TLF51801ELV [INFINEON]

TLF51801ELV 是 PWM 步降直流/直流转换器,具有外部功率开关,采用小型 PG-SSOP-14 散热焊盘封装。调节器能够驱动外部功率级 (n/n-MOS) 负载高达 10 A。电流限制功能使用 HS 开关晶体管或者使用外部分流器电阻实现。输出电压可调节容差值为 2%.该器件可在占空比大于 99% 的条件下运行。集成自举二极管,无需外部元件。开关频率可设置为 100 kHz - 700 kHz 之间,并可与外部时钟同步。启动期间,集成软启动限制浪涌电流峰值,防止电压过冲。关断模式下的启用功能电流消耗低于 2 μA,便于对电池供电系统进行功率管理。TLF51801ELV 具有保护功能,比如逐周期电流限制、过温关断和欠电压锁定。该器件可在 -40 °C < Tj < 150 °C 温度范围内使用,适用于汽车应用在恶劣环境下使用。;
TLF51801ELV
型号: TLF51801ELV
厂家: Infineon    Infineon
描述:

TLF51801ELV 是 PWM 步降直流/直流转换器,具有外部功率开关,采用小型 PG-SSOP-14 散热焊盘封装。调节器能够驱动外部功率级 (n/n-MOS) 负载高达 10 A。电流限制功能使用 HS 开关晶体管或者使用外部分流器电阻实现。输出电压可调节容差值为 2%.该器件可在占空比大于 99% 的条件下运行。集成自举二极管,无需外部元件。开关频率可设置为 100 kHz - 700 kHz 之间,并可与外部时钟同步。启动期间,集成软启动限制浪涌电流峰值,防止电压过冲。关断模式下的启用功能电流消耗低于 2 μA,便于对电池供电系统进行功率管理。TLF51801ELV 具有保护功能,比如逐周期电流限制、过温关断和欠电压锁定。该器件可在 -40 °C < Tj < 150 °C 温度范围内使用,适用于汽车应用在恶劣环境下使用。

