80C186XL [INTEL]

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS; 16位高集成嵌入式处理器
80C186XL
型号: 80C186XL
厂家: INTEL    INTEL
描述:

16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS
16位高集成嵌入式处理器

文件: 总48页 (文件大小:561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
80C186XL/80C188XL  
16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS  
Y
Y
Y
Low Power, Fully Static Versions of  
80C186/80C188  
Completely Object Code Compatible  
with Existing 8086/8088 Software and  
Has 10 Additional Instructions over  
8086/8088  
Operation Modes:  
Ð Enhanced Mode  
Y
Ð DRAM Refresh Control Unit  
Ð Power-Save Mode  
Ð Direct Interface to 80C187  
(80C186XL Only)  
Ð Compatible Mode  
Speed Versions Available  
Ð 25 MHz (80C186XL25/80C188XL25)  
Ð 20 MHz (80C186XL20/80C188XL20)  
Ð 12 MHz (80C186XL12/80C188XL12)  
Y
Y
Direct Addressing Capability to  
1 MByte Memory and 64 Kbyte I/O  
Ð NMOS 80186/80188 Pin-for-Pin  
Replacement for Non-Numerics  
Applications  
Available in 68-Pin:  
Ð Plastic Leaded Chip Carrier (PLCC)  
Ð Ceramic Pin Grid Array (PGA)  
Ð Ceramic Leadless Chip Carrier  
(JEDEC A Package)  
Y
Integrated Feature Set  
Ð Static, Modular CPU  
Ð Clock Generator  
Ð 2 Independent DMA Channels  
Ð Programmable Interrupt Controller  
Ð 3 Programmable 16-Bit Timers  
Ð Dynamic RAM Refresh Control Unit  
Ð Programmable Memory and  
Peripheral Chip Select Logic  
Ð Programmable Wait State Generator  
Ð Local Bus Controller  
Y
Y
Available in 80-Pin:  
Ð Quad Flat Pack (EIAJ)  
Ð Shrink Quad Flat Pack (SGFP)  
Available in Extended Temperature  
b
a
Range ( 40 C to 85 C)  
§
§
Ð Power-Save Mode  
Ð System-Level Testing Support (High  
Impedance Test Mode)  
The Intel 80C186XL is a Modular Core re-implementation of the 80C186 microprocessor. It offers higher speed  
and lower power consumption than the standard 80C186 but maintains 100% clock-for-clock functional com-  
patibility. Packaging and pinout are also identical.  
272431-1  
*Other brands and names are the property of their respective owners.  
Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or  
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make  
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.  
October 1995  
COPYRIGHT INTEL CORPORATION, 1995  
Order Number: 272431-004  
©
1
80C186XL/80C188XL  
16-Bit High-Integration Embedded Processors  
CONTENTS  
PAGE  
CONTENTS  
PAGE  
INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4  
AC SPECIFICATIONS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24  
Major Cycle Timings (Read Cycle) ÀÀÀÀÀÀÀÀÀ 24  
Major Cycle Timings (Write Cycle) ÀÀÀÀÀÀÀÀÀ 26  
80C186XL CORE ARCHITECTURE ÀÀÀÀÀÀÀÀ 4  
80C186XL Clock Generator ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4  
Bus Interface Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5  
Major Cycle Timings (Interrupt  
Acknowledge Cycle) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 27  
Software Halt Cycle Timings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 28  
Clock Timings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 29  
80C186XL PERIPHERAL  
ARCHITECTURE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5  
Chip-Select/Ready Generation Logic ÀÀÀÀÀÀÀ 5  
DMA Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6  
Timer/Counter Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6  
Interrupt Control Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6  
Enhanced Mode Operation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6  
Queue-Status Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6  
DRAM Refresh Control Unit ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
Power-Save Control ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
Ready, Peripheral and Queue Status  
Timings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30  
Reset and Hold/HLDA Timings ÀÀÀÀÀÀÀÀÀÀÀÀ 31  
AC TIMING WAVEFORMS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 36  
AC CHARACTERISTICS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 37  
EXPLANATION OF THE AC  
SYMBOLS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39  
Interface for 80C187 Math Coprocessor  
(80C186XL Only) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
DERATING CURVES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40  
80C186XL/80C188XL EXPRESS ÀÀÀÀÀÀÀÀÀ 41  
ONCE Test Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
80C186XL/80C188XL EXECUTION  
TIMINGS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 41  
PACKAGE INFORMATION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
Pin Descriptions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
INSTRUCTION SET SUMMARY ÀÀÀÀÀÀÀÀÀÀ 42  
REVISION HISTORY ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 48  
ERRATA ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 48  
PRODUCT IDENTIFICATION ÀÀÀÀÀÀÀÀÀÀÀÀÀ 48  
80C186XL/80C188XL Pinout  
Diagrams ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16  
ELECTRICAL SPECIFICATIONS ÀÀÀÀÀÀÀÀÀ 22  
Absolute Maximum Ratings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22  
DC SPECIFICATIONS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22  
Power Supply Current ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23  
2
2
80C186XL/80C188XL  
NOTE:  
Pin names in parentheses applies to 80C188XL.  
Figure 1. 80C186XL/80C188XL Block Diagram  
3
3
80C186XL/80C188XL  
(2a)  
272431–3  
272431–4  
(2b)  
Note 1:  
XTAL Frequency  
20 MHz  
25 MHz  
L1 Value  
g
g
8.2 mH 20%  
12.0 mH 20%  
g
4.7 mH 20%  
g
3.0 mH 20%  
32 MHz  
40 MHz  
LC network is only required when using a third  
overtone crystal.  
Figure 2. Oscillator Configurations (see text)  
The 80C186XL oscillator circuit is designed to be  
INTRODUCTION  
used either with a parallel resonant fundamental or  
third-overtone mode crystal, depending upon the  
frequency range of the application. This is used as  
the time base for the 80C186XL.  
Unless specifically noted, all references to the  
80C186XL apply to the 80C188XL. References to  
pins that differ between the 80C186XL and the  
80C188XL are given in parentheses.  
The output of the oscillator is not directly available  
outside the 80C186XL. The recommended crystal  
configuration is shown in Figure 2b. When used in  
third-overtone mode, the tank circuit is recommend-  
ed for stable operation. Alternately, the oscillator  
may be driven from an external source as shown in  
Figure 2a.  
The following Functional Description describes the  
base architecture of the 80C186XL. The 80C186XL  
is a very high integration 16-bit microprocessor. It  
combines 1520 of the most common microproces-  
sor system components onto one chip. The  
80C186XL is object code compatible with the  
8086/8088 microprocessors and adds 10 new in-  
struction types to the 8086/8088 instruction set.  
The crystal or clock frequency chosen must be twice  
the required processor operating frequency due to  
the internal divide by two counter. This counter is  
used to drive all internal phase clocks and the exter-  
nal CLKOUT signal. CLKOUT is a 50% duty cycle  
processor clock and can be used to drive other sys-  
tem components. All AC Timings are referenced to  
CLKOUT.  
The 80C186XL has two major modes of operation,  
Compatible and Enhanced. In Compatible Mode the  
80C186XL is completely compatible with NMOS  
80186, with the exception of 8087 support. The En-  
hanced mode adds three new features to the system  
design. These are Power-Save control, Dynamic  
RAM refresh, and an asynchronous Numerics Co-  
processor interface (80C186XL only).  
Intel recommends the following values for crystal se-  
lection parameters.  
Temperature Range:  
Application Specific  
80C186XL CORE ARCHITECTURE  
80C186XL Clock Generator  
ESR (Equivalent Series Resistance):  
60X max  
C
C
(Shunt Capacitance of Crystal):  
(Load Capacitance):  
7.0 pF max  
0
1
g
20 pF 2 pF  
The 80C186XL provides an on-chip clock generator  
for both internal and external clock generation. The  
clock generator features a crystal oscillator, a divide-  
by-two counter, synchronous and asynchronous  
ready inputs, and reset circuitry.  
Drive Level:  
2 mW max  
4
4
80C186XL/80C188XL  
spond to bus cycles. An offset map of the 256-byte  
control register block is shown in Figure 3.  
Bus Interface Unit  
The 80C186XL provides a local bus controller to  
generate the local bus control signals. In addition, it  
employs a HOLD/HLDA protocol for relinquishing  
the local bus to other bus masters. It also provides  
outputs that can be used to enable external buffers  
and to direct the flow of data on and off the local  
bus.  
Chip-Select/Ready Generation Logic  
The 80C186XL contains logic which provides  
programmable chip-select generation for both mem-  
ories and peripherals. In addition, it can be  
programmed to provide READY (or WAIT state) gen-  
eration. It can also provide latched address bits A1  
and A2. The chip-select lines are active for all mem-  
ory and I/O cycles in their programmed areas,  
whether they be generated by the CPU or by the  
integrated DMA unit.  
The bus controller is responsible for generating 20  
bits of address, read and write strobes, bus cycle  
status information and data (for write operations) in-  
formation. It is also responsible for reading data  
from the local bus during a read operation. Synchro-  
nous and asynchronous ready input pins are provid-  
ed to extend a bus cycle beyond the minimum four  
states (clocks).  
The 80C186XL provides 6 memory chip select out-  
puts for 3 address areas; upper memory, lower  
memory, and midrange memory. One each is provid-  
ed for upper memory and lower memory, while four  
are provided for midrange memory.  
The 80C186XL bus controller also generates two  
control signals (DEN and DT/R) when interfacing to  
external transceiver chips. This capability allows the  
addition of transceivers for simple buffering of the  
multiplexed address/data bus.  
OFFSET  
Relocation Register  
FEH  
During RESET the local bus controller will perform  
the following action:  
DAH  
D0H  
DMA Descriptors Channel 1  
Drive DEN, RD and WR HIGH for one clock cy-  
cle, then float them.  
#
Drive S0S2 to the inactive state (all HIGH) and  
then float.  
#
CAH  
C0H  
DMA Descriptors Channel 0  
Chip-Select Control Registers  
Drive LOCK HIGH and then float.  
#
#
Float AD015 (AD08), A1619 (A9A19), BHE  
(RFSH), DT/R.  
A8H  
A0H  
Drive ALE LOW  
#
Drive HLDA LOW.  
#
66H  
RD/QSMD, UCS, LCS, MCS0/PEREQ, MCS1/  
ERROR and TEST/BUSY pins have internal pullup  
devices which are active while RES is applied. Ex-  
cessive loading or grounding certain of these pins  
causes the 80C186XL to enter an alternative mode  
of operation:  
Time 2 Control Registers  
Time 1 Control Registers  
Time 0 Control Registers  
60H  
5EH  
58H  
56H  
50H  
RD/QSMD low results in Queue Status Mode.  
#
UCS and LCS low results in ONCE Mode.  
#
3EH  
20H  
TEST/BUSY low (and high later) results in En-  
hanced Mode.  
#
Interrupt Controller Registers  
Figure 3. Internal Register Map  
80C186XL PERIPHERAL  
ARCHITECTURE  
The 80C186XL provides a chip select, called UCS,  
for the top of memory. The top of memory is usually  
used as the system memory because after reset the  
80C186XL begins executing at memory location  
FFFF0H.  
All the 80C186XL integrated peripherals are con-  
trolled by 16-bit registers contained within an inter-  
nal 256-byte control block. The control block may be  
mapped into either memory or I/O space. Internal  
logic will recognize control block addresses and re-  
5
5
80C186XL/80C188XL  
The 80C186XL provides a chip select for low memo-  
ry called LCS. The bottom of memory contains the  
interrupt vector table, starting at location 00000H.  
mum of 8 clocks), one cycle to fetch data and the  
other to store data.  
The 80C186XL provides four MCS lines which are  
active within a user-locatable memory block. This  
block can be located within the 80C186XL 1 Mbyte  
memory address space exclusive of the areas de-  
fined by UCS and LCS. Both the base address and  
size of this memory block are programmable.  
Timer/Counter Unit  
The 80C186XL provides three internal 16-bit pro-  
grammable timers. Two of these are highly flexible  
and are connected to four external pins (2 per timer).  
They can be used to count external events, time ex-  
ternal events, generate nonrepetitive waveforms,  
etc. The third timer is not connected to any external  
pins, and is useful for real-time coding and time de-  
lay applications. In addition, the third timer can be  
used as a prescaler to the other two, or as a DMA  
request source.  
The 80C186XL can generate chip selects for up to  
seven peripheral devices. These chip selects are ac-  
tive for seven contiguous blocks of 128 bytes above  
a programmable base address. The base address  
may be located in either memory or I/O space.  
The 80C186XL can generate a READY signal inter-  
nally for each of the memory or peripheral CS lines.  
