TLS810D1LD V50 [INFINEON]

TLS810D1LDV50 是一个线性稳压器,具有较宽的输入电压范围,低电压差和超低静态电流的特点。此产品可采用3.3mm * 3.3mm 新型无铅汽车用封装(TSON10) ,具有经过改善的光学检测特性。稳压器的输入电压范围为 2.75V 至 42V,静态电流极低,仅 9μA,非常适合汽车或任何永久连接电池的其他电源系统。TLS810D1LDV50 有精度为 2% 的 5.0V 输出电压版本可选,输出电流能力可达100mA。它只配有一个小型的陶瓷电容器,输出电流为1μF,十分稳定。此装置可通过启用功能打开或关断,电流损耗低于 1μA。TLS810D1LDV50 的操作范围扩展至2.75V,也适用于启动情况下的汽车系统操作的供电。TLS810D1LDV50 包括内部保护功能,例如输出电流限制和过温保护。输出电压由复位功能控制,包括欠压复位和启动时的延迟复位释放。 ;
TLS810D1LD V50
型号: TLS810D1LD V50
厂家: Infineon    Infineon
描述:

TLS810D1LDV50 是一个线性稳压器,具有较宽的输入电压范围,低电压差和超低静态电流的特点。此产品可采用3.3mm * 3.3mm 新型无铅汽车用封装(TSON10) ,具有经过改善的光学检测特性。稳压器的输入电压范围为 2.75V 至 42V,静态电流极低,仅 9μA,非常适合汽车或任何永久连接电池的其他电源系统。TLS810D1LDV50 有精度为 2% 的 5.0V 输出电压版本可选,输出电流能力可达100mA。它只配有一个小型的陶瓷电容器,输出电流为1μF,十分稳定。此装置可通过启用功能打开或关断,电流损耗低于 1μA。TLS810D1LDV50 的操作范围扩展至2.75V,也适用于启动情况下的汽车系统操作的供电。TLS810D1LDV50 包括内部保护功能,例如输出电流限制和过温保护。输出电压由复位功能控制,包括欠压复位和启动时的延迟复位释放。 

电池 电容器 陶瓷电容器 装置 稳压器
文件: 总31页 (文件大小:1339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra Low Quiescent Current Linear  
Voltage Regulator  
TLS810D1  
TLS810D1EJV50  
TLS810D1LDV50  
Linear Voltage Regulator  
Data Sheet  
Rev. 1.1, 2015-11-02  
Automotive Power  
TLS810D1  
TLS810D1EJ/LDV50  
1
Overview  
Features  
Ultra Low Quiescent Current of 9 µA  
Wide Input Voltage Range of 2.75 V to 42 V  
Output Current Capacity up to 100 mA  
Off Mode Current Less than 1 µA  
Low Drop Out Voltage of typ. 200 mV @ 100 mA  
Output Current Limit Protection  
Overtemperature Shutdown  
Enable  
Figure 1  
PG-DSO-8 EP  
Reset  
Available in PG-DSO-8 EP Package  
Available in PG-TSON-10 Package  
Wide Temperature Range  
Green Product (RoHS Compliant)  
AEC Qualified  
Figure 2  
PG-TSON-10  
Type  
Package  
Marking  
TLS810D1EJV50  
TLS810D1LDV50  
PG-DSO-8 EP  
PG-TSON-10  
810D1V50  
810D1V50  
Data Sheet  
2
Rev. 1.1, 2015-11-02  
TLS810D1EJ/LDV50  
Overview  
Description  
The TLS810D1 is a linear voltage regulator featuring wide input voltage range, low drop out voltage and ultra  
low quiescent current.  
With an input voltage range of 2.75 V to 42 V and ultra low quiescent of only 9 µA, the regulator is perfectly  
suitable for automotive or any other supply systems connected permanently to the battery.  
The TLS810D1EJ/LDV50 is the fixed 5 V output version with an accuracy of 2 % and output current capability  
up to 100 mA.  
The new regulation concept implemented in TLS810D1 combines fast regulation and very good stability while  
requiring only a small ceramic capacitor of 1 μF at the output.  
The tracking region starts already at input voltages of 2.75 V (extended operating range). This makes the  
TLS810D1 also suitable to supply automotive systems that need to operate during cranking condition.  
Internal protection features like output current limitation and overtemperature shutdown are implemented  
to protect the device against immediate damage due to failures like output short circuit to GND, over-current  
and over-temperature.  
The device can be switched on and off by the Enable feature. When the device is switched off, the current  
consumption is typically less than 1 µA.  
The output voltage is supervised by the Reset feature, including undervoltage reset and delayed reset release  
at power-on.  
Choosing External Components  
An input capacitor CI is recommended to compensate line influences. The output capacitor CQ is necessary for  
the stability of the regulating circuit. Stability is guaranteed at values CQ1 µF and an ESR 100 within the  
whole operating range.  
Data Sheet  
3
Rev. 1.1, 2015-11-02  
TLS810D1EJ/LDV50  
Block Diagram  
2
Block Diagram  
I
Q
Current  
Limitation  
RO  
Reset  
EN  
Enable  
Bandgap  
Reference  
Temperature  
Shutdown  
D
GND  
Figure 3  
Block Diagram TLS810D1  
Data Sheet  
4
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment in PG-DSO-8 EP Package  
1
2
8
7
I
Q
N.C.  
N.C.  
3
4
6
5
EN  
RO  
D
GND  
Figure 4  
Pin Configuration TLS810D1 in PG-DSO-8 EP package  
3.2  
Pin Definitions and Functions in PG-DSO-8 EP Package  
Pin  
Symbol  
Function  
1
I
Input  
It is recommended to place a small ceramic capacitor (e.g. 100 nF) to GND, close  
to the IC terminals, in order to compensate line influences.  
2
3
N.C.  
EN  
Not connected  
Enable  
Integrated pull-down resistor.  
Enable the IC with high level input signal.  
Disable the IC with low level input signal.  
4
5
GND  
D
Ground  
Reset Delay Timing  
Connect a ceramic capacitor to GND for adjusting the reset delay time.  
Leave open if the reset function is not needed.  
6
RO  
Reset Output  
Integrated pull-up resistor.  
Open collector output.  
Leave open if the reset function is not needed.  
7
N.C.  
Not connected  
Data Sheet  
5
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Pin Configuration  
Pin  
Symbol  
Function  
8
Q
Output  
Connect an output capacitor CQ to GND close to the IC’s terminals, respecting the  
values specified for its capacitance and ESR in Table 2 “Functional Range” on  
Page 9.  
Pad  
Exposed Pad  
Connect to heatsink area.  
Connect to GND.  
3.3  
Pin Assignment in PG-TSON-10 Package  
TSON-10  
I
N.C.  
EN  
1
2
3
4
5
10  
9
N.C.  
Q
8
N.C.  
RO  
N.C.  
7
GND  
D
6
Figure 5  
Pin Configuration TLS810D1 in PG-TSON-10 package  
3.4  
Pin Definitions and Functions in PG-TSON-10 Package  
Pin  
Symbol  
Function  
1
I
Input  
It is recommended to place a small ceramic capacitor (e.g. 100 nF) to GND, close  
to the IC terminals, in order to compensate line influences.  
2
3
N.C.  
EN  
Not connected  
Enable  
Integrated pull-down resistor.  
Enable the IC with high level input signal.  
Disable the IC with low level input signal.  
4
5
N.C.  
GND  
Not connected  
Ground  
Data Sheet  
6
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Pin Configuration  
Pin  
Symbol  
Function  
6
D
Reset Delay Timing  
Connect a ceramic capacitor to GND for adjusting the reset delay time.  
Leave open if the reset function is not needed.  
7
RO  
Reset Output  
Integrated pull-up resistor.  
Open collector output.  
Leave open if the reset function is not needed.  
8
9
N.C.  
Q
Not connected  
Output  
Connect an output capacitor CQ to GND close to the IC’s terminals, respecting the  
values specified for its capacitance and ESR in Table 2 “Functional Range” on  
Page 9.  
10  
N.C.  
Not connected  
Pad  
Exposed Pad  
Connect to heatsink area.  
Connect to GND.  
Data Sheet  
7
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
-0.3  
-0.3  
-0.3  
Max.  
45  
7
Voltage Input I, Enable EN  
Voltage  
VI, VEN  
V
V
V
P_4.1.1  
P_4.1.2  
P_4.1.3  
Voltage Output Q  
Voltage  
VQ  
Reset Output RO, Reset Delay D  
Voltage  
VRO, VD  
7
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Absorption  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.4  
P_4.1.5  
Tstg  
ESD Susceptibility to GND  
VESD,HBM -2  
2
kV  
V
HBM2)  
P_4.1.6  
ESD Susceptibility to GND  
VESD,CDM -750  
750  
CDM3) at all pins P_4.1.7  
1) Not subject to production testing, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
8
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
42  
1)  
Input Voltage Range  
VI  
VQ,nom+Vdr  
V
P_4.2.1  
P_4.2.2  
P_4.2.3  
P_4.2.4  
P_4.2.5  
2)  
Extended Input Voltage Range VI,ext  
2.75  
1
42  
V
3)4)  
4)  
Output Capacitor  
CQ  
µF  
°C  
Output Capacitor’s ESR  
ESR(CQ)  
100  
Junction temperature  
Tj  
-40  
150  
1) Output current is limited internally and depends on the input voltage, see Electrical Characteristics for more details.  
2) When VI is between VI,ext.min and VQ,nom + Vdr, VQ = VI - Vdr. When VI is below VI,ext,min, VQ can drop down to 0 V.  
3) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%.  
4) Not subject to production testing, specified by design.  
Note: Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics table.  
Data Sheet  
9
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
General Product Characteristics  
4.3  
Thermal Resistance  
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Table 3  
Thermal Resistance TLS810D1 in PG-DSO-8 EP Package  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Package Version  
Junction to Case1)  
Junction to Ambient  
Junction to Ambient  
RthJC  
RthJA  
RthJA  
19  
K/W  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
51  
2s2p board2)  
167  
1s0p board, footprint P_4.3.3  
only3)  
Junction to Ambient  
Junction to Ambient  
RthJA  
RthJA  
71  
60  
K/W  
K/W  
1s0p board, 300 mm2 P_4.3.4  
heatsink area on PCB3)  
1s0p board, 600 mm2 P_4.3.5  
heatsink area on PCB3)  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).  
Table 4  
Thermal Resistance TLS810D1 in PG-TSON-10 Package  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Package Version  
Junction to Case1)  
Junction to Ambient  
Junction to Ambient  
RthJC  
RthJA  
RthJA  
13  
K/W  
P_4.3.6  
P_4.3.7  
60  
K/W 2s2p board2)  
184  
K/W 1s0p board, footprint P_4.3.8  
only3)  
Junction to Ambient  
Junction to Ambient  
RthJA  
RthJA  
75  
64  
K/W 1s0p board, 300 mm2 P_4.3.9  
heatsink area on PCB3)  
K/W 1s0p board, 600 mm2 P_4.3.10  
heatsink area on PCB3)  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).  
Data Sheet  
10  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
5
Block Description and Electrical Characteristics  
5.1  
Voltage Regulation  
The output voltage VQ is divided by a resistor network. This fractional voltage is compared to an internal  
voltage reference and the pass transistor is driven accordingly.  
The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the  
internal circuit structure. To ensure stable operation, the output capacitor’s capacitance and its equivalent  
series resistor ESR requirements given in “Functional Range” on Page 9 have to be maintained. For details  
see the typical performance graph Output Capacitor Series Resistor ESR(CQ) versus Output Current IQ.  
Since the output capacitor is used to buffer load steps, it should be sized according to the application’s needs.  
An input capacitor CI is not required for stability, but is recommended to compensate line fluctuations. An  
additional reverse polarity protection diode and a combination of several capacitors for filtering should be  
used, in case the input is connected directly to the battery line. Connect the capacitors close to the regulator  
terminals.  
In order to prevent overshoots during start-up, a smooth ramping up function is implemented. This ensures  
almost no overshoots during start-up, mostly independent from load and output capacitance.  
Whenever the load current exceeds the specified limit, e.g. in case of a short circuit, the output current is  
limited and the output voltage decreases.  
The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions  
(e.g. output continuously short-circuit) by switching off the power stage. After the chip has cooled down, the  
regulator restarts. This oscillatory thermal behaviour causes the junction temperature to exceed the  
maximum rating of 150°C and can significantly reduce the IC’s lifetime.  
Regulated  
Output Voltage  
Supply  
IQ  
I
I
I
Q
Current  
Limitation  
C
ESR  
LOAD  
VI  
VQ  
CI  
Bandgap  
CQ  
Reference  
Temperature  
Shutdown  
GND  
Figure 6  
Block Diagram Voltage Regulation  
Data Sheet  
11  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
Table 5  
Electrical Characteristics  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified).  
Typical values are given at Tj = 25 °C, VI = 13.5 V.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Output Voltage Precision  
VQ  
4.90  
5.00  
5.10  
V
V
50 µA IQ 100 mA,  
5.7 V VI 28 V  
P_5.1.1  
Output Voltage Precision  
VQ  
4.90  
5.00  
5.10  
50 µA IQ 50 mA,  
5.7 V VI 42 V  
P_5.1.2  
Output Current Limitation IQ,lim  
110  
190  
1
260  
20  
mA 0 V VQ VQ,nom - 0.1 V  
P_5.1.3  
P_5.1.4  
Line Regulation  
steady-state  
ΔVQ,line  
mV  
mV  
mV  
dB  
IQ = 1 mA, 6 V VI 32 V  
Load Regulation  
steady-state  
ΔVQ,load -20  
-1  
VI = 6 V,  
50 µA IQ 100 mA  
P_5.1.5  
P_5.1.6  
P_5.1.7  
Dropout Voltage1)  
Vdr  
200  
55  
550  
IQ = 100 mA  
Vdr = VI - VQ  
Ripple Rejection2)  
PSRR  
IQ = 50 mA,  
fripple = 100 Hz,  
V
ripple = 0.5 Vp-p  
Overtemperature  
Shutdown Threshold  
Tj,sd  
151  
175  
10  
°C  
K
Tj increasing  
Tj decreasing  
P_5.1.8  
P_5.1.9  
Overtemperature  
Shutdown Threshold  
Hysteresis  
Tj,sdh  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V  
2) Not subject to production test, specified by design  
Data Sheet  
12  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
5.2  
Typical Performance Characteristics Voltage Regulation  
Typical Performance Characteristics  
Output Voltage VQ versus  
Junction Temperature Tj  
Output Current IQ versus  
Input Voltage VI  
300  
250  
200  
150  
100  
50  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
5.15  
5.1  
5.05  
5
4.95  
4.9  
4.85  
VI = 13.5 V  
IQ = 50 mA  
4.8  
0
0
10  
20  
VI [V]  
30  
40  
0
50  
Tj [°C]  
100  
150  
Dropout Voltage Vdr versus  
Junction Temperature Tj  
Dropout Voltage Vdr versus  
Output Current IQ  
400  
400  
IQ = 10 mA  
Tj = −40 °C  
IQ = 50 mA  
Tj = 25 °C  
350  
350  
IQ = 100 mA  
Tj = 150 °C  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
50  
100  
150  
0
20  
40  
60  
80  
100  
Tj [°C]  
IQ [mA]  
Data Sheet  
13  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
Load Regulation ΔVQ,load versus  
Output Current IQ  
Line Regulation ΔVQ,line versus  
Input Voltage VI  
10  
10  
Tj = −40 °C  
T = −40 °C  
j
8
8
Tj = 25 °C  
T = 25 °C  
j
Tj = 150 °C  
T = 150 °C  
j
6
6
4
2
4
2
0
0
−2  
−4  
−6  
−8  
−10  
−2  
−4  
−6  
−8  
V = 6 V  
I
IQ = 1 mA  
35 40  
−10  
0
20  
40  
60  
80  
100  
10  
15  
20  
25  
VI [V]  
30  
I
[mA]  
Q
Output Voltage VQ versus  
Input Voltage VI  
Power Supply Ripple Rejection PSRR versus  
Ripple Frequency fr  
80  
70  
60  
50  
40  
30  
6
5
4
3
2
1
0
20  
IQ = 10 mA  
CQ = 1 μF  
VI = 13.5 V  
Vripple = 0.5 Vpp  
10  
IQ = 50 mA  
Tj = 25 °C  
Tj = 25 °C  
0
10−2  
10−1  
100  
101  
102  
103  
0
1
2
3
4
5
6
VI [V]  
f [kHz]  
Data Sheet  
14  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
Output Capacitor Series Resistor ESR(CQ) versus  
Output Current IQ  
103  
Unstable Region  
102  
101  
Stable Region  
100  
10−1  
C
= 1 μF  
Q
V = 3...28 V  
I
10−2  
0
20  
40  
60  
80  
100  
I
[mA]  
Q
Data Sheet  
15  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
5.3  
Current Consumption  
Table 6  
Electrical Characteristics Current Consumption  
Tj = -40 °C to +150 °C, VI = 13.5 V (unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min.  
Typ. Max.  
Current Consumption  
Iq = II  
Iq,off  
Iq  
1
µA  
µA  
µA  
µA  
µA  
VEN 0.4 V, Tj < 105 °C  
IQ = 50 µA, Tj = 25 °C  
IQ = 50 µA, Tj < 105 °C  
IQ = 50 µA, Tj < 125 °C  
IQ= 100 mA, Tj < 125 °C  
P_5.3.1  
P_5.3.2  
P_5.3.3  
P_5.3.4  
P_5.3.5  
Current Consumption  
Iq = II - IQ  
9
11.5  
Current Consumption  
Iq = II - IQ  
Iq  
11.5 14.5  
Current Consumption  
Iq = II - IQ  
Iq  
12  
12  
16  
16  
Current Consumption  
Iq  
Iq = II - IQ  
Data Sheet  
16  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
5.4  
Typical Performance Characteristics Current Consumption  
Typical Performance Characteristics  
Current Consumption Iq versus  
Output Current IQ  
Current Consumption Iq versus  
Input Voltage VI  
24  
40  
Tj = −40 °C  
Tj = −40 °C  
Tj = 25 °C  
Tj = 25 °C  
35  
20  
Tj = 105 °C  
Tj = 105 °C  
Tj = 125 °C  
Tj = 125 °C  
30  
16  
25  
20  
15  
10  
5
12  
8
4
VI = 13.5 V  
IQ = 50 μA  
35 40  
0
0
0
20  
40  
60  
80  
100  
10  
15  
20  
25  
30  
VI [V]  
IQ [mA]  
Current Consumption Iq versus  
Junction Temperature Tj  
Current Consumption in OFF mode Iq,off versus  
Junction Temperature Tj  
24  
20  
16  
12  
8
4
VI = 13.5 V  
VEN 0.4 V  
3.5  
3
2.5  
2
1.5  
1
4
VI = 13.5 V  
0.5  
0
IQ = 50 μA  
0
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Data Sheet  
17  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
5.5  
Enable  
The device can be switched on and off by the Enable feature. Connect a HIGH level as specified below (e.g. the  
battery voltage) to pin EN to enable the device; connect a LOW level as specified below (e.g. GND) to switch it  
off. The Enable function has a build-in hysteresis to avoid toggling between ON/OFF state, if signals with slow  
slopes are appiled to the EN input.  
Table 7  
Electrical Characteristics Enable  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified).  
Typical values are given at Tj = 25 °C, VI = 13.5 V.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Enable High Level Input  
Voltage  
VEN,H  
VEN,L  
IEN,H  
2
2
V
VQ settled  
VQ 0.1 V  
VEN = 5 V  
P_5.5.1  
P_5.5.2  
P_5.5.3  
P_5.5.4  
Enable Low Level Input  
Voltage  
0.8  
4
V
Enable High Level Input  
Current  
µA  
MΩ  
Enable Internal Pull-down REN  
Resistor  
1.25  
3.5  
Data Sheet  
18  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
5.6  
Typical Performance Characteristics Enable  
Typical Performance Characteristics  
Enable Input Current IEN versus  
Enable Input Voltage VEN  
40  
Tj = −40 °C  
Tj = 25 °C  
35  
Tj = 150 °C  
30  
25  
20  
15  
10  
5
0
0
10  
20  
30  
40  
VEN [V]  
Data Sheet  
19  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
5.7  
Reset Function  
The reset function provides several features:  
Output Undervoltage Reset  
An output undervoltage condition is indicated by setting the Reset Output RO to “low”. This signal may be  
used to reset a microcontroller during low supply voltage.  
Power-On Reset Delay Time  
The power-on reset delay time trd allows microcontoller and oscillator to start up. This delay time is the time  
frame from exceeding the reset switching threshold VRT until the reset is released by switching the reset output  
“RO” from “low” to “high”. The power-on reset delay time trd is defined by an external delay capacitor CD  
connected to pin D charged by the delay capacitor charge current ID,ch starting from VD = 0 V.  
If the application needs a power-on reset delay time trd different from the value given in Table 8, the delay  
capacitor’s value can be derived from the specified value and the desired power-on delay time:  
trd,new  
100 nF  
CD  
=
trd  
(5.1)  
with  
CD: capacitance of the delay capacitor to be chosen  
rd,new: desired power-on reset delay time  
trd: power-on reset delay time specified in this datasheet  
t
For a precise calculation also take the delay capacitor’s tolerance into consideration.  
Reset Reaction Time  
The reset reaction rime trr considers the internal reaction time trr,int and the discharge time trr,d defined by the  
external delay capacitor CD (see typical performance graph for details). Hence, the total reset reaction time  
becomes:  
trr  
=
trr,int  
t
+
rr,d  
(5.2)  
with  
trr: reset reaction time  
t
t
rr,int: internal reset reaction time  
rr,d: reset discharge  
Optional Reset Output Pull-Up Resistor RRO,ext  
The Reset Output RO is an open collector output with an integrated pull-up resistor. If needed, an external  
pull-up resistor to the output Q can be added. In Table 8 a minimum value for the external resistor RRO,ext is  
given.  
Data Sheet  
20  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
Supply  
I
Q
VDD  
Int.  
Supply  
RRO  
CQ  
RRO ,ext  
Control  
RO  
ID,ch  
Reset  
IRO  
VDST  
VRADJ ,th  
Micro-  
Controller  
ID,dch  
GND  
D
GND  
CD  
Figure 7  
Block Diagram Reset Function  
Data Sheet  
21  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
VI  
t
t
t
t < trr,total  
VQ  
VRT,high  
VRT,low  
1 V  
trd  
VD  
VDU  
VDRL  
trd  
trr,total  
trd  
trr,total  
trd  
trr,total  
VRO  
1V  
VRO,low  
t
Thermal  
Shutdown  
Input  
Voltage Dip  
Under-  
voltage  
Spike at Over-  
output load  
TimingDiagram_Reset.vsd  
Figure 8  
Table 8  
Timing Diagram Reset  
Electrical Characteristics Reset  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified).  
Typical values are given at Tj = 25 °C, VI = 13.5 V.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
VRT,high 4.6  
VRT,low 4.5  
Max.  
Output Undervoltage Reset  
Output Undervoltage Reset  
Upper Switching Threshold  
4.7  
4.6  
4.8  
4.7  
V
V
VQ increasing,  
EN 2.0 V  
VQ decreasing,  
EN 2.0 V  
P_5.7.1  
P_5.7.2  
V
Output Undervoltage Reset  
Lower Switching Threshold  
V
Reset Output RO  
Data Sheet  
22  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
Table 8  
Electrical Characteristics Reset (cont’d)  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified).  
Typical values are given at Tj = 25 °C, VI = 13.5 V.  
Parameter  
Symbol  
Values  
Typ.  
0.2  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Reset Output Low Voltage  
VRO,low  
0
0.4  
V
1 V VQ VRT;  
RO > 4.7 kΩ  
P_5.7.3  
R
Reset Output  
Internal Pull-Up Resistor  
RRO,int  
RRO,ext  
13  
20  
36  
kΩ  
kΩ  
Internally connected P_5.7.4  
to Q  
Reset Output External  
Pull-up Resistor to VQ  
4.7  
1 V VQ VRT;  
VRO 0.4 V  
P_5.7.5  
Reset Delay Timing  
Power On Reset Delay Time  
trd  
17  
25  
37  
ms  
CD = 100 nF  
P_5.7.6  
Calculated vaule  
Upper Delay Switching  
Threshold  
VDU  
VDL  
0.9  
0.6  
V
P_5.7.7  
P_5.7.8  
Lower Delay Switching  
Threshold  
V
Delay Capacitor Charge Current ID,ch  
3.6  
µA  
VD = 1 V  
P_5.7.9  
Delay Capacitor Discharge  
Current  
ID,dch  
250  
mA VD = 1 V  
P_5.7.10  
Delay Capacitor Discharge Time trr,d  
2
4
µs  
CD = 100 nF  
P_5.7.11  
Calculated value  
Internal Reset Reaction Time1)  
Reset Reaction Time  
trr,int  
8
14  
18  
µs  
µs  
CD = 0 nF  
P_5.7.12  
P_5.7.13  
trr,total  
10  
CD = 100 nF  
Calculated value  
1) Parameter not subject to production test; specified by design.  
Data Sheet  
23  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Block Description and Electrical Characteristics  
5.8  
Typical Performance Characteristics Reset  
Typical Performance Characteristics  
Undervoltage Reset Threshold VRT versus  
Junction Temperature Tj  
Power On Reset Delay Time trd versus  
Junction Temperature Tj  
40  
35  
30  
25  
20  
15  
10  
5
5
VRT high  
4.95  
VRT low  
4.9  
4.85  
4.8  
4.75  
4.7  
4.65  
4.6  
4.55  
4.5  
C
= 100 nF  
D
0
0
50  
100  
150  
0
50  
100  
150  
T [°C]  
Tj [°C]  
j
Internal Reset Reaction Time trr,int versus  
Junction Temperature Tj  
16  
14  
12  
10  
8
6
4
2
0
0
50  
100  
150  
T [°C]  
j
Data Sheet  
24  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Application Information  
6
Application Information  
Note: The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
6.1  
Application Diagram  
Regulated  
Output Voltage  
DI1  
IQ  
Supply  
II  
I
Q
RRO  
e.g. Ignition  
EN  
Load  
(e.g.  
RO  
TLS810D1  
Micro  
Controller)  
CQ  
DI2  
CI2  
CI1  
1μF  
<45V  
10μF 100nF  
D
CD  
GND  
GND  
100nF  
Figure 9  
Application Diagram  
6.2  
Selection of External Components  
Input Pin  
6.2.1  
The typical input circuitry for a linear voltage regulator is shown in the application diagram above.  
A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high  
frequency disturbances imposed by the line e.g. ISO pulses 3a/b. This capacitor must be placed very close to  
the input pin of the linear voltage regulator on the PCB.  
An aluminum electrolytic capacitor in the range of 10 µF to 470 µF is recommended as an input buffer to  
smooth out high energy pulses, such as ISO pulse 2a. This capacitor should be placed close to the input pin of  
the linear voltage regulator on the PCB.  
An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum  
rating of the linear voltage regulator and protect the device against any damage due to over-voltage.  
The external components at the input are not mandatory for the operation of the voltage regulator, but they  
are recommended in case of possible external disturbances.  
Data Sheet  
25  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Application Information  
6.2.2  
Output Pin  
An output capacitor is mandatory for the stability of linear voltage regulators.  
The requirement to the output capacitor is given in “Functional Range” on Page 9. The graph “Output  
Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on Page 15 shows the stable operation range  
of the device.  
TLS810D1 is designed to be stable with extremely low ESR capacitors. According to the automotive  
environment, ceramic capacitors with X5R or X7R dielectrics are recommended.  
The output capacitor should be placed as close as possible to the regulator’s output and GND pins and on the  
same side of the PCB as the regulator itself.  
In case of rapid transients of input voltage or load current, the capacitance should be dimensioned in  
accordance and verified in the real application that the output stability requirements are fulfilled.  
6.3  
Thermal Considerations  
Knowing the input voltage, the output voltage and the load profile of the application, the total power  
dissipation can be calculated:  
PD = (VI VQ) × IQ + VI × Iq  
(6.1)  
with  
PD: continuous power dissipation  
VI: input voltage  
VQ: output voltage  
IQ: output current  
Iq: quiescent current  
The maximum acceptable thermal resistance RthJA can then be calculated:  
Tj, max Ta  
RthJA, max = ---------------------------  
PD  
(6.2)  
with  
Tj,max: maximum allowed junction temperature  
Ta: ambient temperature  
Based on the above calculation the proper PCB type and the necessary heat sink area can be determined with  
reference to the specification in “Thermal Resistance” on Page 10.  
Example  
Application conditions:  
VI = 13.5 V  
VQ = 5 V  
IQ = 80 mA  
Ta = 105 °C  
Data Sheet  
26  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Application Information  
Calculation of RthJA,max  
:
PD = (VI VQ) x IQ + VI x Iq  
= (13.5V – 5V) x 80 mA + 13.5 V x 0.016 mA  
= 0.68 W  
R
thJA,max= (Tj,max Ta) / PD  
= (150 °C – 105 °C) / 0.68 W  
= 66.2 K/W  
As a result, the PCB design must ensure a thermal resistance RthJA lower than 66.2 K/W. According to “Thermal  
Resistance” on Page 10, for both TLS810D1EJV50 and TLS810D1LDV50 at least 600 mm² heatsink area is  
needed on the FR4 1s0p PCB, or the FR4 2s2p board can be used.  
6.4  
Reverse Polarity Protection  
TLS810D1 is not self protected against reverse polarity faults. To protect the device against negative supply  
voltage, an external reverse polarity diode is needed, as shown in Figure 9. The absolute maximum ratings of  
the device as specified in “Absolute Maximum Ratings” on Page 8 must be kept.  
6.5  
Further Application Information  
For further information you may contact http://www.infineon.com/  
Data Sheet  
27  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Package Outlines  
7
Package Outlines  
0.35 x 45°  
1)  
±0.1  
3.9  
0.1 C D 2x  
+0.06  
0.19  
0.08  
Seating Plane  
C
C
0.64±0.25  
±0.2  
0.2  
1.27  
0.2  
2)  
M
±0.09  
0.41  
D 8x  
6
M
C A-B D 8x  
D
Bottom View  
±0.2  
3
A
1
4
8
5
1
4
8
5
B
0.1 C A-B 2x  
1)  
±0.1  
4.9  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width  
3) JEDEC reference MS-012 variation BA  
Figure 10 PG-DSO-8 EP  
Data Sheet  
28  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Package Outlines  
±0.1  
2.58  
±0.1  
0.1  
±0.1  
±0.1  
±0.1  
3.3  
0.36  
0.53  
0.05  
Z
Pin 1 Marking  
±0.1  
0.5  
Pin 1 Marking  
±0.1  
0.25  
PG-TSON-10-2-PO V02  
Z (4:1)  
0.07 MIN.  
Figure 11 PG-TSON-10  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
29  
Rev. 1.1 2015-11-02  
TLS810D1EJ/LDV50  
Revision History  
8
Revision History  
Revision  
Date  
Changes  
1.1  
2015-11-02 - New variant TLS810D1LDV50 in PG-TSON-10 package added.  
- Document style updated.  
- Typical performance graph Load Regulation updated.  
- Editorial changes.  
1.0  
2015-01-27 Datasheet - Initial Version  
Data Sheet  
30  
Rev. 1.1 2015-11-02  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,  
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, LITIX™, MIPAQ™,  
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,  
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of  
Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay  
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association  
Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.  
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave  
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of  
Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.  
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.  
Last Trademarks Update 2011-11-11  
www.infineon.com  
Edition 2015-11-02  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Legal Disclaimer  
The information given in this document shall in  
no event be regarded as  
Warnings  
Due to technical requirements, components  
may contain dangerous substances. For  
information on the types in question, please  
contact the nearest Infineon Technologies  
Office. Infineon Technologies components may  
be used in life-support devices or systems only  
with the express written approval of Infineon  
Technologies, if a failure of such components  
can reasonably be expected to cause the failure  
of that life-support device or system or to affect  
the safety or effectiveness of that device or  
system. Life support devices or systems are  
intended to be implanted in the human body or  
to support and/or maintain and sustain and/or  
protect human life. If they fail, it is reasonable to  
assume that the health of the user or other  
persons may be endangered.  
a guarantee of  
conditions or characteristics. With respect to any  
examples or hints given herein, any typical  
values stated herein and/or any information  
regarding the application of the device, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation, warranties of non-  
infringement of intellectual property rights of  
any third party.  
© 2015 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Information  
For further information on technology, delivery  
terms and conditions and prices, please contact  
the nearest Infineon Technologies Office  
(www.infineon.com).  

相关型号:

TLS810D1LDV33

Ultra Low Quiescent Current Linear Voltage Regulator
INFINEON

TLS820D0

Low Dropout Linear Voltage Regulator
INFINEON

TLS820D0EL V33

TLS820D0EL V33 是一款高性能的极低压差线性稳压器系列,采用 SSOP14-EP 封装,适用于 3.3 V 电源。这些稳压器的输入电压范围为 3 V 至 40 V,静态电流极低(仅 40μA),非常适合汽车或永久连接电池的任何其他电源系统。最大输出电流为 200mA,且过温输出电压精度 为2%。新的回路概念结合了快速调节和非常好的稳定性,输出端只需要一个 1μF 的小型陶瓷电容即可。在低于 100 mA 的电流下,该设备的典型压差非常低,仅 80 mV。工作范围从仅 3 V 的输入电压开始(扩展工作范围)。因此,新型 LDO 也适用于需要在启动条件下运行的汽车系统。
INFINEON

TLS820D0EL V50

TLS820D0EL V50 是一款高性能的极低压差线性稳压器系列,采用 SSOP14-EP 封装,适用于 5V 电源。这些稳压器的输入电压范围为 3 V 至 40 V,静态电流极低(仅 40μA),非常适合汽车或永久连接电池的任何其他电源系统。最大输出电流为 200mA,且过温输出电压精度 为2%。新的回路概念结合了快速调节和非常好的稳定性,输出端只需要一个 1μF 的小型陶瓷电容即可。在低于 100 mA 的电流下,该设备的典型压差非常低,仅 70 mV。工作范围从仅 3 V 的输入电压开始(扩展工作范围)。因此,新型 LDO 也适用于需要在启动条件下运行的汽车系统。
INFINEON

TLS820D0ELV33

Low Dropout Linear Voltage Regulator
INFINEON

TLS820D0ELV50

Low Dropout Linear Voltage Regulator
INFINEON

TLS820F0

Low Dropout Linear Voltage Regulator
INFINEON

TLS820F0EL V33

TLS820F0 V33 是高性能极低压降线性稳压器,采用 PG-SSOP-14 封装,适用于 3.3 V 电源。
INFINEON

TLS820F0EL V50

TLS820F0 V50 是高性能极低压降线性稳压器,采用 PG-SSOP-14 封装,适用于 5 V 电源。
INFINEON

TLS820F0ELV33

Fixed Positive LDO Regulator, 3.3V, 0.35V Dropout, PDSO14, GREEN, PLASTIC, SSOP-14
INFINEON

TLS820F0ELV33_15

Material Content Data Sheet
INFINEON

TLS820F0ELV50

Material Content Data Sheet
INFINEON