时钟 电池 开关 驱动 软启动 晶体管 二极管 转换器 调节器
文件: 总29页 (文件大小:1783K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLF51801ELV  
10 A synchronous DC/DC Step-Down Controller  
Data sheet  
Rev. 1.0.1, 2013-04-15  
Automotive Power  
10 A synchronous DC/DC Step-Down Controller  
TLF51801ELV  
1
Overview  
10 A synchronous step down Controller  
Current limitation adjustable with Shunt resistor or Rdson  
Adjustable output voltage  
± 2% output voltage tolerance  
External power transistors  
Integrated bootstrap diode  
PWM regulation  
Very Low Dropout Operation: max Duty Cycle higher than 99%  
Input voltage range from 4.75V to 45V  
Adjustable switching frequency from 100 to 700 kHz  
Synchronization input  
Very low shutdown current consumption (<2µA)  
Soft-start function  
PG-SSOP-14  
Input undervoltage lockout  
Suited for automotive applications: Tj = -40°C to +150°C  
Green Product (RoHS compliant)  
AEC Qualified  
Description  
The TLF51801ELV is a PWM step-down DC/DC controller with external power switches, packaged in a small PG-  
SSOP-14 with exposed pad. The controller is capable to drive external power MOSFETs for load currents up to  
10 A. A current limitation feature is included, it is done by measuring the voltage over the high-side switch (when  
switch is closed) in Rdson-configuration or by including a shunt resistor above the high-side switch in Shunt-  
configuration.  
Type  
Package  
Marking  
TLF51801ELV  
PG-SSOP-14  
TLF51801  
Data sheet  
2
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Block Diagram  
2
Block Diagram  
sensehigh  
senselow  
IVCC  
VS  
LDO  
V_ls  
Enable  
EN  
BTS  
UG  
Softstart  
Temp .SD  
GND  
Osc  
SYNC/  
FREQ  
Sync  
BUO  
LG  
Step Down  
Regulator  
V_ls  
COMP  
FB  
PGND  
TLF51801ELV  
Figure 1  
Block Diagram  
Data sheet  
3
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
sensehigh  
senselow  
IVCC  
1
14  
13  
VS  
EN  
2
3
4
5
6
7
12 BTS  
GND  
11  
10  
9
UG  
BUO  
SYNC/FREQ  
COM P  
FB  
LG  
8
PGND  
TLF51801ELV  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin Symbol Function  
1
IVCC  
Internal Voltage Supply  
Output of the internal linear regulator, supply for low-side driver and through internal bootstrap  
diode to high-side driver, connect a capacitor between this pin and GND  
2
3
4
5
VS  
Input Voltage  
Connect to input voltage for internal power supply  
EN  
Enable Input  
Active-high enable input with integrated pull down resistor  
GND  
Ground  
Connect to ground plane  
SYNC/ Synchronization and Oscillator frequency set Input  
FREQ  
Connect to an external clock signal in order to synchronize/adjust the switching frequency  
(SYNC-mode). Connect an external resistor to set the frequency (FREQ-mode)  
6
COMP  
Compensation Input  
Frequency compensation for regulation loop stability  
Connect to compensation network  
7
FB  
Feedback Input  
Connect via voltage divider to output capacitor  
8
PGND  
LG  
Power Ground  
Connect to Ground plane  
9
Low-side MOSFET driver output  
Driving output for the low-side external power MOSFET, connect to gate  
10  
BUO  
Buck Switch Out  
Connect this point between the switching transistors, floating ground for high-side driver  
Data sheet  
4
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Pin Configuration  
Pin Symbol Function  
11  
12  
13  
UG  
Up-side MOSFET driver output  
Driving output for the high-side external power MOSFET, connect to gate  
BTS  
Buck Driver Supply Input  
Connect the bootstrap capacitor between this pin and pin BUO  
sense  
low  
Current sensing (low-side) input  
For Shunt-configuration connect a shunt resistor from senselow to input/battery voltage, for  
Rdson-configuration connect to source of the high-side MOSFET  
14  
sense  
high  
Current sensing (high-side) input  
Connect a resistor between battery and this pin to adjust the current threshold for both Rdson  
and Shunt configurations  
Exposed Pad Connect to heatsink area and GND by low inductance wiring  
Data sheet  
5
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings1)  
Tj = -40°C to +150°C; all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Max.  
Unit Conditions  
Min.  
-0.3  
-0.3  
-0.3  
Voltages  
4.1.1  
Synchronization Input  
Compensation Input  
VSYNC  
VCOMP  
5.5  
6.2  
5.5  
6.2  
5.5  
V
V
V
V
V
V
4.1.2  
t < 10s2)  
4.1.3  
4.1.4  
t < 10s2)  
4.1.5  
Feedback Input  
VFB  
4.1.6  
Buck Driver Supply Input  
VBTS  
VBUO  
VBUO  
- 0.3  
+ 5.0  
4.1.7  
Buck Switch Output  
Enable Input  
VBUO  
VEN  
VS  
-2.0  
-20  
45  
45  
45  
45  
V
V
V
V
V
4.1.8  
4.1.9  
Supply Voltage Input  
Sensehigh  
-0.3  
4.1.10  
4.1.11  
Vsensehigh -0.3  
Senselow  
Vsenselow  
-2.0  
Vsensehigh  
+ 0.3  
4.1.12  
4.1.13  
IVCC  
VIVCC  
VUG  
-0.3  
6.0  
V
V
Upper Transistor Gate  
VBUO  
VBTS  
- 0.3  
+ 0.3  
4.1.14  
Lower Transistor Gate  
VLG  
-0.3  
6.5  
V
Temperatures  
4.1.15  
4.1.16  
Junction Temperature  
Storage Temperature  
Tj  
-40  
-55  
150  
150  
°C  
°C  
Tstg  
ESD Susceptibility  
4.1.17  
4.1.18  
4.1.19  
ESD Resistivity  
VESD  
VESD  
VESD  
-2  
2
kV  
V
HBM 2)  
CDM 3)  
CDM 3)  
ESD Resistivity to GND  
-500  
-750  
500  
750  
ESD Resistivity corner pins to GND  
V
1) Not subject to production test, specified by design  
2) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001.  
3) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data sheet  
6
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
General Product Characteristics  
4.2  
Functional Range  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
4.75  
Max.  
45  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
Supply Voltage  
VS  
V
Max. Duty Cycle  
Dmax  
VCC  
Tj  
>99  
%
V
Output Voltage adjust range  
Junction Temperature  
1.20  
-40  
Dmax x VS  
150  
°C  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
4.3  
Thermal Resistance  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
10  
Max.  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
Junction to Case1)  
Junction to Ambient1) 2)  
RthJC  
RthJA  
RthJA  
RthJA  
K/W  
K/W  
K/W  
K/W  
47  
2s2p  
54  
1s0p + 600 mm2  
1s0p + 300 mm2  
64  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink  
area at natural convection on FR4 board;  
Data sheet  
7
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Regulator  
5
Regulator  
5.1  
Description  
The TLF51801ELV is a synchronous step down controller for output currents up to 10 Amps. The power stage  
consists of two external MOSFETs with logic level gate signal. The switching frequency can be adjusted between  
100 and 700 kHz by connecting an external resistor between pin SYNC/FREQ and GND (FREQ-mode). By  
connecting this pin to a frequency source the TLF51801ELV might be synchronized to a frequency between 350  
and 700 kHz (SYNC-mode).  
A valid high signal at pin EN will start the regulator. Then it will ramp up with a soft start ramp, which is derived  
from the switching frequency (i.e.: the soft start ramp will last around 1 msec at a switching frequency of 500 kHz).  
The regulator is working in voltage mode, there is no feedforward function included and it operates in continuous  
conduction mode only.  
An external compensation network connected to pin COMP is necessary to compensate the switching ripple on  
the feedback line. The compensation network must be adapted to the application.  
The regulator can withstand a short circuit at the output. The current limitation can be implemented measuring the  
drop across the Rdson of the external high-side MOSFET (Rdson-configuration), or by shunt resistor located in  
series with the drain of high-side MOSFET (Shunt-configuration).  
The output voltage is monitored using pin FB. If the output voltage exceeds the overvoltage threshold (10% higher  
than the regulated output voltage), the low-side external MOSFET is turned on in order to discharge the output  
capacitor and lower the output voltage to the nominal value.  
SENSELOW  
BTS  
UV  
SENSEHIGH  
BLANK  
OC  
UG  
CLOCK  
UG  
DRIVER  
LS  
COMP  
Force  
Min Duty  
CROSS CONDUCTION  
SAFETY LOGIC  
BUO  
PWM  
-
L
EA  
Skipping  
Mode  
O
G
IC  
+
COMP  
PHS  
DETECT  
FB  
+
-
VREF  
1.2V  
LG  
V_LS  
POR  
IVCC  
LG  
DRIVER  
SAWTOOTH GEN  
UV  
PGND  
BG  
BG  
SOFTSTART LOGIC  
TSD  
THERMALSHUTDOWN  
OV  
OVERVOLTAGESHUTDOWN  
Figure 3  
Block Diagram Buck Regulator  
Data sheet  
8
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Regulator  
5.2  
The Soft start  
x0.6  
+
-
UV  
UV  
Vfb  
CK  
Force  
min  
Toff  
To_LG  
SoSt_25%End  
Vref1V2  
Vbg  
SoSt_100%End  
Logic  
Stair  
start  
EN  
POR IVCC  
TSD  
CK  
Figure 4  
Soft start block diagram  
An integrated Soft start function (of duration 512 clock cycles, where a clock cycle is derived from the switching  
frequency) ensures that the inrush current will be limited and prevents from output voltage overshoots.  
When the regulator starts from OFF state (EN pin forced from low to high), an additional pre-charging function is  
triggered before Soft start: for a time slot of 64 clock cycles, low-side MOSFET is switched ON and OFF at fixed  
frequency of 1.5 MHz and 50% duty cycle, in order to charge in advance the bootstrap capacitor.  
If an under voltage appears during Soft start, it is recognized only after 25% of the Soft start stair, this is realized  
by the signal SoSt_25%End. In case 1) the UV is permanent fault (i.e. the BTS cap is not charged or shorted, or  
the output cap is shorted). In case 2) the UV failure is removed before the 25% of the Soft start procedure is  
reached (i.e. the output cap is too large and the system is not able to charge it fast enough). In case 1), a  
permanent UV, the soft start begins again the procedure after a delay of 512 clock cycles.  
In case of pre-charged output condition, the system recognizes it and keeps the external switches in high  
impedance in order not to discharge the output capacitance.  
start  
1.2V  
Delay  
Delay  
Vref1V2  
SoSt_25%End  
UV  
Figure 1)  
start  
1.2V  
1.2V  
Delay  
Vref1V2  
SoSt_25%End  
UV  
i.e output  
short  
Figure 2)  
Figure 5  
Soft start timing  
Data sheet  
9
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Regulator  
5.3  
Operation Mode  
The PWM pulses are voltage controlled. The error amplifier and the PWM comparator are creating the PWM  
pulses using the oscillator saw-tooth signal and the feedback voltage. The pulse-width modulation is done so that  
the feedback voltage is similar to the reference voltage (1.2 V). To achieve a stable output voltage even under very  
low or very high duty cycle conditions a pulse skipping mode is implemented. When the minimum off time for the  
up-side gate is reached (boundary between dark grey area and light grey area in Figure 6), the TLF51801ELV  
operates in pulse skipping mode for high duty cycle. This operation mode is typically used with low supply voltages  
for very low dropout operation. If the minimum on time for the up-side gate is reached (boundary between dark  
grey area and light grey area in Figure 6) the TLF51801ELV operates in pulse skipping mode for low duty cycle.  
Figure 6  
Operation Mode  
Data sheet  
10  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Regulator  
5.4  
Bootstrap concept  
The high-side MOSFET driver is supplied by the bootstrap concept. The capacitor at pin BTS and BUO must be  
switched to GND to be charged by the internal LDO. A monitoring circuit controls the charge of the bootstrap  
capacitor. If the charge is sufficient the driver will trigger the external high-side MOSFET. If a recharge is  
necessary, the capacitor will be loaded using the integrated bootstrap diode by switching pin BUO to ground  
forcing a proper PWM signal.  
For very high duty-cycle and high input capacitance of the MOSFET, it may be necessary to consider use of an  
external diode placed in parallel with the internal bootstrap diode to speed up the recharge of the bootstrap  
capacitor. In addition, the small voltage drop across the external diode improves the overdrive of the gate of the  
high-side MOSFET.  
BTS  
UV  
VS  
CBTS  
UG  
UG  
DRIVER  
LS  
Linear Regulator  
CROSS  
CONDUCTION  
SAFETY LOGIC  
BUO  
PWM  
PHS  
DETECT  
EN  
LG  
V_LS  
IVCC  
LG  
DRIVER  
PGND  
Parts in grey are optional  
Figure 7  
Bootstrap concept  
Data sheet  
11  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Regulator  
5.5  
Current Limitation  
5.5.1  
Rdson-configuration  
To optimize the efficiency, the regulator is measuring the voltage (which is the current through the MOSFET  
multiplied by the Rdson) over the high-side switch, if it should be too high the pulse will be cut off. By varying the  
sense resistor between the pin sensehigh and the drain of the high-side MOSFET the current limit can be adjusted.  
Senselow is connected to the source of the MOSFET.  
Pow er current  
flow  
External high side M O S  
VS  
BUO  
R _SEN SE  
SENSEHIG H  
SEN SELO W  
O VERC U RR EN T  
CO M PARATO R  
(O VC )  
O VER CU RR EN T  
LO G IC SIG NAL  
BLAN K  
Figure 8  
Rdson-configuration for current limitation  
The figure above shows the concept of the Rdson configuration for current limitation. The characteristics of the  
external high-side MOSFET must be known, especially its thermal behavior. The current limitation might be  
calculated with the following equation:  
R _ SENSE  
I limit = I OC  
_ lim, ref  
Rdson _ EXT _ MOS  
Data sheet  
12  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Regulator  
5.5.2  
Shunt-configuration  
The regulator is offering a second possibility to do a more accurate current measurement by shunt resistor located  
in series with the drain of the high-side MOSFET. The shunt resistor will be placed in the input current path and  
be connected to the overcurrent comparator with pin senselow and through a sense resistor to pin sensehigh. By  
varying the sense resistor the current limit can be adjusted.  
P ow er current  
flow  
E xternal high side M O S  
V S  
B U O  
R _S H U N T  
R _S E N S E  
S E N S E H IG H  
S E N S E LO W  
O V E R C U R R E N T  
C O M P A R A T O R  
(O V C )  
O V E R C U R R E N T  
LO G IC S IG N A L  
B LA N K  
Figure 9  
Shunt-configuration for current limitation  
The Shunt-configuration works similar to the Rdson-configuration, it uses also pins Sensehigh and Senselow. The  
current limitation might be calculated with the following equation:  
R
_ SENSE  
I
=
I
limit  
OC  
_
lim,  
ref  
R _ SHUNT  
Data sheet  
13  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Regulator  
5.6  
Electrical Characteristics  
Electrical Characteristics:  
VS = 6.0 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min. Typ. Max.  
1.176 1.200 1.224  
5.6.1  
5.6.2  
Output voltage  
VFB  
V
V
V
EN = 12V;  
I
CC < 10A  
Output overvoltage threshold  
VFB,OV  
1.05 x 1.1 x 1.15 x  
V
V
FB increasing;  
COMP = 3V;  
VFB  
VFB  
VFB  
Monitor LG low to high  
5.6.3  
Output overvoltage threshold  
hysteresis  
VFB,OV,hyst 0.02 x 0.05 x 0.08 x  
V
VFB  
-1  
VFB  
-0.1  
1.2  
VFB  
0
5.6.4  
5.6.5  
5.6.6  
FB input current  
IFB  
µA  
V
V
FB = 1.2V  
FB = 1.2V  
Error amplifier, gain  
gmEA  
0.8  
1.0  
1.6  
mS  
MΩ  
Error amplifier, output resistance REA,OUT  
V
V
FB = 1.2V;  
COMP = 1.2V  
5.6.7  
5.6.8  
5.6.9  
Error amplifier, ramp amplitude,  
FREQ-mode  
VComp,peak 1.0  
1.6  
2.6  
450  
V
V
FB = 1.2V;  
FREQ-mode;  
FREQ = 100 -700kHz;  
Monitor LG  
FB = 1.2V;  
SYNC-mode;  
SYNC = 350 -700kHz;  
to peak,FREQ  
f
Error amplifier, ramp amplitude,  
SYNC-mode  
VComp,peak 0.6  
V
V
to peak,SYNC  
f
Monitor LG  
Error amplifier output, source and IComp,max 150  
280  
μA  
Source current:  
sink current  
V
FB = 0.8V, VCOMP= 2.5V;  
Sink current:  
V
V
FB = 2.4V, VCOMP= 2.5V  
5.6.10 Comp pin, minimum voltage  
VComp,min 0.8  
V
COMP increasing;  
Monitor UG  
5.6.11 Bootstrap under voltage lockout VBTS,off  
VBUO  
+ 3.0  
V
VBTS_BUO voltage  
decreasing  
threshold for UG turn-off  
5.6.12 Bootstrap under voltage lockout, VBTS,hyst  
300  
150  
mV  
µA  
hysteresis  
5.6.13 Bootstrap capacitor discharge  
current  
IBTS_BUO  
V
BTS_BUO = 4.5V  
5.6.14 Bootstrap diode forward voltage VDBTS,fwd  
0.8  
V
IDBTS = 20mA  
1)  
1)  
5.6.15 Minimum on time Upper Gate  
5.6.16 Minimum off time Upper Gate  
5.6.17 Soft start ramp  
TUGON,min  
TUGOFF,min  
tstart  
100  
100  
ns  
ns  
µs  
512 x  
1/f  
f = fFREQ, FREQ-mode;  
f = fSYNC, SYNC-mode  
5.6.18 Input under voltage shutdown  
threshold  
VS,off  
3.7  
V
VS decreasing  
Data sheet  
14  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Regulator  
Electrical Characteristics:  
VS = 6.0 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min. Typ. Max.  
5.6.19 Input voltage startup threshold  
VS,on  
4.75  
V
VS increasing  
5.6.20 Input under voltage shutdown  
hysteresis  
VS,hyst  
300  
mV  
Gate Driver for upper Switch  
5.6.21 Upper Gate Driver Peak Sourcing IUG,SRC  
-380  
550  
30  
mA  
mA  
ns  
ns  
V
V
UG = 3.5V;  
UG = 1.5V;  
1)  
Current  
5.6.22 Upper Gate Driver Peak Sinking IUG,SNK  
V
1)  
Current  
5.6.23 Upper Gate Driver Output Rise  
Time  
tR,UG  
tF,UG  
60  
40  
5.2  
C
V
L,UG = 3.3nF;  
UG = 1V to 4V  
L,UG = 3.3nF;  
UG = 1V to 4V  
L,UG = 3.3nF  
5.6.24 Upper Gate Driver Output Fall  
Time  
20  
C
V
5.6.25 Upper Gate Driver Output Voltage VUG  
4.4  
C
Gate Driver for lower Switch  
5.6.26 Lower Gate Driver Peak Sourcing ILG,SRC  
-380  
550  
30  
mA  
mA  
ns  
V
LG = 3.5V;  
LG = 1.5V;  
1)  
Current  
5.6.27 Lower Gate Driver Peak Sinking ILG,SNK  
V
1)  
Current  
5.6.28 Lower Gate Driver Output Rise  
Time  
tR,LG  
tF,LG  
60  
40  
5.75  
101  
C
L,LG = 3.3nF;  
LG = 1V to 4V  
L,LG = 3.3nF;  
LG = 1V to 4V  
L,LG = 3.3nF;  
VS 7V  
COMP = 3V  
V
5.6.29 Lower Gate Driver Output Fall  
Time  
20  
ns  
C
V
5.6.30 Lower Gate Driver Output Voltage VLG  
5.05  
5.40  
95  
V
C
5.6.31 Overcurrent limitation  
IOC_lim,ref 89  
μA  
V
sensehigh-senselow  
decreasing;  
monitor max current on  
sensehigh  
5.6.32 Overcurrent comparator offset  
voltage  
VOCComp, -15  
+15  
mV  
V
V
FB = 1V;  
COMP = 4V;  
Offset  
sensehigh-senselow  
increasing  
1) Not subject to production test, specified by design.  
Data sheet  
15  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Module Oscillator  
6
Module Oscillator  
6.1  
Description  
The oscillator supplies the device with a constant frequency. When the device is not operating in pulse skipping  
mode, the external MOSFETs are switched on and off with the same constant frequency. Some safety functions  
are synchronized also to this frequency.  
The internal oscillator is used to determine the switching frequency of the buck regulator. The switching frequency  
can be selected from 100 kHz to 700 kHz with an external resistor connected at pin SYNC/FREQ to GND. To set  
the switching frequency with an external resistor the following formula can be applied  
1
R FREQ  
=
(
2.0 ×10 3  
[Ω  
])  
[Ω ]  
149 ×10 12 [Ω ]  
)
× f FREQ [s ]  
s
1
(
)
(
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
200  
300  
400  
500  
600  
700  
Switching Frequency fFREQ (kHz)  
Figure 10 Resistor RFREQ versus Switching Frequency fFREQ  
The turn-on frequency can optionally be set externally via the pin SYNC/FREQ. In this case the synchronization  
of the PWM-on signal refers to the falling edge of the pin SYNC/FREQ input signal.  
Data sheet  
16  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Module Oscillator  
6.2  
Electrical Characteristics Module Oscillator  
Electrical Characteristics: Module Oscillator  
VS = 6.0 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Oscillator:  
6.2.1  
6.2.2  
Oscillator Frequency  
fFREQ  
fFREQ  
250  
100  
300  
350  
700  
kHz  
kHz  
RFREQ = 20kΩ  
Oscillator Frequency  
Adjustment Range  
17% internal  
tolerance+external  
resistor tolerance  
6.2.3  
FREQ Supply Current  
IFREQ  
800  
700  
µA  
V
FREQ = 0 V  
Synchronization  
1)  
6.2.4  
Synchronization Frequency  
Capture Range  
Synchronization Signal Duty cycle DSYNC  
fSYNC  
350  
20  
kHz  
6.2.5  
6.2.6  
80  
%
V
2)  
2)  
Synchronization Signal  
High Logic Level Valid  
VSYNC,H 3.0  
6.2.7  
Synchronization Signal  
Low Logic Level Valid  
VSYNC,L  
0.8  
V
1) Synchronization frequency out of the specified range leads to complete malfunction of the device  
2) Synchronization of external UG ON signal to falling edge  
Data sheet  
17  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Linear Regulator  
7
Linear Regulator  
7.1  
Description  
The internal linear voltage regulator supplies the low-side gate driver directly (typical voltage 5.4 V) and through  
a diode the high-side gate driver. The current capability is up to 50 mA. An external output capacitor with low ESR  
is required on pin IVCC for stability and buffering transient load currents. During normal operation the gate drivers  
will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor  
must be considered to supply sufficient peak current to the gate of the external MOSFETs. An integrated power-  
on reset circuit monitors the linear regulator output voltage and resets the device in case the output voltage falls  
below the power-on reset threshold. The power-on reset helps protect the external MOSFETs from excessive  
power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-  
channel MOSFET. For IVCC voltage lower than 5V the proper charging of the bootstrap capacitor is not  
guaranteed.  
The internal linear voltage regulator is implemented to supply the gate drivers, therefore a large voltage ripple may  
be present on this output due to the pulsed current sinked by internal drivers and bootstrap diode. This output  
should not be used to supply loads than the internal ones.  
IVCC  
VS  
EN  
1
2
3
Linear Regulator  
HS Gate  
Driver  
LS Gate  
Driver  
Figure 11 Linear Regulator Block Diagram and Simplified Application Circuit  
Data sheet  
18  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Linear Regulator  
7.2  
Electrical Characteristics  
Electrical Characteristics: Linear Regulator  
VS = 6V to 40V; Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
Typ.  
Max.  
7.2.1  
7.2.2  
Output Voltage  
VIVCC  
ILIM  
5.05  
5.4  
5.75  
V
7 V VS 40 V;  
0.1 mA IIVCC 50 mA  
Output Current Limitation  
51  
110  
mA  
VS = 13.5 V;  
V
IVCC = 5.1V  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
Drop out Voltage  
VDR  
800  
3
mV  
µF  
Ω
I
IVCC = 50mA 1)  
2)  
Output Capacitor  
CIVCC  
0.47  
Output Capacitor ESR  
RIVCC,ESR  
0.5  
f = 10kHz  
Undervoltage Reset Headroom VIVCC,HDRM 100  
mV  
V
V
IVCC decreasing;  
IVCC - VIVCC,RTH,d  
7.2.7  
7.2.8  
Undervoltage Reset Threshold VIVCC,RTH,d 4.0  
V
V
V
V
IVCC decreasing  
IVCC increasing  
Undervoltage Reset Threshold VIVCC,RTH,i  
4.5  
1) Measured when the output voltage VIVCC has dropped 100 mV from its nominal value.  
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.  
Data sheet  
19  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Module Enable and Thermal Shutdown  
8
Module Enable and Thermal Shutdown  
8.1  
Description  
With the enable pin the device can be set in off-state reducing the current consumption to less than 2µA.  
The enable function features an integrated pull down resistor which ensures that the IC is shut down and the  
external MOSFETs are off in case the pin EN is left open.  
The integrated thermal shutdown function turns the external MOSFETs off in case of overtemperature. The typical  
junction shutdown temperature is 175°C, with a minimum of 160°C. After cooling down, the IC will automatically  
restart with soft start. The thermal shutdown is an integrated protection function designed to prevent IC destruction  
when operating under fault conditions.  
8.2  
Electrical Characteristics Module Enable, Bias and Thermal Shutdown  
Electrical Characteristics: Enable, Bias and Thermal Shutdown  
VS = 6.0 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
8.2.1  
8.2.2  
Current Consumption,  
shut down mode  
Iq,OFF  
Iq,ON  
0.1  
2
µA  
V
EN = 0.8V;  
Tj < 105°C; Vs = 16V  
EN = 5.0V;  
IVCC= 0mA;  
Current Consumption,  
active mode  
3
10  
mA  
V
I
VS = 16V  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.2.8  
8.2.9  
Enable high signal valid  
Enable low signal valid  
Enable hysteresis  
VEN,lo  
VEN,hi  
VEN,HY  
IEN,hi  
3.0  
V
0.8  
400  
30  
1
V
200  
300  
mV  
µA  
µA  
°C  
K
Enable high input current  
Enable low input current  
V
EN = 16V  
IEN,lo  
0.1  
175  
15  
V
1)  
EN = 0.5V  
Over temperature shutdown Tj,sd  
160  
190  
1)  
Overtemperatureshutdown Tj,sd_hyst  
hysteresis  
1) Not subject to production test, specified by design.  
Data sheet  
20  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Application Information  
9
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
9.1  
Application Diagram  
CIVCC  
DBOOT  
V_S  
Rsense  
IVCC  
VS  
sensehigh  
senselow  
CIN1  
CIN2  
CIN  
*
LDO  
V_ls  
EN  
Enable  
BTS  
EN  
CBTS  
Softstart  
Temp .SD  
GND  
UG  
HIGH  
SYNC/ FREQ  
COMP  
Osc  
Sync  
L1  
BUO  
V_CC  
GND  
Step Down  
Regulator  
V_ls  
LOW  
LG  
D1  
COUT1  
COUT2  
FB  
PGND  
TLF51801ELV  
GND  
CL  
R1  
R2  
RF  
CF  
RFREQ  
CCF  
Parts in grey are optional  
Parts suggested for suppresion of EME  
*
Figure 12 Application Diagram (Current limitation with Rdson-configuration)  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application  
CIVCC  
DBOOT  
V_S  
Rsense  
IVCC  
VS  
sensehigh  
senselow  
CIN1  
CIN2  
CIN  
R shunt  
*
LDO  
V_ls  
EN  
Enable  
BTS  
EN  
CBTS  
Softstart  
Temp .SD  
GND  
UG  
HIGH  
LOW  
SYNC/ FREQ  
COMP  
Osc  
Sync  
L1  
BUO  
V_CC  
GND  
Step Down  
Regulator  
V_ls  
LG  
D1  
COUT1  
COUT2  
FB  
PGND  
TLF51801ELV  
GND  
CL  
R1  
R2  
RF  
CF  
RFREQ  
CCF  
Parts in grey are optional  
Parts suggested for suppresion of EME  
*
Figure 13 Application Diagram (Current limitation with Shunt-configuration)  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application  
Data sheet  
21  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Application Information  
Ref  
L1  
LOW, HIGH  
OUT1, COUT2  
CIN2  
CIN1  
RFREQ  
R1  
Value  
5.6μH  
N-ch, 60 V, 12 mΩ  
100μF - 10mΩ ESR  
22μF  
Manufacturer  
Coilcraft  
Infineon  
Rubycon  
Kemet  
Part number  
MSS1278T-562ML_  
IPD50N06S4L-12  
6SW100M  
Type  
Inductor  
Transistor  
Qty  
1
2
C
Capacitor, Poly Al, 6.3V  
Capacitor, X7R, 50V  
2
C2220C226M5R2CTU  
1
470μF  
20kΩ  
100kΩ  
27.3kΩ  
6.65kΩ  
1.1kΩ  
10mΩ  
12pF  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Vishay Dale  
Kemet  
EEEFK1H471AM  
ERJ3EKF2002V  
Capacitor, Al, 50V  
Resistor, ±1%, 0.1W  
Resistor, ±1%, 0.1W  
Resistor, ±1%, 0.1W  
Resistor, ±1%, 0.1W  
Resistor, ±1%, 0.1W  
Resistor, ±1%, 3W  
Capacitor, C0G  
1
1
1
1
1
1
1
1
1
1
1
1
1
ERJ3EKF1003V  
R2  
ERJ3EKF2742V  
RF  
ERJ3EKF6651V  
Rsense  
Rshunt  
CCF  
ERJ3EKF1101V  
WSL3637R0100FEB  
C0603C120J5GACTU  
C0603C121J5GACTU  
C0603C153K5RACTU  
C1206C105K4RACTU  
C1206C105K5RACTU  
C1206C273K5RACTU  
CL  
120pF  
15nF  
Kemet  
Capacitor, C0G  
CF  
Kemet  
Capacitor, X7R, 50V  
Capacitor, X7R, 16V  
Capacitor, X7R, 50V  
Capacitor, X7R, 50V  
CIVCC  
CIN  
1μF  
Kemet  
1μF  
Kemet  
CBTS  
270nF  
Kemet  
Figure 14 Bill of Material for Application Diagram  
Data sheet  
22  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Performance Graphs  
10  
Performance Graphs  
Typical Performance Characteristics  
Efficiency and Power Losses  
versus Load Current  
Efficiency versus Load Current  
100  
6
5
4
3
2
1
0
97  
T = 25°C; f = 300kHz  
T = 25°C; f = 300kHz  
VS = 12V; RDS,on-Config  
96  
90  
95  
VS = 24V  
VS = 12V  
VS = 12V; Shunt-Config  
80  
70  
60  
50  
40  
94  
93  
VS = 24V; RDS,on-Config  
PLOSS @ VS = 24V  
92  
91  
90  
89  
88  
VS = 24V; Shunt-Config  
PLOSS @ VS = 12V  
0,1  
1
10  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Efficiency versus Load Current  
V
CC versus Temperature  
98  
5,70  
f = 300kHz; VS = 12V  
ICC = 5A; VS = 12V  
97  
96  
95  
94  
93  
92  
91  
90  
T = -40°C  
5,65  
5,60  
5,55  
5,50  
T = 25°C  
T = 150°C  
89  
1
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
10  
TEMPERATURE (°C)  
LOAD CURRENT (A)  
Data sheet  
23  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Performance Graphs  
Typical Performance Characteristics  
IVCC versus Temperature  
IVCC Undervoltage versus Temperature  
5,75  
4,30  
4,25  
4,20  
4,15  
4,10  
4,05  
4,00  
VS = 12V  
5,65  
5,55  
5,45  
5,35  
5,25  
5,15  
5,05  
IIVCC = 50mA  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
IVCC versus VS  
Bootstrap Diode drop versus Temperature  
5,75  
1,1  
1,0  
T = 20°C  
5,65  
5,55  
5,45  
5,35  
5,25  
5,15  
5,05  
IBTS = 50mA  
0,9  
IBTS = 20mA  
0,8  
IBTS = 10mA  
IIVCC = 50mA  
0,7  
0,6  
0,5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
TEMPERATURE (°C)  
VS (V)  
Data sheet  
24  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Performance Graphs  
Typical Performance Characteristics  
Load Regulation  
VS = 12 V  
Line Regulation  
ICC = 5 A  
5,70  
5,70  
VS = 12V  
ICC = 5A  
Temperature forced for the entire application  
Temperature forced for the entire application  
5,65  
5,60  
5,55  
5,50  
5,65  
150°C  
150°C  
5,60  
5,55  
5,50  
25°C  
25°C  
-40°C  
-40°C  
7
5
10  
15  
20  
25  
30  
35  
40  
0
1
2
3
4
5
6
8
9
10  
VS (V)  
LOAD (A)  
Data sheet  
25  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Performance Graphs  
Load Step  
VS = 12 V  
VCC = 5.6 V  
ICC = 5 A  
ICC = 0 A  
Line Step  
ICC = 5 A  
VCC = 5.6 V  
VS = 24 V  
VS = 12 V  
Data sheet  
26  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Package Outlines  
11  
Package Outlines  
0.35 x 45˚  
1)  
0.1 C D  
0.1  
3.9  
+0.06  
0.19  
0.08  
C
C
0.64  
0.25  
0.65  
2)  
0.05  
0.2  
0.25  
6
M
M
0.2  
D 8x  
0.15  
C A-B D 14x  
D
Bottom View  
0.2  
3
A
1
7
14  
8
1
7
14  
8
Exposed  
Diepad  
B
0.1 C A-B 2x  
1)  
0.1  
4.9  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion  
PG-SSOP-14-1,-2,-3-PO V02  
Figure 15 Package Drawing  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further package information, please visit our website:  
Dimensions in mm  
http://www.infineon.com/packages.  
Data sheet  
26  
Rev. 1.0.1, 2013-04-15  
TLF51801ELV  
Revision History  
12  
Revision History  
Version  
Date  
Changes  
Rev 1.0.1 2013-04-15 Page 21: Editorial change  
Rev 1.0  
2013-02-25 Initial data sheet  
Data sheet  
27  
Rev. 1.0.1, 2013-04-15  
Edition 2013-04-15  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2013 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLF80511EJ

Low Dropout Linear Fixed Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511EJ V33

TLF80511EJ V33 是一款线性低压差稳压器,适用于具有固定输出电压(5V 和 3.3V),负载电流高达 400 mA 的 D²PAK、DPAK 和 DSO8-EP 封装。高达 40V 的输入电压调节为 VQ,nom 为 3.3V,精度为±2%。TLF80511EJ V33 的典型静态电流为38μA,对于需要极低工作电流的系统来说,它就是理想的解决方案,例如永久连接电池的系统。当输出电流小于 100mA 时,它具有 100mV 的极低压差。此外,压差区域始于输入电压为 3.3 V 时(扩展操作范围)。因此,TLF80511 适用于汽车系统。此外,TLF80511 的新型快速调节理念仅需一个 1μF 的输出电容即可保持电压稳定。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511EJ V50

TLF80511EJ V50 是一款线性低压差稳压器,适用于具有固定输出电压(5V),负载电流高达 400 mA 的 D²PAK、DPAK 和 DSO8-EP 封装。高达 40V 的输入电压调节为 V Q,nom 为 5V,精度为±2%。TLF80511EJ V50 的典型静态电流为38μA,对于需要极低工作电流的系统来说,它就是理想的解决方案,例如永久连接电池的系统。当输出电流小于 100mA 时,它具有 100mV 的极低压差。此外,压差区域始于输入电压为 3.3 V 时(扩展操作范围)。因此,TLF80511EJ V50 适用于汽车系统。此外,TLF80511EJ V50 的新型快速调节理念仅需一个 1μF 的输出电容即可保持电压稳定。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511EJV33

Low Dropout Linear Fixed Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511EJV50

Low Dropout Linear Fixed Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511EJ_15

Low Dropout Linear Fixed Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511TC

TLF80511TC 是一款线性低压差稳压器,适用于具有固定输出电压(5V 和 3.3V),负载电流高达 400 mA 的 D²PAK、DPAK 和 DSO8-EP 封装。高达 40V 的输入电压调节为 V Q,nom 为 5V,精度为±2%。 TLF80511TC 的典型静态电流为38μA,对于需要极低工作电流的系统来说,它就是理想的解决方案,例如永久连接电池的系统。当输出电流小于 100mA 时,它具有 100mV 的极低压差。此外,压差区域始于输入电压为 3.3 V 时(扩展操作范围)。因此,TLF80511 适用于汽车系统。此外,TLF80511TC 的新型快速调节理念仅需一个 1μF 的输出电容即可保持电压稳定。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511TF

Low Dropout Linear Fixed Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511TF V33

TLF80511TF V33 是一款线性低压差稳压器,适用于具有固定输出电压(3.3V),负载电流高达 400 mA 的 D²PAK、DPAK DPAK 封装。高达 40V 的输入电压调节为 V Q,nom 为 3.3V,精度为±2%。TLF80511TF V33 的典型静态电流为38μA,对于需要极低工作电流的系统来说,它就是理想的解决方案,例如永久连接电池的系统。当输出电流小于 100mA 时,它具有 100mV 的极低压差。此外,压差区域始于输入电压为 3.3 V 时(扩展操作范围)。因此,TLF80511TF V33 适用于汽车系统。此外,TLF80511TF V33 的新型快速调节理念仅需一个 1μF 的输出电容即可保持电压稳定。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511TF V50

TLF80511TF V50 是一款线性低压差稳压器,适用于具有固定输出电压(5V),负载电流高达 400 mA 的 D²PAK、DPAK 和 DSO8-EP 封装。高达 40V 的输入电压调节为 V Q,nom 为 5V,精度为±2%。TLF80511TF V50 的典型静态电流为38μA,对于需要极低工作电流的系统来说,它就是理想的解决方案,例如永久连接电池的系统。当输出电流小于 100mA 时,它具有 100mV 的极低压差。此外,压差区域始于输入电压为 3.3 V 时(扩展操作范围)。因此,TLF80511TF V50 适用于汽车系统。此外,TLF80511TF V50 的新型快速调节理念仅需一个 1μF 的输出电容即可保持电压稳定。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511TFV33

Low Dropout Linear Fixed Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLF80511TFV50

Low Dropout Linear Fixed Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON