Block Diagram (n = 2 … 5)  
Data Sheet  
55  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
General Purpose Timer Units (GPT12)  
15.2.2  
Block Diagram GPT2  
Block GPT2 contains two timers/counters: The core timer T6 and the auxiliary timer T5. The maximum  
resolution is fGPT/2. An additional Capture/Reload register (CAPREL) supports capture and reload operation  
with extended functionality.  
T6CON.BPS2  
fGPT  
2n : 1  
Basic clock  
Toggle FF  
T2  
Mode  
Control  
U/D  
InterruptRequest  
(T5IRQ)  
T5IN  
GPT2 Timer T5  
Clear  
T5EUD  
Capture  
CAPIN  
CAPREL  
Mode  
Control  
GPT2 CAPREL  
T3IN/  
T3EUD  
InterruptRequest  
(CRIRQ)  
Reload  
InterruptRequest  
(T6IRQ)  
Clear  
U/D  
T6  
Mode  
Control  
GPT2 Timer T6  
T6OTL  
T6OUT  
T6OUF  
T6IN  
T6EUD  
Figure 20 GPT2 Block Diagram (n = 1 … 4)  
Data Sheet  
56  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Timer2 and Timer21  
16  
Timer2 and Timer21  
16.1  
Features  
16-bit auto-reload mode  
selectable up or down counting  
One channel 16-bit capture mode  
16.2  
Introduction  
The timer modules are general-purpose 16-bit timers. Timer 2/21 can function as a timer or counter in each of  
its modes. As a timer, it counts with an input clock of fPCLK/12 (if prescaler is disabled). As a counter, Timer 2  
counts 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is fPCLK/24 (if  
prescaler is disabled).  
16.2.1  
Timer2 and Timer21 Modes Overview  
Table 10  
Mode  
Timer2 and Timer21 Modes  
Description  
Auto-reload  
Up/Down Count Disabled  
Count up only  
Start counting from 16-bit reload value, overflow at FFFFH  
Reload event configurable for trigger by overflow condition only, or by  
negative/positive edge at input pin T2EX as well  
Programmable reload value in register RC2  
Interrupt is generated with reload events.  
Data Sheet  
57  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Timer2 and Timer21  
Table 10  
Mode  
Timer2 and Timer21 Modes (cont’d)  
Description  
Auto-reload  
Up/Down Count Enabled  
Count up or down, direction determined by level at input pin T2EX  
No interrupt is generated  
Count up  
Start counting from 16-bit reload value, overflow at FFFFH  
Reload event triggered by overflow condition  
Programmable reload value in register RC2  
Count down  
Start counting from FFFFH, underflow at value defined in register RC2  
Reload event triggered by underflow condition  
Reload value fixed at FFFFH  
Count up only  
Channel capture  
Start counting from 0000H, overflow at FFFFH  
Reload event triggered by overflow condition  
Reload value fixed at 0000H  
Capture event triggered by falling/rising edge at pin T2EX  
Captured timer value stored in register RC2  
Interrupt is generated by reload or capture events  
Data Sheet  
58  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Timer3  
17  
Timer3  
17.1  
Features  
16-bit incremental timer/counter (counting up)  
Counting frequency up to fsys  
Selectable clock prescaler  
6 modes of operation  
Interrupt up on overflow  
Interrupt on compare  
17.2  
Introduction  
The possible applications for the timer include measuring the time interval between events, counting events  
and generating a signal at regular intervals.  
Timer3 can function as timer or counter. When functioning as a timer, Timer3 is incremented in periods based  
on the MI_CLK or LP_CLK clock. When functioning as a counter, Timer3 is incremented in response to a 1-to-0  
transition (falling edge) at its respective input. Timer3 can be configured in four different operating modes to  
use in a variety of applications, see Table 11.  
Several operating modes can be used for different tasks such as the following:  
simple time measurement between two events  
triggering of the measuring unit upon PWM/CCU6 unit  
measurement of the 100kHz LP_CLK2  
17.3  
Functional Description  
Six modes of operation are provided to fulfill various tasks using this timer. In every mode the clocking source  
can be selected between MI_CLK and LP_CLK. A prescaler provides in addition capability to divide the selected  
clock source by 2, 4 or 8. The timer counts upwards, starting with the value in the timer count registers, until  
the maximum count value which depends on the selected mode of operation. Timer 3 provides two individual  
interrupts upon counter overflow, one for the low-byte and one for the high-byte counter register.  
17.3.1  
Timer3 Modes Overview  
The following table provides an overview of the timer modes together with the reasonable configuration  
options in Table 11.  
Table 11  
Mode  
Timer3 Modes  
Sub- Operation  
Mode  
No Sub- 13-bit Timer  
0
1
Mode  
The timer is essentially an 8-bit counter with a divide-by-32 prescaler.  
a
16-bit Timer  
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter.  
Data Sheet  
59  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Timer3  
Table 11  
Mode  
Timer3 Modes (cont’d)  
Sub-  
Operation  
Mode  
1
b
16-bit Timer triggered by an event  
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter, which is  
triggered by an event to enable a single shot measurement on a preset channel with the  
measurement unit.  
2
3
3
No Sub- 8-bit Timer with auto-reload  
Mode  
The timer register TL3 is reloaded with a user-defined 8-bit value in TH3 upon overflow.  
a
Timer3 operates as two 8-bit timers  
The timer registers TL3 and TH3, operate as two separate 8-bit counters.  
b
Timer3 operates as Two 8-bit timers for clock measurement  
The timer registers, TL3 and TH3 operate as two separate 8-bit counters. In this mode  
the LP_CLK2 Low Power Clock can be measured. TL3 acts as an edge counter for the  
clock edges and TH3 as a counter which counts the time between the edges.  
Data Sheet  
60  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Capture/Compare Unit 6 (CCU6)  
18  
Capture/Compare Unit 6 (CCU6)  
18.1  
Feature Set Overview  
This section gives an overview over the different building blocks and their main features.  
Timer 12 Block Features  
Three capture/compare channels, each channel can be used either as capture or as compare channel  
Generation of a three-phase PWM supported (six outputs, individual signals for high-side and low-side  
switches)  
16-bit resolution, maximum count frequency = peripheral clock  
Dead-time control for each channel to avoid short-circuits in the power stage  
Concurrent update of T12 registers  
Center-aligned and edge-aligned PWM can be generated  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Multiple interrupt request sources  
Hysteresis-like control mode  
Timer 13 Block Features  
One independent compare channel with one output  
16-bit resolution, maximum count frequency = peripheral clock  
Concurrent update of T13 registers  
Can be synchronized to T12  
Interrupt generation at period-match and compare-match  
Single-shot mode supported  
Start can be controlled by external events  
Capability of counting external events  
Additional Specific Functions  
Block commutation for brushless DC-drives implemented  
Position detection via hall-sensor pattern  
Noise filter supported for position input signals  
Automatic rotational speed measurement and commutation control for block commutation  
Integrated error handling  
Fast emergency stop without CPU load via external signal (CTRAP)  
Control modes for multi-channel AC-drives  
Output levels can be selected and adapted to the power stage  
Data Sheet  
61  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Capture/Compare Unit 6 (CCU6)  
18.2  
Introduction  
The CCU6 unit is made up of a Timer T12 block with three capture/compare channels and a Timer T13 block  
with one compare channel. The T12 channels can independently generate PWM signals or accept capture  
triggers, or they can jointly generate control signal patterns to drive DC-motors or inverters.  
A rich set of status bits, synchronized updating of parameter values via shadow registers, and flexible  
generation of interrupt request signals provide efficient software-control.  
Note:  
The capture/compare module itself is referred to as CCU6 (capture/compare unit 6). A  
capture/compare channel inside this module is referred to as CC6x.  
The timer T12 can work in capture and/or compare mode for its three channels. The modes can also be  
combined (e.g. a channel works in compare mode, whereas another channel works in capture mode). The  
timer T13 can work in compare mode only. The multi-channel control unit generates output patterns which  
can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal  
modulation.  
Data Sheet  
62  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Capture/Compare Unit 6 (CCU6)  
18.2.1  
Block Diagram  
CCU6 Module Kernel  
Compare  
CC60  
CC61  
CC62  
1
T12SUSP  
Dead-  
Time  
Control  
Multi-  
channel  
Control  
Debug  
Suspend  
Trap  
Control  
T12  
T13  
1
1
T13SUSP  
fCC 6  
Clock  
Control  
CC63  
1
3
2
2
2
3
1
SR[3:0]  
Interrupt  
Control  
Input / Output Control  
PortControl  
CCU6_MCB05506.vsd  
P0.x  
P1.x  
P2.x  
Figure 21 CCU6 Block Diagram  
Data Sheet  
63  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
UART1/UART2  
19  
UART1/UART2  
19.1  
Features  
Full-duplex asynchronous modes  
8-bit or 9-bit data frames, LSB first  
fixed or variable baud rate  
Receive buffered  
Multiprocessor communication  
Interrupt generation on the completion of a data transmission or reception  
Baud-rate generator with fractional divider for generating a wide range of baud rates  
Hardware logic for break and synch byte detection  
19.2  
Introduction  
The UART provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive  
simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a  
previously received byte has been read from the receive register. However, if the first byte still has not been  
read by the time reception of the second byte is complete, one of the bytes will be lost. The serial port receive  
and transmit registers are both accessed at Special Function Register (SFR) SBUF. Writing to SBUF loads the  
transmit register, and reading SBUF accesses a physically separate receive register.  
19.2.1  
Block Diagram  
UART disreq from SCU_DM  
RI  
TXD  
RXD  
TXD  
SCU_D  
M
Interrupt  
Control  
RXD_0  
RXD_1  
TI  
URIOS  
SCU_DM  
P0.x  
P1.x  
P2.x  
UART  
Module  
PortControl  
fUART2  
Clock  
Control  
Baud Rate  
Generator  
f
BR  
Address  
Decoder  
RXDO_2  
SCU_DM  
AHB Interface  
UART  
GPIOs  
Figure 22 UART Block Diagram  
Data Sheet  
64  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
UART1/UART2  
19.3  
UART Modes  
The UART can be used in four different modes. In mode 0, it operates as an 8-bit shift register. In mode 1, it  
operates as an 8-bit serial port. In modes 2 and 3, it operates as a 9-bit serial port. The only difference between  
mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable baud rate is  
set by the underflow rate on the dedicated baud-rate generator.  
The different modes are selected by setting bits SM0 and SM1 to their corresponding values, as shown in  
Table 12.  
Table 12  
UART Modes  
SM1  
SM0  
Operating Mode  
Mode 0: 8-bit shift register  
Baud Rate  
0
0
1
1
0
1
0
1
fPCLK/2  
Mode 1: 8-bit shift UART  
Mode 2: 9-bit shift UART  
Mode 3: 9-bit shift UART  
Variable  
fPCLK/64  
Variable  
The UART1 is connected to the integrated LIN transceiver, and to GPIO for test purpose. The UART2 is  
connected to GPIO only.  
Data Sheet  
65  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
LIN Transceiver  
20  
LIN Transceiver  
20.1  
Features  
General Functional Features  
Compliant to LIN2.2 standard, backward compatible to LIN1.3, LIN2.0 and LIN 2.1  
Compliant to SAE J2602 (slew rate, receiver hysteresis)  
Special Features  
Measurement of LIN master baudrate via Timer 2  
LIN can be used as input/output with SFR bits.  
TxD timeout feature (optional, on by default)  
Operation Mode Features  
LIN Sleep Mode (LSLM)  
LIN Receive-Only Mode (LROM)  
LIN Normal Mode (LNM)  
High Voltage Input / Output Mode (LHVIO)  
Supported Baud Rates  
Mode for a transmission up to 10.4 kBaud  
Mode for a transmission up to 20 kBaud  
Mode for a transmission up to 40 kBaud  
Mode for a transmission up to 115.2 kBaud  
Slope Mode Features  
Normal Slope Mode (20 kbit/s)  
Low Slope Mode (10.4 kbit/s)  
Flash Mode (115.2 kbit/s)  
Wake-Up Features  
LIN bus wake-up  
Data Sheet  
66  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
LIN Transceiver  
20.2  
Introduction  
The LIN Module is a transceiver for the Local Interconnect Network (LIN) compliant to the LIN2.2 standard,  
backward compatible to LIN1.3, LIN2.0 and LIN2.1. It operates as a bus driver between the protocol controller  