The number of WAIT states to be inserted for each  
peripheral or memory is programmable to provide  
0–3 wait states for all accesses to the area for  
which the chip select is active. In addition, the  
80C186XL may be programmed to either ignore ex-  
ternal READY for each chip-select range individually  
or to factor external READY with the integrated  
ready generator.  
Interrupt Control Unit  
The 80C186XL can receive interrupts from a number  
of sources, both internal and external. The  
80C186XL has 5 external and 2 internal interrupt  
sources (Timer/Couners and DMA). The internal in-  
terrupt controller serves to merge these requests on  
a priority basis, for individual service by the CPU.  
Enhanced Mode Operation  
Upon RESET, the Chip-Select/Ready Logic will per-  
form the following actions:  
In Compatible Mode the 80C186XL operates with all  
the features of the NMOS 80186, with the exception  
of 8087 support (i.e. no math coprocessing is possi-  
ble in Compatible Mode). Queue-Status information  
is still available for design purposes other than 8087  
support.  
All chip-select outputs will be driven HIGH.  
#
Upon leaving RESET, the UCS line will be pro-  
#
grammed to provide chip selects to a 1K block  
with the accompanying READY control bits set at  
011 to insert 3 wait states in conjunction with ex-  
ternal READY (i.e., UMCS resets to FFFBH).  
All the Enhanced Mode features are completely  
masked when in Compatible Mode. A write to any of  
the Enhanced Mode registers will have no effect,  
while a read will not return any valid data.  
No other chip select or READY control registers  
#
have any predefined values after RESET. They  
will not become active until the CPU accesses  
their control registers.  
In Enhanced Mode, the 80C186XL will operate with  
Power-Save, DRAM refresh, and numerics coproc-  
essor support (80C186XL only) in addition to all the  
Compatible Mode features.  
DMA Unit  
The 80C186XL DMA controller provides two inde-  
pendent high-speed DMA channels. Data transfers  
can occur between memory and I/O spaces (e.g.,  
Memory to I/O) or within the same space (e.g.,  
Memory to Memory or I/O to I/O). Data can be  
transferred either in bytes (8 bits) or in words (16  
bits) to or from even or odd addresses.  
If connected to a math coprocessor (80C186XL  
only), this mode will be invoked automatically. With-  
out an NPX, this mode can be entered by tying the  
RESET output signal from the 80C186XL to the  
TEST/BUSY input.  
NOTE:  
Only byte transfers are possible on the 80C188XL.  
Queue-Status Mode  
The queue-status mode is entered by strapping the  
RD pin low. RD is sampled at RESET and if LOW,  
the 80C186XL will reconfigure the ALE and WR pins  
to be QS0 and QS1 respectively. This mode is avail-  
able on the 80C186XL in both Compatible and En-  
hanced Modes.  
Each DMA channel maintains both a 20-bit source  
and destination pointer which can be optionally in-  
cremented or decremented after each data transfer  
(by one or two depending on byte or word transfers).  
Each data transfer consumes 2 bus cycles (a mini-  
6
6
80C186XL/80C188XL  
functions as in compatible mode, and may be pro-  
grammed for activity with ready logic and wait states  
accordingly. As in Compatible Mode, MCS2 will func-  
tion for one-fourth a programmed block size.  
DRAM Refresh Control Unit  
The Refresh Control Unit (RCU) automatically gen-  
erates DRAM refresh bus cycles. The RCU operates  
only in Enhanced Mode. After a programmable peri-  
od of time, the RCU generates a memory read re-  
quest to the BIU. If the address generated during a  
refresh bus cycle is within the range of a properly  
programmed chip select, that chip select will be acti-  
vated when the BIU executes the refresh bus cycle.  
Table 1. MCS Assignments  
Compatible  
Enhanced Mode  
Mode  
MCS0  
MCS1  
MCS2  
MCS3  
PEREQ Processor Extension Request  
ERROR NPX Error  
MCS2 Mid-Range Chip Select  
Power-Save Control  
NPS  
Numeric Processor Select  
The 80C186XL, when in Enhanced Mode, can enter  
a power saving state by internally dividing the proc-  
essor clock frequency by a programmable factor.  
This divided frequency is also available at the  
CLKOUT pin.  
ONCE Test Mode  
To facilitate testing and inspection of devices when  
fixed into a target system, the 80C186XL has a test  
mode available which allows all pins to be placed in  
a high-impedance state. ONCE stands for ‘‘ON Cir-  
cuit Emulation’’. When placed in this mode, the  
80C186XL will put all pins in the high-impedance  
state until RESET.  
All internal logic, including the Refresh Control Unit  
and the timers, have their clocks slowed down by  
the division factor. To maintain a real time count or a  
fixed DRAM refresh rate, these peripherals must be  
re-programmed when entering and leaving the pow-  
er-save mode.  
The ONCE mode is selected by tying the UCS and  
the LCS LOW during RESET. These pins are sam-  
pled on the low-to-high transition of the RES pin.  
The UCS and the LCS pins have weak internal pull-  
up resistors similar to the RD and TEST/BUSY pins  
to guarantee ONCE Mode is not entered inadver-  
tently during normal operation. LCS and UCS must  
be held low at least one clock after RES goes high  
to guarantee entrance into ONCE Mode.  
Interface for 80C187 Math  
Coprocessor (80C186XL Only)  
In Enhanced Mode, three of the mid-range memory  
chip selects are redefined according to Table 1 for  
use with the 80C187. The fourth chip select, MCS2  
7
7
80C186XL/80C188XL  
proper operation. Stated simply, missing  
a setup or hold on an asynchronous pin  
will result in something minor (i.e., a tim-  
er count will be missed) whereas miss-  
ing a setup or hold on a synchronous pin  
result in system failure (the system will  
‘‘lock up’’).  
PACKAGE INFORMATION  
This section describes the pin functions, pinout and  
thermal characteristics for the 80C186XL in the  
Quad Flat Pack (QFP), Plastic Leaded Chip Carrier  
(PLCC), Leadless Chip Carrier (LCC) and the Shrink  
Quad Flat Pack (SQFP). For complete package  
specifications and information, see the Intel Packag-  
ing Outlines and Dimensions Guide (Order Number:  
231369).  
An input pin may also be edge or level  
sensitive.  
Column 4: Output States (for O and I/O types  
only)  
The state of an output or I/O pin is de-  
pendent on the operating mode of the  
device. There are four modes of opera-  
tion that are different from normal active  
mode: Bus Hold, Reset, Idle Mode, Pow-  
erdown Mode. This column describes  
the output pin state in each of these  
modes.  
Pin Descriptions  
Each pin or logical set of pins is described in Table  
3. There are four columns for each entry in the Pin  
Description Table. The following sections describe  
each column.  
Column 1: Pin Name  
In this column is a mnemonic that de-  
scribes the pin function. Negation of the  
signal name (i.e., RESIN) implies that  
the signal is active low.  
The legend for interpreting the information in the Pin  
Descriptions is shown in Table 2.  
Column 2: Pin Type  
As an example, please refer to the table entry for  
AD7:0. The ‘‘I/O’’ signifies that the pins are bidirec-  
tional (i.e., have both an input and output function).  
The ‘‘S’’ indicates that, as an input the signal must  
be synchronized to CLKOUT for proper operation.  
The ‘‘H(Z)’’ indicates that these pins will float while  
the processor is in the Hold Acknowledge state.  
R(Z) indicates that these pins will float while RESIN  
is low.  
A pin may be either power (P), ground  
(G), input only (I), output only (O) or in-  
put/output (I/O). Please note that some  
pins have more than one function.  
Column 3: Input Type (for I and I/O types only)  
These are two different types of input  
pins on the 80C186XL: asynchronous  
and synchronous. Asynchronous pins  
require that setup and hold times be met  
only to guarantee recognition. Synchro-  
nous input pins require that the setup  
and hold times be met to guarantee  
All pins float while the processor is in the ONCE  
Mode (with the exception of X2).  
8
8
80C186XL/80C188XL  
Table 2. Pin Description Nomenclature  
Symbol Description  
a
P
Power Pin (apply  
V
voltage)  
CC  
G
I
Ground (connect to V  
Input only pin  
Output only pin  
)
SS  
O
I/O  
Input/Output pin  
S(E)  
S(L)  
A(E)  
A(L)  
Synchronous, edge sensitive  
Synchronous, level sensitive  
Asynchronous, edge sensitive  
Asynchronous, level sensitive  
H(1)  
H(0)  
H(Z)  
H(Q)  
H(X)  
Output driven to V during bus hold  
CC  
Output driven to V during bus hold  
SS  
Output floats during bus hold  
Output remains active during bus hold  
Output retains current state during bus hold  
R(WH)  
R(1)  
R(0)  
Output weakly held at V during reset  
CC  
Output driven to V during reset  
CC  
Output driven to V during reset  
SS  
Output floats during reset  
R(Z)  
R(Q)  
R(X)  
Output remains active during reset  
Output retains current state during reset  
9
9
80C186XL/80C188XL  
Table 3. Pin Descriptions  
Output  
Pin  
Pin  
Input  
Type  
Pin Description  
Name  
Type  
States  
a
System Power: 5 volt power supply.  
V
V
P
G
O
CC  
SS  
System Ground.  
RESET  
H(0)  
R(1)  
RESET Output indicates that the CPU is being reset, and can  
be used as a system reset. It is active HIGH, synchronized  
with the processor clock, and lasts an integer number of  
clock periods corresponding to the length of the RES signal.  
Reset goes inactive 2 clockout periods after RES goes  
inactive. When tied to the TEST/BUSY pin, RESET forces  
the processor into enhanced mode. RESET is not floated  
during bus hold.  
X1  
X2  
I
A(E)  
Crystal Inputs X1 and X2 provide external connections for a  
fundamental mode or third overtone parallel resonant crystal  
for the internal oscillator. X1 can connect to an external  
clock instead of a crystal. In this case, minimize the  
capacitance on X2. The input or oscillator frequency is  
internally divided by two to generate the clock signal  
(CLKOUT).  
O
H(Q)  
R(Q)  
CLKOUT  
RES  
O
I
H(Q)  
R(Q)  
Clock Output provides the system with a 50% duty cycle  
waveform. All device pin timings are specified relative to  
CLKOUT. CLKOUT is active during reset and bus hold.  
A(L)  
An active RES causes the processor to immediately  
terminate its present activity, clear the internal logic, and  
enter a dormant state. This signal may be asynchronous to  
the clock. The processor begins fetching instructions  
approximately 6(/2 clock cycles after RES is returned HIGH.  
For proper initialization, V must be within specifications  
CC  
and the clock signal must be stable for more than 4 clocks  
with RES held LOW. RES is internally synchronized. This  
input is provided with a Schmitt-trigger to facilitate power-on  
RES generation via an RC network.  
TEST/BUSY  
(TEST)  
I
A(E)  
The TEST pin is sampled during and after reset to determine  
whether the processor is to enter Compatible or Enhanced  
Mode. Enhanced Mode requires TEST to be HIGH on the  
rising edge of RES and LOW four CLKOUT cycles later. Any  
other combination will place the processor in Compatible  
Mode. During power-up, active RES is required to configure  
TEST/BUSY as an input. A weak internal pullup ensures a  
HIGH state when the input is not externally driven.  
TESTÐIn Compatible Mode this pin is configured to operate  
as TEST. This pin is examined by the WAIT instruction. If the  
TEST input is HIGH when WAIT execution begins, instruction  
execution will suspend. TEST will be resampled every five  
clocks until it goes LOW, at which time execution will  
resume. If interrupts are enabled while the processor is  
waiting for TEST, interrupts will be serviced.  
BUSY (80C186XL Only)ÐIn Enhanced Mode, this pin is  
configured to operate as BUSY. The BUSY input is used to  
notify the 80C186XL of Math Coprocessor activity. Floating  
point instructions executing in the 80C186XL sample the  
BUSY pin to determine when the Math Coprocessor is ready  
to accept a new command. BUSY is active HIGH.  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
10  
10  
80C186XL/80C188XL  
Table 3. Pin Descriptions (Continued)  
Pin  
Pin  
Input  
Output  
States  
Pin Description  
Name  
Type  
Type  
TMR IN 0  
TMR IN 1  
I
A(L)  
A(E)  
Timer Inputs are used either as clock or control signals,  
depending upon the programmed timer mode. These  
inputs are active HIGH (or LOW-to-HIGH transitions are  
counted) and internally synchronized. Timer Inputs must  
be tied HIGH when not being used as clock or retrigger  
inputs.  
TMR OUT 0  
TMR OUT 1  
O
I
H(Q)  
R(1)  
Timer outputs are used to provide single pulse or  
continuous waveform generation, depending upon the  
timer mode selected. These outputs are not floated  
during a bus hold.  
DRQ0  
DRQ1  
A(L)  
A(E)  
DMA Request is asserted HIGH by an external device  
when it is ready for DMA Channel 0 or 1 to perform a  
transfer. These signals are level-triggered and internally  
synchronized.  
NMI  
I
The Non-Maskable Interrupt input causes a Type 2  
interrupt. An NMI transition from LOW to HIGH is  
latched and synchronized internally, and initiates the  
interrupt at the next instruction boundary. NMI must be  
asserted for at least one CLKOUT period. The Non-  
Maskable Interrupt cannot be avoided by programming.  
INT0  
INT1/SELECT  
I
A(E)  
A(L)  
Maskable Interrupt Requests can be requested by  
activating one of these pins. When configured as inputs,  
these pins are active HIGH. Interrupt Requests are  
synchronized internally. INT2 and INT3 may be  
configured to provide active-LOW interrupt-  
INT2/INTA0  
INT3/INTA1/IRQ  
I/O  
A(E)  
A(L)  
H(1)  
R(Z)  
acknowledge output signals. All interrupt inputs may be  
configured to be either edge- or level-triggered. To  
ensure recognition, all interrupt requests must remain  
active until the interrupt is acknowledged. When Slave  
Mode is selected, the function of these pins changes  
(see Interrupt Controller section of this data sheet).  
A19/S6  
A18/S5  
A17/S4  
A16/S3  
(A8A15)  
O
H(Z)  
R(Z)  
Address Bus Outputs and Bus Cycle Status (36)  
indicate the four most significant address bits during T .  
These signals are active HIGH.  
1
During T , T , T and T , the S6 pin is LOW to indicate  
W
2
3
4
a CPU-initiated bus cycle or HIGH to indicate a DMA-  
initiated or refresh bus cycle. During the same T-states,  
S3, S4 and S5 are always LOW. On the 80C188XL,  
A15A8 provide valid address information for the entire  
bus cycle.  
AD0AD15  
(AD0AD7)  
I/O  
S(L)  
H(Z)  
R(Z)  
Address/Data Bus signals constitute the time  
multiplexed memory or I/O address (T ) and data (T ,  
1
T , T and T ) bus. The bus is active HIGH. For the  
2
3
W
4
80C186XL, A is analogous to BHE for the lower byte of  
0
the data bus, pins D through D . It is LOW during T  
7
0
1
when a byte is to be transferred onto the lower portion  
of the bus in memory or I/O operations.  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
11  
11  
80C186XL/80C188XL  
Table 3. Pin Descriptions (Continued)  
Pin  
Pin  
Input Output  
Pin Description  
Name  
Type Type States  
BHE  
(RFSH)  
O
H(Z)  
R(Z)  
The BHE (Bus High Enable) signal is analogous to A0 in that it is  
used to enable data on to the most significant half of the data bus,  
pins D15D8. BHE will be LOW during T when the upper byte is  
1
transferred and will remain LOW through T and T . BHE does not  
W
3
need to be latched. On the 80C188XL, RFSH is asserted LOW to  
indicate a refresh bus cycle.  
In Enhanced Mode, BHE (RFSH) will also be used to signify DRAM  
refresh cycles. A refresh cycle is indicated by both BHE (RFSH) and  
A0 being HIGH.  
80C186XL BHE and A0 Encodings  
BHE  
A0  
Function  
Value Value  
0
0
0
1
Word Transfer  
Byte Transfer on upper half of data bus  
(D15D8)  
1
1
0
1
Byte Transfer on lower half of data bus (D D )  
7 0  
Refresh  
ALE/QS0  
WR/QS1  
O
O
H(0)  
R(0)  
Address Latch Enable/Queue Status 0 is provided by the processor  
to latch the address. ALE is active HIGH, with addresses guaranteed  
valid on the trailing edge.  
H(Z)  
R(Z)  
Write Strobe/Queue Status 1 indicates that the data on the bus is to  
be written into a memory or an I/O device. It is active LOW. When  
the processor is in Queue Status Mode, the ALE/QS0 and WR/QS1  
pins provide information about processor/instruction queue  
interaction.  
QS1  
QS0  
Queue Operation  
0
0
1
1
0
1
1
0
No queue operation  
First opcode byte fetched from the queue  
Subsequent byte fetched from the queue  
Empty the queue  
RD/QSMD  
O
H(Z)  
R(1)  
Read Strobe is an active LOW signal which indicates that the  
processor is performing a memory or I/O read cycle. It is guaranteed  
not to go LOW before the A/D bus is floated. An internal pull-up  
ensures that RD/QSMD is HIGH during RESET. Following RESET  
the pin is sampled to determine whether the processor is to provide  
ALE, RD, and WR, or queue status information. To enable Queue  
Status Mode, RD must be connected to GND.  
ARDY  
I
A(L)  
S(L)  
Asynchronous Ready informs the processor that the addressed  
memory space or I/O device will complete a data transfer. The  
ARDY pin accepts a rising edge that is asynchronous to CLKOUT  
and is active HIGH. The falling edge of ARDY must be synchronized  
to the processor clock. Connecting ARDY HIGH will always assert  
the ready condition to the CPU. If this line is unused, it should be tied  
LOW to yield control to the SRDY pin.  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
12  
12  
80C186XL/80C188XL  
Table 3. Pin Descriptions (Continued)  
Output  
Pin  
Pin  
Input  
Type  
Pin Description  
Name  
Type  
States  
SRDY  
I
S(L)  
Ð
Synchronous Ready informs the processor that the addressed  
memory space or I/O device will complete a data transfer. The  
SRDY pin accepts an active-HIGH input synchronized to CLKOUT.  
The use of SRDY allows a relaxed system timing over ARDY. This  
is accomplished by elimination of the one-half clock cycle required  
to internally synchonize the ARDY input signal. Connecting SRDY  
high will always assert the ready condition to the CPU. If this line is  
unused, it should be tied LOW to yield control to the ARDY pin.  
LOCK  
O
O
Ð
Ð
H(Z)  
R(Z)  
LOCK output indicates that other system bus masters are not to  
gain control of the system bus. LOCK is active LOW. The LOCK  
signal is requested by the LOCK prefix instruction and is activated  
at the beginning of the first data cycle associated with the  
instruction immediately following the LOCK prefix. It remains active  
until the completion of that instruction. No instruction prefetching  
will occur while LOCK is asserted.  
S0  
S1  
S2  
H(Z)  
R(1)  
Bus cycle status S0S2 are encoded to provide bus-transaction  
information:  
Bus Cycle Status Information  
S2  
S1  
S0  
Bus Cycle Initiated  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Interrupt Acknowledge  
Read I/O  
Write I/O  
Halt  
Instruction Fetch  
Read Data from Memory  
Write Data to Memory  
Passive (no bus cycle)  
S2 may be used as a logical M/IO indicator, and S1 as a DT/R  
indicator.  
HOLD  
HLDA  
I
A(L)  
Ð
Ð
HOLD indicates that another bus master is requesting the local bus.  
The HOLD input is active HIGH. The processor generates HLDA  
(HIGH) in response to a HOLD request. Simultaneous with the  
issuance of HLDA, the processor will float the local bus and control  
lines. After HOLD is detected as being LOW, the processor will  
lower HLDA. When the processor needs to run another bus cycle, it  
will again drive the local bus and control lines.  
O
H(1)  
R(0)  
In Enhanced Mode, HLDA will go low when a DRAM refresh cycle  
is pending in the processor and an external bus master has control  
of the bus. It will be up to the external master to relinquish the bus  
by lowering HOLD so that the processor may execute the refresh  
cycle.  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
13  
13  
80C186XL/80C188XL  
Table 3. Pin Descriptions (Continued)  
Pin  
Pin  
Input  
Type  
Output  
Pin Description  
Name  
Type  
States  
UCS  
I/O  
A(L)  
H(1)  
R(WH)  
Upper Memory Chip Select is an active LOW output  
whenever a memory reference is made to the defined  
upper portion (1K256K block) of memory. The  
address range activating UCS is software  
programmable.  
UCS and LCS are sampled upon the rising edge of  
RES. If both pins are held low, the processor will enter  
ONCE Mode. In ONCE Mode all pins assume a high  
impedance state and remain so until a subsequent  
RESET. UCS has a weak internal pullup that is active  
during RESET to ensure that the processor does not  
enter ONCE Mode inadvertently.  
LCS  
I/O  
A(L)  
H(1)  
R(WH)  
Lower Memory Chip Select is active LOW whenever a  
memory reference is made to the defined lower portion  
(1K256K) of memory. The address range activating  
LCS is software programmable.  
UCS and LCS are sampled upon the rising edge of  
RES. If both pins are held low, the processor will enter  
ONCE Mode. In ONCE Mode all pins assume a high  
impedance state and remain so until a subsequent  
RESET. LCS has a weak internal pullup that is active  
only during RESET to ensure that the processor does  
not enter ONCE mode inadvertently.  
MCS0/PEREQ  
MCS1/ERROR  
I/O  
O
A(L)  
H(1)  
R(WH)  
Mid-Range Memory Chip Select signals are active LOW  
when a memory reference is made to the defined mid-  
range portion of memory (8K512K). The address  
ranges activating MCS0–3 are software programmable.  
MCS2  
MCS3/NPS  
H(1)  
R(1)  
On the 80C186XL, in Enhanced Mode, MCS0 becomes  
a PEREQ input (Processor Extension Request). When  
connected to the Math Coprocessor, this input is used  
to signal the 80C186XL when to make numeric data  
transfers to and from the coprocessor. MCS3 becomes  
NPS (Numeric Processor Select) which may only be  
activated by communication to the 80C187. MCS1  
becomes ERROR in Enhanced Mode and is used to  
signal numerics coprocessor errors.  
PCS0  
PCS1  
PCS2  
PCS3  
PCS4  
O
O
H(1)  
R(1)  
Peripheral Chip Select signals 0–4 are active LOW  
when a reference is made to the defined peripheral  
area (64 Kbyte I/O or 1 MByte memory space). The  
address ranges activating PCS0–4 are software  
programmable.  
PCS5/A1  
H(1)/H(X)  
R(1)  
Peripheral Chip Select 5 or Latched A1 may be  
programmed to provide a sixth peripheral chip select, or  
to provide an internally latched A1 signal. The address  
range activating PCS5 is software-programmable.  
PCS5/A1 does not float during bus HOLD. When  
programmed to provide latched A1, this pin will retain  
the previously latched value during HOLD.  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
14  
14  
80C186XL/80C188XL  
Table 3. Pin Descriptions (Continued)  
Pin  
Pin  
Input  
Type  
Output  
Pin Description  
Name  
Type  
States  
PCS6/A2  
O
Ð
H(1)/H(X)  
R(1)  
Peripheral Chip Select 6 or Latched A2 may be programmed  
to provide a seventh peripheral chip select, or to provide an  
internally latched A2 signal. The address range activating  
PCS6 is software-programmable. PCS6/A2 does not float  
during bus HOLD. When programmed to provide latched A2,  
this pin will retain the previously latched value during HOLD.  
DT/R  
DEN  
O
O
Ð
Ð
H(Z)  
R(Z)  
Data Transmit/Receive controls the direction of data flow  
through an external data bus transceiver. When LOW, data is  
transferred to the procesor. When HIGH the processor  
places write data on the data bus.  
H(Z)  
R(1,Z)  
Data Enable is provided as a data bus transceiver output  
enable. DEN is active LOW during each memory and I/O  
access (including 80C187 access). DEN is HIGH whenever  
DT/R changes state. During RESET, DEN is driven HIGH for  
one clock, then floated.  
N.C.  
Ð
Ð
Ð
Not connected. To maintain compatibility with future  
products, do not connect to these pins.  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
15  
15  
80C186XL/80C188XL  
Ceramic Leadless Chip Carrier (JEDEC Type A)  
Contacts Facing Up Contacts Facing Down  
272431–5  
Ceramic Pin Grid Array  
Pins Facing Up  
Pins Facing Down  
272431–6  
NOTE:  
XXXXXXXXC indicates the Intel FPO number.  
Figure 4. 80C186XL/80C188XL Pinout Diagrams  
16  
16  
80C186XL/80C188XL  
Shrink Quad Flat Pack  
27243122  
NOTE:  
XXXXXXXXC indicates the Intel FPO number.  
Figure 4. 80C186XL/80C188XL Pinout Diagrams (Continued)  
17  
17  
80C186XL/80C188XL  
Plastic Leaded Chip Carrier  
Contacts Facing Up  
Contacts Facing Down  
272431–7  
80-Pin Quad Flat Pack (EIAJ)  
Contacts  
Facing Up  
Contacts  
Facing Down  
272431–8  
NOTE:  
XXXXXXXXA indicates the Intel FPO number.  
Figure 4. 80C186XL/80C288XL Pinout Diagrams (Continued)  
18  
18  
80C186XL/80C188XL  
Table 4. LCC/PLCC Pin Functions with Location  
Bus Control Processor Control  
ALE/QS0  
AD Bus  
I/O  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
17  
15  
13  
11  
8
61  
64  
52  
53  
54  
62  
63  
55  
49  
39  
40  
48  
50  
51  
RES  
24  
UCS  
LCS  
34  
33  
BHE (RFSH)  
S0  
S1  
RESET  
X1  
X2  
57  
59  
58  
56  
47  
46  
45  
44  
42  
41  
MCS0/PEREQ  
MCS1/ERROR  
MCS2  
38  
37  
36  
35  
S2  
CLKOUT  
TEST/BUSY  
NMI  
6
RD/QSMD  
WR/QS1  
ARDY  
SRDY  
DEN  
4
MCS3/NPS  
2
INT0  
AD8 (A8)  
AD9 (A9)  
AD10 (A10)  
AD11 (A11)  
AD12 (A12)  
AD13 (A13)  
AD14 (A14)  
AD15 (A15)  
A16/S3  
16  
14  
12  
10  
7
INT1/SELECT  
INT2/INTA0  
INT3/INTA1  
PCS0  
PCS1  
25  
27  
28  
29  
30  
31  
32  
DT/R  
PCS2  
PCS3  
LOCK  
HOLD  
HLDA  
PCS4  
PCS5/A1  
PCS6/A2  
Power and Ground  
5
V
9
3
CC  
CC  
SS  
SS  
V
V
V
43  
26  
60  
1
68  
67  
66  
65  
TMR IN 0  
TMR IN 1  
20  
21  
22  
23  
A17/S4  
A18/S5  
A19/S6  
TMR OUT 0  
TMR OUT 1  
DRQ0  
DRQ1  
18  
19  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
Table 5. LCC/PGA/PLCC Pin Locations with Pin Names  
1
2
AD15 (A15)  
AD7  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
DRQ0  
DRQ1  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
MCS3/NPS  
MCS2  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
S0  
S1  
3
AD14 (A14)  
AD6  
TMR IN 0  
TMR IN 1  
TMR OUT 0  
TMR OUT 1  
RES  
MCS1/ERROR  
MCS0/PEREQ  
DEN  
S2  
4
ARDY  
CLKOUT  
RESET  
X2  
5
AD13 (A13)  
AD5  
6
DT/R  
INT3/INTA1  
INT2/INTA0  
7
AD12 (A12)  
AD4  
8
PCS0  
X1  
V
SS  
9
V
V
SS  
PCS1  
V
CC  
CC  
10  
11  
12  
13  
14  
15  
16  
17  
AD11 (A11)  
AD3  
INT1/SELECT  
INT0  
NMI  
ALE/QS0  
RD/QSMD  
WR/QS1  
BHE (RFSH)  
A19/S2  
PCS2  
PCS3  
PCS4  
AD10 (A10)  
AD2  
TEST/BUSY  
LOCK  
SRDY  
AD9 (A9)  
AD1  
PCS5/A1  
PCS6/A2  
LCS  
A18/S3  
A17/S4  
A16/S3  
AD8 (A8)  
AD0  
HOLD  
HLDA  
UCS  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
19  
19  
80C186XL/80C188XL  
AD Bus  
Table 6. QFP Pin Functions with Location  
Bus Control Processor Control  
ALE/QS0  
I/O  
AD0  
AD1  
64  
66  
68  
70  
74  
76  
78  
80  
65  
67  
69  
71  
75  
77  
79  
1
10  
7
RES  
55  
UCS  
LCS  
45  
46  
BHE (RFSH)  
S0  
S1  
RESET  
X1  
X2  
18  
16  
17  
19  
29  
30  
31  
32  
35  
36  
AD2  
AD3  
23  
22  
21  
9
MCS0/PEREQ  
MCS1/ERROR  
MCS2  
39  
40  
41  
42  
AD4  
AD5  
S2  
CLKOUT  
TEST/BUSY  
NMI  
RD/QSMD  
WR/QS1  
ARDY  
SRDY  
DEN  
AD6  
AD7  
8
MCS3/NPS  
20  
27  
38  
37  
28  
26  
25  
INT0  
AD8 (A8)  
AD9 (A9)  
AD10 (A10)  
AD11 (A11)  
AD12 (A12)  
AD13 (A13)  
AD14 (A14)  
AD15 (A15)  
A16/S3  
A17/S4  
A18/S5  
A19/S6  
INT1/SELECT  
INT2/INTA0  
INT3/INTA1  
PCS0  
PCS1  
54  
52  
51  
50  
49  
48  
47  
DT/R  
PCS2  
PCS3  
LOCK  
HOLD  
HLDA  
PCS4  
PCS5/A1  
PCS6/A2  
Power and Ground  
V
33  
CC  
CC  
CC  
CC  
SS  
SS  
SS  
V
V
V
V
V
V
34  
72  
73  
12  
13  
53  
No Connection  
3
TMR IN 0  
TMR IN 1  
59  
58  
57  
56  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
2
11  
14  
15  
24  
43  
44  
62  
63  
4
5
TMR OUT 0  
TMR OUT 1  
6
DRQ0  
DRQ1  
61  
60  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
Table 7. QFP Pin Locations with Pin Names  
1
2
AD15 (A15)  
N.C.  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
S2  
S1  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
MCS2  
MCS3/NPS  
N.C.  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
DRQ0  
N.C.  
N.C.  
3
A16/S3  
A17/S4  
A18/S5  
A19/S6  
BHE/(RFSH)  
WR/QS1  
RD/QSMD  
ALE/QS0  
N.C.  
S0  
N.C.  
4
N.C.  
UCS  
AD0  
AD8 (A8)  
AD1  
5
HLDA  
HOLD  
SRDY  
LOCK  
TEST/BUSY  
NMI  
6
LCS  
7
PCS6/A2  
PCS5/A1  
PCS4  
AD9 (A9)  
AD2  
8
9
AD10 (A10)  
AD3  
AD11 (A11)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PCS3  
PCS2  
PCS1  
INT0  
INT1/SELECT  
V
V
V
V
SS  
SS  
CC  
CC  
V
V
V
SS  
PCS0  
CC  
N.C.  
N.C.  
AD4  
AD12 (A12)  
AD5  
CC  
INT2/INTA0  
INT3/INTA1  
DT/R  
RES  
X1  
X2  
TMR OUT 1  
TMR OUT 0  
TMR IN 1  
TMR IN 0  
DRQ1  
AD13 (A13)  
AD6  
RESET  
CLKOUT  
ARDY  
DEN  
MCS0/PEREQ  
MCS1/ERROR  
AD14 (A14)  
AD7  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
20  
20  
80C186XL/80C188XL  
Table 8. SQFP Pin Functions with Location  
Bus Control Processor Control  
ALE/QS0  
AD Bus  
I/O  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
1
3
29  
26  
40  
39  
38  
28  
27  
37  
44  
56  
54  
45  
43  
42  
RES  
73  
UCS  
LCS  
62  
63  
BHE (RFSH)  
S0  
S1  
RESET  
X1  
X2  
34  
32  
33  
36  
46  
47  
48  
49  
52  
53  
6
8
MCS0/PEREQ  
MCS1/ERROR  
MCS2  
57  
58  
59  
60  
12  
14  
16  
18  
2
S2  
CLKOUT  
TEST/BUSY  
NMI  
RD/QSMD  
WR/QS1  
ARDY  
SRDY  
DEN  
MCS3/NPS  
INT0  
AD8 (A8)  
AD9 (A9)  
AD10 (A10)  
AD11 (A11)  
AD12 (A12)  
AD13 (A13)  
AD14 (A14)  
AD15 (A15)  
A16/S3  
INT1/SELECT  
INT2/INTA0  
INT3/INTA1  
PCS0  
PCS1  
71  
69  
68  
67  
66  
65  
64  
5
7
DT/R  
PCS2  
PCS3  
9
LOCK  
HOLD  
HLDA  
13  
15  
17  
19  
21  
22  
23  
24  
PCS4  
PCS5/A1  
PCS6/A2  
Power and Ground  
V
10  
CC  
CC  
CC  
CC  
CC  
CC  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
11  
20  
50  
51  
61  
30  
31  
41  
70  
80  
No Connection  
TMR IN 0  
TMR IN 1  
77  
76  
75  
74  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
4
25  
35  
55  
72  
A17/S4  
A18/S5  
A19/S6  
TMR OUT 0  
TMR OUT 1  
DRQ0  
DRQ1  
79  
78  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
Table 9. SQFP Pin Locations with Pin Names  
1
2
AD0  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
A16/S3  
A17/S4  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
V
HLDA  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
V
CC  
UCS  
SS  
AD8 (A8)  
AD1  
N.C.  
3
A18/S5  
A19/S6  
N.C.  
HOLD  
SRDY  
LOCK  
LCS  
4
PCS6/A2  
PCS5/A1  
PCS4  
5
AD9 (A9)  
AD2  
6
BHE (RFSH)  
WR/QS1  
RD/QSMD  
ALE/QS0  
TEST/BUSY  
NMI  
INT0  
7
AD10 (A10)  
AD3  
AD11 (A11)  
PCS3  
PCS2  
PCS1  
8
9
INT1/SELECT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
V
V
V
V
V
V
SS  
PCS0  
CC  
CC  
SS  
CC  
CC  
SS  
AD4  
AD12 (A12)  
AD5  
X1  
X2  
INT2/INTA0  
INT3/INTA1  
DT/R  
N.C.  
RES  
RESET  
N.C.  
CLKOUT  
ARDY  
S2  
TMR OUT 1  
TMR OUT 0  
TMR IN 1  
TMR IN 0  
DRQ1  
AD13 (A13)  
AD6  
N.C.  
DEN  
AD14 (A14)  
AD7  
AD15 (A15)  
MCS0/PEREQ  
MCS1/ERROR  
MCS2  
S1  
S0  
DRQ0  
V
SS  
V
MCS3/NPS  
CC  
NOTE:  
Pin names in parentheses apply to the 80C188XL.  
21  
21  
80C186XL/80C188XL  
ELECTRICAL SPECIFICATIONS  
NOTICE: This data sheet contains preliminary infor-  
mation on new products in production. The specifica-  
tions are subject to change without notice. Verify with  
your local Intel Sales office that you have the latest  
data sheet before finalizing a design.  
Absolute Maximum Ratings*  
a
Ambient Temperature under Bias ÀÀÀÀ0 C to 70 C  
§
Storage Temperature ÀÀÀÀÀÀÀÀÀÀ 65 C to 150 C  
§
*WARNING: Stressing the device beyond the ‘‘Absolute  
Maximum Ratings’’ may cause permanent damage.  
These are stress ratings only. Operation beyond the  
‘‘Operating Conditions’’ is not recommended and ex-  
tended exposure beyond the ‘‘Operating Conditions’’  
may affect device reliability.  
b
a
§
§
Voltage on Any Pin with  
Respect to Ground ÀÀÀÀÀÀÀÀÀÀÀÀ 1.0V to 7.0V  
b
a
Package Power Dissipation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1W  
Not to exceed the maximum allowable die tempera-  
ture based on thermal resistance of the package.  
NOTICE: The specifications are subject to change  
without notice.  
e
a
0 C to 70 C, V  
e
CC  
g
5V 10%  
DC SPECIFICATIONS T  
§
§
A
Symbol  
Parameter  
Min  
Max  
Units  
Test Conditions  
b
b
0.3  
V
V
V
Input Low Voltage  
(Except X1)  
0.5  
0.2 V  
V
IL  
CC  
b
Clock Input Low  
Voltage (X1)  
0.5  
0.6  
V
V
IL1  
IH  
a
a
Input High Voltage  
(All except X1 and RES)  
0.2 V  
0.9  
V
CC  
0.5  
CC  
a
a
V
V
Input High Voltage (RES)  
3.0  
3.9  
V
V
0.5  
0.5  
V
V
IH1  
IH2  
CC  
Clock Input High  
Voltage (X1)  
CC  
e
e
V
V
Output Low Voltage  
0.45  
V
I
I
2.5 mA (S0, 1, 2)  
2.0 mA (others)  
OL  
OL  
OL  
(4)  
@
2.4 mA 2.4V  
e b  
e b  
Output High Voltage  
2.4  
V
V
V
V
I
I
OH  
CC  
CC  
OH  
OH  
(4)  
@
b
b
0.5  
V
0.5  
200 mA  
V
CC  
CC  
@
25 MHz, 0 C  
I
Power Supply Current  
100  
mA  
§
CC  
(3)  
5.5V  
e
V
CC  
@
90  
mA  
mA  
mA  
mA  
mA  
V
20 MHz, 0 C  
§
(3)  
5.5V  
e
V
CC  
@
62.5  
100  
12 MHz, 0 C  
§
(3)  
e
V
CC  
5.5V  
@
DC 0 C  
§
e
V
CC  
5.5V  
@
g
g
I
I
Input Leakage Current  
Output Leakage Current  
Clock Output Low  
10  
10  
0.5 MHz,  
s
LI  
s
0.45V  
V
V
IN  
CC  
@
0.5 MHz,  
s
LO  
(1)  
s
0.45V  
V
OUT  
V
CC  
e
4.0 mA  
V
0.45  
I
CLO  
CLO  
22  
22  
80C186XL/80C188XL  
Test Conditions  
e
a
0 C to 70 C, V  
e
5V 10%  
CC  
g
DC SPECIFICATIONS (Continued) T  
§
§
A
Symbol  
Parameter  
Clock Output High  
Input Capacitance  
Min  
Max  
Units  
V
b
e b  
500 mA  
V
V
0.5  
I
CHO  
CHO  
CC  
(2)  
@
@
C
C
10  
20  
pF  
1 MHz  
1 MHz  
IN  
IO  
(2)  
Output or I/O Capacitance  
pF  
NOTES:  
1. Pins being floated during HOLD or by invoking the ONCE Mode.  
e
a
5.0V or 0.45V. This  
2. Characterization conditions are a) Frequency  
parameter is not tested.  
3. Current is measured with the device in RESET with X1 and X2 driven and all other non-power pins open.  
1 MHz; b) Unmeasured pins at GND; c) V at  
IN  
4. RD/QSMD, UCS, LCS, MCS0/PEREQ, MCS1/ERROR and TEST/BUSY pins have internal pullup devices. Loading some  
e b  
Local Bus Controller and Reset for details.  
of these pins above I  
200 mA can cause the processor to go into alternative modes of operation. See the section on  
OH  
Power Supply Current  
Current is linearly proportional to clock frequency  
and is measured with the device in RESET with X1  
and X2 driven and all other non-power pins open.  
e
c
freq.  
Maximum current is given by I  
a
5 mA  
CC  
(MHz)  
I
.
QL  
I
is the quiescent leakage current when the clock  
QL  
is static. I is typically less than 100 mA.  
QL  
272431–9  
Figure 5. I vs Frequency  
CC  
23  
23  
80C186XL/80C188XL  
AC SPECIFICATIONS  
MAJOR CYCLE TIMINGS (READ CYCLE)  
e
a
e
All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.  
g
5V 10%  
T
A
0 C to 70 C, V  
§
§
CC  
e
All output test conditions are with C  
e
50 pF.  
e
L
0.45V and V  
e
b
V 0.5V.  
CC  
For AC tests, input V  
2.4V except at X1 where V  
IL  
IH  
IH  
Values  
Test  
Symbol  
Parameter  
80C186XL25  
Min Max  
80C186XL GENERAL TIMING REQUIREMENTS (Listed More Than Once)  
80C186XL20  
80C186XL12 Unit  
Conditions  
Min Max  
Min  
Max  
T
T
Data in Setup (A/D)  
Data in Hold (A/D)  
8
3
10  
3
15  
3
ns  
ns  
DVCL  
CLDX  
80C186XL GENERAL TIMING RESPONSES (Listed More Than Once)  
T
T
T
T
T
T
T
T
T
T
Status Active Delay  
Status Inactive Delay  
Address Valid Delay  
Address Hold  
3
3
20  
20  
20  
3
3
25  
25  
27  
3
3
35 ns  
35 ns  
36 ns  
ns  
CHSV  
CLSH  
CLAV  
CLAX  
CLDV  
CHDX  
CHLH  
LHLL  
CHLL  
AVLL  
3
3
3
0
0
0
Data Valid Delay  
Status Hold Time  
ALE Active Delay  
ALE Width  
3
20  
20  
20  
3
27  
20  
20  
3
36 ns  
ns  
10  
10  
10  
25 ns  
ns  
b
b
b
15  
CLCL  
T
15  
10  
T
15  
T
CLCL  
CLCH  
CLCL  
ALE Inactive Delay  
Address Valid to ALE Low  
25 ns  
ns  
b
b
b
b
b
T
T
T
10  
10  
T
T
15  
15  
Equal  
Loading  
CLCH  
CHCL  
CLCH  
CHCL  
b
T
Address Hold from ALE  
Inactive  
T
8
ns  
Equal  
Loading  
LLAX  
CHCL  
T
T
T
T
Address Valid to Clock High  
Address Float Delay  
0
0
0
ns  
25 ns  
33 ns  
ns  
AVCH  
CLAZ  
T
20  
20  
T
20  
25  
T
CLAX  
3
CLAX  
3
CLAX  
3
Chip-Select Active Delay  
CLCSV  
CXCSX  
b
b
b
Chip-Select Hold from  
Command Inactive  
T
10  
T
10  
T
10  
Equal  
Loading  
CLCH  
CLCH  
CLCH  
T
T
Chip-Select Inactive Delay  
DEN Inactive to DT/R Low  
3
17  
3
20  
3
30 ns  
ns  
CHCSX  
DXDL  
0
0
0
Equal  
Loading  
T
T
T
T
Control Active Delay 1  
DEN Inactive Delay  
3
3
3
3
17  
17  
20  
17  
3
3
3
3
22  
22  
22  
22  
3
3
3
3
37 ns  
37 ns  
37 ns  
37 ns  
CVCTV  
CVDEX  
CHCTV  
CLLV  
Control Active Delay 2  
LOCK Valid/Invalid Delay  
24  
24  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
MAJOR CYCLE TIMINGS (READ CYCLE) (Continued)  
e
a
e
All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.  
g
5V 10%  
T
0 C to 70 C, V  
§
§
A
CC  
e
All output test conditions are with C  
e
50 pF.  
e
L
0.45V and V  
e
b
V 0.5V.  
CC  
For AC tests, input V  
2.4V except at X1 where V  
IL  
IH  
IH  
Values  
Test  
Symbol  
Parameter  
80C186XL25  
Min Max  
80C186XL TIMING RESPONSES (Read Cycle)  
80C186XL20  
80C186XL12  
Unit  
Conditions  
Min  
Max  
Min  
Max  
T
Address Float  
to RD Active  
0
0
3
0
3
ns  
AZRL  
T
T
T
T
RD Active Delay  
RD Pulse Width  
RD Inactive Delay  
3
20  
20  
27  
27  
37  
37  
ns  
ns  
ns  
ns  
CLRL  
RLRH  
CLRH  
RHLH  
b
b
b
25  
CLCL  
2T  
15  
2T  
20  
2T  
CLCL  
CLCL  
3
3
3
b
b
b
b
b
b
RD Inactive  
to ALE High  
T
14  
15  
T
14  
15  
T
CLCH  
14  
15  
Equal  
Loading  
CLCH  
CLCH  
T
RD Inactive to  
Address Active  
T
T
T
CLCL  
ns  
Equal  
Loading  
RHAV  
CLCL  
CLCL  
25  
25  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
MAJOR CYCLE TIMINGS (WRITE CYCLE)  
e
a
e
All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.  
g
5V 10%  
T
0 C to 70 C, V  
§
§
A
CC  
e
All output test conditions are with C  
e
50 pF.  
e
L
0.45V and V  
e
b
V 0.5V.  
CC  
For AC tests, input V  
2.4V except at X1 where V  
IL  
IH  
IH  
Values  
Test  
Symbol  
Parameter  
80C186XL25  
Min Max  
80C186XL GENERAL TIMING RESPONSES (Listed More Than Once)  
80C186XL20  
80C186XL12  
Unit  
Conditions  
Min  
Max  
Min  
Max  
T
T
T
T
T
T
T
T
T
T
Status Active Delay  
Status Inactive Delay  
Address Valid Delay  
Address Hold  
3
3
20  
20  
20  
3
3
25  
25  
27  
3
3
35 ns  
35 ns  
36 ns  
ns  
CHSV  
CLSH  
CLAV  
CLAX  
CLDV  
CHDX  
CHLH  
LHLL  
CHLL  
AVLL  
3
3
3
0
0
0
Data Valid Delay  
Status Hold Time  
ALE Active Delay  
ALE Width  
3
20  
20  
20  
3
27  
20  
20  
3
36 ns  
ns  
10  
10  
10  
25 ns  
ns  
b
b
b
15  
CLCL  
T
15  
T
15  
T
CLCL  
CLCL  
ALE Inactive Delay  
Address Valid to ALE Low  
25 ns  
ns  
b
b
b
b
b
b
T
T
10  
10  
T
T
10  
10  
T
T
15  
15  
Equal  
CLCH  
CHCL  
CLCH  
CLCH  
Loading  
T
Address Hold from ALE  
Inactive  
ns  
Equal  
LLAX  
CHCL  
CHCL  
Loading  
T
T
T
T
T
T
Address Valid to Clock High  
Data Hold Time  
0
0
0
ns  
ns  
AVCH  
3
3
3
3
3
3
3
3
3
3
3
3
CLDOX  
CVCTV  
CVCTX  
CLCSV  
CXCSX  
Control Active Delay 1  
Control Inactive Delay  
Chip-Select Active Delay  
20  
17  
20  
25  
25  
25  
37 ns  
37 ns  
33 ns  
ns  
b
b
b
Chip-Select Hold from  
Command Inactive  
T
10  
T
10  
T
10  
Equal  
CLCH  
CLCH  
CLCH  
Loading  
T
T
Chip-Select Inactive Delay  
DEN Inactive to DT/R Low  
3
0
17  
17  
3
0
20  
22  
3
0
30 ns  
ns  
CHCSX  
DXDL  
Equal  
Loading  
T
LOCK Valid/Invalid Delay  
3
3
3
37 ns  
CLLV  
80C186XL TIMING RESPONSES (Write Cycle)  
b
b
b
b
b
b
T
T
WR Pulse Width  
2T  
15  
14  
2T  
20  
14  
2T  
25  
14  
ns  
ns  
WLWH  
WHLH  
CLCL  
CLCL  
CLCL  
WR Inactive to ALE High  
T
T
CLCH  
T
CLCH  
Equal  
CLCH  
Loading  
b
b
b
b
b
b
T
T
Data Hold after WR  
T
10  
10  
T
15  
10  
T
20  
10  
ns  
ns  
Equal  
WHDX  
CLCL  
CLCL  
CLCL  
Loading  
WR Inactive to DEN Inactive T  
T
CLCH  
T
CLCH  
Equal  
WHDEX  
CLCH  
Loading  
26  
26  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
MAJOR CYCLE TIMINGS (INTERRUPT ACKNOWLEDGE CYCLE)  
e
a
e
All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.  
g
5V 10%  
T
0 C to 70 C, V  
§
§
A
CC  
e
All output test conditions are with C  
e
50 pF.  
e
L
0.45V and V  
e
b
V 0.5V.  
CC  
For AC tests, input V  
2.4V except at X1 where V  
IL  
IH  
IH  
Values  
Test  
Symbol  
Parameter  
80C186XL25  
Min Max  
80C186XL GENERAL TIMING REQUIREMENTS (Listed More Than Once)  
80C186XL20  
80C186XL12 Unit  
Conditions  
Min Max  
Min  
Max  
T
T
Data in Setup (A/D)  
Data in Hold (A/D)  
8
3
10  
3
15  
3
ns  
ns  
DVCL  
CLDX  
80C186XL GENERAL TIMING RESPONSES (Listed More Than Once)  
T
T
T
T
T
T
T
T
T
T
T
Status Active Delay  
Status Inactive Delay  
Address Valid Delay  
Address Valid to Clock High  
Address Hold  
3
3
20  
20  
20  
3
3
25  
25  
27  
3
3
35 ns  
35 ns  
36 ns  
ns  
CHSV  
CLSH  
CLAV  
AVCH  
CLAX  
CLDV  
CHDX  
CHLH  
LHLL  
CHLL  
AVLL  
3
3
3
0
0
0
0
0
0
ns  
Data Valid Delay  
3
20  
20  
20  
3
27  
20  
20  
3
36 ns  
ns  
Status Hold Time  
10  
10  
10  
ALE Active Delay  
ALE Width  
25 ns  
ns  
b
b
b
15  
CLCL  
T
15  
T
15  
T
CLCL  
CLCL  
ALE Inactive Delay  
Address Valid to ALE Low  
25 ns  
ns  
b
b
b
b
b
b
T
T
10  
10  
T
T
10  
10  
T
T
15  
15  
Equal  
Loading  
CLCH  
CLCH  
CHCL  
CLCH  
CHCL  
T
Address Hold to ALE  
Inactive  
ns  
Equal  
Loading  
LLAX  
CHCL  
T
T
T
T
Address Float Delay  
T
20  
17  
17  
T
20  
25  
25  
T
25 ns  
37 ns  
37 ns  
ns  
CLAZ  
CLAX  
3
CLAX  
3
CLAX  
3
Control Active Delay 1  
Control Inactive Delay  
DEN Inactive to DT/R Low  
CVCTV  
CVCTX  
DXDL  
3
0
3
0
3
0
Equal  
Loading  
T
T
Control Active Delay 2  
3
3
20  
17  
3
3
22  
22  
3
3
37 ns  
37 ns  
CHCTV  
CVDEX  
DEN Inactive Delay  
(Non-Write Cycles)  
T
LOCK Valid/Invalid Delay  
3
17  
3
22  
3
37 ns  
CLLV  
27  
27  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
SOFTWARE HALT CYCLE TIMINGS  
e
a
e
All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.  
g
5V 10%  
T
0 C to 70 C, V  
§
§
A
CC  
e
All output test conditions are with C  
e
50 pF.  
e
L
0.45V and V  
e
b
V 0.5V.  
CC  
For AC tests, input V  
2.4V except at X1 where V  
IL  
IH  
IH  
Values  
Test  
Symbol  
Parameter  
80C186XL25  
Min Max  
80C186XL GENERAL TIMING REQUIREMENTS (Listed More Than Once)  
80C186XL20  
80C186XL12 Unit  
Conditions  
Min Max  
Min  
Max  
T
T
T
T
T
T
T
Status Active Delay  
Status Inactive Delay  
Address Valid Delay  
ALE Active Delay  
3
3
3
20  
20  
20  
20  
3
3
3
25  
25  
27  
20  
3
3
3
35 ns  
35 ns  
36 ns  
25 ns  
ns  
CHSV  
CLSH  
CLAV  
CHLH  
LHLL  
CHLL  
DXDL  
b
b
b
15  
CLCL  
ALE Width  
T
15  
T
15  
T
CLCL  
CLCL  
ALE Inactive Delay  
DEN Inactive to DT/R Low  
20  
0
20  
0
25 ns  
0
ns  
Equal  
Loading  
T
Control Active Delay 2  
3
20  
3
22  
3
37 ns  
CHCTV  
28  
28  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
CLOCK TIMINGS  
a
e
All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.  
e
CC  
g
5V 10%  
T
0 C to 70 C, V  
§
§
A
e
All output test conditions are with C  
e
50 pF.  
e
L
0.45V and V  
e
b
V 0.5V.  
CC  
For AC tests, input V  
2.4V except at X1 where V  
IL  
IH  
IH  
Values  
Test  
Symbol  
Parameter  
80C186XL25  
Min Max  
80C186XL20  
80C186XL12  
Unit  
Conditions  
Min  
Max  
Min  
Max  
(1)  
80C186XL CLKIN REQUIREMENTS  
%
%
%
5
%
%
%
5
%
%
%
5
T
T
T
T
T
CLKIN Period  
20  
8
25  
10  
10  
40  
16  
16  
ns  
CKIN  
(2)  
CLKIN Low Time  
CLKIN High Time  
CLKIN Fall Time  
CLKIN Rise Time  
ns 1.5V  
ns 1.5V  
CLCK  
CHCK  
CKHL  
CKLH  
(2)  
8
ns 3.5 to 1.0V  
ns 1.0 to 3.5V  
5
5
5
80C186XL CLKOUT TIMING  
T
CLKIN to  
CLKOUT Skew  
17  
17  
21 ns  
CICO  
%
%
T
T
CLKOUT Period  
40  
50  
80  
ns  
CLCL  
CLCH  
(3)  
(4)  
b
b
b
b
b
b
e
e
CLKOUT  
Low Time  
0.5 T  
0.5 T  
5
5
0.5 T  
0.5 T  
5
5
0.5 T  
0.5 T  
5
5
ns  
C
C
100 pF  
100 pF  
CLCL  
CLCL  
CLCL  
L
T
T
T
CLKOUT  
High Time  
ns  
CHCL  
CLCL  
CLCL  
CLCL  
L
CLKOUT  
Rise Time  
6
6
8
8
10 ns 1.0 to 3.5V  
10 ns 3.5 to 1.0V  
CH1CH2  
CL2CL1  
CLKOUT  
Fall Time  
NOTES:  
1. External clock applied to X1 and X2 not connected.  
2. T and T (CLKIN Low and High times) should not have a duration less than 40% of T .  
CKIN  
CLCK  
CHCK  
e
e
e
e
3. Tested under worst case conditions: V  
4. Tested under worst case conditions: V  
5.5V. T  
4.5V. T  
70 C.  
0 C.  
§
CC  
CC  
A
A
§
29  
29  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
READY, PERIPHERAL AND QUEUE STATUS TIMINGS  
e
a
e
All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.  
g
5V 10%  
T
0 C to 70 C, V  
§
§
A
CC  
e
All output test conditions are with C  
e
50 pF.  
e
L
0.45V and V  
e
b
V 0.5V.  
CC  
For AC tests, input V  
2.4V except at X1 where V  
IL  
IH  
IH  
Values  
Test  
Symbol  
Parameter  
80C186XL25 80C186XL20 80C186XL12 Unit  
Conditions  
Min  
Max  
Min  
Max  
Min  
Max  
80C186XL READY AND PERIPHERAL TIMING REQUIREMENTS (Listed More Than Once)  
T
Synchronous Ready (SRDY)  
(1)  
Transition Setup Time  
8
10  
15  
ns  
SRYCL  
(1)  
T
T
SRDY Transition Hold Time  
8
8
10  
10  
15  
15  
ns  
ns  
CLSRY  
ARYCH  
ARDY Resolution Transition  
(2)  
Setup Time  
(1)  
T
T
T
ARDY Active Hold Time  
8
8
10  
10  
15  
15  
15  
25  
ns  
ns  
ns  
CLARX  
ARDY Inactive Holding Time  
ARYCHL  
ARYLCL  
Asynchronous Ready  
(1)  
(ARDY) Setup Time  
10  
T
INTx, NMI, TEST/BUSY,  
(2)  
TMR IN Setup Time  
8
10  
15  
15  
ns  
ns  
INVCH  
(2)  
T
DRQ0, DRQ1 Setup Time  
8
10  
INVCL  
80C186XL PERIPHERAL AND QUEUE STATUS TIMING RESPONSES  
T
T
Timer Output Delay  
Queue Status Delay  
17  
22  
22  
27  
33  
32  
ns  
ns  
CLTMV  
CHQSV  
NOTES:  
1. To guarantee proper operation.  
2. To guarantee recognition at clock edge.  
30  
30  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
RESET AND HOLD/HLDA TIMINGS  
e
a
e
All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.  
g
5V 10%  
T
0 C to 70 C, V  
§
§
A
CC  
e
All output test conditions are with C  
e
50 pF.  
e
L
0.45V and V  
e
b
V 0.5V.  
CC  
For AC tests, input V  
2.4V except at X1 where V  
IL  
IH  
IH  
Values  
Test  
Symbol  
Parameter  
80C186XL25 80C186XL20 80C186XL12 Unit  
Conditions  
Min  
Max  
Min  
Max  
Min  
Max  
80C186XL RESET AND HOLD/HLDA TIMING REQUIREMENTS  
T
T
RES Setup  
15  
8
15  
10  
15  
15  
ns  
ns  
RESIN  
(1)  
HOLD Setup  
HVCL  
80C186XL GENERAL TIMING RESPONSES (Listed More Than Once)  
T
T
Address Float Delay  
Address Valid Delay  
T
20  
20  
T
20  
22  
T
25  
36  
ns  
ns  
CLAZ  
CLAX  
CLAX  
CLAX  
3
3
3
CLAV  
80C186XL RESET AND HOLD/HLDA TIMING RESPONSES  
T
T
T
T
Reset Delay  
17  
17  
22  
20  
22  
22  
25  
26  
33  
33  
33  
36  
ns  
ns  
ns  
ns  
CLRO  
CLHAV  
CHCZ  
CHCV  
HLDA Valid Delay  
Command Lines Float Delay  
3
3
3
Command Lines Valid Delay  
(after Float)  
NOTE:  
1. To guarantee recognition at next clock.  
31  
31  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
27243110  
NOTES:  
1. Status inactive in state preceding T .  
4
2. If latched A and A are selected instead of PCS5 and PCS6, only T is applicable.  
1
2
3. For write cycle followed by read cycle.  
CLCSV  
4. T of next bus cycle.  
1
5. Changes in T-state preceding next bus cycle if followed by write.  
Pin names in parentheses apply to the 80C188XL.  
Figure 6. Read Cycle Waveforms  
32  
32  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
27243111  
NOTES:  
1. Status inactive in state preceding T .  
4
2. If latched A and A are selected instead of PCS5 and PCS6, only T is applicable.  
1
2
CLCSV  
3. For write cycle followed by read cycle.  
4. T of next bus cycle.  
1
5. Changes in T-state preceding next bus cycle if followed by read, INTA, or halt.  
Pin names in parentheses apply to the 80C188XL.  
Figure 7. Write Cycle Waveforms  
33  
33  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
27243112  
NOTES:  
1. Status inactive in state preceding T .  
4
2. The data hold time lasts only until INTA goes inactive, even if the INTA transition occurs prior to T  
3. INTA occurs one clock later in Slave Mode.  
4. For write cycle followed by interrupt acknowledge cycle.  
(min).  
CLDX  
5. LOCK is active upon T of the first interrupt acknowledge cycle and inactive upon T of the second interrupt acknowl-  
2
1
edge cycle.  
6. Changes in T-state preceding next bus cycle if followed by write.  
Pin names in parentheses apply to the 80C188XL.  
Figure 8. Interrupt Acknowledge Cycle Waveforms  
34  
34  
80C186XL/80C188XL  
AC SPECIFICATIONS (Continued)  
27243113  
NOTE:  
1. For write cycle followed by halt cycle.  
Pin names in parentheses apply to the 80C188XL.  
Figure 9. Software Halt Cycle Waveforms  
35  
35  
80C186XL/80C188XL  
WAVEFORMS  
27243114  
Figure 10. Clock Waveforms  
27243115  
Figure 11. Reset Waveforms  
27243116  
Figure 12. Synchronous Ready (SRDY) Waveforms  
36  
36  
80C186XL/80C188XL  
AC CHARACTERISTICS  
27243123  
Figure 13. Asynchronous Ready (ARDY) Waveforms  
27243117  
Figure 14. Peripheral and Queue Status Waveforms  
37  
37  
80C186XL/80C188XL  
AC CHARACTERISTICS (Continued)  
27243124  
Figure 15. HOLDA/HLDA Waveforms (Entering Hold)  
27243118  
Figure 16. HOLD/HLDA Waveforms (Leaving Hold)  
38  
38  
80C186XL/80C188XL  
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has from 5 to 7 characters. The first character is always a ‘T’ (stands for time). The other  
characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The  
following is a list of all the characters and what they stand for.  
A:  
ARY: Asynchronous Ready Input  
C: Clock Output  
Address  
CK: Clock Input  
CS: Chip Select  
CT: Control (DT/R, DEN, . . . )  
D:  
Data Input  
DE: DEN  
H:  
Logic Level High  
OUT: Input (DRQ0, TIM0, . . . )  
L:  
Logic Level Low or ALE  
Output  
O:  
QS: Queue Status (QS1, QS2)  
R:  
S:  
RD Signal, RESET Signal  
Status (S0, S1, S2)  
SRY: Synchronous Ready Input  
V:  
W:  
X:  
Z:  
Valid  
WR Signal  
No Longer a Valid Logic Level  
Float  
Examples:  
T
T
T
Ð Time from Clock low to Address valid  
Ð Time from Clock high to ALE high  
Ð Time from Clock low to Chip Select valid  
CLAV  
CHLH  
CLCSV  
39  
39  
80C186XL/80C188XL  
DERATING CURVES  
Typical Output Delay Capacitive Derating  
27243119  
Figure 17. Capacitive Derating Curve  
Typical Rise and Fall Times for TTL Voltage Levels  
27243120  
Figure 18. TTL Level Rise and Fall Times for Output Buffers  
Typical Rise and Fall Times for CMOS Voltage Levels  
27243121  
Figure 19. CMOS Level Rise and Fall Times for Output Buffers  
40  
40  
80C186XL/80C188XL  
80C186XL/80C188XL EXPRESS  
80C186XL/80C188XL EXECUTION  
TIMINGS  
The Intel EXPRESS system offers enhancements to  
the operational specifications of the 80C186XL mi-  
croprocessor. EXPRESS products are designed to  
meet the needs of those applications whose operat-  
ing requirements exceed commercial standards.  
A determination of program execution timing must  
consider the bus cycles necessary to prefetch in-  
structions as well as the number of execution unit  
cycles necessary to execute instructions. The fol-  
lowing instruction timings represent the minimum ex-  
ecution time in clock cycles for each instruction. The  
timings given are based on the following assump-  
tions:  
The 80C186XL EXPRESS program includes an ex-  
tended temperature range. With the commercial  
standard temperature range, operational character-  
istics are guaranteed over the temperature range of  
The opcode, along with any data or displacement  
#
a
0 C to 70 C. With the extended temperature range  
option, operational characteristics are guaranteed  
§
§
required for execution of a particular instruction,  
has been prefetched and resides in the queue at  
the time it is needed.  
b
a
over the range of 40 C to 85 C.  
§
§
No wait states or bus HOLDs occur.  
#
#
Package types and EXPRESS versions are identified  
by a one or two-letter prefix to the part number. The  
prefixes are listed in Table 10. All AC and DC specifi-  
cations not mentioned in this section are the same  
for both commercial and EXPRESS parts.  
All word-data is located on even-address bound-  
aries (80C186XL only).  
All jumps and calls include the time required to fetch  
the opcode of the next instruction at the destination  
address.  
Table 10. Prefix Identification  
Package  
Type  
Temperature  
Range  
Prefix  
All instructions which involve memory accesses can  
require one or two additional clocks above the mini-  
mum timings shown due to the asynchronous hand-  
shake between the bus interface unit (BIU) and exe-  
cution unit.  
A
N
PGA  
PLCC  
LCC  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Extended  
R
With a 16-bit BIU, the 80C186XL has sufficient bus  
performance to ensure that an adequate number of  
prefetched bytes will reside in the queue (6 bytes)  
most of the time. Therefore, actual program execu-  
tion time will not be substantially greater than that  
derived from adding the instruction timings shown.  
S
QFP  
SB  
TA  
TN  
TR  
TS  
SQFP  
PGA  
PLCC  
LCC  
Extended  
Extended  
The 80C188XL 8-bit BIU is limited in its performance  
relative to the execution unit. A sufficient number of  
prefetched bytes may not reside in the prefetch  
queue (4 bytes) much of the time. Therefore, actual  
program execution time will be substantially greater  
than that derived from adding the instruction timings  
shown.  
QFP  
Extended  
41  
41  
80C186XL/80C188XL  
INSTRUCTION SET SUMMARY  
80C186XL 80C188XL  
Function  
Format  
Clock  
Clock  
Comments  
Cycles  
Cycles  
DATA TRANSFER  
e
MOV  
Move:  
Register to Register/Memory  
Register/memory to register  
Immediate to register/memory  
Immediate to register  
1 0 0 0 1 0 0 w  
1 0 0 0 1 0 1 w  
1 1 0 0 0 1 1 w  
1 0 1 1 w reg  
1 0 1 0 0 0 0 w  
1 0 1 0 0 0 1 w  
1 0 0 0 1 1 1 0  
1 0 0 0 1 1 0 0  
mod reg r/m  
mod reg r/m  
mod 000 r/m  
data  
2/12  
2/9  
12/13  
3/4  
8
2/12*  
2/9*  
12/13  
3/4  
e
data  
data if w  
1
8/16-bit  
8/16-bit  
e
data if w  
1
Memory to accumulator  
addr-low  
addr-high  
addr-high  
8*  
Accumulator to memory  
addr-low  
9
9*  
Register/memory to segment register  
Segment register to register/memory  
mod 0 reg r/m  
mod 0 reg r/m  
2/9  
2/11  
2/13  
2/15  
e
PUSH  
Push:  
Memory  
Register  
1 1 1 1 1 1 1 1  
0 1 0 1 0 reg  
0 0 0 reg 1 1 0  
0 1 1 0 1 0 s 0  
mod 1 1 0 r/m  
16  
10  
9
20  
14  
13  
14  
Segment register  
Immediate  
e
data  
data if s  
0
10  
e
PUSHA  
Push All  
Pop:  
Memory  
0 1 1 0 0 0 0 0  
36  
68  
e
POP  
1 0 0 0 1 1 1 1  
0 1 0 1 1 reg  
0 0 0 reg 1 1 1  
mod 0 0 0 r/m  
(regi01)  
20  
10  
8
24  
14  
12  
Register  
Segment register  
e
e
POPA  
Pop All  
0 1 1 0 0 0 0 1  
51  
83  
XCHG  
Exchange:  
Register/memory with register  
Register with accumulator  
1 0 0 0 0 1 1 w  
1 0 0 1 0 reg  
mod reg r/m  
4/17  
3
4/17*  
3
e
IN  
Input from:  
Fixed port  
1 1 1 0 0 1 0 w  
1 1 1 0 1 1 0 w  
port  
port  
10  
8
10*  
8*  
Variable port  
e
OUT  
Output to:  
Fixed port  
1 1 1 0 0 1 1 w  
1 1 1 0 1 1 1 w  
1 1 0 1 0 1 1 1  
1 0 0 0 1 1 0 1  
1 1 0 0 0 1 0 1  
1 1 0 0 0 1 0 0  
1 0 0 1 1 1 1 1  
1 0 0 1 1 1 1 0  
1 0 0 1 1 1 0 0  
1 0 0 1 1 1 0 1  
9
7
9*  
7*  
15  
6
Variable port  
e
XLAT  
Translate byte to AL  
11  
6
e
LEA  
LDS  
LES  
Load EA to register  
Load pointer to DS  
Load pointer to ES  
mod reg r/m  
mod reg r/m  
mod reg r/m  
(modi11)  
(modi11)  
18  
18  
2
26  
26  
2
e
e
e
LAHF  
SAHF  
Load AH with flags  
Store AH into flags  
e
3
3
e
PUSHF  
Push flags  
9
13  
12  
e
POPF  
Pop flags  
8
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.  
42  
42  
80C186XL/80C188XL  
INSTRUCTION SET SUMMARY (Continued)  
80C186XL 80C188XL  
Function  
Format  
Clock  
Clock  
Comments  
Cycles  
Cycles  
DATA TRANSFER (Continued)  
e
SEGMENT  
Segment Override:  
CS  
0 0 1 0 1 1 1 0  
0 0 1 1 0 1 1 0  
0 0 1 1 1 1 1 0  
0 0 1 0 0 1 1 0  
2
2
2
2
2
2
2
2
SS  
DS  
ES  
ARITHMETIC  
e
ADD  
Add:  
Reg/memory with register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 0 0 0 0 d w  
1 0 0 0 0 0 s w  
0 0 0 0 0 1 0 w  
mod reg r/m  
mod 0 0 0 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4  
e
data if s w 01  
data  
e
e
data if w  
1
1
8/16-bit  
8/16-bit  
e
ADC  
Add with carry:  
Reg/memory with register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 0 1 0 0 d w  
1 0 0 0 0 0 s w  
0 0 0 1 0 1 0 w  
mod reg r/m  
mod 0 1 0 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4  
e
data if s w 01  
data  
data if w  
e
INC  
Increment:  
Register/memory  
Register  
1 1 1 1 1 1 1 w  
0 1 0 0 0 reg  
mod 0 0 0 r/m  
3/15  
3
3/15*  
3
e
SUB  
Subtract:  
Reg/memory and register to either  
Immediate from register/memory  
Immediate from accumulator  
0 0 1 0 1 0 d w  
1 0 0 0 0 0 s w  
0 0 1 0 1 1 0 w  
mod reg r/m  
mod 1 0 1 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4  
e
data if s w 01  
data  
e
e
data if w  
1
1
8/16-bit  
8/16-bit  
e
SBB  
Subtract with borrow:  
Reg/memory and register to either  
Immediate from register/memory  
Immediate from accumulator  
0 0 0 1 1 0 d w  
1 0 0 0 0 0 s w  
0 0 0 1 1 1 0 w  
mod reg r/m  
mod 0 1 1 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4*  
e
data if s w 01  
data  
data if w  
e
DEC  
Decrement  
Register/memory  
Register  
1 1 1 1 1 1 1 w  
0 1 0 0 1 reg  
mod 0 0 1 r/m  
3/15  
3
3/15*  
3
e
CMP  
Compare:  
Register/memory with register  
Register with register/memory  
Immediate with register/memory  
Immediate with accumulator  
0 0 1 1 1 0 1 w  
0 0 1 1 1 0 0 w  
1 0 0 0 0 0 s w  
0 0 1 1 1 1 0 w  
1 1 1 1 0 1 1 w  
0 0 1 1 0 1 1 1  
0 0 1 0 0 1 1 1  
0 0 1 1 1 1 1 1  
0 0 1 0 1 1 1 1  
mod reg r/m  
mod reg r/m  
mod 1 1 1 r/m  
data  
3/10  
3/10  
3/10  
3/4  
3/10  
8
3/10*  
3/10*  
3/10*  
3/4  
3/10*  
8
e
data if s w 01  
data  
e
data if w  
1
8/16-bit  
e
e
e
e
e
NEG  
AAA  
DAA  
AAS  
DAS  
Change sign register/memory  
ASCII adjust for add  
mod 0 1 1 r/m  
Decimal adjust for add  
4
4
ASCII adjust for subtract  
Decimal adjust for subtract  
7
7
4
4
e
MUL  
Multiply (unsigned):  
1 1 1 1 0 1 1 w  
mod 100 r/m  
Register-Byte  
Register-Word  
Memory-Byte  
Memory-Word  
2628  
3537  
3234  
4143  
2628  
3537  
3234  
4143*  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.  
43  
43  
80C186XL/80C188XL  
INSTRUCTION SET SUMMARY (Continued)  
80C186XL 80C188XL  
Function  
Format  
Clock  
Clock  
Comments  
Cycles  
Cycles  
ARITHMETIC (Continued)  
e
IMUL  
Integer multiply (signed):  
1 1 1 1 0 1 1 w  
mod 1 0 1 r/m  
Register-Byte  
Register-Word  
Memory-Byte  
Memory-Word  
2528  
3437  
3134  
4043  
2528  
3437  
3234  
4043*  
e
(signed)  
e
0
IMUL  
Integer Immediate multiply  
0 1 1 0 1 0 s 1  
1 1 1 1 0 1 1 w  
mod reg r/m  
data  
data if s  
2225/  
2932  
2225/  
2932  
e
DIV  
Divide (unsigned):  
mod 1 1 0 r/m  
Register-Byte  
Register-Word  
Memory-Byte  
Memory-Word  
29  
38  
35  
44  
29  
38  
35  
44*  
e
IDIV  
Integer divide (signed):  
1 1 1 1 0 1 1 w  
mod 1 1 1 r/m  
Register-Byte  
Register-Word  
Memory-Byte  
Memory-Word  
4452  
5361  
5058  
5967  
44-52  
5361  
5058  
5967*  
e
e
e
e
AAM  
AAD  
CBW  
CWD  
ASCII adjust for multiply  
ASCII adjust for divide  
Convert byte to word  
1 1 0 1 0 1 0 0  
1 1 0 1 0 1 0 1  
1 0 0 1 1 0 0 0  
1 0 0 1 1 0 0 1  
0 0 0 0 1 0 1 0  
0 0 0 0 1 0 1 0  
19  
15  
2
19  
15  
2
Convert word to double word  
4
4
LOGIC  
Shift/Rotate Instructions:  
Register/Memory by 1  
1 1 0 1 0 0 0 w  
1 1 0 1 0 0 1 w  
1 1 0 0 0 0 0 w  
mod TTT r/m  
mod TTT r/m  
2/15  
2/15  
a
a
a
a
a
a
Register/Memory by CL  
5
5
n/17  
n/17  
n
n
5
5
n/17  
n/17  
n
n
a
a
Register/Memory by Count  
mod TTT r/m  
count  
TTT Instruction  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
ROL  
ROR  
RCL  
RCR  
1 0 0 SHL/SAL  
1 0 1  
1 1 1  
SHR  
SAR  
e
AND  
And:  
Reg/memory and register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 1 0 0 0 d w  
1 0 0 0 0 0 0 w  
0 0 1 0 0 1 0 w  
mod reg r/m  
mod 1 0 0 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4*  
e
e
e
data  
data if w  
data if w  
data if w  
1
1
1
e
data if w  
1
1
1
8/16-bit  
8/16-bit  
8/16-bit  
e
TEST And function to flags, no result:  
Register/memory and register  
1 0 0 0 0 1 0 w  
1 1 1 1 0 1 1 w  
1 0 1 0 1 0 0 w  
mod reg r/m  
mod 0 0 0 r/m  
data  
3/10  
4/10  
3/4  
3/10*  
4/10*  
3/4  
Immediate data and register/memory  
Immediate data and accumulator  
data  
e
data if w  
e
OR Or:  
Reg/memory and register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 0 0 1 0 d w  
1 0 0 0 0 0 0 w  
0 0 0 0 1 1 0 w  
mod reg r/m  
mod 0 0 1 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4*  
data  
e
data if w  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.  
44  
44  
80C186XL/80C188XL  
INSTRUCTION SET SUMMARY (Continued)  
80C186XL 80C188XL  
Function  
Format  
Clock  
Clock  
Comments  
Cycles  
Cycles  
LOGIC (Continued)  
e
XOR  
Exclusive or:  
Reg/memory and register to either  
Immediate to register/memory  
Immediate to accumulator  
0 0 1 1 0 0 d w  
1 0 0 0 0 0 0 w  
0 0 1 1 0 1 0 w  
1 1 1 1 0 1 1 w  
mod reg r/m  
mod 1 1 0 r/m  
data  
3/10  
4/16  
3/4  
3/10*  
4/16*  
3/4  
e
1
data  
data if w  
e
data if w  
1
8/16-bit  
e
NOT  
Invert register/memory  
mod 0 1 0 r/m  
3/10  
3/10*  
STRING MANIPULATION  
e
e
e
e
e
MOVS  
CMPS  
SCAS  
LODS  
STOS  
Move byte/word  
1 0 1 0 0 1 0 w  
1 0 1 0 0 1 1 w  
1 0 1 0 1 1 1 w  
1 0 1 0 1 1 0 w  
1 0 1 0 1 0 1 w  
0 1 1 0 1 1 0 w  
0 1 1 0 1 1 1 w  
14  
22  
15  
12  
10  
14  
14  
14*  
22*  
15*  
12*  
10*  
14  
Compare byte/word  
Scan byte/word  
Load byte/wd to AL/AX  
Store byte/wd from AL/AX  
e
INS  
Input byte/wd from DX port  
e
OUTS  
Output byte/wd to DX port  
14  
Repeated by count in CX (REP/REPE/REPZ/REPNE/REPNZ)  
e
e
e
e
e
a
a
8 8n*  
MOVS  
CMPS  
SCAS  
LODS  
STOS  
Move string  
Compare string  
Scan string  
Load string  
1 1 1 1 0 0 1 0  
1 1 1 1 0 0 1 z  
1 1 1 1 0 0 1 z  
1 1 1 1 0 0 1 0  
1 1 1 1 0 0 1 0  
1 1 1 1 0 0 1 0  
1 0 1 0 0 1 0 w  
1 0 1 0 0 1 1 w  
1 0 1 0 1 1 1 w  
1 0 1 0 1 1 0 w  
1 0 1 0 1 0 1 w  
0 1 1 0 1 1 0 w  
8
8n  
a
a
5
5
6
22n  
15n  
11n  
5
5
6
22n*  
15n*  
11n*  
a
a
a
a
a
a
Store string  
6
9n  
8n  
6
9n*  
8n*  
e
a
a
a
a
INS  
Input string  
8
8
8
8
e
OUTS  
Output string  
1 1 1 1 0 0 1 0  
0 1 1 0 1 1 1 w  
8n  
8n*  
CONTROL TRANSFER  
e
CALL  
Call:  
Direct within segment  
1 1 1 0 1 0 0 0  
1 1 1 1 1 1 1 1  
disp-low  
disp-high  
15  
19  
Register/memory  
mod 0 1 0 r/m  
13/19  
17/27  
indirect within segment  
Direct intersegment  
1 0 0 1 1 0 1 0  
1 1 1 1 1 1 1 1  
segment offset  
segment selector  
23  
31  
i
(mod 11)  
Indirect intersegment  
mod 0 1 1 r/m  
38  
54  
e
JMP  
Unconditional jump:  
Short/long  
1 1 1 0 1 0 1 1  
1 1 1 0 1 0 0 1  
1 1 1 1 1 1 1 1  
disp-low  
disp-low  
14  
14  
14  
14  
Direct within segment  
disp-high  
Register/memory  
mod 1 0 0 r/m  
11/17  
11/21  
indirect within segment  
Direct intersegment  
Indirect intersegment  
1 1 1 0 1 0 1 0  
segment offset  
segment selector  
14  
26  
14  
34  
i
(mod 11)  
1 1 1 1 1 1 1 1  
mod 1 0 1 r/m  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.  
45  
45  
80C186XL/80C188XL  
INSTRUCTION SET SUMMARY (Continued)  
80C186XL  
Clock  
80C188XL  
Clock  
Function  
Format  
Comments  
Cycles  
Cycles  
CONTROL TRANSFER (Continued)  
e
RET  
Return from CALL:  
Within segment  
1 1 0 0 0 0 1 1  
1 1 0 0 0 0 1 0  
1 1 0 0 1 0 1 1  
1 1 0 0 1 0 1 0  
0 1 1 1 0 1 0 0  
0 1 1 1 1 1 0 0  
0 1 1 1 1 1 1 0  
0 1 1 1 0 0 1 0  
0 1 1 1 0 1 1 0  
0 1 1 1 1 0 1 0  
0 1 1 1 0 0 0 0  
0 1 1 1 1 0 0 0  
0 1 1 1 0 1 0 1  
0 1 1 1 1 1 0 1  
0 1 1 1 1 1 1 1  
0 1 1 1 0 0 1 1  
0 1 1 1 0 1 1 1  
0 1 1 1 1 0 1 1  
0 1 1 1 0 0 0 1  
0 1 1 1 1 0 0 1  
1 1 1 0 0 0 1 1  
1 1 1 0 0 0 1 0  
1 1 1 0 0 0 0 1  
1 1 1 0 0 0 0 0  
16  
20  
Within seg adding immed to SP  
Intersegment  
data-low  
data-high  
data-high  
18  
22  
22  
30  
Intersegment adding immediate to SP  
data-low  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
disp  
25  
33  
e
JE/JZ  
Jump on equal/zero  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
5/15  
6/16  
6/16  
6/16  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
4/13  
5/15  
6/16  
6/16  
6/16  
JMP not  
taken/JMP  
taken  
e
e
e
e
JL/JNGE  
JLE/JNG  
JB/JNAE  
JBE/JNA  
Jump on less/not greater or equal  
Jump on less or equal/not greater  
Jump on below/not above or equal  
Jump on below or equal/not above  
e
JP/JPE  
Jump on parity/parity even  
Jump on overflow  
Jump on sign  
e
e
JO  
JS  
e
e
e
e
e
e
JNE/JNZ  
JNL/JGE  
JNLE/JG  
JNB/JAE  
JNBE/JA  
JNP/JPO  
Jump on not equal/not zero  
Jump on not less/greater or equal  
Jump on not less or equal/greater  
Jump on not below/above or equal  
Jump on not below or equal/above  
Jump on not par/par odd  
e
e
JNO  
JNS  
Jump on not overflow  
Jump on not sign  
e
JCXZ  
LOOP  
Jump on CX zero  
Loop CX times  
e
LOOP not  
taken/LOOP  
taken  
e
LOOPZ/LOOPE  
LOOPNZ/LOOPNE  
Loop while zero/equal  
e
Loop while not zero/equal  
e
ENTER  
Enter Procedure  
1 1 0 0 1 0 0 0  
data-low  
data-high  
L
e
e
l
L
L
L
0
1
1
15  
25  
19  
29  
a
b
a
b
22 16(n 1) 26 20(n 1)  
e
LEAVE  
Leave Procedure  
1 1 0 0 1 0 0 1  
8
8
e
INT  
Interrupt:  
Type specified  
Type 3  
1 1 0 0 1 1 0 1  
1 1 0 0 1 1 0 0  
1 1 0 0 1 1 1 0  
type  
47  
45  
47  
45  
if INT. taken/  
if INT. not  
taken  
e
INTO  
Interrupt on overflow  
48/4  
48/4  
e
IRET  
Interrupt return  
1 1 0 0 1 1 1 1  
0 1 1 0 0 0 1 0  
28  
28  
e
BOUND  
Detect value out of range  
mod reg r/m  
3335  
3335  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.  
46  
46  
80C186XL/80C188XL  
INSTRUCTION SET SUMMARY (Continued)  
80C186XL 80C188XL  
Function  
Format  
Clock  
Clock  
Comments  
Cycles  
Cycles  
PROCESSOR CONTROL  
e
e
e
e
e
CLC  
CMC  
STC  
CLD  
STD  
Clear carry  
1 1 1 1 1 0 0 0  
1 1 1 1 0 1 0 1  
1 1 1 1 1 0 0 1  
1 1 1 1 1 1 0 0  
1 1 1 1 1 1 0 1  
1 1 1 1 1 0 1 0  
1 1 1 1 1 0 1 1  
1 1 1 1 0 1 0 0  
1 0 0 1 1 0 1 1  
1 1 1 1 0 0 0 0  
2
2
2
2
2
2
2
2
6
2
3
2
2
2
2
2
2
2
2
6
2
3
Complement carry  
Set carry  
Clear direction  
Set direction  
e
CLI  
STI  
Clear interrupt  
Set interrupt  
e
e
HLT  
Halt  
e
e
0
WAIT  
LOCK  
Wait  
if TEST  
e
Bus lock prefix  
e
NOP  
No Operation  
1 0 0 1 0 0 0 0  
(TTT LLL are opcode to processor extension)  
Shaded areas indicate instructions not available in 8086/8088 microsystems.  
NOTE:  
*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.  
The Effective Address (EA) of the memory operand  
is computed according to the mod and r/m fields:  
reg is assigned according to the following:  
Segment  
e
e
if mod  
if mod  
11 then r/m is treated as a REG field  
e
00 then DISP  
high are absent  
0*, disp-low and disp-  
reg  
00  
01  
10  
11  
Register  
ES  
CS  
e
e
tended to 16-bits, disp-high is absent  
if mod  
01 then DISP  
disp-low sign-ex-  
SS  
DS  
e
e
e
e
e
e
e
e
e
e
if mod  
if r/m  
if r/m  
if r/m  
if r/m  
if r/m  
if r/m  
if r/m  
if r/m  
10 then DISP  
disp-high: disp-low  
e
a
a
a
a
a
a
a
a
000 then EA  
001 then EA  
010 then EA  
011 then EA  
100 then EA  
101 then EA  
110 then EA  
111 then EA  
(BX)  
(SI)  
(DI)  
(SI)  
(DI)  
DISP  
DISP  
DISP  
DISP  
e
e
e
e
e
e
e
(BX)  
(BP)  
(BP)  
REG is assigned according to the following table:  
e
0)  
e
16-Bit (w  
1)  
8-Bit (w  
000 AL  
a
(SI)  
DISP  
000 AX  
001 CX  
010 DX  
011 BX  
100 SP  
101 BP  
110 SI  
a
(DI)  
(BP)  
(BX)  
DISP  
DISP*  
DISP  
001 CL  
010 DL  
011 BL  
100 AH  
101 CH  
110 DH  
111 BH  
a
a
DISP follows 2nd byte of instruction (before data if  
required)  
e
e
e
110 then EA  
*except if mod  
disp-high: disp-low.  
00 and r/m  
111 DI  
The physical addresses of all operands addressed  
by the BP register are computed using the SS seg-  
ment register. The physical addresses of the desti-  
nation operands of the string primitive operations  
(those addressed by the DI register) are computed  
using the ES segment, which may not be overridden.  
EA calculation time is 4 clock cycles for all modes,  
and is included in the execution times given whenev-  
er appropriate.  
Segment Override Prefix  
0
0
1
reg  
1
1
0
47  
47  
80C186XL/80C188XL  
1. An internal condition with the interrupt controller  
can cause no acknowledge cycle on the INTA1  
line in response to INT1. This errata only occurs  
when Interrupt 1 is configured in cascade mode  
and a higher priority interrupt exists. This errata  
will not occur consistently, it is dependent on in-  
terrupt timing.  
REVISION HISTORY  
This data sheet replaces the following data sheets:  
272031-002 80C186XL  
#
270975-002 80C188XL  
272309-001 SB80C186XL  
272310-001 SB80C188XL  
#
#
#
The C step 80C186XL/80C188XL has no known er-  
rata. The C step can be identified by the presence of  
a ‘‘C’’ or ‘‘D’’ alpha character next to the FPO num-  
ber. The FPO number location is shown in Figure 4.  
ERRATA  
An A or B step 80C186XL/80C188XL has the follow-  
ing errata. The A or B step 80C186XL/80C188XL  
can be identified by the presence of an ‘‘A’’ or ‘‘B’’  
alpha character, respectively, next to the FPO num-  
ber. The FPO number location is shown in Figure 4.  
PRODUCT IDENTIFICATION  
Intel 80C186XL devices are marked with a 9-charac-  
ter alphanumeric Intel FPO number underneath the  
product number. This data sheet (272431-001) is  
valid for devices with an ‘‘A’’, ‘‘B’’, ‘‘C’’, or ‘‘D’’ as  
the ninth character in the FPO number, as illustrated  
in Figure 4.  
48  
48  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY