TLS820F0EL V33 [INFINEON]

TLS820F0 V33 是高性能极低压降线性稳压器,采用 PG-SSOP-14 封装,适用于 3.3 V 电源。;
TLS820F0EL V33
型号: TLS820F0EL V33
厂家: Infineon    Infineon
描述:

TLS820F0 V33 是高性能极低压降线性稳压器,采用 PG-SSOP-14 封装,适用于 3.3 V 电源。

稳压器
文件: 总40页 (文件大小:1227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Features  
Wide input voltage range from 3.0 V to 40 V  
Fixed output voltage 5 V or 3.3 V  
Output voltage precision ±2 %  
Output current capability up to 200 mA  
Ultra low current consumption typ. 40 µA  
Very low dropout voltage typ. 70 mV @100 mA  
Stable with ceramic output capacitor of 1 µF  
Delayed reset at power-on with 2 Programmable delay times 8.5 ms / 16.5 ms  
Adjustable reset threshold down to 2.50 V  
Watchdog with flexible timings and current dependent deactivation: 16 ms / 32 ms / 48 ms / 96 ms,  
Activated at IQ > 5.5 mA  
Enable, undervoltage reset, overtemperature shutdown  
Output current limitation  
Wide temperature range  
Green product (RoHS compliant)  
Potential applications  
Automotive general ECUs  
Dashboard and cluster supplies  
Powertrain and EPS applications  
Microcontroller supply for safety applications  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100/101.  
Description  
The OPTIREG™ linear TLS820F0ELVxx is a high performance very low dropout linear voltage regulator for 5 V  
(TLS820F0ELV50) or 3.3 V (TLS820F0ELV33) supply in a PG-SSOP-14 package.  
With an input voltage range of 3 V to 40 V and very low quiescent of only 40 µA, these regulators are perfectly  
suitable for automotive or any other supply systems connected to the battery permanently. The TLS820F0  
provides an output voltage accuracy of 2 % and a maximum output current up to 200 mA.  
Datasheet  
Rev. 1.2  
2021-04-08  
www.infineon.com/OPTIREG-linear  
1
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
The new loop concept combines fast regulation and very good stability while requiring only one small ceramic  
capacitor of 1 µF at the output. At currents below 100 mA the device will have a very low typical dropout  
voltage of only 70 mV (for 5 V device) and 80 mV (for 3.3 V device). The operating range starts already at input  
voltages of only 3 V (extended operating range). This makes the TLS820F0 also suitable to supply automotive  
systems that need to operate during cranking condition.  
The device can be switched on and off by the enable feature as described in Chapter 4.5.  
The output voltage is supervised by the reset feature, including undervoltage reset, delayed reset at power-on  
and an adjustable lower reset threshold. More details can be found in Chapter 4.7.  
In addition, a watchdog circuit with flexible timings is integrated to monitor the microcontroller‘s operation.  
Internal protection features like output current limitation and overtemperature shutdown are implemented  
to protect the device against immediate damage due to failures like output short circuit to GND, over-current  
and over-temperatures.  
External components  
An input capacitor CI is recommended to compensate line influences. The output capacitor CQ is necessary for  
the stability of the regulating circuit. TLS820F0 is designed to be also stable with low ESR ceramic capacitors.  
Type  
Package  
Marking  
820F0V50  
820F0V33  
TLS820F0ELV50  
TLS820F0ELV33  
PG-SSOP-14  
PG-SSOP-14  
Datasheet  
2
Rev.1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin assignment TLS820F0ELV50 and TLS820F0ELV33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin definitions and functions TLS820F0ELV50 and TLS820F0ELV33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
3.3  
4
Block description and electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Voltage regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical performance characteristics voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical performance characteristics current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Typical performance characteristics enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Typical performance characteristics reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Standard watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Typical performance characteristics standard watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
5
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Selection of external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Input pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Output pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5.1  
5.2  
5.2.1  
5.2.2  
5.3  
5.4  
5.5  
6
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Datasheet  
3
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block diagram  
1
Block diagram  
I
Q
RO  
Current  
Limitation  
Reset  
EN  
RADJ  
Enable  
Bandgap  
Reference  
DT1  
DT2  
WI  
Temperature  
Shutdown  
WO  
Watchdog  
GND  
Figure 1  
Block diagram TLS820F0ELV50 and TLS820F0ELV33  
Datasheet  
4
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Pin configuration  
2
Pin configuration  
2.1  
Pin assignment TLS820F0ELV50 and TLS820F0ELV33  
SSOP-14  
I
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Q
n.c.  
n.c.  
WO  
EN  
n.c.  
RO  
DT2  
GND  
n.c.  
DT1  
RADJ  
8
WI  
Figure 2  
Pin configuration  
2.2  
Pin definitions and functions TLS820F0ELV50 and TLS820F0ELV33  
Pin  
Symbol  
Function  
1
I
Input  
It is recommended to place a small ceramic capacitor (e.g. 100 nF) to GND, close  
to the IC terminals, in order to compensate line influences. See also  
Chapter 5.2.1  
2, 4, 6 n.c.  
Not connected  
Leave open or connect to GND  
3
EN  
Enable (integrated pull-down resistor)  
Enable the IC with high level input signal;  
Disable the IC with low level input signal;  
5
7
GND  
WI  
Ground  
Watchdog input (integrated pull-down resistor)  
Serve Watchdog with trigger input signal (usable for microcontroller monitoring)  
8
9
RADJ  
DT1  
Reset threshold adjustment  
Connect to GND to use standard value;  
Connect an external voltage divider to adjust reset threshold  
Delay timing 1 (integrated pull-down resistor)  
Connect to GND or Q to select Reset timing acc. to Table 8  
Connect to GND or Q to select Watchdog timing acc. to Table 11  
10  
11  
DT2  
RO  
Delay timing 2 (integrated pull-down resistor)  
Connect to GND or Q to select Watchdog timing acc. to Table 11  
Reset output (integrated pull-up resistor to Q)  
Open collector output;  
Leave open if the reset function is not needed  
Datasheet  
5
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Pin configuration  
Pin  
Symbol  
Function  
12  
WO  
Watchdog output (integrated pull-up resistor to Q)  
Open collector output;  
Leave open if the watchdog function is not needed  
13  
14  
n.c.  
Q
Not connected  
Leave open or connect to GND  
Output voltage  
Connect output capacitor CQ to GND close to the IC’s terminals, respecting the  
values specified for its capacitance and ESR in “Functional range” on Page 8  
Pad  
Exposed pad  
Connect to heatsink area;  
Connect to GND  
Datasheet  
6
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 1  
Absolute maximum ratings1)  
Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Input I, Enable EN  
Voltage  
VI, VEN  
-0.3  
45  
7
V
V
P_4.1.1  
P_4.1.3  
P_4.1.5  
Output Q, Watchdog output WO  
Voltage  
VQ, VRO, VWO -0.3  
Watchdog input WI, Delay timing DT1 and DT2, Reset threshold adjustment RADJ  
Voltage  
VWI,VDT1  
,
-0.3  
7
V
V
DT2, VRADJ  
Temperatures  
Junction temperature  
Storage temperature  
ESD absorption  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.7  
P_4.1.8  
Tstg  
ESD susceptibility to GND  
ESD susceptibility to GND  
VESD  
VESD  
-2  
2
kV  
V
2) HBM  
3) CDM  
3) CDM  
P_4.1.9  
-500  
500  
750  
P_4.1.10  
P_4.1.11  
ESD susceptibility pin 1, 7, 8, 14 (corner VESD1,7,8,14 -750  
pins) to GND  
V
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Note:  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
7
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
General product characteristics  
3.2  
Functional range  
Table 2  
Functional range  
Tj = -40°C to 150°C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ.  
Max.  
40  
1)  
Input voltage range  
VI  
VQ,nom + Vdr  
V
P_4.2.1  
P_4.2.3  
P_4.2.5  
P_4.2.6  
2)  
Extended input voltage range  
Enable voltage range  
VI,ext  
VEN  
CQ  
3.0  
0
40  
V
40  
V
3)4)  
Output capacitor’s  
1
µF  
requirements for stability  
3)  
ESR  
ESR(CQ)  
Tj  
100  
150  
P_4.2.7  
P_4.2.9  
Junction temperature  
-40  
°C  
1) Output current is limited internally and depends on the input voltage, see Electrical Characteristics for more details.  
2) When VI is between VI,ext,min and VQ,nom + Vdr, VQ = VI - Vdr. When VI is below VI,ext,min, VQ can drop down to 0 V.  
3) Not subject to production test, specified by design.  
4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics  
table.  
Datasheet  
8
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
General product characteristics  
3.3  
Thermal resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 3  
Thermal resistance  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or  
Test Condition  
Number  
Max.  
Package version PG-SSOP-14  
Junction to case  
1)  
RthJC  
RthJA  
RthJA  
9
K/W  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
P_4.3.3  
Junction to ambient  
Junction to ambient  
43  
1)2) 2s2p board  
1)3) 1s0p board,  
footprint only  
128  
Junction to ambient  
Junction to ambient  
RthJA  
58  
50  
K/W  
K/W  
1)3) 1s0p board,  
300 mm2 heatsink  
area on PCB  
1)3) 1s0p board,  
600 mm2 heatsink  
area on PCB  
P_4.3.4  
P_4.3.5  
RthJA  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).  
Datasheet  
9
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4
Block description and electrical characteristics  
4.1  
Voltage regulation  
The output voltage VQ is divided by a resistor network. This fractional voltage is compared to an internal  
voltage reference and the pass transistor is driven accordingly.  
The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the  
internal circuit design. To ensure stable operation, the output capacitor’s capacitance and its equivalent  
series resistor (ESR) requirements given in “Functional range” on Page 8 have to be maintained. For details,  
also see the typical performance graph “Output capacitor series resistor ESR(CQ) versus output current  
IQ” on Page 15. As the output capacitor also has to buffer load steps, it should be sized according to the  
application’s needs.  
An input capacitor CI is recommended to compensate line influences. In order to block influences like pulses  
and HF distortion at input side, an additional reverse polarity protection diode and a combination of several  
capacitors for filtering should be used. Connect the capacitors close to the component’s terminals.  
In order to prevent overshoots during start-up, a smooth ramp up function is implemented. This ensures  
almost no output voltage overshoots during start-up, mostly independent from load and output capacitance.  
Whenever the load current exceeds the specified limit, e.g. in case of a short circuit, the output current is  
limited and the output voltage decreases.  
The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions  
(e.g. output continuously short-circuit) by switching off the power stage. After the chip has cooled down, the  
regulator restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed.  
However, junction temperatures above 150 °C are outside the maximum ratings and therefore significantly  
reduce the IC’s lifetime.  
Regulated  
Output Voltage  
Supply  
IQ  
II  
I
Q
RO  
Current  
Limitation  
Reset  
EN  
RADJ  
C
Enable  
CI  
VI  
VQ  
Bandgap  
Reference  
LOAD  
ESR  
DT1  
DT2  
Temperature  
Shutdown  
CQ  
WI  
WO  
Watchdog  
GND  
Figure 3  
Voltage regulation  
V
VI  
Vdr  
VQ,nom  
VI,ext,min  
VQ  
t
Figure 4  
Output voltage vs. input voltage  
Datasheet  
10  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Table 4  
Electrical characteristics voltage regulator 5 V version  
Tj = -40°C to 150°C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Output voltage precision  
Output Voltage Precision  
VQ  
VQ  
4.9  
5.0  
5.0  
7.5  
5.1  
5.1  
18  
V
V
0.05 mA < IQ < 200 mA  
5.44 V < VI < 28 V  
P_5.1.1  
P_5.1.2  
P_5.1.7  
4.9  
0.05 mA < IQ < 100 mA  
5.27 V < VI < 40 V  
Output voltage start-up  
slew rate  
dVQ/dt 3.0  
V/ms VI > 18 V/ms  
CQ = 1 µF  
0.5 V < VQ < 4.5 V  
Output current limitation  
IQ,max  
201  
350 550 mA 0 V < VQ < 4.8 V  
P_5.1.8  
Load regulation  
steady-state  
ΔVQ,load -15  
-1.5  
0
5
mV IQ = 0.05 mA to 200 mA  
VI = 6 V  
P_5.1.10  
Line regulation  
steady-state  
ΔVQ,line -25  
25  
mV VI = 8 V to 32 V  
IQ = 1 mA  
P_5.1.12  
P_5.1.14  
P_5.1.15  
P_5.1.18  
P_5.1.19  
P_5.1.20  
Dropout voltage  
Vdr = VI - VQ  
Vdr  
140 340 mV 1) IQ = 200 mA  
Dropout voltage  
Vdr = VI - VQ  
Vdr  
70  
59  
170 mV 1) IQ = 100 mA  
2)  
Power supply ripple rejection  
PSRR  
Tj,sd  
Tj,sdh  
dB  
f
= 100 Hz  
ripple  
V
ripple = 0.5 Vpp  
Overtemperature shutdown  
threshold  
151  
200 °C  
2) Tj increasing  
Overtemperature shutdown  
threshold hysteresis  
15  
K
2) Tj decreasing  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V  
2) Not subject to production test, specified by design  
Datasheet  
11  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Table 5  
Electrical characteristics voltage regulator 3.3 V version  
Tj = -40°C to 150°C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Output voltage precision  
Output voltage precision  
VQ  
VQ  
3.23 3.3  
3.37  
3.37  
18  
V
V
0.05 mA < IQ < 200 mA  
3.72 V < VI < 28 V  
P_5.1.21  
P_5.1.22  
P_5.1.27  
3.23 3.3  
0.05 mA < IQ < 100 mA  
3.55 V < VI < 40 V  
Output voltage start-up  
slew rate  
dVQ/dt 3.0  
7.5  
V/ms VI > 18 V/ms  
CQ = 1 µF  
0.33 V < VQ < 2.97 V  
Output current limitation  
IQ,max  
201  
350 550 mA 0 V < VQ < 3.1 V  
P_5.1.28  
P_5.1.30  
Load regulation  
steady-state  
ΔVQ,load -15  
-1.5  
0
5
mV IQ = 0.05 mA to 200 mA  
VI = 6 V  
Line regulation  
steady-state  
ΔVQ,line -20  
20  
mV VI = 8 V to 32 V  
IQ = 1 mA  
P_5.1.32  
P_5.1.34  
P_5.1.35  
P_5.1.38  
P_5.1.39  
P_5.1.40  
Dropout voltage  
Vdr = VI - VQ  
Vdr  
160 350 mV 1) IQ = 200 mA  
Dropout voltage  
Vdr = VI - VQ  
Vdr  
80  
63  
175 mV 1) IQ = 100 mA  
2)  
Power supply ripple rejection  
PSRR  
Tj,sd  
Tj,sdh  
dB  
f
= 100 Hz  
ripple  
V
ripple = 0.5 Vpp  
Overtemperature shutdown  
threshold  
151  
200 °C  
2) Tj increasing  
Overtemperature shutdown  
threshold hysteresis  
15  
K
2) Tj decreasing  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V  
2) Not subject to production test, specified by design  
Datasheet  
12  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4.2  
Typical performance characteristics voltage regulator  
Typical performance characteristics  
Output voltage VQ versus  
Output voltage VQ versus  
junction temperature Tj (3.3 V version)  
junction temperature Tj (5 V version)  
3.5  
IQ = 100mA  
IQ = 100mA  
3.45  
3.4  
5.15  
5.1  
3.35  
3.3  
5.05  
5
3.25  
3.2  
4.95  
4.9  
3.15  
3.1  
4.85  
4.8  
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Dropout voltage Vdr versus  
Dropout voltage Vdr versus  
junction temperature Tj (3.3 V version)  
junction temperature Tj (5 V version)  
300  
300  
IQ = 100 mA  
IQ = 100 mA  
IQ = 200 mA  
IQ = 200 mA  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
VQ = 3.3 V  
VQ = 5 V  
0
0
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Datasheet  
13  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Load regulation ΔVQ,load versus  
output current change IQ  
Line regulation ΔVQ,line versus  
input voltage VI  
0
−0.5  
−1  
8
6
4
−1.5  
−2  
2
−2.5  
−3  
0
−2  
−4  
−6  
−8  
−3.5  
VI = 6 V  
IQ = 1 mA  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
−4  
Tj = −40 °C  
Tj = 25 °C  
−4.5  
Tj = 150 °C  
−5  
0
50  
100  
150  
200  
10  
15  
20  
25  
30  
IQ [mA]  
VI [V]  
Output voltage VQ versus  
Output voltage VQ versus  
Input voltage VI (3.3 V version)  
Input voltage VI (5 V version)  
4
6
Tj = −40 °C  
Tj = −40 °C  
Tj = 25 °C  
Tj = 25 °C  
3.5  
5
Tj = 150 °C  
Tj = 150 °C  
IQ = 100 mA  
3
IQ = 100 mA  
4
2.5  
2
3
2
1
0
1.5  
1
0.5  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VI [V]  
VI [V]  
Datasheet  
14  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Power supply ripple rejection PSRR versus  
ripple frequency f  
Output capacitor series resistor ESR(CQ) versus  
output current IQ  
103  
80  
VQ = 3.3 V  
VQ = 5 V  
70  
Unstable Region  
102  
60  
50  
40  
30  
101  
Stable Region  
100  
20  
10  
0
IQ = 10 mA  
Q = 1 μF  
ripple = 0.5 VPP  
10−1  
C
V
Tj = 25 °C  
CQ = 1 μF  
Tj = 25 °C  
10−2  
10−2  
10−1  
100  
101  
102  
103  
0.05  
1
10  
200  
IQ [mA]  
f [kHz]  
Maximum output current IQ versus  
input voltage VI  
Dropout voltage Vdr versus  
output current IQ  
800  
300  
VQ = 3.3 V  
Tj = −40 °C  
VQ = 5 V  
700  
600  
500  
400  
300  
200  
100  
0
Tj = 25 °C  
Tj = 150 °C  
VQ = 0 V  
250  
Tj = 25 °C  
200  
150  
100  
50  
0
0
10  
20  
30  
40  
0
50  
100  
150  
200  
VI [V]  
IQ [mA]  
Datasheet  
15  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4.3  
Current consumption  
Table 6  
Electrical characteristics current consumption  
Tj = -40°C to 150°C, VI = 13.5 V (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Conditions of other pins: DT1 = DT2 = WI = GND  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Current consumption  
Iq = II  
Iq,off  
Iq,off  
Iq  
1.3  
5
µA  
µA  
µA  
µA  
µA  
VEN = 0 V; Tj < 105 °C  
VEN = 0.4 V; Tj < 125 °C  
P_5.3.1  
P_5.3.3  
P_5.3.4  
P_5.3.7  
P_5.3.9  
Current consumption  
Iq = II  
8
Current consumption  
Iq = II - IQ  
40  
62  
62  
52  
77  
80  
IQ = 0.05 mA  
Tj = 25 °C  
Current consumption  
Iq = II - IQ  
Iq  
IQ = 0.05 mA  
Tj < 125 °C  
1) IQ = 200 mA  
Tj < 125 °C  
Current consumption  
Iq = II - IQ  
Iq  
1) Not subject to production test, specified by design  
Datasheet  
16  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4.4  
Typical performance characteristics current consumption  
Typical performance characteristics  
Current consumption Iq versus  
output current IQ  
Current consumption Iq versus  
input voltage VI  
100  
200  
180  
160  
140  
120  
100  
80  
Tj = 25 °C  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VEN = 5 V  
IQ = 50 uA  
60  
40  
20  
0
0
50  
100  
150  
200  
5
10  
15  
20  
VI [V]  
25  
30  
35  
40  
IQ [mA]  
Datasheet  
17  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4.5  
Enable  
The TLS820F0 can be switched on and off by the enable feature: connect a HIGH level as specified below (e.g.  
the battery voltage) to pin EN to enable the device; connect a LOW level as specified below (e.g. GND) to shut  
it down. The enable has a built in hysteresis to avoid toggling between ON/OFF state, if signals with slow  
slopes are applied to the EN input.  
Table 7  
Electrical characteristics enable  
Tj = -40°C to 150°C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
High level input voltage  
Low level input voltage  
Enable threshold hysteresis  
High level input current  
High level input current  
VEN,H  
VEN,L  
VEN,Hy  
IEN,H  
IEN,H  
REN  
2
V
VQ settled  
VQ 0.1 V  
P_5.5.1  
P_5.5.2  
P_5.5.3  
P_5.5.4  
P_5.5.6  
P_5.5.7  
0.8  
V
100  
mV  
µA  
µA  
MΩ  
3.5  
22  
2.6  
VEN = 3.3 V  
VEN 18 V  
Enable internal pull-down  
resistor  
0.95 1.5  
Datasheet  
18  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4.6  
Typical performance characteristics enable  
Typical performance characteristics  
Input current IIN versus  
input voltage VIN (condition: VEN = 0 V)  
Enable input current IEN versus  
enable input voltage VEN  
30  
50  
Tj = −40 °C  
Tj = −40 °C  
45  
Tj = 25 °C  
Tj = 25 °C  
25  
Tj = 150 °C  
Tj = 150 °C  
40  
35  
30  
25  
20  
15  
10  
5
VEN = 0V  
20  
15  
10  
5
0
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
VIN [V]  
VEN [V]  
Output voltage VQ versus  
Output voltage VQ versus  
time (EN switched ON, 5 V version)  
time (EN switched ON, 3.3 V version)  
6
6
5
4
3
2
5
4
3
2
IQ = 100 mA  
Tj = −40 °C  
IQ = 100 mA  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
VEN  
Tj = 25 °C  
Tj = 150 °C  
VEN  
1
0
1
0
0
500  
1000  
t [us]  
1500  
2000  
0
500  
1000  
t [us]  
1500  
2000  
Datasheet  
19  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4.7  
Reset  
The TLS820F0’s output voltage is supervised by the reset feature, including undervoltage reset, delayed reset  
at power-on and an adjustable reset threshold.  
The undervoltage reset function sets the pin RO to LOW, in case VQ is falling for any reason below the reset  
threshold VRT,low  
.
When the regulator is powered on, the pin RO is held at LOW for the duration of the power-on reset delay time  
trd.  
Supply  
I
Q
VDD  
CQ  
RRO,int  
Control  
RO  
Reset  
S
R
IRO  
Reference  
OR  
Q
OR  
Micro-  
Controller  
RADJ ,1  
Timer  
RADJ  
IRADJ  
GND  
DT1  
GND  
RADJ ,2  
Figure 5  
Block diagram reset circuit  
Reset delay time  
The pin DT1 is used to set the desired reset delay time trd. Connect this pin either to GND or Q to select the  
timing according to Table 8.  
Table 8  
Reset delay time selection  
DT1 connected to  
trd  
GND  
Q
16.5 ms  
8.5 ms  
Power-on reset delay time  
The power-on reset delay time is defined by the parameter trd and allows a microcontroller and oscillator to  
start up. This delay time is the time period from exceeding the upper reset switching threshold VRT,high until the  
reset is released by switching the reset output “RO” from “LOW” to “HIGH”.  
Undervoltage reset delay time  
The undervoltage reset delay time is defined by the parameter trd. It is the time interval from exceeding the  
reset switching threshold VRT,high until the reset is released by switching the reset output from low to high.  
Reset blanking time  
The reset blanking time trr,blank avoids that short undervoltage spikes trigger an unwanted reset “low” signal.  
Datasheet  
20  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Reset reaction time  
In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,low  
,
the reset output “RO” is set to low, after the delay of the internal reset reaction time trr,int. The reset blanking  
time trr,blank is part of the reset reaction time trr,int  
.
Reset output “RO”  
The reset output “RO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic  
“RO” signal is desired, an external pull-up resistor can be connected to the output “Q”. Since the maximum  
“RO” sink current is limited, the minimum value of the optional external resistor “RRO,ext” is given in Table  
“Reset output RO” on Page 23.  
Reset output “RO” low for VQ 1 V  
In case of an undervoltage reset condition reset output “RO” is held “low” for VQ 1 V, even if the input “I” is  
not supplied and the voltage VI drops below 1 V. This is achieved by supplying the reset circuit from the output  
capacitor.  
Reset adjust function  
The undervoltage reset switching threshold can be adjusted according to the application’s needs by  
connecting an external voltage divider (RADJ1, RADJ2) at pin “RADJ”. For selecting the default threshold connect  
pin “RADJ” to GND. The reset adjustment range for the TLS820F0ELV50 is given in Reset threshold  
adjustment range. The reset adjustment range for the TLS820F0ELV33 is given in Reset threshold  
adjustment range.  
When dimensioning the voltage divider, take into consideration that there will be an additional current  
constantly flowing through the resistors.  
With a voltage divider connected, the reset switching threshold VRT,new is calculated as follows  
(neglecting the Reset adjust pin current IRADJ):  
VRT,lo,new = VRADJ,th × (RADJ,1 + RADJ,2) / RADJ,2  
(4.1)  
with  
V
RT,lo,new: Desired undervoltage reset switching threshold.  
ADJ,1, RADJ,2: Resistors of the external voltage divider, see Figure 5.  
RADJ,th: Reset adjust switching threshold given in Reset adjustment switching threshold.  
R
V
Datasheet  
21  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
VI  
t
t
t
t < trr,blank  
VQ  
VRH  
VRT,high  
VRT,low  
1 V  
trd  
trr,int  
trd  
trr,int  
trd  
trr,int  
VRO  
trd  
1V  
VRO,low  
Thermal  
Shutdown  
Input  
Voltage Dip  
Under-  
voltage  
Spike at Over-  
output load  
Figure 6  
Typical timing diagram reset  
Datasheet  
22  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Table 9  
Electrical characteristics reset  
Tj = -40°C to 150°C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Output undervoltage reset 5V version only  
Output undervoltage reset upper VRT,high  
switching threshold  
4.6  
4.5  
60  
4.7  
4.6  
100  
4.8  
4.7  
V
V
VQ increasing  
P_5.7.1  
P_5.7.2  
Output undervoltage reset lower VRT,low  
switching threshold - default  
VQ decreasing  
RADJ = GND  
Output undervoltage reset  
switching hysteresis  
VRT,hy  
VRH  
mV RADJ connected to GND P_5.7.3  
Output undervoltage reset  
200 400  
mV RADJ = GND  
P_5.7.4  
headroom VQ - VRT  
Output undervoltage reset 3V3 version only  
Output undervoltage reset upper VRT,high  
switching threshold  
3.08 3.15 3.22  
V
V
VQ increasing  
P_5.7.5  
P_5.7.6  
Output undervoltage reset lower VRT,low  
switching threshold - default  
3.0  
60  
3.05 3.13  
VQ decreasing  
RADJ = GND  
Output undervoltage reset  
switching hysteresis  
VRT,hy  
VRH  
100  
mV RADJ connected to GND P_5.7.7  
Output undervoltage reset  
100 250  
mV RADJ = GND  
P_5.7.8  
P_5.7.9  
headroom VQ - VRT  
Reset threshold adjustment  
Reset adjustment switching  
threshold  
VRADJ,th  
1.15 1.20 1.25  
V
Reset threshold adjustment range VRT,range  
Reset threshold adjustment range VRT,range  
Reset output RO  
2.5  
2.5  
4.4  
2.9  
V
V
for VQ,nom = 5 V  
P_5.7.10  
P_5.7.11  
for VQ,nom = 3.3 V  
Reset output low voltage  
VRO,low  
RRO,int  
RRO,ext  
0.2  
20  
0.4  
36  
V
1 V VQ VRT;  
P_5.7.12  
R
RO 5.1 kΩ  
Reset output  
internal pull-up resistor  
13  
5.1  
kinternally connected to P_5.7.13  
Q
Reset output external  
pull-up resistor to VQ  
k1 V VQ VRT  
RO 0.4 V  
;
P_5.7.14  
V
Reset delay timing  
Reset delay time  
trd,slow  
trd,fast  
trr,blank  
trr,blank  
trr,int  
13.2 16.5 19.8 ms DT1 connected to GND P_5.7.20  
Reset delay time  
6.8  
8.5  
6
10.2 ms DT1 connected to Q  
P_5.7.21  
P_5.7.22  
P_5.7.46  
P_5.7.23  
P_5.7.36  
Reset blanking time  
Reset blanking time  
Internal reset reaction time  
Internal reset reaction time  
µs  
µs  
µs  
µs  
1) for VQ,nom = 3.3 V  
2) for VQ,nom = 5 V  
for VQ,nom = 3.3 V  
for VQ,nom = 5 V  
7
7
20  
33  
trr,int  
10  
Datasheet  
23  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Table 9  
Electrical characteristics reset (cont’d)  
Tj = -40°C to 150°C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Reset delay input DT1  
Delay input DT1  
high signal valid  
VDT1,H  
2.0  
V
V
P_5.7.24  
P_5.7.25  
P_5.7.34  
Delay input DT1  
low signal valid  
VDT1,L  
0.80  
Delay input DT1  
signal slew rate  
dVDT1/dt  
1
V/µs VDT1,L < VDT1 < VDT1,H  
High level input current  
IDT1,H  
RDT1  
3.5  
2.6  
µA  
VDT1 = 3.3 V  
P_5.7.27  
P_5.7.28  
Delay input DT1  
0.9  
1.5  
MΩ  
internal pull-down resistor  
1) Not subject to production test, specified by design.  
2) Not subject to production test, specified by design.  
Datasheet  
24  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4.8  
Typical performance characteristics reset  
Typical performance characteristics  
Undervoltage reset threshold VRT versus  
junction temperature Tj (3.3 V version)  
Undervoltage reset threshold VRT versus  
junction temperature Tj (5 V version)  
3.5  
3.4  
3.3  
3.2  
3.1  
3
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
2.9  
2.8  
4.3  
IQ = 1 mA  
IQ = 1 mA  
VQ = 5 V  
RADJ set to GND  
VQ = 3.3 V  
2.7  
2.6  
2.5  
4.2  
4.1  
4
RADJ set to GND  
VRT, high  
VRT, high  
VRT, low  
VRT, low  
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Power-on reset delay time trd versus  
junction temperature Tj  
Internal reset reaction time trr,int versus  
junction temperature Tj  
25  
20  
VQ = 3.3 V  
fast  
slow  
IQ = 1 mA  
18  
VQ = 5 V  
16  
14  
12  
10  
8
20  
15  
10  
5
6
4
2
0
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Datasheet  
25  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4.9  
Standard watchdog  
The TLS820F0 features a load dependent watchdog function with a programmable watchdog timing. The  
watchdog function monitors a microcontroller, including time base failures. In case of a missing falling edge  
within a certain pulse repetition time, the watchdog output “WO” is set to “low”.  
The watchdog uses an internal oscillator as timebase. The effective trigger window is derived from the  
watchdog timebase and can be adjusted by using the pins DT1 and DT2.  
The watchdog output “WO” is separated from the reset output “RO”. Hence, the watchdog output might be  
used as an interrupt signal for the microcontroller independent from the reset signal. It is possible to  
interconnect pin “WO” and pin “RO” in order to establish a wire-or function with a dominant low signal.  
Supply  
I
Q
VDD  
CQ  
RWO,int  
WO  
Reset  
IWO  
Reference  
Control  
WD core  
Micro-  
Controller  
Control  
GND  
WI  
IWI  
GND  
DT1 DT2  
Figure 7  
Block diagram watchdog circuit  
Watchdog timing  
By changing the condition on the “DT” pins, the new timing is valid from the beginning of next period. From  
this time on, the frequency of the WI signal must be adapted (see also “Typical watchdog timing diagram,  
watchdog and reset modes” on Page 27).  
Figure 8 shows the state diagram of the watchdog (WD) and the mode selection. After power-on, the reset  
output signal at the “RO” pin (microcontroller reset) is kept LOW for the reset delay time trd. With the LOW to  
HIGH transition of the signal at “WO” the device starts the watchdog ignore time tWI.i. Next, the WD starts the  
watchdog trigger time (time frame within a trigger at WI must occur).  
From now on, the timing of the signal on WI from the microcontroller must fit to the WD-trigger time tWI,tr  
,
based on the setting of the “DT” pins. A re-trigger of the WD-trigger time is done with a HIGH-to-LOW transient  
at the WI-pin within the active tWI,tr  
.
Watchdog output “WO”  
The watchdog output “WO” is an open collector output with an integrated pull-up resistor. In case a lower-  
ohmic “WO” signal is desired, an external pull-up resistor can be connected to the output “Q”. Since the  
maximum “WO” sink current is limited, the minimum value of the optional external resistor “RWO,ext” is given  
in Table “Watchdog output WO” on Page 30. A HIGH to LOW transition of the watchdog trigger signal on pin  
WI is taken as a trigger. A watchdog signal is generated (“WO” goes LOW), if there is no trigger pulse during the  
watchdog trigger time.  
Datasheet  
26  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
VI  
t
VRT,high  
VRT,low  
VQ  
t
t
IQ  
IQ,W,act  
IQ,W,deact  
Capture DT1  
Capture DT1  
Capture DT2  
Capture DT1  
Capture DT2  
Capture DT1  
Capture DT2  
DT1  
DT2  
Capture DT1  
Capture DT1  
Capture DT2  
Capture DT1  
Capture DT2  
t
t
Setup trd (slow)  
Capture DT2  
Current Controlled  
WD-turn off  
Trigger  
WI  
trd  
(WD-trigger time tWI,tr  
)
Ignore Time  
tWI,i  
48ms *)  
16ms *)  
96ms *)  
32ms *)  
32ms *)  
96ms *)  
32ms  
16.5ms typ.  
t
t
t
WD Trigger  
NO WD Trigger  
WD Trigger  
WD Trigger  
WD Trigger  
Don’t care WI  
during t WO,low and  
ignore time  
Don’t care WI  
during WD-off  
and ignore time  
Don’t care WI  
during trd and ignore time  
VWO  
trd  
tWO,low  
No WO assertion during  
Current shut down  
Normal operation  
Normal operation  
Power  
Fail  
VRO  
trd  
trr,int  
t
*) watchdog trigger time interrupted by correct WI signal serving the watchdog  
Figure 8  
Typical watchdog timing diagram, watchdog and reset modes  
Watchdog input “WI”  
The watchdog is triggered by a falling edge at the watchdog input pin “WI”. The amplitude and slope of this  
signal has to comply with the specification (Table “Watchdog input WI” on Page 29). For details regarding  
test pulses, see Figure 9 “Test pulses watchdog input WI” on Page 27.  
VWI  
tWI,ph  
VWI,high  
tWI,pl  
VWI,low  
dVWI / dt  
t
Figure 9  
Test pulses watchdog input WI  
Datasheet  
27  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Table 10  
Electrical characteristics watchdog  
Tj = -40°C to 150°C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Watchdog timing  
Watchdog ignore time  
Watchdog trigger time  
tWI,i  
12.8 16  
76.8 96  
19.2 ms  
P_5.9.1  
P_5.9.2  
tWI,tr,1  
115.2 ms DT1 connected to GND;  
DT2 connected to GND  
Watchdog trigger time  
Watchdog trigger time  
Watchdog trigger time  
Watchdog output low time  
tWI,tr,2  
tWI,tr,3  
tWI,tr,4  
tWO,low  
38.4 48  
25.6 32  
12.8 16  
57.6 ms DT1 connected to Q;  
DT2 connected to GND  
P_5.9.3  
P_5.9.4  
P_5.9.5  
P_5.9.6  
38.4 ms DT1 connected to GND;  
DT2 connected to Q  
19.2 ms DT1 connected to Q;  
DT2 connected to Q  
6.4  
8
9.6  
ms  
Load dependent watchdog activation  
Watchdog activation current  
threshold  
IQ,W,act  
5.5  
mA for VQ,nom = 5 V:  
VI > 5.44 V;  
P_5.9.11  
high current condition  
must be applied at least  
for the time of tW,filter,max  
Watchdog deactivation current IQ,W,deact  
1
mA for VQ,nom = 5 V:  
P_5.9.12  
threshold  
VI > 5.44 V;  
low current condition  
must be applied at least  
for the time of tW,filter,max  
Watchdog deactivation current IQ,W,hy  
hysteresis  
0.35  
mA for VQ,nom = 5 V:  
P_5.9.13  
P_5.9.39  
VI > 5.44 V;  
Watchdog activation current  
threshold  
IQ,W,act  
5.5  
mA for VQ,nom = 3.3 V:  
VI > 3.72 V;  
high current condition  
must be applied at least  
for the time of tW,filter,max  
Watchdog deactivation current IQ,W,deact  
1
mA for VQ,nom = 3.3 V:  
P_5.9.40  
threshold  
VI > 3.72 V;  
low current condition  
must be applied at least  
for the time of tW,filter,max  
Watchdog deactivation current IQ,W,hy  
hysteresis  
0.35  
mA for VQ,nom = 3.3 V:  
P_5.9.41  
P_5.9.14  
VI > 3.72 V;  
Watchdog minimum filter time tW,IQ,filter, 100  
µs  
1) – see Page 30  
state transition by current  
min  
Datasheet  
28  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Table 10  
Electrical characteristics watchdog (cont’d)  
Tj = -40°C to 150°C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Watchdog maximum filter time tW,IQ,filter,  
500 µs  
1) – see Page 30  
P_5.9.15  
state transition by current  
max  
Watchdog input WI  
2)  
Watchdog input  
low signal valid  
VWI,low  
VWI,high  
tWI,ph  
0.8  
V
P_5.9.16  
P_5.9.17  
P_5.9.19  
P_5.9.20  
P_5.9.21  
2)  
Watchdog input  
high signal valid  
2.0  
1
V
2)  
Watchdog input  
high signal pulse length  
µs  
µs  
V/µs  
V VWI,high  
WI  
2)  
Watchdog input  
low signal pulse length  
tWI,pl  
1
V VWI,low  
WI  
2)  
Watchdog input  
signal slew rate  
dVWI/dt  
1
V
< VWI < VWI,high  
WI,low  
High level input current  
IWI,H  
RWI  
3.5  
µA VWI = 3.3 V  
P_5.9.22  
P_5.9.23  
Watchdog input internal pull-  
down resistor  
0.9 1.5 2.6  
MΩ  
Watchdog disable threshold  
WI signal value  
VWI,dis  
1.15  
1.15  
1.40  
1.40  
V
for VQ,nom = 5 V:  
VI > 5.44 V;  
signal must be applied for  
> tW,filter,max to deactivate  
and activate the  
watchdog  
P_5.9.31  
P_5.9.24  
Watchdog disable threshold  
WI signal value  
VWI,dis  
V
for VQ,nom = 3.3 V:  
VI > 4.6 V;  
signal must be applied for  
> tW,filter,max to deactivate  
and activate the  
watchdog  
Watchdog minimum filter time tWI,filter,  
state transition by WI  
100  
µs  
3) – see Page 32  
P_5.9.25  
P_5.9.26  
min  
Watchdog maximum filter time tWI,filter,  
500 µs  
3) – see Page 32  
state transition by WI  
max  
Watchdog delay input DT2 (DT1 is defined in chapter Reset delay input DT1)  
Delay input DT2  
low signal valid  
VDT2,L  
0.8  
V
P_5.9.27  
P_5.9.28  
Delay input DT2  
high signal valid  
VDT2,H  
2.0  
V
Datasheet  
29  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Table 10  
Electrical characteristics watchdog (cont’d)  
Tj = -40°C to 150°C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Delay input DT2  
Signal Slew Rate  
dVDT2/dt  
1
V/µs VDTx,L < VDTx < VDTx,H  
µA VDTx = 3.3 V  
P_5.9.38  
High level input current DT2  
IDT2,H  
RDT2  
3.5  
P_5.9.30  
P_5.9.32  
Delay input DT2 internal pull-  
down resistor  
0.9 1.5 2.6  
MΩ  
Watchdog setup and hold time tsetup,hold, 150  
µs  
3) Within the setup and  
hold time phase, a DTx  
transition will not be  
recognized  
P_5.9.33  
(DT1, DT2)  
DT  
Watchdog output WO  
Watchdog output low voltage  
VWO,low  
RWO,int  
0.2 0.4  
V
RWO > 5.1 kΩ  
P_5.9.34  
P_5.9.35  
Watchdog output  
13  
20  
36  
kinternally connected to  
internal pull-up resistor  
pin Q  
Watchdog output external  
RWO,ext  
5.1  
kVWO 0.4 V;  
P_5.9.36  
pull-up resistor to VQ  
1) Not subject to production test, specified by design.  
2) For details on applied test pulse, see Figure 9  
3) Not subject to production test, specified by design.  
Watchdog trigger time  
Two pins, DT1 and DT2, are used to set the desired watchdog trigger time tWI,tr. Connect these pins either to  
GND or to high level (e.g. Q) to select the timing according to Table 11.  
Table 11  
Watchdog trigger time selection  
DT1 connected to  
DT2 connected to  
tWI,tr,typ  
96 ms  
48 ms  
32 ms  
16 ms  
GND  
Q
GND  
GND  
Q
GND  
Q
Q
Watchdog deactivation by current control  
The watchdog is load dependent inactive. This ensures, that if the microcontroller is in a power save mode  
(IQ IQ,W,deact) and not able to provide a correct watchdog trigger signal at pin “WI”, no watchdog signal  
“WO = low” is generated. The transition from an active to an inactive state will be performed after a dead time  
of tW,IQ,filter,max, when output current keeps below the deactivation threshold. This protects against an  
unintended entering of the watchdog deactivation state caused by short dynamic current drops. In case of  
very short current drops up to the time of tW,IQ,filter,min, the activation state will definitely be kept. These  
scenarios are also valid for the transition from deactivation to activation state. For details see also Figure 10  
Datasheet  
30  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
IQ  
IQ  
Scenario „D“  
>tWO,low  
<tWO,low  
IQ,W,act  
IQ,W,act  
IQ,W,deact  
IQ,W,deact  
t
t
t
t
t
t
VWO  
VWO  
WD disabled  
Scenario „A“  
WD-trigger time tWI,tr *)  
WD disabled  
WD disabled  
ignore time tWI,i  
ignore time tWI,i  
ignore time tWI,i  
WD-trigger time tWI,tr  
WD-trigger time tWI,tr  
tWO,low  
ignore time tWI,i  
WD-trigger time tWI,tr  
VWO  
*) interrupted by entering in „Watchdog deactivation by current control“  
Watchdog filter time tW,IQ,filter  
Scenario „B“  
WD-trigger time tWI,tr  
tWO,low  
WD-trigger time tWI,tr  
VWO  
Scenario „C“  
WD-trigger time tWI,tr  
tWO,low  
WD disabled  
*)  
WD-trigger time tWI,tr  
Figure 10 Watchdog output behavior for watchdog deactivation by current control  
Scenario “A”  
In scenario “A” the watchdog logic expects a next trigger at WI pin within the WD-trigger time tWI,tr. This state  
is interrupted by the low current load state (IQ IQ,W,deact). During this state, the watchdog is disabled. The  
watchdog output signal “WO” will stay high while the watchdog is disabled. After leaving the low current load  
state (IQ IQ,W,act), an ignore window tWI,i follows. After this, the watchdog trigger time tWI,tr starts based on the  
setting of the DT pins. This behavior is defined for cases with a low current load time greater than tWO,low  
.
Scenario “B”  
In scenario “B” the watchdog is not served within WD-trigger time tWI,tr with an trigger event at WI pin. As a  
result the “WO” is set to low. This state is interrupted by the low current load state (IQ IQ,W,deact). During this  
state, the watchdog is disabled. The watchdog output signal “WO” is kept in low state for tWO,low and then the  
“WO” is set to high. After leaving the low current load state (IQ IQ,W,act), an ignore window tWI,i follows. After  
this, the watchdog trigger time tWI,tr starts based on the setting of the DT pins. This behavior is defined for cases  
with a low current load time greater than tWO,low  
.
Scenario “C”  
In scenario “C” the watchdog is not served within WD-trigger time tWI,tr with an trigger event at WI pin. As a  
result the “WO” is set to low. After this an ignore window follows. This state is interrupted by the low current  
load state (IQ IQ,W,deact). During this state, the watchdog is disabled. The watchdog output signal “WO” will  
stay high while the watchdog is disabled. After leaving the low current load state (IQ IQ,W,act), an ignore  
window tWI,i follows. After this, the watchdog trigger time tWI,tr starts based on the setting of the DT pins. This  
behavior is defined for cases with a low current load time greater than tWO,low  
.
Scenario “D”  
In scenario “D” the watchdog is not served within WD-trigger time tWI,tr with a trigger event at WI pin. As a result  
the “WO” is set to low. This state is interrupted by the low current load state (IQ IQ,W,deact). During this state,  
the watchdog is disabled. The watchdog output signal “WO” is kept in low state for the time of low current load  
state. After leaving the low current load state (IQ IQ,W,act), an ignore window tWI,i follows. After this, the  
watchdog trigger time tWI,tr starts based on the setting of the DT pins. This behavior is defined for cases with a  
low current load time less than tWO,low  
.
Datasheet  
31  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
Watchdog deactivation by external signal (pin “WI”)  
Note:  
Disabling the watchdog should only considered when the application is not running in the normal  
operating conditions as the safe operation is not ensured any more. Example would be the flashing  
process of the microcontroller.  
The Watchdog can be disabled by connecting a voltage level between the range of 1.15 V to 1.40 V to WI. By  
entering the watchdog deactivation, the “WO” signal behaves like it is described in Figure 11. The transition  
from active to an inactive state will be performed after a dead time of tWI,filter,max, when correct level to WI pin  
is applied. This protects against the unintended entering of watchdog deactivation state. After leaving the  
deactivation voltage range 1.15 V to 1.40 V, the watchdog is again active and starts with an ignore window.  
This scenario is also valid for the transition from deactivation to activation state.  
VWI  
VWI  
Scenario D  
>tWO,low  
<tWO,low  
VWI,dis.high  
VWI,dis,low  
VWI,dis.high  
VWI,dis,low  
t
t
t
t
t
t
VWO  
VWO  
VWO  
VWO  
WD disabled  
Scenario A  
WD-trigger time tWI,tr *)  
WD disabled  
WD disabled  
ignore time tWI,i  
ignore time tWI,i  
ignore time tWI,i  
WD-trigger time tWI,tr  
WD-trigger time tWI,tr  
WD-trigger time tWI,tr  
WD-trigger time tWI,tr  
tWO,low  
ignore time tWI,i  
WD-trigger time tWI,tr  
*) interrupted by entering in Watchdog deactivation by WI pin  
Watchdog filter time tWI,filter  
Scenario B  
WD-trigger time tWI,tr  
tWO,low  
Scenario C  
WD-trigger time tWI,tr  
tWO,low  
WD disabled  
*)  
Figure 11 Watchdog output behavior for watchdog deactivation by WI pin  
Scenario “A”  
In scenario “A” the watchdog logic expects a next trigger at WI pin within the WD-trigger time tWI,tr. This state  
is interrupted by setting VWI to the disable condition (VWI,dis,low VWI VWI,dis,high). During this state, the watchdog  
is disabled. The watchdog output signal “WO” will stay high while the watchdog is disabled. After leaving the  
disable condition (VWI VWI,dis,high or VWI VWI,dis,low), an ignore window tWI,i follows. After this, the watchdog  
trigger time tWI,tr starts based on the setting of the DT pins. This behavior is defined for cases with a watchdog  
disabled duration greater than tWO,low  
.
Scenario “B”  
In scenario “B” the watchdog is not served within WD-trigger time tWI,tr with an trigger event at WI pin. As a  
result the “WO” is set to low. This state is interrupted by setting VWI to the disable condition  
(VWI,dis,low VWI VWI,dis,high). During this state, the watchdog is disabled. The watchdog output signal “WO” is  
kept in low state for tWO,low and then the “WO” is set to high. After leaving the disable condition (VWI VWI,dis,high  
or VWI VWI,dis,low), an ignore window tWI,i follows. After this, the watchdog trigger time tWI,tr starts based on the  
setting of the DT pins. This behavior is defined for cases with a watchdog disabled duration greater than  
tWO,low  
.
Scenario “C”  
In scenario “C” the watchdog is not served within WD-trigger time tWI,tr with an trigger event at WI pin. As a  
result the “WO” is set to low. After this an ignore window follows. This state is interrupted by setting VWI to the  
Datasheet  
32  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
disable condition (VWI,dis,low VWI VWI,dis,high). During this state, the watchdog is disabled. The watchdog output  
signal “WO” will stay high while the watchdog is disabled. After leaving the disable condition (VWI VWI,dis,high  
or VWI VWI,dis,low), an ignore window tWI,i follows. After this, the watchdog trigger time tWI,tr starts based on the  
setting of the DT pins. This behavior is defined for cases with a watchdog disabled duration greater than  
tWO,low  
.
Scenario “D”  
In scenario “D” the watchdog is not served within WD-trigger time tWI,tr with a trigger event at WI pin. As a result  
the “WO” is set to low. This state is interrupted by setting VWI to the disable condition  
(VWI,dis,low VWI VWI,dis,high). During this state, the watchdog is disabled. The watchdog output signal “WO” is  
kept in low state as long the watchdog is disabled. After leaving the disable condition (VWI VWI,dis,high or  
VWI VWI,dis,low), an ignore window tWI,i follows. After this, the watchdog trigger time tWI,tr starts based on the  
setting of the DT pins. This behavior is defined for cases with a watchdog disabled duration less than tWO,low  
.
Datasheet  
33  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Block description and electrical characteristics  
4.10  
Typical performance characteristics standard watchdog  
Typical performance characteristics  
Watchdog trigger time tWI,tr,1,2,3,4 versus  
junction temperature Tj  
Watchdog output low time tWO,low versus  
junction temperature Tj  
15  
IQ = 10 mA  
x = 1  
x = 2  
x = 3  
x = 4  
IQ = 10 mA  
120  
100  
80  
60  
40  
20  
0
10  
5
0
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Watchdog activation/deactivation current IQ,W,act  
,
Watchdog disable VWI,dis threshold versus  
junction temperature Tj  
IQ,W,deact versus junction temperature Tj  
3
2.5  
2
7
6
5
4
3
2
1
1.5  
1
0.5  
IQ = 10 mA  
IQ,W,deact  
IQ,W,act  
low  
high  
0
0
0
50  
Tj [°C]  
100  
150  
0
50  
Tj [°C]  
100  
150  
Datasheet  
34  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Application information  
5
Application information  
5.1  
Application diagram  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Supply  
Regulated Output Voltage  
I
Q
RO  
Load  
e. g.  
Micro  
DI1  
Current  
Limitation  
Controller  
XC22xx  
Reset  
EN  
DI2  
<45V  
CI2  
CI1  
CQ  
R1  
1µF  
100nF  
47µF  
RADJ  
Enable  
Bandgap  
Reference  
DT1  
DT2  
WI  
Temperature  
Shutdown  
R2  
WO  
Watchdog  
GND  
GND  
e.g. Ignition  
Figure 12 Application diagram  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
5.2  
Selection of external components  
5.2.1  
Input pin  
The typical input circuitry for a linear voltage regulator is shown in the application diagram above.  
A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high  
frequency disturbances imposed by the line e.g. ISO pulses 3a/b. This capacitor must be placed very close to  
the input pin of the linear voltage regulator on the PCB.  
An aluminum electrolytic capacitor in the range of 10 µF to 470 µF is recommended as an input buffer to  
smooth out high energy pulses, such as ISO pulse 2a. This capacitor should be placed close to the input pin of  
the linear voltage regulator on the PCB.  
An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum  
rating of the linear voltage regulator and protect the device against any damage due to over-voltage.  
The external components at the input are not mandatory for the operation of the voltage regulator, but they  
are recommended in case of possible external disturbances.  
5.2.2  
Output pin  
An output capacitor is mandatory for the stability of linear voltage regulators.  
Datasheet  
35  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Application information  
The requirement to the output capacitor is given in “Functional range” on Page 8. The graph “Output  
capacitor series resistor ESR(CQ) versus output current IQ” on Page 15 shows the stable operation range  
of the device.  
TLS820F0 is designed to be also stable with low ESR capacitors. According to the automotive requirements,  
ceramic capacitors with X5R or X7R dielectrics are recommended.  
The output capacitor should be placed as close as possible to the regulator’s output and GND pins and on the  
same side of the PCB as the regulator itself.  
In case of rapid transients of input voltage or load current, the capacitance should be dimensioned in  
accordance and verified in the real application that the output stability requirements are fulfilled.  
5.3  
Thermal considerations  
Knowing the input voltage, the output voltage and the load profile of the application, the total power  
dissipation can be calculated:  
PD = (VI - VQ) × IQ + VI × Iq  
(5.1)  
with  
PD: continuous power dissipation  
VI : input voltage  
VQ: output voltage  
IQ: output current  
Iq: quiescent current  
The maximum acceptable thermal resistance RthJA can then be calculated:  
RthJA,max = ( Tj,max - Ta ) / PD  
(5.2)  
with  
T
j,max: maximum allowed junction temperature  
Ta: ambient temperature  
Based on the above calculation the proper PCB type and the necessary heat sink area can be determined with  
reference to the specification in “Thermal resistance” on Page 9.  
Example  
Application conditions:  
VI = 13.5 V  
VQ = 5 V  
IQ = 150 mA  
Ta = 85 °C  
Calculation of RthJA,max  
:
PD = (VI VQ) × IQ + VI × Iq  
(VI × Iq can be neglected because of very low Iq)  
= (13.5 V – 5 V) × 150 mA = 1.275 W  
thJA,max = (Tj,max Ta) / PD  
R
= (150 °C – 85 °C) / 1.275 W = 50.98 K/W  
Datasheet  
36  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Application information  
As a result, the PCB design must ensure a thermal resistance RthJA lower than 50.98 K/W. According to  
“Thermal resistance” on Page 9, at least 600 mm2 heatsink area is needed on the FR4 1s0p PCB, or the FR4  
2s2p board can be used to ensure a proper cooling for the TLS820F0 in PG-SSOP-14 package.  
5.4  
Reverse polarity protection  
TLS820F0 is not self protected against reverse polarity faults and must be protected by external components  
against negative supply voltage. An external reverse polarity diode is needed. The absolute maximum ratings  
of the device as specified in “Absolute maximum ratings” on Page 7 must be kept.  
5.5  
Further application information  
For further information you may contact http://www.infineon.com/  
Datasheet  
37  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Package information  
6
Package information  
0.35 x 45°  
1)  
0.1 H D 2x  
±0.1  
3.9  
+0.06  
H
0.19  
0.08  
SEATING  
PLANE  
C
C
0.64±0.25  
0.2 C 14x  
0.65  
6 x 0.65 = 3.9  
D
±0.2  
6
2)  
±0.05  
0.25  
M
0.15  
C A-B D 14x  
Bottom View  
±0.2  
3
A
8
1
7
14  
1
7
14  
8
Exposed  
Diepad  
B
0.1 H A-B 2x  
Index  
Marking 4.9  
1)  
±0.1  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
PG-SSOP-14  
Figure 13 PG-SSOP-141)  
Green product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Datasheet  
38  
Rev. 1.2  
2021-04-08  
OPTIREG™ linear TLS820F0ELVxx  
Low dropout linear voltage regulator  
Revision history  
7
Revision history  
Revision  
Date  
Changes  
1.2  
2021-04-08 Update layout and structure  
Parameter P_5.1.12 updated  
Parameter P_5.1.32 updated  
Editorial changes applied  
1.1  
1.0  
2015-07-24 Additional description added for function “Watchdog deactivation by WI pin”  
Parameter P_5.7.22 updated  
New parameter P_5.7.46 added  
Editorial changes applied  
2015-03-20 Data Sheet - Initial version  
Datasheet  
39  
Rev. 1.2  
2021-04-08  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2021-04-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Z8F53875111  

相关型号:

TLS820F0EL V50

TLS820F0 V50 是高性能极低压降线性稳压器,采用 PG-SSOP-14 封装,适用于 5 V 电源。
INFINEON

TLS820F0ELV33

Fixed Positive LDO Regulator, 3.3V, 0.35V Dropout, PDSO14, GREEN, PLASTIC, SSOP-14
INFINEON

TLS820F0ELV33_15

Material Content Data Sheet
INFINEON

TLS820F0ELV50

Material Content Data Sheet
INFINEON

TLS820F0ELV50_15

Material Content Data Sheet
INFINEON

TLS820F0_15

Low Dropout Linear Voltage Regulator
INFINEON

TLS820F3ELV50

The OPTIREG™ linear TLS820F3ELV50 is a high performance, low drop out, fixed output voltage regulator in a PG-SSOP-14 package. With an input voltage range of 3 V to 42 V and very low quiescent current of only 26 µA, this regulator is perfectly suitable for automotive systems or other supply systems connected to the battery permanently.
INFINEON

TLS826K050C1C

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 50V, 82uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS826M050C1C

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 50V, 82uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TLS835B2EL V

With an input voltage range of 3 V to 40 V and ver
INFINEON

TLS835B2EL VSE

With an input voltage range of 3 V to 40 V and ver
INFINEON

TLS835D2EL VSE

TLS835D2 是线性电压调节器,具有高性能、极低压差线性电压和极低的静态电流。稳压器的输入电压范围为 3 V 至 40 V,静态电流极低,仅  20 μA,,非常适合汽车或永久连接电池的其他电源系统。
INFINEON