and the physical network. The LIN bus is a single wire, bi-directional bus typically used for in-vehicle networks,  
using baud rates between 2.4 kBaud and 20 kBaud. Additionally baud rates up to 115.2 kBaud are  
implemented.  
The LIN Module offers several different operation modes, including a LIN Sleep Mode and the LIN Normal  
Mode. The integrated slope control allows to use several data transmission rates with optimized EMC  
performance. For data transfer at the end of line, a Flash Mode up to 115.2 kBaud is implemented. This Flash  
Mode can be used for data transfer under special conditions for up to 250 kbit/s (in production environment,  
point-to-point communication with reduced wire length and limited supply voltage).  
20.2.1  
Block Diagram  
VS  
LIN Transceiver  
30 k  
LIN_CTRL_STS  
LIN-FSM  
LIN  
CTRL  
Driver +  
Curr. Limit. +  
TSD  
TxD_1  
from UART  
STATUS  
GND_LIN  
Transmitter  
Filter  
RxD_1  
to UART  
Receiver  
Filter  
LIN_Wake  
Sleep Comparator  
LIN_Block_Diagram_Customer.vsd  
GND_LIN  
Figure 23 LIN Transceiver Block Diagram  
Data Sheet  
67  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
High-Speed Synchronous Serial Interface (SSC1/SSC2)  
21  
High-Speed Synchronous Serial Interface (SSC1/SSC2)  
21.1  
Features  
Master and Slave Mode operation  
Full-duplex or half-duplex operation  
Transmit and receive buffered  
Flexible data format  
Programmable number of data bits: 2 to 16 bits  
Programmable shift direction: Least Significant Bit (LSB) or Most Significant Bit (MSB) shift first  
Programmable clock polarity: idle low or high state for the shift clock  
Programmable clock/data phase: data shift with leading or trailing edge of the shift clock  
Variable baud rate  
Compatible with Serial Peripheral Interface (SPI)  
Interrupt generation  
On a transmitter empty condition  
On a “receiver full” condition  
On an error condition (receive, phase, baud rate, transmission error)  
Data Sheet  
68  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
High-Speed Synchronous Serial Interface (SSC1/SSC2)  
21.2  
Introduction  
The High-Speed Synchronous Serial Interface (SSC) supports both full-duplex and half-duplex serial  
synchronous communication. The serial clock signal can be generated by the SSC internally (master mode),  
using its own 16-bit baud rate generator, or can be received from an external master (slave mode). Data width,  
shift direction, clock polarity, and phase are programmable. This allows communication with SPI-compatible  
devices or devices using other synchronous serial interfaces.  
Data is transmitted or received on TXD and RXD lines, which are normally connected to the MTSR  
(MasterTransmit/Slave Receive) and MRST (Master Receive/Slave Transmit) pins. The clock signal is output via  
line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are  
normally connected to the pin SCLK. Transmission and reception of data are double-buffered.  
21.2.1  
Block Diagram  
Figure 24 shows all functional relevant interfaces associated with the SSC Kernel.  
MRSTA  
MRSTB  
EIR  
MTSR  
SCU_DM  
Interrupt  
Control  
RIR  
TIR  
MTSRA  
MTSRB  
P0.x  
P1.x  
P2.x  
SSC  
Module  
Port  
Control  
MRST  
fhw_clk  
Clock  
Control  
SCLKA  
SCLKB  
Address  
Decoder  
SCLK  
AHB Interface  
Module  
ProductInterface  
SSC_interface_overview.vsd  
Figure 24 SSC Interface Diagram  
Data Sheet  
69  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Measurement Unit  
22  
Measurement Unit  
22.1  
Features  
1 x 8-bit ADC with 10 Inputs including attenuator allowing measurement of high voltage input signals  
Supply Voltage Attenuators with attenuation of VS, VDDP and VDDC.  
VBG monitoring of 8-bit ADC to guarantee functional safety requirements.  
Bridge Driver Diagnosis Measurement (VDH, VCP).  
Temperature Sensor for monitoring the chip temperature and PMU Regulator temperature.  
BEMF Comparators for commutation triggering inside BLDC Applications.  
Supplement Block with Reference Voltage Generation, Bias Current Generation, Voltage Buffer for NVM  
Reference Voltage, Voltage Buffer for Analog Module Reference Voltage and Test Interface.  
22.2  
Introduction  
The measurement unit is a functional unit that comprises the following associated sub-modules:  
Table 13  
Measurement Functions and Associated Modules  
Module  
Name  
Modules  
Functions  
Central  
Functions Unit  
Bandgap reference circuit  
The bandgap-reference sub-module provides two  
reference voltages  
1. a trimmable reference voltage for the 8-bit ADCs. A  
local dedicated bandgap circuit is implemented to  
avoid deterioration of the reference voltage arising  
e.g. from crosstalk or ground voltage shift.  
2. the reference voltage for the NVM module  
8-bit ADC (ADC2) 8-bit ADC module with 10  
input attenuator  
5 high voltage full supply range capable inputs  
multiplexed inputs, including HV (2.5V...30,7V(FS))  
2 medium voltage inputs (0..5V/7V FS).  
3 low voltage inputs (0..1.2V/1.6V FS)  
(allocation see following overview figure)  
10-bit ADC (ADC1) 10-bit ADC module with 8  
multiplexed inputs  
Five (5V) analog inputs from Port 2.x  
14 Bit ADCs  
14 Bit Sigma Delta ADC module  
Two diffential analog inputs from Port 2.x  
(ADC3, ADC4)  
VDH Input  
Voltage  
VDH input voltage attenuator  
Scales down V(VDH) to the input voltage range of  
ADC1.CH6  
Attenuator  
Temperature  
Sensor  
Temperature sensor with two  
multiplexed sensing elements:  
Generates output voltage which is a linear function of  
the local chip (junction) temperature.  
PMU located sensor  
Central chip located sensor  
Data Sheet  
70  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Measurement Unit  
Table 13  
Measurement Functions and Associated Modules  
Module  
Name  
Modules  
Functions  
BEMF -  
Comparators  
Back Electromotive Force  
Comparators  
Comparators are used to detect the Back  
Electromotive Force (Zero Crossing Event), which can  
be used as a commutation trigger for BLDC  
applications.  
Measurement  
Core Module  
Digital signal processing and ADC2 1. Generates the control signal for the 8-bit ADC2 and  
control unit  
the synchronous clock for the switched capacitor  
circuits,  
2. Performs digital signal processing functions and  
provides status outputs for interrupt generation.  
22.2.1  
Block Diagram  
VAGND  
VS  
GND_VDDEXT VDDEXT  
VAREF  
P2.0  
P2.0_ADC_SEL  
0
1
CH0  
CH1  
CH2  
CH3  
5
V
OP1  
OP2  
GND_SENSE  
OP  
P2.2_ADC_SEL  
G = 10/20/40/60  
0
1
10  
/
P2.2  
P2.3  
P2.4  
MUX  
SFR  
A
D
Channel sequencer  
CH4  
P2.4_ADC_SEL  
CH5  
CH6  
CH7  
0
1
ADC 1  
P2.5_ADC_SEL  
0
1
P2.5  
VDH  
x 0.226  
x 0.166  
10 Bit ADC + DPP1  
REF- REF+  
3rd Order Comb Filter  
incl.Decimation  
ADC 3  
P2.0  
P2.2  
fully differential  
ΣΔ-ADC  
1
/
SFR  
REF- REF+  
3rd Order Comb Filter  
incl.Decimation  
ADC 4  
P2.4  
P2.5  
fully differential  
ΣΔ-ADC  
1
/
Sensor-Interface  
Programmable  
range setting  
CH0  
1.21  
x 0.055  
x 0.039  
CH1  
V
VSD  
VCP  
x 0.039  
x 0.023  
x 0.039  
x 0.164  
x 0.219  
CH2  
CH3  
calibration  
with  
upper lower  
& filter unit  
MON  
CH4  
MUX  
CH5  
8
/
/
SFR  
A
D
threshold  
VDDP  
VAREF  
detection / interrupt  
CH6  
CH7  
CH8  
CH9  
ADC 2  
PMU-VBG  
x 0.75  
x 0.75  
VDDC  
Temperature  
Sensor  
8 Bit ADC + DPP2  
Measurement-Unit  
Measurement_Unit_Overview_TLE9879-2_B17.vsd  
Figure 25  
Measurement Unit-Overview TLE9879-2QXA40  
Data Sheet  
71  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Measurement Unit  
22.2.1.1 Block Diagram BEMF Comparator  
V Phase U  
W
V
U
VS/2  
SH3  
SH2  
R
R
R
R
Blank Filter  
BEMF-Comp  
Spike Filter  
BEMF OUT  
SH1  
BEMF IN  
t
Measurement-Unit / BEMF Comparators  
Figure 26  
3 Times BEMF Comparator  
Data Sheet  
72  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Measurement Core Module (incl. ADC2)  
23  
Measurement Core Module (incl. ADC2)  
23.1  
Features  
8 individually programmable channels split into two groups of user configurable and non user  
configurable  
Individually programmable channel prioritization scheme for measurement unit  
Two independent filter stages with programmable low-pass and time filter characteristics for each  
channel  
Two channel configurations:  
Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis  
Two individually programmable trigger thresholds with limit hysteresis settings  
Individually programmable interrupts and statuses for all channel thresholds  
23.2  
Introduction  
The basic function of this block is the digital postprocessing of several analog digitized measurement signals  
by means of filtering, level comparison and interrupt generation. The measurement postprocessing block  
consists of ten identical channel units attached to the outputs of the 10-channel 8-bit ADC (ADC2). It processes  
ten channels, where the channel sequence and prioritization is programmable within a wide range.  
Data Sheet  
73  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Measurement Core Module (incl. ADC2)  
23.2.1  
Block Diagram  
4
/
Measurement Core Module  
MUX_SEL<3:0>  
Channel Controller  
(Sequencer)  
ADC2 - SFR  
rfu  
VS  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
CH9  
VSD  
VCP  
1st Order IIR  
1
/
+
-
8 Bit ADC  
ADC2_CHx_UPPER_STS  
ADC2_CHx_LOWER_STS  
+ / -  
+ / -  
Calibration Unit:  
y= a + (1+b)*x  
THy_z_UPPER.  
CHx  
8
/
10  
/
8
/
MON  
MUX  
A
D
VDDP  
1
/
THy_z_LOWER.  
CHx  
-
VAREF  
+
PMU-VBG  
VDDC  
Digital Signal Processing  
Temperature Sensor  
TSENSE  
Figure 27 Module Block Diagram  
23.2.2  
Measurement Core Module Modes Overview  
The basic function of this unit, is the digital signal processing of several analog digitized measurement signals  
by means of filtering, level comparison and interrupt generation. The Measurement Core module processes  
ten channels in a quasi parallel process.  
As shown in the figure above, the ADC2 postprocessing unit consists of a channel controller (Sequencer), an  
10-channel demultiplexer and the signal processing block, which filters and compares the sampled ADC2  
values for each channel individually. The channel control block controls the multiplexer sequencing on the  
analog side before the ADC2 and on the digital domain after the ADC2. As described in the following section,  
the channel sequence can be controlled in a flexible way, which allows a certain degree of channel  
prioritization.  
This capability can be used e.g. to set a higher priority to supply voltage channels compared to the other  
channel measurements. The Measurement Core Module offers additionally two different post-processing  
measurement modes for over-/undervoltage detection and for two-level threshold detection.  
The channel controller (sequencer) runs in one of the following modes:  
“Normal Sequencer Mode” – channels are selected according to the 10 sequence registers which contain  
individual enablers for each of the 10 channels.  
“Exceptional Interrupt Measurement” – following a hardware event, a high priority channel is inserted into the  
current sequence. The current actual measurement is not destroyed.  
“Exceptional Sequence Measurement” – following a hardware event, a complete sequence is inserted after  
the current measurement is finished. The current sequence is interrupted by the exception sequence.  
Data Sheet  
74  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
10-Bit Analog Digital Converter (ADC1)  
24  
10-Bit Analog Digital Converter (ADC1)  
24.1  
Features  
The principal features of the ADC1 are:  
Up to 8 analog input channels (channel 7 reserved for future use)  
Flexible results handling  
- 8-bit and 10-bit resolution  
Flexible source selection due to sequencer  
- insert one exceptional sequence (ESM)  
- insert one interrupt measurement into the current sequence (EIM), single or up to 128 times  
- software mode  
Conversion sample time (separate for each channel) adjustable to adapt to sensors and reference  
Standard external reference (VAREF) to support ratiometric measurements and different signal scales  
DMA support, transfer ADC conversion results via DMA into RAM  
Support of suspend and power saving modes  
Result data protection for slow CPU access (wait-for-read mode)  
Programmable clock divider  
Integrated sample and hold circuitry  
Data Sheet  
75  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
10-Bit Analog Digital Converter (ADC1)  
24.2  
Introduction  
The TLE9879-2QXA40 includes a high-performance 10-bit Analog-to-Digital Converter (ADC1) with eight  
multiplexed analog input channels. The ADC1 uses a successive approximation technique to convert the  
analog voltage levels from up to eight different sources. The analog input channels of the ADC1 are available  
at AN0, AN2 - AN5.  
24.2.1  
Block Diagram  
3
3
/
/
MUX_SEL <2:0>  
Channel Controller  
(Sequencer)  
ADC1 - SFR  
10  
10  
10  
10  
10  
10  
10  
10  
10  
/
/
/
/
/
/
/
/
/
ADC1_OUT_CH0  
ADC1_OUT_CH1  
ADC1_OUT_CH2  
ADC1_OUT_CH3  
ADC1_OUT_CH4  
ADC1_OUT_CH5  
ADC1_OUT_CH6  
ADC1_OUT_CH7  
ADC1_RES_OUT_EIM  
P2.0  
CH0  
CH1  
CH2  
CH3  
ADC1  
P2.2  
P2.3  
P2.4  
P2.5  
VDH  
rfu  
10  
MUX  
A
D
/
MUX  
CH4  
CH5  
CH6  
CH7  
OP1  
OP2  
OPA  
Figure 28  
ADC1 Top Level Block Diagram  
As shown in the figure above, the ADC1 postprocessing consists of a channel controller (Sequencer) and an 8-  
channel demultiplexer. The channel control block controls the multiplexer sequencing on the analog side  
before the ADC1 and on the digital domain after the ADC1. As described in the following section, the channel  
sequence can be controlled in a flexible way, which allows a certain degree of channel prioritization.  
This capability can be used e.g. to give a higher priority to some channels compared to the other channel  
measurements.  
Data Sheet  
76  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
14-Bit Sigma Delta ADC (ADC3 / ADC4)  
25  
14-Bit Sigma Delta ADC (ADC3 / ADC4)  
25.1  
Features  
Module Features:  
full differential capacitive input.  
14 Bit resolution.  
full differential scale: Vdiff,lin  
extended differential input range with reduced accuracy: Vdiff,nonlin  
sampling frequency: fADC3/4  
programmable oversampling ratio: OSR  
high supply rejection ratio  
internal clock jittering  
25.2  
Functional Description  
The 2 integrated 14 Bit Sigma Delta ADCs are building a Sensor Interface for an external AMR / GMR Sensor. The  
application configuration is shown below.  
ADC3  
VDDEXT  
Rfilp  
3rd Order Comb Filter  
Cfilp  
Cfiln  
2nd Order  
SD-ADC  
MR-  
sin  
with programmable  
Decimation up to  
2048  
SFR  
Rfiln  
CSMP  
Dynamic input impedance due to switch cap architecture : Zi = 1/(2*fADC*CSMP  
)
ADC 4  
VDDEXT  
Rfilp  
Rfiln  
3rd Order Comb Filter  
with programmable  
Decimation up to  
2048  
2nd Order  
SD-ADC  
Cfilp  
Cfiln  
MR-  
cos ᵩ  
SFR  
CSMP  
Figure 29 Application of Integrated Sigma Delta ADCs  
Data Sheet  
77  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
14-Bit Sigma Delta ADC (ADC3 / ADC4)  
25.2.1  
Input Voltage Range of SD ADC  
Vin  
VIH,max  
VREF  
Vin,com  
+2V  
Non linear area  
Vin,com  
+1.875V  
linear area  
Vdiff,lin  
max.  
Vdiff,nonlin  
ADCx.P  
ADCx.N  
Max.  
Vin,com  
Vdiff = |VADCx.P-VADCx.N  
|
Vin,com  
1.875V  
Vin,com  
Non linear area  
2V  
t
VIL,min  
0V  
ADC34_VoltRangeDiff.vsdx  
x={3,4}  
Figure 30 Input Voltage Range  
25.2.2  
Interpretation of ADC output code  
0x4xxx  
0x3FFF  
Linear  
range  
0
0xC001  
0x8xxx  
Vin  
0
VREF  
V
V
V
V
V
in,com  
in,com  
–2V  
in,com  
in,  
com  
in,com  
+2V  
–1.875V  
+1.875V  
Differential Analog Input  
ADC34_TransferCharDiff.vsdx  
Figure 31 ADC output code over input voltage  
Data Sheet  
78  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
High-Voltage Monitor Input  
26  
High-Voltage Monitor Input  
26.1  
Features  
High-voltage input with VS/2 threshold voltage  
Integrated selectable pull-up and pull-down current sources  
Wake capability for power saving modes  
Level change sensitivity configurable for transitions from low to high, high to low or both directions  
26.2  
Introduction  
This module is dedicated to monitor external voltage levels above or below a specified threshold or it can be  
used to detect a wake-up event at the high-voltage MON pin in low-power mode. The input is sensitive to a  
input level monitoring, this is available when the module is switched to active mode with the SFR bit EN.  
To use the Wake function during low power mode of the IC, the monitoring pin is switched to Sleep Mode via  
the SFR bit EN.  
26.2.1  
Block Diagram  
VS  
MON  
+
-
Filter  
to internal  
circuitry  
MON  
Logic  
SFR  
MONx_Input_Circuit_ext.vsd  
Figure 32 Monitoring Input Block Diagram  
Data Sheet  
79  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Bridge Driver (incl. Charge Pump)  
27  
Bridge Driver (incl. Charge Pump)  
27.1  
Features  
The MOSFET Driver is intended to drive external normal level NFET transistors in bridge configuration. The  
driver provides many diagnostic possibilities to detect faults.  
Functional Features  
External Power NFET Transistor Driver Stage with driver capability for max. 100 nC gate charge @ 25 kHz  
switching frequency.  
Implemented adjustable cross conduction protection.  
Supply voltage (VSD) monitoring incl. adjustable over- and undervoltage shutdown with configurable  
interrupt signalling.  
VSD operating range down to 5.4 V  
VDS comparators for short circuit detection in on- and off-state  
Open-Load detection in off-state  
Flexible PWM frequency range, rates above 25 kHz require power dissipation and duty cycle resolution  
analysis  
27.2  
Introduction  
The MOSFET Driver Stage can be used for controlling external Power NFET Transistors (normal level). The  
module output is controlled by SFR or System PWM Machine (CCU6).  
Data Sheet  
80  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Bridge Driver (incl. Charge Pump)  
27.2.1  
Block Diagram  
VDH  
VCP  
PWM-Unit  
CCU6  
(not part of the module )  
Pre-Driver  
DRV.TRIM_DRVx.  
LSDRV_DS_TFILT_SEL LS_HS_BT_TFILT_SEL  
DRV.TRIM_DRVx.  
DRV.CTRL3.  
DSMONVTH  
+
Spike  
Filter  
Blank  
Filter  
VDS  
-
High Side  
Driver  
1
0
GHx  
RGGND  
VREF  
DRV.CTRL1.HSx_PWM  
SFR  
SHx  
1
0
Low Side  
Driver  
DRV.CTRL1.LSx_PWM  
+
Blank  
Filter  
Spike  
Filter  
VDS  
GLx  
SL  
-
R
GGND  
VREF  
DRV.TRIM_DRVx.  
DRV.TRIM_DRVx.  
LSDRV_DS_TFILT_SEL LS_HS_BT _TFILT_SEL  
DRV.CTRL3.  
DSMONVTH  
PreDriver_Customer.vsd  
Figure 33 Driver Module Block Diagram (incl. system connections)  
27.2.2  
General  
The Driver can be controlled in two different ways:  
In Normal Mode the output stage is fully controllable through the SFR registers CTRLx (x = 1,2,3). Protection  
functions such as overcurrent and open-load detection are available.  
The PWM Mode can also be enabled by the corresponding bit in CTRL1 and CTRL2. The PWM must be  
configured in the System PWM Module (CCU6). All protection functions are available in PWM mode as well.  
Protection Functions  
Overcurrent detection and shutdown feature for external MOSFET by Drain Source measurement  
Programmable minimum cross current protection time  
Open-load detection feature in Off-state for external MOSFET.  
Data Sheet  
81  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Current Sense Amplifier  
28  
Current Sense Amplifier  
28.1  
Features  
Main Features  
Programmable gain settings: G = 10, 20, 40, 60  
Differential input voltage: ± 1.5V / G  
Wide common mode input range ± 2 V  
Low setting time < 1.4 µs  
28.2  
Introduction  
The current sense amplifier in the following figure can be used to measure near ground differential voltages  
via the 10-bit ADC. Its gain is digitally programmable through internal control registers.  
Linear calibration has to be applied to achieve high gain accuracy, e.g. end-of-line calibration including the  
shunt resistor.  
The following figure shows how the current sense amplifier can be used as a low-side current sense amplifier  
where the motor current is converted to a voltage by means of a shunt resistor RSH. A differential amplifier  
input is used in order to eliminate measurement errors due to voltage drop across the stray resistance RStray  
and differences between the external and internal ground. If the voltage at one or both inputs is out of the  
operating range, the input circuit is overloaded and requires a certain specified recovery time.  
In general, the external low pass filter should provide suppression of EMI.  
28.2.1  
Block Diagram  
VBAT  
M
V
5V  
AREF  
VZERO  
Motor  
Current  
Amplifier  
configurable  
LP Filter  
OP2  
OP1  
ROPAFILT  
Gain: 10, 20, 40, 60  
VP  
Vzero + (VOP2 -VOP1) * G  
10  
/
10-bit ADC  
RSH  
COPAFILT  
ROPAFILT  
ADC1_OUT_CH1  
VN  
CSA_CTRL  
RStray  
Ext. GND  
Current_Sense_Amplifier.vsd  
Figure 34 Simplified Application Diagram  
Data Sheet  
82  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Application Information  
29  
Application Information  
29.1  
BLDC Driver  
The following figure shows the TLE9879-2QXA40 in an electric drive application setup controlling a BLDC  
motor.  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Rev. Polarity Protection  
LPF  
ILT  
VBAT  
CPF  
CPF  
ILT1  
ILT1  
CVDDP2  
CVDDP1  
CVDDC1  
CVDDC2  
EMC Filter  
DVS  
VDDP VDDC  
VS  
CP1H  
CP1L  
CP2H  
CCPS1  
CVS 2  
CVS 1  
CCPS2  
CP2L  
VCP  
RMON  
IGN  
LIN  
MON  
LIN  
RVS D  
CVCP  
CMON  
VSD  
CVS D  
RVDH  
VDH  
CVD H  
RGATE  
CLIN  
D
S
GND_LIN  
G
GH1  
SH1  
TH1  
CPH 1  
VAREF  
RGS  
CGS  
CVA REF  
D
S
GND_REF  
G
CEM C P1  
CEM CP2  
CEM CP3  
TH2  
CPH 2  
RGATE  
VDDEXT  
RGS  
CGS  
GH2  
SH2  
CVDD_EXT2  
CVDD_EXT1  
D
S
G
RSI N_P  
RSI N_N  
RCOS_P  
RCOS_N  
RGATE  
TH3  
VDD  
CPH3  
SIN_P  
SIN_N  
P2.0/ADC3.P  
P2.2/ADC3.N  
P2.4/ADC4.P  
P2.5/ADC4.N  
RGS  
CGS  
GH3  
SH3  
U
V
TLE5009  
GND GND  
COS_P  
COS_N  
D
S
RGATE  
G
VGMR  
W
P2.3  
GL1  
GL2  
GL3  
TL1  
TLE9879-2QXA40  
RGS  
CGS  
D
S
M
RGATE  
G
TL2  
RGS  
CGS  
D
S
RGATE  
P0.3  
G
TL3  
P0.2  
P0.1  
RGS  
CGS  
P0.4  
P1.4  
P1.3  
P1.2  
P1.1  
SL  
ROPAFILT  
OP2  
RShunt  
COPAFILT  
OP1  
ROPAFILT  
P1.0  
RESET  
TMS  
P0.0  
Debug Connector  
GND  
RTM S  
GND  
BLDC System  
Figure 35 Simplified Application Diagram Example  
Note:  
This is a very simplified example of an application circuit and bill of materials. The function must be  
verified in the actual application.  
Data Sheet  
83  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Application Information  
Table 14  
Symbol  
CVS1  
External Components (BOM)  
Function  
Component  
Blocking capacitor at VS pin  
Blocking capacitor at VS pin  
Blocking capacitor at VDDP pin  
Blocking capacitor at VDDEXT pin  
Blocking capacitor at VDDC pin  
Blocking capacitor at VAREF pin  
Standard C for LIN slave  
100 nF Ceramic, ESR < 1 Ω  
> 2.2 µF Elco1)  
CVS2  
CVDDP  
CVDD_EXT  
CVDDC  
CVAREF  
CLIN  
470 nF + 100 nF Ceramic, ESR < 1 Ω  
100nF, Ceramic ESR < 1 Ω  
470 nF + 100 nF Ceramic, ESR < 1 Ω  
100 nF, Ceramic ESR < 1 Ω  
220 pF  
CVSD  
Filter C for charge pump end driver 1 µF  
CCPS1  
CCP2S  
CVCP  
Charge pump capacitor  
Charge pump capacitor  
Charge pump capacitor  
Filter C for ISO pulses  
Capacitor  
220 nF  
220 nF  
470 nF  
10 nF  
3.3 nF  
220 µF  
220 µF  
220 µF  
100 nF  
1 nF  
CMON  
CVDH  
CPH1  
Capacitor  
CPH2  
Capacitor  
CPH3  
Capacitor  
COPAFILT  
CEMCP1  
CEMCP2  
CEMCP3  
Capacitor  
Capacitor  
Capacitor  
1 nF  
Capacitor  
1 nF  
CPFILT1, CPFILT2  
Capacitor  
RMON  
RVSD  
Resistor at MON pin  
3.9 kΩ  
Limitation of reverse current due to 2 Ω  
transient (-2V, 8ms)  
max. ratings of the VSD pin has to be  
met, alternatively the resistor shall  
be replaced by a diode  
RVDH  
RGATE  
ROPAFILT  
RSH1  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
1 kΩ  
2 Ω  
12 Ω  
optional  
optional  
optional  
RSH2  
RSH3  
LPFILT  
DVS  
Reverse-polarity protection diode  
1) The capacitor must be dimensioned so as to ensure that flash operations modifying the content of the flash are never  
interrupted (e.g. in case of power loss).  
Data Sheet  
84  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Application Information  
29.2  
ESD Immunity According to IEC61000-4-2  
Note:  
Tests for ESD immunity according to IEC61000-4-2 “Gun test” (150pF, 330) has been performed. The  
results and test condition will be available in a test report.  
Table 15  
ESD “Gun Test”  
Performed Test  
Result  
Unit  
Remarks  
2)positive pulse  
ESD at pin LIN, versus  
GND1)  
> 6  
kV  
ESD at pin LIN, versus  
< -6  
kV  
2)negative pulse  
GND1)  
1) ESD test “ESD GUN” is specified with external components; see application diagram:  
MON = 100 nF, RMON = 1 k, CLIN = 220 pF, CVS = >20 µF ELCO + 100 nF ESR < 1 , CVSD = 1 µF, RVSD = 2 .  
C
2) ESD susceptibility “ESD GUN” according to LIN EMC Test Specification, Section 4.3 (IEC 61000-4-2). To be tested by  
external test house (IBEE Zwickau)  
Data Sheet  
85  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30  
Electrical Characteristics  
This chapter includes all relevant electrical characteristics of the product TLE9879-2QXA40.  
30.1  
General Characteristics  
30.1.1  
Absolute Maximum Ratings  
Table 16  
Absolute Maximum Ratings1)  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltages – Supply Pins  
Supply voltage – VS  
Supply voltage – VSD  
Supply voltage – VSD  
VS  
-0.3  
-0.3  
40  
48  
48  
V
V
V
Load dump  
P_1.1.1  
P_1.1.2  
P_1.1.32  
VSD  
VSD_max_exten -2.8  
Series resistor RVSD  
2.2 , t = 8 ms 2)  
=
d
Voltage range – VDDP  
Voltage range – VDDP  
VDDP  
-0.3  
5.5  
7
V
V
P_1.1.3  
VDDP_max_exte -0.3  
In case of voltage  
P_1.1.41  
transients on VS with  
dVS/dt 1V/µs;  
nd  
duration: t 150µs;  
C
VDDP 570 nF  
Voltage range – VDDEXT  
Voltage range – VDDEXT  
VDDEXT  
-0.3  
5.5  
7
V
V
P_1.1.4  
VDDEXT_max_e -0.3  
In case of voltage  
transients on VS with  
dVS/dt 1V/µs;  
P_1.1.42  
xtend  
duration: t 150µs;  
C
VDDEXT 570 nF  
Voltage range – VDDC  
Voltages – High Voltage Pins  
Input voltage at LIN  
VDDC  
VLIN  
-0.3  
-28  
1.6  
V
P_1.1.5  
40  
40  
40  
48  
V
V
V
V
V
V
V
V
3)  
P_1.1.7  
Input voltage at MON  
Input voltage at VDH  
VMON_maxrate -28  
VVDH_maxrate -2.8  
P_1.1.8  
4)  
5)  
P_1.1.38  
P_1.1.9  
Voltage range at GHx  
Voltage range at GHx vs. SHx  
Voltage range at SHx  
VGH  
-8.0  
14  
VGHvsSH  
VSH  
P_1.1.44  
P_1.1.11  
P_1.1.13  
P_1.1.45  
-8.0  
-8.0  
14  
48  
48  
6)  
Voltage range at GLx  
VGL  
Voltage range at GLx vs. SL  
VGLvsSL  
Data Sheet  
86  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 16  
Absolute Maximum Ratings1) (cont’d)  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
7)  
Voltage range at charge pump VCPx  
pins CP1H, CP1L, CP2H, CP2L,  
VCP  
-0.3  
48  
V
P_1.1.15  
Voltages – GPIOs  
8)  
Voltage on any port pin  
Vin  
-0.3  
VDDP  
+0.3  
V
VIN < VDDPmax  
P_1.1.16  
P_1.1.35  
Current at VCP Pin  
Max. current at VCP pin  
Injection Current at GPIOs  
IVCP  
-15  
-5  
mA  
9)  
9)  
9)  
9)  
Injection current on any port  
pin  
IGPIONM  
5
mA  
mA  
µA  
P_1.1.34  
P_1.1.30  
P_1.1.36  
P_1.1.37  
Sum of all injected currents in IGPIOAM_sum -50  
Normal Mode  
50  
50  
5
Sum of all injected currents in IGPIOPD_sum -5000 –  
Power Down Mode (Stop Mode)  
Sum of all injected currents in IGPIOSleep_sum -5  
mA  
Sleep Mode  
Other Voltages  
Input voltage VAREF  
VAREF  
VOAI  
-0.3  
-7  
VDDP  
+0.3  
V
V
P_1.1.17  
P_1.1.23  
Input voltage  
OP1, OP2  
7
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_1.1.18  
P_1.1.19  
Tstg  
ESD susceptibility  
all pins  
VESD1  
-2  
2
kV  
kV  
kV  
V
HBM 10)  
HBM 11)  
P_1.1.20  
P_1.1.21  
P_1.1.22  
P_1.1.28  
P_1.1.43  
ESD susceptibility  
pins MON, VS, VSD vs.GND  
VESD2  
-4  
4
ESD susceptibility  
pins LIN vs. GND_LIN  
VESD3  
-6  
6
HBM 10)  
12)  
ESD susceptibility CDM  
all pins vs. GND  
VESD_CDM1  
VESD_CDM2  
-500  
-750  
500  
750  
12)  
ESD susceptibility CDM  
pins 1, 12, 13, 24, 25, 36, 37, 48  
(corner pins) vs. GND  
V
1) Not subject to production test, specified by design.  
Data Sheet  
87  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
2) Conditions and min. value is derived from application condition for reverse polarity event.  
3) Min voltage -28V with external 3.9kseries resistor only.  
4) Min voltage -2.8V with external 1kseries resistor only.  
5) To achieve max. ratings on this pin, Parameter P_1.1.44 has to be taken into account resulting in the following  
dependency: VGH < VSH + VGHvsSH_min and additionally VSH < VGH + 0.3V.  
6) To achieve max. ratings on this pin, Parameter P_1.1.45 has to be taken into account resulting in the following  
dependency: VGL < VSL + VGLvsSL_min and additionally VSL < VGL + 0.3V.  
7) These limits can be kept if max current drawn out of pin does not exceed limit of 200 µA.  
8) Includes TMS and RESET.  
9) Maximum rating for injection current of GPIO with VIN respected.  
10) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001 (1.5k, 100pF)  
11) MON with external circuitry of a series resistor of 3.9kand 10nF (at connector); VS with an external ceramic capacitor  
of 100nF; VSD with an external capacitor of 470nF; VDH with external circuitry of a series resistor of 1kand 3.3nF (at  
pin).  
12) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JESD22-C101F  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
88  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.1.2  
Functional Range  
Table 17  
Functional Range  
Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
28  
Supply voltage in Active Mode  
VS_AM  
5.5  
V
V
P_1.2.1  
Extended supply voltage in Active  
Mode  
VS_AM_exten 28  
40  
1) Functional  
with parameter  
deviation  
P_1.2.16  
d
Supply voltage in Active Mode for  
MOSFET Driver Supply  
VSD_AM  
5.4  
28  
32  
V
V
P_1.2.18  
P_1.2.17  
Extended supply voltage in Active  
Mode for MOSFET Driver Supply  
VSD_AM_exte 28  
1)3)Functional  
with parameter  
deviation  
nd  
Specified supply voltage for LIN  
Transceiver  
VS_AM_LIN 5.5  
VS_AM_LIN 4.8  
18  
28  
V
V
Parameter  
Specification  
P_1.2.2  
Extended supply voltage for LIN  
Transceiver  
Functional with P_1.2.14  
parameter  
deviation  
2)  
Supply voltage in Active Mode with VS_AMmin  
reduced functionality  
3.0  
5.5  
V
P_1.2.3  
(Microcontroller / Flash with full  
operation)  
Supply voltage in Sleep Mode  
VS_Sleep  
3.0  
-1  
28  
1
V
P_1.2.4  
P_1.2.5  
P_1.2.7  
P_1.2.15  
P_1.2.9  
3)  
Supply voltage transients slew rate dVS/dt  
Output sum current for all GPIO pins IGPIO,sum  
V/µs  
mA  
MHz  
°C  
3)  
4)  
-50  
5
50  
40  
150  
Operating frequency  
Junction temperature  
fsys  
Tj  
-40  
1) This operation voltage range is only allowed for a short duration: tmax 400 ms (continuous operation at this voltage  
is not allowed), fsys = 24 MHz, IVDDP = 10 mA, IVDDEXT = 5 mA. In addition, the power dissipation caused by the Charge  
Pump + MOSFET driver have to be considered.  
2) Reduced functionality (e.g. cranking pulse) - Parameter deviation possible.  
3) Not subject to production test, specified by design.  
4) Function not specified when limits are exceeded.  
Data Sheet  
89  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.1.3  
Current Consumption  
Table 18  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current Consumption @VS pin  
Current consumption in IVs  
Active Mode at pin VS  
30  
35  
mA fsys = 20 MHz  
no loads on pins, LIN in recessive  
state1)  
P_1.3.1  
P_1.3.8  
Current consumption in IVSD  
Active Mode at pin VSD  
40  
35  
mA 20 kHz  
PWM on Bridge Driver  
Current consumption in ISDM_3P  
Slow Down Mode  
mA fsys = 5 MHz; LIN communication P_1.3.19  
running; charge pump on  
(reverse polarity FET on), external  
Low Side FET static on (motor  
break mode); VDDEXT on; Sensor  
input read via SD ADC and  
calculate angle (fADC3/4 = 5 MHz) all  
other module set to power  
down;VS = 13.5V  
Current consumption in ISleep  
Sleep Mode  
30  
90  
35  
µA System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
P_1.3.3  
P_1.3.15  
P_1.3.9  
TJ = -40°C to 85°C;  
VS = 5.5 V to 18V;2)  
Current consumption in ISleep_exten  
200  
µA System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
Sleep Mode extended  
d
range  
TJ = -40°C to 150°C;  
VS = 5.5 V to 18V;2)  
Current consumption in ISleep  
Sleep Mode  
33  
µA System in Sleep Mode,  
microcontroller not powered,  
Wake capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND:  
TJ = -40°C to 40°C;  
VS = 5.5 V to 18V;2)  
Data Sheet  
90  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 18  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current consumption in ICyclic  
Sleep Mode with cyclic  
wake  
110  
µA TJ = -40°C to 85°C;  
VS = 5.5 V to 18V;  
P_1.3.4  
t
Cyclic_ON = 4ms;  
tCyclic_OFF = 2048 ms;2)  
Current consumption in IStop  
Stop Mode  
110  
160  
µA System in Stop Mode,  
microcontroller not clocked,  
Wake capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND; TJ = -  
40°C to 85°C;  
P_1.3.10  
P_1.3.20  
VS = 5.5 V to 18V  
Current consumption in IStop_extend  
Stop Mode-Extended  
temperature range 1  
600  
1800 µA System in Stop Mode,  
microcontroller not clocked,  
Wake capable via LIN and MON;  
MON connected to VS or GND;  
GPIOs open (no loads) or  
connected to GND;  
TJ = -40 °C to 150 °C;  
VS = 5.5 V to 18 V  
1) Current on VS, ADC1/2 active, timer running, LIN active (recessive).  
2) Incl. leakage currents form VDH, VSD and MON  
Note:  
Within the functional range, the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Data Sheet  
91  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.1.4  
Thermal Resistance  
Table 19  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
6
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Junction to Soldering Point  
Junction to Ambient  
RthJSP  
RthJA  
K/W 1) measured to  
Exposed Pad  
P_1.4.1  
P_1.4.2  
2)  
33  
K/W  
1) Not subject to production test, specified by design.  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board. Board: 76.2x114.3x1.5mm3 with 2 inner  
copper layers (35µm thick), with thermal via array under the exposed pad contacting the first inner copper layer and  
300mm2 cooling area on the bottom layer (70µm).  
30.1.5  
Timing Characteristics  
The transition times between the system modes are specified here. Generally the timings are defined from the  
time when the corresponding bits in register PMCON0 are set until the sequence is terminated.  
Table 20  
System Timing1)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Wake-up over battery  
Wake-up over battery  
tstart  
3
ms  
ms  
Battery ramp-up time to code P_1.5.6  
execution  
tstartSW  
1.5  
Battery ramp-up time to till P_1.5.1  
MCU reset is released; VS > 3 V  
and RESET = 1  
Sleep-Exit  
tsleep - exit  
1.5  
ms  
µs  
Rising/falling edge of any  
wake-up signal (LIN, MON) till  
MCU reset is released;  
2)  
P_1.5.2  
Sleep-Entry  
tsleep -  
330  
P_1.5.3  
entry  
1) Not subject to production test, specified by design.  
2) Wake events during Sleep-Entry are stored and lead to wake-up after Sleep Mode is reached.  
Data Sheet  
92  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.2  
Power Management Unit (PMU)  
This chapter includes all electrical characteristics of the Power Management Unit  
30.2.1  
PMU I/O Supply (VDDP) Parameters  
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the  
pad-supply VDDP and the transition times between the system modes are specified here.  
Table 21  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
1)  
Specified output current  
Specified output current  
IVDDP  
0
50  
30  
2.2  
mA  
mA  
µF  
P_2.1.1  
P_2.1.22  
P_2.1.2  
1)2)  
IVDDP  
0
Required decoupling  
capacitance  
CVDDP1  
0.47  
3)4) ESR < 1; the  
specified capacitor  
value is a typical value.  
Required buffer capacitance CVDDP2  
for stability (load jumps)  
1
2.2  
5.1  
5.1  
5.5  
µF  
V
3)4) The specified  
capacitor value is a  
typical value.  
5)  
P_2.1.20  
Output voltage including line VDDPOUT  
and load regulation @ Active  
Mode  
4.9  
4.9  
5.0  
5.0  
5.0  
50  
I
< 90mA; VS > 5.5V P_2.1.3  
I < 70mA; VS > 5.5V P_2.1.23  
load  
load  
2)5)  
Output voltage including line VDDPOUT  
and load regulation @ Active  
Mode  
V
5)  
Output voltage including line VDDPOUTST 4.5  
V
I
is only internal;  
P_2.1.21  
P_2.1.4  
load  
and load regulation @ Stop  
VS > 5.5V  
OP  
Mode  
Output drop @ Active Mode  
VSVDDPout  
400 mV  
IVDDP = 30mA6);  
3.5V < VS < 5.0V  
Load regulation @ Active Mode VVDDPLOR -50  
50  
50  
5.4  
mV  
mV  
V
2 ... 90mA; C = 570nF  
VS = 5.5 ... 28V  
P_2.1.5  
P_2.1.6  
P_2.1.7  
Line regulation @ Active Mode VVDDPLIR  
-50  
Overvoltage detection  
VDDPOV  
5.14  
VS > 5.5V; Overvoltage  
leads to SUPPLY_NMI  
3)7)  
Overvoltage detection filter  
time  
tFILT_VDDPO  
735  
µs  
P_2.1.24  
V
3)  
3)  
Voltage OK detection  
VDDPOK  
3
V
P_2.1.25  
P_2.1.26  
Voltage stable detection  
range8)  
VDDPSTB - 220  
+ 220 mV  
Undervoltage reset  
VDDPUV  
IVDDPOC  
2.5  
91  
2.6  
2.7  
V
P_2.1.8  
P_2.1.9  
Overcurrent diagnostic  
220 mA  
Data Sheet  
93  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 21  
Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
3)7)  
Overcurrent diagnostic filter  
time  
tFILT_VDDPO  
27  
µs  
µs  
P_2.1.27  
P_2.1.28  
C
3)7)9)  
Overcurrent diagnostic  
shutdown time  
tFILT_VDDPO  
290  
C_SD  
1) Specified output current for port supply and additional other external loads already excluding VDDC current.  
2) This use case applies to cases where output current on VDDEXT is max. 40 mA.  
3) Not subject to production test, specified by design.  
4) Ceramic capacitor.  
5) Load current includes internal supply.  
6) Output drop for IVDDP without internal supply current.  
7) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK  
8) The absolute voltage value is the sum of parameters VDDP + VDDPSTB  
9) After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present, the device will enter sleep mode.  
.
.
Data Sheet  
94  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.2.2  
PMU Core Supply (VDDC) Parameters  
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the  
core-supply VDDC and the transition times between the system modes are specified here.  
Table 22  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Required decoupling capacitance CVDDC1  
0.1  
1
µF  
1)2) ESR < 1; the  
specified capacitor  
value is a typical  
value.  
P_2.2.1  
Required buffer capacitance for CVDDC2  
stability (load jumps)  
0.33  
1
µF  
2)the specified  
capacitor value is a  
typical value.  
P_2.2.17  
P_2.2.2  
Output voltage including line  
regulation @ Active Mode  
VDDCOUT 1.44 1.5  
1.56  
1.3  
V
V
Iload < 40mA  
Reduced output voltage  
including line regulation @ Stop  
Mode  
VDDCOUT_S 0.95 1.1  
with internal VDDC P_2.2.23  
load only: Iload_internal  
< 1.5mA  
top_Red  
Load Regulation @ Active Mode VDDCLOR  
-50  
-25  
50  
mV 2 ... 40mA; C =430nF P_2.2.3  
mV VDDP = 2.5 ... 5.5V P_2.2.4  
Line regulation @ Active Mode  
Overvoltage detection  
VDDCLIR  
VDDCOV  
25  
1.59 1.62  
1.68  
V
Overvoltage leads to P_2.2.5  
SUPPLY_NMI  
1)3)  
Overvoltage detection filter time tFILT_VDDC  
735  
µs  
P_2.2.18  
OV  
1)  
Voltage OK detection range4)  
Voltage stable detection range5) VDDCSTB - 110  
VDDCOK - 280  
+ 280 mV  
+ 110 mV  
P_2.2.19  
1)  
P_2.2.20  
Undervoltage reset  
VDDVUV  
IVDDCOC  
1.136 1.20  
1.264  
100  
V
P_2.2.6  
P_2.2.7  
P_2.2.21  
Overcurrent diagnostic  
45  
mA  
µs  
1)3)  
Overcurrent diagnostic filter time tFILT_VDDC  
27  
OC  
1)3)6)  
Overcurrent diagnostic shutdown tFILT_VDDC  
290  
µs  
P_2.2.22  
time  
OC_SD  
1) Not subject to production test, specified by design.  
2) Ceramic capacitor.  
3) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK  
4) The absolute voltage value is the sum of parameters VDDC + VDDCSTB  
5) The absolute voltage value is the sum of parameters VDDC + VDDCOK  
6) After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter sleep mode.  
.
.
.
Data Sheet  
95  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.2.3  
VDDEXT Voltage Regulator (5.0V) Parameters  
Table 23  
Electrical Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Specified output current  
Specified output current  
IVDDEXT  
IVDDEXT  
CVDDEXT1  
0
20  
40  
2.2  
mA  
mA  
µF  
P_2.3.1  
1)  
0
P_2.3.21  
P_2.3.22  
Required decoupling  
capacitance  
0.1  
3) 2)ESR < 1 ; the  
specified capacitor  
value is a typical  
value.  
Required buffer capacitance for CVDDEXT2  
stability (load jumps)  
1
2.2  
µF  
3)2)the specified  
capacitor value is a  
typical value.  
3)  
P_2.3.20  
P_2.3.3  
Output voltage including line  
and load regulation  
VDDEXT  
4.9  
4.8  
5.0  
5.0  
50  
5.1  
5.2  
V
V
I
<20mA; VS >  
load  
5.5V  
Output voltage including line  
and load regulation  
VDDEXT  
Iload<40mA; VS > 5.5V P_2.3.23  
3)  
Output drop @ Active Mode  
VS-VDDEXT  
VS-VDDEXT  
+300 mV  
+400 mV  
I
< 20mA;  
P_2.3.4  
load  
3V < VS < 5.0V  
Output drop @ Active Mode  
Iload < 40mA;  
3V < VS < 5.0V  
P_2.3.14  
Load regulation @ Active Mode VDDEXTLOR  
Line regulation @ Active Mode  
-50  
50  
50  
mV  
mV  
dB  
2 ... 40mA; C =200nF P_2.3.5  
VS = 5.5 ... 28V P_2.3.6  
3) VS = 13.5V; f =0 ... P_2.3.7  
VVDDEXTLIR -50  
Power supply ripple rejection @ PSSRVDDEXT 50  
Active Mode  
1KHz; Vr=2Vpp  
Overvoltage detection  
VVDDEXTOV  
5.18  
5.4  
V
VS > 5.5V  
3)4)  
P_2.3.8  
Overvoltage detection filter time tFILT_VDDEXTO  
735  
µs  
P_2.3.24  
V
3)  
3)  
6)  
Voltage OK detection range  
Voltage stable detection range5) VVDDEXTSTB - 220  
VVDDEXTOK  
3
V
P_2.3.25  
P_2.3.26  
P_2.3.9  
+ 220 mV  
Undervoltage trigger  
VVDDEXTUV  
IVDDEXTOC  
2.6  
50  
2.8  
3.0  
160  
V
Overcurrent diagnostic  
mA  
µs  
3)4)  
P_2.3.10  
P_2.3.27  
Overcurrent diagnostic filter  
time  
tFILT_VDDCOC  
27  
3)4)  
Overcurrent diagnostic  
shutdown time  
tFILT_VDDCOC  
290  
µs  
P_2.3.28  
_SD  
1) This use case requires the reduced utilization of VDDP output current by 20 mA, see P_2.1.22.  
2) Ceramic capacitor.  
3) Not subject to production test, specified by design.  
Data Sheet  
96  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
4) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK  
.
5) The absolute voltage value is the sum of parameters VDDEXT + VDDEXTSTB  
.
6) When the condition is met, the Bit VDDEXT_CTRL.bit.SHORT will be set.  
Data Sheet  
97  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.2.4  
VPRE Voltage Regulator (PMU Subblock) Parameters  
The PMU VPRE Regulator acts as a supply of VDDP and VDDEXT voltage regulators.  
Table 24  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
Specified output current  
IVPRE  
110  
mA  
P_2.4.1  
1) Not subject to production test, specified by design.  
30.2.4.1 Load Sharing Scenarios of VPRE Regulator  
The figure below shows the possible load sharing scenarios of VPRE regulator.  
VS  
VPRE  
max. 110 mA  
VDDEXT - 5V  
1: max. 20 mA  
2: max. 40 mA  
VDDP - 5V  
1: max. 90 mA  
2: max. 70 mA  
VDDEXT  
VDDP  
VDDC  
CVDDEXT  
CVDDP  
GND (Pin 39)  
GND (Pin 39)  
VDDC - 1.5V  
max. 40 mA  
CVDDC  
GND (Pin 39)  
Load Sharing VPRE – Scenarios 1 & 2  
Load_Sharing_VPRE.vsd  
Figure 36 Load Sharing Scenarios of VPRE Regulator  
Data Sheet  
98  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.2.5  
Power Down Voltage Regulator (PMU Subblock) Parameters  
The PMU Power Down voltage regulator consists of two subblocks:  
Power Down Pre regulator: VDD5VPD  
Power Down Core regulator: VDD1V5_PD (Supply used for GPUDATAxy registers)  
Both regulators are used as purely internal supplies. The following table contains all relevant parameters:  
Table 25  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
VDD1V5_PD  
1)  
Power-On Reset Threshold  
VDD1V5_PD_ 1.2  
1.5  
V
P_2.5.1  
RSTTH  
1) Not subject to production test, specified by design  
Data Sheet  
99  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.3  
System Clocks  
30.3.1  
Oscillators and PLL Parameters  
Table 26  
Electrical Characteristics System Clocks  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min.  
PMU Oscillators (Power Management Unit)  
Typ. Max.  
Frequency of LP_CLK fLP_CLK  
14  
18  
22  
MHz This clock is used at  
startup and can be used in  
case the PLL fails  
P_3.1.1  
Frequency of LP_CLK2 fLP_CLK2  
70  
100  
130  
kHz This clock is used for cyclic P_3.1.2  
wake  
CGU Oscillator (Clock Generation Unit Microcontroller)  
Short term frequency fTRIMST  
-0.4  
+0.4  
%
2)3) Within any 10 ms, e.g. P_3.1.3  
after synchronization to a  
LIN frame (PLL settings  
deviation1)  
untouched within 10 ms)  
Absolute accuracy  
fTRIMABSA  
-1.5  
+1.5  
10  
%
Including temperature and P_3.1.4  
lifetime deviation  
CGU-OSC Start-up time tOSC  
µs  
3) Startup time OSC from  
Sleep Mode, power supply  
stable  
P_3.1.5  
PLL (Clock Generation Unit Microcontroller) 3)  
VCO frequency range fVCO-0  
Mode 0  
48  
96  
4
112  
160  
MHz VCOSEL =”0”  
MHz VCOSEL =”1”  
P_3.1.6  
P_3.1.7  
VCO frequency range fVCO-1  
Mode 1  
Input frequency range fOSC  
16  
80  
38  
MHz  
MHz  
P_3.1.8  
Output freq. range  
fPLL  
0.04687 –  
P_3.1.10  
P_3.1.11  
Free-running  
fVCOfree_0  
MHz VCOSEL =”0”  
frequency Mode 0  
Free-running  
frequency Mode 1  
fVCOfree_1  
thigh/low  
76  
MHz VCOSEL =”1”  
P_3.1.12  
P_3.1.13  
Input clock high/low  
time  
10  
ns  
Peak period jitter  
Accumulated jitter  
Lock-in time  
tjp  
-500  
500  
5
ps  
ns  
µs  
4) for K=1  
4) for K=1  
P_3.1.14  
P_3.1.15  
P_3.1.16  
jacc  
tL  
200  
Data Sheet  
100  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
1) The typical oscillator frequency is 5 MHz  
2) VDDC = 1.5 V, Tj = 25°C  
3) Not subject to production test, specified by design.  
4) This parameter is valid for PLL operation with an external clock source and thus reflects the real PLL performance.  
Data Sheet  
101  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.4  
Flash Memory  
This chapter includes the parameters for the 128 kByte embedded flash module.  
30.4.1  
Flash Parameters  
Table 27  
Flash Characteristics1)  
VS = 3.0 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit  
Note or  
Number  
Test Condition  
Min. Typ. Max.  
Programming time per 128 byte tPR  
32)  
3.5  
ms  
3V < VS < 28V  
P_4.1.1  
page  
Erase time per sector/page  
Data retention time  
tER  
42)  
4.5  
ms  
3V < VS < 28V  
P_4.1.2  
P_4.1.3  
tRET  
20  
years  
1,000 erase /  
program cycles  
Data retention time  
tRET  
50  
years  
1,000 erase /  
program cycles  
Tj = 30°C3)  
P_4.1.9  
Flash erase endurance for user  
sectors  
NER  
30  
10  
32  
kcycles Data retention  
time 5 years  
cycles 4)Data retention P_4.1.5  
P_4.1.4  
Flash erase endurance for  
security pages  
NSEC  
NDD  
time 20 years  
5)  
Drain disturb limit  
kcycles  
P_4.1.6  
1) Not subject for production test, specified by design.  
2) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few  
system clock cycles. The requirement is only relevant for extremely low system frequencies.  
3) Derived by extrapolation of lifetime tests.  
4) Tj = 25 °C.  
5) This parameter limits the number of subsequent programming operations within a physical sector without a given  
page in this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly.  
For normal sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM  
emulation firmware routines handle this limit automatically, for wordline erases in code sectors (without EEPROM  
emulation) it is recommended to execute a software based refresh, which may make use of the integrated random  
number generator NVMBRNG to statistically start a refresh.  
Data Sheet  
102  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.5  
Parallel Ports (GPIO)  
30.5.1  
Description of Keep and Force Current  
VDDP  
keeper  
current  
PU Device  
PUDSEL  
P1.x  
P0.x  
\PUDSEL  
keeper  
current  
PD Device  
VSS  
Pull-Up-Down.vsd  
Figure 37 Pull-Up/Down Device  
UGPIO  
Logical "1"  
7.5 kOhm (equivalent)  
(1.5V / 200uA)  
VIH - VDDP  
VIL - VDDP  
Undefined  
Logical "0"  
2.33 kOhm (equivalent)  
(3.5V / 1.5mA)  
I
-IPLF  
-IPLK  
Current_Diag.vsd  
Figure 38 Pull-Up Keep and Forced Current  
Data Sheet  
103  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
UGPIO  
Logical "1"  
Undefined  
Logical "0"  
2.33 kOhm (equivalent)  
(3.5V / 1.5mA)  
VIH  
VIL  
7.5 kOhm (equivalent)  
(1.5V / 200uA)  
I
IPLK  
IPLF  
Current_Diag-Pull_down.vsd  
Figure 39 Pull-Down Keep and Force Current  
30.5.2  
DC Parameters of Port 0, Port 1, TMS and Reset  
Note:  
Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
maximum allowed ocurrent which can be taken out of VDDP.  
Table 28  
Current Limits for Port Output Drivers1)  
Port Output Driver Mode  
Maximum Output Current Maximum Output Current Number  
(IOLmax , - IOHmax) (IOLnom , - IOHnom)  
VDDP 4.5V 2.6V < VDDP < VDDP 4.5V 2.6V < VDDP  
<
4.5V  
4.5V  
Strong driver2)  
Medium driver3)  
Weak driver3)  
5 mA  
3 mA  
1.6 mA  
1.0 mA  
0.25 mA  
1.0 mA  
0.8 mA  
0.15 mA  
P_5.1.15  
P_5.1.1  
P_5.1.2  
3 mA  
1.8 mA  
0.3 mA  
0.5 mA  
1) Not subject to production test, specified by design.  
2) Not available for port pins P0.4, P1.0, P1.1 and P1.2  
3) All P0.x and P1.x  
Table 29  
DC Characteristics Port0, Port1  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
HYSP0_P1 0.11 x VDDP  
Typ. Max.  
Input hysteresis  
V
1) Series  
P_5.1.5  
resistance = 0 ;  
4.5V VDDP 5.5V  
Input hysteresis  
HYSP0_P1_  
0.09 x  
V
1) Series  
P_5.1.16  
VDDP  
resistance = 0 ;  
2.6V VDDP 4.5V  
exend  
Data Sheet  
104  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 29  
DC Characteristics Port0, Port1 (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Input low voltage  
Input low voltage  
Input high voltage  
Input high voltage  
VIL  
-0.3  
0.3 x VDDP  
V
V
V
V
2)4.5V VDDP  
5.5V  
1)2.6V VDDP  
4.5V  
2)4.5V VDDP  
5.5V  
1)2.6V VDDP  
4.5V  
P_5.1.3  
P_5.1.17  
P_5.1.4  
P_5.1.18  
VIL_extend -0.3  
0.42 x  
VDDP  
VIH  
0.7 x VDDP  
VDDP + 0.3  
VIH_extend  
0.52 x VDDP + 0.3  
VDDP  
3) 4)  
Output low voltage  
Output low voltage  
Output high voltage  
Output high voltage  
Input leakage current  
VOL  
VOL  
VOH  
VOH  
1.0  
0.4  
V
V
V
V
I
I
I
I
IOLmax  
IOLnom  
IOHmax  
IOHnom  
P_5.1.6  
P_5.1.7  
P_5.1.8  
P_5.1.9  
OL  
OL  
OH  
OH  
3) 5)  
3) 4)  
3) 5)  
VDDP - 1.0  
VDDP - 0.4  
IOZ_extend1 -500  
+500  
nA -40°C TJ 25°C, P_5.1.20  
0.45 V < VIN  
< VDDP  
Input leakage current  
Input leakage current  
IOZ1  
-5  
+5  
µA 6) 25°C < TJ 85°C, P_5.1.10  
0.45 V < VIN  
< VDDP  
IOZ_extend2 -15  
+15  
µA 85°C < TJ  
150°C,  
0.45 V < VIN  
< VDDP  
P_5.1.11  
7)  
Pull level keep current  
Pull level force current  
IPLK  
IPLF  
CIO  
-200  
+200  
+1.5  
10  
µA  
mA  
pF  
V
VIH (up)  
P_5.1.12  
P_5.1.13  
P_5.1.14  
PIN  
V
PIN VIL (dn)  
7)  
-1.5  
V
VIL (up)  
PIN  
V
PIN VIH (dn)  
1)  
1)  
Pin capacitance  
Reset Pin Timing  
Reset Pin Input Filter Time tfilt_RESET  
5
µs  
P_5.1.19  
1) Not subject to production test, specified by design.  
2) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.  
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for  
pin groups must be respected.  
4) Tested at 4.9V < VDDP < 5.1V, IOL = 4mA, IOH = -4mA, specified for 4.5V < VDDP < 5.5V.  
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOLGND, VOHVDDP).  
Tested at 4.9V < VDDP < 5.1V, IOL = 1mA, IOH = -1mA.  
Data Sheet  
105  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
6) The given values are worst-case values. In production tests, this leakage current is only tested at 150°C; other values  
are ensured by correlation. For derating, please refer to the following descriptions:  
Leakage derating depending on temperature (TJ = junction temperature [°C]):  
I
OZ = 0.05 × e(1.5 + 0.028×TJ) [µA]. For example, at a temperature of 95°C the resulting leakage current is 3.2 µA.  
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):  
OZ = IOZtempmax - (1.6 × DV) [µA]  
I
This voltage derating formula is an approximation which applies for maximum temperature.  
7) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the  
default pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the  
enabled pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.  
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general  
purpose IO pins.  
Data Sheet  
106  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.5.3  
DC Parameters of Port 2  
These parameters apply to the IO voltage range, 4.5 V VDDP 5.5 V.  
Note:  
Operating Conditions apply.  
Keeping signal levels within the limits specified in this table ensures operation without overload  
conditions. For signal levels outside these specifications, also refer to the specification of the  
overload current IOV  
.
Table 30  
DC Characteristics Port 2  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Input low voltage  
Input low voltage  
Input high voltage  
Input high voltage  
Input hysteresis  
VIL  
-0.3  
0.3 x VDDP  
V
V
V
V
V
1)4.5V VDDP  
5.5V  
2)2.6V VDDP  
4.5V  
1)4.5V VDDP  
5.5V  
2)2.6V VDDP  
4.5V  
P_5.2.1  
P_5.2.10  
P_5.2.2  
P_5.2.11  
P_5.2.3  
VIL_extend -0.3  
0.42 x  
VDDP  
VIH  
0.7 x VDDP  
VDDP + 0.3  
VIH_extend  
HYSP2  
0.52 x VDDP + 0.3  
VDDP  
0.11 x VDDP  
2)Series  
resistance = 0 ;  
4.5V VDDP 5.5V  
Input hysteresis  
HYSP2_ext  
0.09 x  
V
2)Series  
P_5.2.12  
VDDP  
resistance = 0 ;  
2.6V VDDP < 4.5V  
end  
Input leakage current  
Pull level keep current  
Pull level force current  
IOZ2  
IPLK  
IPLF  
CIO  
-400  
-30  
-750  
+400  
+30  
+750  
10  
nA TJ 85°C,  
0 V < VIN < VDDP  
P_5.2.4  
P_5.2.5  
P_5.2.6  
P_5.2.7  
3)  
µA  
µA  
pF  
V
VIH (up)  
PIN  
VPIN VIL (dn)  
3)  
V
VIL (up)  
PIN  
VPIN VIH (dn)  
2)  
Pin capacitance  
(digital inputs/outputs)  
1) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.  
2) Not subject to production test, specified by design.  
3) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the  
default pin level: VPIN VIH for a pull-up; VPIN VIL for a pull-down.  
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the  
enabled pull device: VPIN VIL for a pull-up; VPINVIH for a pull-down.  
Data Sheet  
107  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.6  
LIN Transceiver  
30.6.1  
Electrical Characteristics  
Table 31  
Electrical Characteristics LIN Transceiver  
Vs = 5.5V to 18V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Bus Receiver Interface  
Receiver threshold  
voltage, recessive to  
dominant edge  
Vth_dom 0.4 ×VS 0.45 ×VS 0.53 x VS  
V
SAE J2602  
P_6.1.1  
Receiver dominant state VBUSdom -27  
0.4 ×VS  
V
V
LIN Spec 2.2 (Par. 17) P_6.1.2  
SAE J2602 P_6.1.3  
Receiver threshold  
voltage, dominant to  
recessive edge  
Vth_rec  
0.47 x V 0.55 ×VS 0.6 ×VS  
S
Receiver recessive state  
Receiver center voltage  
VBUSrec 0.6 ×VS  
1.15 ×VS  
V
V
1) LIN Spec 2.2 (Par. 18) P_6.1.4  
2) LIN Spec 2.2 (Par. 19) P_6.1.5  
VBUS_CNT 0.475  
× VS  
0.5 ×VS 0.525  
× VS  
Receiver hysteresis  
VHYS  
0.07 VS 0.12 ×VS 0.175  
× VS  
V
3) LIN Spec 2.2 (Par. 20) P_6.1.6  
Wake-up threshold  
voltage  
VBUS,wk 0.4 ×VS 0.5 ×VS 0.6 ×VS  
V
P_6.1.7  
Dominant time for bus  
wake-up (internal analog  
filter delay)  
tWK,bus  
3
15  
µs  
The overall dominant P_6.1.8  
time for bus wake-up is  
a sum of tWK,bus  
+
adjustable digital filter  
time. The digital filter  
time can be adjusted  
by  
PMU.CNF_WAKE_FILTE  
R.CNF_LIN_FT;  
Bus Transmitter Interface  
Bus recessive output  
voltage  
VBUS,ro 0.8 ×VS  
VBUS,do  
VS  
V
V
VTxD = high Level  
P_6.1.9  
Bus dominant output  
voltage  
0.22 ×VS  
Driver Dominant  
Voltage  
P_6.1.78  
RL = 500 Ohm  
Data Sheet  
108  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 31  
Electrical Characteristics LIN Transceiver (cont’d)  
Vs = 5.5V to 18V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Bus short circuit current  
IBUS,sc  
40  
100  
150  
mA Current Limitation for P_6.1.10  
driver dominant state  
driver on  
V
BUS = 18 V; LIN Spec 2.2  
(Par. 12)  
Bus short circuit filter time tBUS,sc  
5
µs  
6)The overall bus short P_6.1.71  
circuit filter time is a  
sum of tBUS,sc + digital  
filter time. The digital  
filter time is 4 µs (typ.)  
Leakage current (loss of  
ground)  
IBUS_NO_ -1000 -450  
1000  
20  
µA VS = 12 V; 0 < VBUS < 18 V; P_6.1.11  
LIN Spec 2.2 (Par. 15)  
GND  
Leakage current  
Leakage current  
Leakage current  
Bus pull-up resistance  
IBUS_NO_  
10  
µA VS = 0 V; VBUS = 18 V;  
P_6.1.12  
P_6.1.13  
P_6.1.14  
LIN Spec 2.2 (Par. 16)  
BAT  
IBUS_PAS_ -1  
mA VS = 18 V; VBUS = 0 V;  
LIN Spec 2.2 (Par. 13)  
dom  
IBUS_PAS_  
20  
47  
µA VS = 8 V; VBUS = 18 V;  
LIN Spec 2.2 (Par. 14)  
rec  
RBUS  
20  
30  
kNormal mode LIN Spec P_6.1.15  
2.2 (Par. 26)  
AC Characteristics - Transceiver Normal Slope Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
6
6
2
µs  
µs  
µs  
LIN Spec 2.2  
(Param. 31)  
P_6.1.16  
P_6.1.17  
P_6.1.18  
P_6.1.19  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
0.1  
LIN Spec 2.2  
(Param. 31)  
Receiver delay symmetry tsym,R  
-2  
tsym,R = td(L),R - td(H),R;  
LIN Spec 2.2 (Par. 32)  
4) duty cycle 1  
THRec(max) = 0.744 ×VS;  
THDom(max) =  
Duty cycle D1  
Normal Slope Mode  
(for worst case at 20 kbit/s)  
tduty1  
0.396  
0.581 ×VS; VS = 5.5 …  
18 V;  
t
bit = 50 µs;  
D1 = tbus_rec(min)/2 tbit  
LIN Spec 2.2 (Par. 27)  
;
Data Sheet  
109  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 31  
Electrical Characteristics LIN Transceiver (cont’d)  
Vs = 5.5V to 18V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Duty cycle D2  
tduty2  
0.581  
4) duty cycle 2  
P_6.1.20  
Normal Slope Mode  
(for worst case at 20 kbit/s)  
THRec(min) = 0.422 ×VS;  
THDom(min) = 0.284 ×VS;  
VS = 5.5 … 18 V;  
tbit = 50 µs;  
D2 = tbus_rec(max)/2 tbit  
;
LIN Spec 2.2 (Par. 28)  
AC Characteristics - Transceiver Low Slope Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
6
6
2
µs  
µs  
µs  
LIN Spec 2.2  
(Param. 31)  
P_6.1.21  
P_6.1.22  
P_6.1.23  
P_6.1.24  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
0.1  
LIN Spec 2.2  
(Param. 31)  
Receiver delay symmetry tsym,R  
-2  
tsym,R = td(L),R - td(H),R;  
LIN Spec 2.2 (Par. 32)  
4) duty cycle 3  
THRec(max) = 0.778 ×VS;  
THDom(max) =  
Duty cycle D3  
(for worst case at  
10.4 kbit/s)  
tduty1  
0.417  
0.616 ×VS; VS = 5.5 …  
18 V;  
tbit = 96 µs;  
D3 = tbus_rec(min)/2 tbit  
;
LIN Spec 2.2 (Par. 29)  
Duty cycle D4  
(for worst case at  
10.4 kbit/s)  
tduty2  
0.590  
4) duty cycle 4  
THRec(min) = 0.389 ×VS;  
THDom(min) = 0.251 ×VS;  
VS = 5.5 … 18 V;  
P_6.1.25  
tbit = 96 µs;  
D4 = tbus_rec(max)/2 tbit  
;
LIN Spec 2.2 (Par. 30)  
AC Characteristics - Transceiver Fast Slope Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
0.1  
-1.5  
6
µs  
µs  
µs  
P_6.1.26  
P_6.1.27  
P_6.1.28  
Propagation delay  
bus recessive to RxD HIGH  
td(H),R  
6
Receiver delay symmetry tsym,R  
1.5  
tsym,R = td(L),R - td(H),R;  
AC Characteristics - Flash Mode  
Propagation delay  
bus dominant to RxD LOW  
td(L),R  
0.1  
0.1  
6
6
µs  
µs  
P_6.1.31  
P_6.1.32  
Propagation delay  
td(H),R  
bus recessive to RxD HIGH  
Data Sheet  
110  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 31  
Electrical Characteristics LIN Transceiver (cont’d)  
Vs = 5.5V to 18V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
-1.0  
Max.  
1.5  
Receiver delay symmetry tsym,R  
µs  
tsym,R = td(L),R - td(H),R  
5) duty cycle D7  
;
P_6.1.33  
P_6.1.34  
Duty cycle D7 (for worst  
case at 115 kbit/s)  
for +1 µs Receiver delay  
symmetry  
tduty1  
0.399  
THRec(max) = 0.744 ×VS;  
THDom(max) =  
0.581 ×VS; VS = 13.5 V;  
tbit = 8.7 µs;  
D7 = tbus_rec(min)/2 tbit  
;
Duty cycle D8 (for worst  
case at 115 kbit/s)  
for +1 µs Receiver delay  
symmetry  
tduty2  
0.578  
5) duty cycle 8  
THRec(min) = 0.422 ×VS;  
THDom(min) =  
P_6.1.35  
0.284 ×VS;VS = 13.5 V;  
tbit = 8.7 µs;  
D8 = tbus_rec(max)/2 tbit  
;
6)  
LIN input capacity  
CLIN_IN  
ttimeout  
6
15  
12  
30  
20  
pF  
P_6.1.69  
P_6.1.36  
TxD dominant time out  
ms VTxD = 0 V  
Thermal Shutdown (Junction Temperature)  
6)  
Thermal shutdown temp. TjSD  
Thermal shutdown hyst. T  
190  
200  
10  
215  
°C  
P_6.1.65  
P_6.1.66  
6)  
K
1) Maximum limit specified by design.  
2) VBUS_CNT = (Vth_dom +Vth rec)/2  
3) VHYS = VBUSrec - VBUSdom  
4) Bus load concerning LIN Spec 2.2:  
Load 1 = 1 nF / 1 k= CBUS / RBUS  
Load 2 = 6.8 nF / 660 = CBUS / RBUS  
Load 3 = 10 nF / 500 = CBUS / RBUS  
5) Bus load  
Load 1 = 1 nF / 500 = CBUS / RBUS  
6) Not subject to production test, specified by design.  
Data Sheet  
111  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.7  
High-Speed Synchronous Serial Interface  
30.7.1  
SSC Timing Parameters  
The table below provides the SSC timing in the TLE9879-2QXA40.  
Table 32 SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
1) 2 * TSSC  
10  
Typ.  
Max.  
2)  
2)  
2)  
2)  
SCLK clock period  
t0  
t1  
t2  
t3  
V
V
V
V
> 2.7 V  
> 2.7 V  
> 2.7 V  
> 2.7 V  
P_7.1.1  
P_7.1.2  
P_7.1.3  
P_7.1.4  
DDP  
DDP  
DDP  
DDP  
MTSR delay from SCLK  
MRST setup to SCLK  
MRST hold from SCLK  
ns  
ns  
ns  
10  
15  
1) TSSCmin = TCPU = 1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.  
2) Not subject to production test, specified by design.  
t0  
SCLK1)  
t1  
t1  
1)  
MTSR  
t2  
t3  
Data  
valid  
MRST1)  
t1  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_Tmg1  
Figure 40 SSC Master Mode Timing  
Data Sheet  
112  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.8  
Measurement Unit  
30.8.1  
System Voltage Measurement Parameters  
Table 33  
Supply Voltage Signal Conditioning  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Measurement output  
voltage range @ VAREF5  
VA5  
0
5
V
V
P_8.1.15  
P_8.1.16  
Measurement output  
voltage range @  
VAREF1V2  
VA1V2  
0
1.23  
Battery / Supply Voltage Measurement  
Input to output voltage ATTVS_1  
attenuation:  
VS  
3
0.055  
SFR setting 1  
P_8.1.41  
P_8.1.1  
Nominal operating input VS,range1  
voltage range VS  
22  
V
1)SFR setting 1;  
Max. value corresponds  
to typ. ADC full scale  
input; 3V < VS < 28V  
Accuracy of VS after  
calibration  
VS,range1  
-220  
220 mV SFR setting 1, VS = 5.5 V P_8.1.70  
to 18V  
Input to output voltage ATTVS_2  
attenuation:  
VS  
0.039  
SFR setting 2  
P_8.1.42  
P_8.1.40  
Nominal operating input VS,range2  
voltage range VS  
3
31  
V
1)SFR setting 2;  
Max. value corresponds  
to typ. ADC full scale  
input 3V < VS < 28V  
Accuracy of VS after  
VS,range2  
-370  
370 mV SFR setting 2, VS = 5.5V to P_8.1.44  
calibration  
18V  
Driver Supply Voltage Measurement VSD  
Input to output voltage ATTVSD  
0.039  
P_8.1.21  
attenuation:  
VSD  
1)  
Nominal operating input VSD,range  
voltage range VSD  
2.5  
31  
V
P_8.1.2  
Accuracy of VSD sense  
VSD  
-440  
440 mV VS = 5.5V to 18V  
P_8.1.47  
after calibration  
Charge Pump Voltage Measurement VCP  
Data Sheet  
113  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 33  
Supply Voltage Signal Conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Input to output voltage ATTVCP  
0.023  
P_8.1.56  
attenuation:  
VCP  
1)  
Nominal operating input VCP,range  
voltage range VCP  
2.5  
52  
V
P_8.1.7  
Accuracy of VCP sense  
VCP  
-747  
747 mV VS = 5.5V to 18V  
P_8.1.62  
after calibration  
Monitoring Input Voltage Measurement VMON  
Input to output voltage ATTVMON  
0.039  
P_8.1.49  
attenuation:  
VMON  
1)  
Nominal operating input VMON,range  
voltage range VMON  
2.5  
31  
V
P_8.1.8  
Accuracy of VMON sense  
VMON  
-440  
440 mV VS = 5.5V to 18V  
P_8.1.68  
after calibration  
Pad Supply Voltage Measurement VVDDP  
Input-to-output voltage ATTVDDP  
0.164  
P_8.1.33  
attenuation:  
VDDP  
1)  
Nominal operating input VDDP,range  
voltage range VDDP  
0
7.50  
V
P_8.1.50  
P_8.1.5  
Accuracy of VDDP sense  
VDDP_SENSE  
-105  
105 mV 2)VS = 5.5 to 18V  
after calibration  
10-Bit ADC Reference Voltage Measurement VAREF  
Input to output voltage ATTVAREF  
0.219  
P_8.1.22  
attenuation:  
VAREF  
1)  
Nominal operating input VAREF,range  
voltage range VAREF  
0
5.62  
79  
V
P_8.1.51  
P_8.1.48  
Accuracy of VAREF sense  
VAREF  
-79  
mV VS = 5.5V to 18V  
after calibration  
8-Bit ADC Reference Voltage Measurement VBG  
Input-to-output voltage ATTVBG  
attenuation:  
VBG  
0.75  
P_8.1.57  
P_8.1.52  
1)  
Nominal operating input VBG,range  
voltage range VBG  
0.8  
1.64  
V
Data Sheet  
114  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 33  
Supply Voltage Signal Conditioning (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Value of ADC2-VBG  
measurement after  
calibration  
VBG_PMU  
1.01 1.07  
1.18  
V
P_8.1.73  
Core supply Voltage Measurement VDDC  
Input-to-output voltage ATTVDDC  
0.75  
P_8.1.34  
attenuation:  
VDDC  
1)  
Nominal operating input VDDC,range  
voltage range VDDC  
0.8  
-22  
1.64  
22  
V
P_8.1.53  
P_8.1.6  
Accuracy of VDDC sense  
VDDC_SENSE  
mV VS = 5.5 to 18V  
after calibration  
VDH Input Voltage Measurement VVDH10BITADC  
VDH Input to output  
voltage attenuation:  
ATTVDH_1  
ATTVDH_2  
ATTVDH_3  
-
0.166  
0.224  
0.226  
SFR setting 1  
SFR setting 2  
P_8.1.64  
P_8.1.65  
P_8.1.75  
P_8.1.66  
VDH Input to output  
voltage attenuation:  
VDH Input to output  
voltage attenuation:  
-
1)SFR setting 2  
Tj = -40..85°C  
Nominal operating input VVDH,range1  
30  
SFR setting 1  
voltage range VVDH, Range  
1
Nominal operating input VVDH,range2  
20  
SFR setting 2  
P_8.1.67  
voltage range VVDH, Range  
2
VVDH 10-bit ADC, Range 1 VVDHADC10B  
-300  
-200  
300 mV VDH= 5.5 to 17.5V,  
P_8.1.39  
P_8.1.71  
Tj = -40..150°C  
1)  
VVDH 10-bit ADC, Range 3 VVDHADC10B  
200 mV  
V = 5.5V to 17.5V,  
DH  
Tj = -40..85°C  
ATTVDH_3  
VVDH 10-bit ADC, Range 2 VVDHADC10B_ext -400  
400 mV VDH= 5.5V to 17.5V,  
Tj = -40..150°C  
P_8.1.74  
P_8.1.3  
end_T  
10-Bit ADC measurement Rin_VDH,measure 200 390  
470 kPD_N=1 (on-state)  
input resistance for VDH  
Measurement input  
Ileak_VDH, measure -0.05  
2.0 µA PD_N=0 (off-state),  
P_8.1.10  
leakage current for VVDH  
1) Not subject to production test, specified by design.  
2) Accuracy is valid for a calibrated device.  
Data Sheet  
115  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.8.2  
Central Temperature Sensor Parameters  
Table 34  
Electrical Characteristics Temperature Sensor Module  
VS = 3.0 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Output voltage VTEMP at  
T0=273 K (0°C)  
a
0.666  
V
1)T0=273 K (0°C)  
P_8.2.2  
1)  
Temperature sensitivity b  
Accuracy_1  
b
2.31  
mV/K  
°C  
P_8.2.4  
P_8.2.5  
P_8.2.6  
P_8.2.7  
Acc_1  
Acc_2  
Acc_3  
-10  
-10  
-5  
10  
10  
5
2)1) -40°C < Tj < 85°C  
2)1) 125°C < Tj < 150°C  
2)1) 85°C < Tj < 125°C  
Accuracy_2  
°C  
Accuracy_3  
°C  
1) Not subject to production test, specified by design  
2) Accuracy with reference to on-chip temperature calibration measurement, valid for Mode1  
Data Sheet  
116  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.8.3  
ADC2-VBG  
30.8.3.1 ADC2 Reference Voltage VBG  
Table 35  
DC Specifications  
VS = 3.0 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Reference Voltage  
VBG  
1.199  
1.211  
1.223  
V
P_8.3.1  
1) Not subject to production test, specified by design  
30.8.3.2 ADC2 Specifications  
Table 36  
DC Specifications  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
8
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Resolution  
RES  
Bits  
LSB  
Full  
P_8.3.18  
P_8.3.19  
Guaranteed offset error EAOFF_8Bi -2.0  
±0.3  
2.0  
not calibrated  
t
Gain error  
EAGain_8B -2.0  
±0.5  
±0  
2.0  
0.8  
1.2  
%FSR  
LSB  
not calibrated  
P_8.3.20  
P_8.3.21  
P_8.3.22  
it  
Differential non-linearity EADNL_8Bi -0.8  
(DNL)  
Full  
t
Integral non-linearity  
(INL)  
EAINL_8Bit -1.2  
±0  
LSB  
Data Sheet  
117  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.9  
ADC1 Reference Voltage - VAREF  
30.9.1  
Electrical Characteristics VAREF  
Table 37  
Electrical Characteristics VAREF  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Required buffer  
capacitance  
CVAREF  
0.1  
1
µF  
ESR < 1Ω  
VS > 5.5V  
P_9.1.1  
Reference output voltage VAREF  
4.95  
5
5.05  
V
P_9.1.2  
P_9.1.3  
1)  
DC supply voltage  
rejection  
DCPSRVAREF 30  
dB  
1)  
Supply voltage ripple  
rejection  
ACPSRVAREF 26  
dB  
µs  
VS = 13.5V; f = 0 ... 1KHz; P_9.1.4  
Vr = 2Vpp  
1)  
Turn ON time  
tso  
200  
C
= 100nF  
P_9.1.5  
ext  
PD_N to 99.9% of final  
value  
1)input impedance in case P_9.1.20  
of VAREF is applied from  
external  
Input resistance at VAREF RIN,VAREF  
Pin  
100  
kΩ  
1) Not subject to production test, specified by design.  
Data Sheet  
118  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.9.2  
Electrical Characteristics ADC1 (10-Bit)  
These parameters describe the conditions for optimum ADC performance.  
Note:  
Operating Conditions apply.  
Table 38  
A/D Converter Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Analog reference supply VAREF  
VAGND  
+ 1.0  
VDDPA  
+ 0.05  
V
V
V
P_9.2.1  
P_9.2.2  
P_9.2.3  
Analog reference  
ground  
VAGND  
VAIN  
VSS  
- 0.05  
1.5  
2)  
Analog input voltage  
range  
VAGND  
VAREF  
24  
3)  
Analog clock frequency fADCI  
5
MHz  
P_9.2.4  
P_9.2.5  
1)4)  
Conversion time for 10- tC10  
(13 + STC) (13 + STC) (13 + STC)  
bit result  
× tADCI  
× tADCI  
× tADCI  
+ 2 x tSYS  
+ 2 x tSYS  
+ 2 x tSYS  
1)  
Conversion time for 8- tC8  
bit result  
(11 + STC) (11 + STC) (11 + STC)  
P_9.2.6  
P_9.2.7  
P_9.2.8  
× tADCI  
+ 2 × tSYS  
× tADCI  
+ 2 × tSYS + 2 × tSYS  
× tADCI  
1)  
Wakeup time from  
analog powerdown, fast  
mode  
tWAF  
4
µs  
µs  
1)5)  
Wakeup time from  
analog powerdown,  
slow mode  
tWAS  
15  
Total unadjusted error TUE8B  
(8 bit)  
-2  
±1  
±6  
+2  
counts 6)7)Reference is P_9.2.9  
internal VAREF  
counts 7)8)Reference is P_9.2.22  
Total unadjusted error TUE10B  
(10 bit)  
-12  
+12  
internal VAREF  
DNL error  
INL error  
EADNL  
-3  
±0.8  
±0.8  
+3  
+5  
counts –  
P_9.2.10  
P_9.2.11  
EAINL_int_V -5  
counts Reference is  
internal VAREF  
AREF  
Gain error  
EAGAIN_int_ -10  
±0.4  
+10  
counts Reference is  
P_9.2.12  
internal VAREF  
VAREF  
Offset error  
EAOFF  
-2  
±0.5  
+2  
10  
counts –  
P_9.2.13  
P_9.2.14  
1)5)9)  
Total capacitance  
of an analog input  
CAINT  
pF  
1)5)9)  
Switched capacitance  
of an analog input  
CAINS  
4
pF  
P_9.2.15  
Data Sheet  
119  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 38  
A/D Converter Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
1)5)9)  
1)5)9)  
1)5)9)  
1)5)9)  
Resistance of  
the analog input path  
RAIN  
2
kΩ  
pF  
pF  
kΩ  
P_9.2.16  
P_9.2.17  
P_9.2.18  
P_9.2.19  
Total capacitance  
of the reference input  
CAREFT  
CAREFS  
RAREF  
15  
7
Switched capacitance  
of the reference input  
Resistance of  
2
the reference input path  
1) Not subject to production test, specified by design.  
2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion result in these cases will  
be 0000H or 03FFH, respectively.  
3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.  
4) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine  
the digital result and the time to load the result register with the conversion result.  
5) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a  
conversion rate of not more than 500 µs.  
6) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual  
errors.  
All error specifications are based on measurement methods standardized by IEEE 1241.2000.  
7) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed  
10 mA, and if VAREF and VAGND remain stable during the measurement time.  
8) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual  
errors.  
All error specifications are based on measurement methods standardized by IEEE 1241.2000.  
9) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature,  
supply voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the  
following typical values can be used:  
C
AINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 kΩ, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 k.  
Data Sheet  
120  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.10  
14-Bit Sigma Delta ADC (ADC3 / ADC4)  
30.10.1 Analog/Digital Converter Parameters  
These parameters describe the conditions for optimum ADC performance.  
Note:  
Operating Conditions apply.  
Table 39  
A/D Converter ADC3/4 Characteristics  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
20  
Analog clock frequency  
fADC3/4  
Cin1  
5
2
MHz  
pF  
P_10.1.20  
P_10.1.1  
1)  
Single ended input  
capacitance  
Oversampling ratio  
OSR  
VFs  
128  
2048  
2)decimation factor P_10.1.2  
ADC full scale voltage  
(differential)  
3.75  
V
V
2) at VDIFF = ±VFS,  
DD.max resp. DD.min  
is reached  
P_10.1.3  
Input voltage  
Vin  
0
VREF  
input voltage on  
ADCx.P or ADCx.N  
P_10.1.21  
VREF can be VAREF or  
VREF5V  
x={3,4}  
2)  
Differential non-linear  
input voltage  
Vdiff,nonlin -4.0  
4.0  
V
V
V
= VADCx.P-VADCx.N P_10.1.4  
diff  
VADCx.P, VADCx.P within  
Vin range  
x={3,4}  
2)  
Differential linear input  
voltage  
Vdiff,lin  
-3.75  
3.75  
V
= VADCx.P-VADCx.N P_10.1.6  
diff  
VADCx.P, VADCx.P within  
Vin range  
x={3,4}  
Input common mode  
range  
Vin,com  
0.48 ×  
0.52 ×  
VREF  
V
VREF can be VAREF or P_10.1.7  
VREF5V  
VREF  
2)  
Input frequency  
RMS noise  
fin  
0
1
kHz  
P_10.1.8  
Vrms  
0.69  
1.15  
mV tested with OSR=128 P_10.1.22  
and VREF = VREF5V  
Effective resolution  
RESeff  
ENOB  
11.7  
12.4  
11.7  
bit calculated,  
RESeff = ld(VFs / VRMS  
bit 2)ENOB=(SNDR-  
1.76dB)/6.02dB  
P_10.1.23  
)
Effective number of bits  
P_10.1.24  
Data Sheet  
121  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 39  
A/D Converter ADC3/4 Characteristics (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
72  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
2)  
SNDR with a fully  
differential sinus -6dBFS  
SNDR  
dB  
P_10.1.10  
P_10.1.13  
Digital filtered data of raw DD  
ADC values  
-16384  
16383  
LSB 2)represented in  
two's complement  
DD = (Vdiff/VREF) *  
ATTadc34 * (214 - 1)  
ADC34 input attenuator  
ATTadc34  
4/3  
250  
1
P_10.1.25  
P_10.1.15  
P_10.1.17  
2)  
Dynamic input impedance ZIN  
kΩ  
ADC Gain Ratio  
GADC3  
GADC4  
OFFADC3/4  
/
0.990  
1.010  
ADC Offset Drift  
5.4  
mV  
P_10.1.18  
1) In addition to pin capacitance CIO, see P_5.2.7.  
2) Not subject to production test, specified by design.  
Data Sheet  
122  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.11  
High-Voltage Monitoring Input  
30.11.1 Electrical Characteristics  
Table 40  
Electrical Characteristics Monitoring Input  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
MON Input Pin characteristics  
Wake-up/monitoring  
threshold voltage  
VMONth  
0.4*VS 0.5*VS 0.6*VS  
V
Without external serial P_11.1.1  
resistor Rs (with Rs:DV =  
IPD/PU * Rs); VS = 5.5V to  
18V  
Wake-up/monitoring  
threshold voltage  
extended range  
VMONth_ext 0.44*VS 0.53*VS 0.64*VS  
V
V
Without external serial P_11.1.11  
resistor Rs (with Rs:DV =  
IPD/PU * Rs)  
end  
Threshold hysteresis  
VMONth,hys 0.015* 0.05* 0.1*VS  
In all modes; without  
external serial resistor Rs  
(with Rs:dV = IPD/PU * Rs);  
VS = 5.5V to 18V;  
P_11.1.12  
VS  
VS  
Threshold hysteresis  
VMONth,hys 0.02*VS 0.06* 0.12*VS  
V
In all modes; without  
external serial resistor Rs  
(with Rs:dV = IPD/PU * Rs);  
VS = 18V to 28V;  
P_11.1.2  
VS  
Pull-up current  
Pull-down current  
Input leakage current  
Timing  
IPU, MON  
IPD, MON  
ILK,MON  
-20  
3
-10  
10  
-1  
µA  
µA  
µA  
0.6*VS  
P_11.1.3  
P_11.1.4  
P_11.1.5  
20  
2.5  
0.4*VS  
1) 0 V < VMON_IN < 28 V  
-2.5  
Wake-up filter time  
(internal analog filter  
delay)  
tFT,MON  
500  
ns  
2) The overall filter time P_11.1.6  
for MON wake-up is a  
sum of tFT,MON  
+
adjustable digital filter  
time. The digital filter  
time can be adjusted by  
PMU.CNF_WAKE_FILTER  
.CNF_MON_FT;  
1) Input leakage is valid for disabled state.  
2) With pull-up, pull down current disabled.  
Data Sheet  
123  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.12  
MOSFET Driver  
30.12.1 Electrical Characteristics  
Table 41  
Electrical Characteristics MOSFET Driver  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
MOSFET Driver Output  
Maximumtotalchargedriver Qtot_max  
capability  
100 nC  
1)Due to Charge Pump  
currrent capability only 3  
x MOSFETs + additional  
external capacitors with a  
total charge of max.  
P_12.1.20  
100nC can be driven  
simultaneous at a PWM  
frequency of 25 kHz.  
Source current - Charge  
current - High Side Driver  
ISoumax_HS  
ISinkmax_HS  
ISoumax_LS  
ISinkmax_LS  
230 345 450 mA VSD 8 V, CLoad = 10 nF, ISou P_12.1.78  
= CLoad * slew rate ( = 20%-  
50% of VGHx1),  
ICHARGE = IDISCHG = 31(max)  
Sink current - Discharge  
current-High Side Driver  
230 330 450 mA VSD 8 V, CLoad = 10 nF, ISink P_12.1.79  
= CLoad * slew rate ( = 50%-  
20% of VGHx1),  
ICHARGE = IDISCHG = 31(max)  
Source current - Charge  
current - Low Side Driver  
200 295 375 mA VSD 8 V, CLoad = 10 nF, ISou P_12.1.80  
= CLoad * slew rate ( = 20%-  
50% of VGLx1),  
ICHARGE = IDISCHG = 31(max)  
Sink current - Discharge  
current-Low Side Driver  
200 314 375 mA VSD 8 V, CLoad = 10 nF, ISink P_12.1.81  
= CLoad * slew rate ( = 50%-  
20% of VGHx1),  
ICHARGE = IDISCHG = 31(max)  
High level output voltage  
Gxx vs. Sxx  
VGxx1  
VGxx2  
VGxx3  
VGxx6  
10  
8
14  
V
V
V
V
VSD 8V, CLoad = 10 nF,  
P_12.1.3  
ICP=2.5 mA2).  
High level output voltage  
GHx vs. SHx  
VSD = 6.4 V1), CLoad = 10 nF, P_12.1.4  
ICP=2.5 mA2)  
High level output voltage  
GHx vs. SHx  
7
VSD = 5.4 V, CLoad = 10 nF, P_12.1.5  
ICP=2.5 mA2)  
High level output voltage  
GLx vs. GND  
8
VSD = 6.4 V1), CLoad = 10 nF, P_12.1.6  
ICP=2.5 mA2)  
Data Sheet  
124  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 41  
Electrical Characteristics MOSFET Driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
High level output voltage  
GLx vs. GND  
VGxx7  
7
V
VSD = 5.4 V, CLoad = 10 nF, P_12.1.7  
CP=2.5 mA2)  
I
1)  
Rise time  
Fall time  
Rise time  
Fall time  
Rise time  
Fall time  
trise3_3nf  
200  
ns  
C
= 3.3 nF,  
P_12.1.8  
Load  
V
SD 8 V,  
25-75% of VGxx1, ICHARGE  
IDISCHG = 31(max)  
1)  
=
=
=
=
tfall3_3nf  
trisemax  
tfallmax  
200  
ns  
C
= 3.3 nF,  
P_12.1.9  
Load  
VSD 8 V,  
75-25% of VGxx1, ICHARGE  
I
DISCHG = 31(max)  
CLoad = 10 nF,  
SD 8 V,  
25-75% of VGxx1, ICHARGE  
DISCHG = 31(max)  
CLoad = 10 nF,  
SD 8 V,  
100 250 450 ns  
100 250 450 ns  
P_12.1.57  
P_12.1.58  
P_12.1.14  
P_12.1.15  
P_12.1.35  
P_12.1.36  
P_12.1.11  
V
I
V
75-25% of VGxx1, ICHARGE  
IDISCHG = 31(max)  
1)  
trisemin  
1.25 2.5  
1.25 2.5  
5
5
µs  
µs  
C
= 10 nF,  
Load  
VSD 8 V,  
25-75% of VGxx1  
,
I
CHARGE = IDISCHG = 3(min)  
1)  
tfallmin  
C
= 10 nF,  
Load  
V
SD 8 V,  
75-25% of VGxx1  
,
I
CHARGE = IDISCHG = 3(min)  
CLoad = 10 nF,  
SD 8 V,  
25-75% of VGxx1, ICHARGE  
DISCHG = 31(max)  
CLoad = 10 nF,  
SD 8 V,  
Absolute rise - fall time  
difference for all LSx  
tr_f(diff)LSx  
100 ns  
100 ns  
V
=
=
I
Absolute rise - fall time  
difference for all HSx  
tr_f(diff)HSx  
V
25-75% of VGxx1, ICHARGE  
IDISCHG = 31(max)  
1)  
Resistor between GHx/GLx RGGND  
30  
40  
50  
kΩ  
and GND  
Data Sheet  
125  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 41  
Electrical Characteristics MOSFET Driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Resistor between SHx and  
GND  
RSHGN  
30  
40  
50  
k1)3) This resistance is the P_12.1.10  
resistance between GHx  
and GND connected  
through a diode to SHx.  
As a consequence, the  
voltage at SHx can rise up  
to 0,6V typ. before it is  
discharged through the  
resistor.  
Low RDSON mode  
(boosted discharge mode)  
RONCCP  
9
12  
VVSD = 13.5 V,  
VCP = VVSD + 14.0 V; ICHARGE  
P_12.1.50  
V
= IDISCHG = 31(max); 50mA  
forced into Gx, Sx  
grounded  
1)  
Resistance between VDH  
and VSD  
IBSH  
4
3
kΩ  
P_12.1.24  
P_12.1.37  
1)  
Input propagation time (LS tP(ILN)min  
1.5  
µs  
C
= 10 nF,  
Load  
on)  
ICharge =3(min),  
25% of VGxx1  
1)  
Input propagation time (LS tP(ILF)min  
off)  
1.5  
1.5  
1.5  
3
3
3
µs  
µs  
µs  
C
= 10 nF,  
P_12.1.38  
P_12.1.39  
P_12.1.40  
P_12.1.26  
P_12.1.27  
P_12.1.28  
P_12.1.29  
Load  
IDischarge =3(min),  
75% of VGxx1  
1)  
Input propagation time (HS tP(IHN)min  
on)  
C
= 10 nF,  
Load  
ICharge =3(min)  
25% of VGxx1  
1)  
Input propagation time (HS tP(IHF)min  
off)  
C
= 10 nF,  
Load  
IDisharge =3(min),  
75% of VGxx1  
Input propagation time (LS tP(ILN)max  
on)  
200 350 ns  
200 300 ns  
200 350 ns  
200 300 ns  
CLoad = 10 nF,  
ICharge =31(max),  
25% of VGxx1  
Input propagation time (LS tP(ILF)max  
off)  
CLoad = 10 nF,  
IDischarge =31(max),  
75% of VGxx1  
Input propagation time (HS tP(IHN)max  
on)  
CLoad = 10 nF,  
ICharge =31(max),  
25% of VGxx1  
Input propagation time (HS tP(IHF)max  
CLoad = 10 nF,  
off)  
IDischarge =31(max),  
75% of VGxx1  
Data Sheet  
126  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 41  
Electrical Characteristics MOSFET Driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Absolute input propagation tPon(diff)LSx  
time difference between  
propagation times for all LSx  
(LSx on)  
100 ns  
100 ns  
100 ns  
100 ns  
CLoad = 10 nF,  
Charge =31(max),  
25% of VGxx1  
P_12.1.30  
P_12.1.41  
P_12.1.42  
P_12.1.43  
I
Absolute input propagation tPoff(diff)LSx  
time difference between  
propagation times for all LSx  
(LSx off)  
CLoad = 10 nF,  
IDischarge =31(max),  
75% of VGxx1  
Absolute input propagation tPon(diff)HSx  
time difference between  
propagation times for all  
HSx (HSx on)  
CLoad = 10 nF,  
ICharge =31(max),  
25% of VGxx1  
Absolute input propagation tPoff(diff)HSx  
time difference between  
propagation times for all  
HSx (HSx off)  
CLoad = 10 nF,  
IDischarge =31(max),  
75% of VGxx1  
Drain source monitoring  
Drain source monitoring  
threshold  
VDSMONVTH  
V
DRV_CTRL3.DSMONVTH< P_12.1.46  
2:0> xxx  
000  
001  
010  
011  
100  
101  
110  
0.07 0.25 0.40  
0.35 0.50 0.650  
0.55 0.75 0.90  
0.65 1.00 1.25  
0.90 1.25 1.45  
1.00 1.5 1.80  
1.20 1.75 2.10  
1.40 2.00 2.40  
111  
Open load diagnosis currents  
Pull-up diagnosis current  
Pull-down diagnosis current IPDDiag  
Charge pump  
IPUDiag  
-220 -370 -520 µA  
650 900 1100 µA  
IDISCHG = 1; VSHx = 5.0 V  
IDISCHG = 1; VSHx = 5.0 V  
P_12.1.47  
P_12.1.48  
Output voltage  
VCP vs. VSD  
VCPmin1  
8.5  
V
VVSD = 5.4V,  
P_12.1.53  
ICP=5 mA,  
C
CP1, CCP2 = 220 nF,  
Bridge Driver enabled  
Regulated output voltage  
VCP vs. VSD  
VCP  
12  
14  
16  
V
8 V VVSD 28,  
ICP=10mA,  
P_12.1.49  
C
CP1, CCP2=220 nF,  
f
CP=250kHz  
Data Sheet  
127  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 41  
Electrical Characteristics MOSFET Driver (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Turn ON Time  
tON_VCP  
10  
24  
40  
us  
us  
8 V VVSD 28,  
CP=2.5mA,  
P_12.1.59  
P_12.1.60  
I
1)4)  
(25%) of VCP  
CCP1, CCP2=220 nF,  
CP=250kHz  
8 V VVSD 28,  
CP=2.5mA,  
(25-75%) of VCP  
CCP1, CCP2=220 nF,  
CP=250kHz  
,
f
Rise time  
trise_VCP  
20  
60  
88  
I
1)5)  
,
f
1) Not subject to production test.  
2) The condition ICP = 2,5 mA emulates an BLDC Driver with 6 MOSFET switching at 20 KHz with a CLoad=3.3nF. Test  
condition: IGx = - 100 µA, ICHARGE = IDISCHARGE = 31(max), IDISCHARGEDIV2_N = 1 and ICHARGEDIV2_N = 1.  
3) This resistance is connected through a diode between SHx and GHx to ground.  
4) This time applies when Bit DRV_CP_CTRL_STS.bit.CP_EN is set  
5) This time applies when Bit DRV_CP_CLK_CTRL.bit.CPCLK_EN is set  
Data Sheet  
128  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
30.13  
Operational Amplifier  
30.13.1 Electrical Characteristics  
Table 42  
Electrical Characteristics Operational Amplifier  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
Differential gain  
(uncalibrated)  
G
Gain settings GAIN<1:0>: P_13.1.6  
9.5  
19  
38  
57  
10  
20  
40  
60  
10.5  
21  
42  
00  
01  
10  
11  
63  
Differentialinputoperating VIX  
voltage range OP2 - OP1  
-1.5 / G –  
1.5 / G  
V
V
G is the Gain specified  
below  
P_13.1.1  
Operating. common mode VCM  
input voltage range  
(referred to GND (OP2 -  
GND) or (OP1 - GND)  
-2.0  
2.0  
Inputcommonmodehas P_13.1.2  
to be checked in  
evaluation if it fits the  
required range  
Max. input voltage range  
(referred to GND (OP_2 -  
GND) or (OP1 - GND)  
VIX_max -7.0  
7.0  
V
Max. rating of  
operational amplifier  
inputs, where  
measurement is not  
done  
P_13.1.3  
Single ended output  
voltage range (linear  
range)  
VOUT  
VZERO  
- 1.5  
VZERO  
+ 1.5  
V
1)2) typ. output offset  
voltage 2 V ± 1.5V  
P_13.1.4  
P_13.1.5  
Linearity error  
EPWM  
-15  
15  
1.0  
1
mV  
Maximum deviation  
from best fit straight line  
divided by max. value of  
differential output  
voltage range (0.5V -  
3.5V); this parameter is  
determined at G = 10.  
Linearity error  
EPWM_% -1.0  
%
%
Maximum deviation  
from best fit straight line  
divided by max. value of  
differential output  
voltage range (0.5V -  
3.5V); this parameter is  
determined at G = 10.  
P_13.1.24  
P_13.1.7  
Gain drift  
-1  
Gain drift after  
calibration at G = 10.  
Data Sheet  
129  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Electrical Characteristics  
Table 42  
Electrical Characteristics Operational Amplifier (cont’d)  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min.  
Typ. Max.  
Adjusted output offset  
voltage  
VOOS  
-40  
10  
40  
mV VAIP= VAIN = 0 V and  
P_13.1.17  
P_13.1.8  
G = 40.  
DC input voltage common DC-  
mode rejection ratio  
58  
80  
dB  
ns  
CMRR (in dB)=-20*log  
(differential mode gain/  
common mode gain)  
VCMI= -2V... 2V,  
CMRR  
V
AIP-VAIN=0V  
Settling time to 98%  
TSET  
800  
1400  
1.5  
Derived from 80 - 20 % P_13.1.9  
rise fall times for ± 2V  
overload condition (3  
Tau value of settling time  
constant)2)  
2)  
Current Sense Amplifier  
Input Resistance @ OP1,  
OP2  
Rin_OP1_  
1
1.25  
kΩ  
P_13.1.25  
OP2  
1) Typical VZERO = 0,4 * VAREF.  
2) This parameter is not subject to production test.  
Data Sheet  
130  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Package Outlines  
31  
Package Outlines  
0ꢀ9 MAXꢀ  
(0ꢀ65)  
11 x 0ꢀ5 = 5ꢀ5  
0ꢀ5  
0ꢀ1  
7
A
0ꢀ03  
6ꢀ8  
0ꢀ1  
+0ꢀ031)  
2)  
37  
B
36  
25  
24  
48x  
0ꢀ08  
48  
13  
1
12  
Index Marking  
48x  
0ꢀ1  
0ꢀ4 x 45°  
0ꢀ05  
Index Marking  
0ꢀ23  
(0ꢀ35)  
M
A B C  
(0ꢀ2)  
0ꢀ05 MAXꢀ  
(5ꢀ2)  
(6)  
C
1) Vertical burr 0ꢀ03 maxꢀ, all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 41 Package outline VQFN-48-31 (with LTI)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
131  
Rev. 1.0  
2018-01-16  
TLE9879-2QXA40  
Revision History  
32  
Revision History  
Revision History  
Page or Item  
Rev. 1.0, 2018-01-16  
all  
Subjects (major changes since previous revision)  
Initial Release.  
Data Sheet  
132  
Rev. 1.0  
2018-01-16  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-01-16  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  

相关型号:

TLE9879QTW40

The TLE9879QTW40 is part of the TLE987x product family. The TLE9879QTW40 is a single chip 3-Phase

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9879QXA20

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9879QXA20_15

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9879QXA20_17

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9879QXA40

Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9879QXW40

The MOTIX™ TLE9879QXW40 is part of the MOTIX™ TLE987x product family. The MOTIX™ TLE9879QXW4

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9881-2QTW60

The MOTIX™ TLE9881-2QTW60 is part of the MOTIX™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9883-2QTW62S

The MOTIX™ TLE9883-2QTW62S is part of the MOTIX™ TLE988x product family. It is a fully integra

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9883QTA62

The MOTIX™ TLE9883-2QTW62S is part of the MOTIX™ TLE988x product family. It is a fully integra

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9891-2QTW60

The MOTIX™ TLE9891-2QTW60 is part of the MOTIX™ TLE989x product family. It is a fully integrat

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9891-2QTW61

The MOTIX™ TLE9891-2QTW61 is part of the MOTIX™ TLE989x product family. It is a fully integrat

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE9891QTA61

The MOTIX™ TLE9891QTA61 is part of the MOTIX™ TLE989x product family. It is a fully integrated

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON