82910GL [INTEL]

Express Chipset; Express芯片组
82910GL
型号: 82910GL
厂家: INTEL    INTEL
描述:

Express Chipset
Express芯片组

文件: 总426页 (文件大小:3241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R
Intel® 915G/915GV/915GL/915P/  
915PL/910GL Express Chipset  
Datasheet  
For the Intel® 82915G/82915GV/82915GL/82910GL Graphics and  
Memory Controller Hub (GMCH) and the Intel® 82915P/82915PL  
Memory Controller Hub (MCH)  
February 2005  
Document Number: 301467-005  
R
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL  
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR  
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,  
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining  
applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® 82915G,82915GV,82915GL,82910GL GMCH and 82915P/82915PL MCH may contain design defects or errors known as errata, which  
may cause the product to deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
1Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a Hyper-Threading  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See  
http://www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.  
Intel, Pentium, Celeron and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and  
other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright© 2004–2005, Intel Corporation. All rights reserved  
2
Datasheet  
R
Contents  
1
Introduction .......................................................................................................................17  
1.1  
1.2  
1.3  
Terminology..........................................................................................................24  
Reference Documents..........................................................................................26  
GMCH (MCH) Overview.......................................................................................26  
1.3.1  
1.3.2  
1.3.3  
1.3.4  
Host Interface........................................................................................26  
System Memory Interface.....................................................................27  
Direct Media Interface (DMI).................................................................28  
PCI Express* Graphics Interface (Intel® 82915G/82915P/  
and 82915PL Only)...............................................................................28  
Integrated Graphics (Intel® 82915G/82915GV/82910GL/82915GL  
GMCH Only) .........................................................................................29  
Analog and Intel® SDVO Displays (Intel®  
1.3.5  
1.3.6  
82915G/82915GV/82910GL/82915GL GMCH Only) ...........................31  
System Interrupts..................................................................................31  
(G)MCH Clocking..................................................................................31  
Power Management..............................................................................32  
1.3.7  
1.3.8  
1.3.9  
2
Signal Description .............................................................................................................33  
2.1  
2.2  
2.3  
2.4  
2.5  
Host Interface Signals ..........................................................................................35  
DDR/DDR2 DRAM Channel A Interface ..............................................................38  
DDR/DDR2 DRAM Channel B Interface ..............................................................39  
DDR/DDR2 DRAM Reference and Compensation..............................................40  
PCI Express* x16 Graphics Port Signals (Intel® 82915G, 82915P,  
82915PL Only)......................................................................................................41  
2.6  
Analog Display Signals (Intel® 82915G/82915GV/82915GL/82910GL  
GMCH Only).........................................................................................................42  
2.7  
2.8  
2.9  
Clocks, Reset, and Miscellaneous .......................................................................43  
Direct Media Interface (DMI) ................................................................................43  
Intel® Serial DVO (SDVO) Interface (82915G/82915GV/82915GL/82910GL  
GMCH Only).........................................................................................................44  
2.10  
2.11  
Power and Ground ...............................................................................................45  
Reset States and Pull-up/Pull-downs...................................................................46  
3
Register Description..........................................................................................................53  
3.1  
3.2  
3.3  
Register Terminology ...........................................................................................53  
Platform Configuration..........................................................................................55  
General Routing Configuration Accesses............................................................58  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
Standard PCI Bus Configuration Mechanism.......................................58  
Logical PCI Bus 0 Configuration Mechanism.......................................58  
Primary PCI and Downstream Configuration Mechanism....................59  
PCI Express* Enhanced Configuration Mechanism.............................60  
Intel® 915x GMCH Configuration Cycle Flowchart ...............................62  
3.4  
I/O Mapped Registers ..........................................................................................63  
3.4.1  
CONFIG_ADDRESS—Configuration Address Register ......................63  
Datasheet  
3
R
3.4.2  
CONFIG_DATA—Configuration Data Register....................................64  
4
Host Bridge/DRAM Controller Registers (D0:F0) .............................................................65  
4.1 Host Bridge/DRAM Controller PCI Register Details (D0:F0) ...............................68  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.6  
4.1.7  
4.1.8  
4.1.9  
VID—Vendor Identification (D0:F0)......................................................68  
DID—Device Identification (D0:F0) ......................................................68  
PCICMD—PCI Command (D0:F0).......................................................69  
PCISTS—PCI Status (D0:F0)...............................................................70  
RID—Revision Identification (D0:F0)....................................................71  
CC—Class Code (D0:F0) .....................................................................71  
MLT—Master Latency Timer (D0:F0)...................................................72  
HDR—Header Type (D0:F0) ................................................................72  
SVID—Subsystem Vendor Identification (D0:F0).................................72  
4.1.10 SID—Subsystem Identification (D0:F0)................................................73  
4.1.11 CAPPTR—Capabilities Pointer (D0:F0) ...............................................73  
4.1.12 EPBAR—Egress Port Base Address (D0:F0) ......................................74  
4.1.13 MCHBAR—(G)MCH Memory Mapped Register Range Base Address  
(D0:F0)..................................................................................................75  
4.1.14 PCIEXBAR—PCI Express* Register Range Base Address (D0:F0)  
(Intel® 82915G/82915P/82915PL Only)................................................76  
4.1.15 DMIBAR—Root Complex Register Range Base Address (D0:F0) ......77  
4.1.16 GGC—GMCH Graphics Control Register (D0:F0)  
(82915G/82915GV/82915GL/82910GL GMCH only)...........................78  
4.1.17 DEVEN—Device Enable (D0:F0) .........................................................79  
4.1.18 PAM0—Programmable Attribute Map 0 (D0:F0)..................................81  
4.1.19 PAM1—Programmable Attribute Map 1 (D0:F0)..................................82  
4.1.20 PAM2—Programmable Attribute Map 2 (D0:F0)..................................83  
4.1.21 PAM3—Programmable Attribute Map 3 (D0:F0)..................................84  
4.1.22 PAM4—Programmable Attribute Map 4 (D0:F0)..................................85  
4.1.23 PAM5—Programmable Attribute Map 5 (D0:F0)..................................86  
4.1.24 PAM6—Programmable Attribute Map 6 (D0:F0)..................................87  
4.1.25 LAC—Legacy Access Control (D0:F0).................................................88  
4.1.26 TOLUD—Top of Low Usable DRAM (D0:F0).......................................89  
4.1.27 SMRAM—System Management RAM Control (D0:F0)........................90  
4.1.28 ESMRAMC—Extended System Management RAM Control (D0:F0) ..91  
4.1.29 ERRSTS—Error Status (D0:F0) ...........................................................92  
4.1.30 ERRCMD—Error Command (D0:F0) ...................................................93  
4.1.31 SKPD—Scratchpad Data (D0:F0) ........................................................94  
4.1.32 CAPID0—Capability Identifier (D0:F0) .................................................94  
5
MCHBAR Registers ..........................................................................................................95  
5.1 MCHBAR Register Details ...................................................................................96  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.1.8  
5.1.9  
C0DRB0—Channel A DRAM Rank Boundary Address 0 ....................96  
C0DRB1—Channel A DRAM Rank Boundary Address 1 ....................98  
C0DRB2—Channel A DRAM Rank Boundary Address 2 ....................98  
C0DRB3—Channel A DRAM Rank Boundary Address 3 ....................98  
C0DRA0—Channel A DRAM Rank 0,1 Attribute .................................99  
C0DRA2—Channel A DRAM Rank 2,3 Attribute .................................99  
C0DCLKDIS—Channel A DRAM Clock Disable ................................100  
C0BNKARC—Channel A DRAM Bank Architecture ..........................101  
C0DRT1—Channel A DRAM Timing Register ...................................102  
5.1.10 C0DRC0—Channel A DRAM Controller Mode 0 ...............................104  
5.1.11 C1DRB0—Channel B DRAM Rank Boundary Address 0 ..................106  
4
Datasheet  
R
5.1.12 C1DRB1—Channel B DRAM Rank Boundary Address 1 ..................106  
5.1.13 C1DRB2—Channel B DRAM Rank Boundary Address 2 ..................106  
5.1.14 C1DRB3—Channel B DRAM Rank Boundary Address 3 ..................106  
5.1.15 C1DRA0—Channel B DRAM Rank 0,1 Attribute ...............................106  
5.1.16 C1DRA2—Channel B DRAM Rank 2,3 Attribute ...............................107  
5.1.17 C1DCLKDIS—Channel B DRAM Clock Disable ................................107  
5.1.18 C1BNKARC—Channel B Bank Architecture ......................................107  
5.1.19 C1DRT1—Channel B DRAM Timing Register 1 ................................107  
5.1.20 C1DRC0—Channel B DRAM Controller Mode 0 ...............................107  
5.1.21 PMCFG—Power Management Configuration ....................................108  
5.1.22 PMSTS—Power Management Status ................................................108  
6
7
EPBAR Registers—Egress Port Register Summary......................................................109  
6.1  
EP RCRB Configuration Register Details ..........................................................109  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
EPESD—EP Element Self Description...............................................110  
EPLE1D—EP Link Entry 1 Description ..............................................111  
EPLE1A—EP Link Entry 1 Address....................................................111  
EPLE2D—EP Link Entry 2 Description ..............................................112  
EPLE2A—EP Link Entry 2 Address....................................................113  
DMIBAR Registers—Direct Media Interface (DMI) RCRB .............................................115  
7.1 Direct Media Interface (DMI) RCRB Register Details ........................................116  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
7.1.6  
7.1.7  
7.1.8  
7.1.9  
DMIVCECH—DMI Virtual Channel Enhanced Capability Header .....116  
DMIPVCCAP1—DMI Port VC Capability Register 1..........................116  
DMIPVCCAP2—DMI Port VC Capability Register 2..........................117  
DMIPVCCTL—DMI Port VC Control ..................................................117  
DMIVC0RCAP—DMI VC0 Resource Capability ................................118  
DMIVC0RCTL0—DMI VC0 Resource Control ...................................119  
DMIVC0RSTS—DMI VC0 Resource Status.......................................120  
DMIVC1RCAP—DMI VC1 Resource Capability ................................120  
DMIVC1RCTL1—DMI VC1 Resource Control ...................................121  
7.1.10 DMIVC1RSTS—DMI VC1 Resource Status.......................................121  
7.1.11 DMILCAP—DMI Link Capabilities ......................................................122  
7.1.12 DMILCTL—DMI Link Control..............................................................122  
7.1.13 DMILSTS—DMI Link Status ...............................................................123  
8
Host-PCI Express* Bridge Registers (D1:F0) (Intel® 82915G/82915P/82915PL Only) 125  
8.1 Host-PCI Express* Bridge PCI Register Details (D1:F0)...................................128  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.1.7  
8.1.8  
8.1.9  
VID1—Vendor Identification (D1:F0)..................................................128  
DID1—Device Identification (D1:F0) ..................................................128  
PCICMD1—PCI Command (D1:F0)...................................................129  
PCISTS1—PCI Status (D1:F0)...........................................................130  
RID1—Revision Identification (D1:F0)................................................132  
CC1—Class Code (D1:F0) .................................................................132  
CL1—Cache Line Size (D1:F0)..........................................................133  
HDR1—Header Type (D1:F0) ............................................................133  
PBUSN1—Primary Bus Number (D1:F0)...........................................133  
8.1.10 SBUSN1—Secondary Bus Number (D1:F0) ......................................134  
8.1.11 SUBUSN1—Subordinate Bus Number (D1:F0) .................................134  
8.1.12 IOBASE1—I/O Base Address (D1:F0) ...............................................135  
8.1.13 IOLIMIT1—I/O Limit Address (D1:F0) ................................................135  
8.1.14 SSTS1—Secondary Status (D1:F0)...................................................136  
8.1.15 MBASE1—Memory Base Address (D1:F0)........................................137  
Datasheet  
5
R
8.1.16 MLIMIT1—Memory Limit Address (D1:F0).........................................138  
8.1.17 PMBASE1—Prefetchable Memory Base Address (D1:F0)................139  
8.1.18 PMLIMIT1—Prefetchable Memory Limit Address (D1:F0).................140  
8.1.19 CAPPTR1—Capabilities Pointer (D1:F0) ...........................................140  
8.1.20 INTRLINE1—Interrupt Line (D1:F0) ...................................................141  
8.1.21 INTRPIN1—Interrupt Pin (D1:F0).......................................................141  
8.1.22 BCTRL1—Bridge Control (D1:F0)......................................................142  
8.1.23 PM_CAPID1—Power Management Capabilities (D1:F0) ..................144  
8.1.24 PM_CS1—Power Management Control/Status (D1:F0) ....................145  
8.1.25 SS_CAPID—Subsystem ID and Vendor ID Capabilities (D1:F0) ......146  
8.1.26 SS—Subsystem ID and Subsystem Vendor ID (D1:F0) ....................146  
8.1.27 MSI_CAPID—Message Signaled Interrupts Capability ID (D1:F0)....147  
8.1.28 MC—Message Control (D1:F0)..........................................................148  
8.1.29 MA—Message Address (D1:F0).........................................................149  
8.1.30 MD—Message Data (D1:F0) ..............................................................149  
8.1.31 PEG_CAPL—PCI Express* Capability List (D1:F0)...........................150  
8.1.32 PEG_CAP—PCI Express*-G Capabilities (D1:F0).............................150  
8.1.33 DCAP—Device Capabilities (D1:F0) ..................................................151  
8.1.34 DCTL—Device Control (D1:F0)..........................................................152  
8.1.35 DSTS—Device Status (D1:F0) ...........................................................153  
8.1.36 LCAP—Link Capabilities (D1:F0) .......................................................154  
8.1.37 LCTL—Link Control (D1:F0)...............................................................155  
8.1.38 LSTS—Link Status (D1:F0) ................................................................156  
8.1.39 SLOTCAP—Slot Capabilities (D1:F0) ................................................157  
8.1.40 SLOTCTL—Slot Control (D1:F0)........................................................158  
8.1.41 SLOTSTS—Slot Status (D1:F0) .........................................................159  
8.1.42 RCTL—Root Control (D1:F0) .............................................................160  
8.1.43 RSTS—Root Status (D1:F0)...............................................................161  
8.1.44 PEGLC—PCI Express*-G Legacy Control .........................................162  
8.1.45 VCECH—Virtual Channel Enhanced Capability Header (D1:F0) ......163  
8.1.46 PVCCAP1—Port VC Capability Register 1 (D1:F0)...........................163  
8.1.47 PVCCAP2—Port VC Capability Register 2 (D1:F0)...........................164  
8.1.48 PVCCTL—Port VC Control (D1:F0) ...................................................164  
8.1.49 VC0RCAP—VC0 Resource Capability (D1:F0) .................................165  
8.1.50 VC0RCTL—VC0 Resource Control (D1:F0) ......................................165  
8.1.51 VC0RSTS—VC0 Resource Status (D1:F0)........................................166  
8.1.52 VC1RCAP—VC1 Resource Capability (D1:F0) .................................166  
8.1.53 VC1RCTL—VC1 Resource Control (D1:F0) ......................................167  
8.1.54 VC1RSTS—VC1 Resource Status (D1:F0)........................................168  
8.1.55 RCLDECH—Root Complex Link Declaration Enhanced Capability  
Header (D1:F0)...................................................................................168  
8.1.56 ESD—Element Self Description (D1:F0)............................................169  
8.1.57 LE1D—Link Entry 1 Description (D1:F0)............................................170  
8.1.58 LE1A—Link Entry 1 Address (D1:F0).................................................171  
8.1.59 PEGSSTS—PCI Express*-G Sequence Status (D1:F0)....................171  
9
Integrated Graphics Device Registers (D2:F0) (Intel® 82915G/82915GV/82915GL/  
82910GL GMCH Only)....................................................................................................173  
9.1  
Integrated Graphics Device PCI Register Details (D2:F0).................................175  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
VID2—Vendor Identification (D2:F0)..................................................175  
DID2—Device Identification (D2:F0) ..................................................175  
PCICMD2—PCI Command (D2:F0)...................................................176  
PCISTS2—PCI Status (D2:F0)...........................................................177  
6
Datasheet  
R
9.1.5  
9.1.6  
9.1.7  
9.1.8  
9.1.9  
RID2—Revision Identification (D2:F0)................................................178  
CC—Class Code (D2:F0) ...................................................................178  
CLS—Cache Line Size (D2:F0)..........................................................179  
MLT2—Master Latency Timer (D2:F0)...............................................179  
HDR2—Header Type (D2:F0) ............................................................180  
9.1.10 MMADR—Memory Mapped Range Address (D2:F0) ........................180  
9.1.11 IOBAR—I/O Base Address (D2:F0) ...................................................181  
9.1.12 GMADR—Graphics Memory Range Address (D2:F0).......................182  
9.1.13 GTTADR—Graphics Translation Table Range Address (D2:F0).......183  
9.1.14 SVID2—Subsystem Vendor Identification (D2:F0).............................183  
9.1.15 SID2—Subsystem Identification (D2:F0)............................................184  
9.1.16 ROMADR—Video BIOS ROM Base Address (D2:F0).......................184  
9.1.17 CAPPOINT—Capabilities Pointer (D2:F0) .........................................185  
9.1.18 INTRLINE—Interrupt Line (D2:F0) .....................................................185  
9.1.19 INTRPIN—Interrupt Pin (D2:F0).........................................................185  
9.1.20 MINGNT—Minimum Grant (D2:F0)....................................................186  
9.1.21 MAXLAT—Maximum Latency (D2:F0) ...............................................186  
9.1.22 MCAPPTR—Mirror of Dev0 Capability Pointer (D2:F0)  
(Mirrored_D0_34) ...............................................................................186  
9.1.23 MCAPID—Mirror of Dev0 Capability Identification (D2:F0)  
(Mirrored_D0_E0)...............................................................................186  
9.1.24 MGGC—Mirror of Dev0 GMCH Graphics Control (D2:F0)  
(Mirrored_D0_52) ...............................................................................187  
9.1.25 MDEVENdev0f0—Mirror of Dev0 Device Enable (D2:F0)  
(Mirrored_D0_54) ...............................................................................187  
9.1.26 BSM—Base of Stolen Memory (D2:F0)..............................................187  
9.1.27 MSAC—Multi Size Aperture Control (D2:F0) .....................................188  
9.1.28 PMCAPID—Power Management Capabilities ID (D2:F0)..................188  
9.1.29 PMCAP—Power Management Capabilities (D2:F0)..........................189  
9.1.30 PMCS—Power Management Control/Status (D2:F0) ........................190  
9.1.31 SWSMI—Software SMI (D2:F0) .........................................................191  
9.1.32 ASLE—System Display Event Register (D2:F0) ................................191  
9.1.33 ASLS—ASL Storage (D2:F0) .............................................................192  
10  
Device 2 Function 1 (D2:F1) Configuration Registers (Intel®  
82915G/82915GV/82915GL/ 82910GL Only).................................................................193  
10.1  
Device 2 Function 1 Configuration Register Details (D2:F1).............................194  
10.1.1 VID2—Vendor Identification (D2:F1)..................................................194  
10.1.2 DID2—Device Identification (D2:F1) ..................................................194  
10.1.3 PCICMD2—PCI Command (D2:F1)...................................................195  
10.1.4 PCISTS2—PCI Status (D2:F1)...........................................................196  
10.1.5 RID2—Revision Identification (D2:F1)................................................197  
10.1.6 CC—Class Code Register (D2:F1).....................................................197  
10.1.7 CLS—Cache Line Size (D2:F1)..........................................................197  
10.1.8 MLT2—Master Latency Timer (D2:F1)...............................................198  
10.1.9 HDR2—Header Type Register (D2:F1)..............................................198  
10.1.10 MMADR—Memory Mapped Range Address (D2:F1) ........................198  
10.1.11 SVID2—Subsystem Vendor Identification (D2:F1).............................199  
10.1.12 SID2—Subsystem Identification (D2:F1)............................................199  
10.1.13 ROMADR—Video BIOS ROM Base Address (D2:F1).......................199  
10.1.14 CAPPOINT—Capabilities Pointer (D2:F1) .........................................199  
10.1.15 MINGNT—Minimum Grant Register (D2:F1)......................................200  
10.1.16 MAXLAT—Maximum Latency (D2:F1) ...............................................200  
Datasheet  
7
R
10.1.17 MCAPPTR—Mirror of Dev0 Capability Pointer (D2:F1)  
(Mirrored_D0_34) ...............................................................................200  
10.1.18 MCAPID—Mirror of Dev0 Capability Identification (D2:F1)  
(Mirrored_D0_E0)...............................................................................200  
10.1.19 MGGC—Mirror of Dev0 GMCH Graphics Control (D2:F1)  
(Mirrored_D0_52) ...............................................................................200  
10.1.20 MDEVENdev0f0—Mirror of Dev0 Device Enable (D2:F1)  
(Mirrored_D0_54) ...............................................................................201  
10.1.21 BSM—Base of Stolen Memory Register (D2:F1) ...............................201  
10.1.22 PMCAPID—Power Management Capabilities ID (D2:F1)..................201  
10.1.23 PMCAP—Power Management Capabilities (D2:F1)..........................201  
10.1.24 PMCS—Power Management Control/Status (D2:F1) ........................202  
10.1.25 SWSMI—Software SMI (D2:F1) .........................................................202  
10.1.26 ASLS—ASL Storage (D2:F1) .............................................................203  
Device 2 – PCI I/O Registers .............................................................................204  
10.2.1 MMIO_INDEX—MMIO Address Register...........................................204  
10.2.2 MMIO_DATA—MMIO Data Register..................................................204  
10.2  
11  
System Address Map......................................................................................................205  
11.1  
Legacy Address Range......................................................................................207  
11.1.1 DOS Range (0h – 9_FFFFh) ..............................................................208  
11.1.2 Legacy Video Area (A_0000h–B_FFFFh) ..........................................208  
11.1.3 Expansion Area (C_0000h–D_FFFFh)...............................................209  
11.1.4 Extended System BIOS Area (E_0000h–E_FFFFh)..........................210  
11.1.5 System BIOS Area (F_0000h–F_FFFFh)...........................................210  
11.1.6 Programmable Attribute Map (PAM) Memory Area Details................210  
Main Memory Address Range (1 MB to TOLUD) ..............................................211  
11.2.1 ISA Hole (15 MB–16 MB) ...................................................................211  
11.2.2 TSEG ..................................................................................................212  
11.2.3 Pre-allocated Memory.........................................................................212  
PCI Memory Address Range (TOLUD – 4 GB) .................................................212  
11.3.1 APIC Configuration Space (FEC0_0000h-FECF_FFFFh) .................214  
11.3.2 HSEG (FEDA_0000h–FEDB_FFFFh)................................................214  
11.3.3 FSB Interrupt Memory Space (FEE0_0000–FEEF_FFFF) ................214  
11.3.4 High BIOS Area ..................................................................................214  
11.3.5 PCI Express* Configuration Address Space (Intel® 82915G/82915P  
Only) ...................................................................................................215  
11.2  
11.3  
11.3.6 PCI Express* Graphics Attach (Intel® 82915G/82915P Only)............215  
11.3.7 AGP DRAM Graphics Aperture ..........................................................215  
11.3.8 Graphics Memory Address Ranges (Intel®  
82915G/82915GV/82915GL/82910GL GMCH Only) .........................216  
11.4  
System Management Mode (SMM) ...................................................................216  
11.4.1 SMM Space Definition ........................................................................217  
11.4.2 SMM Space Restrictions ....................................................................217  
11.4.3 SMM Space Combinations .................................................................218  
11.4.4 SMM Control Combinations................................................................218  
11.4.5 SMM Space Decode and Transaction Handling ................................219  
11.4.6 Processor WB Transaction to an Enabled SMM Address Space ......219  
11.4.7 SMM Access through GTT TLB (Intel® 82915G/82915GV/82910GL  
GMCH Only) .......................................................................................219  
11.4.8 Memory Shadowing............................................................................219  
11.4.9 I/O Address Space..............................................................................220  
8
Datasheet  
R
11.4.10 PCI Express* I/O Address Mapping (Intel® 82915G/82915P/82915PL  
Only) ...................................................................................................220  
11.4.11 (G)MCH Decode Rules and Cross-Bridge Address Mapping ............220  
11.4.12 Legacy VGA and I/O Range Decode Rules .......................................221  
12  
Functional Description ....................................................................................................223  
12.1  
Host Interface .....................................................................................................223  
12.1.1 FSB GTL+ Termination.......................................................................223  
12.1.2 FSB Dynamic Bus Inversion...............................................................223  
12.1.3 APIC Cluster Mode Support ...............................................................224  
System Memory Controller.................................................................................224  
12.2.1 Memory Organization Modes..............................................................224  
System Memory Configuration Registers Overview ..........................................226  
12.3.1 DRAM Technologies and Organization ..............................................227  
12.3.1.1 Rules for Populating DIMM Slots ......................................227  
12.3.1.2 System Memory Supported Configurations ......................228  
12.3.1.3 Main Memory DRAM Address Translation and Decoding 228  
12.3.2 DRAM Clock Generation ....................................................................231  
12.3.3 Suspend-to-RAM and Resume...........................................................231  
12.3.4 DDR2 On-Die Termination..................................................................231  
12.3.5 DDR2 Off-Chip Driver Impedance Calibration....................................231  
PCI Express* (Intel® 82915G/82915P82915PL Only)........................................232  
12.4.1 Transaction Layer...............................................................................232  
12.4.2 Data Link Layer...................................................................................232  
12.4.3 Physical Layer.....................................................................................232  
Intel® Serial Digital Video Output (SDVO) (Intel®  
82915G/82915GV/82915GL/82910GL GMCH Only).........................................233  
12.5.1 Intel® SDVO Capabilities.....................................................................233  
12.5.2 Intel® SDVO Modes ............................................................................234  
Integrated Graphics Device (Intel® 82915G/82915GV/82915GL/82910GL  
GMCH Only).......................................................................................................235  
12.6.1 3D Engine ...........................................................................................236  
12.6.2 Setup Engine ......................................................................................236  
12.6.2.1 3D Primitives and Data Formats Support..........................236  
12.6.2.2 Pixel Accurate “Fast” Scissoring and Clipping Operation .237  
12.6.2.3 Depth Bias.........................................................................237  
12.6.2.4 Backface Culling................................................................237  
12.6.2.5 Scan Converter..................................................................237  
12.6.2.6 Pixel Rasterization Rules ..................................................237  
12.6.2.7 2D Functionality.................................................................237  
12.6.3 Texture Engine....................................................................................238  
12.6.3.1 Perspective Correct Texture Support................................238  
12.6.3.2 Texture Formats and Storage ...........................................238  
12.6.3.3 Texture Decompression ....................................................238  
12.6.3.4 Texture ChromaKey ..........................................................238  
12.6.3.5 Anti-Aliasing.......................................................................238  
12.6.3.6 Texture Map Filtering ........................................................238  
12.6.3.7 Multiple Texture Composition............................................239  
12.6.3.8 Bi-Cubic Filter (4x4 Programmable Texture Filter) ...........239  
12.6.3.9 Cubic Environment Mapping .............................................240  
12.6.4 Raster Engine .....................................................................................240  
12.6.4.1 Texture Map Blending .......................................................240  
12.2  
12.3  
12.4  
12.5  
12.6  
Datasheet  
9
R
12.6.4.2 Combining Intrinsic and Specular Color Components ......240  
12.6.4.3 Color Shading Modes........................................................240  
12.6.4.4 Color Dithering...................................................................241  
12.6.4.5 Vertex and Per Pixel Fogging............................................241  
12.6.4.6 Alpha Blending (Frame Buffer)..........................................241  
12.6.4.7 Microsoft DirectX* API and SGI OpenGL* API Logic Ops 242  
12.6.4.8 Color Buffer Formats: 8-, 16-, or 32-bits per Pixel  
(Destination Alpha)............................................................242  
12.6.4.9 Depth Buffer ......................................................................242  
12.6.4.10 Stencil Buffer .....................................................................243  
12.6.4.11 Projective Textures............................................................243  
12.6.5 2D Engine ...........................................................................................243  
12.6.5.1 GMCH VGA Registers.......................................................243  
12.6.5.2 Logical 128-bit Fixed BLT and 256 Fill Engine..................243  
12.6.6 Video Engine.......................................................................................244  
12.6.6.1 Hardware Motion Compensation.......................................244  
12.6.6.2 Sub-Picture Support..........................................................244  
12.6.7 Planes.................................................................................................245  
12.6.7.1 Cursor Plane......................................................................245  
12.6.7.2 Overlay Plane....................................................................245  
12.6.7.3 Advanced Deinterlacing and Dynamic Bob and Weave ...246  
12.6.8 Pipes...................................................................................................246  
12.6.8.1 Clock Generator Units (DPLL) ..........................................246  
Display Interfaces (Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)247  
12.7.1 Analog Display Port Characteristics ...................................................249  
12.7.1.1 Integrated RAMDAC..........................................................249  
12.7.1.2 Sync Signals......................................................................249  
12.7.1.3 VESA/VGA Mode ..............................................................249  
12.7.1.4 DDC (Display Data Channel) ............................................250  
12.7.2 Digital Display Interface......................................................................250  
12.7.2.1 Digital Display Channels – SDVOB and SDVOC..............250  
12.7.2.2 ADD2 Card ........................................................................250  
12.7.3 Multiple Display Configurations ..........................................................252  
Power Management ...........................................................................................253  
12.7  
12.8  
12.9  
Clocking..............................................................................................................253  
13  
Electrical Characteristics.................................................................................................255  
13.1  
13.2  
13.3  
13.4  
Absolute Maximum Ratings................................................................................255  
Power Characteristics ........................................................................................257  
Signal Groups.....................................................................................................259  
DC Characteristics .............................................................................................262  
13.4.1 General DC Characteristics................................................................262  
13.4.2 RGB/CRT DAC Display DC Characteristics (Intel®  
82915G/82915GV/82915GL/82910GL GMCH Only) .........................265  
14  
Ballout and Package Information....................................................................................267  
14.1  
14.2  
14.3  
DDR2 Ballout......................................................................................................267  
DDR Ballout........................................................................................................329  
Package Information ..........................................................................................395  
15  
10  
Testability........................................................................................................................399  
15.1  
Complimentary Pins ...........................................................................................399  
Datasheet  
R
15.2  
15.3  
15.4  
15.5  
15.6  
15.7  
XOR Test Mode Initialization for DDR................................................................400  
XOR Test Mode Initialization for DDR2..............................................................400  
XOR Chain Definition .........................................................................................401  
DDR XOR Chains...............................................................................................401  
DDR2 XOR Chains.............................................................................................414  
PADs Excluded from XOR Mode(s)...................................................................426  
Figures  
Figure 1-1. Intel® 915G Express Chipset System Block Diagram Example.....................18  
Figure 1-2. Intel® 915P Express Chipset System Block Diagram Example .....................19  
Figure 1-3. Intel® 915GV Express Chipset System Block Diagram Example...................20  
Figure 1-4. Intel® 910GL Express Chipset System Block Diagram Example...................21  
Figure 1-5. Intel® 915PL Express Chipset System Block Diagram Example ...................22  
Figure 1-6. Intel® 915GL Express Chipset System Block Diagram Example...................23  
Figure 2-1. Intel® (G)MCH Signal Interface Diagram........................................................34  
Figure 3-1. Conceptual Chipset PCI Configuration Diagram............................................55  
Figure 3-2. Register Organization (Representative of the Intel® 82915G GMCH) ...........57  
Figure 3-3. DMI Type 0 Configuration Address Translation .............................................59  
Figure 3-4. DMI Type 1 Configuration Address Translation .............................................59  
Figure 3-5. Memory Map to PCI Express* Device Configuration Space..........................60  
Figure 3-6. Intel® 915x GMCH Configuration Cycle Flowchart.........................................62  
Figure 6-1. Link Declaration Topology............................................................................109  
Figure 11-1. System Address Ranges............................................................................207  
Figure 11-2. Microsoft MS-DOS* Legacy Address Range .............................................208  
Figure 11-3. Main Memory Address Range....................................................................211  
Figure 11-4. PCI Memory Address Range......................................................................213  
Figure 12-1. System Memory Styles...............................................................................225  
Figure 12-2. Integrated Graphics Device Block Diagram ...............................................235  
Figure 12-3. System Clocking Example..........................................................................254  
Figure 14-1. Intel® 82915G GMCH Ballout for DDR2 (Top View: Columns 1–12).........268  
Figure 14-2. Intel® 82915G GMCH Ballout for DDR2 (Top View: Columns 13–24).......269  
Figure 14-3. Intel® 82915G GMCH Ballout for DDR2 (Top View: Columns 25–35).......270  
Figure 14-4. Intel® 82915G GMCH Ballout for DDR (Top View: Columns 1–12 )..........330  
Figure 14-5. Intel® 82915G GMCH Ballout for DDR (Top View: Columns 13–24 )........331  
Figure 14-6. Intel® 82915G GMCH Ballout for DDR (Top View: Columns 25–35 )........332  
Figure 14-7. (G)MCH Package Dimensions ...................................................................396  
Figure 14-8. (G)MCH Component Keep-Out Restrictions..............................................397  
Figure 15-1. XOR Test Mode Initialization Cycles..........................................................400  
Datasheet  
11  
R
Tables  
Table 2-1. Host Interface Reset and S3 States ................................................................46  
Table 2-2. System Memory (DDR2) Reset and S3 States ...............................................47  
Table 2-3. System Memory (DDR) Reset and S3 States .................................................49  
Table 2-4. PCI Express* Graphics x16 Port Reset and S3 States ...................................50  
Table 2-5. DMI Reset and S3 States ................................................................................50  
Table 2-6. Clocking Reset and S3 States.........................................................................51  
Table 2-7. MISC Reset and S3 States..............................................................................51  
Table 2-8. DAC Reset and S3 States (Intel® 82915G/82915GV/82915GL/82910GL  
GMCH only) ...............................................................................................................51  
Table 3-1. Device Number Assignment for Internal (G)MCH Devices .............................57  
Table 4-1. Device 0 Function 0 Register Address Map Summary....................................65  
Table 6-1. Egress Port Register Address Map ...............................................................109  
Table 7-1. DMI Register Address Map Summary...........................................................115  
Table 8-1. Host-PCI Express* Graphics Bridge Register Address Map (D1:F0) ...........125  
Table 9-1. Integrated Graphics Device Register Address Map (D2:F0).........................173  
Table 10-1. Device 2 Function 1 Register Address Map Summary ...............................193  
Table 11-1. Expansion Area Memory Segments............................................................209  
Table 11-2. Extended System BIOS Area Memory Segments.......................................210  
Table 11-3. System BIOS Area Memory Segments .......................................................210  
Table 11-4. Pre-Allocated Memory Example for 64-MB DRAM, 1-MB VGA and 1-MB  
TSEG .......................................................................................................................212  
Table 11-5. SMM Space Table .......................................................................................218  
Table 11-6. SMM Control Table......................................................................................218  
Table 12-1. Sample System Memory Organization with Interleaved Channels .............225  
Table 12-2. Sample System Memory Organization with Asymmetric Channels ............225  
Table 12-3. DDR / DDR2 DIMM Supported Configurations ...........................................228  
Table 12-4. DRAM Address Translation (Single Channel/Dual Asymmetric Mode) ......229  
Table 12-5. DRAM Address Translation (Dual Channel Symmetric Mode) ...................230  
Table 12-6. Display Port Characteristics ........................................................................248  
Table 12-7. Analog Port Characteristics.........................................................................249  
Table 13-1. Absolute Maximum Ratings.........................................................................255  
Table 13-2. Non-Memory Power Characteristics............................................................257  
Table 13-3. DDR Power Characteristics.........................................................................258  
Table 13-4. DDR2 Power Characteristics.......................................................................258  
Table 13-5. Signal Groups..............................................................................................259  
Table 13-6. DC Characteristics3 .....................................................................................262  
Table 13-7. RGB/CRT DAC Display DC Characteristics (Functional Operating Range:  
VCCA_DAC = 2.5 V ±5%) .......................................................................................265  
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)..............271  
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name).............300  
Table 14-3. GMCH/MCH Ballout for DDR Systems (Sorted by Ball Number)................333  
Table 14-4. GMCH/MCH Ballout for DDR Systems (Sorted by Signal Name)...............365  
Table 15-1. Complimentary Pins to Drive.......................................................................399  
Table 15-2. XOR Chain Outputs for both DDR and DDR2.............................................401  
Table 15-3. DDR XOR Chain #0.....................................................................................402  
Table 15-4. DDR XOR Chain #1.....................................................................................404  
Table 15-5. DDR XOR Chain #2.....................................................................................406  
Table 15-6. DDR XOR Chain #3.....................................................................................407  
Table 15-7. DDR XOR Chain #4.....................................................................................408  
Table 15-8. DDR XOR Chain #5.....................................................................................409  
Table 15-9. DDR XOR Chain #6.....................................................................................410  
12  
Datasheet  
R
Table 15-10. DDR XOR Chain #7...................................................................................411  
Table 15-11. DDR XOR Chain #8...................................................................................412  
Table 15-12. DDR XOR Chain #9...................................................................................413  
Table 15-13. DDR2 XOR Chain #0.................................................................................414  
Table 15-14. DDR2 XOR Chain #1.................................................................................416  
Table 15-15. DDR2 XOR Chain #2.................................................................................418  
Table 15-16. DDR2 XOR Chain #3.................................................................................419  
Table 15-17. DDR2 XOR Chain #4.................................................................................420  
Table 15-18. DDR2 XOR Chain #5.................................................................................421  
Table 15-19. DDR2 XOR Chain #6.................................................................................422  
Table 15-20. DDR2 XOR Chain #7.................................................................................423  
Table 15-21. DDR2 XOR Chain #8.................................................................................424  
Table 15-22. DDR2 XOR Chain #9.................................................................................425  
Table 15-23. XOR Pad Exclusion List.............................................................................426  
Datasheet  
13  
R
Revision History  
Rev  
-001  
-002  
Description  
Date  
Initial Release  
June 2004  
September 2004  
Added Intel® 82915GV GMCH  
Minor edits throughout for clarity  
Added Intel® 82910GL GMCH  
-003  
-004  
September 2004  
January 2005  
Added Intel® 82915GL GMCH  
Added Intel® 82915PL GMCH  
Minor edits throughout for clarity  
-005  
February 2005  
14  
Datasheet  
R
Intel® 82915G/82915GV/82915GL/  
82910GL/82915P/82915PL (G)MCH Features  
Processor Interface  
Integrated Graphics Device  
ƒ
ƒ
One Intel® Pentium® 4 processor or Intel® Celeron®  
D processor including 775-Land package.  
Supports Pentium 4 processor FSB interrupt  
delivery  
(82915G/82915GV/82915GL/82910GL only)  
Core frequency of 333 MHz  
High-Quality 3D Setup and Render Engine  
High-Quality Texture Engine  
Video DVD/PC-VCR  
3D Graphics Rendering Enhancements  
2D Graphics  
Video Overlay  
Multiple Overlay Functionality  
Analog Display Support  
(82915G/82915GV/82915GL/82910GL only)  
400 MHz Integrated 24-bit RAMDAC  
Up to 2048x1536@ 85 Hz refresh  
Hardware Color Cursor Support  
DDC2B Compliant Interface  
Digital Display Support  
(82915G/82915GV/82915GL/82910GL only)  
Two SDVO ports multiplexed with PCI Express  
Graphics Interface (82915G only)  
200 MHz dot clock on each 12-bit interface  
Can combine two channels to form one larger  
interface (82915G only)  
533 MT/s (133 MHz) FSB (82915G/82915GV/  
82915GL/82910GL/82915P/82915PL) and 800  
MT/s (200 MHz) FSB (82915G/82915GV/  
82915GL/82915P/82915PL only)  
FSB Dynamic Bus Inversion (DBI)  
32-bit host bus addressing for access to 4 GB of  
memory space  
ƒ
ƒ
12-deep In-Order Queue  
1-deep Defer Queue  
GTL+ bus driver with integrated GTL termination  
resistors  
Supports a Cache Line Size of 64 bytes  
System Memory  
ƒ
One or two 64-bit wide DDR/DDR2 SDRAM data  
channels (82915PL and 82910GL supports DDR  
400 or DDR 333, 1 DIMM, 2 Channels only)  
(82915PL supports DDR only)  
Bandwidth up to 8.5 GB/s (DDR/DDR2 533) in  
dual-channel interleaved mode.  
Flat panels up to 2048x1536@ 85Hz or digital  
CRT/HDTV at 1920x1080@ 85Hz  
Non-ECC memory only.  
Dual Independent Display options with digital  
display. (82915G only)  
256-Mb, 512-Mb and 1-Gb DDR/DDR2  
technologies  
Multiplexed Digital Display Channels (Supported  
with ADD2 Card). (82915G only)  
Supports TMDS transmitters or TV-Out encoders  
ADD2 card uses PCI Express Graphics x16  
connector (82915G only)  
Only x8, x16, DDR/DDR2 devices with four banks  
and also supports eight bank, 1-Gbit DDR2 devices.  
Opportunistic refresh  
Up to 64 simultaneously open pages (four ranks of  
eight bank devices* 2 channels)  
SPD (Serial Presence Detect) scheme for DIMM  
detection support  
Suspend-to-RAM support using CKE  
Supports configurations defined in the JEDEC  
DDR/DDR2 DIMM specification only  
PCI Express* Graphics Interface  
(82915G/82915P/82915PL only)  
One x16 PCI Express port  
DMI Interface  
ƒ
ƒ
A chip-to-chip connection interface to Intel® ICH6  
2 GB/s point-to-point DMI to ICH6 (1 GB/s each  
direction)  
100 MHz reference clock (shared with PCI Express  
Graphics Attach).  
32-bit downstream addressing  
Messaging and Error Handling  
ƒ
Compatible with the PCI Express Base  
Package  
Specification revision 1.0a  
37.5 mm × 37.5 mm., 1210 balls, variable ball pitch  
Datasheet  
15  
R
16  
Datasheet  
Introduction  
R
1 Introduction  
The Intel® 91x Express chipset family is designed for use with the Intel® Pentium® 4 processor /  
Intel® Celeron® D processor (Intel® 915G/915GV/915GL/915P/915PL chipsets) or Intel®  
Celeron® processor (Intel® 910GL chipset) in desktop platforms. Each chipset in the family  
contains two components: GMCH (or MCH) for the host bridge and I/O Controller Hub 6 (ICH6)  
for the I/O subsystem. The 82915G GMCH is part of the 915G Express chipset, the 82915GV is  
part of the 915GV Express chipset, the 82915GL is part of the 915GL Express Chipset, the  
82910GL is part of the 910GL Express chipset, the 82915P MCH is part of the 915P Express  
chipset, and the 82915PL is part of the 915PL Express chipset. The ICH6 is the sixth generation  
I/O Controller Hub and provides a multitude of I/O related functions. Figure 1-1 shows an  
example system block diagram for the 915G Express chipset, Figure 1-2 shows an example  
system block diagram for the 915P Express chipsets, Figure 1-3 shows an example system block  
diagram for the 915GV Express chipset, Figure 1-4 shows an example system block diagram for  
the 910GL Express chipsets, Figure 1-5 shows an example system block diagram for the 915PL  
Express chipsets, and Figure 1-6 shows an example system block diagram for the 915GL Express  
chipsets.  
This document is the datasheet for the Intel® 82915G Graphics and Memory Controller Hub  
(GMCH), Intel® 82915GV Graphics and Memory Controller Hub (GMCH), Intel® 82915GL  
Graphics and Memory Controller Hub (GMCH), Intel® 82910GL Graphics and Memory  
Controller Hub (GMCH), Intel® 82915P Memory Controller Hub (MCH), and the Intel® 82915PL  
Memory Controller Hub (MCH). Topics covered include; signal description, system memory  
map, PCI register description, a description of the (G)MCH interfaces and major functional units,  
electrical characteristics, ballout definitions, and package characteristics.  
The difference between the 82915G GMCH and 82915P MCH is that the 82915G GMCH  
contains an integrated graphics port (and associated SDVO and analog display ports) and the  
82915P MCH does not contain these items. Both devices support PCI Express graphics. The  
82915GV GMCH contains an integrated graphics port (and associated SDVO and analog display  
ports), but does not support PCI Express graphics. The 82915GL GMCH has the same features as  
the 82915GV GMCH, but only supports DDR memory. The 82915PL GMCH has the same  
features as the 82915P GMCH, but only supports 2 channels of DDR DIMM memory to a  
maximum of 1-DIMM per channel. The 82910GL GMCH supports only 533 MHz FSB, contains  
an integrated graphics port (and associated SDVO and analog display ports), does not support PCI  
Express graphics, and supports only 2 channels of DDR DIMM memory to a maximum of 1-  
DIMM per channel.  
Note: Unless otherwise specified, the information in this document applies to the 82915G Graphics and  
Memory Controller Hub (GMCH), 82915GV Graphics and Memory Controller Hub (GMCH),  
82915GV Graphics and Memory Controller Hub (GMCH), 82910GL Graphics and Memory  
Controller Hub (GMCH), 82915PL Memory Controller Hub (MCH), and the 82915P Memory  
Controller Hub (MCH).  
Note: References in this document to PCI Express are for the 82915G, 82915P, and the 82915PL only.  
Note: References in this document to the Integrated Graphics Device (IGD) are for the 82915G,  
82915GV, 82915GL, and 82910GL only.  
Datasheet  
17  
 
Introduction  
R
Note: References in this document to DDR2 memory are for the 82915G, 82915GV, and 82915P only.  
Note: Unless otherwise specified, ICH6 refers to the Intel® 82801FB ICH6, 82801FR ICHR, 82801FW  
ICH6W, and 82801FRW ICH6RW I/O Controller Hub 6 components.  
Figure 1-1. Intel® 915G Express Chipset System Block Diagram Example  
Intel® Pentium®  
4
Processor or Intel®  
Celeron® D Processor  
533/800 MHz FSB  
Analog  
Intel® 915G Express Chipset  
Display  
VGA  
System Memory  
DDR or DDR2  
Add2  
Card  
Display  
Display  
Channel A  
Channel B  
Intel® 82915G GMCH  
DDR or DDR2  
SDVO  
OR  
DDR or DDR2  
DDR or DDR2  
PCI Express  
x16 Graphics  
Graphics  
Display  
Card  
DMI Interface  
USB 2.0  
8 ports, 480 Mb/s  
Power Management  
Clock Generation  
LAN Connect/ASF  
GPIO  
Intel® ICH6  
4 Serial ATA Ports  
150 MB/s  
System  
Management (TCO)  
SMBus 2.0/I2C  
2 ATA 100 Ports  
Seven PCI Masters  
AC '97  
3 CODEC support  
PCI Bus  
Flash  
BIOS  
SIO  
LPC  
Interface  
Sys_Blk_G  
18  
Datasheet  
 
Introduction  
R
Figure 1-2. Intel® 915P Express Chipset System Block Diagram Example  
Intel® Pentium®  
4
Processor or Intel®  
Celeron® D Processor  
533/800 MHz FSB  
Intel® 915P Express Chipset  
System Memory  
DDR or DDR2  
DDR or DDR2  
Channel A  
Channel B  
PCI Express  
x16 Graphics  
Intel® 82915P MCH  
Graphics  
Card  
Display  
DDR or DDR2  
DDR or DDR2  
DMI Interface  
USB 2.0  
8 ports, 480 Mb/s  
Power Management  
IDE  
Clock Generation  
LAN Connect/ASF  
4 SATA Ports  
150 MB/s  
Intel® ICH6x  
AC '97/Intel® High  
Definition Audio  
CODECs  
System  
Management (TCO)  
SMBus 2.0/I2C  
PCI Express* x1  
Intel® PCI Express  
Gigabit Ethernet  
Seven PCI Masters  
PCI Bus  
GPIO  
Flash  
BIOS  
SIO  
LPC  
Interface  
Sys_Blk_P  
Datasheet  
19  
 
Introduction  
R
Figure 1-3. Intel® 915GV Express Chipset System Block Diagram Example  
Intel® Pentium®  
4
Processor or Intel®  
Celeron® D Processor  
533/800 MHz  
System Bus  
Intel® 915GV Express Chipset  
Analog  
Display  
VGA  
System Memory  
DDR or DDR2  
Add2  
Card  
Display  
Display  
Channel A  
Channel B  
Intel® 82915GV GMCH  
DDR or DDR2  
SDVO  
DDR or DDR2  
DDR or DDR2  
DMI Interface  
USB 2.0  
8 ports, 480 Mb/s  
Power Management  
Clock Generation  
LAN Connect/ASF  
GPIO  
Intel® ICH6  
4 Serial ATA Ports  
150 MB/s  
System  
Management (TCO)  
SMBus 2.0/I2C  
2 ATA 100 Ports  
Seven PCI Masters  
AC '97  
3 CODEC support  
PCI Bus  
Flash  
BIOS  
SIO  
LPC  
Interface  
Sys_Blk_GV  
20  
Datasheet  
 
Introduction  
R
Figure 1-4. Intel® 910GL Express Chipset System Block Diagram Example  
Intel® Celeron®  
Processor  
D
533 MHz  
System Bus  
Intel® 910GL Express Chipset  
Analog  
Display  
System Memory  
VGA  
Channel A  
DDR  
DDR  
Add2  
Card  
Display  
Display  
Intel® 82910GL GMCH  
SDVO  
Channel B  
DMI Interface  
USB 2.0  
8 ports, 480 Mb/s  
Power Management  
Clock Generation  
LAN Connect/ASF  
GPIO  
Intel® ICH6  
4 Serial ATA Ports  
150 MB/s  
System  
Management (TCO)  
SMBus 2.0/I2C  
2 ATA 100 Ports  
Seven PCI Masters  
AC '97  
3 CODEC support  
PCI Bus  
Flash  
BIOS  
SIO  
LPC  
Interface  
Sys_Blk_GL  
Datasheet  
21  
 
Introduction  
R
Figure 1-5. Intel® 915PL Express Chipset System Block Diagram Example  
Intel® Pentium®  
4
Processor or Intel®  
Celeron® D Processor  
533/800 MHz FSB  
Intel® 915PL Express Chipset  
System Memory  
DDR  
Channel A  
Channel B  
PCI Express*  
x16 Graphics  
Intel®  
82915PL  
MCH  
Graphics  
Card  
Display  
DDR  
DMI Interface  
USB 2.0  
8 ports, 480 Mb/s  
Power Management  
IDE  
Clock Generation  
LAN Connect/ASF  
4 SATA Ports  
150 MB/s  
Intel® ICH6x  
AC '97/Intel® High  
Definition Audio  
CODECs  
System  
Management (TCO)  
SMBus 2.0/I2C  
PCI Express* x1  
GPIO  
Intel® PCI Express  
Gigabit Ethernet  
Seven PCI Masters  
PCI Bus  
Flash  
BIOS  
SIO  
LPC  
Interface  
Sys_Blk_P  
22  
Datasheet  
 
Introduction  
R
Figure 1-6. Intel® 915GL Express Chipset System Block Diagram Example  
Intel® Pentium®  
4
Processor or Intel®  
Celeron® D Processor  
533/800 MHz  
System Bus  
Intel® 915GL Express Chipset  
Analog  
Display  
VGA  
System Memory  
DDR  
DDR  
Add2  
Card  
Display  
Display  
Channel A  
Channel B  
Intel® 82915GL GMCH  
SDVO  
DDR  
DDR  
DMI Interface  
USB 2.0  
8 ports, 480 Mb/s  
Power Management  
Clock Generation  
LAN Connect/ASF  
GPIO  
Intel® ICH6  
4 Serial ATA Ports  
150 MB/s  
System  
Management (TCO)  
SMBus 2.0/I2C  
2 ATA 100 Ports  
Seven PCI Masters  
AC '97  
3 CODEC support  
PCI Bus  
Flash  
BIOS  
SIO  
LPC  
Interface  
Sys_Blk_GV  
Datasheet  
23  
Introduction  
R
1.1  
Terminology  
Term  
Description  
Advanced Digital Display Card – 2nd Generation. Provides digital display options for an  
Intel graphics controller that supports ADD2 cards. This card plugs into a x16 PCI  
Express connector but uses the multiplexed SDVO interface. Will not work with an Intel  
graphics controller that supports DVO and ADD cards.  
ADD2 Card  
Core refers to the internal base logic in the (G)MCH.  
Cathode Ray Tube.  
Core  
CRT  
DBI  
Dynamic Bus Inversion.  
Double Data Rate SDRAM memory technology.  
A second generation Double Data Rate SDRAM memory technology.  
The Direct Media Interface is the connection between the (G)MCH and the Intel® ICH6.  
DDR  
DDR2  
DMI  
Digital Video Interface. This is the specification that defines the connector and interface  
for digital displays.  
DVI  
Front Side Bus. The FSB is synonymous with Host or processor bus  
FSB  
Full reset is when PWROK is de-asserted. Warm reset is when both RSTIN# and  
PWROK are asserted.  
Full Reset  
Graphics Memory Controller Hub component that contains the processor interface,  
DRAM controller, and integrated graphics device. It may also contain an x16 PCI  
Express port (typically the external graphics interface). It communicates with the I/O  
controller hub (ICH6*) over the DMI interconnect. Throughout this document GMCH  
refers to the Intel® 82915G GMCH, 82915GV GMCH, 82915GL, and 82910GL, unless  
otherwise specified. Note that term (G)MCH is used when referring to both GMCH and  
MCH components.  
GMCH  
High Definition Multimedia Interface. HDMI supports standard, enhanced, or high-  
definition video, plus multi-channel digital audio on a single cable. It transmits all ATSC  
HDTV standards and supports 8-channel digital audio, with bandwidth to spare for  
future requirements and enhancements (additional details are available through  
www.HDMI.org)  
HDMI  
This term is used synonymously with processor.  
Host  
An interrupt request signal where X stands for interrupts A,B,C, and D.  
INTx  
Intel® ICH6  
Sixth generation I/O Controller Hub component that contains additional functionality  
compared to previous ICH6s. The Intel® I/O Controller Hub component contains the  
primary PCI interface, LPC interface, USB2, ATA-100, and other I/O functions. It  
communicates with the GMCH over a proprietary interconnect called DMI.  
Internal Graphics Device.  
Liquid Crystal Display.  
IGD  
LCD  
LVDS  
Low Voltage Differential Signaling. A high speed, low power data transmission standard  
used for display connections to LCD panels.  
24  
Datasheet  
Introduction  
R
Term  
Description  
The Memory Controller Hub (MCH) component contains the processor interface and  
DRAM controller; however, it does not contain an internal graphics device like the  
GMCH. It may also contain an x16 PCI Express port (typically the external graphics  
interface). It communicates with the I/O controller hub (ICH6*) and other I/O controller  
hubs over the DMI interconnect. Throughout this document the term MCH refers to the  
82915P and 82915PL MCH. Note: (G)MCH is used when referring to both GMCH and  
MCH components.  
MCH  
Message Signaled Interrupt. A transaction initiated outside the host, conveying interrupt  
information to the receiving agent through the same path that normally carries read and  
write commands.  
MSI  
Third Generation Input Output (PCI Express) Graphics Attach called PCI Express  
Graphics. A high-speed serial interface whose configuration is software compatible with  
the existing PCI specifications. The specific PCI Express implementation intended for  
connecting the GMCH to an external graphics controller is a x16 link and replaces AGP.  
PCI Express*  
Primary PCI  
The physical PCI bus that is driven directly by the ICH6 component. Communication  
between Primary PCI and the GMCH occurs over DMI. Note that the Primary PCI bus is  
not PCI Bus 0 from a configuration standpoint.  
System Control Interrupt. SCI is used in ACPI protocol.  
SCI  
Serial Digital Video Out (SDVO). Digital display channel that serially transmits digital  
display data to an external SDVO device. The SDVO device accepts this serialized  
format and then translates the data into the appropriate display format (i.e., TMDS,  
LVDS, TV-Out). This interface is not electrically compatible with the previous digital  
display channel - DVO. For the Intel® 82915G GMCH, The SDVO interface is  
multiplexed on a portion of the x16 graphics PCI Express interface.  
SDVO  
Third party codec that uses SDVO as an input. An SDVO device may have a variety of  
output formats including: DVI, LVDS, HDMI, TV-Out, etc.  
SDVO Device  
An indication that an unrecoverable error has occurred on an I/O bus.  
SERR  
SMI  
System Management Interrupt. SMI is used to indicate any of several system conditions  
(such as thermal sensor events, throttling activated, access to System Management  
RAM, chassis open, or other system state related activity).  
A unit of DRAM corresponding to eight x8 SDRAM devices in parallel or four x16  
SDRAM devices in parallel, ignoring ECC. These devices are usually, but not always,  
mounted on a single side of a DIMM.  
Rank  
Transition Minimized Differential Signaling. Signaling interface from Silicon Image that  
is used in DVI and HDMI.  
TMDS  
TOLM  
Top Of Low Memory. The highest address below 4 GB for which a processor-initiated  
memory read or write transaction will create a corresponding cycle to DRAM on the  
memory interface.  
Voltage Controlled Oscillator.  
VCO  
UMA  
Unified Memory Architecture. UMA describes an IGD using system memory for its  
frame buffers.  
Datasheet  
25  
Introduction  
R
1.2  
Reference Documents  
Document Title  
Document  
Number/Location  
Intel® 915G/915GV/910GL Express Chipset Thermal Design Guide  
Intel® I/O Controller Hub 6 (ICH6) Family Datasheet  
http://intel.com/design/chip  
sets/designex/301469.htm  
http://developer.intel.com/d  
esign/chipsets/datashts/30  
1473.htm  
Advanced Configuration and Power Interface Specification, Version 2.0  
Advanced Configuration and Power Interface Specification, Version 1.0b  
The PCI Local Bus Specification, Version 2.3  
http://www.acpi.info/  
http://www.acpi.info/  
http://www.pcisig.com/spe  
cifications  
PCI Express* Specification, Version 1.0a  
http://www.pcisig.com/spe  
cifications  
1.3  
GMCH (MCH) Overview  
The (G)MCH connects to the processor as shown in Figure 1-1, Figure 1-2, Figure 1-3, Figure  
1-4, Figure 1-5, and Figure 1-6. A major role of the (G)MCH in a system is to manage the flow of  
information between its interfaces: the processor interface (FSB), the System Memory interface  
(DRAM controller), the Integrated Graphics interface (82915G/82915GV/82915GL/82910GL  
GMCH only), the External Graphics interface via PCI Express (82915G/82915P/82915PL MCH  
only), and the I/O Controller Hub through the DMI interface. This includes arbitrating between  
the interfaces when each initiates transactions.  
The (G)MCH supports one or two channels of DDR  
(82915G/82915GV/82915GL/82915P/82915PL/82910GL) or DDR2 (82915G/82915GV/82915P)  
SDRAM. The (G)MCH also supports the new PCI Express based external graphics attach. Thus,  
the 915G/915GV/915GL/910GL/915P and 915PL Express chipsets are NOT compatible with  
AGP (1X, 2X, 4X, or 8X).  
To increase system performance, the (G)MCH incorporates several queues and a write cache. The  
(G)MCH also contains advanced desktop power management logic.  
1.3.1  
Host Interface  
The (G)MCH is optimized for both the Pentium 4 processors in the LGA775 socket and the  
Celeron D processor in the FC-mPGA4 socket. The (G)MCH can use a single LGA 775 socket  
processor. The (G)MCH supports FSB frequency of 533/800 MT/s (133/200 MHz HCLK) using  
a scalable FSB Vcc_CPU (82910GL only supports 533 MT/s, 133 MHz HCLK). The (G)MCH  
supports the Pentium 4 processor subset of the Extended Mode Scaleable Bus Protocol. The  
primary enhancements over the Compatible Mode P6 bus protocol are: Source synchronous  
double-pumped (2) Address and Source synchronous quad-pumped (4x) Data.  
The (G)MCH supports 32-bit host addressing, decoding up to 4 GB of the processor’s memory  
address space. Host-initiated I/O cycles are decoded to PCI Express, DMI, or the (G)MCH  
26  
Datasheet  
Introduction  
R
configuration space. Host-initiated memory cycles are decoded to PCI Express, DMI, or system  
memory. PCI Express device accesses to non-cacheable system memory are not snooped on the  
host bus. Memory accesses initiated from PCI Express using PCI semantics and from DMI to  
system memory will be snooped on the host bus.  
1.3.2  
System Memory Interface  
The (G)MCH integrates a system memory DDR/DDR2 controller with two, 64-bit wide interfaces  
(82910GL, 82915PL, and 82915GL supports DDR only). Only Double Data Rate (DDR/DDR2)  
memory is supported; consequently, the buffers support only SSTL_2/1.8 V signal interfaces. The  
memory controller interface is fully configurable through a set of control registers. Features of the  
(G)MCH memory controller include:  
The (G)MCH System Memory Controller directly supports one or two channels of memory  
(each channel consisting of 64 data lines).  
Supports two memory addressing organization options:  
The memory channels are asymmetric: "Stacked" channels are assigned addresses  
serially. Channel B addresses are assigned after all Channel A addresses.  
The memory channels are interleaved: Addresses are ping-ponged between the channels  
after each cache line (64-B boundary).  
Available bandwidth up to:  
3.2 GB/s (DDR/DDR2 400) for single-channel mode  
6.4 GB/s in dual-channel interleaved mode assuming DDR or DDR2 400 MHz.  
8.5 GB/s in dual-channel interleaved mode assuming DDR2 533 MHz.  
Supports DDR memory DIMM frequencies of 333 MHz and 400 MHz or DDR2 memory  
DIMM frequencies of 400 MHz and 533 MHz. All DIMMs in a system must be of the same  
type (e.g., all DDR or all DDR2, not mixed). The speed used in all channels is the speed of  
the slowest DIMM in the system.  
82910GL supports DDR memory only, DIMM frequencies of 333 MHz and 400 MHz, dual  
channel mode, 1-DIMM maximum per channel.  
I/O Voltage of 2.6 V for DDR, and 1.8 V for DDR2.  
Supports non-ECC memory only.  
Supports 256-Mb, 512-Mb and 1-Gb DDR/DDR2 technologies  
Supports only x8, x16, DDR/DDR2 devices with four banks and also supports eight bank,  
1-Gbit DDR2 devices.  
Supports opportunistic refresh  
In dual channel mode the (G)MCH supports 64 simultaneously open pages (four ranks of  
eight bank devices* 2 channels)  
Supports Partial Writes to memory using Data Mask (DM) signals.  
Supports page sizes of 4 KB, 8 KB and 16 KB.  
Supports a burst length of 8 for single-channel and dual-channel interleaved and asymmetric  
operating modes.  
Supports unbuffered DIMMs.  
SPD (Serial Presence Detect) scheme for DIMM detection support  
Suspend-to-RAM support using CKE  
Supports configurations defined in the JEDEC DDR/DDR2 DIMM specification only  
Datasheet  
27  
Introduction  
R
By using 256-Mb technology, the smallest memory capacity possible is 128 MB, assuming single-  
channel mode. (16M rows * 16b/(row*device) * 4 devices/DIMM-side * 1 DIMM-side/channel *  
1 channel *1B/8b = 128 MB). By using 1-Gb technology in dual-channel interleaved mode, the  
largest memory capacity possible is 8 GB. (128M rows * 8b/(row*device) * 8 devices/DIMM-  
side * 4 DIMM-sides/channel * 2 channels * 1B/8b * 1G/1024M = 8 GB). This exceeds a 32-bit  
address limit of 4 GB. In a 32-bit system, only the first 4 GB of memory will be accessible.  
The (G)MCH supports a memory thermal management scheme to selectively manage reads and/or  
writes. Memory thermal management can be triggered either by on-die thermal sensor, or by  
preset limits. Management limits are determined by weighted sum of various commands that are  
scheduled on the memory interface.  
1.3.3  
Direct Media Interface (DMI)  
Direct Media Interface (DMI) is the chip-to-chip connection between the (G)MCH and ICH6.  
This high-speed interface integrates advanced priority-based servicing allowing for concurrent  
traffic and true isochronous transfer capabilities. Base functionality is completely software  
transparent permitting current and legacy software to operate normally.  
To provide for true isochronous transfers and configurable Quality of Service (QoS) transactions,  
the ICH6 supports two virtual channels on DMI: VC0 and VC1. These two channels provide a  
fixed arbitration scheme where VC1 is always the highest priority. VC0 is the default conduit of  
traffic for DMI and is always enabled. VC1 must be specifically enabled and configured at both  
ends of the DMI link (i.e., the ICH6 and (G)MCH). Features of the DMI include:  
A chip-to-chip connection interface to ICH6  
2 GB/s point-to-point DMI to ICH6 (1 GB/s each direction)  
100 MHz reference clock (shared with PCI Express Graphics Attach).  
32-bit downstream addressing  
APIC and MSI interrupt messaging support. Will send Intel-defined “End Of Interrupt”  
broadcast message when initiated by the processor.  
Message Signaled Interrupt (MSI) messages  
SMI, SCI and SERR error indication  
Legacy support for ISA regime protocol (PHOLD/PHOLDA) required for parallel port  
DMA, floppy drive, and LPC bus masters  
1.3.4  
PCI Express* Graphics Interface (Intel® 82915G/82915P/  
and 82915PL Only)  
The (G)MCH (82915G, 82915P, and 82915PL only) contains a 16-lane (x16) PCI Express port  
intended for an external PCI Express graphics card. The PCI Express port is compatible with the  
PCI Express Base Specification revision 1.0a. The x16 port operates at a frequency of 2.5 Gb/s on  
each lane while employing 8b/10b encoding, and supports a maximum theoretical bandwidth of  
4 Gb/s each direction. The 82915G GMCH multiplexes the PCI Express interface with two Intel®  
SDVO ports.  
28  
Datasheet  
Introduction  
R
Features of the PCI Express Interface include:  
One x16 PCI Express port intended for graphics attach, compatible with the PCI Express  
Base Specification revision 1.0a.  
Theoretical PCI Express transfer rate of 2.5 Gb/s.  
Raw bit-rate on the data pins of 2.5 Gb/s, resulting in a theoretical bandwidth per pair of  
250 MB/s given the 8b/10b encoding used to transmit data across this interface  
Maximum theoretical realized bandwidth on the interface of 4 GB/s in each direction  
simultaneously, for an aggregate of 8 GB/s when (1)x16.  
PCI Express Graphics Extended Configuration Space. The first 256 bytes of configuration  
space alias directly to the PCI Compatibility configuration space. The remaining portion of  
the fixed 4-KB block of memory-mapped space above that (starting at 100h) is known as  
extended configuration space.  
PCI Express Enhanced Addressing Mechanism. Accessing the device configuration space in  
a flat memory mapped fashion.  
Automatic discovery, negotiation, and training of link out of reset  
Supports traditional PCI style traffic (asynchronous snooped, PCI ordering)  
Supports traditional AGP style traffic (asynchronous non-snooped, PCI Express-relaxed  
ordering)  
Hierarchical PCI-compliant configuration mechanism for downstream devices (i.e., normal  
PCI 2.3 Configuration space as a PCI-to-PCI bridge)  
Supports “static” lane numbering reversal. This method of lane reversal is controlled by a  
Hardware Reset strap, and reverses both the receivers and transmitters for all lanes (e.g.,  
TX15->TX0, RX15->RX0). This method is transparent to all external devices and is different  
than lane reversal as defined in the PCI Express Specification. In particular, link initialization  
is not affected by static lane reversal.  
1.3.5  
Integrated Graphics (Intel®  
82915G/82915GV/82910GL/82915GL GMCH Only)  
The 82915G/82915GV/82910GL/915GL GMCH provides an integrated graphics device (IGD)  
delivering cost competitive 3D, 2D and video capabilities. The GMCH contains an extensive set  
of instructions for 3D operations, BLT and Stretch BLT operations, motion compensation,  
overlay, and display control. The GMCH’s video engines support video conferencing and other  
video applications. The GMCH does not support a dedicated local graphics memory interface, it  
may only be used in a UMA configuration. The GMCH also has the capability to support external  
graphics accelerators via the PCI Express Graphics port but cannot work concurrently with the  
integrated graphics devce. High bandwidth access to data is provided through the system memory  
port. The GMCH also provides 3D hardware acceleration for block level transfers of data (BLTs).  
2D BLTs are considered a special case of 3D transfers and use the 3D acceleration. The BLT  
engine provides the ability to copy a source block of data to a destination and perform raster  
operations (e.g., ROP1, ROP2, and ROP3) on the data using a pattern, and/or another destination.  
Performing these common tasks in hardware reduces processor load, and thus improves  
performance.  
Datasheet  
29  
Introduction  
R
GMCH graphics support includes:  
Core Frequency of 333 MHz  
3D Graphics Rendering Enhancements  
1.3 Dual Texture GigaPixel/Sec Fill Rate  
Flat and Gouraud Shading  
High Quality 3D Setup and Render Engine  
Setup matching processor geometry delivery  
Color Alpha Blending for Transparency  
rates  
Vertex and Programmable Pixel Fog and  
Triangle lists, strips and fans  
Indexed vertex and flexible vertex formats  
Vertex cache  
Atmospheric Effects  
Color Specular Lighting  
Z Bias Support  
Pixel accurate fast scissoring and clipping  
Dithering  
operation  
Anti-Aliased Lines  
Backface culling  
16- and 24-bit Z Buffering  
8-bit Stencil Buffering  
Double and Triple Render Buffer Support  
16- and 32-bit Color  
Destination Alpha  
Supports D3D and OpenGL pixelization rules  
Anti-aliased lines  
Sprite points  
Zone Rendering Technology 3  
Shadow maps  
Maximum 3D Resolution Supported:  
Double-sided stencil  
1600x1200x32@85Hz  
High-Quality Texture Engine  
Fast Clear Support  
533 MegaTexel/Sec Performance –  
266 Mpixel/Sec fill rate up to 2 bilinear  
textures  
2D Graphics  
Optimized 256-bit BLT Engine  
Alpha Stretch Blitter  
Hardware Pixel Shader 2.0  
Per-pixel perspective corrected texture  
Anti-aliased Lines  
mapping  
32-bit Alpha Blended Cursor  
Color Space Conversion  
Programmable 3-Color Transparent Cursor  
8-, 16- and 32-bit Color  
ROP Support  
2/10/10/10 texture format  
Bi-cubic filtering  
Single-pass quad texture compositing  
Enhanced texture blending functions  
12 levels of detail mip map sizes from 1x1 to  
Video Overlay  
2Kx2K  
Advanced Deinterlacing  
All texture formats including 32-bit RGBA and  
8-bit palettes  
Process Amplifier Color Control  
Single High Quality Scalable Overlay  
Alpha and luminance maps  
Texture color-keying/chromakeying  
Multiple Overlay Functionality provided via Stretch  
Bilinear, trilinear and anisotropic mip-mapped  
Blitter (PIP, Video Conferencing, etc.)  
filtering  
5-tap Horizontal, 2-tap Vertical Filtered Scaling  
Independent Gamma Correction  
Independent Brightness/Contrast/Saturation  
Independent Tint/Hue Support  
Cubic environment reflection mapping  
Embossed and DOT3 bump-mapping  
DXTn and FXT1 texture decompression  
Non-power of 2 texture  
Destination Color-keying  
Render to texture  
Source Chroma-keying  
Video DVD/PC-VCR  
Maximum Source Resolution: 720x480x32  
H/W Motion Compensation for MPEG2  
Maximum Overlay Display Resolution:  
2048x1536x32  
Dynamic Bob and Weave Support for Video  
Streams  
Video Mixer Render (VMR)  
Source Resolution up to 1920x1080 with  
2 vertical taps  
Software DVD At 30 fps, Full Screen  
Supports 720x480 DVD Quality Encoding at  
low processor Utilization for PC-VCR or home  
movie recording and editing  
30  
Datasheet  
Introduction  
R
1.3.6  
Analog and Intel® SDVO Displays (Intel®  
82915G/82915GV/82910GL/82915GL GMCH Only)  
The GMCH provides interfaces to a progressive scan analog monitor and two SDVO ports  
(multiplexed with PCI Express x16 Graphics Port signals) capable of driving an ADD2 card. The  
digital display channels are capable of driving a variety of SDVO devices (e.g., TMDS, TV-Out).  
Note that SDVO only works with the Integrated Graphics Device (IGD). The GMCH provides  
two SDVO ports that are capable of driving up to a 200 MHz pixel clock each.  
The GMCH SDVO ports can each support a single-channel SDVO device. If both ports are active  
in single-channel mode, they can have different display timing and data. Alternatively, the SDVO  
ports can combine to support dual channel devices, supporting higher resolutions and refresh  
rates. The GMCH is compliant with DVI Specification 1.0. When combined with a DVI  
compliant external device and connector, the GMCH has a high-speed interface to a digital  
display (e.g., flat panel or digital CRT).  
The GMCH Supports Hot-Plug and Display for PCI Express* x16 Graphics. This is not supported  
for ADD2 cards.  
1.3.7  
1.3.8  
System Interrupts  
The (G)MCH interrupt support includes:  
Supports both 8259 and Pentium 4 processor FSB interrupt delivery mechanisms.  
Supports interrupts signaled as upstream Memory Writes from PCI Express and DMI  
MSIs routed directly to FSB  
From I/OxAPICs  
(G)MCH Clocking  
The differential FSB clock (HCLKP/HCLKN) can be set to either 133 MHz or 200 MHz  
(82915G/82915GV/82915GL/82915P/82915PL only). This supports FSB transfer rates of 533  
MT/s and 800 MT/s (82915G/82915GV/82915GL/82915P/82915PL only). The Host PLL  
generates 2X, 4X, and 8X versions of the host clock for internal optimizations. The (G)MCH core  
clock is synchronized to the host clock.  
The internal and external memory clocks of 133 MHz and 200 MHz are generated from one of  
two (G)MCH PLLs that use the host clock as a reference. This includes 2X and 4X for internal  
optimizations.  
For the 82915G/82915P/82915PL (G)MCH, the PCI Express core clock of 250 MHz is generated  
from a separate PCI Express PLL. This clock uses the fixed 100 MHz Serial Reference Clock  
(GCLKP/GCLKN) for reference.  
For the 82915G/82915GV/82915GL/82910GL GMCH, display timings are generated from  
display PLLs that use a 96 MHz differential non-spread spectrum clock as a reference. Display  
PLLs can also use the SDVO_TVCLKIN[+/-] from an SDVO device as a reference.  
Datasheet  
31  
Introduction  
R
All of the above mentioned clocks are capable of tolerating Spread Spectrum clocking as defined  
in the Clock Generator specification. Host, Memory, and PCI Express* x16 Graphics PLLs, and  
all associated internal clocks are disabled until PWROK is asserted.  
1.3.9  
Power Management  
(G)MCH Power Management support includes:  
PC99 suspend to DRAM support (“STR”, mapped to ACPI state S3)  
SMRAM space remapping to A0000h (128 KB)  
Supports extended SMRAM space above 256 MB, additional 1-MB TSEG from the Base of  
graphics stolen memory (BSM) when enabled, and cacheable (cacheability controlled by  
processor)  
ACPI Rev 1.0 compatible power management  
Supports processor states: C0, C1, C2, C3, and C4  
Supports System states: S0, S1, S3, S4, and S5  
Supports processor Thermal Management 2 (TM2)  
Microsoft Windows NT* Hardware Design Guide v1.0 compliant  
§
32  
Datasheet  
Signal Description  
R
2 Signal Description  
This chapter provides a detailed description of (G)MCH signals. The signals are arranged in  
functional groups according to their associated interface. The states of all of the signals during  
reset are provided in Section 2.11.  
The following notations are used to describe the signal type:  
GTL+  
PCIE  
Open Drain GTL+ interface signal. Refer to the GTL+ I/O Specification for  
complete details. The (G)MCH integrates GTL+ termination resistors, and  
supports VTT of from 0.83 V to 1.65 V (including guardbanding).  
PCI-Express interface signals. These signals are compatible with PCI Express  
1.0 Signaling Environment AC Specifications and are AC coupled. The buffers  
are not 3.3 V tolerant. Differential voltage specification = (|D+ - D-|) * 2  
= 1.2 V maximum. Single-ended maximum = 1.5 V.  
Single-ended minimum = 0 V.  
DMI  
Direct Media Interface signals. These signals are compatible with PCI Express  
1.0 Signaling Environment AC Specifications, but are DC coupled. The buffers  
are not 3.3 V tolerant. Differential voltage specification  
= (|D+ - D-|) * 2 = 1.2 V maximum. Single-ended maximum = 1.5 V.  
Single-ended minimum = 0 V.  
CMOS  
COD  
CMOS buffers. 1.5 V tolerant.  
CMOS Open Drain buffers. 2.5 V tolerant.  
High Voltage CMOS buffers. 2.5 V tolerant.  
High Voltage CMOS input-only buffers. 3.3 V tolerant.  
HVCMOS  
HVIN  
SSTL-2  
Stub Series Termination Logic. These are 2.6 V output capable buffers. 2.6 V  
tolerant.  
SSTL-1.8  
A
Stub Series Termination Logic. These are 1.8 V output capable buffers. 1.8 V  
tolerant.  
Analog reference or output. May be used as a threshold voltage or for buffer  
compensation.  
Datasheet  
33  
Signal Description  
R
Figure 2-1. Intel® (G)MCH Signal Interface Diagram  
HA[31:3]#  
HD[63:0]  
HADS#  
HSYNC  
VSYNC  
Intel®  
RED, RED#  
GREEN, GREEN#  
BLUE, BLUE#  
REFSET  
DDC_CLK  
DDC_DATA  
82915G/  
82915GV/  
82910GL  
Only  
HBNR#  
Analog  
Display  
HBPRI#  
HDBSY#  
HDEFER#  
HDRDY#  
HEDRDY#  
HHIT#  
SDVOB_GREEN-, SDVOB_GREEN+  
SDVOB_BLUE-, SDVOB_BLUE+  
SDVOC_RED- / SDVOB_ALPHA-,  
SDVOC_RED+ / SDVOB_ALPHA+  
SDVOC_GREEN-, SDVOC_GREEN+  
SDVOC_BLUE-, SDVOC_BLUE+  
SDVOC_CLK-, SDVOC_CLK+  
SDVO_TVCLKIN-, SDVO_TVCLKIN,  
SDVOB_INT-, SDVOB_INT+  
SDVOC_INT-, SDVOC_INT+  
SDVO_STALL-, SDVO_STALL+  
SDVO_CTRLCLK  
HHITM#  
Processor  
HLOCK#  
System  
HREQ[4:0]#  
Bus  
HPCREQ#  
Interface  
HTRDY#  
HRS[2:0]#  
HCPURST#  
HBREQ0#  
HDINV[3:0]#  
Intel®  
SDVO  
Device  
Interface1  
Intel®  
82915G/  
82915GV/  
82910GL  
Only  
HADSTB[1:0]#  
HDSTBP[3:0]#, HDSTBN[3:0]#  
BSEL[2:0]  
SDVO_CTRLDATA  
HRCOMP  
HSCOMP  
HSWING  
HVREF  
PCI  
Express  
x16  
Graphics  
Port  
EXP_RXN[15:0], EXP_RXP[15:0]  
EXP_TXN[15:0], EXP_TXP[15:0]  
EXP_COMPO  
EXP_COMPI  
EXP_SLR  
Intel®  
82915G/  
82915P  
Only  
SCS_A[3:0]#  
SMA_A[13:0]  
SBS_A[2:0]  
SRAS_A#  
SCAS_A#  
SWE_A#  
SDQ_A[63:0]  
System  
Memory2  
HCLKP, HCLKN  
GCLKP, GCLKN  
DREFCLKN, DREFCLKP  
RSTIN#  
PWROK  
EXTTS#  
BSEL[2:0]  
MTYPE  
ICH_SYNC#  
DDR/  
DDR2  
Channel  
A
Clocks,  
Reset, and  
Misc.  
SDM_A[7:0]  
SDQS_A[7:0], SDQS_A[7:0]#  
SCKE_A[3:0]  
SCLK_A[5:0], SCLK_A[5:0]#  
SODT_A[3:0]  
SCS_B[3:0]#  
SMA_B[13:0]  
SBS_B[2:0]  
SRAS_B#  
SCAS_B#  
SWE_B#  
Direct  
Media  
Interface  
System  
DMI_RXP[3:0], DMI_RXN[3:0]  
DMI_TXP[3:0], DMI_TXN[3:0]  
Memory2  
DDR/  
DDR2  
Channel  
B
SDQ_B[63:0]  
SDM_B[7:0]  
SDQS_B[7:0], SDQS_B[7:0]#  
SCKE_B[3:0]  
SCLK_B[5:0], SCLK_B[5:0]#  
SODT_B[3:0]  
VCC  
VTT  
VCC_EXP  
VCCSM  
VCC2  
Voltage  
Reference,  
and Power  
VCCA_EXPPLL  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_HPLL  
VCCA_SMPLL  
SRCOMP[1:0]  
SOCOMP[1:0]  
SM_SLEWIN[1:0]  
SM_SLEWOUT[1:0]  
SMVREF[1:0]  
System  
Memory2  
VSS  
Intel®  
DDR/DDR2  
Ref./ Comp.  
82915G/  
82915GV/  
82910GL  
Only  
VCCA_DAC  
VSSA_DAC  
Note:  
1. SDVO signals on the 82915G GMCH are multiplexed with the PCI Express x16 Graphics Port signals.  
2. The 82910GL GMCH only supports DDR (not DDR2).  
Signal_Info  
34  
Datasheet  
Signal Description  
R
2.1  
Host Interface Signals  
Note: Unless otherwise noted, the voltage level for all signals in this interface is tied to the termination  
voltage of the Host Bus (VTT).  
Signal Name  
Type  
Description  
HADS#  
I/O  
Address Strobe: The processor bus owner asserts HADS# to indicate the  
first of two cycles of a request phase. The (G)MCH can assert this signal for  
snoop cycles and interrupt messages.  
GTL+  
HBNR#  
HBPRI#  
I/O  
Block Next Request: This signal is used to block the current request bus  
owner from issuing new requests. This signal is used to dynamically control  
the processor bus pipeline depth.  
GTL+  
O
Priority Agent Bus Request: The (G)MCH is the only Priority Agent on the  
processor bus. It asserts this signal to obtain the ownership of the address  
bus. This signal has priority over symmetric bus requests and will cause the  
current symmetric owner to stop issuing new transactions unless the  
HLOCK# signal was asserted.  
GTL+  
HBREQ0#  
I/O  
Bus Request 0: The (G)MCH pulls the processor’s bus HBREQ0# signal  
low during HCPURST#. The processor samples this signal on the active-to-  
inactive transition of HCPURST#. The minimum setup time for this signal is  
4 HCLKs. The minimum hold time is 2 clocks and the maximum hold time is  
20 HCLKs. HBREQ0# should be tristated after the hold time requirement  
has been satisfied.  
GTL+  
HCPURST#  
O
CPU Reset: The HCPURST# pin is an output from the (G)MCH. The  
(G)MCH asserts HCPURST# while RSTIN# is asserted and for  
approximately 1 ms after RSTIN# is de-asserted. The HCPURST# allows  
the processors to begin execution in a known state.  
GTL+  
Note that the Intel® ICH6 must provide processor frequency select strap set-  
up and hold times around HCPURST#. This requires strict synchronization  
between (G)MCH HCPURST# de-assertion and the Intel® ICH6 driving the  
straps.  
HDBSY#  
I/O  
GTL+  
O
Data Bus Busy: This signal is used by the data bus owner to hold the data  
bus for transfers requiring more than one cycle.  
HDEFER#  
Defer: Signals that the (G)MCH will terminate the transaction currently  
being snooped with either a deferred response or with a retry response.  
GTL+  
HDINV[3:0]#  
I/O  
Dynamic Bus Inversion: Driven along with the HD[63:0] signals. Indicates  
if the associated signals are inverted or not. HDINV[3:0]# are asserted such  
that the number of data bits driven electrically low (low voltage) within the  
corresponding 16 bit group never exceeds 8.  
GTL+  
HDINVx#  
Data Bits  
HDINV3#  
HDINV2#  
HDINV1#  
HDINV0#  
HD[63:48]  
HD[47:32]  
HD[31:16]  
HD[15:0]  
Datasheet  
35  
Signal Description  
R
Signal Name  
Type  
Description  
HDRDY#  
HEDRDY#  
HA[31:3]#  
I/O  
GTL+  
O
Data Ready: This signal is asserted for each cycle that data is transferred.  
Early Data Ready: This signal indicates that the data phase of a read  
transaction will start on the bus exactly one common clock after assertion.  
GTL+  
I/O  
Host Address Bus: HA[31:3]# connect to the processor address bus.  
During processor cycles, the HA[31:3]# are inputs. The (G)MCH drives  
HA[31:3]# during snoop cycles on behalf of DMI and PCI Express Graphics  
initiators. HA[31:3]# are transferred at 2x rate.  
GTL+  
HADSTB[1:0]#  
HD[63:0]  
I/O  
GTL+  
I/O  
Host Address Strobe: The source synchronous strobes used to transfer  
HA[31:3]# and HREQ[4:0] at the 2x transfer rate.  
Host Data: These signals are connected to the processor data bus. Data on  
HD[63:0] is transferred at 4x rate. Note that the data signals may be  
inverted on the processor bus, depending on the HDINV[3:0]# signals.  
GTL+  
HDSTBP[3:0]#  
HDSTBN[3:0]#  
I/O  
Differential Host Data Strobes: The differential source synchronous  
strobes are used to transfer HD[63:0] and HDINV[3:0]# at 4x transfer rate.  
GTL+  
These signals are named this way because they are not level sensitive.  
Data is captured on the falling edge of both strobes. Hence, they are  
pseudo-differential, and not true differential.  
Strobes  
Data  
Bits  
HDSTBP3#, HDSTBN3#  
HDSTBP2#, HDSTBN2#  
HDSTBP1#, HDSTBN1#  
HDSTBP0#, HDSTBN0#  
HD[63:48]  
HD[47:32]  
HD[31:16]  
HD[15:0]  
HDINV3#  
HDINV2#  
HDINV1#  
HDINV0#  
HHIT#  
I/O  
Hit: This signal indicates that a caching agent holds an unmodified version  
of the requested line. Also, driven in conjunction with HHITM# by the target  
to extend the snoop window.  
GTL+  
HHITM#  
I/O  
Hit Modified: This signal indicates that a caching agent holds a modified  
version of the requested line and that this agent assumes responsibility for  
providing the line. This signal is also driven in conjunction with HHIT# to  
extend the snoop window.  
GTL+  
HLOCK#  
I/O  
Host Lock: All processor bus cycles sampled with the assertion of HLOCK#  
and HADS#, until the negation of HLOCK# must be atomic (i.e., no DMI or  
PCI Express Graphics accesses to DRAM are allowed when HLOCK# is  
asserted by the processor).  
GTL+  
HPCREQ#  
I
Precharge Request: The processor provides a “hint” to the (G)MCH that it  
is OK to close the DRAM page of the memory read request with which the  
hint is associated. The (G)MCH uses this information to schedule the read  
request to memory using the special “AutoPrecharge” attribute. This causes  
the DRAM to immediately close (Precharge) the page after the read data  
has been returned. This allows subsequent processor requests to more  
quickly access information on other DRAM pages, since it will no longer be  
necessary to close an open page prior to opening the proper page.  
Asserted by the requesting agent during both halves of Request Phase. The  
same information is provided in both halves of the request phase.  
GTL+  
2x  
36  
Datasheet  
Signal Description  
R
Signal Name  
Type  
Description  
HREQ[4:0]#  
I/O  
GTL+  
2x  
Host Request Command: These signals define the attributes of the  
request. HREQ[4:0]# are transferred at 2x rate. They are asserted by the  
requesting agent during both halves of Request Phase. In the first half the  
signals define the transaction type to a level of detail that is sufficient to  
begin a snoop request. In the second half the signals carry additional  
information to define the complete transaction type.  
The transactions supported by the (G)MCH Host Bridge are defined in the  
Host Interface section of this document.  
HTRDY#  
O
Host Target Ready: This signal indicates that the target of the processor  
transaction is able to enter the data transfer phase.  
GTL+  
O
HRS[2:0]#  
Response Signals: These signals indicate the type of response as shown  
below:  
GTL+  
000 = Response type  
001 = Idle state  
010 = Retry response  
011 = Deferred response  
100 = Reserved (not driven by (G)MCH)  
101 = Hard Failure (not driven by (G)MCH)  
110 = No data response  
111 = Implicit Writeback  
111 = Normal data response  
BSEL[2:0]  
HRCOMP  
HSCOMP  
HSWING  
I
CMOS  
I/O  
Bus Speed Select: At the de-assertion of RSTIN#, the value sampled on  
these pins determines the expected frequency of the bus.  
Host RCOMP: Used to calibrate the Host GTL+ I/O buffers.  
This signal is powered by the Host Interface termination rail (VTT).  
Slew Rate Compensation: Compensation for the Host Interface.  
CMOS  
I/O  
CMOS  
I
Host Voltage Swing: This signal provides the reference voltage used by  
FSB RCOMP circuits. HSWING is used for the signals handled by  
HRCOMP.  
A
HVREF  
I
Host Reference Voltage Reference: Voltage input for the data, address,  
and common clock signals of the Host GTL interface.  
A
Datasheet  
37  
Signal Description  
R
2.2  
DDR/DDR2 DRAM Channel A Interface  
Note that the 82910GL, 82915GL, and 82915PL (G)MCH only supports DDR DRAM.  
Signal Name  
Type  
Description  
SCLK_A[5:0]  
O
SSTL-  
2/1.8  
SDRAM Differential Clock: (3 per DIMM). SCLK_Ax and its  
complement SCLK_Ax# signal make a differential clock pair output. The  
crossing of the positive edge of SCLK_Ax and the negative edge of its  
complement SCLK_Ax# are used to sample the command and control  
signals on the SDRAM.  
SCLK_A[5:0]#  
SCS_A[3:0]#  
SMA_A[13:0]  
SBS_A[2:0]  
O
SSTL-  
2/1.8  
SDRAM Complementary Differential Clock: (3 per DIMM) These are  
the complementary differential DDR/DDR2 clock signals.  
O
SSTL-  
2/1.8  
Chip Select: (1 per Rank) These signals select particular SDRAM  
components during the active state. There is one chip select for each  
SDRAM rank.  
O
SSTL-  
2/1.8  
Memory Address: These signals are used to provide the multiplexed  
row and column address to the SDRAM  
O
Bank Select: These signals define which banks are selected within each  
SSTL-  
2/1.8  
SDRAM rank  
DDR2: 1-Gb technology is 8 banks.  
DDR: 1-Gb technology is 4 banks. SBS_A[2] is not used.  
SRAS_A#  
SCAS_A#  
SWE_A#  
O
SSTL-  
2/1.8  
Row Address Strobe: This signal is used with SCAS_A# and SWE_A#  
(along with SCS_A#) to define the SDRAM commands.  
O
SSTL-  
2/1.8  
Column Address Strobe: This signal is used with SRAS_A# and  
SWE_A# (along with SCS_A#) to define the SDRAM commands.  
O
Write Enable: This signal is used with SCAS_A# and SRAS_A# (along  
SSTL-  
2/1.8  
with SCS_A#) to define the SDRAM commands.  
SDQ_A[63:0]  
I/O  
SSTL-  
2/1.8  
2x  
Data Lines: SDQ_A signals interface to the SDRAM data bus.  
SDM_A[7:0]  
O
Data Mask: When activated during writes, the corresponding data  
groups in the SDRAM are masked. There is one SDM_Ax signal for  
every data byte lane.  
SSTL-  
2/1.8  
2X  
SDQS_A[7:0]  
I/O  
SSTL-  
2/1.8  
2x  
Data Strobes: For DDR, the rising and falling edges of SDQS_Ax are  
used for capturing data during read and write transactions. For DDR2,  
SDQS_Ax and its complement SDQS_Ax# signal make up a differential  
strobe pair. The data is captured at the crossing point of SDQS_Ax and  
its complement SDQS_Ax# during read and write transactions.  
SDQS_A[7:0]#  
I/O  
SSTL-1.8  
2x  
Data Strobe Complements (DDR2 only): These signals are the  
complementary DDR2 strobe signals.  
38  
Datasheet  
Signal Description  
R
Signal Name  
Type  
Description  
SCKE_A[3:0]  
O
SSTL-  
2/1.8  
Clock Enable: (1 per Rank) SACKE is used to initialize the SDRAMs  
during power-up, to power-down SDRAM ranks, and to place all SDRAM  
ranks into and out of self-refresh during Suspend-to-RAM.  
SODT_A[3:0]  
O
On Die Termination (DDR2 only): Active On-die Termination Control  
SSTL-1.8  
signals for DDR2 devices.  
2.3  
DDR/DDR2 DRAM Channel B Interface  
Note that the 82910GL, 82915GL, and 82915PL (G)MCH only supports DDR DRAM.  
Signal Name  
Type  
Description  
SCLK_B[5:0]  
O
SSTL-  
2/1.8  
SDRAM Differential Clock: (3 per DIMM) SCLK_Bx and its complement  
SCLK_Bx# signal make a differential clock pair output. The crossing of  
the positive edge of SCLK_Bx and the negative edge of its complement  
SCLK_Bx# are used to sample the command and control signals on the  
SDRAM.  
SCLK_B[5:0]#  
SCS_B[3:0]#  
SMA_B[13:0]  
SBS_B[2:0]  
O
SSTL-  
2/1.8  
SDRAM Complementary Differential Clock: (3 per DIMM) These are  
the complementary differential DDR/DDR2 clock signals.  
O
SSTL-  
2/1.8  
Chip Select: (1 per Rank) These signals select particular SDRAM  
components during the active state. There is one chip select for each  
SDRAM rank  
O
SSTL-  
2/1.8  
Memory Address: These signals are used to provide the multiplexed  
row and column address to the SDRAM  
O
Bank Select: These signals define which banks are selected within  
SSTL-  
2/1.8  
each SDRAM rank  
DDR2: 1-Gb technology is 8 banks.  
DDR: 1-Gb technology is 4 banks. SBS_B[2] is not used  
SRAS_B#  
SCAS_B#  
SWE_B#  
O
SSTL-  
2/1.8  
Row Address Strobe: This signal is used with SCAS_B# and SWE_B#  
(along with SCS_B#) to define the SDRAM commands  
O
SSTL-  
2/1.8  
Column Address Strobe: This signal is used with SRAS_B# and  
SWE_B# (along with SCS_B#) to define the SDRAM commands.  
O
Write Enable: This signal is used with SCAS_B# and SRAS_B# (along  
SSTL-  
2/1.8  
with SCS_B#) to define the SDRAM commands.  
SDQ_B[63:0]  
I/O  
SSTL-  
2/1.8  
2x  
Data Lines: SDQ_Bx signals interface to the SDRAM data bus  
SDM_B[7:0]  
O
SSTL-  
2/1.8  
2x  
Data Mask: When activated during writes, the corresponding data  
groups in the SDRAM are masked. There is one SDM_Bx signal for  
every data byte lane.  
Datasheet  
39  
Signal Description  
R
Signal Name  
Type  
Description  
SDQS_B[7:0]  
I/O  
SSTL-  
2/1.8  
2x  
Data Strobes: For DDR the rising and falling edges of SDQS_Bx are  
used for capturing data during read and write transactions. For DDR2,  
SDQS_Bx and its complement SDQS_Bx# make up a differential strobe  
pair. The data is captured at the crossing point of SDQS_Bx and its  
complement SDQS_Bx# during read and write transactions.  
SDQS_B[7:0]#  
SCKE_B[3:0]  
SODT_B[3:0]  
I/O  
SSTL-1.8  
2x  
Data Strobe Complements (DDR2 only): These signals are the  
complementary DDR2 Strobe signals.  
O
SSTL-  
2/1.8  
Clock Enable: (1 per Rank) SCKE_B is used to initialize the SDRAMs  
during power-up, to power-down SDRAM ranks, and to place all SDRAM  
ranks into and out of self-refresh during Suspend-to-RAM.  
O
On Die Termination (DDR2 only): Active On-die Termination Control  
signals for DDR2 devices.  
SSTL-1.8  
2.4  
DDR/DDR2 DRAM Reference and Compensation  
Note that the 82910GL, 82915GL, and 82915PL (G)MCH only supports DDR DRAM.  
Signal Name  
Type  
Description  
SRCOMP[1:0]  
SOCOMP[1:0]  
I/O  
System Memory RCOMP  
I/O  
A
DDR2 On-Die DRAM Over Current Detection (OCD) driver  
compensation (DDR2 only)  
SM_SLEWIN[1:0]  
I
Buffer Slew Rate Input: Slew Rate characterization buffer input for X  
and Y orientation.  
A
SM_SLEWOUT[1:0]  
SMVREF[1:0]  
O
A
Buffer Slew Rate Output: Slew Rate characterization buffer output for X  
and Y orientation  
I
SDRAM Reference Voltage: Reference voltage inputs for each DQ,  
A
DM, DQS, and DQS# input signals.  
40  
Datasheet  
Signal Description  
R
2.5  
PCI Express* x16 Graphics Port Signals (Intel®  
82915G, 82915P, 82915PL Only)  
Unless otherwise specified, PCI Express Graphics signals are AC coupled, so the only voltage  
specified is a maximum 1.2 V differential swing.  
Signal Name  
Type  
Description  
EXP_RXN[15:0]  
EXP_RXP[15:0]  
EXP_TXN[15:0]  
EXP_TXP[15:0]  
EXP_COMPO  
I/O  
PCIE  
PCI Express Graphics Receive Differential Pair  
O
PCIE  
PCI Express Graphics Transmit Differential Pair  
I
A
PCI Express Graphics Output Current Compensation  
Note: EXP_COMP0 is used for DMI current compensation.  
PCI Express Graphics Input Current Compensation  
Note: EXP_COMPI is used for DMI current compensation.  
EXP_COMPI  
EXP_SLR  
I
A
I
PCI Express* Static Lane Reversal: The (G)MCH’s PCI Express lane  
numbers are reversed. For example, the (G)MCH PCI Express interface  
signals can be configured as follows:  
CMOS  
Normal  
Lane  
Ball  
C10  
A9  
Operation  
EXP_TXP0  
EXP_TXP1  
Reversed  
EXP_TXP15  
EXP_TXP14  
N3  
P1  
EXP_TXP14…  
EXP_TXP15  
EXP_TXP1…  
EXP_TXP0  
0 = (G)MCH’s PCI Express lane numbers are reversed  
1 = Normal operation  
Datasheet  
41  
Signal Description  
R
2.6  
Analog Display Signals (Intel®  
82915G/82915GV/82915GL/82910GL GMCH Only)  
Signal Name  
RED  
Type  
Description  
O
A
RED Analog Video Output: This signal is a CRT Analog video output  
from the internal color palette DAC. The DAC is designed for a 37.5 Ω  
routing impedance; however, the terminating resistor to ground will be  
75 (e.g., 75 resistor on the board, in parallel with a 75 CRT load).  
RED#  
O
A
O
A
REDB Analog Output: This signal is an analog video output from the  
internal color palette DAC. It should be shorted to the ground plane.  
GREEN  
GREEN Analog Video Output: This signal is a CRT Analog video  
output from the internal color palette DAC. The DAC is designed for a  
37.5 routing impedance; however, the terminating resistor to ground  
will be 75 (e.g., 75 resistor on the board, in parallel with a 75 CRT  
load).  
GREEN#  
BLUE  
O
A
O
A
GREENB Analog Output: This signal is an analog video output from the  
internal color palette DAC. It should be shorted to the ground plane.  
BLUE Analog Video Output: This signal is a CRT Analog video output  
from the internal color palette DAC. The DAC is designed for a 37.5 Ω  
routing impedance; however, the terminating resistor to ground will be  
75 (e.g., 75 resistor on the board, in parallel with a 75 CRT load).  
BLUE#  
O
A
O
A
BLUEB Analog Output: This signal is an analog video output from the  
internal color palette DAC. It should be shorted to the ground plane.  
REFSET  
Resistor Set: Set point resistor for the internal color palette DAC.  
A 255 1% resistor is required between REFSET and motherboard  
ground.  
HSYNC  
O
CRT Horizontal Synchronization: This signal is used as the horizontal  
2.5 V  
CMOS  
sync (polarity is programmable) or “sync interval”. 2.5 V output  
VSYNC  
O
CRT Vertical Synchronization: This signal is used as the vertical sync  
2.5 V  
CMOS  
(polarity is programmable). 2.5 V output.  
DDC_CLK  
DDC_DATA  
I/O  
2.5 V  
CMOS  
Monitor Control Clock. This signal may be used as the DDC_CLK for a  
secondary multiplexed digital display connector.  
I/O  
Monitor Control Data. This signal may be used as the DDC_Data for a  
2.5 V  
CMOS  
secondary multiplexed digital display connector.  
42  
Datasheet  
Signal Description  
R
2.7  
Clocks, Reset, and Miscellaneous  
Signal Name  
Type  
Description  
HCLKP  
HCLKN  
I
Differential Host Clock In: These pins receive a differential host clock  
from the external clock synthesizer. This clock is used by all of the  
(G)MCH logic that is in the Host clock domain.  
CMOS  
GCLKP  
GCLKN  
I
Differential PCI Express Graphics Clock In: These pins receive a  
differential 100 MHz serial reference clock from the external clock  
synthesizer. This clock is used to generate the clocks necessary for the  
support of PCI Express.  
CMOS  
DREFCLKN  
DREFCLKP  
RSTIN#  
I
Display PLL Differential Clock In  
CMOS  
I
Reset In: When asserted, this signal will asynchronously reset the  
(G)MCH logic. This signal is connected to the PLTRST# output of the  
Intel® ICH6. All PCI Express Graphics Attach output signals will also tri-  
state compatible with PCI Express* Specification Rev 1.0a.  
HVIN  
This input should have a Schmitt trigger to avoid spurious resets.  
This signal is required to be 3.3 V tolerant.  
PWROK  
EXTTS#  
I
HVIN  
I
Power OK: When asserted, PWROK is an indication to the (G)MCH that  
core power has been stable for at least 10 us.  
External Thermal Sensor Input: This signal may connect to a precision  
thermal sensor located on or near the DIMMs. If the system temperature  
reaches a dangerously high value, then this signal can be used to trigger  
the start of system thermal management. This signal is activated when  
an increase in temperature causes a voltage to cross some threshold in  
the sensor.  
HVCMOS  
MTYPE  
I
Memory Type Select Strap. This signal is a strapping option that  
indicates the type of system memory. For the 82910GL GMCH, this  
signal must be tied to ground.  
CMOS  
0 = DDR2  
1 = DDR  
ICH_SYNC#  
O
ICH Sync: This signal is connected to the MCH_SYNCH# signal on the  
ICH6.  
HVCMOS  
2.8  
Direct Media Interface (DMI)  
Signal Name  
Type  
Description  
DMI_RXP[3:0]  
DMI_RXN[3:0]  
I/O  
DMI  
Direct Media Interface: These signals are the receive differential  
pair (Rx).  
DMI_TXP[3:0]  
DMI_TXN[3:0]  
O
DMI  
Direct Media Interface: These signals are the transmit differential  
pair (Tx).  
Datasheet  
43  
Signal Description  
R
2.9  
Intel® Serial DVO (SDVO) Interface  
(82915G/82915GV/82915GL/82910GL GMCH Only)  
For the 82915G/82915GV/82915GL/82910GL GMCH, all but two of the pins in this section are  
multiplexed with the lower 8 lanes of the PCI Express interface.  
Note: The SDVO interface does not support static lane reversal (e.g., SDVOB_CLK# will originate  
from the same ball whether the PCI Express interface is lane-reversed mode or not.  
Signal Name  
Type  
Description  
SDVOB_GREEN-  
O
Serial Digital Video Channel B Green Complement. This signal is  
PCIE  
multiplexed with EXP_TXN1.  
SDVOB_GREEN+  
SDVOB_BLUE-  
SDVOB_BLUE+  
O
PCIE  
Serial Digital Video Channel B Green. This signal is multiplexed  
with EXP_TXP1.  
O
PCIE  
Serial Digital Video Channel B Blue Complement. This signal is  
multiplexed with EXP_TXN2.  
O
Serial Digital Video Channel B Blue. This signal is multiplexed with  
PCIE  
EXP_TXP2.  
SDVOC_RED- /  
SDVOB_ALPHA-  
O
PCIE  
Serial Digital Video Channel C Red Complement Channel B  
Alpha Complement. This signal is multiplexed with EXP_TXN4.  
SDVOC_RED+ /  
SDVOB_ALPHA+  
O
PCIE  
Serial Digital Video Channel C Red Channel B Alpha. This signal  
is multiplexed with EXP_TXP4.  
SDVOC_GREEN-  
SDVOC_GREEN+  
SDVOC_BLUE-  
SDVOC_BLUE+  
SDVOC_CLK-  
O
PCIE  
Serial Digital Video Channel C Green Complement. This signal is  
multiplexed with EXP_TXN5.  
O
PCIE  
Serial Digital Video Channel C Green. This signal is multiplexed  
with EXP_TXP5.  
O
PCIE  
Serial Digital Video Channel C Blue Complement. This signal is  
multiplexed with EXP_TXN6.  
O
PCIE  
Serial Digital Video Channel C Blue. This signal is multiplexed with  
EXP_TXP6.  
O
Serial Digital Video Channel C Clock Complement. This signal is  
PCIE  
multiplexed with EXP_TXN7.  
SDVOC_CLK+  
SDVO_TVCLKIN-  
SDVO_TVCLKIN+  
SDVOB_INT-  
O
PCIE  
Serial Digital Video Channel C Clock. This signal is multiplexed  
with EXP_TXP7.  
I
Serial Digital Video TVOUT Synchronization Clock Complement.  
This signal is multiplexed with EXP_RXN0.  
PCIE  
I
Serial Digital Video TVOUT Synchronization Clock. This signal is  
multiplexed with EXP_RXP0.  
PCIE  
I
Serial Digital Video Input Interrupt Complement. This signal is  
PCIE  
multiplexed with EXP_RXN1.  
SDVOB_INT+  
I
Serial Digital Video Input Interrupt. This signal is multiplexed with  
PCIE  
EXP_RXP1.  
SDVOC_INT+  
I
Serial Digital Video Input Interrupt. This signal is multiplexed with  
PCIE  
EXP_RXP5.  
SDVOC_INT-  
I
Serial Digital Video Input Interrupt Complement. This signal is  
PCIE  
multiplexed with EXP_RXN5.  
44  
Datasheet  
Signal Description  
R
Signal Name  
Type  
Description  
SDVO_STALL-  
I
Serial Digital Video Field Stall Complement. This signal is  
PCIE  
multiplexed with EXP_RXN2.  
SDVO_STALL+  
I
Serial Digital Video Field Stall.. This signal is multiplexed with  
PCIE  
EXP_RXP2.  
SDVO_CTRLCLK  
SDVO_CTRLDATA  
I/O  
COD  
Serial Digital Video Device Control Clock.  
I/O  
Serial Digital Video Device Control Data.  
COD  
This signal also provides a strapping option. Device 1 (Host-PCI  
Express Bridge) is disabled on Reset when the SDVO Presence  
strap (SDVO_CTLRDATA) is sampled high, and is enabled when  
this signal is sampled low.  
2.10  
Power and Ground  
Name  
Voltage  
Description  
VCC  
VTT  
1.5 V  
1.2 V  
Core Power.  
Processor System Bus Power.  
PCI Express* and DMI Power.  
System Memory Power.  
VCC_EXP  
VCCSM  
1.5 V  
1.8 V / 2.6 V  
DDR2: VCCSM = 1.8 V  
DDR: VCCSM = 2.6 V  
VCC2  
2.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
2.5 V  
2.5 V CMOS Power.  
VCCA_EXPPLL  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_HPLL  
VCCA_SMPLL  
VCCA_DAC  
PCI Express PLL Analog Power.  
Display PLL A Analog Power.  
Display PLL B Analog Power.  
Host PLL Analog Power.  
System Memory PLL Analog Power.  
Display DAC Analog Power. This signal is on the  
82915G/82915GV/82915GL/82910GL GMCH only.  
VSS  
0 V  
0 V  
Ground.  
VSSA_DAC  
Ground. This signal is on the 82915G/82915GV/82915GL/82910GL  
GMCH only.  
Datasheet  
45  
Signal Description  
R
2.11  
Reset States and Pull-up/Pull-downs  
This section describes the expected states of the (G)MCH I/O buffers during and immediately  
after the assertion of RSTIN#. This table only refers to the contributions on the interface from the  
(G)MCH and does not reflect any external influence (such as external pull-up/pull-down resistors  
or external drivers).  
Legend:  
CMCT:  
Common Mode Center Tapped. Differential signals are weakly driven to the common  
mode central voltage.  
DRIVE: Strong drive (to normal value supplied by core logic if not otherwise stated)  
TERM:  
LV:  
Normal termination devices are turned on  
Low voltage  
HV:  
IN:  
High voltage  
Input buffer enabled  
ISO:  
TRI:  
PU:  
Isolate input buffer so that it doesn’t oscillate if input left floating  
Tri-state  
Weak internal pull-up  
Weak internal pull-down  
PD:  
STRAP: Strap input sampled during assertion or on the de-asserting edge of RSTIN#  
Table 2-1. Host Interface Reset and S3 States  
State During  
State After  
RSTIN# De-  
assertion  
S3  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
RSTIN#  
Assertion  
Host I/F  
HCPURST#  
O
DRIVE LV  
TERM HV after  
TRI (No VTT)  
approximately 1ms  
HADSTB[1:0]#  
HA[31:3]#  
HD[63:0]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
HDSTBP[3:0]#  
HDSTBN[3:0]#  
HDINV[3:0]#  
HADS#  
HBNR#  
HBPRI#  
HDBSY#  
I/O  
O
HDEFER#  
HDRDY#  
I/O  
O
HEDRDY#  
46  
Datasheet  
 
Signal Description  
R
State During  
RSTIN#  
Assertion  
State After  
RSTIN# De-  
assertion  
S3  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
Host I/F  
HHIT#  
I/O  
I/O  
I/O  
I/O  
O
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
IN  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
IN  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI (No VTT)  
TRI  
HHITM#  
HLOCK#  
HREQ[4:0]#  
HTRDY#  
HRS[2:0]#  
HBREQ0#  
HPCREQ#  
HVREF  
O
I/O  
I
I
HRCOMP  
I/O  
TRI  
TRI after RCOMP  
TRI  
20 resistor  
for board with  
target  
impedance of  
60 Ω  
HSWING  
HSCOMP  
I
IN  
IN  
I/O  
TRI  
TRI  
TRI  
Table 2-2. System Memory (DDR2) Reset and S3 States  
State During  
RSTIN#  
Assertion  
State After  
RSTIN# De-  
assertion  
S3  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
System  
Memory  
(DDR2)  
Channel A  
SCLK_A[5:0]  
SCLK_A[5:0]#  
SCS_A[3:0]#  
SMA_A[13:0]  
SBS_A[2:0]  
SRAS_A#  
O
O
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
O
O
O
O
SCAS_A#  
O
SWE_A#  
O
SDQ_A[63:0]  
SDM_A[7:0]  
SDQS_A[7:0]  
SDQS_A[7:0]#  
SCKE_A[3:0]  
SODT_A[3:0]  
I/O  
O
I/O  
I/O  
O
O
LV  
LV  
LV  
Datasheet  
47  
Signal Description  
R
State During  
RSTIN#  
Assertion  
State After  
RSTIN# De-  
assertion  
S3  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
System  
Memory  
(DDR2)  
Channel B  
SCLK_B[5:0]  
SCLK_B[5:0]#  
SCS_B[3:0]#  
SMA_B[13]  
O
O
O
O
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
O
LV  
LV  
LV  
SMA_B[12:11]  
SMA_B[10:8]  
SMA_B[7]  
O
O
TRI  
LV  
TRI  
LV  
TRI  
LV  
O
TRI  
TRI  
TRI  
SMA_B[6:0]  
SBS_B[2]  
O
O
LV  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
LV  
LV  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
SBS_B[1:0]  
TRI  
SRAS_B#  
O
TRI  
SCAS_B#  
O
TRI  
SWE_B#  
O
TRI  
SDQ_B[63:0]  
SDM_B[7:0]  
SDQS_B[7:0]  
SDQS_B[7:0]#  
SCKE_B[3:0]  
SODT_B[3:0]  
SRCOMP0  
I/O  
O
TRI  
TRI  
I/O  
I/O  
O
TRI  
TRI  
LV  
O
LV  
LV  
LV  
I/O  
I/O  
I
TRI  
TRI  
IN  
TRI (after RCOMP)  
TRI  
TRI  
IN  
SRCOMP1  
TRI (after RCOMP)  
SM_SLEWIN[1:0]  
SM_SLEWOU{1:0]  
SMVREF[1:0]  
SOCOMP[1:0]  
IN  
O
TRI  
IN  
TRI (after RCOMP)  
TRI  
IN  
I
IN  
I/O  
TRI  
TRI  
TRI  
DDR2: 40 Ω  
resistor to  
ground  
48  
Datasheet  
Signal Description  
R
Table 2-3. System Memory (DDR) Reset and S3 States  
State During  
State After RSTIN#  
De-assertion  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
RSTIN#  
S3  
Assertion  
System  
Memory  
(DDR)  
Channel A  
SCLK_A[5:0]  
SCLK_A[5:0]#  
SMA_A[13:9]  
SMA_A[8]  
O
O
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
LV  
O
O
SMA_A[7:6]  
SMA_A[5]  
O
TRI  
LV  
TRI  
LV  
TRI  
LV  
O
SMA_A[4:0]  
SBS_A[2:0]  
SCS_A[3]#  
SCS_A[2:1]#  
SCS_A[0]#  
SRAS_A#  
O
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
LV  
O
O
O
O
TRI  
TRI  
LV  
TRI  
TRI  
LV  
TRI  
TRI  
LV  
O
SCAS_A#  
O
SWE_A#  
O
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
SDQ_A[63:0]  
SDM_A[7:0]  
SDQS_A[7:0]  
SDQS_A[7:0]#  
SCKE_A[3:0]  
Channel B  
SCLK_B[5:0]  
SCLK_B[5:0]#  
SMA_B[13:0]  
SMA_B[0]  
I/O  
O
I/O  
I/O  
O
System  
Memory  
(DDR)  
O
O
O
O
O
O
O
O
O
O
O
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
LV  
SBS_B[2]  
TRI  
LV  
TRI  
LV  
TRI  
LV  
SBS_B[1]  
SBS_B[0]  
TRI  
LV  
TRI  
LV  
TRI  
LV  
SCS_B[3]#  
SCS_B[2:0]#  
SRAS_B#  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
SCAS_B#  
Datasheet  
49  
Signal Description  
R
State During  
RSTIN#  
Assertion  
State After RSTIN#  
De-assertion  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
S3  
System  
Memory  
(DDR)  
SWE_B#  
SDQ_B[63:0]  
O
I/O  
O
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
LV  
TRI  
SDM_B[7:0]  
TRI  
SDQS_B[7:0]  
SDQS_B[7:0]#  
SCKE_B[3:0]  
SRCOMP0  
I/O  
I/O  
O
TRI  
TRI  
LV  
I/O  
I/O  
I
TRI  
TRI  
IN  
TRI (after RCOMP)  
TRI  
TRI  
IN  
SRCOMP1  
TRI (after RCOMP)  
SM_SLEWIN[1:0]  
SM_SLEWOU[1:0]  
SMVREF[1:0]  
SOCOMP[1:0]  
IN  
O
TRI  
IN  
TRI (after RCOMP)  
TRI  
IN  
I
IN  
I/O  
TRI  
TRI  
TRI  
DDR2: 40 Ω  
resistor to  
ground  
Table 2-4. PCI Express* Graphics x16 Port Reset and S3 States  
State During  
S3  
State After RSTIN#  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
RSTIN#  
De-assertion  
Assertion  
PCI  
Express*-  
Graphics  
EXP_RXN[15:0]  
EXP_RXP[15:0]  
EXP_TXN[15:0]  
EXP_TXP[15:0]  
EXP_COMPO  
EXP_COMPI  
I/O  
I/O  
O
O
I
CMCT  
CMCT  
CMCT  
CMCT  
CMCT  
CMCT  
CMCT 1.0 V  
CMCT 1.0 V  
TRI  
CMCT 1.0 V  
CMCT 1.0 V  
CMCT 1.0 V  
TRI  
CMCT 1.0 V  
TRI (after RCOMP)  
TRI (after RCOMP)  
I
TRI  
TRI  
Table 2-5. DMI Reset and S3 States  
State During  
RSTIN#  
Assertion  
S3  
State After RSTIN#  
De-assertion  
Pull-up/ Pull-  
down  
Interface  
Signal Name  
I/O  
DMI  
DMI_RXN[3:0]  
DMI_RXP[3:0]  
DMI_TXN[3:0]  
DMI_TXP[3:0]  
I/O  
I/O  
O
CMCT  
CMCT  
CMCT  
CMCT  
CMCT  
CMCT  
CMCT 1.0 V  
CMCT 1.0 V  
CMCT 1.0 V  
CMCT 1.0 V  
CMCT 1.0 V  
CMCT 1.0 V  
O
50  
Datasheet  
Signal Description  
R
Table 2-6. Clocking Reset and S3 States  
State During  
State After  
RSTIN# De-  
assertion  
S3  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
RSTIN#  
Assertion  
HCLKN  
I
I
I
I
I
I
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Clocks  
HCLKP  
GCLKN  
GCLKP  
DREFCLKN  
DREFCLKP  
Table 2-7. MISC Reset and S3 States  
State During  
RSTIN#  
Assertion  
S3  
State After RSTIN#  
De-assertion  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
RSTIN#  
I
I
IN  
HV  
IN  
HV  
IN  
HV  
Misc.  
PWROK  
EXTTS#  
I
PU  
PU  
PU  
BSEL[2:0]  
I
TRI  
TRI  
TRI  
MTYPE  
I
TERM HV  
TERM HV  
PU  
TERM HV  
TERM HV  
PU  
TERM HV  
TERM HV  
PU  
EXP_SLR  
I
ICH_SYNC#  
SDVO_CTRLCLK  
SDVO_CTRLDATA  
O
O
I/O  
TRI  
TRI  
TRI  
TERM PD  
TRI  
TERM PD  
Table 2-8. DAC Reset and S3 States (Intel® 82915G/82915GV/82915GL/82910GL GMCH only)  
State During  
RSTIN#  
Assertion  
S3  
State After RSTIN#  
Deassertion  
Pull-up/  
Pull-down  
Interface  
Signal Name  
I/O  
HSYNC  
O
O
O
O
O
O
O
O
O
LV  
LV  
LV  
LV  
DAC  
VSYNC  
RED  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
RED#  
TRI  
GREEN  
GREEN#  
BLUE  
TRI  
TRI  
TRI  
BLUE#  
REFSET  
TRI  
0.5* VCCA_DAC  
255 1%  
Resistor to  
Ground  
DDC_CLK  
I/O  
I/O  
IN  
IN  
IN  
IN  
IN  
IN  
DDC_DATA  
§
Datasheet  
51  
Signal Description  
R
52  
Datasheet  
Register Description  
R
3 Register Description  
The (G)MCH contains two sets of software accessible registers, accessed via the processor I/O  
address space: Control registers and internal configuration registers.  
Control registers are I/O mapped into the processor I/O space that control access to PCI and  
PCI Express configuration space (see Section 3.4).  
Internal configuration registers residing within the (G)MCH are partitioned into three logical  
device register sets (“logical” since they reside within a single physical device). The first  
register set is dedicated to Host Bridge functionality (i.e. DRAM configuration, other chipset  
operating parameters and optional features). The second register block is dedicated to the  
82915G/82915P/82915PL (G)MCH Host-PCI Express Bridge functions (controls PCI  
Express interface configurations and operating parameters). The third register block is for the  
82915G/82915GV/82915GL/82910GL GMCH internal graphics functions.  
The (G)MCH internal registers (I/O Mapped, Configuration and PCI Express Extended  
Configuration registers) are accessible by the processor. The registers that reside within the lower  
256 bytes of each device can be accessed as Byte, Word (16-bit), or DWord (32-bit) quantities,  
with the exception of CONFIG_ADDRESS that can only be accessed as a DWord. All multi-byte  
numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts  
of the field). Registers that reside in bytes 256 through 4095 of each device may only be accessed  
using memory mapped transactions in DWord (32-bit) quantities.  
3.1  
Register Terminology  
The following table shows the register-related terminology that is used.  
Item  
Description  
RO  
Read Only bit(s). Writes to these bits have no effect.  
RS/WC  
Read Set / Write Clear bit(s). These bits are set to ‘1’ when read and then will continue  
to remain set until written. A write of ‘1’ clears (sets to ‘0’) the corresponding bit(s) and a  
write of ‘0’ has no effect.  
R/W  
Read / Write bit(s). These bits can be read and written.  
R/WC  
Read / Write Clear bit(s). These bits can be read. Internal events may set this bit. A  
write of ‘1’ clears (sets to ‘0’) the corresponding bit(s) and a write of ‘0’ has no effect.  
R/WC/S  
Read / Write Clear / Sticky bit(s). These bits can be read. Internal events may set this  
bit. A write of ‘1’ clears (sets to ‘0’) the corresponding bit(s) and a write of ‘0’ has no  
effect. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset  
(for PCI Express* related bits a cold reset is “Power Good Reset” as defined in the PCI  
Express* Specification).  
R/W/L  
R/W/S  
Read / Write / Lockable bit(s). These bits can be read and written. Additionally there is a  
bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field  
from being writeable (bit field becomes Read Only).  
Read / Write / Sticky bit(s). These bits can be read and written. Bits are not cleared by  
"warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits a  
cold reset is “Power Good Reset” as defined in the PCI Express* Specification).  
Datasheet  
53  
Register Description  
R
Item  
R/WSC  
Description  
Read / Write Self Clear bit(s). These bits can be read and written. When the bit is ‘1’,  
hardware may clear the bit to ‘0’ based upon internal events, possibly sooner than any  
subsequent read could retrieve a ‘1’.  
R/WSC/L  
Read / Write Self Clear / Lockable bit(s). These bits can be read and written. When the  
bit is ‘1’, hardware may clear the bit to ‘0’ based upon internal events, possibly sooner  
than any subsequent read could retrieve a ‘1’. Additionally there is a bit (which may or  
may not be a bit marked R/W/L) that, when set, prohibits this bit field from being  
writeable (bit field becomes Read Only).  
R/WC  
Read Write Clear bit(s). These bits can be read and written. However, a write of ‘1’  
clears (sets to ‘0’) the corresponding bit(s) and a write of ‘0’ has no effect.  
R/WO  
Write Once bit(s). Once written, bits with this attribute become Read Only. These bits  
can only be cleared by a Reset.  
W
Write Only. Whose bits may be written, but will always-return zeros when read. They are  
used for write side effects. Any data written to these registers cannot be retrieved.  
Reserved Bits  
Some of the (G)MCH registers described in this section contain reserved bits. These  
bits are labeled "Reserved”. Software must deal correctly with fields that are reserved.  
On reads, software must use appropriate masks to extract the defined bits and not rely  
on reserved bits being any particular value. On writes, software must ensure that the  
values of reserved bit positions are preserved. That is, the values of reserved bit  
positions must first be read, merged with the new values for other bit positions and then  
written back. Note the software does not need to perform read, merge, and write  
operation for the configuration address register.  
Reserved  
Registers  
In addition to reserved bits within a register, the (G)MCH contains address locations in  
the configuration space of the Host Bridge entity that are marked either "Reserved" or  
“Intel Reserved”. The (G)MCH responds to accesses to “Reserved” address locations  
by completing the host cycle. When a “Reserved” register location is read, a zero value  
is returned. (“Reserved” registers can be 8-, 16-, or 32-bits in size). Writes to  
“Reserved” registers have no effect on the (G)MCH. Registers that are marked as “Intel  
Reserved” must not be modified by system software. Writes to “Intel Reserved”  
registers may cause system failure. Reads from “Intel Reserved” registers may return a  
non-zero value.  
Default Value  
Upon a Full Reset, the (G)MCH sets its entire set of internal configuration registers to  
predetermined default states. Some register values at reset are determined by external  
strapping options. The default state represents the minimum functionality feature set  
required to successfully bringing up the system. Hence, it does not represent the  
optimal system configuration. It is the responsibility of the system initialization software  
(usually BIOS) to properly determine the DRAM configurations, operating parameters  
and optional system features that are applicable, and to program the (G)MCH registers  
accordingly.  
54  
Datasheet  
Register Description  
R
3.2  
Platform Configuration  
In platforms that support DMI (e.g. this (G)MCH) the configuration structure is significantly  
different from previous Hub architectures. The DMI physically connects the (G)MCH and the  
Intel ICH6; so, from a configuration standpoint, the DMI is logically PCI bus 0. As a result, all  
devices internal to the (G)MCH and the Intel ICH6 appear to be on PCI bus 0.  
The ICH6 internal LAN controller does not appear on bus 0; it appears on the external PCI bus  
(whose number is configurable).  
The system’s primary PCI expansion bus is physically attached to the Intel ICH6 and, from a  
configuration perspective, appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge and  
therefore has a programmable PCI Bus number. The PCI Express Graphics Attach appears to  
system software to be a real PCI bus behind a PCI-to-PCI bridge that is a device resident on PCI  
bus 0.  
Note: A physical PCI bus 0 does not exist and that DMI and the internal devices in the (G)MCH and  
Intel ICH6 logically constitute PCI Bus 0 to configuration software. This is shown in Figure 3-1.  
Figure 3-1. Conceptual Chipset PCI Configuration Diagram  
Processor  
Intel ® 82915G/ 82915GV/ 82915GL/  
82915P/82915PL/82919GL (G)MCH  
PCI Configuration in I/O  
DRAM Interface Bus 0,  
Device 0  
Device 1 (82915G/82915P/  
82915PL GMCH only  
Internal Graphics Bus 0,  
(82915G/82915GV/82915G  
L82910GL  
Device  
DMI  
PCI_Config_Dia  
Datasheet  
55  
Register Description  
R
The (G)MCH contains the following PCI devices within a single physical component. The  
configuration registers for the devices are mapped as devices residing on PCI bus 0.  
Device 0 – Host Bridge/DRAM Controller: Logically this appears as a PCI device residing  
on PCI bus 0. Device 0 contains the standard PCI header registers, PCI Express base address  
register, DRAM control (including thermal/throttling control), and configuration for the DMI  
and other (G)MCH specific registers.  
Device 1– Host-PCI Express Bridge (82915G/82915P/82915PL (G)MCH only). Logically  
this appears as a “virtual” PCI-to-PCI bridge residing on PCI bus 0 and is compliant with PCI  
Express* Specification Revision 1.0a. Device 1 contains the standard PCI-to-PCI bridge  
registers and the standard PCI Express/PCI configuration registers (including the PCI  
Express memory address mapping). It also contains Isochronous and Virtual Channel  
controls in the PCI Express extended configuration space.  
Device 2 – Internal Graphics Control (82915G/82915GV/82915GL/82910GL GMCH  
only). Logically, this appears as a PCI device residing on PCI bus 0. Physically, device 2  
contains the configuration registers for 3D, 2D, and display functions.  
56  
Datasheet  
Register Description  
R
Figure 3-2. Register Organization (Representative of the Intel® 82915G GMCH)  
PCI Express* Egress Port  
(RCRB)  
FFFh  
Device 2 Configuration  
Registers: Internal Graphics  
VC1 (Isochronous) Port  
Arbitration Controls  
FFFh  
0FFh  
Unused  
000h  
DMI Root Complex Register  
Block (RCRB)  
FFFh  
Mirror of bits needed by  
graphics driver graphics  
thermal controls  
(G)MCH-ICH6 Serial Interface  
(DMI) Controls:  
Analog Controls Error  
Reporting Controls VC Control  
(Incl. VCp)  
000h  
FFFh  
Device 1 Configuration  
Registers: PCI Express X16  
000h  
PCI Express x16 Controls:  
Analog Controls  
Error Reporting Controls  
VC Controls  
PCI Express Address Range  
0FFF FFFFh  
Accessed only by PCI  
Express enhanced access  
mechanism. 4KB block  
allocated for each potential  
device in root hierarchy.  
Hot Plug/Slot Controls  
0FFh  
Device Level Controls  
000h  
FFFh  
Device 2 Range  
Device 1 Range  
Device 0 Range  
Device 0 Configuration  
Registers  
0000 0000h  
3FFFh  
Device 0 MMIO Registers:  
(G)MCH Control  
Thermal Sensor PSB Analog  
Controls (Rcomp+)  
0FFh  
000h  
CH 0/1 Analog Controls  
CH 0/1 Timing Controls  
Ch 0/1 Throttling  
Ch 0/1 Oranization Arviter  
Controls  
Device Level Controls, PAM  
EPBAR  
DMI BAR  
PCIEXBAR  
0000h  
MCHBAR  
Reg_Org_82915G  
Note: Diagram not to scale  
NOTES:  
1. Very high level representation. Many details omitted.  
2. Inter graphics memory mapped registers are not shown.  
3. Only Device 1 use PCI Express extended configuration space.  
4. Device 0 and Device 2 use only standard PCI configuration space.  
5. Hex numbers represent address range size and not actual locations.  
Table 3-1. Device Number Assignment for Internal (G)MCH Devices  
(G)MCH Function  
Device#  
Host Bridge / DRAM Controller  
Device 0  
Device 1  
Host-to-PCI Express* Bridge (virtual P2P) (Intel® 82915G/82915P/82915PL  
(G)MCH only)  
Internal Graphics Control (82915G/82915GV/82915GL/82910GL GMCH  
only)  
Device 2  
Datasheet  
57  
Register Description  
R
3.3  
General Routing Configuration Accesses  
The (G)MCH supports two PCI related interfaces: DMI and PCI Express. PCI and PCI Express  
configuration cycles are selectively routed to one of these interfaces. The (G)MCH is responsible  
for routing configuration cycles to the proper interface. Configuration cycles to the Intel ICH6  
internal devices and Primary PCI (including downstream devices) are routed to the Intel ICH6 via  
DMI. Configuration cycles to both the PCI Express Graphics PCI compatibility configuration  
space and the PCI Express Graphics extended configuration space are routed to the PCI Express  
Graphics port.  
A detailed description of the mechanism for translating processor I/O bus cycles to configuration  
cycles is described below.  
3.3.1  
Standard PCI Bus Configuration Mechanism  
The PCI Bus defines a slot based "configuration space" that allows each device to contain up to 8  
functions with each function containing up to 256 8-bit configuration registers. The PCI  
specification defines two bus cycles to access the PCI configuration space: Configuration Read  
and Configuration Write. Memory and I/O spaces are supported directly by the processor.  
Configuration space is supported by a mapping mechanism implemented within the (G)MCH.  
The configuration access mechanism makes use of the CONFIG_ADDRESS Register (at I/O  
address 0CF8h though 0CFBh) and CONFIG_DATA Register (at I/O address 0CFCh though  
0CFFh). To reference a configuration register a DW I/O write cycle is used to place a value into  
CONFIG_ADDRESS that specifies the PCI bus, the device on that bus, the function within the  
device, and a specific configuration register of the device function being accessed.  
CONFIG_ADDRESS [31] must be 1 to enable a configuration cycle. CONFIG_DATA then  
becomes a window into the four bytes of configuration space specified by the contents of  
CONFIG_ADDRESS. Any read or write to CONFIG_DATA will result in the (G)MCH  
translating the CONFIG_ADDRESS into the appropriate configuration cycle.  
The (G)MCH is responsible for translating and routing the processor’s I/O accesses to the  
CONFIG_ADDRESS and CONFIG_DATA registers to internal (G)MCH configuration registers,  
DMI or PCI Express.  
3.3.2  
Logical PCI Bus 0 Configuration Mechanism  
The (G)MCH decodes the Bus Number (bits 23:16) and the Device Number fields of the  
CONFIG_ADDRESS register. If the Bus Number field of CONFIG_ADDRESS is 0 the  
configuration cycle is targeting a PCI Bus 0 device. The Host-DMI Bridge entity within the  
(G)MCH is hardwired as Device 0 on PCI Bus 0. The Host-PCI Express Bridge entity within the  
(G)MCH is hardwired as Device 1 on PCI Bus 0. The 82915G/82915GV/82915GL/82910GL  
GMCH’s Device 2 contains the control registers for the Integrated Graphics Controller. The Intel  
ICH6 decodes the Type 0 access and generates a configuration access to the selected internal  
device.  
58  
Datasheet  
Register Description  
R
3.3.3  
Primary PCI and Downstream Configuration Mechanism  
If the Bus Number in the CONFIG_ADDRESS is non-zero, and falls outside the range claimed  
by the Host-PCI Express bridge (not between upper bound in device’s Subordinate Bus Number  
register and lower bound in device’s Secondary Bus Number register), the (G)MCH would  
generate a Type 1 DMI Configuration Cycle. This DMI configuration cycle will be sent over the  
DMI.  
If the cycle is forwarded to the Intel ICH6 via the DMI, the Intel ICH6 compares the non-zero  
Bus Number with the Secondary Bus Number and Subordinate Bus Number registers of its PCI-  
to-PCI bridges to determine if the configuration cycle is meant for ICH6 PCI Express ports one of  
the Intel ICH6’s devices, the DMI, or a downstream PCI bus.  
Figure 3-3. DMI Type 0 Configuration Address Translation  
Configuration Address  
11  
31  
30  
24 23  
16 15  
10  
Function  
8
7
2
1
0
Double  
Word  
Device  
Number  
Bus Number  
1
Reserved  
XX  
DMI Type 0 Configuration Address Extension  
OCF8h  
OCFBh  
OCFAh  
OCF9h  
11  
31  
30  
24 23  
16 15  
10  
Function  
8
7
2
1
0
Double  
Word  
Device  
Number  
Bus Number  
1
Reserved  
00  
DMI_Typ0_Config  
Figure 3-4. DMI Type 1 Configuration Address Translation  
Configuration Address  
16 15  
11  
31  
30  
24 23  
10  
Function  
8
7
2
1
0
Double  
Word  
Device  
Number  
Bus Number  
1
Reserved  
XX  
DMI Type 1 Configuration Address Extension  
OCFAh  
OCF9h  
OCF8h  
OCFBh  
11  
0
31  
30  
24 23  
16 15  
10  
Function  
8
7
2 1  
Double  
Word  
Device  
Number  
Bus Number  
1
Reserved  
00  
DMI_Typ1_Config  
Datasheet  
59  
Register Description  
R
3.3.4  
PCI Express* Enhanced Configuration Mechanism  
PCI Express extends the configuration space to 4096 bytes per device/function as compared to  
256 bytes allowed by PCI Specification, Revision 2.3. PCI Express configuration space is divided  
into a PCI 2.3 compatible region that consists of the first 256B of a logical device’s configuration  
space and a PCI Express extended region that consists of the remaining configuration space.  
The PCI compatible region can be accessed using either the mechanism defined in the previous  
section or using the enhanced PCI Express configuration access mechanism described in this  
section. The extended configuration registers may only be accessed using the enhanced PCI  
Express configuration access mechanism. To maintain compatibility with PCI configuration  
addressing mechanisms, system software must access the extended configuration space using  
32-bit operations (32-bit aligned) only. These 32-bit operations include byte enables allowing  
only appropriate bytes within the DWord to be accessed. Locked transactions to the PCI Express  
memory mapped configuration address space are not supported. All changes made using either  
access mechanism are equivalent. The enhanced PCI Express configuration access mechanism  
uses a flat memory-mapped address space to access device configuration registers. This address  
space is reported by the system firmware to the operating system. The PCIEXBAR register  
defines the base address for the 256-MB block of addresses below top of addressable memory  
(currently 4 GB) for the configuration space associated with all devices and functions that are  
potentially a part of the PCI Express root complex hierarchy. The PCI Express Configuration  
Transaction Header includes an additional 4 bits (Extended Register Address[3:0]) between the  
Function Number and Register Address fields to provide indexing into the 4 KB of configuration  
space allocated to each potential device. For PCI Compatible Configuration Requests, the  
Extended Register Address field must be all zeros.  
Figure 3-5. Memory Map to PCI Express* Device Configuration Space  
0xFFFFFFFh  
0xFFFFFh  
0xFFFh  
0xFFFFFh  
Bus 255  
Device 31  
Function 7  
PCI Express  
Extended  
Configuration  
Space  
0xFFFFh  
0x7FFFh  
0xFFFFh  
0x7FFFh  
0xFFh  
0x3Fh  
0x1FFFFFh  
PCI  
Compatible  
Config Space  
Bus 1  
Bus 0  
Function 1  
Function 0  
Device 1  
Device 0  
0xFFFFFh  
0h  
PCI  
Compatible  
Config Header  
Located By PCI  
Express Base  
Address  
MemMap_PCIExpress  
Just the same as with PCI devices, each device is selected based on decoded address information  
that is provided as a part of the address portion of Configuration Request packets. A PCI Express  
device will decode all address information fields (bus, device, function, and extended address  
numbers) to provide access to the correct register.  
60  
Datasheet  
Register Description  
R
To access this space (steps 1, 2, 3 are performed only once by BIOS)  
1. Use the PCI compatible configuration mechanism to enable the PCI Express enhanced  
configuration mechanism by writing 1 to bit 31 of the DEVEN register.  
2. Use the PCI compatible configuration mechanism to write an appropriate PCI Express base  
address into the PCIEXBAR register.  
3. Calculate the host address of the register you wish to set using (PCI Express base + (bus  
number * 1 MB) + (device number * 32 KB) + (function number * 4 KB) + (1 B * offset  
within the function) = host address).  
4. Use a memory write or memory read cycle to the calculated host address to write to or read  
from that register.  
2
31  
28 27  
Base  
20 19  
15 14  
12 11  
8
7
1
0
Register  
Number  
Device  
Function  
Bus  
Extended  
X
X
Config_Write  
PCI Express Configuration Writes  
Internally the host interface unit translates writes to PCI Express extended configuration space to  
configurations on the backbone. Writes to extended space are posted on the FSB, but non-posted  
on the PCI Express* x16 Graphics Interface or DMI pins (i.e., translated to configuration writes).  
See the PCI Express Specification for more information on both the PCI 2.3 compatible and PCI  
Express enhanced configuration mechanism and transaction rules.  
Datasheet  
61  
Register Description  
R
3.3.5  
Intel® 915x GMCH Configuration Cycle Flowchart  
Figure 3-6. Intel® 915x GMCH Configuration Cycle Flowchart  
DW I/O Write to  
CONFIG_ADDRES  
S with bit 31 = 1  
I/O Read/Write to  
CONFIG_DATA  
Yes  
Bus# = 0  
No  
GMCH Generates  
Type 1 Access to  
PCI Express  
Bus# > Sec Bus  
Bus# Sub Bus  
in GMCH Dev 1  
GMCH Claims if  
Function# = 0  
Yes  
Yes  
Device# = 0  
No  
No  
Bus# =  
Yes  
Secondary Bus in  
GMCH Dev 1  
Yes  
Yes  
Yes  
Device# = 1 &  
Dev # 1 Enabled  
GMCH Claims if  
Function# = 0  
No  
No  
GMCH Generates MISI  
Type 1Configuration  
Cycle  
Device# = 2 &  
Dev# 2  
Enabled  
GMCH Claims if  
Function# = 0  
No  
GMCH Generates  
Type 0 Accessto  
PCI Express  
Device# = 7&  
Dev# 7 Enabled  
Yes  
Device# = 0  
GMCH Claims if  
Function# = 0  
No  
No  
MCH allows cycle to  
go to DMI resulting in  
Master Abort  
GMCH Generates DMI  
Type 0 Configuration  
Cycle  
Config_Cyc_Flow_915  
62  
Datasheet  
Register Description  
R
3.4  
I/O Mapped Registers  
The (G)MCH contains two registers that reside in the processor I/O address space the  
Configuration Address (CONFIG_ADDRESS) Register and the Configuration Data  
(CONFIG_DATA) Register. The Configuration Address Register enables/disables the  
configuration space and determines what portion of configuration space is visible through the  
Configuration Data window.  
3.4.1  
CONFIG_ADDRESS—Configuration Address Register  
I/O Address:  
Default Value:  
Access:  
0CF8h Accessed as a DWord  
00000000h  
R/W  
Size:  
32 bits  
CONFIG_ADDRESS is a 32-bit register that can be accessed only as a DW. A Byte or Word  
reference will "pass through" the Configuration Address Register and DMI onto the Primary PCI  
bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus Number, Device  
Number, Function Number, and Register Number for which a subsequent configuration access is  
intended.  
Bit  
Access  
&
Default  
Description  
31  
R/W  
0b  
Configuration Enable (CFGE):  
1 = Enable  
0 = Disable  
30:24  
23:16  
Reserved  
R/W  
00h  
Bus Number: If the Bus Number is programmed to 00h the target of the  
Configuration Cycle is a PCI Bus #0 agent. If this is the case and the (G)MCH is  
not the target (i.e., the device number is 3 and not equal to 7), then a DMI Type  
0 Configuration Cycle is generated.  
If the Bus Number is non-zero, and does not fall within the ranges enumerated by  
device 1’s Secondary Bus Number or Subordinate Bus Number Register, then a  
DMI Type 1 Configuration Cycle is generated.  
If the Bus Number is non-zero and matches the value programmed into the  
Secondary Bus Number Register of device 1, a Type 0 PCI configuration cycle will  
be generated on PCI Express Graphics.  
If the Bus Number is non-zero, greater than the value in the Secondary Bus  
Number register of device 1 and less than or equal to the value programmed into  
the Subordinate Bus Number Register of device 1 a Type 1 PCI configuration  
cycle will be generated on PCI Express Graphics.  
This field is mapped to byte 8 [7:0] of the request header format during PCI  
Express Configuration cycles and A[23:16] during the DMI Type 1 configuration  
cycles.  
Datasheet  
63  
Register Description  
R
Bit  
Access  
&
Default  
Description  
15:11  
R/W  
00h  
Device Number: This field selects one agent on the PCI bus selected by the Bus  
Number. When the Bus Number field is “00”, the (G)MCH decodes the Device  
Number field. The (G)MCH is always Device Number 0 for the Host bridge entity,  
Device Number 1 for the Host-PCI Express entity. Therefore, when the  
Bus Number =0 and the Device Number equals 0, 1, or 2 the internal (G)MCH  
devices are selected.  
This field is mapped to byte 6 [7:3] of the request header format during PCI  
Express Configuration cycles and A [15:11] during the DMI configuration cycles.  
10:8  
R/W  
000b  
Function Number: This field allows the configuration registers of a particular  
function in a multi-function device to be accessed. The (G)MCH ignores  
configuration cycles to its internal devices if the function number is not equal to 0  
or 1.  
This field is mapped to byte 6 [2:0] of the request header format during PCI  
Express Configuration cycles and A[10:8] during the DMI configuration cycles.  
7:2  
1:0  
R/W  
00h  
Register Number: This field selects one register within a particular Bus, Device,  
and Function as specified by the other fields in the Configuration Address  
Register.  
This field is mapped to byte 7 [7:2] of the request header format during PCI  
Express Configuration cycles and A[7:2] during the DMI Configuration cycles.  
Reserved  
3.4.2  
CONFIG_DATA—Configuration Data Register  
I/O Address:  
Default Value:  
Access:  
0CFCh  
00000000h  
R/W  
Size:  
32 bits  
CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of  
configuration space that is referenced by CONFIG_DATA is determined by the contents of  
CONFIG_ADDRESS.  
Bit  
Access &  
Default  
Description  
31:0  
R/W  
0000 0000h  
Configuration Data Window (CDW): If bit 31 of CONFIG_ADDRESS is 1, any  
I/O access to the CONFIG_DATA register will produce a configuration  
transaction using the contents of CONFIG_ADDRESS to determine the bus,  
device, function, and offset of the register to be accessed.  
§
64  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4 Host Bridge/DRAM Controller  
Registers (D0:F0)  
The DRAM Controller registers are in Device 0 (D0), Function 0 (F0).  
Warning: Address locations that are not listed are considered Reserved registers locations. Reads to  
Reserved registers may return non-zero values. Writes to reserved locations may cause system  
failures.  
All registers that are defined in the PCI 2.3 specification, but are not necessary or implemented in  
this component are not included in this document. The reserved/unimplemented space in the PCI  
configuration header space is not documented as such in this summary.  
Table 4-1. Device 0 Function 0 Register Address Map Summary  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Vendor Identification  
Access  
00–01h  
02–03h  
04–05h  
06–07h  
VID  
DID  
8086h  
2580h  
0006h  
0090h  
RO  
RO  
Device Identification  
PCI Command  
PCI Status  
PCICMD  
PCISTS  
RO, R/W  
RO,  
R/W/C  
08h  
RID  
Revision Identification  
See register  
description  
RO  
09–0Bh  
0Ch  
CC  
Class Code  
060000h  
RO  
Reserved  
0Dh  
MLT  
Master Latency Timer  
Header Type  
00h  
RO  
0Eh  
HDR  
00h  
RO  
0F–2Bh  
2C–2Dh  
2E–2Fh  
30–33h  
34h  
Reserved  
SVID  
SID  
Subsystem Vendor Identification  
Subsystem Identification  
Reserved  
0000h  
0000h  
R/W/O  
R/W/O  
CAPPTR  
Capabilities Pointer  
Reserved  
EOh  
RO  
35–3Fh  
40–43h  
44–47h  
EPBAR  
MCHBAR  
Egress Port Base Address  
00000000h  
00000000h  
RO  
GMCH Memory Mapped Register Range  
Base Address  
R/W  
48–4Bh  
4C–4Fh  
PCIEXBAR  
DMIBAR  
PCI Express* Register Range Base Address  
E0000000h  
00000000h  
R/W  
R/W  
Root Complex Register Range Base  
Address  
Datasheet  
65  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
52–53h  
GGC  
GMCH Graphics Control Register (82915G  
GMCH only)  
0030h  
R/W/L  
54–57h  
58–8Fh  
90h  
DEVEN  
Device Enable  
00000019h  
R/W  
Reserved  
PAM0  
PAM1  
PAM2  
PAM3  
PAM4  
PAM5  
PAM6  
LAC  
Programmable Attribute Map 0  
Programmable Attribute Map 1  
Programmable Attribute Map 2  
Programmable Attribute Map 3  
Programmable Attribute Map 4  
Programmable Attribute Map 5  
Programmable Attribute Map 6  
Legacy Access Control  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98–9Bh  
9Ch  
Reserved  
TOLUD  
SMRAM  
Top of Low Usable DRAM  
System Management RAM Control  
08h  
00h  
R/W  
9Dh  
RO,  
R/W/L  
9Eh  
ESMRAMC  
Extended System Management RAM Control  
00h  
RO,  
R/W/L  
9F–C7h  
C8–C9h  
Reserved  
ERRSTS  
Error Status  
0000h  
RO,  
R/W/L  
CA–CBh  
CC–DBh  
DC–DFh  
E0–E8h  
ERRCMD  
Error Command  
Reserved  
0000h  
R/W  
SKPD  
CAPID0  
Scratchpad Data  
Capability Identifier  
00000000h  
R/W  
RO  
0000000000  
01090009h  
E9–FFh  
100h  
C0DRB0  
C0DRB1  
C0DRB2  
C0DRB3  
Reserved  
00h  
00h  
00h  
00h  
Channel A DRAM Rank Boundary Address 0  
Channel A DRAM Rank Boundary Address 1  
Channel A DRAM Rank Boundary Address 2  
Channel A DRAM Rank Boundary Address 3  
Reserved  
R/W  
R/W  
R/W  
R/W  
101h  
102h  
103h  
104–107h  
108h  
C0DRA0  
C0DRA2  
Channel A DRAM Rank 0,1 Attribute  
Channel A DRAM Rank 2,3 Attribute  
Reserved  
00h  
00h  
R/W  
R/W  
109h  
10A–10Bh  
10Ch  
C0DCLKDIS  
Channel A DRAM Clock Disable  
Reserved  
00h  
R/W  
10Dh  
66  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
10E–10F  
110–113h  
114–117h  
118–11Fh  
120–123h  
124–17Fh  
180h  
C0BNKARC  
Channel A DRAM Bank Architecture  
Reserved  
0000h  
R/W  
900122h  
C0DRT1  
Channel A DRAM Timing Register  
Reserved  
R/W  
C0DRC0  
Channel A DRAM Controller Mode 0  
Reserved  
00000000h  
R/W, RO  
C1DRB0  
C1DRB1  
C1DRB2  
C1DRB3  
Channel B DRAM Rank Boundary Address 0  
Channel B DRAM Rank Boundary Address 1  
Channel B DRAM Rank Boundary Address 2  
Channel B DRAM Rank Boundary Address 3  
Reserved  
00h  
R/W  
R/W  
R/W  
R/W  
181h  
00h  
182h  
00h  
183h  
00h  
184–187h  
188h  
C1DRA0  
C1DRA2  
Channel B DRAM Rank 0,1 Attribute  
Channel B DRAM Rank 2,3 Attribute  
Reserved  
00h  
R/W  
R/W  
189h  
00h  
18A–18Bh  
18Ch  
C1DCLKDIS  
Channel B DRAM Clock Disable  
Reserved  
00h  
R/W  
18Dh  
18E–18Fh  
190–193h  
194h  
C1BNKARC  
Channel B Bank Architecture  
Reserved  
0000h  
R/W  
C1DRT1  
Channel B DRAM Timing Register 1  
Reserved  
900122h  
R/W, RO  
195–19Fh  
1A0–1A3h  
1A4–F0Fh  
F10–F13h  
F14h  
C1DRC0  
Channel B DRAM Controller Mode 0  
Reserved  
00000000h  
R/W, RO  
PMCFG  
PMSTS  
Power Management Configuration  
Power Management Status  
00000000h  
00000000h  
R/W  
R/W/C/S  
Datasheet  
67  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1  
Host Bridge/DRAM Controller PCI Register Details  
(D0:F0)  
4.1.1  
VID—Vendor Identification (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
00h  
8086h  
RO  
Size:  
16 bits  
This register combined with the Device Identification register uniquely identifies any PCI device.  
Bit  
Access &  
Default  
Description  
15:0  
RO  
Vendor Identification Number (VID): PCI standard identification for Intel.  
8086h  
4.1.2  
DID—Device Identification (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
02h  
2580h  
RO  
Size:  
16 bits  
This register combined with the Vendor Identification register uniquely identifies any PCI device.  
Bit  
Access &  
Default  
Description  
15:0  
RO  
Device Identification Number (DID): This field is an identifier assigned to  
2580h  
the (G)MCH core/primary PCI device.  
68  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.3  
PCICMD—PCI Command (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
04h  
0006h  
RO, R/W  
16 bits  
Size:  
Since (G)MCH Device 0 does not physically reside on Primary PCI bus, many of the bits are not  
implemented.  
Bit  
Access &  
Default  
Description  
15:10  
9
Reserved  
RO  
0b  
Fast Back-to-Back Enable (FB2B). This bit controls whether or not the master  
can do fast back-to-back write. Since device 0 is strictly a target this bit is not  
implemented and is hardwired to 0.  
8
R/W  
0b  
SERR Enable (SERRE). This bit is a global enable bit for Device 0 SERR  
messaging. The (G)MCH does not have a SERR signal. The (G)MCH  
communicates the SERR condition by sending an SERR message over DMI to  
the ICH6.  
1 = Enable. The (G)MCH is enabled to generate SERR messages over DMI for  
specific Device 0 error conditions that are individually enabled in the  
ERRCMD register. The error status is reported in the ERRSTS, and PCISTS  
registers. If SERRE is clear, then the SERR message is not generated by the  
(G)MCH for Device 0.  
0 = Disable  
Note: That this bit only controls SERR messaging for the Device 0. Device 1 has  
its own SERRE bits to control error reporting for error conditions occurring in that  
device. The control bits are used in a logical OR manner to enable the SERR  
DMI message mechanism.  
7
6
5
4
3
2
1
0
RO  
0b  
Address/Data Stepping Enable (ADSTEP). Hardwired to 0.  
RO  
0b  
Parity Error Enable (PERRE). PERR# is not implemented by the (G)MCH and  
this bit is hardwired to 0.  
RO  
0b  
VGA Palette Snoop Enable (VGASNOOP). Hardwired to a 0.  
RO  
0b  
Memory Write and Invalidate Enable (MWIE). The (G)MCH will never issue  
memory write and invalidate commands. This bit is therefore hardwired to 0.  
RO  
0b  
Reserved  
RO  
1b  
Bus Master Enable (BME). The (G)MCH is always enabled as a master. This bit  
is hardwired to a "1".  
RO  
1b  
Memory Access Enable (MAE). The (G)MCH always allows access to main  
memory. This bit is not implemented and is hardwired to 1.  
RO  
0b  
I/O Access Enable (IOAE). Hardwired to a 0.  
Datasheet  
69  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.4  
PCISTS—PCI Status (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
06h  
0090h  
RO, R/W/C  
16 bits  
Size:  
This status register reports the occurrence of error events on Device 0’s PCI interface. Since the  
(G)MCH Device 0 does not physically reside on Primary PCI, many of the bits are not  
implemented.  
Bit  
15  
14  
Access &  
Default  
Description  
RO  
0b  
Detected Parity Error (DPE): Hardwired to a 0.  
R/W/C  
0b  
Signaled System Error (SSE): Software clears this bit by writing a 1 to it.  
1 = The (G)MCH Device 0 generated an SERR message over DMI for any  
enabled Device 0 error condition. Device 0 error conditions are enabled in the  
PCICMD, and ERRCMD registers. Device 0 error flags are read/reset from  
the PCISTS, or ERRSTS registers.  
13  
12  
R/WC  
0b  
Received Master Abort Status (RMAS): Software clears this bit by writing a 1 to  
it.  
1 = (G)MCH generated a DMI request that receives an Unsupported Request  
completion packet.  
R/WC  
0b  
Received Target Abort Status (RTAS): Software clears this bit by writing a 1 to  
it.  
1 = (G)MCH generated a DMI request that receives a Completer Abort  
completion packet.  
11  
RO  
0b  
Signaled Target Abort Status (STAS): The (G)MCH will not generate a Target  
Abort DMI completion packet or Special Cycle. This bit is not implemented in the  
(G)MCH and is hardwired to a 0.  
10:9  
RO  
00b  
DEVSEL Timing (DEVT): These bits are hardwired to "00". Device 0 does not  
physically connect to Primary PCI. These bits are set to "00" (fast decode) so  
that optimum DEVSEL timing for Primary PCI is not limited by the (G)MCH.  
8
7
RO  
0b  
Master Data Parity Error Detected (DPD): PERR signaling and messaging are  
not implemented by the (G)MCH; therefore, this bit is hardwired to 0.  
RO  
1b  
Fast Back-to-Back (FB2B): Hardwired to 1. Device 0 does not physically  
connect to Primary PCI. This bit is set to 1 (indicating fast back-to-back  
capability) so that the optimum setting for Primary PCI is not limited by the  
(G)MCH.  
6
5
Reserved  
RO  
0b  
66 MHz Capable: Does not apply to PCI Express*. Hardwired to 0.  
4
RO  
1b  
Capability List (CLIST): This bit is hardwired to 1 to indicate to the configuration  
software that this device/function implements a list of new capabilities. A list of  
new capabilities is accessed via register CAPPTR at configuration address offset  
34h. Register CAPPTR contains an offset pointing to the start address within  
configuration space of this device where the Capability standard register resides.  
3:0  
Reserved  
70  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.5  
RID—Revision Identification (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
08h  
See bit description  
RO  
Size:  
8 bits  
This register contains the revision number of the (G)MCH Device 0.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
00h  
Revision Identification Number (RID): This field indicates the number of times  
that this device in this component has been “stepped” through the manufacturing  
process. Refer to the Intel® 82915G/82915P/82915GV/82910GL Express Chipset  
Specification Update for the value of the Revision ID Register.  
4.1.6  
CC—Class Code (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
09h  
060000h  
RO  
Size:  
24 bits  
This register identifies the basic function of the device, a more specific sub-class, and a register-  
specific programming interface.  
Bit  
Access &  
Default  
Description  
23:16  
RO  
Base Class Code (BCC): This is an 8-bit value that indicates the base class  
06h  
code for the (G)MCH.  
06h = Bridge device.  
15:8  
7:0  
RO  
00h  
Sub-Class Code (SUBCC): This is an 8-bit value that indicates the category of  
Bridge into which the (G)MCH falls.  
00h = Host Bridge.  
RO  
00h  
Programming Interface (PI): This is an 8-bit value that indicates the  
programming interface of this device. This value does not specify a particular  
register set layout and provides no practical use for this device.  
Datasheet  
71  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.7  
MLT—Master Latency Timer (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
0Dh  
00h  
RO  
8 bits  
Size:  
Device 0 in the (G)MCH is not a PCI master. Therefore, this register is not implemented.  
Bit  
Access &  
Default  
Description  
7:0  
Reserved  
4.1.8  
HDR—Header Type (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
0Eh  
00h  
RO  
8 bits  
Size:  
This register identifies the header layout of the configuration space. No physical register exists at  
this location.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
PCI Header (HDR): This field always returns 0 to indicate that the (G)MCH is a  
00h  
single function device with standard header layout.  
4.1.9  
SVID—Subsystem Vendor Identification (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
2Ch  
0000h  
R/WO  
16 bits  
Size:  
This value is used to identify the vendor of the subsystem.  
Bit  
Access &  
Default  
Description  
15:0  
R/WO  
0000h  
Subsystem Vendor ID (SUBVID): This field should be programmed during boot-  
up to indicate the vendor of the system board. After it has been written once, it  
becomes read only.  
72  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.10  
SID—Subsystem Identification (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
2Eh  
0000h  
R/W/O  
16 bits  
Size:  
This value is used to identify a particular subsystem.  
Bit  
Access &  
Default  
Description  
15:0  
R/WO  
0000h  
Subsystem ID (SUBID): This field should be programmed during BIOS  
initialization. After it has been written once, it becomes read only.  
4.1.11  
CAPPTR—Capabilities Pointer (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
34h  
E0h  
RO  
8 bits  
Size:  
The CAPPTR provides the offset that is the pointer to the location of the first device capability in  
the capability list.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Pointer to the offset of the first capability ID register block: In this case the  
E0h  
first capability is the product-specific Capability Identifier (CAPID0).  
Datasheet  
73  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.12  
EPBAR—Egress Port Base Address (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
40h  
00000000h  
RO  
Size:  
32 bits  
This is the base address for the Egress Port MMIO configuration space. There is no physical  
memory within this 4-KB window that can be addressed. The 4 KB reserved by this register does  
not alias to any PCI 2.3 compliant memory-mapped space.  
On reset, this register is disabled and must be enabled by writing a 1 to EPBAREN[Dev 0, offset  
54h, bit 27]  
Bit  
Access &  
Default  
Description  
31:12  
R/W  
Egress Port MMIO Base Address: This field corresponds to bits 31 to 12 of the  
00000h  
base address Egress Port MMIO configuration space.  
BIOS will program this register resulting in a base address for a 4-KB block of  
contiguous memory address space. This register ensures that a naturally aligned  
4-KB space is allocated within total addressable memory space of 4 GB.  
System software uses this base address to program the (G)MCH MMIO register  
set.  
11:0  
Reserved  
74  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.13  
MCHBAR—(G)MCH Memory Mapped Register Range Base  
Address (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
44h  
00000000h  
R/W  
Size:  
32 bits  
This is the base address for the (G)MCH memory-mapped configuration space. There is no  
physical memory within this 16-KB window that can be addressed. The 16 KB reserved by this  
register does not alias to any PCI 2.3 compliant memory mapped space.  
On reset, this register is disabled and must be enabled by writing a 1 to MCHBAREN [Dev 0,  
offset 54h, bit 28]  
Bit  
Access &  
Default  
Description  
31:14  
R/W  
(G)MCH Memory Mapped Base Address: This field corresponds to bits 31:14 of  
00000h  
the base address (G)MCH memory-mapped configuration space.  
BIOS will program this register resulting in a base address for a 16-KB block of  
contiguous memory address space. This register ensures that a naturally aligned  
16-KB space is allocated within total addressable memory space of 4 GB.  
System software uses this base address to program the (G)MCH Memory-  
mapped register set.  
13:0  
Reserved  
Datasheet  
75  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.14  
PCIEXBAR—PCI Express* Register Range Base Address  
(D0:F0) (Intel® 82915G/82915P/82915PL Only)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
48h  
E0000000h  
R/W  
Size:  
32 bits  
This is the base address for the PCI Express configuration space. This window of addresses  
contains the 4 KB of configuration space for each PCI Express device that can potentially be part  
of the PCI Express hierarchy associated with the (G)MCH. There is not actual physical memory  
within this 256-MB window that can be addressed. Each PCI Express hierarchies require a PCI  
Express BASE register. The (G)MCH supports one PCI Express hierarchy.  
The 256 MB reserved by this register does not alias to any PCI 2.3 compliant memory-mapped  
space. For example, MCHBAR reserves a 16-KB space and reserves a 4-KB space both outside of  
PCIEXBAR space. They cannot be overlaid on the space reserved by PCIEXBAR for devices 0.  
On reset, this register is disabled and must be enabled by writing a 1 to PCIEXBAREN [Dev 0,  
offset 54h, bit 31]  
If the PCI Express Base Address [bits 31:28] were set to Fh, an overlap with the High BIOS area,  
APIC ranges would result. Software must guarantee that these ranges do not overlap. The PCI  
Express Base Address cannot be less than the maximum address written to the Top of physical  
memory register (TOLUD). If a system is populated with more than 3.5 GB, either the PCI  
Express Enhanced Access mechanism must be disabled or the value in TOLUD must be reduced  
to report that only 3.5 GB are present in the system to allow a value of Eh for the PCI Express  
Base Address (assuming that all PCI 2.3 compatible configuration space fits above 3.75 GB).  
Bit  
Access &  
Default  
Description  
31:28  
R/W  
Eh  
PCI Express* Base Address: This field corresponds to bits 31 to 28 of the  
base address for PCI Express enhanced configuration space.  
BIOS will program this register resulting in a base address for a 256-MB block  
of contiguous memory address space. Having control of those particular 4 bits  
insures that this base address will be on a 256-MB boundary, above the lowest  
256 MB and still within total addressable memory space, currently 4 GB.  
The address used to access the PCI Express configuration space for a specific  
device can be determined as follows:  
PCI Express Base Address + Bus Number * 1 MB + Device Number * 32 KB +  
Function Number * 4 KB  
The address used to access the PCI Express configuration space for Device 1  
in this component would be PCI Express Base Address + 0 * 1 MB + 1 * 32 KB  
+ 0 * 4 KB = PCI Express Base Address + 32 KB. Remember that this  
address is the beginning of the 4-KB space that contains both the PCI  
compatible configuration space and the PCI Express extended configuration  
space.  
27:0  
Reserved  
76  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.15  
DMIBAR—Root Complex Register Range Base Address  
(D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
4Ch  
00000000h  
R/W  
Size:  
32 bits  
This is the base address for the Root Complex configuration space. This window of addresses  
contains the Root Complex Register set for the PCI Express hierarchy associated with the  
(G)MCH. There is no physical memory within this 4-KB window that can be addressed. The  
4 KB that is reserved by this register does not alias to any PCI 2.3 compliant memory mapped  
space.  
On reset, this register is disabled and must be enabled by writing a 1 to the DMIBAREN [Dev 0,  
offset 54h, bit 29].  
|
Bit  
Access &  
Default  
Description  
31:12  
R/W  
DMI Base Address: This field corresponds to bits 31 to 12 of the base address  
0000 0h  
DMI configuration space.  
BIOS will program this register resulting in a base address for a 4-KB block of  
contiguous memory address space. This register ensures that a naturally  
aligned 4-KB space is allocated within total addressable memory space of  
4 GB.  
System software uses this base address to program the DMI register set.  
Reserved  
11:0  
Datasheet  
77  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.16  
GGC—GMCH Graphics Control Register (D0:F0)  
(82915G/82915GV/82915GL/82910GL GMCH only)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
52h  
0030h  
R/W/L  
16 bits  
Size:  
Bit  
Access &  
Default  
Descriptions  
15:7  
6:4  
Reserved  
R/W/L  
011b  
Graphics Mode Select (GMS): This field is used to select the amount of main  
memory that is pre-allocated to support the Internal Graphics device in VGA  
(non-linear) and Native (linear) modes. The BIOS ensures that memory is pre-  
allocated only when Internal graphics is enabled. Device 2 (IGD) does not claim  
VGA cycles (memory and I/O), and the Sub-Class Code field within Device 2,  
Function 0 Class Code register is 80h.  
000 = No memory pre-allocated  
001 = DVMT (UMA) mode, 1 MB of memory pre-allocated for frame buffer.  
010 = Reserved.  
011 = DVMT (UMA) mode, 8 MB of memory pre-allocated for frame buffer.  
100–111 = Reserved.  
NOTES:  
1. This register is locked and becomes Read Only when the D_LCK bit in the  
SMRAM register is set.  
2. If IGD is disabled, this field should be set to 000.  
3:2  
1
Reserved  
R/W  
0b  
IGD VGA Disable (IVD):  
0 = Enable. Device 2 (IGD) claims VGA memory and I/O cycles, the Sub-Class  
Code within Device 2 Class Code register is 00h.  
1 = Disable. Device 2 (IGD) does not claim VGA cycles (Memory and I/O), and  
the Sub-Class Code field within Device 2, Function 0 Class Code register is  
80h.  
0
Reserved  
78  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.17  
DEVEN—Device Enable (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
54h  
00000019h  
R/W  
Size:  
32 bits  
This register allows for enabling/disabling of PCI devices and functions that are within the  
(G)MCH.  
Bit  
Access &  
Default  
Description  
31  
R/W  
0b  
82915G/82915P/82915PL (G)MCH:  
PCIEXBAR Enable (PCIEXBAREN):  
0 = The PCIEXBAR register is disabled. Memory read and write transactions  
proceed as if there were no PCIEXBAR register. PCIEXBAR bits 31:28 are  
R/W with no functionality behind them.  
1 = The PCIEXBAR register is enabled. Memory read and write transactions  
whose address bits 31:28 match PCIEXBAR 31:28 will be translated to  
configuration reads and writes within the (G)MCH. These translated cycles  
are routed as shown in the table above.  
82915GV/82915GL/82910GL GMCH:  
Reserved.  
30  
29  
Reserved  
R/W  
0b  
DMIBAR Enable (DMIBAREN):  
0 = DMIBAR is disabled and does not claim any memory.  
1 = DMIBAR memory mapped accesses are claimed and decoded appropriately.  
MCHBAR Enable (MCHBAREN):  
28  
R/W  
0b  
0 = MCHBAR is disabled and does not claim any memory.  
1 = MCHBAR memory mapped accesses are claimed and decoded  
appropriately.  
27  
R/W  
0b  
EPBAR Enable (EPBAREN):  
0 = EPBAR is disabled and does not claim any memory.  
1 = EPBAR memory mapped accesses are claimed and decoded appropriately.  
Reserved  
26:5  
Datasheet  
79  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
Bit  
Access &  
Default  
Description  
4
R/W  
1b  
82915G/82915GV/82915GL/82910GL GMCH:  
Internal Graphics Engine Function 1 (D2F1EN):  
0 = Bus 0 Device 2 Function 1 is disabled and hidden  
1 = Bus 0 Device 2 Function 1 is enabled and visible  
Note: Setting this bit to enabled when bit 3 is 0 has no meaning.  
82915P/82915PL MCH:  
Reserved.  
3
R/W  
1b  
82915G/82915GV/82915GL/82910GL GMCH:  
Internal Graphics Engine Function 0 (D2F0EN):  
0 = Bus 0 Device 2 Function 0 is disabled and hidden  
1 = Bus 0 Device 2 Function 0 is enabled and visible  
82915P/82915PL MCH:  
Reserved.  
2
1
Reserved  
R/W  
1b  
82915G/82915P/82915PL (G)MCH:  
PCI Express* Port (D1EN):  
Strap  
dependent  
0 = Bus 0 Device 1 Function 0 is disabled and hidden. This also gates PCI  
Express internal clock (lgclk) and asserts PCI Express internal reset (lgrstb).  
1 = Bus 0 Device 1 Function 0 is enabled and visible.  
The SDVO Presence hardware strap determines default value. Device 1 is  
disabled on Reset when the SDVO Presence strap (SDVO_CTLRDATA signal) is  
sampled high, and is enabled otherwise.  
82915GV/82915GL/82910GL GMCH:  
Reserved.  
0
RO  
1b  
Host Bridge: Bus 0 Device 0 Function 0 can not be disabled and is therefore  
hardwired to 1.  
80  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.18  
PAM0—Programmable Attribute Map 0 (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
90h  
00h  
R/W  
Size:  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS area from 0F0000h–  
0FFFFFh  
The (G)MCH allows programmable memory attributes on 13 Legacy memory segments of  
various sizes in the 768-KB to 1-MB address range. Seven Programmable Attribute Map (PAM)  
Registers are used to support these features. Cache ability of these areas is controlled via the  
MTRR registers in the processor. Two bits are used to specify memory attributes for each  
memory segment. These bits apply to both host accesses and PCI initiator accesses to the PAM  
areas. These attributes are:  
RE (Read Enable). When RE = 1, the processor read accesses to the corresponding memory  
segment are claimed by the (G)MCH and directed to main memory. Conversely, when  
RE = 0, the host read accesses are directed to Primary PCI.  
WE (Write Enable). When WE = 1, the host write accesses to the corresponding memory  
segment are claimed by the (G)MCH and directed to main memory. Conversely, when  
WE = 0, the host write accesses are directed to Primary PCI.  
The RE and WE attributes permit a memory segment to be Read Only, Write Only, Read/Write,  
or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is Read  
Only.  
Each PAM Register controls two regions, typically 16 KB in size.  
Bit  
Access &  
Default  
Description  
7:6  
5:4  
Reserved  
R/W  
00b  
0F0000-0FFFFF Attribute (HIENABLE): This field controls the steering of read and  
write cycles that addresses the BIOS area from 0F0000h to 0FFFFFh.  
00 = DRAM Disabled: All accesses are directed to the DMI.  
01 = Read Only: All reads are sent to DRAM. All writes are forwarded to the DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
3:0  
Reserved  
Warning: The (G)MCH may hang if a PCI Express graphics attach or DMI originated access to Read  
Disabled or Write Disabled PAM segments occurs (due to a possible IWB to non-DRAM). For  
these reasons the following critical restriction is placed on the programming of the PAM regions:  
At the time that a DMI or PCI Express graphics attach accesses to the PAM region may occur, the  
targeted PAM segment must be programmed to be both readable and writeable.  
Datasheet  
81  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.19  
PAM1—Programmable Attribute Map 1 (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
91h  
00h  
R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0C0000h–  
0C7FFFh.  
Bit  
Access &  
Default  
Description  
7:6  
5:4  
Reserved  
R/W  
00b  
0C4000-0C7FFF Attribute (HIENABLE): This field controls the steering of read and  
write cycles that address the BIOS area from 0C4000h to 0C7FFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
R/W  
00b  
0C0000-0C3FFF Attribute (LOENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0C0000h to 0C3FFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
82  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.20  
PAM2—Programmable Attribute Map 2 (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
92h  
00h  
R/W  
Size:  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0C8000h–  
0CFFFFh.  
Bit  
Access &  
Default  
Description  
7:6  
5:4  
Reserved  
R/W  
00b  
0CC000h–0CFFFFh Attribute (HIENABLE):  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
R/W  
00b  
0C8000h–0CBFFFh Attribute (LOENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0C8000h to 0CBFFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Datasheet  
83  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.21  
PAM3—Programmable Attribute Map 3 (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
93h  
00h  
R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0D0000h–  
0D7FFFh.  
Bit  
Access &  
Default  
Description  
7:6  
5:4  
Reserved  
R/W  
00b  
0D4000h–0D7FFFh Attribute (HIENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0D4000h to 0D7FFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
R/W  
00b  
0D0000h–0D3FFFh Attribute (LOENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0D0000h to 0D3FFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
84  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.22  
PAM4—Programmable Attribute Map 4 (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
94h  
00h  
R/W  
Size:  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0D8000h-  
0DFFFFh.  
Bit  
Access &  
Default  
Description  
7:6  
5:4  
Reserved  
R/W  
00b  
0DC000h–0DFFFFh Attribute (HIENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0DC000h to 0DFFFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
R/W  
00b  
0D8000h–0DBFFFh Attribute (LOENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0D8000h to 0DBFFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Datasheet  
85  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.23  
PAM5—Programmable Attribute Map 5 (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
95h  
00h  
R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0E0000h-  
0E7FFFh.  
Bit  
Access &  
Default  
Description  
7:6  
5:4  
Reserved  
R/W  
00b  
0E4000h–0E7FFFh Attribute (HIENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0E4000h to 0E7FFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
R/W  
00b  
0E0000h–0E3FFFh Attribute (LOENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0E0000h to 0E3FFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
86  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.24  
PAM6—Programmable Attribute Map 6 (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
96h  
00h  
R/W  
Size:  
8 bits  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0E8000h–  
0EFFFFh.  
Bit  
Access &  
Default  
Description  
7:6  
5:4  
Reserved  
R/W  
00b  
0EC000h–0EFFFFh Attribute (HIENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0E4000h to 0E7FFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
R/W  
00b  
0E8000h–0EBFFFh Attribute (LOENABLE): This field controls the steering of read  
and write cycles that address the BIOS area from 0E0000h to 0E3FFFh.  
00 = DRAM Disabled: Accesses are directed to the DMI.  
01 = Read Only: All reads are serviced by DRAM. All writes are forwarded to the  
DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Datasheet  
87  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.25  
LAC—Legacy Access Control (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
97h  
00h  
R/W  
8 bits  
Size:  
This 8-bit register controls a fixed DRAM hole from 15–16 MB.  
Bit  
Access &  
Default  
Description  
7
R/W  
0b  
Hole Enable (HEN): This field enables a memory hole in DRAM space. The DRAM  
that lies "behind" this space is not remapped.  
0 = No memory hole.  
1 = Memory hole from 15 MB to 16 MB.  
Reserved  
6:1  
0
R/W  
0b  
MDA Present (MDAP): This bit works with the VGA Enable bits in the BCTRL  
register of Device 1 to control the routing of processor initiated transactions targeting  
MDA compatible I/O and memory address ranges. This bit should not be set if  
device 1's VGA Enable bit is not set.  
If device 1's VGA enable bit is not set, then accesses to I/O address range x3BCh–  
x3BFh are forwarded to the DMI.  
If the VGA enable bit is set and MDA is not present, then accesses to I/O address  
range x3BCh–x3BFh are forwarded to PCI Express* if the address is within the  
corresponding IOBASE and IOLIMIT, otherwise they are forwarded to the DMI.  
MDA resources are defined as the following:  
Memory:  
I/O:  
0B0000h – 0B7FFFh  
3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh,  
(Including ISA address aliases, A [15:10] are not used in decode)  
Any I/O reference that includes the I/O locations listed above, or their aliases, will be  
forwarded to the DMI even if the reference includes I/O locations not listed above.  
The following table shows the behavior for all combinations of MDA and VGA:  
VGAEN  
MDAP  
Description  
0
0
All References to MDA and VGA space are routed to  
the DMI  
0
1
1
0
Illegal combination  
All VGA and MDA references are routed to PCI  
Express Graphics Attach.  
1
1
All VGA references are routed to PCI Express  
Graphics Attach. MDA references are routed to the  
DMI  
88  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.26  
TOLUD—Top of Low Usable DRAM (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
9Ch  
08h  
R/W  
Size:  
8 bits  
This 8-bit register defines the Top of Low Usable DRAM. TSEG and Graphics Stolen Memory  
(82915G only) are within the DRAM space defined. From the top, the (G)MCH optionally claims  
1 to 32 MB of DRAM for internal graphics if enabled (82915G/82915GV/82915GL/82910GL  
GMCH only), and 1, 2, or 8 MB of DRAM for TSEG if enabled. These bits are LT Lockable.  
Bit  
Access &  
Default  
Description  
7:3  
R/W  
01h  
Top of Low Usable DRAM (TOLUD): This register contains bits 31:27 of an  
address one byte above the maximum DRAM memory that is usable by the  
operating system. Address bits 31:27 programmed to 01h implies a minimum  
memory size of 128 MBs.  
Configuration software must set this value to the smaller of the following 2 choices:  
Maximum amount memory in the system plus one byte or the minimum address  
allocated for PCI memory.  
Address bits 26:0 are assumed to be 000_0000h for the purposes of address  
comparison. The host interface positively decodes an address towards DRAM if the  
incoming address is less than the value programmed in this register.  
If this register is set to 0000 0b, it implies 128 MBs of system memory.  
Note: The Top of Low Usable DRAM is the lowest address above both Graphics  
Stolen memory (82915G/82915GV/82915GL/82910GL only) and TSEG. The host  
interface determines the base of Graphics Stolen Memory by subtracting the  
Graphics Stolen Memory Size from TOLUD and further decrements by 1 MB to  
determine base of TSEG.  
2:0  
Reserved  
Programming Example (82915G/82915GV/82915GL/82910GL GMCH only):  
C1DRB7 is set to 4 GB  
TSEG is enabled and TSEG size is set to 1 MB  
Internal Graphics is enabled and Graphics Mode Select is set to 32 MB  
BIOS knows the OS requires 1G of PCI space.  
BIOS also knows the range from FEC0_0000h to FFFF_FFFFh is not usable by the system. This  
20-MB range at the very top of addressable memory space is lost to APIC.  
According to the above equation, TOLUD is originally calculated to: 4 GB = 1_0000_0000h  
The system memory requirements are:  
4 GB (max addressable space) – 1 GB (PCI space) – 20 MB (lost memory) =  
3 GB – 128 MB (minimum granularity) = B800_0000h  
Since B800_0000h (PCI and other system requirements) is less than 1_0000_0000h, TOLUD  
should be programmed to B8h.  
Datasheet  
89  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.27  
SMRAM—System Management RAM Control (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
9Dh  
00h  
R/W/L, RO  
8 bits  
Size:  
The SMRAMC register controls how accesses to Compatible and Extended SMRAM spaces are  
treated. The Open, Close, and Lock bits function only when G_SMRAME bit is set to a 1. Also,  
the OPEN bit must be reset before the LOCK bit is set.  
Bit  
Access &  
Default  
Description  
7
6
Reserved  
R/W/L  
0b  
SMM Space Open (D_OPEN): When D_OPEN=1 and D_LCK=0, the SMM  
space DRAM is made visible even when SMM decode is not active. This is  
intended to help BIOS initialize SMM space. Software should ensure that  
D_OPEN=1 and D_CLS=1 are not set at the same time.  
5
4
R/W/L  
0b  
SMM Space Closed (D_CLS): When D_CLS = 1 SMM space DRAM is not  
accessible to data references, even if SMM decode is active. Code references  
may still access SMM space DRAM. This will allow SMM software to reference  
through SMM space to update the display even when SMM is mapped over the  
VGA range. Software should ensure that D_OPEN=1 and D_CLS=1 are not set  
at the same time. Note that the D_CLS bit only applies to Compatible SMM  
space.  
R/W/L  
0b  
SMM Space Locked (D_LCK): When D_LCK is set to 1, D_OPEN is reset to 0  
and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and  
TSEG_EN become read only. D_LCK can be set to 1 via a normal configuration  
space write but can only be cleared by a full Reset. The combination of D_LCK  
and D_OPEN provide convenience with security. The BIOS can use the  
D_OPEN function to initialize SMM space and then use D_LCK to "lock down"  
SMM space in the future so that no application software (or BIOS itself) can  
violate the integrity of SMM space, even if the program has knowledge of the  
D_OPEN function.  
3
R/W/L  
0b  
Global SMRAM Enable (G_SMRAME): If set to a 1, Compatible SMRAM  
functions are enabled, providing 128 KB of DRAM accessible at the A0000h  
address while in SMM (ADSB with SMM decode). To enable Extended SMRAM  
function this bit has be set to 1. Refer to the section on SMM for more details.  
Once D_LCK is set, this bit becomes read only.  
2:0  
RO  
010b  
Compatible SMM Space Base Segment (C_BASE_SEG): This field indicates  
the location of SMM space. SMM DRAM is not remapped. It is simply made  
visible if the conditions are right to access SMM space, otherwise the access is  
forwarded to DMI. Since the (G)MCH supports only the SMM space between  
A0000h and BFFFFh, this field is hardwired to 010.  
90  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.28  
ESMRAMC—Extended System Management RAM Control  
(D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
9Eh  
00h  
R/W/L, RO  
8 bits  
Size:  
The Extended SMRAM register controls the configuration of Extended SMRAM space. The  
Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory  
space that is above 1 MB.  
Bit  
Access &  
Default  
Description  
7
R/W/L  
0b  
Enable High SMRAM (H_SMRAME): This bit controls the SMM memory space  
location (i.e., above 1 MB or below 1 MB). When G_SMRAME is 1 and H_SMRAME  
is 1, the high SMRAM memory space is enabled. SMRAM accesses within the range  
0FEDA0000h to 0FEDBFFFFh are remapped to DRAM addresses within the range  
000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes read only.  
6
R/W/C  
0b  
Invalid SMRAM Access (E_SMERR): This bit is set when the processor has  
accessed the defined memory ranges in Extended SMRAM (High Memory and T-  
segment) while not in SMM space and with the D-OPEN bit = 0. It is software’s  
responsibility to clear this bit. The software must write a 1 to this bit to clear it.  
5
4
RO  
1b  
SMRAM Cacheable (SM_CACHE): This bit is forced to 1 by the (G)MCH .  
L1 Cache Enable for SMRAM (SM_L1): This bit is forced to 1 by the (G)MCH.  
L2 Cache Enable for SMRAM (SM_L2): This bit is forced to 1 by the (G)MCH.  
RO  
1b  
3
RO  
1b  
2:1  
R/W/L  
00b  
TSEG Size (TSEG_SZ): This field selects the size of the TSEG memory block if  
enabled. Memory from the top of DRAM space is partitioned away so that it may  
only be accessed by the processor interface and only then when the SMM bit is set  
in the request packet. Non-SMM accesses to this memory region are sent to the  
DMI when the TSEG memory block is enabled.  
00 = 1-MB Tseg. (TOLUD – Graphics Stolen Memory Size – 1M) to (TOLUD –  
Graphics Stolen Memory Size).  
01 = 2-MB Tseg (TOLUD – Graphics Stolen Memory Size – 2M) to (TOLUD –  
Graphics Stolen Memory Size).  
10 = 8-MB Tseg (TOLUD – Graphics Stolen Memory Size – 8M) to (TOLUD –  
Graphics Stolen Memory Size).  
11 = Reserved.  
Once D_LCK has been set, these bits become read only.  
NOTE: References to Graphics Stolen Memory only apply to the  
82915G/82915GV/82915GL/82910GL GMCH only.  
0
R/W/L  
0b  
TSEG Enable (T_EN): This bit Enables SMRAM memory for Extended SMRAM  
space only. When G_SMRAME =1 and TSEG_EN = 1, the TSEG is enabled to  
appear in the appropriate physical address space. Note that once D_LCK is set, this  
bit becomes read only.  
Datasheet  
91  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.29  
ERRSTS—Error Status (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
C8h  
0000h  
R/WC/S, RO  
16 bits  
Size:  
This register is used to report various error conditions via the SERR DMI messaging mechanism.  
A SERR DMI message is generated on a zero to one transition of any of these flags (if enabled by  
the ERRCMD and PCICMD registers). These bits are set regardless of whether or not the SERR  
is enabled and generated. After the error processing is complete, the error logging mechanism can  
be unlocked by clearing the appropriate status bit by software writing a 1 to it.  
0Bit  
Access &  
Default  
Description  
15:13  
12  
Reserved  
R/WC/S  
0b  
(G)MCH Software Generated Event for SMI:  
1 = This bit indicates the source of the SMI was a Device 2 Software Event.  
11  
R/WC/S  
0b  
(G)MCH Thermal Sensor Event for SMI/SCI/SERR: This bit indicates that a  
(G)MCH Thermal Sensor trip has occurred and an SMI, SCI, or SERR has been  
generated. The status bit is set only if a message is sent based on Thermal  
event enables in Error command, SMI command, and SCI command registers. A  
trip point can generate one of SMI, SCI, or SERR interrupts (two or more per  
event is illegal). Multiple trip points can generate the same interrupt, if software  
chooses this mode, subsequent trips may be lost. If this bit is already set, an  
interrupt message will not be sent on a new thermal sensor event.  
10  
9
Reserved  
R/WC/S  
0b  
LOCK to non-DRAM Memory Flag (LCKF):  
1 = (G)MCH detected a lock operation to memory space that did not map into  
DRAM.  
8
R/WC/S  
0b  
Received Refresh Timeout Flag(RRTOF):  
1 = 1024 memory core refreshes are enqueued.  
Reserved  
7:0  
92  
Datasheet  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.30  
ERRCMD—Error Command (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
CAh  
0000h  
R/W  
Size:  
16 bits  
This register controls the (G)MCH responses to various system errors. Since the (G)MCH does  
not have an SERR# signal, SERR messages are passed from the (G)MCH to the Intel ICH6 over  
DMI. When a bit in this register is set, a SERR message will be generated on DMI when the  
corresponding flag is set in the ERRSTS register. The actual generation of the SERR message is  
globally enabled for Device 0 via the PCI Command register.  
Bit  
Access &  
Default  
Description  
15:12  
11  
Reserved  
R/W  
0b  
SERR on (G)MCH Thermal Sensor Event (TSESERR)  
1 = The (G)MCH generates a DMI SERR special cycle when bit 11 of the  
ERRSTS is set. The SERR must not be enabled at the same time as the SMI  
for the same thermal sensor event.  
0 = Reporting of this condition via SERR messaging is disabled.  
Reserved  
10  
9
R/W  
0b  
SERR on LOCK to non-DRAM Memory (LCKERR)  
1 = The (G)MCH will generate a DMI SERR special cycle whenever a processor  
lock cycle is detected that does not hit DRAM.  
0 = Reporting of this condition via SERR messaging is disabled.  
8
R/W  
0b  
SERR on DRAM Refresh Timeout (DRTOERR)  
1 = The (G)MCH generates a DMI SERR special cycle when a DRAM Refresh  
timeout occurs.  
0 = Reporting of this condition via SERR messaging is disabled.  
Reserved  
7:0  
Datasheet  
93  
Host Bridge/DRAM Controller Registers (D0:F0)  
R
4.1.31  
SKPD—Scratchpad Data (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
DCh  
00000000h  
R/W  
Size:  
32 bits  
This register holds 32 writable bits with no functionality behind them. It is for the convenience of  
BIOS and graphics drivers.  
Bit  
Access &  
Default  
Description  
31:0  
R/W  
Scratchpad Data: 1 DWord of data storage.  
00000000 h  
4.1.32  
CAPID0—Capability Identifier (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
E0h  
000000000001090009h  
RO  
Size:  
72 bits  
Bit  
Access &  
Default  
Description  
71:28  
27:24  
Reserved  
RO  
1h  
CAPID Version: This field has the value 0001b to identify the first revision of the  
CAPID register definition.  
23:16  
15:8  
7:0  
RO  
09h  
CAPID Length: This field has the value 09h to indicate the structure length  
(9 bytes).  
RO  
00h  
Next Capability Pointer: This field is hardwired to 00h indicating the end of the  
capabilities linked list.  
RO  
CAP_ID: This field has the value 1001b to identify the CAP_ID assigned by the  
09h  
PCI SIG for vendor dependent capability pointers.  
§
94  
Datasheet  
MCHBAR Registers  
R
5 MCHBAR Registers  
These registers are offset from the MCHBAR base address.  
Address  
Offset  
Register  
Symbol  
Default  
Access  
Value  
Register Name  
100h  
101h  
C0DRB0  
C0DRB1  
C0DRB2  
C0DRB3  
Channel A DRAM Rank Boundary Address 0  
Channel A DRAM Rank Boundary Address 1  
Channel A DRAM Rank Boundary Address 2  
Channel A DRAM Rank Boundary Address 3  
Reserved  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
102h  
00h  
103h  
00h  
104–107h  
108h  
C0DRA0  
C0DRA2  
Channel A DRAM Rank 0,1 Attribute  
Channel A DRAM Rank 2,3 Attribute  
Reserved  
00h  
R/W  
R/W  
109h  
00h  
10A–10Bh  
10Ch  
C0DCLKDIS  
Channel A DRAM Clock Disable  
Reserved  
00h  
R/W  
10Dh  
10E–10F  
110–113h  
114–117h  
118–11Fh  
120–123h  
124–17Fh  
180h  
C0BNKARC  
Channel A DRAM Bank Architecture  
Reserved  
0000h  
R/W  
C0DRT1  
Channel A DRAM Timing Register  
Reserved  
900122h  
R/W  
C0DRC0  
Channel A DRAM Controller Mode 0  
Reserved  
00000000h  
R/W, RO  
C1DRB0  
C1DRB1  
C1DRB2  
C1DRB3  
Channel B DRAM Rank Boundary Address 0  
Channel B DRAM Rank Boundary Address 1  
Channel B DRAM Rank Boundary Address 2  
Channel B DRAM Rank Boundary Address 3  
Reserved  
00h  
R/W  
R/W  
R/W  
R/W  
181h  
00h  
182h  
00h  
183h  
00h  
184–187h  
188h  
C1DRA0  
C1DRA2  
Channel B DRAM Rank 0,1 Attribute  
Channel B DRAM Rank 2,3 Attribute  
Reserved  
00h  
R/W  
R/W  
189h  
00h  
18A–18Bh  
18Ch  
C1DCLKDIS  
Channel B DRAM Clock Disable  
Reserved  
00h  
R/W  
18Dh  
18E–18Fh  
190–193h  
194h  
C1BNKARC  
Channel B Bank Architecture  
Reserved  
0000h  
R/W  
C1DRT1  
Channel B DRAM Timing Register 1  
900122h  
R/W, RO  
Datasheet  
95  
MCHBAR Registers  
R
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
195–19Fh  
1A0–1A3h  
1A4–F0Fh  
F10–F13h  
F14h  
Reserved  
R/W, RO  
C1DRC0  
Channel B DRAM Controller Mode 0  
Reserved  
00000000h  
PMCFG  
PMSTS  
Power Management Configuration  
Power Management Status  
00000000h  
00000000h  
R/W  
R/W/C/S  
5.1  
MCHBAR Register Details  
5.1.1  
C0DRB0—Channel A DRAM Rank Boundary Address 0  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
100h  
00h  
R/W  
Size:  
8 bits  
The DRAM Rank Boundary Register defines the upper boundary address of each DRAM rank  
with a granularity of 32 MB. Each rank has its own single-byte DRB register. These registers are  
used to determine which chip select will be active for a given address.  
Channel and Rank Map:  
Channel A Rank 0: 100h  
Channel A Rank 1: 101h  
Channel A Rank 2: 102h  
Channel A Rank 3: 103h  
Channel B Rank 0: 180h  
Channel B Rank 1: 181h  
Channel B Rank 2: 182h  
Channel B Rank 3: 183h  
Single Channel or Asymmetric Channels Example  
If the channels are independent, addresses in Channel B should begin where addresses in Channel  
A left off, and the address of the first rank of Channel A can be calculated from the technology  
(256 Mbit, 512 Mbit, or 1 Gbit) and the x8 or x16 configuration. With independent channels, a  
value of 01h in C0DRB0 indicates that 32 MB of DRAM has been populated in the first rank, and  
the top address in that rank is 32 MB.  
96  
Datasheet  
MCHBAR Registers  
R
Programming guide  
If Channel A is empty, all of the C0DRBs are programmed with 00h.  
C0DRB0 = Total memory in chA rank0 (in 32-MB increments)  
C0DRB1 = Total memory in chA rank0 + chA rank1 (in 32-MB increments)  
______  
C1DRB0 = Total memory in chA rank0 + chA rank1 + chA rank2 + chA rank3 + chB rank0  
(in 32-MB increments)  
If Channel B is empty, all of the C1DRBs are programmed with the same value as C0DRB3.  
Interleaved Channels Example  
If channels are interleaved, corresponding ranks in opposing channels will contain the same value,  
and the value programmed takes into account the fact that twice as many addresses are spanned  
by this rank compared to the single channel case. With interleaved channels, a value of 01h in  
C0DRB0 and a value of 01h in C1DRB0 indicate that 32 MB of DRAM has been populated in  
the first rank of each channel and the top address in that rank of either channel is 64 MB.  
Programming guide:  
C0DRB0 = C1DRB0 = Total memory in chA rank0 (in 32-MB increments)  
C0DRB1 = C1DRB1 = Total memory in chA rank0 + chA rank1 (in 32-MB increments)  
______  
C0DRB3 = C1DRB3 = Total memory in chA rank0 + chA rank1+ chA rank2 + chA rank3  
(in 32-MB increments)  
Note: Channel A DRB3 and Channel B DRB3 must be equal for this mode, but the other DRBs may be  
different.  
In all modes, if a DIMM is single sided, it appears as a populated rank and an empty rank. A DRB  
must be programmed appropriately for each.  
Each Rank is represented by a byte. Each byte has the following format.  
Bit  
Access &  
Default  
Description  
7:0  
R/W  
00h  
Channel A DRAM Rank Boundary Address: This 8 bit value defines the upper  
and lower addresses for each DRAM rank. Bits 6:2 are compared against  
Address 31:27 to determine the upper address limit of a particular rank. Bits 1:0  
must be 0s. Bit 7 may be programmed to a 1 in the highest DRB (DRB3) if 4 GBs  
of memory is present.  
Datasheet  
97  
MCHBAR Registers  
R
5.1.2  
5.1.3  
5.1.4  
C0DRB1—Channel A DRAM Rank Boundary Address 1  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
101h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C0DRB2—Channel A DRAM Rank Boundary Address 2  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
102h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C0DRB3—Channel A DRAM Rank Boundary Address 3  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
103h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
98  
Datasheet  
MCHBAR Registers  
R
5.1.5  
C0DRA0—Channel A DRAM Rank 0,1 Attribute  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
108h  
00h  
R/W  
Size:  
8 bits  
The DRAM Rank Attribute Registers define the page sizes to be used when accessing different  
ranks. These registers should be left with their default value (all zeros) for any rank that is  
unpopulated, as determined by the corresponding CxDRB registers. Each byte of information in  
the CxDRA registers describes the page size of a pair of ranks.  
Channel and Rank Map:  
Channel A Rank 0, 1:  
Channel A Rank 2, 3:  
Channel B Rank 0, 1:  
Channel B Rank 2, 3:  
108h  
109h  
188h  
189h  
Bit  
Access &  
Default  
Description  
7
Reserved  
6:4  
R/W  
Channel A DRAM odd Rank Attribute: This 3 bit field defines the page size of  
000b  
the corresponding rank.  
000 = Unpopulated  
001 = Reserved  
010 = 4 KB  
011 = 8 KB  
100 = 16 KB  
Others = Reserved  
3
Reserved  
2:0  
R/W  
Channel A DRAM even Rank Attribute: This 3 bit field defines the page size of  
000b  
the corresponding rank.  
000 = Unpopulated  
001 = Reserved  
010 = 4 KB  
011 = 8 KB  
100 = 16 KB  
Others = Reserved  
5.1.6  
C0DRA2—Channel A DRAM Rank 2,3 Attribute  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
109h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRA0.  
Datasheet  
99  
MCHBAR Registers  
R
5.1.7  
C0DCLKDIS—Channel A DRAM Clock Disable  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
10Ch  
00h  
R/W  
Size:  
8 bits  
This register can be used to disable the system memory clock signals to each DIMM slot. This can  
significantly reduce EMI and Power concerns for clocks that go to unpopulated DIMMs. Clocks  
should be enabled based on whether a slot is populated, and what kind of DIMM is present.  
Bit  
Access &  
Default  
Description  
7:6  
5
Reserved  
R/W  
0b  
DIMM Clock Gate Enable Pair 5  
0 = Tri-state the corresponding clock pair.  
1 = Enable the corresponding clock pair.  
4
3
2
1
0
R/W  
0b  
DIMM Clock Gate Enable Pair 4  
0 = Tri-state the corresponding clock pair.  
1 = Enable the corresponding clock pair.  
R/W  
0b  
DIMM Clock Gate Enable Pair 3  
0 = Tri-state the corresponding clock pair.  
1 = Enable the corresponding clock pair.  
R/W  
0b  
DIMM Clock Gate Enable Pair 2  
0 = Tri-state the corresponding clock pair.  
1 = Enable the corresponding clock pair.  
R/W  
0b  
DIMM Clock Gate Enable Pair 1  
0 = Tri-state the corresponding clock pair.  
1 = Enable the corresponding clock pair.  
R/W  
0b  
DIMM Clock Gate Enable Pair 0  
0 = Tri-state the corresponding clock pair.  
1 = Enable the corresponding clock pair.  
Note: Since there are multiple clock signals assigned to each Rank of a DIMM, it is important to clarify  
exactly which Rank width field affects which clock signal:  
Channel  
Rank  
Clocks Affected  
0
0
1
1
0 or 1  
2 or 3  
0 or 1  
2 or 3  
SCLK_A[2:0]/ SCLK_A[2:0]#  
SCLK_A[5:3]/ SCLK_A[5:3]#  
SCLK_B[2:0]/ SCLK_B[2:0]#  
SCLK_B[5:3]/ SCLK_B[5:3]#  
100  
Datasheet  
MCHBAR Registers  
R
5.1.8  
C0BNKARC—Channel A DRAM Bank Architecture  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
10Eh  
0000h  
R/W  
Size:  
16 bits  
This register is used to program the bank architecture for each Rank.  
Bit  
Access &  
Default  
Description  
15:8  
7:6  
Reserved  
R/W  
00b  
Rank 3 Bank Architecture  
00 = 4 Bank.  
01 = 8 Bank.  
1X = Reserved  
Rank 2 Bank Architecture  
00 = 4 Bank.  
5:4  
3:2  
1:0  
R/W  
00b  
01 = 8 Bank.  
1X = Reserved  
Rank 1 Bank Architecture  
00 = 4 Bank.  
R/W  
00b  
01 = 8 Bank.  
1X = Reserved  
Rank 0 Bank Architecture  
00 = 4 Bank.  
R/W  
00b  
01 = 8 Bank.  
1X = Reserved  
Datasheet  
101  
MCHBAR Registers  
R
5.1.9  
C0DRT1—Channel A DRAM Timing Register  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
114h  
900122hh  
R/W, RO  
32 bits  
Size:  
Bit  
Access &  
Default  
Description  
31:24  
23:20  
Reserved  
R/W  
9h  
Activate to Precharge delay (tRAS). This bit controls the number of DRAM clocks  
for tRAS. Minimum recommendations are beside their corresponding encodings.  
0h – 3h = Reserved  
4h – Fh = Four to Fifteen Clocks respectively.  
19  
RO  
0b  
Reserved for Activate to Precharge Delay (tRAS) MAX: It is required that the  
Panic Refresh timer be set to a value less than the tRAS maximum. Based on this  
setting, a Panic Refresh occurs before TRAS maximum expiration and closes all  
the banks.  
This bit controls the maximum number of clocks that a DRAM bank can remain  
open. After this time period, the DRAM controller will guarantee to pre-charge the  
bank. This time period may or may not be set to overlap with time period that  
requires a refresh to happen.  
The DRAM controller includes a separate tRAS-MAX counter for every supported  
bank. With a maximum of four ranks, and four banks per rank, there are 16  
counters per channel.  
0 = 120 microseconds  
1 = Reserved  
Note: This register will become Read Only with a value of 0 if the design does  
not implement these counters.  
t
RAS-MAX is not required because a panic refresh will close all banks in a rank  
before tRAS-MAX expires.  
18:10  
9:8  
Reserved  
R/W  
01b  
CASB Latency (tCL). This value is programmable on DDR2 DIMMs. The value  
programmed here must match the CAS Latency of every DDR2 DIMM in the  
system.  
Encoding DDR CL  
DDR2 CL  
00  
01  
3
5
2.5  
4
10  
2
3
11  
Reserved  
Reserved  
7
Reserved  
102  
Datasheet  
MCHBAR Registers  
R
Bit  
Access &  
Default  
Description  
6:4  
R/W  
DRAM RAS to CAS Delay (tRCD). This bit controls the number of clocks inserted  
010b  
between a row activate command and a read or write command to that row.  
000 = 2 DRAM clocks  
001 = 3 DRAM clocks  
010 = 4 DRAM clocks  
011 = 5 DRAM clocks  
100 – 111 = Reserved  
Reserved  
3
2:0  
R/W  
010b  
DRAM RAS Precharge (tRP). This bit controls the number of clocks that are  
inserted between a row precharge command and an activate command to the  
same rank.  
000 = 2 DRAM clocks  
001 = 3 DRAM clocks  
010 = 4 DRAM clocks  
011 = 5 DRAM clocks  
100 – 111 = Reserved  
Datasheet  
103  
MCHBAR Registers  
R
5.1.10  
C0DRC0—Channel A DRAM Controller Mode 0  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
120h  
00000000h  
R/W  
Size:  
32 bits  
Access &  
Default  
Bit  
Description  
31:30  
29  
Reserved  
R/W  
0b  
Initialization Complete (IC): This bit is used for communication of software state  
between the memory controller and the BIOS. BIOS sets this bit to 1 after  
initialization of the DRAM memory array is complete.  
28:11  
10:8  
Reserved  
R/W  
Refresh Mode Select (RMS): This field determines whether refresh is enabled  
000b  
and, if so, at what rate refreshes will be executed.  
000 = Refresh disabled  
001 = Refresh enabled. Refresh interval 15.6 µsec  
010 = Refresh enabled. Refresh interval 7.8 µsec  
011 = Refresh enabled. Refresh interval 3.9 µsec  
100 = Refresh enabled. Refresh interval 1.95 µsec  
111 = Refresh enabled. Refresh interval 64 clocks (fast refresh mode)  
Other = Reserved  
7
RO  
0b  
Reserved  
104  
Datasheet  
MCHBAR Registers  
R
Access &  
Default  
Bit  
Description  
6:4  
R/W  
Mode Select (SMS). These bits select the special operational mode of the DRAM  
interface. The special modes are intended for initialization at power up.  
000 b  
000 = Post Reset state – When the (G)MCH exits reset (power-up or otherwise),  
the mode select field is cleared to “000”.  
During any reset sequence, while power is applied and reset is active, the  
(G)MCH de-asserts all CKE signals. After internal reset is de-asserted,  
CKE signals remain de-asserted until this field is written to a value  
different than “000”. On this event, all CKE signals are asserted.  
During suspend, (G)MCH internal signal triggers DRAM controller to flush  
pending commands and enter all ranks into Self-Refresh mode. As part of  
resume sequence, (G)MCH will be reset – which will clear this bit field to  
“000” and maintain CKE signals de-asserted. After internal reset is de-  
asserted, CKE signals remain de-asserted until this field is written to a  
value different than “000”. On this event, all CKE signals are asserted.  
During entry to other low power states (C3, S1), (G)MCH internal signal  
triggers DRAM controller to flush pending commands and enter all ranks  
into Self-Refresh mode. During exit to normal mode, (G)MCH signal  
triggers DRAM controller to exit Self-Refresh and resume normal  
operation without S/W involvement.  
001 = NOP Command Enable – All processor cycles to DRAM result in a NOP  
command on the DRAM interface.  
010 = All Banks Pre-charge Enable – All processor cycles to DRAM result in an  
“all banks precharge” command on the DRAM interface.  
011 = Mode Register Set Enable – All processor cycles to DRAM result in a  
“mode register” set command on the DRAM interface. Host address lines  
are mapped to DRAM address lines in order to specify the command sent.  
Host address lines [12:3] are mapped to MA[9:0], and HA[13] is mapped  
to MA[11].  
101 = Reserved  
110 = CBR Refresh Enable – In this mode all processor cycles to DRAM result in  
a CBR cycle on the DRAM interface  
111 = Normal operation  
Reserved  
3:2  
1:0  
RO  
DRAM Type (DT). This field is used to select between supported SDRAM types.  
This bit is controlled by the MTYPE strap signal.  
00 = Reserved  
01 = Dual Data Rate (DDR) SDRAM  
10 = Second Revision Dual Data Rate (DDR2) SDRAM  
11 = Reserved  
Datasheet  
105  
MCHBAR Registers  
R
5.1.11  
5.1.12  
5.1.13  
5.1.14  
5.1.15  
C1DRB0—Channel B DRAM Rank Boundary Address 0  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
180h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C1DRB1—Channel B DRAM Rank Boundary Address 1  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
181h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C1DRB2—Channel B DRAM Rank Boundary Address 2  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
182h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C1DRB3—Channel B DRAM Rank Boundary Address 3  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
183h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C1DRA0—Channel B DRAM Rank 0,1 Attribute  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
188h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRA0.  
106  
Datasheet  
MCHBAR Registers  
R
5.1.16  
5.1.17  
5.1.18  
5.1.19  
5.1.20  
C1DRA2—Channel B DRAM Rank 2,3 Attribute  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
189h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRA0.  
C1DCLKDIS—Channel B DRAM Clock Disable  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
18Ch  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DCLKDIS.  
C1BNKARC—Channel B Bank Architecture  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
18Eh  
0000h  
R/W  
Size:  
16 bits  
The operation of this register is detailed in the description for register C0BNKARC.  
C1DRT1—Channel B DRAM Timing Register 1  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
194h  
900122h  
R/W  
Size:  
32 bits  
The operation of this register is detailed in the description for register C0DRT1.  
C1DRC0—Channel B DRAM Controller Mode 0  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
1A0h  
00000000h  
R/W  
Size:  
32 bits  
The operation of this register is detailed in the description for register C0DRC0.  
Datasheet  
107  
MCHBAR Registers  
R
5.1.21  
PMCFG—Power Management Configuration  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
F10h  
00000000h  
R/W  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
31:5  
4
Reserved  
R/W  
0b  
Enhanced Power Management Features Enable  
0 = Legacy power management mode  
1 = Reserved.  
3:0  
Reserved  
5.1.22  
PMSTS—Power Management Status  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
F14h  
00000000h  
R/W  
Size:  
32 bits  
This register is Reset by PWROK only.  
Bit  
Access &  
Default  
Description  
31:2  
1
Reserved  
R/WC/S  
0b  
Channel B in self-refresh. This bit is set by power management hardware after  
Channel B is placed in self refresh as a result of a Power State or a Reset Warn  
sequence. It is cleared by power management hardware before starting Channel  
B self refresh exit sequence initiated by a power management exit. It is cleared  
by BIOS in a warm reset (Reset# asserted while pwrok is asserted) exit  
sequence.  
0 = Channel B not guaranteed to be in self-refresh.  
1 = Channel B in Self-Refresh.  
0
R/WC/S  
0b  
Channel A in Self-refresh. Set by power management hardware after Channel  
A is placed in self refresh as a result of a Power State or a Reset Warn  
sequence. It is cleared by power management hardware before starting Channel  
A self refresh exit sequence initiated by a power management exit. It is cleared  
by the BIOS in a warm reset (Reset# asserted while PWOK is asserted) exit  
sequence.  
0 = Channel A not guaranteed to be in self-refresh.  
1 = Channel A in Self-Refresh.  
§
108  
Datasheet  
EPBAR Registers—Egress Port Register Summary  
R
6 EPBAR Registers—Egress Port  
Register Summary  
These registers are offset from the EPBAR base address.  
Table 6-1. Egress Port Register Address Map  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
044h–047h  
050h–053h  
EPESD  
EPLE1D  
EPLE1A  
EP Element Self Description  
EP Link Entry 1 Description  
EP Link Entry 1 Address  
0000h  
0100h  
R/WO, RO  
R/WO, RO  
R/WO, RO  
058h–  
05Fh  
000000000  
0000000h  
060h–063h  
EPLE2D  
EPLE2A  
EP Link Entry 2 Description  
EP Link Entry 2 Address  
02000002h  
R/WO, RO  
RO  
068h–  
06Fh  
000000000  
0008000h  
6.1  
EP RCRB Configuration Register Details  
Figure 6-1. Link Declaration Topology  
(G)MCH  
X16  
PEG  
(Port #2)  
Link #2  
(Type 1)  
Link #1  
(Type 0)  
Egress Port  
(Port #0)  
Main Memory  
Subsystem  
Link #2  
(Type 0)  
Link #1  
(Type 0)  
DMI  
(Port #1)  
Link #1  
(Type 0)  
X4  
Intel® ICH6  
Egress Port  
(Port #0)  
Egress_LinkDeclar_Topo  
Datasheet  
109  
EPBAR Registers—Egress Port Register Summary  
R
6.1.1  
EPESD—EP Element Self Description  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
044h  
00000201h  
R/WO, RO  
32 bits  
Size:  
This register provides information about the root complex element containing this Link  
Declaration capability.  
Bit  
Access  
& Default  
Description  
31:24  
RO  
00h  
Port Number: This field specifies the port number associated with this element with  
respect to the component that contains this element. A value of 00h indicates to  
configuration software that this is the default egress port.  
23:16  
15:8  
R/WO  
00h  
Component ID: This field identifies the physical component that contains this Root  
Complex Element. Component IDs start at 1.  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it  
will be reflected everywhere that it is mirrored.  
RO  
02h  
Number of Link Entries: This field indicates the number of link entries following  
the Element Self Description. This field reports 2 (one each for PCI Express* x16  
interface and DMI).  
7:4  
3:0  
Reserved  
RO  
1h  
Element Type: This field Indicates the type of the Root Complex Element.  
1h = Port to system memory  
110  
Datasheet  
EPBAR Registers—Egress Port Register Summary  
R
6.1.2  
EPLE1D—EP Link Entry 1 Description  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
050h  
0100h  
R/WO, RO  
32 bits  
Size:  
This register provides the First part of a Link Entry that declares an internal link to another Root  
Complex Element.  
Bit  
Access  
& Default  
Description  
31:24  
RO  
01h  
Target Port Number: This field specifies the port number associated with the  
element targeted by this link entry (DMI). The target port number is with respect to  
the component that contains this element as specified by the target component ID.  
23:16  
R/WO  
00h  
Target Component ID: This field identifies the physical or logical component that is  
targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it  
will be reflected everywhere that it is mirrored.  
15:2  
1
Reserved  
RO  
0b  
Link Type: This bit indicates that the link points to memory-mapped space (for  
RCRB). The link address specifies the 64-bit base address of the target RCRB.  
0
R/WO  
0b  
Link Valid  
0 = Link Entry is not valid and will be ignored.  
1 = Link Entry specifies a valid link.  
6.1.3  
EPLE1A—EP Link Entry 1 Address  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
058h  
0000000000000000h  
R/WO  
Size:  
64 bits  
This register provides the second part of a Link Entry, which declares an internal link to another  
Root Complex Element.  
Bit  
Access &  
Default  
Description  
63:32  
31:12  
Reserved  
R/WO  
Link Address: This field provides the memory-mapped base address of the  
0 0000h  
RCRB that is the target element (DMI) for this link entry.  
11:0  
Reserved  
Datasheet  
111  
EPBAR Registers—Egress Port Register Summary  
R
6.1.4  
EPLE2D—EP Link Entry 2 Description  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
060h  
02000002h  
R/WO, RO  
32 bits  
Size:  
This register provides the First part of a Link Entry that declares an internal link to another Root  
Complex Element.  
Bit  
Access &  
Default  
Description  
31:24  
RO  
02h  
Target Port Number: This field specifies the port number associated with the  
element targeted by this link entry (PCI Express* x16 interface). The target port  
number is with respect to the component that contains this element as specified  
by the target component ID.  
23:16  
R/WO  
00h  
Target Component ID: This field identifies the physical or logical component that  
is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it  
will be reflected everywhere that it is mirrored.  
15:2  
1
Reserved  
RO  
1b  
Link Type:  
1 = Link points to configuration space of the integrated device that controls the  
x16 root port. The link address specifies the configuration address (segment,  
bus, device, function) of the target root port.  
0
R/WO  
0b  
Link Valid  
0 = Link Entry is not valid and will be ignored.  
1 = Link Entry specifies a valid link.  
112  
Datasheet  
EPBAR Registers—Egress Port Register Summary  
R
6.1.5  
EPLE2A—EP Link Entry 2 Address  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
068h  
0000000000008000h  
RO  
Size:  
64 bits  
This register provides the second part of a Link Entry that declares an internal link to another  
Root Complex Element.  
Bit  
Access &  
Default  
Description  
63:28  
27:20  
Reserved  
RO  
Bus Number  
00h  
19:15  
14:12  
11:0  
RO  
0 0001b  
Device Number: Target for this link is PCI Express* x16 port (Device 1).  
RO  
000b  
Function Number  
Reserved  
§
Datasheet  
113  
EPBAR Registers—Egress Port Register Summary  
R
114  
Datasheet  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
7 DMIBAR Registers—Direct Media  
Interface (DMI) RCRB  
This Root Complex Register Block (RCRB) controls the (G)MCH-Intel ICH6 serial interconnect.  
The base address of this space is programmed in DMIBAR in device 0 configuration space. These  
registers are offset from the DMIBAR base address  
Table 7-1. DMI Register Address Map Summary  
Address  
offset  
Register  
Symbol  
Register Name  
PCI Dev #  
000–003h  
004–007h  
008–00Bh  
00C–00Dh  
00E–00Fh  
010–013h  
014–017h  
018–019h  
01A–01Bh  
01C–01Fh  
020–023h  
024–025h  
026–027h  
028–083h  
084–087h  
088–089h  
08A–08Bh  
08C–FFFh  
DMIVCECH  
DMIPVCCAP1  
DMIPVCCAP2  
DMIPVCCTL  
DMI Virtual Channel Enhanced Capability Header  
DMI Port VC Capability Register 1  
DMI Port VC Capability Register 2  
DMI Port VC Control  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
DMIBAR  
Reserved  
DMIVC0RCAP  
DMIVC0RCTL  
DMI VC0 Resource Capability  
DMI VC0 Resource Control  
Reserved  
DMIVC0RSTS  
DMIVC1RCAP  
DMIVC1RCTL  
DMI VC0 Resource Status  
DMI VC1 Resource Capability  
DMI VC1 Resource Control  
Reserved  
DMIVC1RSTS  
DMI VC1 Resource Status  
Reserved  
DMILCAP  
DMILCTL  
DMILSTS  
DMI Link Capabilities  
DMI Link Control  
DMI Link Status  
Reserved  
Datasheet  
115  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
7.1  
Direct Media Interface (DMI) RCRB Register Details  
7.1.1  
DMIVCECH—DMI Virtual Channel Enhanced Capability  
Header  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
000h  
04010002h  
RO  
Size:  
32 bits  
This register indicates DMI Virtual Channel capabilities.  
Bit  
Access &  
Default  
Description  
31:20  
19:16  
15:0  
RO  
040h  
Pointer to Next Capability: This field indicates the next item in the list.  
RO  
1h  
Capability Version: This field indicates support as a version 1 capability  
structure.  
RO  
Capability ID: This field indicates this is the Virtual Channel capability item.  
0002h  
7.1.2  
DMIPVCCAP1—DMI Port VC Capability Register 1  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
004h  
00000001h  
R/WO, RO  
32 bits  
Size:  
This register describes the configuration of Virtual Channels associated with this port.  
Bit  
Access &  
Default  
Description  
31:12  
11:10  
Reserved  
RO  
Port Arbitration Table Entry Size (PATS): This field indicates the size of the  
00b  
port arbitration table is 4 bits (to allow up to 8 ports).  
Reference Clock (RC)  
9:8  
RO  
00b  
Fixed at 10 ns.  
7
Reserved  
6:4  
RO  
Low Priority Extended VC Count (LPEVC): This field indicates that there are  
000b  
no additional VCs of low priority with extended capabilities.  
3
Reserved  
2:0  
R/WO  
001b  
Extended VC Count: This field indicates that there is one additional VC (VC1)  
that exists with extended capabilities.  
116  
Datasheet  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
7.1.3  
DMIPVCCAP2—DMI Port VC Capability Register 2  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
008h  
00000001h  
RO  
Size:  
32 bits  
This register describes the configuration of Virtual Channels associated with this port.  
Bit  
Access &  
Default  
Description  
31:24  
RO  
VC Arbitration Table Offset (ATO): This field indicates that no table is present  
00h  
for VC arbitration since it is fixed.  
23:8  
7:0  
Reserved  
RO  
VC Arbitration Capability: This field indicates that the VC arbitration is fixed in  
01h  
the root complex. VC1 is highest priority and VC0 is lowest priority.  
7.1.4  
DMIPVCCTL—DMI Port VC Control  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
00Ch  
00000000h  
R/W, RO  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
15:4  
3:1  
Reserved  
R/W  
000b  
VC Arbitration Select: This field indicates which VC should be programmed in  
the VC arbitration table. The root complex takes no action on the setting of this  
field since there is no arbitration table.  
0
RO  
0b  
Load VC Arbitration Table (LAT): This field indicates that the table programmed  
should be loaded into the VC arbitration table. This bit is defined as read/write with  
always returning 0 on reads.  
Datasheet  
117  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
7.1.5  
DMIVC0RCAP—DMI VC0 Resource Capability  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
010h  
00000001h  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
31:24  
RO  
Port Arbitration Table Offset (AT): This VC implements no port arbitration table  
00h  
since the arbitration is fixed.  
23  
Reserved  
22:16  
RO  
Maximum Time Slots (MTS): This VC implements fixed arbitration, and therefore  
00h  
this field is not used.  
15  
14  
RO  
0b  
Reject Snoop Transactions (RTS): This VC must be able to take snoopable  
transactions.  
RO  
0b  
Advanced Packet Switching (APS): This VC is capable of all transactions, not  
just advanced packet switching transactions.  
13:8  
7:0  
Reserved  
RO  
Port Arbitration Capability (PAC): This field indicates that this VC uses fixed  
01h  
port arbitration.  
118  
Datasheet  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
7.1.6  
DMIVC0RCTL0—DMI VC0 Resource Control  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
014h  
8000007Fh  
R/W, RO  
32 bits  
Size:  
This register controls the resources associated with PCI Express Virtual Channel 0.  
Bit  
Access &  
Default  
Description  
31  
RO  
1b  
Virtual Channel Enable (EN): Enables the VC when set. Disables the VC when  
cleared.  
30:27  
26:24  
Reserved  
RO  
Virtual Channel Identifier (ID): Indicates the ID to use for this virtual channel.  
000b  
23:20  
19:17  
Reserved  
R/W  
0h  
Port Arbitration Select (PAS): Indicates which port table is being programmed.  
The root complex takes no action on this setting since the arbitration is fixed and  
there is no arbitration table.  
16  
RO  
0b  
Load Port Arbitration Table (LAT): The root complex does not implement an  
arbitration table for this virtual channel.  
15:8  
7:1  
Reserved  
R/W  
7Fh  
Transaction Class / Virtual Channel Map (TVM): This field indicates which  
transaction classes are mapped to this virtual channel. When a bit is set, this  
transaction class is mapped to the virtual channel.  
0
Reserved  
Datasheet  
119  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
7.1.7  
DMIVC0RSTS—DMI VC0 Resource Status  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
01Ah  
00000002h  
RO  
Size:  
16 bits  
This register reports the Virtual Channel specific status.  
Bit  
Access &  
Default  
Description  
15:2  
1
Reserved  
RO  
1b  
VC Negotiation Pending (NP):  
0 = Virtual channel is Not being negotiated with ingress ports.  
1 = Virtual channel is still being negotiated with ingress ports.  
0
RO  
0b  
Port Arbitration Tables Status (ATS): There is no port arbitration table for this  
VC, so this bit is reserved at 0.  
7.1.8  
DMIVC1RCAP—DMI VC1 Resource Capability  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
01Ch  
00008001h  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
31:24  
RO  
00h  
Port Arbitration Table Offset (AT): This field indicates the location of the port  
arbitration table in the root complex. A value of 3h indicates the table is at offset  
30h.  
23  
Reserved  
22:16  
RO  
Maximum Time Slots (MTS): This value is updated by platform BIOS based upon  
00h  
the determination of the number of time slots available in the platform.  
15  
14  
RO  
1b  
Reject Snoop Transactions (RTS): All snoopable transactions on VC1 are  
rejected. This VC is for isochronous transfers only.  
RO  
0b  
Advanced Packet Switching (APS): This VC is capable of all transactions, not  
just advanced packet switching transactions.  
13:8  
7:0  
Reserved  
RO  
Port Arbitration Capability (PAC): This field indicates the port arbitration  
01h  
capability is time-based WRR of 128 phases.  
120  
Datasheet  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
7.1.9  
DMIVC1RCTL1—DMI VC1 Resource Control  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
020h  
00100000h  
R/W, RO  
32 bits  
Size:  
This register controls the resources associated with Virtual Channel 1.  
Bit  
Access &  
Default  
Description  
Virtual Channel Enable (EN):  
0 = Disable.  
31  
R/W  
0b  
1 = Enable.  
30:27  
26:24  
RO  
0h  
Reserved  
R/W  
Virtual Channel Identifier (ID): This field indicates the ID to use for this virtual  
001b  
channel.  
23:20  
19:17  
Reserved  
R/W  
0h  
Port Arbitration Select (PAS): This field indicates which port table is being  
programmed. The only permissible value of this field is 4h for the time-based  
WRR entries.  
16:8  
7:1  
Reserved  
R/W  
00h  
Transaction Class / Virtual Channel Map (TVM): This field indicates which  
transaction classes are mapped to this virtual channel. When a bit is set, this  
transaction class is mapped to the virtual channel.  
0
Reserved  
7.1.10  
DMIVC1RSTS—DMI VC1 Resource Status  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
026h  
0000h  
RO  
Size:  
16 bits  
This register reports the Virtual Channel specific status.  
Bit  
Access &  
Default  
Description  
15:2  
1
Reserved  
RO  
0b  
VC Negotiation Pending (NP):  
0 = Virtual channel is Not being negotiated with ingress ports.  
1 = Virtual channel is still being negotiated with ingress ports.  
Reserved  
0
Datasheet  
121  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
7.1.11  
DMILCAP—DMI Link Capabilities  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
084h  
00012C41h  
R/WO, RO  
32 bits  
Size:  
This register indicates DMI specific capabilities.  
Bit  
Access &  
Default  
Description  
31:18  
17:15  
Reserved  
R/WO  
010b  
L1 Exit Latency (EL1). L1 not supported on DMI.  
14:12  
11:10  
9:4  
R/WO  
010b  
L0s Exit Latency (EL0): This field indicates that exit latency is 128 ns to less  
than 256 ns.  
RO  
11b  
Active State Link PM Support (APMS): This field indicates that L0s is supported  
on DMI.  
RO  
4h  
Maximum Link Width (MLW): This field indicates the maximum link width is  
4 ports.  
3:0  
RO  
1h  
Maximum Link Speed (MLS): This field indicates the link speed is 2.5 Gb/s.  
7.1.12  
DMILCTL—DMI Link Control  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
088h  
0000h  
R/W  
Size:  
16 bits  
This register allows control of DMI.  
Bit  
Access &  
Default  
Description  
15:8  
7
Reserved  
Extended Synch (ES):  
R/W  
0h  
1 = Forces extended transmission of FTS ordered sets when exiting L0s prior to  
entering L0 and extra TS1 sequences at exit from L1 prior to entering L0.  
6:2  
1:0  
Reserved  
Active State Link PM Control (APMC): Indicates whether DMI should enter L0s.  
R/W  
00b  
00 = Disabled  
01 = L0s entry enabled  
10 = Reserved  
11 = Reserved  
122  
Datasheet  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
7.1.13  
DMILSTS—DMI Link Status  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
08Ah  
0001h  
RO  
Size:  
16 bits  
This register indicates DMI status.  
Bit  
Access &  
Default  
Description  
15:10  
9:4  
Reserved  
RO  
Negotiated Link Width (NLW): This field is valid only when the link is in the L0,  
00h  
L0s, or L1 states (after link width negotiation is successfully completed).  
Negotiated link width is x4 (000100b).  
All other encodings are reserved.  
Link Speed (LS)  
3:0  
RO  
1h  
Link is 2.5 Gb/s.  
§
Datasheet  
123  
DMIBAR Registers—Direct Media Interface (DMI) RCRB  
R
124  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8 Host-PCI Express* Bridge  
Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL  
Only)  
Device 1contains the controls associated with the PCI Express x16 root port that is the intended to  
attach as the point for external graphics. It is typically referred to as PCI Express* x16 Graphics  
Interface port. In addition, it also functions as the virtual PCI-to-PCI bridge.  
Warning: When reading the PCI Express "conceptual" registers such as this, you may not get a valid value  
unless the register value is stable.  
The PCI Express* Specification defines two types of reserved bits: Reserved and Preserved:  
Reserved for future R/W implementations; software must preserve value read for writes to  
bits.  
Reserved and Zero: Reserved for future R/WC/S implementations; software must use 0 for  
writes to bits.  
Unless explicitly documented as Reserved and Zero, all bits marked as reserved are part of the  
Reserved and Preserved type that have historically been the typical definition for Reserved.  
It is important to note that most (if not all) control bits in this device cannot be modified unless  
the link is down. Software is required to first Disable the link, then program the registers, and  
then re-enable the link (which will cause a full-retrain with the new settings).  
Table 8-1. Host-PCI Express* Graphics Bridge Register Address Map (D1:F0)  
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Vendor Identification  
Access  
00–01h  
02–03h  
04–05h  
06–07h  
08h  
VID1  
DID1  
8086h  
2581h  
0000h  
0000h  
RO  
RO  
Device Identification  
PCI Command  
PCICMD1  
PCISTS1  
RID1  
RO, R/W  
RO, R/W  
RO  
PCI Status  
Revision Identification  
See  
register  
description  
09–0Bh  
0Ch  
CC1  
CL1  
Class Code  
Cache Line Size  
Reserved  
060400h  
00h  
RO  
R/W  
0Dh  
0Eh  
HDR1  
Header Type  
01h  
RO  
Datasheet  
125  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
0F–17h  
18h  
PBUSN1  
SBUSN1  
SUBUSN1  
Reserved  
00h  
RO  
Primary Bus Number  
Secondary Bus Number  
Subordinate Bus Number  
Reserved  
19h  
00h  
RO  
1Ah  
00h  
R/W  
1Bh  
1Ch  
IOBASE1  
IOLIMIT1  
SSTS1  
I/O Base Address  
F0h  
00h  
RO  
1Dh  
I/O Limit Address  
R/W  
RO, R/W/C  
R/W  
R/W  
RO, R/W  
RO, R/W  
1Eh–1Fh  
20–21h  
22–23h  
24–25h  
26–27h  
28–33h  
34h  
Secondary Status  
00h  
MBASE1  
MLIMIT1  
PMBASE1  
PMLIMIT1  
Memory Base Address  
Memory Limit Address  
Prefetchable Memory Base Address  
Prefetchable Memory Limit Address  
Reserved  
FFF0h  
0000h  
FFF0h  
0000h  
CAPPTR1  
Capabilities Pointer  
Reserved  
88h  
RO  
35–3Bh  
3Ch  
INTRLINE1  
INTRPIN1  
BCTRL1  
Interrupt Line  
00h  
R/W  
RO  
3Dh  
Interrupt Pin  
00h  
3E–3Fh  
40–7Fh  
80–83h  
Bridge Control  
0000h  
RO, R/W  
Reserved  
PM_CAPID1  
Power Management Capabilities  
19029001h  
or  
RO  
1902A001h  
84–87h  
88–8Bh  
PM_CS1  
Power Management Control/Status  
00000000h  
RO, R/W/S  
RO  
SS_CAPID  
Subsystem ID and Vendor ID Capabilities  
0000800D  
h
8C–8Fh  
90–91h  
92–93h  
94–97h  
98–99h  
9A–9Fh  
A0–A1h  
A2–A3h  
A4–A7h  
A8–A9h  
AA–ABh  
AC–AFh  
B0–B1h  
SS  
MSI_CAPID  
MC  
Subsystem ID and Subsystem Vendor ID  
Message Signaled Interrupts Capability ID  
Message Control  
00008086h  
A005h  
RO  
RO  
0000h  
RO, R/W  
RO, R/W  
R/W  
MA  
Message Address  
00000000h  
0000h  
MD  
Message Data  
Reserved  
PEG_CAPL  
PEG_CAP  
DCAP  
DCTL  
PCI Express* Capability List  
PCI Express Capabilities  
Device Capabilities  
Device Control  
0010h  
RO  
0141h  
RO  
00000000h  
0000h  
RO  
R/W  
DSTS  
LCAP  
Device Status  
0000h  
RO  
Link Capabilities  
02012E01h  
0000h  
R/WO  
RO, R/W  
LCTL  
Link Control  
126  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
Address  
Offset  
Register  
Symbol  
Default  
Value  
Register Name  
Access  
B2–B3h  
B4–B7h  
B8–B9h  
BA–BBh  
BC–BDh  
BE–BFh  
C0–C3h  
C4–EBh  
EC–EFh  
F0–FFh  
100–103h  
LSTS  
SLOTCAP  
SLOTCTL  
SLOTSTS  
RCTL  
Link Status  
1001h  
00000000h  
01C0h  
0X00h  
RO  
R/WO  
R/W  
Slot Capabilities  
Slot Control  
Slot Status  
RO, R/W/C  
R/W  
Root Control  
0000h  
Reserved  
RSTS  
Root Status  
00000000h  
RO, R/W/C  
Reserved  
PEGLC  
PCI Express*-Graphics Legacy Control  
Reserved  
00000000h  
R/W, RO  
VCECH  
Virtual Channel Enhanced Capability  
Header  
14010002h  
RO  
104–107h  
108–10Bh  
10C–10Dh  
10E–10Fh  
110–113h  
114–117h  
118–119h  
11A–11Bh  
11C–11Fh  
120–123h  
124–125h  
126–127h  
128–13Fh  
140–143h  
PVCCAP1  
PVCCAP2  
PVCCTL  
Port VC Capability Register 1  
Port VC Capability Register 2  
Port VC Control  
00000001h  
00000001h  
0000h  
RO, R/WO  
RO  
R/W  
Reserved  
VC0RCAP  
VC0RCTL  
VC0 Resource Capability  
VC0 Resource Control  
Reserved  
00000000h  
8000007Fh  
RO  
RO, R/W  
VC0RSTS  
VC1RCAP  
VC1RCTL  
VC0 Resource Status  
VC1 Resource Capability  
VC1 Resource Control  
Reserved  
0000h  
RO  
00008000h  
01000000h  
RO  
RO, R/W  
VC1RSTS  
VC1 Resource Status  
Reserved  
0000h  
RO  
RCLDECH  
Root Complex Link Declaration Enhanced  
Capability Header  
00010005h  
RO  
144–147h  
148–14Fh  
150–153h  
154–157h  
158–15Fh  
ESD  
Element Self Description  
Reserved  
02000100h  
RO, R/WO  
00000000h  
LE1D  
Link Entry 1 Description  
Reserved  
RO, R/WO  
LE1A  
Link Entry 1 Address  
000000000  
0000000h  
R/WO  
160–217h  
218–21Fh  
Reserved  
PEGSSTS  
PCI Express*-Graphics Sequence Status  
000000000  
0000FFFh  
RO  
220–FFFh  
Reserved  
Datasheet  
127  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1  
Host-PCI Express* Bridge PCI Register Details  
(D1:F0)  
8.1.1  
VID1—Vendor Identification (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
00h  
8086h  
RO  
Size:  
16 bits  
This register combined with the Device Identification register uniquely identifies any PCI device.  
Bit  
Access &  
Default  
Description  
15:0  
RO  
Vendor Identification (VID1): PCI standard identification for Intel.  
8086h  
8.1.2  
DID1—Device Identification (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
02h  
2581h  
RO  
Size:  
16 bits  
This register combined with the Vendor Identification register uniquely identifies any PCI device.  
Bit  
Access &  
Default  
Description  
15:0  
RO  
Device Identification Number (DID1): This field is an identifier assigned to the  
2581h  
(G)MCH device 1 (virtual PCI-to-PCI bridge, PCI Express* Graphics port).  
128  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.3  
PCICMD1—PCI Command (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
04h  
0000h  
RO, R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
15:11  
10  
Reserved  
INTA Assertion Disable:  
R/W  
0b  
0 = This device is permitted to generate INTA interrupt messages.  
1 = This device is prevented from generating interrupt messages.  
Any INTA emulation interrupts already asserted must be de-asserted when this  
bit is set.  
Only affects interrupts generated by the device (PCI INTA from a PME or Hot  
Plug event) controlled by this command register. It does not affect upstream  
MSIs, upstream PCI INTA-INTD asserts and de-assert messages.  
9
8
RO  
0b  
Fast Back-to-Back Enable (FB2B): Not Applicable or Implemented. Hardwired  
to 0.  
R/W  
0b  
SERR Message Enable (SERRE1): This bit is an enable bit for Device 1 SERR  
messaging. The (G)MCH communicates the SERR# condition by sending a  
SERR message to the Intel® ICH6. This bit, when set, enables reporting of non-  
fatal and fatal errors to the Root Complex. Note that errors are reported if  
enabled either through this bit or through the PCI Express* specific bits in the  
Device Control Register  
0 = The SERR message is generated by the (G)MCH for Device 1 only under  
conditions enabled individually through the Device Control Register.  
1 = The (G)MCH is enabled to generate SERR messages which will be sent to  
the ICH6 for specific Device 1 error conditions that are individually enabled in  
the BCTRL1 register and for all non-fatal and fatal errors generated on the  
primary side of the virtual PCI to PCI Express bridge (not those received by  
the secondary side). The error status is reported in the PCISTS1 register.  
7
6
Reserved  
R/WO  
0b  
Parity Error Enable (PERRE): This bit controls whether or not the Master Data  
Parity Error bit in the PCI Status register can bet set.  
0 = Master Data Parity Error bit in PCI Status register cannot be set.  
1 = Master Data Parity Error bit in PCI Status register can be set.  
VGA Palette Snoop: Hardwired to 0.  
5
4
3
RO  
0b  
RO  
0b  
Memory Write and Invalidate Enable (MWIE): Hardwired to 0.  
Special Cycle Enable (SCE): Hardwired to 0.  
RO  
0b  
Datasheet  
129  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
Bit  
Access &  
Default  
Description  
2
R/W  
0b  
Bus Master Enable (BME): This bit does not affect forwarding of completions  
from the primary interface to the secondary interface.  
0 = This device is prevented from making memory or I/O requests to its primary  
bus. Note that according to the PCI specification, as MSI interrupt messages  
are in-band memory writes, disabling the bus master enable bit prevents this  
device from generating MSI interrupt messages or passing them from its  
secondary bus to its primary bus. Upstream memory writes/reads, I/O  
writes/reads, peer writes/reads, and MSIs will all be treated as illegal cycles.  
Writes are forwarded to memory address 0h with byte enables de-asserted.  
Reads will be forwarded to memory address 0h and will return Unsupported  
Request status (or Master abort) in its completion packet.  
1 = This device is allowed to issue requests to its primary bus. Completions for  
previously issued memory read requests on the primary bus will be issued  
when the data is available.  
1
0
R/W  
0b  
Memory Access Enable (MAE)  
0 = All of device 1’s memory space is disabled.  
1 = Enable the Memory and Pre-fetchable memory address ranges defined in the  
MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.  
R/W  
0b  
IO Access Enable (IOAE)  
0 = All of device 1’s I/O space is disabled.  
1 = Enable the I/O address range defined in the IOBASE1 and IOLIMIT1  
registers.  
8.1.4  
PCISTS1—PCI Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
06h  
0000h  
RO, R/W/C  
16 bits  
Size:  
This register reports the occurrence of error conditions associated with primary side of the  
“virtual” Host-PCI Express bridge in the (G)MCH.  
Bit  
15  
14  
Access &  
Default  
Description  
RO  
0b  
Detected Parity Error (DPE): Hardwired to 0. Parity (generating poisoned TLPs)  
is not supported on the primary side of this device.  
R/WC  
0b  
Signaled System Error (SSE):  
1 = This bit is set when this Device sends an SERR due to detecting an  
ERR_FATAL or ERR_NONFATAL condition and the SERR Enable bit in the  
Command register is ‘1’. Both received (if enabled by BCTRL1[1]) and  
internally detected error messages do not affect this field.  
13  
RO  
0b  
Received Master Abort Status (RMAS): Not Applicable or Implemented.  
Hardwired to 0. The concept of a master abort does not exist on primary side of  
this device.  
130  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
Bit  
12  
Access &  
Default  
Description  
RO  
0b  
Received Target Abort Status (RTAS): Hardwired to 0. The concept of a target  
abort does not exist on primary side of this device.  
11  
RO  
0b  
Signaled Target Abort Status (STAS): Hardwired to 0. The concept of a target  
abort does not exist on primary side of this device.  
10:9  
RO  
00b  
DEVSELB Timing (DEVT): This device is not the subtractive decoded device on  
bus 0. This bit field is therefore hardwired to 00b to indicate that the device uses  
the fastest possible decode.  
8
RO  
0b  
Master Data Parity Error (PMDPE): Because the primary side of the PCI  
Express* x16 Graphics Interface’s virtual PCI-to-PCI bridge is integrated with the  
(G)MCH functionality, there is no scenario where this bit will get set. Because  
hardware will never set this bit, it is impossible for software to have an  
opportunity to clear this bit or otherwise test that it is implemented. The PCI  
specification defines it as a R/WC; however, for this implementation, an RO  
definition behaves the same way and will meet all Microsoft testing requirements.  
This bit can only be set when the Parity Error Enable bit in the PCI Command  
register is set.  
7
RO  
0b  
Fast Back-to-Back (FB2B): Hardwired to 0.  
6
5
Reserved  
RO  
0b  
66/60MHz capability (CAP66): Hardwired to 0.  
4
3
RO  
1b  
Capabilities List: This bit indicates that a capabilities list is present. Hardwired  
to 1.  
RO  
0b  
INTA Status: This field indicates that an interrupt message is pending internally  
to the device. Only PME and Hot Plug sources feed into this status bit (not PCI  
INTA-INTD assert and de-assert messages). The INTA Assertion Disable bit,  
PCICMD1[10], has no effect on this bit.  
2:0  
Reserved  
Datasheet  
131  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.5  
RID1—Revision Identification (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
08h  
See bit description  
RO  
Size:  
8 bits  
This register contains the revision number of the (G)MCH device 1.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
00h  
Revision Identification Number (RID1): This field indicates the number of times  
that this device in this component has been “stepped” through the manufacturing  
process. Refer to the Intel®  
82915G/82915P/82915PL/82915GV/82915GL/82910GL Express Chipset  
Specification Update for the value of the Revision ID Register.  
8.1.6  
CC1—Class Code (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
09h  
060400h  
RO  
Size:  
24 bits  
This register identifies the basic function of the device, a more specific sub-class, and a register-  
specific programming interface.  
Bit  
Access &  
Default  
Description  
23:16  
RO  
Base Class Code (BCC): This field indicates the base class code for this  
06h  
device.  
06h = Bridge device.  
15:8  
7:0  
RO  
04h  
Sub-Class Code (SUBCC): This field indicates the sub-class code for this  
device.  
04h = PCI-to-PCI Bridge.  
RO  
00h  
Programming Interface (PI): This field indicates the programming interface of  
this device. This value does not specify a particular register set layout and  
provides no practical use for this device.  
132  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.7  
CL1—Cache Line Size (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
0Ch  
00h  
R/W  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
7:0  
R/W  
00h  
Cache Line Size (Scratch pad): This field is implemented by PCI Express*  
devices as a read/write field for legacy compatibility purposes but has no impact  
on any PCI Express device functionality.  
8.1.8  
HDR1—Header Type (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
0Eh  
01h  
RO  
8 bits  
Size:  
This register identifies the header layout of the configuration space. No physical register exists at  
this location.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Header Type Register (HDR): This field returns 01h to indicate that this is a  
01h  
single function device with bridge header layout.  
8.1.9  
PBUSN1—Primary Bus Number (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
18h  
00h  
RO  
8 bits  
Size:  
This register identifies that this “virtual” Host-PCI Express bridge is connected to PCI bus 0.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
00h  
Primary Bus Number (BUSN): Configuration software typically programs this  
field with the number of the bus on the primary side of the bridge. Since device 1  
is an internal device and its primary bus is always 0, these bits are read only and  
are hardwired to 0.  
Datasheet  
133  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.10  
SBUSN1—Secondary Bus Number (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
19h  
00h  
RO  
8 bits  
Size:  
This register identifies the bus number assigned to the second bus side of the “virtual” bridge i.e.  
to PCI Express Graphics. This number is programmed by the PCI configuration software to allow  
mapping of configuration cycles to PCI Express Graphics.  
Bit  
Access &  
Default  
Description  
7:0  
R/W  
00h  
Secondary Bus Number (BUSN): This field is programmed by configuration  
software with the bus number assigned to PCI Express*-G.  
8.1.11  
SUBUSN1—Subordinate Bus Number (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
1Ah  
00h  
R/W  
8 bits  
Size:  
This register identifies the subordinate bus (if any) that resides at the level below PCI Express  
Graphics. This number is programmed by the PCI configuration software to allow mapping of  
configuration cycles to PCI Express Graphics.  
Bit  
Access &  
Default  
Description  
7:0  
R/W  
00h  
Subordinate Bus Number (BUSN): This register is programmed by  
configuration software with the number of the highest subordinate bus that lies  
behind the device 1 bridge. When only a single PCI device resides on the PCI  
Express*-G segment, this register will contain the same value as the SBUSN1  
register.  
134  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.12  
IOBASE1—I/O Base Address (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
1Ch  
F0h  
RO  
8 bits  
Size:  
This register controls the processor-to-PCI Express Graphics I/O access routing based on the  
following formula:  
IO_BASE address IO_LIMIT  
Only the upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0]  
are treated as 0. Thus, the bottom of the defined I/O address range will be aligned to a 4-KB  
boundary.  
Bit  
Access &  
Default  
Description  
7:4  
R/W  
Fh  
I/O Address Base (IOBASE): This field corresponds to A[15:12] of the I/O  
addresses passed by bridge 1 to PCI Express*-G. BIOS must not set this register  
to 00h; otherwise, 0CF8h/0CFCh accesses will be forwarded to the PCI Express  
hierarchy associated with this device.  
3:0  
Reserved  
8.1.13  
IOLIMIT1—I/O Limit Address (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
1Dh  
00h  
R/W  
8 bits  
Size:  
This register controls the processor-to-PCI Express Graphics I/O access routing based on the  
following formula:  
IO_BASE address IO_LIMIT  
Only the upper 4 bits are programmable. For the purposes of address decode, address bits A[11:0]  
are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4-  
KB aligned address block.  
Bit  
Access &  
Default  
Description  
7:4  
R/W  
0h  
I/O Address Limit (IOLIMIT): This field corresponds to A[15:12] of the I/O  
address limit of device 1. Devices between this upper limit and IOBASE1 will be  
passed to the PCI Express* hierarchy associated with this device.  
3:0  
Reserved  
Datasheet  
135  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.14  
SSTS1—Secondary Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
1Eh  
00h  
RO, R/W/C  
16 bits  
Size:  
SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with  
secondary side (i.e., PCI Express Graphics side) of the “virtual” PCI-PCI Bridge in the (G)MCH.  
Bit  
Access &  
Default  
Description  
15  
R/WC  
0b  
Detected Parity Error (DPE):  
1 = The MCH received across the link (upstream) a Posted Write Data Poisoned  
TLP (EP=1).  
14  
13  
12  
11  
R/WC  
0b  
Received System Error (RSE):  
1 = Secondary side sends an ERR_FATAL or ERR_NONFATAL message due to  
an error detected by the secondary side, and the SERR Enable bit in the  
Bridge Control register is 1.  
R/WC  
0b  
Received Master Abort (RMA):  
1 = Secondary Side for Type 1 Configuration Space Header Device (for requests  
initiated by the Type 1 Header Device itself) receives a completion with  
Unsupported Request Completion Status.  
R/WC  
0b  
Received Target Abort (RTA):  
1 = Secondary Side for Type 1 Configuration Space Header Device (for requests  
initiated by the Type 1 Header Device itself) receives a completion with  
Completer Abort Completion Status.  
RO  
0b  
Signaled Target Abort (STA): Hardwired to 0. The (G)MCH does not generate  
Target Aborts (the (G)MCH will never complete a request using the Completer  
Abort Completion status).  
10:9  
8
RO  
00b  
DEVSELB Timing (DEVT): Hardwired to 0.  
R/WC  
0b  
Master Data Parity Error (SMDPE).  
1 = The MCH received across the link (upstream) a Read Data Completion  
Poisoned TLP (EP=1).  
Note: This bit can only be set when the Parity Error Enable bit in the Bridge  
Control register is set.  
7
RO  
0b  
Fast Back-to-Back (FB2B): Hardwired to 0.  
6
5
Reserved  
RO  
0b  
66/60 MHz capability (CAP66): Hardwired to 0.  
4:0  
Reserved  
136  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.15  
MBASE1—Memory Base Address (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
20h  
FFF0h  
R/W  
16 bits  
Size:  
This register controls the processor to PCI Express Graphics non-prefetchable memory access  
routing based on the following formula:  
MEMORY_BASE address MEMORY_LIMIT  
The upper 12 bits of the register are read/write and correspond to the upper 12 address bits  
A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return zeroes  
when read. The configuration software must initialize this register. For the purpose of address  
decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory  
address range will be aligned to a 1-MB boundary.  
Bit  
15:4  
3:0  
Access &  
Default  
Description  
R/W  
FFFh  
Memory Address Base (MBASE): This field corresponds to A[31:20] of the  
lower limit of the memory range that will be passed to PCI Express*.  
Reserved  
Datasheet  
137  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.16  
MLIMIT1—Memory Limit Address (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
22h  
0000h  
R/W  
16 bits  
Size:  
This register controls the processor-to-PCI Express Graphics non-prefetchable memory access  
routing based on the following formula:  
MEMORY_BASE address MEMORY_LIMIT  
The upper 12 bits of the register are read/write and correspond to the upper 12 address bits  
A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return zeroes  
when read. Configuration software must initialize this register. For the purpose of address decode,  
address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address  
range will be at the top of a 1-MB aligned memory block.  
Note: Memory range covered by MBASE and MLIMIT registers are used to map non-prefetchable PCI  
Express Graphics address ranges (typically, where control/status memory-mapped I/O data  
structures of the graphics controller will reside) and PMBASE and PMLIMIT are used to map  
prefetchable address ranges (typically, graphics local memory). This segregation allows  
application of USWC space attribute to be performed in a true plug-and-play manner to the  
prefetchable address range for improved processor-PCI Express memory access performance.  
Note: Configuration software is responsible for programming all address range registers (prefetchable,  
non-prefetchable) with the values that provide exclusive address ranges (i.e., prevent overlap with  
each other and/or with the ranges covered with the main memory). There is no provision in the  
(G)MCH hardware to enforce prevention of overlap and operations of the system in the case of  
overlap are not guaranteed.  
Bit  
15:4  
3:0  
Access &  
Default  
Description  
R/W  
000h  
Memory Address Limit (MLIMIT): This field corresponds to A[31:20] of the  
upper limit of the address range passed to PCI Express*.  
Reserved  
138  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.17  
PMBASE1—Prefetchable Memory Base Address (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
24h  
FFF0h  
RO, R/W  
16 bits  
Size:  
This register, in conjunction with the corresponding Upper Base Address register, controls the  
processor-to-PCI Express Graphics prefetchable memory access routing based on the following  
formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-  
bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to  
address bits A[39:32] of the 40-bit address. The configuration software must initialize this  
register. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the  
bottom of the defined memory address range will be aligned to a 1-MB boundary.  
Bit  
Access &  
Default  
Description  
15:4  
R/W  
FFFh  
Prefetchable Memory Base Address (MBASE): This field corresponds to  
A[31:20] of the lower limit of the memory range that will be passed to PCI  
Express*.  
3:0  
RO  
0h  
64-bit Address Support: This field indicates that the bridge supports only 32 bit  
addresses.  
Datasheet  
139  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.18  
PMLIMIT1—Prefetchable Memory Limit Address (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
26h  
0000h  
RO, R/W  
16 bits  
Size:  
This register, in conjunction with the corresponding Upper Limit Address register, controls the  
processor-to-PCI Express Graphics prefetchable memory access routing based on the following  
formula:  
PREFETCHABLE_MEMORY_BASE address PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-  
bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to  
address bits A[39:32] of the 40-bit address. The configuration software must initialize this  
register. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh.  
Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory  
block. Note that prefetchable memory range is supported to allow segregation by the  
configuration software between the memory ranges that must be defined as UC and the ones that  
can be designated as a USWC (i.e., prefetchable) from the processor perspective.  
Bit  
15:4  
3:0  
Access &  
Default  
Description  
R/W  
000h  
Prefetchable Memory Address Limit (PMLIMIT): This field corresponds to  
A[31:20] of the upper limit of the address range passed to PCI Express*.  
RO  
0h  
64-bit Address Support: This field indicates the bridge supports only 32 bit  
addresses.  
8.1.19  
CAPPTR1—Capabilities Pointer (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
34h  
88h  
RO  
8 bits  
Size:  
The capabilities pointer provides the address offset to the location of the first entry in this  
device’s linked list of capabilities.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
First Capability (CAPPTR1): The first capability in the list is the Subsystem ID  
88h  
and Subsystem Vendor ID Capability.  
140  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.20  
INTRLINE1—Interrupt Line (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
3Ch  
00h  
R/W  
8 bits  
Size:  
This register contains interrupt line routing information. The device itself does not use this value;  
rather device drivers and operating systems use it to determine priority and vector information.  
Bit  
Access &  
Default  
Description  
7:0  
R/W  
00h  
Interrupt Connection: This field is used to communicate interrupt line routing  
information. POST software writes the routing information into this register as it  
initializes and configures the system. The value in this register indicates which  
input of the system interrupt controller this device’s interrupt pin is connected to.  
8.1.21  
INTRPIN1—Interrupt Pin (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
3Dh  
00h  
RO  
8 bits  
Size:  
This register specifies which interrupt pin this device uses.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Interrupt Pin: As a single function device, the PCI Express* device specifies  
01h  
INTA as its interrupt pin.  
01h = INTA  
Datasheet  
141  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.22  
BCTRL1—Bridge Control (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
3Eh  
0000h  
RO, R/W  
16 bits  
Size:  
This register provides extensions to the PCICMD1 register that are specific to PCI-PCI bridges.  
The BCTRL provides additional control for the secondary interface (i.e., PCI Express) as well as  
some bits that affect the overall behavior of the “virtual” Host-PCI Express bridge embedded  
within (G)MCH (e.g., VGA compatible address ranges mapping).  
Bit  
Access &  
Default  
Description  
15:12  
11  
Reserved  
RO  
0b  
Discard Timer SERR Enable: Hardwired to 0.  
10  
9
RO  
0b  
Discard Timer Status: Hardwired to 0.  
RO  
0b  
Secondary Discard Timer: Hardwired to 0.  
Primary Discard Timer: Hardwired to 0.  
8
RO  
0b  
7
RO  
0b  
Fast Back-to-Back Enable (FB2BEN): Hardwired to 0.  
6
R/W  
0b  
Secondary Bus Reset (SRESET): Setting this bit triggers a hot reset on the  
corresponding PCI Express* Port.  
5
RO  
0b  
Master Abort Mode (MAMODE): When acting as a master, unclaimed reads  
that experience a master abort returns all 1s and any writes that experience a  
master abort completes normally and the data is thrown away. Hardwired to 0.  
4
3
R/W  
0b  
VGA 16-bit Decode: This bit enables the PCI-to-PCI bridge to provide 16-bit  
decoding of VGA I/O address precluding the decoding of alias addresses every 1  
KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also set to  
1, enabling VGA I/O decoding and forwarding by the bridge.  
0 = Execute 10-bit address decodes on VGA I/O accesses.  
1 = Execute 16-bit address decodes on VGA I/O accesses.  
R/W  
0b  
VGA Enable (VGAEN): This bit controls the routing of processor-initiated  
transactions targeting VGA compatible I/O and memory address ranges. See the  
VGAEN/MDAP table in Device 0, offset 97h[0].  
142  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
Bit  
Access &  
Default  
Description  
2
R/W  
0b  
ISA Enable (ISAEN): This bit is needed to exclude legacy resource decode to  
route ISA resources to legacy decode path. This bit modifies the response by the  
(G)MCH to an I/O access issued by the processor that target ISA I/O addresses.  
This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT  
registers.  
0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O  
transactions will be mapped to PCI Express Graphics.  
1 = (G)MCH will not forward to PCI Express Graphics any I/O transactions  
addressing the last 768 bytes in each 1-KB block, even if the addresses are  
within the range defined by the IOBASE and IOLIMIT registers. Instead of  
going to PCI Express Graphics, these cycles are forwarded to DMI where  
they can be subtractively or positively claimed by the ISA bridge.  
1
0
R/W  
0b  
SERR Enable (SERREN)  
0 = No forwarding of error messages from secondary side to primary side that  
could result in an SERR.  
1 = ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR  
message when individually enabled by the Root Control register.  
RO  
0b  
Parity Error Response Enable (PEREN): This bit controls whether or not the  
Master Data Parity Error bit in the Secondary Status register is set when the  
MCH receives across the link (upstream) a Read Data Completion Poisoned  
TLP.  
0 = Master Data Parity Error bit in Secondary Status register cannot be set.  
1 = Master Data Parity Error bit in Secondary Status register can be set..  
Datasheet  
143  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.23  
PM_CAPID1—Power Management Capabilities (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
80h  
1902 9001h or 1902 A001h  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
31:27  
RO  
19h  
PME Support: This field indicates the power states in which this device may  
indicate PME wake via PCI Express messaging. D0, D3hot, and D3cold. This  
device is not required to do anything to support D3hot and D3cold; it simply must  
report that those states are supported. Refer to the PCI Power Management 1.1  
specification for encoding explanation and other power management details.  
26  
25  
RO  
0b  
D2: Hardwired to 0 to indicate that the D2 power management state is NOT  
supported.  
RO  
0b  
D1: Hardwired to 0 to indicate that the D1 power management state is NOT  
supported.  
24:22  
21  
RO  
000b  
Auxiliary Current: Hardwired to 0 to indicate that there are no 3.3Vaux auxiliary  
current requirements.  
RO  
0 b  
Device Specific Initialization (DSI): Hardwired to 0 to indicate that special  
initialization of this device is NOT required before generic class device driver is to  
use it.  
20  
19  
RO  
0b  
Auxiliary Power Source (APS): Hardwired to 0.  
RO  
0b  
PME Clock: Hardwired to 0 to indicate this device does NOT support PME#  
generation.  
18:16  
RO  
010b  
PCI PM CAP Version: Hardwired to 02h to indicate there are 4 bytes of power  
management registers implemented and that this device complies with revision  
1.1 of the PCI Power Management Interface Specification.  
15:8  
7:0  
RO  
90h  
or  
Pointer to Next Capability: This field contains a pointer to the next item in the  
capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the  
capabilities list is the Message Signaled Interrupts (MSI) capability at 90h. If  
MSICH (CAPL[0] @ 7Fh) is 1, then the next item in the capabilities list is the PCI  
Express* capability at A0h.  
A0h  
RO  
Capability ID: Value of 01h identifies this linked list item (capability structure) as  
01h  
being for PCI Power Management registers.  
144  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.24  
PM_CS1—Power Management Control/Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
84h  
00000000h  
RO, R/W/S  
32 bits  
Size:  
Bit  
Access &  
Default  
Description  
31:16  
15  
Reserved  
PME Status: This bit indicates that this device does not support PME#  
RO  
0b  
generation from D3  
.
cold  
14:13  
12:9  
8
RO  
00b  
Data Scale: This field indicates that this device does not support the power  
management data register.  
RO  
0h  
Data Select: This field indicates that this device does not support the power  
management data register.  
R/W/S  
0b  
PME Enable: This bit indicates that this device does not generate PMEB  
assertion from any D-state.  
0 = PMEB generation not possible from any D State  
1 = PMEB generation enabled from any D State  
The setting of this bit has no effect on hardware.  
See PM_CAP[15:11]  
7:2  
1:0  
Reserved  
R/W  
00b  
Power State: This field indicates the current power state of this device and can  
be used to set the device into a new power state. If software attempts to write an  
unsupported state to this field, write operation must complete normally on the  
bus, but the data is discarded and no state change occurs.  
00 = D0  
01 = D1 (Not supported in this device.)  
10 = D2 (Not supported in this device.)  
11 = D3  
Support of D3cold does not require any special action.  
While in the D3hot state, this device can only act as the target of PCI  
configuration transactions (for power management control). This device also  
cannot generate interrupts or respond to MMR cycles in the D3 state. The device  
must return to the D0 state to be fully functional.  
There is no hardware functionality required to support these power states.  
Datasheet  
145  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.25  
SS_CAPID—Subsystem ID and Vendor ID Capabilities  
(D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
88h  
0000800Dh  
RO  
Size:  
32 bits  
This capability is used to uniquely identify the subsystem where the PCI device resides. Because  
this device is an integrated part of the system and not an add-in device, it is anticipated that this  
capability will never be used. However, it is necessary because Microsoft will test for its  
presence.  
Bit  
Access &  
Default  
Description  
31:16  
15:8  
Reserved  
RO  
Pointer to Next Capability: This field contains a pointer to the next item in the  
80h  
capabilities list which is the PCI Power Management capability.  
7:0  
RO  
Capability ID: A value of 0Dh identifies this linked list item (capability structure)  
0D h  
as being for SSID/SSVID registers in a PCI-to-PCI Bridge.  
8.1.26  
SS—Subsystem ID and Subsystem Vendor ID (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
8Ch  
00008086h  
RO  
Size:  
32 bits  
System BIOS can be used as the mechanism for loading the SSID/SVID values. These values  
must be preserved through power management transitions and hardware reset.  
Bit  
Access &  
Default  
Description  
31:16  
15:0  
R/WO  
0000h  
Subsystem ID (SSID): This field identifies the particular subsystem and is  
assigned by the vendor.  
R/WO  
8086h  
Subsystem Vendor ID (SSVID): This field identifies the manufacturer of the  
subsystem and is the same as the vendor ID that is assigned by the PCI Special  
Interest Group.  
146  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.27  
MSI_CAPID—Message Signaled Interrupts Capability ID  
(D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
90h  
A005h  
RO  
Size:  
16 bits  
When a device supports MSI, it can generate an interrupt request to the processor by writing a  
predefined data item (a message) to a predefined memory address.  
The reporting of the existence of this capability can be disabled by setting MSICH (CAPL [0] at  
7Fh). In that case walking this linked list will skip this capability and, instead, go directly from  
the PCI PM capability to the PCI Express capability.  
Bit  
15:8  
7:0  
Access &  
Default  
Description  
RO  
A0h  
Pointer to Next Capability: This field contains a pointer to the next item in the  
capabilities list that is the PCI Express* capability.  
RO  
Capability ID:  
05h  
05h = Identifies this linked list item (capability structure) as being for MSI  
registers.  
Datasheet  
147  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.28  
MC—Message Control (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
92h  
0000h  
RO, R/W  
16 bits  
Size:  
System software can modify bits in this register, but the device is prohibited from doing so.  
If the device writes the same message multiple times, only one of those messages is guaranteed to  
be serviced. If all of them must be serviced, the device must not generate the same message again  
until the driver services the earlier one.  
Bit  
Access &  
Default  
Description  
15:8  
7
Reserved  
RO  
0b  
64-bit Address Capable: Hardwired to 0 to indicate that the function does not  
implement the upper 32 bits of the Message Address register and is incapable of  
generating a 64-bit memory address.  
6:4  
R/W  
000b  
Multiple Message Enable (MME): System software programs this field to  
indicate the actual number of messages allocated to this device. This number will  
be equal to or less than the number actually requested.  
000 = 1 message allocated  
001–111 = Reserved  
3:1  
RO  
Multiple Message Capable (MMC): System software reads this field to  
000b  
determine the number of messages being requested by this device.  
000 = 1 message requested  
001–111 = Reserved  
0
R/W  
0b  
MSI Enable (MSIEN) Controls the ability of this device to generate MSIs.  
0 = MSI will not be generated.  
1 = MSI will be generated when we receive PME or HotPlug messages. INTA will  
not be generated and INTA Status (PCISTS1[3]) will not be set.  
148  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.29  
MA—Message Address (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
94h  
00000000h  
RO, R/W  
32 bits  
Size:  
Bit  
Access &  
Default  
Description  
31:2  
R/W  
Message Address: This field is used by system software to assign an MSI  
00000000 h  
address to the device.  
The device handles an MSI by writing the padded contents of the MD register to  
this address.  
1:0  
RO  
Force DWord Align: Hardwired to 0 so that addresses assigned by system  
00b  
software are always aligned on a DWord address boundary.  
8.1.30  
MD—Message Data (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
98h  
0000h  
R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
15:0  
R/W  
Message Data: This field provides a base message data pattern assigned by  
0000h  
system software and used to handle an MSI from the device.  
When the device must generate an interrupt request, it writes a 32-bit value to  
the memory address specified in the MA register. The upper 16 bits are always  
set to 0. This register supplies the lower 16 bits.  
Datasheet  
149  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.31  
PEG_CAPL—PCI Express* Capability List (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
A0h  
0010h  
RO  
Size:  
16 bits  
This register enumerates the PCI Express capability structure.  
Bit  
Access &  
Default  
Description  
15:8  
RO  
00h  
Pointer to Next Capability: This value terminates the capabilities list. The Virtual  
Channel capability and any other PCI Express* specific capabilities that are  
reported via this mechanism are in a separate capabilities list located entirely  
within PCI Express extended configuration space.  
7:0  
RO  
Capability ID: This field identifies this linked list item (capability structure) as  
10h  
being for PCI Express registers.  
8.1.32  
PEG_CAP—PCI Express*-G Capabilities (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
A2h  
0141h  
RO  
Size:  
16 bits  
Indicates PCI Express device capabilities.  
Bit  
Access &  
Default  
Description  
15:14  
13:9  
Reserved  
RO  
Interrupt Message Number: Hardwired to 0.  
00h  
8
R/WO  
1b  
Slot Implemented  
0 = The PCI Express* Link associated with this port is connected to an integrated  
component or is disabled.  
1 = The PCI Express Link associated with this port is connected to a slot.  
BIOS must initialize this field appropriately if a slot connection is not implemented.  
7:4  
3:0  
RO  
4h  
Device/Port Type: Hardwired to 0100 to indicate root port of PCI Express Root  
Complex.  
RO  
1h  
PCI Express Capability Version: Hardwired to 1 as it is the first version.  
150  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.33  
DCAP—Device Capabilities (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
A4h  
00000000h  
RO  
Size:  
32 bits  
This register indicates PCI Express link capabilities.  
Bit  
Access &  
Default  
Description  
31:6  
5
Reserved  
RO  
0b  
Extended Tag Field Supported: Hardwired to indicate support for 5-bit Tags as a  
Requestor.  
4:3  
2:0  
RO  
00b  
Phantom Functions Supported: Hardwired to 0.  
RO  
Max Payload Size: Hardwired to indicate 128B maximum supported payload for  
000b  
Transaction Layer Packets (TLP).  
Datasheet  
151  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.34  
DCTL—Device Control (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
A8h  
0000h  
R/W  
16 bits  
Size:  
This register provides control for PCI Express device specific capabilities.  
The error reporting enable bits are in reference to errors detected by this device, not error  
messages received across the link. The reporting of error messages (ERR_CORR,  
ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root Port  
Command Register.  
Bit  
Access &  
Default  
Description  
15:8  
7:5  
Reserved  
R/W  
Max Payload Size  
000b  
000 = 128B maximum supported payload for Transaction Layer Packets (TLP).  
As a receiver, the device must handle TLPs as large as the set value; as  
transmitter, the device must not generate TLPs exceeding the set value.  
Note: All other encodings are reserved.  
Reserved  
4
3
R/W  
0b  
Unsupported Request Reporting Enable:  
0 = Disable.  
1 = Enable. Unsupported Requests will be reported.  
Note that reporting of error messages received by Root Port is controlled  
exclusively by Root Control register.  
2
1
R/W  
0b  
Fatal Error Reporting Enable:  
0 = Disable.  
1 = Enable. Fatal errors will be reported. For a Root Port, the reporting of fatal  
errors is internal to the root. No external ERR_FATAL message is  
generated.  
R/W  
0b  
Non-Fatal Error Reporting Enable:  
0 = Disable.  
1 = Enable. Non-fatal errors will be reported. For a Root Port, the reporting of  
non-fatal errors is internal to the root. No external ERR_NONFATAL  
message is generated. Uncorrectable errors can result in degraded  
performance.  
0
R/W  
0b  
Correctable Error Reporting Enable:  
0 = Disable.  
1 = Enable. Correctable errors will be reported. For a Root Port, the reporting of  
correctable errors is internal to the root. No external ERR_CORR message  
is generated.  
152  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.35  
DSTS—Device Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
AAh  
0000h  
RO  
Size:  
16 bits  
This register reflects status corresponding to controls in the Device Control register.  
Note: The error reporting bits are in reference to errors detected by this device, not errors messages  
received across the link.  
Bit  
Access &  
Default  
Description  
15:6  
5
Reserved  
RO  
0b  
Transactions Pending  
0 = All pending transactions (including completions for any outstanding non-  
posted requests on any used virtual channel) have been completed.  
1 = Device has transaction(s) pending (including completions for any outstanding  
non-posted requests for all used Traffic Classes).  
4
3
Reserved  
R/WC  
0b  
Unsupported Request Detected:  
1 = Device received an Unsupported Request. Errors are logged in this register  
regardless of whether error reporting is enabled or not in the Device Control  
Register.  
2
1
0
R/WC  
0b  
Fatal Error Detected:  
1 = Fatal error(s) were detected. Errors are logged in this register regardless of  
whether error reporting is enabled or not in the Device Control register.  
R/WC  
0b  
Non-Fatal Error Detected:  
1 = Non-fatal error(s) were detected. Errors are logged in this register regardless  
of whether error reporting is enabled or not in the Device Control register.  
R/WC  
0b  
Correctable Error Detected:  
1 = Correctable error(s) were detected. Errors are logged in this register  
regardless of whether error reporting is enabled or not in the Device Control  
register.  
Note: The (G)MCH may report a false 8B/10B Receiver Error when exiting L0s.  
This is reported thru the Correctable Error Detected bit CESTS device 1, offset  
1D0h, Bit [0]. This will reduce the value of Receiver Error detection when L0s is  
enabled. Disable L0s for accurate Receiver Error reporting.  
Datasheet  
153  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.36  
LCAP—Link Capabilities (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
ACh  
02012E01h  
R/WO  
16 bits  
Size:  
This register indicates PCI Express device specific capabilities.  
Bit  
Access &  
Default  
Description  
31:24  
RO  
Port Number: This field indicates the PCI Express* port number for the given PCI  
02h  
Express link. This field matches the value in Element Self Description [31:24].  
23:18  
17:15  
Reserved  
R/WO  
010b  
L1 Exit Latency: This field indicates the length of time this Port requires to  
complete the transition from L1 to L0. The value 010 b indicates the range of 2 µs  
to less than 4 µs. If this field is required to be any value other than the default,  
BIOS must initialize it accordingly.  
Both bytes of this register that contain a portion of this field must be written  
simultaneously in order to prevent an intermediate (and undesired) value from  
ever existing.  
14:12  
R/WO  
010b  
L0s Exit Latency: This field indicates the length of time this Port requires to  
complete the transition from L0s to L0. The value 010 b indicates the range of 128  
ns to less than 256 ns. If this field is required to be any value other than the  
default, BIOS must initialize it accordingly.  
Note: When PCI Express* is operating with separate reference clocks, L0s exit  
latency may be greater than the setting in the L0s Exit Latency Register.  
Expect longer exit latency then setting in L0s Exit Latency Register. The  
link may enter Recovery state before reaching L0. System BIOS can  
program the appropriate Exit Latency and advertised N_FTS value if it  
detects that the downstream device is not using the common reference  
clock (indicated in the Slot Clock Configuration bit 12 of the device’s Link  
Status Register)  
11:10  
9:4  
R/WO  
11b  
Active State Link PM Support: L0s & L1 entry supported.  
RO  
Max Link Width: Hardwired to indicate X16.  
10h  
When Force X1 mode is enabled on this PCI Express* x16 Graphics Interface  
device, this field reflects X1 (01h).  
3:0  
RO  
1h  
Max Link Speed: Hardwired to indicate 2.5 Gb/s.  
154  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.37  
LCTL—Link Control (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
B0h  
0000h  
RO, R/W  
16 bits  
Size:  
This register allows control of PCI Express link.  
Bit  
Access &  
Default  
Description  
15:8  
7
Reserved  
R/W  
0h  
Reserved. Must be 0 when writing this register.  
6
R/W  
0b  
Common Clock Configuration  
0 = This component and the component at the opposite end of this Link are  
operating with asynchronous reference clock.  
1 = This component and the component at the opposite end of this Link are  
operating with a distributed common reference clock.  
Components use this common clock configuration information to report the correct  
L0s and L1 Exit Latencies.  
5
R/W  
0b  
Retrain Link  
0 = Normal operation  
1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from L0,  
L0s, or L1 states to the Recovery state.  
This bit always returns 0 when read. This bit is cleared automatically (no need to  
write a 0).  
4
R/W  
0b  
Link Disable  
0 = Normal operation  
1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (via  
Recovery) from L0, L0s, or L1 states.  
Link retraining happens automatically on 0 to 0 transition, just like when coming  
out of reset. Writes to this bit are immediately reflected in the value read from the  
bit, regardless of actual Link state.  
3
RO  
0b  
Read Completion Boundary (RCB): Hardwired to 0 to indicate 64 byte.  
2
Reserved  
1:0  
R/W  
00b  
Active State PM: This field controls the level of active state power management  
supported on the given link.  
00 = Disabled  
01 = L0s Entry Supported  
10 = Reserved  
11 = L0s and L1 Entry Supported  
Datasheet  
155  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.38  
LSTS—Link Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
B2h  
1001h  
RO  
Size:  
16 bits  
This register indicates PCI Express link status.  
Bit  
Access &  
Default  
Description  
15:13  
12  
Reserved  
RO  
1b  
Slot Clock Configuration  
0 = The device uses an independent clock irrespective of the presence of a  
reference on the connector.  
1 = The device uses the same physical reference clock that the platform provides  
on the connector.  
11  
10  
RO  
0b  
Link Training:  
1 = Link training is in progress. Hardware clears this bit once Link training is  
complete.  
RO  
0b  
Training Error:  
1 = This bit is set by hardware upon detection of unsuccessful training of the Link  
to the L0 Link state.  
9:4  
RO  
00h  
Negotiated Width: This field indicates negotiated link width. This field is valid  
only when the link is in the L0, L0s, or L1 states (after link width negotiation is  
successfully completed).  
00h = Reserved  
01h = X1  
04h = Reserved  
08h = Reserved  
10h = X16  
All other encodings are reserved.  
Negotiated Speed: This field indicates negotiated link speed.  
1h = 2.5 Gb/s  
3:0  
RO  
1h  
All other encodings are reserved.  
156  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.39  
SLOTCAP—Slot Capabilities (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
B4h  
00000000h  
R/WO  
Size:  
32 bits  
PCI Express slot-related registers allow for the support of Hot-Plug.  
Bit  
Access &  
Default  
Description  
31:19  
R/WO  
0000h  
Physical Slot Number: This field indicates the physical slot number attached to  
this Port.  
This field must be initialized by BIOS to a value that assigns a slot number that  
is globally unique within the chassis.  
18:17  
16:15  
Reserved  
R/WO  
00b  
Slot Power Limit Scale: This field specifies the scale used for the Slot Power  
Limit Value.  
00 = 1.0x  
01 = 0.1x  
10 = 0.01x  
11 = 0.001x  
If this field is written, the link sends a Set_Slot_Power_Limit message.  
14:7  
R/WO  
00h  
Slot Power Limit Value: In combination with the Slot Power Limit Scale value,  
this field specifies the upper limit on power supplied by slot. Power limit (in  
Watts) is calculated by multiplying the value in this field by the value in the Slot  
Power Limit Scale field.  
If this field is written, the link sends a Set_Slot_Power_Limit message.  
6
5
4
3
R/WO  
0b  
Hot-plug Capable: This field indicates that this slot is capable of supporting  
Hot-plug operations.  
R/WO  
0b  
Hot-plug Surprise: This field indicates that a device present in this slot might  
be removed from the system without any prior notification.  
R/WO  
0b  
Power Indicator Present: This field indicates that a Power Indicator is  
implemented on the chassis for this slot.  
R/WO  
0b  
Attention Indicator Present: This field indicates that an Attention Indicator is  
implemented on the chassis for this slot.  
2:1  
0
Reserved  
R/WO  
0b  
Attention Button Present: This field indicates that an Attention Button is  
implemented on the chassis for this slot. The Attention Button allows the user to  
request hot-plug operations.  
Datasheet  
157  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.40  
SLOTCTL—Slot Control (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
B8h  
01C0h  
R/W  
16 bits  
Size:  
PCI Express slot related registers allow for the support of Hot-Plug.  
Bit  
Access &  
Default  
Description  
15:10  
9:8  
Reserved  
R/W  
01b  
Power Indicator Control: Reads to this register return the current state of the  
Power Indicator.  
Writes to this register set the Power Indicator and cause the Port to send the  
appropriate POWER_INDICATOR_* messages.  
00 = Reserved  
01 = On  
10 = Blink  
11 = Off  
7:6  
R/W  
11b  
Attention Indicator Control: Reads to this register return the current state of  
the Attention Indicator.  
Writes to this register set the Attention Indicator and cause the Port to send the  
appropriate ATTENTION_INDICATOR_* messages.  
00 = Reserved  
01 = On  
10 = Blink  
11 = Off  
5
4
R/W  
0b  
Hot plug Interrupt Enable:  
0 = Disable.  
1 = Enables generation of hot plug interrupt on enabled hot plug events.  
R/W  
0b  
Command Completed Interrupt Enable:  
0 = Disable.  
1 = Enables the generation of hot plug interrupt when the Hot plug controller  
completes a command.  
3
R/W  
0b  
Presence Detect Changed Enable:  
0 = Disable.  
1 = Enables the generation of hot plug interrupt or wake message on a  
presence detect changed event.  
2:1  
0
Reserved  
R/W  
0b  
Attention Button Pressed Enable:  
0 = Disable.  
1 = Enables the generation of hot plug interrupt or wake message on an  
attention button pressed event.  
158  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.41  
SLOTSTS—Slot Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
BAh  
0X00h  
RO, R/W/C  
16 bits  
Size:  
PCI Express slot-related registers allow for the support of Hot-Plug.  
Bit  
Access &  
Default  
Description  
15:7  
6
Reserved  
RO  
Xb  
Presence Detect State: This bit indicates the presence of a card in the slot.  
0 = Slot Empty  
1 = Card Present in slot.  
5
4
Reserved  
R/WC  
0b  
Command Completed:  
1 = Hot plug controller completed an issued command.  
Presence Detect Changed:  
3
R/WC  
0b  
1 = Presence Detect change is detected. This corresponds to an edge on the  
signal that corresponds to bit 6 of this register (Presence Detect State).  
2:1  
0
Reserved  
R/WC  
0b  
Attention Button Pressed:  
1 = Attention Button is pressed.  
Datasheet  
159  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.42  
RCTL—Root Control (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
BCh  
0000h  
R/W  
16 bits  
Size:  
This register allows control of PCI Express Root Complex specific parameters. The system error  
control bits in this register determine if corresponding SERRs are generated when our device  
detects an error (reported in this device’s Device Status register) or when an error message is  
received across the link. Reporting of SERR as controlled by these bits takes precedence over the  
SERR Enable in the PCI Command Register.  
Bit  
Access &  
Default  
Description  
15:4  
3
Reserved  
R/W  
0b  
PME Interrupt Enable  
0 = No interrupts are generated as a result of receiving PME messages.  
1 = Enables interrupt generation upon receipt of a PME message as reflected in  
the PME Status bit of the Root Status Register. A PME interrupt is also  
generated if the PME Status bit of the Root Status Register is set when this bit  
is set from a cleared state.  
2
1
0
R/W  
0b  
System Error on Fatal Error Enable: This bit controls the Root Complex’s  
response to fatal errors.  
0 = No SERR generated on receipt of fatal error.  
1 = Indicates that an SERR should be generated if a fatal error is reported by any  
of the devices in the hierarchy associated with this Root Port, or by the Root  
Port itself.  
R/W  
0b  
System Error on Non-Fatal Uncorrectable Error Enable: This bit controls the  
Root Complex’s response to non-fatal errors.  
0 = No SERR generated on receipt of non-fatal error.  
1 = Indicates that an SERR should be generated if a non-fatal error is reported by  
any of the devices in the hierarchy associated with this Root Port, or by the  
Root Port itself.  
R/W  
0b  
System Error on Correctable Error Enable: This bit controls the Root Complex’s  
response to correctable errors.  
0 = No SERR generated on receipt of correctable error.  
1 = Indicates that an SERR should be generated if a correctable error is reported  
by any of the devices in the hierarchy associated with this Root Port, or by the  
Root Port itself.  
160  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.43  
RSTS—Root Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
C0h  
00000000h  
RO, R/W/C  
32 bits  
Size:  
This register provides information about PCI Express Root Complex specific parameters.  
Bit  
Access &  
Default  
Description  
31:18  
17  
Reserved  
RO  
0b  
PME Pending: This bit indicates that another PME is pending when the PME  
Status bit is set. When the PME Status bit is cleared by software; the PME is  
delivered by hardware by setting the PME Status bit again and updating the  
Requestor ID appropriately. The PME pending bit is cleared by hardware if no  
more PMEs are pending.  
16  
R/W/C  
0b  
PME Status: This bit indicates that the requestor ID indicated in the PME  
Requestor ID field asserted PME. Subsequent PMEs are kept pending until the  
status register is cleared by writing a 1 to this field.  
15:0  
RO  
PME Requestor ID: This field indicates the PCI requestor ID of the last PME  
0000h  
requestor.  
Datasheet  
161  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.44  
PEGLC—PCI Express*-G Legacy Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
ECh  
00000000h  
RO, R/W  
32 bits  
Size:  
This register controls functionality that is needed by Legacy (non-PCI Express aware) OS’s  
during run time.  
Bit  
Access &  
Default  
Description  
31:3  
RO  
Reserved  
0000  
0000h  
2
1
0
R/W  
0b  
PME GPE Enable (PMEGPE):  
0 = Do not generate GPE PME message when PME is received.  
1 = Enable. Generate a GPE PME message when PME is received  
(Assert_PMEGPE and Deassert_PMEGPE messages on DMI). This enables  
the (G)MCH to support PMEs on the PCI Express* x16 Graphics Interface  
port under legacy OSs.  
R/W  
0b  
Hot-Plug GPE Enable (HPGPE)  
0 = Do not generate GPE Hot-Plug message when Hot-Plug event is received.  
1 = Enable. Generate a GPE Hot-Plug message when Hot-Plug Event is received  
(Assert_HPGPE and Deassert_HPGPE messages on DMI). This enables the  
(G)MCH to support Hot-Plug on the PCI Express* x16 Graphics Interface port  
under legacy OSs.  
R/W  
0b  
General Message GPE Enable (GENGPE)  
0 = Do not forward received GPE assert/deassert messages.  
1 = Enable. Forward received GPE assert/deassert messages. These general  
GPE message can be received via the PCI Express* x16 Graphics Interface  
port from an external Intel device and will be subsequently forwarded to the  
Intel® ICH6 (via Assert_GPE and Deassert_GPE messages on DMI).  
162  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.45  
VCECH—Virtual Channel Enhanced Capability Header  
(D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
100h  
14010002h  
RO  
Size:  
32 bits  
This register indicates PCI Express device Virtual Channel capabilities.  
Note: Extended capability structures for PCI Express devices are located in PCI Express extended  
configuration space and have different field definitions than standard PCI capability structures.  
Bit  
Access &  
Default  
Description  
31:20  
19:16  
15:0  
RO  
140h  
Pointer to Next Capability: The Link Declaration Capability is the next in the PCI  
Express* extended capabilities list.  
RO  
1h  
PCI Express Virtual Channel Capability Version: Hardwired to 1 to indicate  
compliances with the 1.0a version of the PCI Express specification.  
RO  
Extended Capability ID: Value of 0002 h identifies this linked list item (capability  
0002h  
structure) as being for PCI Express Virtual Channel registers.  
8.1.46  
PVCCAP1—Port VC Capability Register 1 (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
104h  
00000001h  
RO, R/WO  
32 bits  
Size:  
This register describes the configuration of PCI Express Virtual Channels associated with this  
port.  
Bit  
Access &  
Default  
Description  
31:7  
6:4  
Reserved  
RO  
000b  
Low Priority Extended VC Count: This field indicates the number of (extended)  
Virtual Channels in addition to the default VC belonging to the low-priority VC  
(LPVC) group that has the lowest priority with respect to other VC resources in a  
strict-priority VC Arbitration.  
The value of 0 in this field implies strict VC arbitration.  
Reserved  
3
2:0  
R/WO  
001b  
Extended VC Count: This field indicates the number of (extended) Virtual  
Channels in addition to the default VC supported by the device.  
Datasheet  
163  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.47  
PVCCAP2—Port VC Capability Register 2 (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
108h  
00000001h  
RO  
Size:  
32 bits  
This register describes the configuration of PCI Express Virtual Channels associated with this  
port.  
Bit  
Access &  
Default  
Description  
31:24  
RO  
00h  
VC Arbitration Table Offset: This field indicates the location of the VC Arbitration  
Table. This field contains the zero-based offset of the table in DQWORDS (16  
bytes) from the base address of the Virtual Channel Capability Structure. A value  
of 0 indicates that the table is not present (due to fixed VC priority).  
23:8  
7:0  
Reserved  
RO  
VC Arbitration Capability: This field indicates that the only possible VC  
01h  
arbitration scheme is hardware fixed (in the root complex).  
VC1 is the highest priority, VC0 is the lowest priority.  
8.1.48  
PVCCTL—Port VC Control (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
10Ch  
0000h  
R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
15:4  
3:1  
Reserved  
R/W  
000b  
VC Arbitration Select: This field will be programmed by software to the only  
possible value as indicated in the VC Arbitration Capability field. The value 001b  
when written to this field will indicate the VC arbitration scheme is hardware fixed  
(in the root complex).  
This field can not be modified when more than one VC in the LPVC group is  
enabled.  
0
Reserved  
164  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.49  
VC0RCAP—VC0 Resource Capability (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
110h  
00000000h  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
31:16  
15  
Reserved  
Reject Snoop Transactions  
RO  
0b  
0 = Transactions with or without the No Snoop bit set within the TLP header are  
allowed on this VC.  
1 = Any transaction without the No Snoop bit set within the TLP header will be  
rejected as an Unsupported Request.  
14:0  
Reserved  
8.1.50  
VC0RCTL—VC0 Resource Control (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
114h  
8000007Fh  
RO, R/W  
32 bits  
Size:  
This register controls the resources associated with PCI Express Virtual Channel 0.  
Bit  
Access &  
Default  
Description  
31  
RO  
1b  
VC0 Enable: For VC0, this is hardwired to 1 and read only as VC0 can never be  
disabled.  
30:27  
26:24  
Reserved  
RO  
VC0 ID: This field assigns a VC ID to the VC resource. For VC0 this is hardwired  
000b  
to 0 and read only.  
23:8  
7:1  
Reserved  
R/W  
7Fh  
TC/VC0 Map: This field indicates the TCs (Traffic Classes) that are mapped to  
the VC resource. Bit locations within this field correspond to TC values. For  
example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When  
more than one bit in this field is set, it indicates that multiple TCs are mapped to  
the VC resource. In order to remove one or more TCs from the TC/VC Map of an  
enabled VC, software must ensure that no new or outstanding transactions with  
the TC labels are targeted at the given Link.  
0
RO  
1b  
TC0/VC0 Map: Traffic Class 0 is always routed to VC0.  
Datasheet  
165  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.51  
VC0RSTS—VC0 Resource Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
11Ah  
0000h  
RO  
Size:  
16 bits  
This register reports the Virtual Channel specific status.  
Bit  
Access &  
Default  
Description  
15:2  
1
Reserved  
RO  
1b  
VC0 Negotiation Pending  
0 = The VC negotiation is complete.  
1 = The VC resource is still in the process of negotiation (initialization or  
disabling).  
This bit indicates the status of the process of Flow Control initialization. It is set by  
default on Reset, as well as whenever the corresponding Virtual Channel is  
Disabled or the Link is in the DL_Down state. It is cleared when the link  
successfully exits the FC_INIT2 state  
Before using a Virtual Channel, software must check whether the VC Negotiation  
Pending fields for that Virtual Channel are cleared in both Components on a Link.  
0
Reserved  
8.1.52  
VC1RCAP—VC1 Resource Capability (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
11Ch  
00008000h  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
31:16  
15  
Reserved  
Reject Snoop Transactions  
RO  
1b  
0 = Transactions with or without the No Snoop bit set within the TLP header are  
allowed on this VC.  
1 = Any transaction without the No Snoop bit set within the TLP header will be  
rejected as an Unsupported Request.  
14:0  
Reserved  
166  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.53  
VC1RCTL—VC1 Resource Control (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
120h  
01000000h  
RO, R/W  
32 bits  
Size:  
Controls the resources associated with PCI Express Virtual Channel 1.  
Bit  
Access &  
Default  
Description  
31  
R/W  
0b  
VC1 Enable  
0 = Virtual Channel is disabled.  
1 = Virtual Channel is enabled. See exceptions in note below.  
Software must use the VC Negotiation Pending bit to check whether the VC  
negotiation is complete. When VC Negotiation Pending bit is cleared, a 1 read  
from this VC Enable bit indicates that the VC is enabled (Flow Control  
Initialization is completed for the PCI Express* port); a 0 read from this bit  
indicates that the Virtual Channel is currently disabled.  
Notes:  
To enable a Virtual Channel, the VC Enable bits for that Virtual Channel must  
be set in both Components on a Link.  
To disable a Virtual Channel, the VC Enable bits for that Virtual Channel must  
be cleared in both Components on a Link.  
Software must ensure that no traffic is using a Virtual Channel at the time it is  
disabled.  
Software must fully disable a Virtual Channel in both Components on a Link  
before re-enabling the Virtual Channel.  
30:27  
26:24  
Reserved  
R/W  
001b  
VC1 ID: Assigns a VC ID to the VC resource. Assigned value must be non-zero.  
This field cannot be modified when the VC is already enabled.  
Reserved  
23:8  
7:1  
R/W  
00h  
TC/VC1 Map: This field indicates the TCs (Traffic Classes) that are mapped to  
the VC resource. Bit locations within this field correspond to TC values. For  
example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When  
more than one bit in this field is set, it indicates that multiple TCs are mapped to  
the VC resource. In order to remove one or more TCs from the TC/VC Map of an  
enabled VC, software must ensure that no new or outstanding transactions with  
the TC labels are targeted at the given Link.  
0
RO  
0b  
TC0/VC1 Map: Traffic Class 0 is always routed to VC0.  
Datasheet  
167  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.54  
VC1RSTS—VC1 Resource Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
126h  
0000h  
RO  
Size:  
16 bits  
This register reports the Virtual Channel specific status.  
Bit  
Access &  
Default  
Description  
15:2  
1
Reserved  
RO  
1b  
VC1 Negotiation Pending  
0 = The VC negotiation is complete.  
1 = The VC resource is still in the process of negotiation (initialization or  
disabling).  
This bit indicates the status of the process of Flow Control initialization. It is set by  
default on Reset, as well as when the corresponding Virtual Channel is Disabled  
or the Link is in the DL_Down state. It is cleared when the link successfully exits  
the FC_INIT2 state  
Before using a Virtual Channel, software must check whether the VC Negotiation  
Pending fields for that Virtual Channel are cleared in both Components on a Link.  
0
Reserved  
8.1.55  
RCLDECH—Root Complex Link Declaration Enhanced  
Capability Header (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
140h  
00010005h  
RO  
Size:  
32 bits  
This capability declares links from this element (PCI Express* x16 Graphics Interface) to other  
elements of the root complex component to which it belongs. See the PCI Express specification  
for link/topology declaration requirements.  
Bit  
Access &  
Default  
Description  
31:20  
RO  
Pointer to Next Capability: This is the last capability in the PCI Express*  
extended capabilities list.  
000h  
19:16  
15:0  
RO  
1h  
Link Declaration Capability Version: Hardwired to 1 to indicate compliances  
with the 1.0a version of the PCI Express specification.  
RO  
Extended Capability ID: Value of 0005h identifies this linked list item (capability  
0005h  
structure) as being for PCI Express Link Declaration Capability.  
Note: See corresponding Egress Port Link Declaration Capability registers for diagram of Link  
Declaration Topology.  
168  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.56  
ESD—Element Self Description (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
144h  
02000100h  
RO, R/WO  
32 bits  
Size:  
This register provides information about the root complex element containing this Link  
Declaration Capability.  
Bit  
Access &  
Default  
Description  
31:24  
RO  
02h  
Port Number: This field specifies the port number associated with this element  
with respect to the component that contains this element. The egress port of the  
component to provide arbitration to this Root Complex Element uses this port  
number value.  
23:16  
15:8  
R/WO  
00h  
Component ID: This field indicates the physical component that contains this  
Root Complex Element. Component IDs start at 1.  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it  
will be reflected everywhere that it is mirrored.  
RO  
01h  
Number of Link Entries: This field indicates the number of link entries following  
the Element Self Description. This field reports 1 (to Egress port only as peer-to-  
peer capabilities in this topology are not reported).  
7:4  
3:0  
Reserved  
RO  
0h  
Element Type: This field indicates the type of the Root Complex Element.  
0h = root port.  
Datasheet  
169  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.57  
LE1D—Link Entry 1 Description (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
150h  
00000000h  
RO, R/WO  
32 bits  
Size:  
This register provides the First part of a Link Entry that declares an internal link to another Root  
Complex Element.  
Bit  
Access &  
Default  
Description  
31:24  
RO  
00h  
Target Port Number: This field specifies the port number associated with the  
element targeted by this link entry (Egress Port). The target port number is with  
respect to the component that contains this element as specified by the target  
component ID.  
23:16  
R/WO  
00h  
Target Component ID: This field indicates the physical or logical component that  
is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it  
will be reflected everywhere that it is mirrored.  
15:2  
1
Reserved  
RO  
0b  
Link Type: This field indicates that the link points to memory-mapped space (for  
RCRB). The link address specifies the 64-bit base address of the target RCRB.  
0
R/WO  
0b  
Link Valid:  
0 = Link Entry is not valid and will be ignored.  
1 = Link Entry specifies a valid link.  
170  
Datasheet  
Host-PCI Express* Bridge Registers (D1:F0)  
(Intel® 82915G/82915P/82915PL Only)  
R
8.1.58  
LE1A—Link Entry 1 Address (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
158h  
0000000000000000h  
R/WO  
Size:  
64 bits  
This register provides the second part of a Link Entry that declares an internal link to another  
Root Complex Element.  
Bit  
Access &  
Default  
Description  
63:32  
31:12  
Reserved  
R/WO  
Link Address: This field indicates memory-mapped base address of the RCRB  
0 0000h  
that is the target element (Egress Port) for this link entry.  
11:0  
Reserved  
8.1.59  
PEGSSTS—PCI Express*-G Sequence Status (D1:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
218h  
0000000000000FFFh  
RO  
Size:  
64 bits  
This register provides PCI Express status reporting that is required by the PCI Express  
specification.  
Bit  
Access &  
Default  
Description  
63:60  
59:48  
Reserved  
RO  
000h  
Next Transmit Sequence Number: Value of the NXT_TRANS_SEQ counter.  
This counter represents the transmit Sequence number to be applied to the next  
TLP to be transmitted onto the Link for the first time.  
47:44  
43:32  
Reserved  
RO  
Next Packet Sequence Number: Packet sequence number to be applied to the  
000h  
next TLP to be transmitted or re-transmitted onto the Link.  
31:28  
27:16  
Reserved  
RO  
Next Receive Sequence Number: This is the sequence number associated with  
000h  
the TLP that is expected to be received next.  
15:12  
11:0  
Reserved  
RO  
Last Acknowledged Sequence Number: This is the sequence number  
FFFh  
associated with the last acknowledged TLP.  
§
Datasheet  
171  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9 Integrated Graphics Device  
Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/  
82910GL GMCH Only)  
Device 2 contains registers for the internal graphics functions. Table 9-1 lists the PCI  
configuration registers in order of ascending offset address. Function 0 can be VGA compatible  
or not, this is selected through bit 1 of GGC register (Device 0, offset 52h). The following  
sections describe Device 2 PCI configuration registers only.  
Table 9-1. Integrated Graphics Device Register Address Map (D2:F0)  
Address  
Offset  
Register  
Symbol  
Register Name  
Default  
Value  
Access  
00–01h  
02–03h  
04–05h  
06–07h  
08h  
VID2  
DID2  
Vendor Identification  
8086h  
2582h  
0000h  
0090h  
RO  
RO  
Device Identification  
PCI Command  
PCICMD2  
PCISTS2  
RID2  
RO, R/W  
RO  
PCI Status  
Revision Identification  
See register  
description  
RO  
09–0Bh  
0Ch  
CC  
CLS  
Class Code  
030000h  
00h  
RO  
RO  
Cache Line Size  
0Dh  
MLT2  
Master Latency Timer  
Header Type  
00h  
RO  
0Eh  
HDR2  
80h  
RO  
0Fh  
Reserved  
10–13h  
14–17h  
18–1Bh  
1C–1Fh  
20–2Bh  
2C–2Dh  
2E–2Fh  
30–33h  
34h  
MMADR  
IOBAR  
GMADR  
GTTADR  
Memory Mapped Range Address  
I/O Base Address  
00000000h  
00000001h  
00000008h  
00000000h  
RO, R/W  
RO, R/W  
RO, R/W/L  
RO, R/W  
Graphics Memory Range Address  
Graphics Translation Table Range Address  
Reserved  
SVID2  
SID2  
Subsystem Vendor Identification  
Subsystem Identification  
Video BIOS ROM Base Address  
Capabilities Pointer  
0000h  
0000h  
00000000h  
D0h  
R/WO  
R/WO  
RO  
ROMADR  
CAPPOINT  
RO  
35–3Bh  
Reserved  
Datasheet  
173  
 
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
Address  
Offset  
Register  
Symbol  
Register Name  
Default  
Value  
Access  
3Ch  
3Dh  
INTRLINE  
INTRPIN  
MINGNT  
MAXLAT  
Interrupt Line  
Interrupt Pin  
00h  
01h  
00h  
00h  
R/W  
RO  
RO  
RO  
3Eh  
Minimum Grant  
3Fh  
Maximum Latency  
40–43h  
44h  
Reserved  
MCAPPTR  
Mirror of Dev0 Capability Pointer  
Reserved  
D0h  
RO  
45–47h  
48–50h  
MCAPID  
Mirror of Dev0 Capability Identification  
0000000000  
01090009h  
RO  
51h  
Reserved  
52–53h  
54–57h  
MGGC  
Mirror of Dev0 GMCH Graphics Control  
Mirror of Dev0 Device Enable  
0030h  
RO  
RO  
MDEVENde  
v0F0  
00000019h  
58–5Bh  
5C–5Fh  
60–61h  
62h  
BSM  
Reserved  
07800000h  
RO  
Base of Stolen Memory  
Reserved  
MSAC  
Multi size Aperture Control  
Reserved  
00h  
R/W  
63–CFh  
D0–D1h  
D2–D3h  
D4–D5h  
D6–D7h  
E0–E1h  
E2–E3h  
E4–E7  
PMCAPID  
PMCAP  
PMCS  
Power Management Capabilities ID  
Power Management Capabilities  
Power Management Control/Status  
Reserved  
0001h  
0022h  
0000h  
RO  
RO  
RO, R/W  
SWSMI  
Software SMI  
0000h  
R/W  
Reserved  
ASLE  
System Display Event  
Reserved  
00000000h  
R/W  
E8h–FBh  
FC–FFh  
ASLS  
ASL Storage  
00000000h  
R/W  
174  
Datasheet  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1  
Integrated Graphics Device PCI Register Details  
(D2:F0)  
9.1.1  
VID2—Vendor Identification (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
00h  
8086h  
RO  
Size:  
16 bits  
This register, combined with the Device Identification register, uniquely identifies any PCI  
device.  
Bit  
Access &  
Default  
Description  
15:0  
RO  
Vendor Identification Number (VID): PCI standard identification for Intel.  
8086h  
9.1.2  
DID2—Device Identification (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
02h  
2582h  
RO  
Size:  
16 bits  
This register, combined with the Vendor Identification register, uniquely identifies any PCI  
device.  
Bit  
Access &  
Default  
Description  
15:0  
RO  
Device Identification Number (DID): This is a 16 bit value assigned to the GMCH  
2582h  
Graphic device  
Datasheet  
175  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.3  
PCICMD2—PCI Command (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
04h  
0000h  
RO, R/W  
16 bits  
Size:  
This 16-bit register provides basic control over the IGD’s ability to respond to PCI cycles. The  
PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory.  
Bit  
Access &  
Default  
Description  
15:11  
10  
Reserved  
R/W  
0b  
Interrupt Disable: This bit disables the device from asserting INTx#.  
0 = Enable the assertion of this device’s INTx# signal.  
1 = Disable the assertion of this device’s INTx# signal. DO_INTx messages will  
not be sent to the DMI.  
9
8
7
6
RO  
0b  
Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.  
RO  
0b  
SERR Enable (SERRE): Not Implemented. Hardwired to 0.  
RO  
0b  
Address/Data Stepping Enable (ADSTEP): Not Implemented. Hardwired to 0.  
RO  
0b  
Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since the IGD  
belongs to the category of devices that does not corrupt programs or data in  
system memory or hard drives, the IGD ignores any parity error that it detects  
and continues with normal operation.  
5
4
3
2
RO  
0b  
Video Palette Snooping (VPS): This bit is hardwired to 0 to disable snooping.  
RO  
0b  
Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The IGD does  
not support memory write and invalidate commands.  
RO  
0b  
Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores Special  
cycles.  
R/W  
0b  
Bus Master Enable (BME):  
0 = Disable IGD bus mastering.  
1 = Enable the IGD to function as a PCI compliant master.  
1
0
R/W  
0b  
Memory Access Enable (MAE): This bit controls the IGD’s response to memory  
space accesses.  
0 = Disable.  
1 = Enable.  
R/W  
0 b  
I/O Access Enable (IOAE): This bit controls the IGD’s response to I/O space  
accesses.  
0 = Disable.  
1 = Enable.  
176  
Datasheet  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.4  
PCISTS2—PCI Status (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
06h  
0090h  
RO  
Size:  
16 bits  
PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and  
PCI compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the  
IGD.  
Bit  
15  
14  
13  
12  
11  
10:9  
8
Access &  
Default  
Description  
RO  
0b  
Detected Parity Error (DPE): Since the IGD does not detect parity; this bit is  
always hardwired to 0.  
RO  
0b  
Signaled System Error (SSE): The IGD never asserts SERR#, therefore this bit  
is hardwired to 0.  
RO  
0b  
Received Master Abort Status (RMAS): The IGD never gets a Master Abort,  
therefore, this bit is hardwired to 0.  
RO  
0b  
Received Target Abort Status (RTAS): The IGD never gets a Target Abort,  
therefore this bit is hardwired to 0.  
RO  
0b  
Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does not use  
target abort semantics.  
RO  
00b  
DEVSEL Timing (DEVT): N/A. These bits are hardwired to 00.  
RO  
0b  
Master Data Parity Error Detected (DPD): Since Parity Error Response is  
hardwired to disabled (and the IGD does not do any parity detection), this bit is  
hardwired to 0.  
7
6
5
4
RO  
1b  
Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-to-back  
when the transactions are not to the same agent.  
RO  
0b  
User Defined Format (UDF). Hardwired to 0.  
66 MHz PCI Capable (66C). N/A; Hardwired to 0.  
RO  
0b  
RO  
1b  
Capability List (CLIST): This bit is set to 1 to indicate that the register at 34h  
provides an offset into the function’s PCI Configuration Space containing a  
pointer to the location of the first item in the list.  
3
RO  
0b  
Interrupt Status: This bit reflects the state of the interrupt in the device. Only  
when the Interrupt Disable bit in the command register is a 0 and this Interrupt  
Status bit is a 1, will the devices INTx# signal be asserted. Setting the Interrupt  
Disable bit to a 1 has no effect on the state of this bit.  
2:0  
Reserved  
Datasheet  
177  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.5  
RID2—Revision Identification (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
08h  
See bit description  
RO  
Size:  
8 bits  
This register contains the revision number for Device 2 Functions 0 and 1  
Bit  
Access &  
Default  
Description  
7:0  
RO  
00h  
Revision Identification Number (RID): This field indicates the number of times  
that this device in this component has been “stepped” through the manufacturing  
process. Refer to the Intel® 82915G/82915P/82915GV/82910GL Express  
Chipset Specification Update for the value of the Revision ID Register.  
9.1.6  
CC—Class Code (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
09h  
030000h  
RO  
Size:  
24 bits  
This register contains the device programming interface information related to the Sub-Class  
Code and Base Class Code definition for the IGD. This register also contains the Base Class Code  
and the function sub-class in relation to the Base Class Code.  
Bit  
Access &  
Default  
Description  
23:16  
RO  
Base Class Code (BCC). This is an 8-bit value that indicates the base class  
03h  
code for the GMCH.  
03h = Display Controller.  
15:8  
7:0  
RO  
00h  
Sub-Class Code (SUBCC): Value will be determined based on Device 0 GGC  
register, bit 1.  
00h = VGA compatible  
80h = Non VGA  
RO  
Programming Interface (PI)  
00h = Hardwired as a Display controller.  
00 h  
178  
Datasheet  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.7  
CLS—Cache Line Size (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
0Ch  
00h  
RO  
8 bits  
Size:  
The IGD does not support this register as a PCI slave.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
00h  
Cache Line Size (CLS): This field is hardwired to 0s. The IGD, as a PCI  
compliant master, does not use the Memory Write and Invalidate command and,  
in general, does not perform operations based on cache line size.  
9.1.8  
MLT2—Master Latency Timer (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
0Dh  
00h  
RO  
8 bits  
Size:  
The IGD does not support the programmability of the master latency timer because it does not  
perform bursts.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Master Latency Timer Count Value: Hardwired to 0s.  
00h  
Datasheet  
179  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.9  
HDR2—Header Type (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
0Eh  
80h  
RO  
8 bits  
Size:  
This register contains the Header Type of the IGD.  
Bit  
Access &  
Default  
Description  
7
RO  
1b  
Multi Function Status (MFunc): This bit indicates if the device is a Multi-  
Function Device. The Value of this register is determined by Device 0, offset 54h,  
DEVEN[4]. If Device 0 DEVEN[4] is set, the Mfunc bit is also set.  
6:0  
RO  
Header Code (H): This is a 7-bit value that indicates the Header Code for the  
00h  
IGD. This code has the value 00h, indicating a type 0 configuration space format.  
9.1.10  
MMADR—Memory Mapped Range Address (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
10h  
00000000h  
RO, R/W  
32 bits  
Size:  
This register requests allocation for the IGD registers and instruction ports. The allocation is for  
512 KB and the base address is defined by bits [31:19].  
Bit  
31:19  
18:4  
3
Access &  
Default  
Description  
R/W  
0000h  
Memory Base Address: Set by the OS, these bits correspond to address  
signals [31:19].  
RO  
0000h  
Address Mask: Hardwired to 0s to indicate 512 KB address range.  
Prefetchable Memory: Hardwired to 0 to prevent prefetching.  
Memory Type: Hardwired to 0s to indicate 32-bit address.  
Memory / IO Space: Hardwired to 0 to indicate memory space.  
RO  
0b  
2:1  
0
RO  
00b  
RO  
0b  
180  
Datasheet  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.11  
IOBAR—I/O Base Address (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
14h  
00000001h  
RO, R/W  
32 bits  
Size:  
This register provides the Base offset of the I/O registers within Device 2. Bits 15:3 are  
programmable allowing the I/O Base to be located anywhere in 16 bit I/O address space. Bits 2:1  
are fixed and return 0s; bit 0 is hardwired to a 1 indicating that 8 bytes of I/O space are decoded.  
Access to the 8Bs of I/O space is allowed in PM state D0 when IO Enable (PCICMD bit 0) set.  
Access is disallowed in PM states D1–D3 or if IO Enable is clear or if Device 2 is turned off.  
Note that access to this I/O BAR is independent of VGA functionality within Device 2. Also note  
that this mechanism in available only through function 0 of Device 2 and is not duplicated in  
Function 1.  
If accesses to this I/O bar are allowed, the GMCH claims all 8, 16, or 32 bit I/O cycles from the  
processor that falls within the 8B claimed.  
Bit  
Access &  
Default  
Description  
31:16  
15:3  
Reserved  
R/W  
IO Base Address: Set by the OS, these bits correspond to address signals  
0000h  
[15:3].  
2:1  
0
RO  
00b  
Memory Type: Hardwired to 0s to indicate 32-bit address.  
RO  
1b  
Memory / I/O Space: Hardwired to 1 to indicate I/O space.  
Datasheet  
181  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.12  
GMADR—Graphics Memory Range Address (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
18h  
00000008h  
RO, R/W/L  
16 bits  
Size:  
IGD graphics memory base address is specified in this register.  
Bit  
31:28  
27  
Access &  
Default  
Description  
R/W  
0h  
Memory Base Address: Set by the OS, these bits correspond to address  
signals [31:28].  
R/W/L  
0b  
256-MB Address Mask: This bit is either part of the Memory Base Address  
(R/W) or part of the Address Mask (RO), depending on the value of MSAC[1].  
See MSAC (Dev 2, Func 0, offset 62) for details.  
26:4  
3
RO  
000000h  
Address Mask: Hardwired to 0s to indicate at least 128-MB address range  
Prefetchable Memory: Hardwired to 1 to enable prefetching  
Memory Type: Hardwired to 0 to indicate 32-bit address.  
RO  
1b  
2:1  
0
RO  
00b  
RO  
0b  
Memory/IO Space: Hardwired to 0 to indicate memory space.  
182  
Datasheet  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.13  
GTTADR—Graphics Translation Table Range Address  
(D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
1Ch  
00000000h  
RO, R/W  
32 bits  
Size:  
This register requests allocation for Graphics Translation Table Range. The allocation is for  
256 KB and the base address is defined by bits [31:18].  
Bit  
31:18  
17:4  
3
Access &  
Default  
Description  
R/W  
0000h  
Memory Base Address: Set by the OS, these bits correspond to address  
signals [31:18].  
RO  
0000h  
Address Mask: Hardwired to 0s to indicate 256-KB address range.  
Prefetchable Memory: Hardwired to 0 to prevent prefetching.  
Memory Type: Hardwired to 0s to indicate 32-bit address.  
Memory/IO Space: Hardwired to 0 to indicate memory space.  
RO  
0b  
2:1  
0
RO  
00b  
RO  
0b  
9.1.14  
SVID2—Subsystem Vendor Identification (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
2Ch  
0000h  
R/WO  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
15:0  
R/WO  
0000h  
Subsystem Vendor ID. This value is used to identify the vendor of the  
subsystem. This register should be programmed by BIOS during boot-up. Once  
written, this register becomes Read-Only. This register can only be cleared by a  
Reset.  
Datasheet  
183  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.15  
SID2—Subsystem Identification (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
2Eh  
0000h  
R/WO  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
15:0  
R/WO  
0000h  
Subsystem Identification: This value is used to identify a particular subsystem.  
This field should be programmed by BIOS during boot-up. Once written, this  
register becomes Read Only. This register can only be cleared by a Reset.  
9.1.16  
ROMADR—Video BIOS ROM Base Address (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
30h  
00000000h  
RO  
Size:  
32 bits  
The IGD does not use a separate BIOS ROM; therefore, this register is hardwired to 0s.  
Bit  
Access &  
Default  
Description  
31:18  
17:11  
RO  
0000h  
ROM Base Address: Hardwired to 0s.  
RO  
Address Mask: Hardwired to 0s to indicate 256-KB address range.  
00h  
10:1  
0
Reserved  
RO  
0b  
ROM BIOS Enable: 0 = ROM not accessible.  
184  
Datasheet  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.17  
CAPPOINT—Capabilities Pointer (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
34h  
D0h  
RO  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
7:0  
RO  
D0h  
Capabilities Pointer Value: This field contains an offset into the function’s PCI  
configuration space for the first item in the New Capabilities Linked List; the  
Power Management Capabilities ID registers at address D0h.  
9.1.18  
INTRLINE—Interrupt Line (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
3Ch  
00h  
R/W  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
7:0  
R/W  
00h  
Interrupt Connection: This field is used to communicate interrupt line routing  
information. POST software writes the routing information into this register as it  
initializes and configures the system. The value in this register indicates which  
input of the system interrupt controller that the device’s interrupt pin is connected  
to.  
9.1.19  
INTRPIN—Interrupt Pin (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
3Dh  
01h  
RO  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Interrupt Pin: As a device that only has interrupts associated with a single  
01h  
function, the IGD specifies INTA# as its interrupt pin.  
01h = INTA#.  
Datasheet  
185  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.20  
MINGNT—Minimum Grant (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
3Eh  
00h  
RO  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Minimum Grant Value: The IGD does not burst as a PCI compliant master.  
00h  
9.1.21  
MAXLAT—Maximum Latency (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
3Fh  
00h  
RO  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Maximum Latency Value: The IGD has no specific requirements for how often it  
00h  
needs to access the PCI bus.  
9.1.22  
9.1.23  
MCAPPTR—Mirror of Dev0 Capability Pointer (D2:F0)  
(Mirrored_D0_34)  
PCI Device:  
Function:  
2
0
Address Offset:  
Size:  
44h  
8 bits  
This register is a Read-Only copy of Device 0, Offset 34h register.  
MCAPID—Mirror of Dev0 Capability Identification (D2:F0)  
(Mirrored_D0_E0)  
PCI Device:  
Function:  
2
0
Address Offset:  
Size:  
48h  
72 bits  
This register is a Read-Only copy of Device 0, Offset E0h register.  
186  
Datasheet  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.24  
9.1.25  
9.1.26  
MGGC—Mirror of Dev0 GMCH Graphics Control (D2:F0)  
(Mirrored_D0_52)  
PCI Device:  
Function:  
2
0
Address Offset:  
Size:  
52h  
16 bits  
This register is a Read-Only copy of Device 0, Offset 52h register.  
MDEVENdev0f0—Mirror of Dev0 Device Enable (D2:F0)  
(Mirrored_D0_54)  
PCI Device:  
Function:  
2
0
Address Offset:  
Size:  
54h  
32 bits  
This register is a Read-Only copy of Device 0, Offset 54h register.  
BSM—Base of Stolen Memory (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
5Ch  
07800000h  
RO  
Size:  
32 bits  
Graphics Stolen Memory and TSEG are within DRAM space defined under TOLUD. From the  
top of low used DRAM, GMCH claims 1 to 64 MBs of DRAM for internal graphics, if enabled.  
Bit  
Access &  
Default  
Description  
31:20  
RO  
078h  
Base of Stolen Memory (BSM): This register contains bits 31:20 of the base  
address of stolen DRAM memory. The host interface determines the base of  
Graphics Stolen memory by subtracting the graphics stolen memory size from  
TOLUD. See Device 0 TOLUD for more explanation.  
19:0  
Reserved  
Datasheet  
187  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.27  
MSAC—Multi Size Aperture Control (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
62h  
00h  
R/W  
8 bits  
Size:  
This register determines the size of the graphics memory aperture in function 0 and in the trusted  
space. By default, the aperture size is 256 MB (bit 27 read only). If bit 1 is set to a 1, then the  
aperture size is limited to 128 MB. Only the system BIOS will write this register based on pre-  
boot address allocation efforts, but the graphics may read this register to determine the correct  
aperture size. System BIOS needs to save this value on boot so that it can reset it correctly during  
S3 resume.  
Bit  
Access &  
Default  
Description  
7:4  
R/W  
0h  
Scratch Bits Only. These bits have no physical effect on hardware.  
3:2  
1
Reserved  
R/W  
0b  
256-MB Aperture Disable  
0 = Bit 27 of GMADR and the equivalent trusted memory aperture is read-only,  
allowing 256 MB of address space to be mapped.  
1 = Bit 27 of GMADR and the equivalent trusted memory aperture is read-write,  
limiting the address space to 128 MB.  
0
Reserved  
9.1.28  
PMCAPID—Power Management Capabilities ID (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
D0h  
0001h  
RO  
Size:  
16 bits  
Bit  
15:8  
7:0  
Access &  
Description  
Default  
RO  
00h  
NEXT_PTR: This field contains a pointer to next item in capabilities list. This is  
the final capability in the list and must be set to 00h.  
RO  
CAP_ID: SIG defines this ID is 01h for power management.  
01h  
188  
Datasheet  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.29  
PMCAP—Power Management Capabilities (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
D2h  
0022h  
RO  
Size:  
16 bits  
Bit  
15:11  
10  
Access &  
Description  
Default  
RO  
00h  
PME Support: This field indicates the power states in which the IGD may assert  
PME#. Hardwired to 0 to indicate that the IGD does not assert the PME# signal.  
RO  
0b  
D2: The D2 power management state is not supported. This bit is hardwired to 0.  
9
RO  
0b  
D1: Hardwired to 0 to indicate that the D1 power management state is not  
supported.  
8:6  
5
Reserved  
RO  
1b  
Device Specific Initialization (DSI): Hardwired to 1 to indicate that special  
initialization of the IGD is required before generic class device driver is to use it.  
4
3
RO  
0b  
Auxiliary Power Source: Hardwired to 0.  
RO  
0b  
PME Clock: Hardwired to 0 to indicate IGD does not support PME# generation.  
2:0  
RO  
010b  
Version: Hardwired to 010b to indicate that there are 4 bytes of power  
management registers implemented and that this device complies with revision  
1.1 of the PCI Power Management Interface Specification  
Datasheet  
189  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.30  
PMCS—Power Management Control/Status (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
D4h  
0000h  
RO, R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
15  
RO  
0b  
PME_Status: This bit is 0 to indicate that IGD does not support PME# generation  
from D3 (cold).  
14:9  
8
Reserved  
RO  
0b  
PME_En: This bit is 0 to indicate that PME# assertion from D3 (cold) is disabled.  
7:2  
1:0  
Reserved  
R/W  
00b  
Power State: This field indicates the current power state of the IGD and can be  
used to set the IGD into a new power state. If software attempts to write an  
unsupported state to this field, the write operation must complete normally on the  
bus, but the data is discarded and no state change occurs.  
On a transition from D3 to D0 the graphics controller is optionally reset to initial  
values. Behavior of the graphics controller in supported states is detailed in the  
power management section.  
00 = D0 (Default)  
01 = D1 (Not Supported)  
10 = D2 (Not Supported)  
11 = D3  
190  
Datasheet  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.31  
SWSMI—Software SMI (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
E0h  
0000h  
R/W  
16 bits  
Size:  
As long as there is the potential that DVO port legacy drivers exist that expect this register at this  
address, Dev2, F0, address E0h–E1h must be reserved for this register.  
Bit  
15:8  
7:1  
0
Access &  
Default  
Description  
R/W  
00h  
SW scratch bits  
R/W  
00h  
Software Flag: This field is used to indicate caller and SMI function desired, as  
well as return result.  
R/W  
0b  
GMCH Software SMI Event: When Set, this bit will trigger an SMI. Software  
must write a 0 to clear this bit  
9.1.32  
ASLE—System Display Event Register (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
E4h  
00000000h  
R/W  
Size:  
32 bits  
Byte, Word, or Double Word PCI configuration cycles can access this register.  
Bit  
Access &  
Default  
Description  
31:8  
R/W  
00h  
ASLE Scratch Trigger 3: When written, this scratch byte triggers an interrupt  
when IER bit 0 is enabled and IMR bit 0 is unmasked. If written as part of a 16-  
bit or 32-bit write, only one interrupt is generated in common.  
23:16  
15:8  
7:0  
R/W  
00h  
ASLE Scratch Trigger 2: When written, this scratch byte triggers an interrupt  
when IER bit 0 is enabled and IMR bit 0 is unmasked. If written as part of a 16-  
bit or 32-bit write, only one interrupt is generated in common.  
R/W  
00h  
ASLE Scratch Trigger 1: When written, this scratch byte triggers an interrupt  
when IER bit 0 is enabled and IMR bit 0 is unmasked. If written as part of a 16-  
bit or 32-bit write, only one interrupt is generated in common.  
R/W  
00h  
ASLE Scratch Trigger 0: When written, this scratch byte triggers an interrupt  
when IER bit 0 is enabled and IMR bit 0 is unmasked. If written as part of a 16-  
bit or 32-bit write, only one interrupt is generated in common.  
Datasheet  
191  
Integrated Graphics Device Registers (D2:F0)  
(Intel® 82915G/82915GV/82915GL/ 82910GL GMCH Only)  
R
9.1.33  
ASLS—ASL Storage (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
FCh  
00000000h  
R/W  
Size:  
32 bits  
This SW scratch register only needs to be read/write accessible. The exact bit register usage must  
be worked out in common between System BIOS and driver software, but storage for  
switching/indicating up to 6 devices is possible with this amount. For each device, the ASL  
control method requires two bits for _DOD (BIOS detectable yes or no, VGA/Non VGA); one bit  
for _DGS (enable/disable requested) and two bits for _DCS (enabled now/disabled now,  
connected or not).  
Bit  
Access &  
Default  
Description  
31:0  
R/W  
RW according to a software controlled usage to support device switching  
00000000 h  
192  
Datasheet  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10 Device 2 Function 1 (D2:F1)  
Configuration Registers  
(Intel® 82915G/82915GV/82915GL/  
82910GL Only)  
Table 10-1. Device 2 Function 1 Register Address Map Summary  
Address  
Offset  
Register  
Symbol  
Register Name  
Default  
Value  
Access  
00–01h  
02–03h  
04–05h  
06–07h  
08h  
VID2  
DID2  
Vendor Identification  
8086h  
2780h  
0000h  
0090h  
RO  
RO  
Device Identification  
PCI Command  
PCICMD2  
PCISTS2  
RID2  
RO, R/W  
RO  
PCI Status  
Revision Identification  
See register  
description  
RO  
09–0Bh  
0Ch  
CC  
CLS  
Class Code Register  
Cache Line Size  
03800h  
00h  
RO  
RO  
0Dh  
MLT2  
HDR2  
Master Latency Timer  
Header Type Register  
Reserved  
00h  
RO  
0Eh  
80h  
RO  
0Fh  
10–13h  
14–2Bh  
2C–2Dh  
2E–2Fh  
30–33h  
34h  
MMADR  
Memory Mapped Range Address  
Reserved  
00000000h  
RO, R/W  
SVID2  
SID2  
Subsystem Vendor Identification  
Subsystem Identification  
Video BIOS ROM Base Address  
Capabilities Pointer  
Reserved  
0000h  
0000h  
00000000h  
D0h  
R/WO  
R/WO  
RO  
ROMADR  
CAPPOINT  
RO  
35–3Dh  
3Eh  
MINGNT  
MAXLAT  
Minimum Grant Register  
Maximum Latency  
00h  
RO  
3Fh  
00h  
RO  
40–43h  
44h  
Reserved  
MCAPPTR  
Mirror of Dev0 Capability Pointer  
Reserved  
45–47h  
Datasheet  
193  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
Address  
Offset  
Register  
Symbol  
Register Name  
Default  
Value  
Access  
48–50h  
51h  
MCAPID  
Mirror of Dev0 Capability Identification  
Reserved  
MGGC  
MDEVENdev0f0  
52–53h  
54–57h  
58–5Bh  
5C–5Fh  
60–CFh  
D0–D1h  
D2–D3h  
D4–D5h  
D6–DFh  
E0–E1h  
E2–FBh  
FC–FFh  
Mirror of Dev0 GMCH Graphics Control  
Mirror of Dev0 Device Enable  
Reserved  
07800000h  
0000h  
0001h  
0022h  
0000h  
RO  
BSM  
Base of Stolen Memory Register  
Reserved  
PMCAPID  
PMCAP  
PMCS  
Power Management Capabilities ID  
Power Management Capabilities  
Power Management Control/Status  
Reserved  
RO  
RO  
RO, R/W  
SWSMI  
Software SMI  
0000h  
R/W  
Reserved  
ASLS  
ASL Storage  
00000000h  
R/W  
10.1  
Device 2 Function 1 Configuration Register Details  
(D2:F1)  
10.1.1  
VID2—Vendor Identification (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
00h  
8086h  
RO  
Size:  
16 bits  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
10.1.2  
DID2—Device Identification (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
02h  
2782h  
RO  
Size:  
16 bits  
This register is unique in Device 2, Function 1 (the Device 2, Function 0 DID is separate). This  
difference in Device ID is necessary for allowing distinct Plug and Play enumeration of function 1  
when both function 0 and function 1 have the same class code.  
194  
Datasheet  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.1.3  
PCICMD2—PCI Command (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
04h  
0000h  
RO, R/W  
16 bits  
Size:  
This 16-bit register provides basic control over the IGD’s ability to respond to PCI cycles. The  
PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory.  
Bit  
Access &  
Default  
Description  
15:10  
9
Reserved  
RO  
0b  
Fast Back-to-Back (FB2B): Not Implemented. Hardwired to 0.  
8
7
6
RO  
0b  
SERR Enable (SERRE): Not Implemented. Hardwired to 0.  
RO  
0b  
Address/Data Stepping Enable (ADSTEP): Not Implemented. Hardwired to 0.  
RO  
0b  
Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since the IGD  
belongs to the category of devices that does not corrupt programs or data in  
system memory or hard drives, the IGD ignores any parity error that it detects  
and continues with normal operation.  
5
4
3
2
RO  
0b  
VGA Palette Snoop Enable (VGASNOOP): This bit is hardwired to 0 to disable  
snooping.  
RO  
0b  
Memory Write and Invalidate Enable (MWIE): Hardwired to 0. The IGD does  
not support memory write and invalidate commands.  
RO  
0b  
Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores Special  
cycles.  
R/W  
0b  
Bus Master Enable (BME):  
0 = Disable  
1 = Enable the IGD to function as a PCI compliant master.  
1
0
R/W  
0b  
Memory Access Enable (MAE): This bit controls the IGD’s response to memory  
space accesses.  
0 = Disable.  
1 = Enable.  
R/W  
0b  
I/O Access Enable (IOAE): This bit controls the IGD’s response to I/O space  
accesses.  
0 = Disable.  
1 = Enable.  
Datasheet  
195  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.1.4  
PCISTS2—PCI Status (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
06h  
0090h  
RO  
Size:  
16 bits  
PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and  
PCI compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the  
IGD.  
Bit  
15  
14  
13  
12  
11  
10:9  
8
Access &  
Default  
Description  
RO  
0b  
Detected Parity Error (DPE): Since the IGD does not detect parity; this bit is  
always hardwired to 0.  
RO  
0b  
Signaled System Error (SSE): The IGD never asserts SERR#; therefore, this  
bit is hardwired to 0.  
RO  
0b  
Received Master Abort Status (RMAS): The IGD never gets a Master Abort,  
therefore this bit is hardwired to 0.  
RO  
0b  
Received Target Abort Status (RTAS): The IGD never gets a Target Abort,  
therefore this bit is hardwired to 0.  
RO  
0b  
Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does not use  
target abort semantics.  
RO  
00b  
DEVSEL Timing (DEVT): These bits are hardwired to 00.  
RO  
0b  
Master Data Parity Error Detected (DPD): Since Parity Error Response is  
hardwired to disabled (and the IGD does not do any parity detection), this bit is  
hardwired to 0.  
7
6
5
4
RO  
1b  
Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-to-back  
when the transactions are not to the same agent.  
RO  
0b  
User Defined Format (UDF). Hardwired to 0.  
66 MHz PCI Capable (66C). Hardwired to 0.  
RO  
0b  
RO  
1b  
Capability List (CLIST): This bit is set to 1 to indicate that the register at 34h  
provides an offset into the function’s PCI Configuration Space containing a  
pointer to the location of the first item in the list.  
3
RO  
0b  
Interrupt Status: Hardwired to 0.  
2:0  
Reserved  
196  
Datasheet  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.1.5  
10.1.6  
RID2—Revision Identification (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
08h  
See description below  
RO  
Size:  
8 bits  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
CC—Class Code Register (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
09h  
038000h  
RO  
Size:  
24 bits  
This register contains the device programming interface information related to the Sub-Class  
Code and Base Class Code definition for the IGD. This register also contains the Base Class Code  
and the function sub-class in relation to the Base Class Code.  
Bit  
Access &  
Default  
Description  
23:16  
RO  
Base Class Code (BCC): This is an 8-bit value that indicates the base class  
03h  
code for the GMCH.  
03h = Display Controller.  
15:8  
7:0  
RO  
80h  
Sub-Class Code (SUBCC)  
80h = Non VGA  
RO  
00h  
Programming Interface (PI)  
00h = Hardwired as a Display controller.  
10.1.7  
CLS—Cache Line Size (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
0Ch  
00h  
RO  
8 bits  
Size:  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
Datasheet  
197  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.1.8  
10.1.9  
MLT2—Master Latency Timer (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
0Dh  
00h  
RO  
8 bits  
Size:  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
HDR2—Header Type Register (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
0Eh  
80h  
RO  
8 bits  
Size:  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
10.1.10 MMADR—Memory Mapped Range Address (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
10h  
00000000h  
RO, R/W  
32 bits  
Size:  
This register requests allocation for the IGD registers and instruction ports. The allocation is for  
512 KB and the base address is defined by bits [31:19].  
Bit  
31:19  
18:4  
3
Access &  
Default  
Description  
R/W  
0000h  
Memory Base Address: Set by the OS, these bits correspond to address  
signals [31:19].  
RO  
0000h  
Address Mask: Hardwired to 0s to indicate 512-KB address range.  
Prefetchable Memory: Hardwired to 0 to prevent prefetching.  
Memory Type: Hardwired to 0s to indicate 32-bit address.  
Memory / IO Space: Hardwired to 0 to indicate memory space.  
RO  
0b  
2:1  
0
RO  
00b  
RO  
0b  
198  
Datasheet  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.1.11 SVID2—Subsystem Vendor Identification (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
2Ch  
0000h  
R/WO  
16 bits  
Size:  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
10.1.12 SID2—Subsystem Identification (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
2Eh  
0000h  
R/WO  
16 bits  
Size:  
This register is a Read Only copy of Device 2, Function 0.  
10.1.13 ROMADR—Video BIOS ROM Base Address (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
30h  
00000000h  
RO  
Size:  
32 bits  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
10.1.14 CAPPOINT—Capabilities Pointer (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
34h  
D0h  
RO  
8 bits  
Size:  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
Datasheet  
199  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.1.15 MINGNT—Minimum Grant Register (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
3Eh  
00h  
RO  
8 bits  
Size:  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
10.1.16 MAXLAT—Maximum Latency (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
3Fh  
00h  
RO  
8 bits  
Size:  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
10.1.17 MCAPPTR—Mirror of Dev0 Capability Pointer (D2:F1)  
(Mirrored_D0_34)  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
44h  
8 bits  
This register is a Read Only copy of Device 0, Offset 34h register.  
10.1.18 MCAPID—Mirror of Dev0 Capability Identification (D2:F1)  
(Mirrored_D0_E0)  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
48h  
72 bits  
This register is a Read-Only copy of Device 0, Offset E0h register.  
10.1.19 MGGC—Mirror of Dev0 GMCH Graphics Control (D2:F1)  
(Mirrored_D0_52)  
PCI Device:  
Address Offset:  
Size:  
2
52h  
16 bits  
This register is a Read Only copy of Device 0, Offset 52h register.  
200  
Datasheet  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.1.20 MDEVENdev0f0—Mirror of Dev0 Device Enable (D2:F1)  
(Mirrored_D0_54)  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
54h  
32 bits  
This register is a Read Only copy of Device 0, Offset 54h register.  
10.1.21 BSM—Base of Stolen Memory Register (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
5Ch  
07800000h  
RO  
Size:  
32 bits  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
10.1.22 PMCAPID—Power Management Capabilities ID (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
D0h  
0001h  
RO  
Size:  
16 bits  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
10.1.23 PMCAP—Power Management Capabilities (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
D2h  
0022h  
RO  
Size:  
16 bits  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
Datasheet  
201  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.1.24 PMCS—Power Management Control/Status (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
D4h  
0000h  
RO, R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
15  
RO  
0 b  
PME_Status: This bit is 0 to indicate that IGD does not support PME# generation  
from D3 (cold).  
14:9  
8
Reserved  
RO  
0 b  
PME_En: This bit is 0 to indicate that PME# assertion from D3 (cold) is disabled.  
7:2  
1:0  
Reserved  
R/W  
00 b  
Power State: This field indicates the current power state of the IGD and can be  
used to set the IGD into a new power state. If software attempts to write an  
unsupported state to this field, write operation must complete normally on the  
bus, but the data is discarded and no state change occurs.  
On a transition from D3 to D0 the graphics controller is optionally reset to initial  
values. Behavior of the graphics controller in supported states is detailed in the  
power management section.  
00 = D0 (Default)  
01 = D1 (Not Supported)  
10 = D2 (Not Supported)  
11 = D3  
10.1.25 SWSMI—Software SMI (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
E0h  
0000h  
R/W  
16 bits  
Size:  
This register is a copy of Device 2, Function 0. It has the same Read, Write attributes as D2:F0. It  
is implemented as common hardware with two access addresses.  
202  
Datasheet  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.1.26 ASLS—ASL Storage (D2:F1)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
FCh  
00000000h  
R/W  
Size:  
32 bits  
This software scratch register only needs to be read/write accessible. The exact bit register usage  
must be worked out in common between System BIOS and driver software, but storage for  
switching/indicating up to 6 devices is possible with this amount. For each device, the ASL  
control method with require two bits for _DOD (BIOS detectable yes or no, VGA/NonVGA), one  
bit for _DGS (enable/disable requested), and two bits for _DCS (enabled now/disabled now,  
connected or not).  
Bit  
Access &  
Default  
Description  
31:0  
R/W  
R/W according to a software controlled usage to support device switching  
00000000 h  
Datasheet  
203  
Device 2 Function 1 (D2:F1) Configuration Registers  
(Intel® 82915G/82915GV/82915GL/ 82910GL Only)  
R
10.2  
Device 2 – PCI I/O Registers  
The following are not PCI configurations registers; they are I/O registers.  
10.2.1  
MMIO_INDEX—MMIO Address Register  
I/O Address:  
Size:  
IOBAR + 0h  
32 bits  
MMIO_INDEX: A 32 bit I/O write to this port loads the offset of the memory-mapped I/O  
(MMIO) register that needs to be accessed. An I/O Read returns the current value of this register.  
An 8/16-bit I/O write to this register is completed by the GMCH but does not update this register.  
This mechanism to access internal graphics MMIO registers must not be used to access VGA I/O  
registers that are mapped through the MMIO space. VGA registers must be accessed directly  
through the dedicated VGA IO ports.  
Bit  
31:2  
1:0  
Access &  
Default  
Description  
R/W  
00000000 h  
Register Offset: This field selects any one of the DWord registers within the  
MMIO register space of Device 2.  
Reserved  
10.2.2  
MMIO_DATA—MMIO Data Register  
I/O Address:  
Size:  
IOBAR + 4h  
32 bits  
MMIO_DATA: A 32 bit I/O write to this port is re-directed to the MMIO register pointed to by  
the MMIO-index register. A 32 bit I/O read to this port is re-directed to the MMIO register  
pointed to by the MMIO-index register. 8 or 16 bit I/O writes are completed by the GMCH and  
may have un-intended side effects; hence, they must not be used to access the data port. 8 or 16  
bit I/O reads are completed normally.  
Bit  
Access &  
Default  
Description  
31:0  
R/W  
MMIO Data Window  
00000000 h  
§
204  
Datasheet  
System Address Map  
R
11 System Address Map  
The (G)MCH supports 4 GB of addressable memory space (see Figure 11-1) and 64 KB+3 bytes  
of addressable I/O space. A programmable memory address space under the 1-MB region is  
divided into regions that can be individually controlled with programmable attributes such as  
disable, read/write, write only, or read only. This section focuses on how the memory space is  
partitioned and what the separate memory regions are used for. I/O address space has simpler  
mapping and is explained near the end of this section.  
Note: Address mapping information for the Integrated Graphics Device applies to the  
82915G/82915GV/82915GL/82910GL GMCH only. The 82915P/82915PL MCH does not have  
an IGD.  
Note: Address mapping information for the PCI Express Device applies to the  
82915G/82915P/82915PL (G)MCH only. The 82915GV/82915GL/82910GL GMCH does not  
support PCI Express.  
Addressing of memory ranges larger than 4 GB is not supported. The HREQ[4:3] FSB pins are  
decoded to determine whether the access is above or below 4 GB.  
The (G)MCH does not support the PCI Dual Address Cycle (DAC) Mechanism, PCI Express  
64-bit prefetchable memory transactions, or any other addressing mechanism that allows  
addressing of greater than 4 GB on either the DMI or PCI Express interface. The (G)MCH does  
not limit system memory space in hardware. There is no hardware lock to stop someone from  
inserting more memory than is addressable.  
In the following sections, it is assumed that all of the compatibility memory ranges reside on the  
DMI. The exception to this rule is VGA ranges that may be mapped to PCI Express, DMI, or to  
the internal graphics device (IGD). In the absence of more specific references, cycle descriptions  
referencing PCI should be interpreted as the DMI/PCI, while cycle descriptions referencing PCI  
Express or IGD are related to the PCI Express bus or the internal graphics device respectively.  
The (G)MCH does not remap APIC or any other memory spaces above TOLUD (Top of Low  
Usable DRAM). The TOLUD register is set to the appropriate value by BIOS.  
The Address Map includes a number of programmable ranges:  
Device 0  
EPBAR – Egress port registers. Necessary for setting up VC1 as an isochronous channel  
using time based weighted round robin arbitration. (4-KB window)  
MCHBAR – Memory mapped range for internal (G)MCH registers. For example,  
memory buffer register controls. (16-KB window)  
PCIEXBAR – Flat memory-mapped address space to access device configuration  
registers. This mechanism can be used to access PCI configuration space (0h–FFh) and  
Extended configuration space (100h–FFFh) for PCI Express devices. This enhanced  
configuration access mechanism is defined in the PCI Express specification. (256-MB  
window)  
DMIBAR –This window is used to access registers associated with the (G)MCH/ICH6  
(DMI) register memory range. (4-KB window)  
Datasheet  
205  
System Address Map  
R
IFPBAR – Any write to this window will trigger a flush of the (G)MCH’s Global Write  
Buffer to let software guarantee coherency between writes from an isochronous agent  
and writes from the processor (4-KB window).  
GGC – 82915G/82915GV/82910GL GMCH graphics control register. Used to select the  
amount of main memory that is pre-allocated to support the internal graphics device in  
VGA (non-linear) and Native (linear) modes (0–64-MB options).  
Device 1: Function 0:  
MBASE1/MLIMIT1 – PCI Express port non-prefetchable memory access window.  
PMBASE1/PMLIMIT1 – PCI Express port prefetchable memory access window.  
IOBASE1/IOLIMIT1 – PCI Express port I/O access window.  
Device 2: Function 0 (82915G/82915GV/82915GL/82910GL GMCH only)  
MMADR – IGD registers and internal graphics instruction port. (512-KB window)  
IOBAR – I/O access window for the GMCH internal graphics. Through this window  
address/data register pair, using I/O semantics, the IGD and internal graphics instruction  
port registers can be accessed. Note, this allows accessing the same registers as  
MMADR. In addition, the IOBAR can be used to issue writes to the GTTADR table.  
GMADR – Internal graphics translation window. (256-MB window)  
GTTADR – Internal graphics translation table location. (256-KB window). Note that the  
PGTBL_CTL register (MMIO 2020) indicates the physical address base which is 4 KB  
aligned.  
Device 2: Function 1 (82915G/82915GV/82915GL/82910GL GMCH only)  
MMADR – Function 1 IGD registers and internal graphics instruction port. (512-KB  
window)  
The rules for the above programmable ranges are:  
ALL of these ranges MUST be unique and NON-OVERLAPPING. It is the BIOS or system  
designer’s responsibility to limit memory population so that adequate PCI, PCI Express, High  
BIOS, PCI Express Memory Mapped space, and APIC memory space can be allocated.  
In the case of overlapping ranges with memory, the memory decode will be given priority.  
There are NO Hardware Interlocks to prevent problems in the case of overlapping ranges.  
Accesses to overlapped ranges may produce indeterminate results.  
The only peer-to-peer cycles allowed below the top of memory (register TOLUD) are DMI to  
PCI Express VGA range writes. Note that peer to peer cycles to the Internal Graphics VGA  
range are not supported.  
Figure 11-1 shows the system memory address map in a simplified form.  
206  
Datasheet  
System Address Map  
R
Figure 11-1. System Address Ranges  
4 GB  
Device 0  
Bars  
(EPBAR,  
MCHBAR,  
PCIEXBAR,  
DMIBAR)  
Device 1  
Bars  
(MBASE1/  
MLIMIT1,  
PMBASE1/  
PMLIMIT1)  
Device 21  
Bars  
(MMADR,  
GMADR,  
GTTADR)  
PCI Memory  
Address Range  
(Subtractively  
decoded to DMI)  
TOLUD  
Device 0  
GGC  
(Graphics  
Stolen  
Independently Programmable  
Non-Overlapping Windows  
Main Memory  
Address Range  
Memory)  
1 MB  
Legacy Address  
Range  
0
NOTES:  
1. Device 2 is not on the 82915P/82915PL MCH.  
2. Device 1 is not on the 82915GV/82910GL/82915GL GMCH.  
11.1  
Legacy Address Range  
This area is divided into the following address regions:  
0 – 640 KB: DOS Area  
640 – 768 KB: Legacy Video Buffer Area  
768 – 896 KB in 16-KB sections (total of 8 sections): Expansion Area  
896 – 960 KB in 16-KB sections (total of 4 sections): Extended System BIOS Area  
960-KB – 1-MB Memory: System BIOS Area  
Datasheet  
207  
System Address Map  
R
Figure 11-2. Microsoft MS-DOS* Legacy Address Range  
1MB  
000F_FFFFh  
000F_0000h  
000E_FFFFh  
000E_0000h  
000D_FFFFh  
System BIOS (Upper)  
64KB  
960KB  
896KB  
Extended System BIOS (Lower)  
64KB (16KBx4)  
Expansion Area  
128KB (16KBx8)  
000C_0000h  
000B_FFFFh  
768KB  
640KB  
Legacy Video Area  
(SMM Memory)  
128KB  
000A_0000h  
0009_FFFFh  
DOS Area  
0000_0000h  
11.1.1  
11.1.2  
DOS Range (0h – 9_FFFFh)  
The DOS area is 640 KB (0000_0000h – 0009_FFFFh) in size and is always mapped to the main  
memory controlled by the (G)MCH.  
Legacy Video Area (A_0000h–B_FFFFh)  
The legacy 128-KB VGA memory range, frame buffer, (000A_0000h – 000B_FFFFh) can be  
mapped to IGD, to PCI Express, and/or to the DMI. The appropriate mapping is programmable.  
Based on the programming, priority for VGA mapping is constant. The (G)MCH always decodes  
internally mapped devices first. Internal to the 82915G/82915GV/82915GL/82910GL GMCH,  
decode precedence is always given to the IGD. The (G)MCH always positively decodes internally  
mapped devices, namely the IGD (82915G/82915GV/82915GL/82910GL only) and PCI Express.  
Subsequent decoding of regions mapped to PCI Express or the DMI depends on the  
programming. This region is also the default for SMM space.  
208  
Datasheet  
System Address Map  
R
Compatible SMRAM Address Range (A_0000h–B_FFFFh)  
When compatible SMM space is enabled, SMM-mode processor accesses to this range are routed  
to physical system DRAM at 000A 0000h–000B FFFFh. Non-SMM-mode processor accesses to  
this range are considered to be to the Video Buffer Area as described above. PCI Express and  
DMI originated cycles to enabled SMM space are not allowed and are considered to be to the  
Video Buffer Area if IGD (82915G/82915GV/82915GL/82910GL GMCH only) is not enabled as  
the VGA device. PCI Express and DMI initiated cycles are attempted as peer cycles, and will  
master abort on PCI if no external VGA device claims them.  
Monochrome Adapter (MDA) Range (B_0000h–B_7FFFh)  
Legacy support requires the ability to have a second graphics controller (monochrome) in the  
system. Accesses in the standard VGA range are forwarded to IGD, PCI Express, or the DMI  
(depending on the programming of the on-chip registers). Since the monochrome adapter may be  
mapped to any one of these devices, the (G)MCH must decode cycles in the MDA range  
(000B_0000h – 000B_7FFFh) and forward either to IGD, PCI Express, or the DMI. In addition to  
the memory range B0000h to B7FFFh, the (G)MCH decodes I/O cycles at 3B4h, 3B5h, 3B8h,  
3B9h, 3BAh and 3BFh and forwards them to the either IGD, PCI Express, and/or the DMI.  
11.1.3  
Expansion Area (C_0000h–D_FFFFh)  
This 128-KB ISA Expansion region (000C_0000h – 000D_FFFFh) is divided into eight, 16-KB  
segments. Each segment can be assigned one of four read/write states: read only, write only,  
read/write, or disabled. Typically, these blocks are mapped through the (G)MCH and are  
subtractively decoded to ISA space. Memory that is disabled is not remapped.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to main memory.  
Table 11-1. Expansion Area Memory Segments  
Memory Segments  
Attributes  
Comments  
0C0000h–0C3FFFh  
0C4000h–0C7FFFh  
0C8000h–0CBFFFh  
0CC000h –0CFFFFh  
0D0000h–0D3FFFh  
0D4000h–0D7FFFh  
0D8000h–0DBFFFh  
0DC000h–0DFFFFh  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Datasheet  
209  
System Address Map  
R
11.1.4  
Extended System BIOS Area (E_0000h–E_FFFFh)  
This 64-KB area (000E_0000h – 000E_FFFFh) is divided into four, 16-KB segments. Each  
segment can be assigned independent read and write attributes so it can be mapped either to main  
DRAM or to the DMI. Typically, this area is used for RAM or ROM. Memory segments that are  
disabled are not remapped elsewhere.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to main memory.  
Table 11-2. Extended System BIOS Area Memory Segments  
Memory Segments  
Attributes  
Comments  
0E0000h–0E3FFFh  
0E4000h–0E7FFFh  
0E8000h–0EBFFFh  
0EC000h–0EFFFFh  
W/R  
W/R  
W/R  
W/R  
BIOS Extension  
BIOS Extension  
BIOS Extension  
BIOS Extension  
11.1.5  
System BIOS Area (F_0000h–F_FFFFh)  
This area is a single, 64-KB segment (000F_0000h – 000F_FFFFh). This segment can be  
assigned read and write attributes. It is by default (after reset) read/write disabled and cycles are  
forwarded to the DMI. By programming the read/write attributes, the (G)MCH can “shadow”  
BIOS into main memory. When disabled, this segment is not remapped.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to main memory.  
Table 11-3. System BIOS Area Memory Segments  
Memory Segments  
Attributes  
WE RE  
Comments  
0F0000h–0FFFFFh  
BIOS Area  
11.1.6  
Programmable Attribute Map (PAM) Memory Area Details  
The 13 sections from 768 KB to 1 MB comprise what is also known as the PAM memory area.  
The (G)MCH does not handle IWB (Implicit Write-Back) cycles targeting DMI. Since all  
memory residing on DMI should be set as non-cacheable, there will normally not be IWB cycles  
targeting DMI.  
However, DMI becomes the default target for processor and DMI originated accesses to disabled  
segments of the PAM region. If the MTRRs covering the PAM regions are set to WB or RC, it is  
possible to get IWB cycles targeting DMI. This may occur for DMI-originated cycles to disabled  
PAM regions.  
Warning: For example, assume that a particular PAM region is set for “Read Disabled” and the MTRR  
associated with this region is set to WB. A DMI master generates a memory read targeting the  
PAM region. A snoop is generated on the FSB and the result is an IWB. Since the PAM region is  
“Read Disabled”, the default target for the Memory Read becomes DMI. The IWB associated  
with this cycle will cause the (G)MCH to hang.  
210  
Datasheet  
System Address Map  
R
11.2  
Main Memory Address Range (1 MB to TOLUD)  
This address range extends from 1 MB to the top of physical memory that is permitted to be  
accessible by the (G)MCH (as programmed by in the TOLUD register). All accesses to addresses  
within this range will be forwarded by the (G)MCH to the main memory unless they fall into the  
optional TSEG, optional ISA Hole, or optional IGD stolen VGA memory.  
The (G)MCH provides a maximum main memory address decode space of 4 GB. The (G)MCH  
does not remap APIC or PCI Express memory space. This means that as the amount of physical  
memory populated in the system reaches 4 GB, there will be physical memory that exists, yet non-  
addressable; therefore, this memory is unusable by the system.  
The (G)MCH does not limit main memory address space in hardware.  
Figure 11-3. Main Memory Address Range  
4 GB Maximum  
FFFF_FFFFh  
Flash  
APIC  
Contains  
programmable  
windows, ICH6/PCI  
ranges.  
PCI Memory Range  
TOLUD  
IGD (1–32 MB, optional)  
TSEG (1 MB / 2 MB /  
8 MB, optional)  
Main Memory  
0100_000h  
00F0_000h  
16 MB  
15 MB  
ISA Hole (optional)  
Main Memory  
0010_000h  
0h  
1 MB  
DOS Compatibility  
Memory  
0 MB  
Main_Mem_Addr_G-P_Only  
11.2.1  
ISA Hole (15 MB–16 MB)  
BIOS can create a hole at 15 MB–16 MB. Accesses within this hole are forwarded to the DMI.  
The range of physical main memory disabled by opening the hole is not remapped to the top of  
the memory; that physical main memory space is not accessible. This 15 MB–16 MB hole is an  
optionally enabled ISA hole.  
Datasheet  
211  
System Address Map  
R
11.2.2  
TSEG  
TSEG is optionally 1 MB, 2 MB, or 8 MB in size. TSEG is below IGD stolen memory, which is  
at the top of physical memory. SMM-mode processor accesses to enabled TSEG access the  
physical DRAM at the same address. Non-processor originated accesses are not allowed to SMM  
space. PCI Express, DMI, and Internal Graphics originated cycles to enabled SMM space are  
handled as invalid cycle type with reads and writes to location 0 and byte enables turned off for  
writes. When the extended SMRAM space is enabled, processor accesses to the TSEG range  
without SMM attribute or without WB attribute are also forwarded to memory as invalid accesses.  
Non-SMM-mode write-back cycles that target TSEG space are completed to main memory for  
cache coherency. When SMM is enabled, the maximum amount of memory available to the  
system is equal to the amount of physical main memory minus the value in the TSEG register  
which is fixed at 1 MB, 2 MB or 8 MB.  
11.2.3  
Pre-allocated Memory  
Voids of physical addresses that are not accessible as general system memory and reside within  
system memory address range (< TOLUD) are created for SMM-mode and legacy VGA graphics  
compatibility. It is the responsibility of BIOS to properly initialize these regions. Table 11-4  
details the location and attributes of the regions.  
Table 11-4. Pre-Allocated Memory Example for 64-MB DRAM, 1-MB VGA and 1-MB TSEG  
Memory Segments  
Attributes  
Comments  
0000_0000h – 03DF_FFFFh  
03E0_0000h – 03EF_FFFFh  
R/W  
Available system memory 62 MB  
SMM Mode Only -  
processor reads  
TSEG Address Range and Pre-allocated  
memory  
03F0_0000h – 03FF_FFFFh  
R/W  
Pre-allocated Graphics VGA memory.  
1 MB (or 4/8/16/32/64 MB) when IGD is enabled.  
11.3  
PCI Memory Address Range (TOLUD – 4 GB)  
This address range, from the top of physical memory to 4 GB (top of addressable memory space  
supported by the (G)MCH) is normally mapped via the DMI to PCI. Exceptions to this mapping  
include BAR memory mapped regions that include:  
EPBAR, MCHBAR, DMIBAR.  
The second exception to the mapping rule deals with the PCI Express port:  
Addresses decoded to the PCI Express Memory Window defined by the MBASE1,  
MLIMIT1, PMBASE1, and PMLIMIT1 registers are mapped to PCI Express.  
Addresses decoded to PCI Express configuration space are mapped based on Bus,  
Device, and Function number. (PCIEXBAR range).  
The third exception to the mapping rule occurs in an internal graphics configuration (82915G  
GMCH only):  
Addresses decoded to the Graphics Memory Range. (GMADR range)  
Addresses decoded to the Graphics Translation Table range (GTTADR range).  
212  
Datasheet  
System Address Map  
R
Addresses decoded to the Memory Mapped Range of the Internal Graphics Device  
(MMADR range). There is a MMADR range for device 2 function 0 and a MMADR  
range for device 2 function 1. Both ranges are forwarded to the Internal Graphics  
Device.  
The exceptions listed above for internal graphics and the PCI Express ports MUST NOT overlap  
with APCI Configuration, FSB Interrupt Space and High BIOS Address Range.  
Figure 11-4. PCI Memory Address Range  
FFFF_FFFFh  
4 GB  
High BIOS  
FFE0_0000h  
4 GB – 2 MB  
DMI Interface  
(subtractively decode)  
FEF0_0000h  
FEE0_0000h  
4 GB – 17 MB  
4 GB – 18 MB  
FSB Interrupts  
Optional HSEG  
FEDA_0000h to  
FEDB_FFFFh  
DMI Interface  
(subtractively decode)  
FED0_0000h  
4 GB – 19 MB  
Local (processor)  
APIC  
FEC8_0000h  
FEC0_0000h  
I/O APIC  
4 GB – 20 MB  
DMI Interface  
(subtractively decode)  
F000_0000h  
E000_0000h  
4 GB – 256 MB  
PCI Express  
Configuration Space  
Possible address range  
(Not guaranteed)  
4 GB – 512 MB  
Programmable windows,  
graphics ranges,  
PCI Express* Port  
could be here  
DMI Interface  
(subtractively decode)  
TOLUD  
PCI_Address_Ranges_G-P-only  
Datasheet  
213  
System Address Map  
R
11.3.1  
11.3.2  
APIC Configuration Space (FEC0_0000h-FECF_FFFFh)  
This range is reserved for APIC configuration space. The I/O APIC(s) usually reside in the ICH6  
portion of the chipset, but may also exist as stand-alone components.  
The IOAPIC spaces are used to communicate with IOAPIC interrupt controllers that may be  
populated in the system. Since it is difficult to relocate an interrupt controller using plug-and-play  
software, fixed address decode regions have been allocated for them. Processor accesses to the  
default IOAPIC region (FEC0_0000h to FEC7_FFFFh) are always forwarded to DMI.  
HSEG (FEDA_0000h–FEDB_FFFFh)  
This optional segment from FEDA_0000h to FEDB_FFFFh provides a remapping window to  
SMM memory. It is sometimes called the High SMM memory space. SMM-mode processor  
accesses to the optionally enabled HSEG are remapped to 000A_0000h – 000B_FFFFh. Non-  
SMM-mode processor accesses to enabled HSEG are considered invalid and are terminated  
immediately on the FSB. The exceptions to this rule are Non-SMM-mode write-back cycles that  
are remapped to SMM space to maintain cache coherency. PCI Express and DMI originated  
cycles to enabled SMM space are not allowed. Physical main memory behind the HSEG  
transaction address is not remapped and is not accessible. All cacheline writes with WB attribute  
or Implicit write backs to the HSEG range are completed to DRAM like an SMM cycle.  
11.3.3  
11.3.4  
FSB Interrupt Memory Space (FEE0_0000–FEEF_FFFF)  
The FSB Interrupt space is the address used to deliver interrupts to the FSB. Any device on PCI  
Express or DMI may issue a memory write to 0FEEx_xxxxh. The (G)MCH will forward this  
memory write along with the data to the FSB as an Interrupt Message Transaction. The (G)MCH  
terminates the FSB transaction by providing the response and asserting HTRDY#. This memory  
write cycle does not go to DRAM.  
High BIOS Area  
The top 2 MB (FFE0_0000h -FFFF_FFFFh) of the PCI memory address range is reserved for  
system BIOS (High BIOS), extended BIOS for PCI devices, and the A20 alias of the system  
BIOS. The processor begins execution from the High BIOS after reset. This region is mapped to  
the DMI so that the upper subset of this region aliases to the 16-MB–256-KB range. The actual  
address space required for the BIOS is less than 2 MB, but the minimum processor MTRR range  
for this region is 2 MB; thus, that full 2 MB must be considered.  
214  
Datasheet  
System Address Map  
R
11.3.5  
11.3.6  
PCI Express* Configuration Address Space (Intel®  
82915G/82915P Only)  
A configuration register defines the base address for the 256-MB block of addresses below top of  
addressable memory (4 GB) for the configuration space associated with all devices and functions  
that are potentially a part of the PCI Express root complex hierarchy. This range will be aligned to  
a 256-MB boundary. BIOS must assign this address range such that it will not conflict with any  
other address ranges.  
PCI Express* Graphics Attach (Intel® 82915G/82915P Only)  
The (G)MCH can be programmed to direct memory accesses to the PCI Express interface when  
addresses are within either of two programmed ranges specified via registers in the (G)MCH’s  
Device 1 configuration space.  
The first range is controlled via the Memory Base Register (MBASE) and Memory Limit  
Register (MLIMIT) registers.  
The second range is controlled via the Prefetchable Memory Base (PMBASE) and  
Prefetchable Memory Limit (PMLIMIT) registers.  
The (G)MCH positively decodes memory accesses to PCI Express memory address space as  
defined by the following equations:  
Memory_Base_Address Address Memory_Limit_Address  
Prefetchable_Memory_Base_Address Address ≤  
Prefetchable_Memory_Limit_Address  
It is essential to support a separate Prefetchable range to apply USWC attribute (from the  
processor point of view) to that range. The USWC attribute is used by the processor for write  
combining.  
Note: The programmable ranges are used to allocate memory address space for any PCI Express devices  
sitting on PCI Express that require such a window.  
The PCICMD1 register can override the routing of memory accesses to PCI Express. In other  
words, the memory access enable bit must be set in the device 1 PCICMD1 register to enable the  
memory base/limit and prefetchable base/limit windows.  
11.3.7  
AGP DRAM Graphics Aperture  
Unlike AGP4x, PCI Express has no concept of aperture for PCI Express devices. As a result,  
there is no need to translate addresses from PCI Express. Therefore, the (G)MCH has no  
APBASE and APSIZE registers.  
Datasheet  
215  
System Address Map  
R
11.3.8  
Graphics Memory Address Ranges (Intel®  
82915G/82915GV/82915GL/82910GL GMCH Only)  
The GMCH can be programmed to direct memory accesses to IGD when addresses are within any  
of three programmable ranges.  
The Memory Map Base Register (MMADR) is used to access graphics control registers.  
The Graphics Memory Aperture Base Register (GMADR) is used to access graphics memory  
allocated via the graphics translation table.  
The Graphics Translation Table Base Register (GTTADR) is used to access the translation  
table.  
Normally these ranges will reside above the Top-of-Main-DRAM and below High BIOS and  
APIC address ranges. They normally reside above the top of memory (TOLUD) so that physical  
DRAM memory space is not allocate to them.  
The memory allocated via the graphics translation table is a Prefetchable range to apply USWC  
attribute (from the processor point of view) to that range. The USWC attribute is used by the  
processor for write combining.  
11.4  
System Management Mode (SMM)  
System Management Mode uses main memory for System Management RAM (SMM RAM). The  
(G)MCH supports: Compatible SMRAM (C_SMRAM), High Segment (HSEG), and Top of  
Memory Segment (TSEG). System Management RAM space provides a memory area that is  
available for the SMI handlers and code and data storage. This memory resource is normally  
hidden from the system OS so that the processor has immediate access to this memory space upon  
entry to SMM. (G)MCH provides three SMRAM options:  
Below 1-MB option that supports compatible SMI handlers.  
Above 1-MB option that allows new SMI handlers to execute with write-back cacheable  
SMRAM.  
Optional TSEG area of 1 MB, 2 MB, or 8 MB in size. For the  
82915G/82915GV/82915GL/82910GL GMCH, the TSEG area lies below IGD stolen  
memory.  
The above 1-MB solutions require changes to compatible SMRAM handler’s code to properly  
execute above 1 MB.  
Note: DMI and PCI Express masters are not allowed to access the SMM space.  
216  
Datasheet  
System Address Map  
R
11.4.1  
11.4.2  
Datasheet  
SMM Space Definition  
SMM space is defined by its addressed SMM space and its DRAM SMM space. The addressed  
SMM space is defined as the range of bus addresses used by the processor to access SMM space.  
DRAM SMM space is defined as the range of physical DRAM memory locations containing the  
SMM code. SMM space can be accessed at one of three transaction address ranges: Compatible,  
High, and TSEG. The Compatible and TSEG SMM space is not remapped; therefore, the  
addressed and DRAM SMM space is the same address range. Since the High SMM space is  
remapped, the addressed and DRAM SMM space are different address ranges. Note that the High  
DRAM space is the same as the Compatible Transaction Address space. The following table  
describes three unique address ranges:  
Compatible Transaction Address  
High Transaction Address  
TSEG Transaction Address  
SMM Space Enabled  
Transaction Address Space  
DRAM Space (DRAM)  
Compatible (C)  
High (H)  
000A_0000h to 000B_FFFFh  
FEDA_0000h to FEDB_FFFFh  
000A_0000h to 000B_FFFFh  
000A_0000h to 000B_FFFFh  
TSEG (T)  
(TOLUD-STOLEN-TSEG) to  
TOLUD-STOLEN  
(TOLUD-STOLEN-TSEG) to  
TOLUD-STOLEN  
SMM Space Restrictions  
If any of the following conditions are violated, the results of SMM accesses are unpredictable and  
may cause the system to hang:  
The Compatible SMM space must not be set-up as cacheable.  
High or TSEG SMM transaction address space must not overlap address space assigned to  
system main memory, or to any “PCI” devices (including DMI, PCI Express, and graphics  
devices). This is a BIOS responsibility.  
Both D_OPEN and D_CLOSE capability must not be enabled at the same time.  
When TSEG SMM space is enabled, the TSEG space must not be reported to the OS as  
available main memory. This is a BIOS responsibility.  
Any address translated through the internal graphics device’s TLB must not target main  
memory from A_0000-F_FFFF.  
217  
System Address Map  
R
11.4.3  
SMM Space Combinations  
When High SMM is enabled, the Compatible SMM space is effectively disabled. Processor  
originated accesses to the Compatible SMM space are forwarded to PCI Express if this VGA  
capability is enabled; otherwise, they are forwarded to the DMI. PCI Express and DMI originated  
accesses are never allowed to access SMM space.  
Table 11-5. SMM Space Table  
Global Enable  
G_SMRAME  
High Enable  
H_SMRAM_EN  
TSEG Enable  
TSEG_EN  
Compatible  
(C) Range  
High (H)  
Range  
TSEG (T)  
Range  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Disable  
Enable  
Disable  
Disable  
Disable  
Enable  
Enable  
Disable  
Disable  
Enable  
Disable  
Enable  
Enable  
Disabled  
Disabled  
11.4.4  
SMM Control Combinations  
The G_SMRAME bit provides a global enable for all SMM memory. The D_OPEN bit allows  
software to write to the SMM ranges without being in SMM mode. BIOS software can use this bit  
to initialize SMM code at powerup. The D_LCK bit limits the SMM range access to only SMM  
mode accesses. The D_CLS bit causes SMM data accesses to be forwarded to the DMI or PCI  
Express. The SMM software can use this bit to write to video memory while running SMM code  
out of DRAM.  
Table 11-6. SMM Control Table  
G_SMRAME  
D_LCK  
D_CLS  
D_OPEN  
Processor in  
SMM Mode  
SMM Code  
Access  
SMM Data  
Access  
0
x
X
X
0
0
1
1
X
0
1
x
0
0
1
0
1
x
x
x
x
0
1
x
1
x
0
1
1
Disable  
Disable  
Enable  
Enable  
Enable  
Invalid  
Disable  
Enable  
Enable  
Disable  
Disable  
Enable  
Enable  
Disable  
Invalid  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
Disable  
Enable  
Disable  
218  
Datasheet  
System Address Map  
R
11.4.5  
11.4.6  
SMM Space Decode and Transaction Handling  
Only the processor is allowed to access SMM space. PCI Express and DMI originated  
transactions are not allowed to SMM space.  
Processor WB Transaction to an Enabled SMM Address  
Space  
Processor write-back transactions (HREQ1# = 0) to enabled SMM address space must be written  
to the associated SMM DRAM, even though the space is not open and the transaction is not  
performed in SMM mode. This ensures SMM space cache coherency when cacheable extended  
SMM space is used.  
11.4.7  
SMM Access through GTT TLB (Intel®  
82915G/82915GV/82910GL GMCH Only)  
Accesses through GTT TLB address translation to enabled SMM DRAM space are not allowed.  
Writes will be routed to memory address 0h with byte enables de-asserted and reads will be  
routed to memory address 0h. If a GTT TLB translated address hits enabled SMM DRAM space,  
an Invalid Translation Table Entry Flag is reported to BIOS.  
PCI Express and DMI originated accesses are never allowed to access SMM space directly or  
through the GTT TLB address translation. If a GTT TLB translated address hits enabled SMM  
DRAM space, an Invalid Translation Table Entry Flag is reported to BIOS.  
PCI Express and DMI write accesses through graphics memory range set up by BIOS will be  
snooped. If, when translated, the resulting physical address is to enabled SMM DRAM space, the  
request will be remapped to address 0h with de-asserted byte enables.  
PCI Express and DMI read accesses to the graphics memory range set up by BIOS are not  
supported; therefore, users/systems will have no address translation concerns. PCI Express and  
DMI reads to the graphics memory range will be remapped to address 0h. The read will complete  
with UR (unsupported request) completion status.  
GTT fetches are always decoded (at fetch time) to ensure they are not in SMM (actually, anything  
above base of TSEG or 640 KB – 1 MB). Thus, they will be invalid and go to address 0h. This is  
not specific to PCI Express or DMI; it applies to the processor or internal graphics engines. Also,  
since the graphics memory range snoop would not be directly to SMM space, there would not be  
a writeback to SMM. In fact, the writeback would also be invalid (because it uses the same  
translation) and goes to address 0h.  
11.4.8  
Memory Shadowing  
Any block of memory that can be designated as “read only” or “write only” can be “shadowed”  
into (G)MCH main memory. Typically, this is done to allow ROM code to execute more rapidly  
out of main DRAM memory. ROM is used as read-only during the copy process while DRAM at  
the same time is designated write-only. After copying, the DRAM is designated read-only so that  
ROM is shadowed. Processor bus transactions are routed accordingly.  
Datasheet  
219  
System Address Map  
R
11.4.9  
I/O Address Space  
The (G)MCH does not support the existence of any other I/O devices beside itself on the  
processor bus. The (G)MCH generates either DMI or PCI Express bus cycles for all processor I/O  
accesses that it does not claim. Within the host bridge, the (G)MCH contains two internal  
registers in the processor I/O space. These locations are used to implement a configuration space  
access mechanism.  
The processor allows 64 KB+3 bytes to be addressed within the I/O space. The (G)MCH  
propagates the processor I/O address without any translation on to the destination bus; therefore,  
providing addressability for 64 KB+3 byte locations. Note that the upper 3 locations can be  
accessed only during I/O address wrap-around when processor bus HA16# address signal is  
asserted. HA16# is asserted on the processor bus when an I/O access is made to 4 bytes from  
address 0FFFDh, 0FFFEh, or 0FFFFh. HA16# is also asserted when an I/O access is made to  
2 bytes from address 0FFFFh.  
For the 828915G GMCH, a set of I/O accesses (other than ones used for configuration space  
access) are consumed by the internal graphics device if it is enabled. The mechanisms for internal  
graphics I/O decode and the associated control are explained later.  
The I/O accesses (other than ones used for configuration space access) are forwarded normally to  
the DMI bus unless they fall within the PCI Express I/O address range as defined by the  
mechanisms explained below. I/O writes are not posted. Memory writes to the ICH6 or PCI  
Express are posted.  
The (G)MCH responds to I/O cycles initiated on PCI Express or DMI with a UR status. Upstream  
I/O cycles and configuration cycles should never occur. If one does occur, the request will route  
as a read to memory address 0h so a completion is naturally generated (whether the original  
request was a read or write). The transaction will complete with a UR completion status.  
11.4.10 PCI Express* I/O Address Mapping (Intel®  
82915G/82915P/82915PL Only)  
The (G)MCH can be programmed to direct non-memory (I/O) accesses to the PCI Express bus  
interface when processor-initiated I/O cycle addresses are within the PCI Express I/O address  
range.  
11.4.11 (G)MCH Decode Rules and Cross-Bridge Address Mapping  
The following are (G)MCH decode rules and cross-bridge address mapping used in this chipset:  
VGAA = 000A_0000h – 000A_FFFFh  
MDA = 000B_0000h – 000B_7FFFh  
VGAB = 000B_8000h – 000B_FFFFh  
MAINMEM = 0100_0000 to TOLUD  
220  
Datasheet  
System Address Map  
R
11.4.12 Legacy VGA and I/O Range Decode Rules  
The legacy 128-KB VGA memory range 000A_0000h-000B_FFFFh can be mapped to IGD  
(82915G/82915GV/82915GL/82910GL GMCH only), to PCI Express (Device #1), and/or to the  
DMI depending on BIOS programming. Priority for VGA mapping is constant in that the  
(G)MCH always decodes internally mapped devices first. Internal to the GMCH, decode  
precedence is always given to IGD. The (G)MCH always positively decodes internally mapped  
devices, namely the IGD and PCI Express.  
§
Datasheet  
221  
System Address Map  
R
222  
Datasheet  
Functional Description  
R
12 Functional Description  
This chapter describes the (G)MCH interfaces and major functional units.  
12.1  
Host Interface  
The (G)MCH supports the Pentium 4 processor subset of the Enhanced Mode Scaleable Bus. The  
cache line size is 64 bytes. Source synchronous transfer is used for the address and data signals.  
The address signals are double pumped, and a new address can be generated every other bus  
clock. At 133/200 MHz bus clock, the address signals run at 266/400 MT/s for a maximum  
address queue rate of 66/100 million addresses/sec. The data is quad pumped and an entire  
64 byte cache line can be transferred in two bus clocks. At 133/200 MHz bus clock the data  
signals run at 533/800 MT/s for a maximum bandwidth of 4.2 GB/s or 6.4 GB/s.  
Note: The host interface on the 82910GL GMCH runs at 133 MHz only.  
The FSB interface supports up to 12 simultaneous outstanding transactions. The (G)MCH  
supports only one outstanding deferred transaction on the FSB.  
12.1.1  
12.1.2  
FSB GTL+ Termination  
The (G)MCH integrates GTL+ termination resistors on die. Also, approximately  
2.8 pf (fast) – 3.3 pf (slow) per pad of on die capacitance will be implemented to provide better  
FSB electrical performance.  
FSB Dynamic Bus Inversion  
The (G)MCH supports Dynamic Bus Inversion (DBI) when driving and when receiving data from  
the processor. DBI limits the number of data signals that are driven to a low voltage on each quad  
pumped data phase. This decreases the worst-case power consumption of the (G)MCH.  
HDINV[3:0]# indicate if the corresponding 16 bits of data are inverted on the bus for each quad  
pumped data phase:  
HDINV[3:0]#  
Data Bits  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HD[15:0]  
HD[31:16]  
HD[47:32]  
HD[63:48]  
When the processor or the (G)MCH drives data, each 16-bit segment is analyzed. If more than 8  
of the 16 signals would normally be driven low on the bus, the corresponding HDINVx# signal  
will be asserted and the data will be inverted prior to being driven on the bus. When the processor  
or the (G)MCH receives data, it monitors HDINV[3:0]# to determine if the corresponding data  
segment should be inverted.  
Datasheet  
223  
Functional Description  
R
12.1.3  
APIC Cluster Mode Support  
This is required for backwards compatibility with existing software, including various operating  
systems. As one example, beginning with Microsoft Windows 2000 there is a mode (boot.ini) that  
allows an end user to enable the use of cluster addressing support of the APIC.  
The (G)MCH supports three types of interrupt re-direction:  
Physical  
Flat-Logical  
Clustered-Logical  
12.2  
System Memory Controller  
This section describes the (G)MCH system memory interface for both DDR memory and DDR2  
memory. The (G)MCH supports both DDR and DDR2 memory and either one or two DIMMs per  
channel.  
Note: The 82915G/82915GV GMCH and 82915P MCH support both DDR memory and DDR2  
memory, and either one or two DIMMs per channel. The 82910GL only supports DDR memory  
and a maximum of one DIMM per channel. The 82915PL and 82915GL support only DDR and  
either one or two DIMMs per channel.  
12.2.1  
Memory Organization Modes  
The system memory controller supports two styles of memory organization (Interleaved and  
Asymmetric) and two modes of operation (DDR and DDR2). Rules for populating DIMM slots  
are included in this chapter.  
Interleaved Mode  
This mode provides maximum performance on real applications. Addresses are ping-ponged  
between the channels, and the switch happens after each cache line (64 byte boundary). If two  
consecutive cache lines are requested, both may be retrieved simultaneously, since they are  
guaranteed to be on opposite channels. The drawbacks of Interleaved Mode are that the system  
designer must populate both channels of memory such that they have equal capacity, but the  
technology and device width may vary from one channel to the other. Refer to Figure 12-1 for  
further clarification.  
Asymmetric Mode  
This mode trades performance for system design flexibility. Unlike the previous mode, addresses  
start in channel A and stay there until the end of the highest rank in channel A; then, addresses  
continue from the bottom of channel B to the top. Real world applications are unlikely to make  
requests that alternate between addresses that sit on opposite channels with this memory  
organization, so in most cases, bandwidth will be limited to that of a single channel. The system  
designer is free to populate or not to populate any rank on either channel, including either  
degenerate single channel case. Refer to Figure 12-1 for further clarification.  
224  
Datasheet  
Functional Description  
R
Figure 12-1. System Memory Styles  
Dual Channel Interleaved  
(channels do not have to  
match)  
Dual Channel Asymmetric  
(channels do not have to  
match)  
Single Channel  
CL  
CL  
CL  
CH B  
TOM  
TOM  
CH B  
CH A  
TOM  
CH B  
CH B0  
CH A  
TOM  
CH A or CH B  
CH B  
CH A  
CH B  
CH A  
CH A  
CH A0  
0
0
Scheme  
XOR Bit 6 => CL  
Sys_Mem_Styles  
Table 12-1. Sample System Memory Organization with Interleaved Channels  
Rank  
Channel A  
population  
Cumulative  
top address in  
Channel A  
Channel B  
population  
Cumulative  
top address in  
Channel B  
3
2
1
0
0 MB  
2560 MB  
2560 MB  
2048 MB  
1024 MB  
0 MB  
2560 MB  
2560 MB  
2048 MB  
1024 MB  
256 MB  
512 MB  
512 MB  
256 MB  
512 MB  
512 MB  
Table 12-2. Sample System Memory Organization with Asymmetric Channels  
Rank  
Channel A  
population  
Cumulative  
top address in  
Channel A  
Channel B  
population  
Cumulative  
top address in  
Channel B  
3
2
1
0
0 MB  
1280 MB  
1280 MB  
1024 MB  
512 MB  
0 MB  
2560 MB  
2560 MB  
2304 MB  
1792 MB  
256 MB  
512 MB  
512 MB  
256 MB  
512 MB  
512 MB  
Datasheet  
225  
Functional Description  
R
12.3  
System Memory Configuration Registers Overview  
The configuration registers located in the PCI configuration space of the (G)MCH control the  
system memory operation. Following is a brief description of configuration registers.  
DRAM Rank Boundary (CxDRBy): The x represents a channel, either A (where x = 0) or  
B (where x = 1). The y represents a rank, 0 through 3. DRB registers define the upper  
addresses for a rank of DRAM devices in a channel. When the (G)MCH is configured in  
asymmetric mode, each register represents a single rank. When the (G)MCH is configured in  
a dual interleaved mode, each register represents a pair of corresponding ranks in opposing  
channels. There are 4 DRB registers for each channel.  
DRAM Rank Architecture (CxDRAy): The x represents a channel, either A (where x = 0)  
or B (where x = 1). The y represents a rank, 0 through 3. DRA registers specify the  
architecture features of each rank of devices in a channel. The only architecture feature  
specified is page size. When the (G)MCH is configured in asymmetric mode, each DRA  
represents a single rank in a single channel. When the (G)MCH is configured in a dual-  
channel lock-step or interleaved mode, each DRA represents a pair of corresponding ranks in  
opposing channels. There are 4 DRA registers per channel. Each requires only 3 bits, so there  
are two DRAs packed into a byte.  
Clock Configuration (CLKCFG): Specifies DRAM frequency. The same clock frequency  
will be driven to all DIMMs.  
DRAM Timing (CxDRTy): The x represents a channel, A (where x = 0) or B  
(where x = 1). A second register for a channel is differentiated by y, A or B. The DRT  
registers define the timing parameters for all devices in a channel. The BIOS programs this  
register with “least common denominator” values after reading the SPD registers of each  
DIMM in the channel.  
DRAM Control (CxDRCy): The x represents a channel, A (where x = 0) or B  
(where x = 1). A second register for a channel is differentiated by y, A or B. DRAM refresh  
mode, rate, and other controls are selected here.  
226  
Datasheet  
Functional Description  
R
12.3.1  
DRAM Technologies and Organization  
All standard 256-Mb, 512-Mb, and 1-Gb technologies and addressing are supported for x16 and  
x8 devices.  
All supported DDR devices have 4 banks; all supported DDR2 devices have 4 or 8 banks.  
The (G)MCH supports various page sizes. Page size is individually selected for every rank.  
4 KB, 8 KB, and 16 KB for asymmetric, interleaved, or single-channel modes.  
The DRAM sub-system supports single or dual channels, 64-b wide per channel.  
There can be a maximum of four ranks populated (two double-sided DIMMs) per channel.  
Mixed mode double-sided DIMMs (x8 and x16 on the same DIMM) are not supported  
By using 1-Gb technology, the largest memory capacity is 8 GB  
32M rows/bank * 4 banks/device * 8 columns * 8 devices/rank * 4 ranks/channel *  
2 channel * 1b/(row*column) * 1G/1024M * 1B/8b = 8 GB.  
Though it is possible to put 8 GB in system by stuffing both channels this way, the (G)MCH  
is still limited to 4 GB of addressable space due to the number of address pins on the FSB.  
By using 256-Mb technology, the smallest memory capacity is 128 MB  
(4M rows/bank * 4banks/device * 16 columns * 4 devices/rank * 1 rank * 1B/8b =128 MB)  
12.3.1.1  
Rules for Populating DIMM Slots  
In all modes, the frequency of system memory will be the lowest frequency of all DIMMs in  
the system, as determined through the SPD registers on the DIMMs.  
In the Single Channel mode, any DIMM slot within the channel may be populated in any  
order. Either channel may be used. To save power, do not populate the unused channel.  
In Dual-Channel Asymmetric mode, any DIMM slot may be populated in any order.  
In Dual-Channel Interleaved mode, any DIMM slot may be populated in any order, but the  
total memory in each channel must be the same.  
Datasheet  
227  
Functional Description  
R
12.3.1.2  
System Memory Supported Configurations  
The (G)MCH supports the 256-Mbit, 512-Mbit and 1-Gbit technology based DIMMs from  
Table 12-3.  
Table 12-3. DDR / DDR2 DIMM Supported Configurations  
Technology  
Configuration  
# of  
Row  
Address  
Bits  
# of Column  
Address Bits  
# of Bank  
Address  
Bits  
Page  
Size  
Rank  
Size  
256Mbit  
256Mbit  
512Mbit  
512Mbit  
512Mbit  
1Gbit  
16M X 16  
32M X 8  
32M X 16  
64M X 8  
64M X 8  
64M X 16  
128M X 8  
64M X 16  
128M X 8  
13  
13  
13  
13  
14  
14  
14  
13  
14  
9
2
2
2
2
2
2
2
3
3
4K  
8K  
128 MB  
256 MB  
256 MB  
512 MB  
512 MB  
512 MB  
1 GB  
10  
10  
11  
10  
10  
11  
10  
10  
8K  
16K  
8K  
8K  
1Gbit  
16K  
8K  
1Gbit  
512 MB  
1 GB  
1Gbit  
8K  
12.3.1.3  
Main Memory DRAM Address Translation and Decoding  
Table 12-4 and Table 12-5 specify the host interface to memory interface address multiplex for  
the (G)MCH. Refer to the details of the various DIMM configurations as described in Table 12-3.  
The address lines specified in the column header refer to the host (processor) address lines.  
228  
Datasheet  
 
Functional Description  
R
Table 12-4. DRAM Address Translation (Single Channel/Dual Asymmetric Mode)  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
256 Mb x16 4i  
256 Mb x8 4i  
512 Mb x16 4i  
512 Mb x8 4i  
512 Mb x16 4i  
4 KB  
8 KB  
8 KB  
16 KB  
8 KB  
8 KB  
8 KB  
16 KB  
8 KB  
8 KB  
128 MB  
256 MB  
256 MB  
512 MB  
256 MB  
512 MB  
512 MB  
1 GB  
r10 r9  
r12 r10 r9  
r8  
r8  
r8  
r8  
r8  
r8  
r8  
r8  
r8  
r8  
r7  
r7  
r7  
r7  
r7  
r7  
r7  
r7  
r7  
r7  
r6  
r6  
r6  
r6  
r6  
r6  
r6  
r6  
r6  
r6  
r5  
r5  
r5  
r5  
r5  
r5  
r5  
r5  
r5  
r5  
r4  
r4  
r4  
r4  
r4  
r4  
r4  
r4  
r4  
r4  
r3  
r3  
r3  
r3  
r3  
r3  
r3  
r3  
r3  
r3  
r2  
r2  
r2  
r2  
r2  
r2  
r2  
r2  
r2  
r2  
r1  
r1  
r1  
r1  
r1  
r1  
r1  
r1  
r1  
r1  
r0  
r0  
r0  
r0  
r0  
r0  
r0  
r0  
r0  
r0  
r11 r12 b0 b1 c8 c7 c6 c5 c4 c3 c2 c1 c0  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
b0 b1 c11 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
b0 b1 c11 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
b0 b1 b2 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
b0 b1 b2 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0  
r12 r10 r9  
r11 r12 r10 r9  
r12 r10 r9  
512 Mb x8  
1 Gb x16  
1 Gb x8  
4i  
4i  
4i  
8i  
8i  
r13 r12 r10 r9  
r13 r12 r10 r9  
r13 r11 r12 r10 r9  
r11 r12 r10 r9  
r13 r11 r12 r10 r9  
1 Gb x16  
1 Gb x8  
512 MB  
1 GB  
NOTES:  
1. b – ‘bank’ select bit  
2. c – ‘column’ address bit  
3. r – ‘row’ address bit  
Datasheet  
229  
Functional Description  
R
Table 12-5. DRAM Address Translation (Dual Channel Symmetric Mode)  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
256 Mb x16 4i  
256 Mb x8 4i  
512 Mb x16 4i  
512 Mb x8 4i  
512 Mb x16 4i  
4 KB  
8 KB  
8 KB  
16 KB  
4 KB  
8 KB  
8 KB  
16 KB  
4 KB  
8 KB  
128 MB  
256 MB  
256 MB  
512 MB  
256 MB  
512 MB  
512 MB  
1 GB  
r10 r9  
r12 r10 r9  
r8  
r8  
r8  
r8  
r8  
r8  
r8  
r8  
r8  
r8  
r7  
r7  
r7  
r7  
r7  
r7  
r7  
r7  
r7  
r7  
r6  
r6  
r6  
r6  
r6  
r6  
r6  
r6  
r6  
r6  
r5  
r5  
r5  
r5  
r5  
r5  
r5  
r5  
r5  
r5  
r4  
r4  
r4  
r4  
r4  
r4  
r4  
r4  
r4  
r4  
r3  
r3  
r3  
r3  
r3  
r3  
r3  
r3  
r3  
r3  
r2  
r2  
r2  
r2  
r2  
r2  
r2  
r2  
r2  
r2  
r1  
r1  
r1  
r1  
r1  
r1  
r1  
r1  
r1  
r1  
r0  
r0  
r0  
r0  
r0  
r0  
r0  
r0  
r0  
r0  
r11 r12 b0 b1 c8 c7 c6 c5 c4 c3  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3  
b0 b1 c11 c9 c8 c7 c6 c5 c4 c3  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3  
r11 b1 b0 c9 c8 c7 c6 c5 c4 c3  
b0 b1 c11 c9 c8 c7 c6 c5 c4 c3  
b0 b1 b2 c9 c8 c7 c6 c5 c4 c3  
b0 b1 b2 c9 c8 c7 c6 c5 c4 c3  
h
h
h
h
h
h
h
h
h
h
c2 c1 c0  
c2 c1 c0  
c2 c1 c0  
c2 c1 c0  
c2 c1 c0  
c2 c1 c0  
c2 c1 c0  
c2 c1 c0  
c2 c1 c0  
c2 c1 c0  
r12 r10 r9  
r11 r12 r10 r9  
r12 r10 r9  
512 Mb x8  
1 Gb x16  
1 Gb x8  
4i  
4i  
4i  
8i  
8i  
r13 r12 r10 r9  
r13 r12 r10 r9  
r13 r11 r12 r10 r9  
r11 r12 r10 r9  
r13 r11 r12 r10 r9  
1 Gb x16  
1 Gb x8  
512 MB  
1 GB  
NOTES:  
1. b – ‘bank’ select bit  
2. c – ‘column’ address bit  
3. h – channel select bit  
4. r – ‘row’ address bit  
230  
Datasheet  
Functional Description  
R
12.3.2  
12.3.3  
12.3.4  
DRAM Clock Generation  
The (G)MCH generates three differential clock pairs for every supported DIMM. There are a total  
of 6 clock pairs driven directly by the (G)MCH to 2 DIMMs per channel  
(82915G/82915GV/82915GL and 82915P) and to 1 DIMM per channel (82910GL/82915PL).  
Suspend-to-RAM and Resume  
When entering the Suspend-to-RAM (STR) state, the SDRAM controller will flush pending  
cycles and then enter all SDRAM rows into self refresh. In STR, the CKE signals remain LOW so  
the SDRAM devices will perform self-refresh.n  
DDR2 On-Die Termination  
On-die termination (ODT) is a feature that allows a DRAM to turn on/off internal termination  
resistance for each DQ, DM, DQS, and DQS# signal for x8 and x16 configurations via the ODT  
control signals. The ODT feature is designed to improve signal integrity of the memory channel  
by allowing the termination resistance for the DQ, DM, DQS, and DQS# signals to be located  
inside the DRAM devices themselves, instead of on the motherboard. The (G)MCH drives out the  
required ODT signals, based on memory configuration and which rank is being written to or read  
from, to the DRAM devices on a targeted DIMM rank to enable or disable their termination  
resistance.  
12.3.5  
DDR2 Off-Chip Driver Impedance Calibration  
The OCD impedance adjustment mode allows the (G)MCH to measure and adjust the pull-up and  
pull-down strength of the DRAM devices. It uses a series of EMRS commands to guide the  
DRAM through measurement and calibration cycles. This feature is described in more detail in  
the JEDEC DDR2 device specification.  
The algorithm and sequence of the adjustment cycles is handled by software. The (G)MCH  
adjusts the DRAM driver impedance by issuing OCD commands to the DIMM and looking at the  
analog voltage on the DQ lines.  
Datasheet  
231  
Functional Description  
R
12.4  
PCI Express* (Intel® 82915G/82915P82915PL Only)  
Refer to Chapter 0 a for list of PCI Express features, and the PCI Express specification for further  
details. The (G)MCH is part of a PCI Express root complex. This means it connects a host  
processor/memory subsystem to a PCI Express hierarchy.  
The PCI Express architecture is specified in layers. Compatibility with the PCI addressing model  
(a load-store architecture with a flat address space) is maintained to ensure that all existing  
applications and drivers operate unchanged. The PCI Express configuration uses standard  
mechanisms as defined in the PCI Plug-and-Play specification. The initial speed of 1.25 GHz  
(250 MHz internally) results in 2.5 Gb/s/direction that provides a 250 MB/s communications  
channel in each direction (500 MB/s total) per lane that is close to twice the data rate of classic  
PCI.  
Note: The PCI Express graphics port will operate in x1 mode if a non-graphics card is plugged in.  
12.4.1  
Transaction Layer  
The upper layer of the PCI Express architecture is the Transaction Layer. The Transaction Layer’s  
primary responsibility is the assembly and disassembly of Transaction Layer Packets (TLPs).  
TLPs are used to communicate transactions (such as read and write as well as certain types of  
events). The Transaction Layer also manages flow control of TLPs.  
Note: If the (G)MCH receives two back-to-back malformed packets, the second malformed packet is not  
trapped or logged. The (G)MCH will not log or identify the second malformed packet. However,  
the 1st malformed TLP is logged, and is considered a Fatal Error. Link behavior is not guaranteed  
at that point whether a 2nd malformed TLP is detected or not.  
12.4.2  
Data Link Layer  
The middle layer in the PCI Express stack, the Data Link Layer, serves as an intermediate stage  
between the Transaction Layer and the Physical Layer. Responsibilities of Data Link Layer  
include link management, error detection, and error correction.  
12.4.3  
Physical Layer  
The Physical Layer includes all circuitry for interface operation, including driver and input  
buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance matching  
circuitry.  
232  
Datasheet  
Functional Description  
R
12.5  
Intel® Serial Digital Video Output (SDVO) (Intel®  
82915G/82915GV/82915GL/82910GL GMCH Only)  
The 82915G/82915GV/82915GL/82910GL GMCH SDVO ports are multiplexed with the PCI  
Express x16 interface. PCI Express and SDVO simultaneous operation is NOT supported, even  
though SDVO does not require all of the PCI Express lanes.  
The Intel® SDVO port is the second generation of digital video output from compliant GMCH.  
The electrical interface is based on the PCI Express interface, although the protocol and timings  
are completely unique. Where PCI Express runs at a fixed frequency, the frequency of the SDVO  
interface is dependant upon the active display resolution and timing. The port can be dynamically  
configured in several modes to support display configurations.  
Essentially, an SDVO port will transmit display data in a high speed, serial format across  
differential AC coupled signals. An SDVO port consists of a sideband differential clock pair and  
a number of differential data pairs.  
12.5.1  
Intel® SDVO Capabilities  
SDVO ports can support a variety of display types including LVDS, DVI, Analog CRT, TV-Out  
and external CE type devices. The GMCH uses an external SDVO device to translate from SDVO  
protocol and timings to the desired display format and timings.  
The Internal Graphics Device on the 82915G/82915GV/82915GL/82910GL GMCH can have one  
or two SDVO ports multiplexed on the x16 PCI Express interface. When an external x16 PCI  
Express graphics accelerator is not in use, an ADD2 card may be plugged into the x16 connector  
or if a x16 slot is not present, the SDVO(s) may be located ‘down’ on the motherboard to access  
the multiplexed SDVO ports and provide a variety of digital display options.  
The ADD2 card is designed to fit in a x16 PCI Express connector. The ADD2 card can support  
one or two devices. If a single channel SDVO device is used, it should be attached to the channel  
B SDVO pins. The ADD2 card can support two separate SDVO devices when the interface is in  
Dual Independent (82915G only) or Dual Simultaneous Standard modes.  
The SDVO port defines a two-wire point-to-point communication path between the SDVO device  
and GMCH. The SDVO control clock and data provide similar functionality to I2C. However,  
unlike I2C, this interface is intended to be point-to-point (from the GMCH to the SDVO device)  
and will require the SDVO device to act as a switch and direct traffic from the SDVO control bus  
to the appropriate receiver. Additionally, this control bus will be able to run at faster speeds (up to  
1 MHz) than a traditional I2C interface would.  
Datasheet  
233  
Functional Description  
R
12.5.2  
Intel® SDVO Modes  
The port can be dynamically configured in several modes:  
Standard. This mode provides baseline SDVO functionality. Supports Pixel Rates between  
25 and 200 MP/s. Utilizes three data pairs to transfer RGB data.  
Extended. This mode adds Alpha support to data stream. Extended mode supports Pixel rates  
between 25 MP/s and 200 MP/s. The mode uses four data channels and is only supported on  
SDVOB. Leverages channel C (SDVOC) Red pair as the Alpha pair for channel B (SDVOB).  
Note: Operating in extended SDVO mode is mutually exclusive to the use of a second display  
on SDVO.  
Dual Standard. This mode uses Standard data streams across both SDVOB and SDVOC.  
Both channels can only run in Standard mode (3 data pairs) and each channel supports Pixel  
Rates between 25 and 200 MP/s.  
Dual Independent Standard (82915G only). In Dual Independent Standard mode, each  
SDVO channel will see a different pixel stream. The data stream across SDVOB will not  
be the same as the data stream across SDVOC.  
Dual Simultaneous Standard. In Dual Simultaneous Standard mode, both SDVO  
channels will see the same pixel stream. The data stream across SDVOB will be the same  
as the data stream across SDVOC. The display timings will be identical, but the transfer  
timings may not be (i.e., SDVOB clocks and data may not be perfectly aligned with  
SDVOC clock and data as seen at the SDVO device(s)). Since this mode uses just a  
single data stream, it uses a single pixel pipeline within the GMCH.  
234  
Datasheet  
Functional Description  
R
12.6  
Integrated Graphics Device (Intel®  
82915G/82915GV/82915GL/82910GL GMCH Only)  
The GMCH provides a highly integrated graphics accelerator and chipset while allowing a  
flexible integrated system graphics solution. Figure 12-2 shows a simplified block diagram of the  
IGD in the GMCH.  
Figure 12-2. Integrated Graphics Device Block Diagram  
Video Engine  
DAC (Analog)  
SDVOB (Digital)  
SDVOC (Digital)  
M
e
m
o
r
Port  
Mux  
Control  
Display  
Engine  
2D Engine  
3D Engine  
y
Gfx_Blk_Dia  
High bandwidth access to data is provided through the graphics and system memory ports. The GMCH  
can access graphics data located in system memory at 4.2 GB/s – 8.5 GB/s (depending on memory  
configuration). The GMCH uses Intel’s Direct Memory Execution model to fetch textures from system  
memory. The GMCH includes a cache controller to avoid frequent memory fetches of recently used  
texture data.  
The GMCH is able to drive an integrated DAC, and/or two SDVO ports (multiplexed with PCI  
Express) capable of driving an ADD2 card. External SDVO devices are capable of driving a  
standard progressive scan analog monitor with resolutions up to 2048x1536 @ 75 Hz. The SDVO  
ports are capable of driving a variety of TV-Out, TMDS, and LVDS transmitters.  
The GMCH’s Internal Graphics Device (IGD) contains several types of components. The major  
components in the IGD are the engines, planes, pipes and ports. The GMCH has a 3D/2D  
Instruction Processing unit to control the 3D and 2D engines. The IGD’s 3D and 2D engines are  
fed with data through the memory controller. The outputs of the engines are surfaces sent to  
memory, which are then retrieved and processed by the GMCH planes.  
The GMCH contains a variety of planes (such as display, overlay, cursor and VGA). A plane  
consists of rectangular shaped image that has characteristics such as source, size, position,  
method, and format. These planes get attached to source surfaces that are rectangular memory  
surfaces with a similar set of characteristics. They are also associated with a particular destination  
pipe.  
A pipe consists of a set of combined planes and a timing generator. The GMCH has two  
independent display pipes, allowing for support of two independent display streams. A port is the  
destination for the result of the pipe. The GMCH contains three display ports, 1 analog (DAC)  
Datasheet  
235  
 
Functional Description  
R
and two digital (SDVO ports B and C). The ports will be explained in more detail later in the  
chapter.  
The entire IGD is fed with data from its memory controller. The GMCH’s graphics performance  
is directly related to the amount of bandwidth available. If the engines are not receiving data fast  
enough from the memory controller (e.g., single-channel DDR333), the rest of the IGD will also  
be affected.  
The rest of this chapter will focus on explaining the IGD components, their limitations and  
dependencies.  
12.6.1  
3D Engine  
The 3D engine of GMCH has been designed with a deep pipelined architecture, where  
performance is maximized by allowing each stage of the pipeline to simultaneously operate on  
different primitives or portions of the same primitive. GMCH supports Perspective-Correct  
Texture Mapping, Multitextures, Bump-Mapping, Cubic Environment Maps, Bilinear, Trilinear  
and Anisotropic MIP mapped filtering, Gouraud shading, Alpha-blending, Vertex and Per Pixel  
Fog and Z/W Buffering.  
The 3D pipeline subsystem performs the 3D rendering acceleration. The main blocks of the  
pipline are the Setup Engine, Scan Converter, Texture Pipeline, and Raster Pipeline. A typical  
programming sequence would be to send instructions to set the state of the pipeline followed by  
rending instructions containing 3D primitive vertex data.  
The engine’s performance is dependent on the memory bandwidth available. Systems that have  
more bandwidth available will outperform systems with less bandwidth. The engine’s  
performance is also dependent on the core clock frequency. The higher the frequency, the more  
data is processed.  
12.6.2  
Setup Engine  
The setup stage of the pipeline takes the input data associated with each vertex of a 3D primitive  
and computes the various parameters required for scan conversion. In formatting this data, the  
GMCH maintains sub-pixel accuracy.  
12.6.2.1  
3D Primitives and Data Formats Support  
The 3D primitives rendered by GMCH are points, lines, discrete triangles, line strips, triangle  
strips, triangle fans and polygons. In addition to this, GMCH supports the Microsoft DirectX*  
Flexible Vertex Format (FVF), which enables the application to specify a variable length of  
parameter list obviating the need for sending unused information to the hardware. Strips, Fans and  
Indexed Vertices as well as FVF, improve the vertex rate delivered to the setup engine  
significantly.  
236  
Datasheet  
Functional Description  
R
12.6.2.2  
Pixel Accurate “Fast” Scissoring and Clipping Operation  
The GMCH supports 2D clipping to a scissor rectangle within the drawing window. Objects are  
clipped to the scissor rectangle, avoiding processing pixels that fall outside the rectangle. The  
GMCH’s clipping and scissoring in hardware reduce the need for software to clip objects, and  
thus improve performance. During the setup stage, GMCH clips objects to the scissor window.  
A scissor rectangle accelerates the clipping process by allowing the driver to clip to a bigger  
region than the hardware renders to. The scissor rectangle needs to be pixel accurate, and  
independent of line and point width. The GMCH will support a single scissor box rectangle that  
can be enabled or disabled. The rectangle is defined as an Inclusive box. Inclusive is defined as  
“draw the pixel if it is inside the scissor rectangle”.  
12.6.2.3  
12.6.2.4  
Depth Bias  
The GMCH supports source Depth Biasing in the Setup Engine. The Depth Bias value is  
specified in the vertex command packet on a per primitive basis. The value ranges from -1 to 1.  
The Depth Bias value is added to the z or w value of the vertices. This is used for coplanar  
polygon priority. If two polygons are to be rendered that are coplanar, due to the inherent  
precision differences induced by unique x, y and z values, there is no guarantee which polygon  
will be closer or farther. By using Depth Bias, it is possible to offset the destination z value  
(compare value) before comparing with the new z value.  
Backface Culling  
As part of the setup, the GMCH discards polygons from further processing, if they are facing  
away from or towards the user’s viewpoint. This operation, referred to as “Back Face Culling” is  
accomplished based on the “clockwise” or “counter-clockwise” orientation of the vertices on a  
primitive. This can be enabled or disabled by the driver.  
12.6.2.5  
12.6.2.6  
Scan Converter  
Working on a per-polygon basis, the Scan Converter uses the vertex and edge information is used  
to identify all pixels affected by features being rendered.  
Pixel Rasterization Rules  
The GMCH supports both OpenGL and D3D pixel rasterization rules to determine whether a  
pixel is filled by the triangle or line. For both D3D and OpenGL modes, a top-left filling  
convention for filling geometry will be used. Pixel rasterization rule on rectangle primitive is also  
supported using the top-left fill convention.  
12.6.2.7  
2D Functionality  
The stretch BLT function can stretch source data in the X and Y directions to a destination larger  
or smaller than the source. Stretch BLT functionality expands a region of memory into a larger or  
smaller region using replication and interpolation. The stretch BLT function also provides format  
conversion and data alignment.  
Datasheet  
237  
Functional Description  
R
12.6.3  
Texture Engine  
The GMCH allows an image, pattern, or video to be placed on the surface of a 3D polygon.  
The texture processor receives the texture coordinate information from the setup engine and the  
texture blend information from the scan converter. The texture processor performs texture color  
or ChromaKey matching, texture filtering (anisotropic, trilinear, and bilinear interpolation), and  
YUV to RGB conversions.  
12.6.3.1  
Perspective Correct Texture Support  
A textured polygon is generated by mapping a 2D texture pattern onto each pixel of the polygon.  
A texture map is like wallpaper pasted onto the polygon. Since polygons are rendered in  
perspective, it is important that texture be mapped in perspective as well. Without perspective  
correction, texture is distorted when an object recedes into the distance.  
12.6.3.2  
12.6.3.3  
Texture Formats and Storage  
The GMCH supports up to 32 bits of color for textures.  
Texture Decompression  
DirectX supports Texture Compression to reduce the bandwidth required to deliver textures. As  
the textures’ average size gets larger with higher color depth and multiple textures become the  
norm, it becomes increasingly important to provide a mechanism for compressing textures.  
Texture decompression formats supported include DXT1, DXT2, DXT3, DXT4, DXT5 and  
FXT1.  
12.6.3.4  
12.6.3.5  
12.6.3.6  
Texture ChromaKey  
ChromaKey describes a method of removing a specific color or range of colors from a texture  
map before it is applied to an object. For “nearest” texture filter modes, removing a color simply  
makes those portions of the object transparent (the previous contents of the back buffer show  
through). For “linear“ texture filtering modes, the texture filter is modified if only the non-nearest  
neighbor texels match the key (range).  
Anti-Aliasing  
Aliasing is one of the artifacts that degrade image quality. In its simplest manifestation, aliasing  
causes the jagged staircase effects on sloped lines and polygon edges. Another artifact is the  
moiré patterns that occur as a result of a very small number of pixels available on screen to  
contain the data of a high resolution texture map. More subtle effects are observed in animation,  
where very small primitives blink in and out of view.  
Texture Map Filtering  
The GMCH supports many texture mapping modes. Perspective correct mapping is always  
performed. As the map is fitted across the polygon, the map can be tiled, mirrored in either the U  
or V directions, or mapped up to the end of the texture and no longer placed on the object (this is  
known as clamp mode). The way a texture is combined with other object attributes is also  
definable.  
238  
Datasheet  
Functional Description  
R
The GMCH supports up to 12 Levels-of-Detail (LODs) ranging in size from 2048x2048 to 1x1  
texels. Textures need not be square. Included in the texture processor is a texture cache, which  
provides efficient MIP-mapping.  
The GMCH supports 7 types of texture filtering:  
Nearest (aka Point Filtering): Texel with coordinates nearest to the desired pixel is used.  
(This is used if only one LOD is present).  
Linear (aka Bilinear Filtering): A weighted average of a 2x2 area of texels surrounding the  
desired pixel is used. (This is used if only one LOD is present).  
Nearest MIP Nearest (aka Point Filtering): This is used if many LODs are present. The  
nearest LOD is chosen and the texel with coordinates nearest to the desired pixel is used.  
Linear MIP Nearest (Bilinear MIP Mapping): This is used if many LODs are present. The  
nearest LOD is chosen and a weighted average of a 2x2 area of texels surrounding the  
desired pixel is used (four texels). This is also referred to as Bilinear MIP Mapping.  
Nearest MIP Linear (Point MIP Mapping): This is used if many LODs are present. Two  
appropriate LODs are selected and within each LOD the texel with coordinates nearest to the  
desired pixel is selected. The Final texture value is generated by linear interpolation between  
the two texels selected from each of the MIP Maps.  
Linear MIP Linear (Trilinear MIP Mapping): This is used if many LODs are present. Two  
appropriate LODs are selected and a weighted average of a 2x2 area of texels surrounding the  
desired pixel in each MIP Map is generated (four texels per MIP Map). The Final texture  
value is generated by linear interpolation between the two texels generated for each of the  
MIP Maps. Trilinear MIP Mapping is used minimize the visibility of LOD transitions across  
the polygon.  
Anisotropic MIP Nearest (Anisotropic Filtering): This is used if many LODs are present. The  
nearest LOD-1 level will be determined for each of four sub-samples for the desired pixel.  
These four sub-samples are then bilinear filtered and averaged together.  
Both D3D (DirectX 6.0 and later) and OpenGL (Revision 1.1) allow support for all these filtering  
modes.  
12.6.3.7  
12.6.3.8  
Multiple Texture Composition  
The GMCH also performs multiple texture composition. This allows the combination of two or  
greater MIP Maps to produce a new one with new LODs and texture attributes in a single or  
iterated pass. Flexible vertex format support allows multitexturing because it makes it possible to  
pass more than one texture in the vertex structure.  
Bi-Cubic Filter (4x4 Programmable Texture Filter)  
A bi-cubic texture filter can be selected instead of the bilinear filter. The implementation is of a  
4x4 separable filter with loadable coefficients. A 4x4 filter can be used for providing high-quality  
up/ down scaling of 2D or 3D rendered images.  
Datasheet  
239  
Functional Description  
R
12.6.3.9  
Cubic Environment Mapping  
Environment maps allow applications to render scenes with complex lighting and reflections  
while significantly decreasing processor load. There are several methods to generate environment  
maps (such as, spherical, circular and cubic). The GMCH supports cubic reflection mapping over  
spherical and circular since it is the best choice to provide real-time environment mapping for  
complex lighting and reflections.  
Cubic Mapping requires a texture map for each of the 6 cube faces. These can be generated by  
pointing a camera with a 90-degree field-of-view in the appropriate direction. Per-vertex vectors  
(normal, reflection or refraction) are interpolated across the polygon and the intersection of these  
vectors with the cube texture faces is calculated. Texel values are then read from the intersection  
point on the appropriate face and filtered accordingly.  
12.6.4  
Raster Engine  
The Raster Engine is where the color data (such as fogging, specular RGB, texture map blending,  
etc.) is processed. The final color of the pixel is calculated and the RGBA value combined with  
the corresponding components resulting from the Texture Engine. These textured pixels are  
modified by the specular and fog parameters. These specular highlighted, fogged, textured pixels  
are color blended with the existing values in the frame buffer. In parallel, stencil, alpha and depth  
buffer tests are conducted which will determine whether the Frame and Depth Buffers will be  
updated with the new pixel values.  
12.6.4.1  
12.6.4.2  
Texture Map Blending  
Multiple Textures can be blended together in an iterative process and applied to a primitive. The  
GMCH allows up to four texture coordinates and texture maps to be specified onto the same  
polygon. Also, the GMCH supports using a texture coordinate set to access multiple texture maps.  
State variables in multiple texture are bound to texture coordinates, texture map or texture  
blending.  
Combining Intrinsic and Specular Color Components  
The GMCH allows an independently specified and interpolated “specular RGB” attribute to be  
added to the post-texture blended pixel color. This feature provides a full RGB specular highlight  
to be applied to a textured surface, permitting a high-quality reflective colored lighting effect not  
available in devices which apply texture after the lighting components have been combined. If  
specular-add state variable is disabled, only the resultant colors from the map blending are used.  
If this state variable is enabled, RGB values from the output of the map blending are added to  
values for RS, GS, BS on a component by component basis.  
12.6.4.3  
Color Shading Modes  
The Raster Engine supports the flat and Gouraud shading modes. These shading modes are  
programmed by the appropriate state variables issued through the command stream.  
Flat shading is performed by smoothly interpolating the vertex intrinsic color components (Red,  
Green, Blue), Specular Highlights(R,G,B), Fog, and Alpha to the pixel, where each vertex color  
has the same value. The setup engine substitutes one of the vertex’s attribute values for the other  
240  
Datasheet  
Functional Description  
R
two vertices attribute values thereby creating the correct flat shading terms. This condition is set  
up by the appropriate state variables issued prior to rendering the primitive.  
OpenGL and D3D use a different vertex to select the flat shaded color. This vertex is defined as  
the “provoking vertex”. In the case of strips/fans, after the first triangle, attributes on every vertex  
that define a primitive are used to select the flat color of the primitive. A state variable is used to  
select the “flat color” prior to rendering the primitive.  
Gouraud shading is performed by smoothly interpolating the vertex intrinsic color components  
(Red, Green, Blue). Specular Highlights (R,G,B), Fog, and Alpha to the pixel, where each vertex  
color has a different value.  
All the attributes can be selected independently from one of the shading modes by setting the  
appropriate value state variables.  
12.6.4.4  
12.6.4.5  
Color Dithering  
Color Dithering helps to hide color quantization errors. Color Dithering takes advantage of the  
human eye’s propensity to “average” the colors in a small area. Input color, alpha, and fog  
components are converted from 8-bit components to 5- or 6- bit component by dithering.  
Dithering is performed on blended textured pixels. In 32-bit mode, dithering is not performed on  
the components  
Vertex and Per Pixel Fogging  
Fogging is used to create atmospheric effects (such as low visibility conditions in flight simulator-  
type games). It adds another level of realism to computer-generated scenes. Fog can be used for  
depth cueing or hiding distant objects. With fog, distant objects can be rendered with fewer  
details (fewer polygons), thereby improving the rendering speed or frame rate. Fog is simulated  
by attenuating the color of an object with the fog color as a function of distance. Higher fog  
density produces lower visibility for distant objects. There are two ways to implement the fogging  
technique: per-vertex (linear) fogging and per-pixel (non-linear) fogging. The per-vertex method  
interpolates the fog value at the vertices of a polygon to determine the fog factor at each pixel  
within the polygon. This method provides realistic fogging as long as the polygons are small.  
With large polygons (such as a ground plane depicting an airport runway), the per-vertex  
technique results in unnatural fogging.  
The GMCH supports both types of fog operations, vertex and per pixel or table fog. If fog is  
disabled, the incoming color intensities are passed unchanged to the destination blend unit.  
12.6.4.6  
Alpha Blending (Frame Buffer)  
Alpha Blending adds the material property of transparency or opacity to an object. Alpha  
blending combines a source pixel color (RSGSBS) and alpha (AS) component with a destination  
pixel color (RDGDBD) and alpha (AD) component. For example, this is so that a glass surface on  
top (source) of a red surface (destination) would allow much of the red base color to show  
through.  
Blending allows the source and destination color values to be multiplied by programmable factors  
and then combined via a programmable blend function. The combined and independent selection  
of factors and blend functions for color and alpha are supported.  
Datasheet  
241  
Functional Description  
R
12.6.4.7  
12.6.4.8  
Microsoft DirectX* API and SGI OpenGL* API Logic Ops  
Both APIs provide a mode to use bitwise ops in place of alpha blending. This is used for rubber-  
banding (i.e., draw a rubber band outline over the scene using an XOR operation). Drawing it  
again restores the original image without having to do a potentially expensive redraw.  
Color Buffer Formats: 8-, 16-, or 32-bits per Pixel (Destination Alpha)  
The Raster Engine supports 8-bit, 16-bit, and 32-bit Color Buffer Formats. The 8-bit format is  
used to support planar YUV420 format, which used only in Motion Compensation and Arithmetic  
Stretch format. The bit format of Color and Z will be allowed to mix.  
The GMCH supports both double and triple buffering, where one buffer is the primary buffer  
used for display and one or two are the back buffer(s) used for rendering.  
The frame buffer of the GMCH contains at least two hardware buffers: the Front Buffer (display  
buffer) and the Back Buffer (rendering buffer). While the back buffer may actually coincide with  
(or be part of) the visible display surface, a separate (screen or window-sized) back buffer is used  
to permit double-buffered drawing. That is, the image being drawn is not visible until the scene is  
complete and the back buffer made visible (via an instruction) or copied to the front buffer (via a  
2D BLT operation). Rendering to one and displaying from the other remove the possibility of  
image tearing. This also speeds up the display process over a single buffer. Additionally, triple  
back buffering is also supported. The instruction set of the GMCH provides a variety of controls  
for the buffers (e.g., initializing, flip, clear, etc.).  
12.6.4.9  
Depth Buffer  
The Raster Engine can read and write from this buffer and use the data in per fragment operations  
that determine whether resultant color and depth value of the pixel for the fragment are to be  
updated or not.  
Typical applications for entertainment or visual simulations with exterior scenes require far/near  
ratios of 1000 to 10000. At 1000, 98% of the range is spent on the first 2% of the depth. This can  
cause hidden surface artifacts in distant objects, especially when using 16-bit depth buffers. A  
24-bit Z-buffer provides 16 million Z-values, as opposed to only 64 K with a 16-bit Z buffer.  
With lower Z-resolution, two distant overlapping objects may be assigned the same Z-value. As a  
result, the rendering hardware may have a problem resolving the order of the objects, and the  
object in the back may appear through the object in the front.  
By contrast, when W (or eye-relative Z) is used, the buffer bits can be more evenly allocated  
between the near and far clip planes in world space. The key benefit is that the ratio of far and  
near is no longer an issue, allowing applications to support a maximum range of miles, yet still get  
reasonably accurate depth buffering within inches of the eye point.  
The GMCH supports a flexible format for the floating-point W buffer, wherein the number of  
exponent bits is programmable. This allows the driver to determine variable precision as a  
function of the dynamic range of the W (screen-space Z) parameter.  
The selection of depth buffer size is relatively independent of the color buffer. A 16-bit Z/W or  
24-bit Z/W buffer can be selected with a 16-bit color buffer. Z buffer is not supported in 8-bit  
mode.  
242  
Datasheet  
Functional Description  
R
12.6.4.10 Stencil Buffer  
The Raster Engine provides 8-bit stencil buffer storage in 32-bit mode and the ability to perform  
stencil testing. Stencil testing controls 3D drawing on a per pixel basis, conditionally eliminating  
a pixel on the outcome of a comparison between a stencil reference value and the value in the  
stencil buffer at the location of the source pixel being processed. They are typically used in  
multipass algorithms to achieve special effects, such as decals, outlining, shadows and  
constructive solid geometry rendering.  
12.6.4.11 Projective Textures  
The GMCH supports two simultaneous projective textures at full rate processing, and four  
textures at half rate. These textures require three floating point texture coordinates to be included  
in the Flexible Vertex Format (FVF). Projective textures enable special effects (such as projecting  
spot light textures obliquely onto walls, etc.).  
12.6.5  
2D Engine  
The GMCH contains BLT functionality, and an extensive set of 2D instructions. To take  
advantage of the 3D drawing engine’s functionality, some BLT functions (such as Alpha BLTs,  
arithmetic (bilinear) stretch BLTs, rotations, transposing pixel maps, limited color space  
conversion, and DIBs) make use of the 3D renderer.  
12.6.5.1  
12.6.5.2  
GMCH VGA Registers  
The 2D registers are a combination of registers defined by IBM when the Video Graphics Array  
(VGA) was first introduced and others that Intel has added to support graphics modes that have  
color depths, resolutions, and hardware acceleration features that go beyond the original VGA  
standard.  
Logical 128-bit Fixed BLT and 256 Fill Engine  
Use of this BLT engine accelerates the Graphical User Interface (GUI) of Microsoft Windows*  
operating systems. The 128-bit GMCH BLT Engine provides hardware acceleration of block  
transfers of pixel data for many common Windows operations. The term BLT refers to a block  
transfer of pixel data between memory locations. The BLT engine can be used for the following:  
Move rectangular blocks of data between memory locations  
Data Alignment  
Perform logical operations (raster ops)  
The rectangular block of data does not change as it is transferred between memory locations. The  
allowable memory transfers are between: cacheable system memory and frame buffer memory,  
frame buffer memory and frame buffer memory, and within system memory. Data to be  
transferred can consist of regions of memory, patterns, or solid color fills. A pattern will always  
be 8x8 pixels wide and may be 8, 16, or 32 bits per pixel.  
The GMCH BLT engine has the ability to expand monochrome data into a color depth of 8, 16, or  
32 bits. BLTs can be either opaque or transparent. Opaque transfers move the data specified to the  
Datasheet  
243  
Functional Description  
R
destination. Transparent transfers compare destination color to source color and write according  
to the mode of transparency selected.  
Data is horizontally and vertically aligned at the destination. If the destination for the BLT  
overlaps with the source memory location, the GMCH can specify which area in memory to begin  
the BLT transfer. Hardware is included for all 256 raster operations (Source, Pattern, and  
Destination) defined by Microsoft, including transparent BLT.  
The GMCH has instructions to invoke BLT and stretch BLT operations, permitting software to set  
up instruction buffers and use batch processing. The GMCH can perform hardware clipping  
during BLTs.  
12.6.6  
Video Engine  
12.6.6.1  
Hardware Motion Compensation  
The Motion Compensation (MC) process consists of reconstructing a new picture by predicting  
(either forward, backward, or bi-directionally) the resulting pixel colors from one or more  
reference pictures. The GMCH receives the video stream and implements Motion Compensation  
and subsequent steps in hardware. Performing Motion Compensation in hardware reduces the  
processor demand of software-based MPEG-2 decoding, and thus improves system performance.  
The Motion Compensation functionality is overloaded onto the texture cache and texture filter.  
The texture cache is used to typically access the data in the reconstruction of the frames and the  
filter is used in the actual motion compensation process. To support this overloaded functionality  
the texture cache additionally support the YUV420 planar input formats.  
12.6.6.2  
Sub-Picture Support  
Sub-picture is used for two purposes; one is Subtitles for movie captions, etc. (that are  
superimposed on a main picture), and the other is Menus used to provide some visual operation  
environments the user of a content player.  
DVD allows movie subtitles to be recorded as Sub-pictures. On a DVD disc, it is called "Subtitle"  
because it has been prepared for storing captions. Since the disc can have a maximum of 32 tracks  
for Subtitles, they can be used for various applications, for example, as Subtitles in different  
languages or other information to be displayed.  
There are two kinds of Menus; the System Menus and other In-Title Menus. First, the System  
Menus are displayed and operated at startup of or during the playback of the disc or from the stop  
state. Second, In-Title menus can be programmed as a combination of Sub-picture and Highlight  
commands to be displayed during playback of the disc.  
The GMCH supports sub-picture for DVD and DBS by mixing the two video streams via alpha  
blending. Unlike color keying, alpha blending provides a softer effect and each pixel that is  
displayed is a composite between the two video stream pixels. The GMCH can use four methods  
when dealing with sub-pictures. The flexibility enables the GMCH to work with all sub- picture  
formats.  
244  
Datasheet  
Functional Description  
R
12.6.7  
Planes  
A plane consists of rectangular shaped image that has characteristics such as source, size,  
position, method, and format. These planes get attached to source surfaces, which are rectangular  
memory surfaces with a similar set of characteristics. They are also associated with a particular  
destination pipe.  
12.6.7.1  
12.6.7.2  
Cursor Plane  
The cursor planes are one of the simplest display planes. With a few exceptions, the cursor plane  
has a fixed size of 64x64 and a fixed Z-order (top). In legacy modes, cursor can cause the display  
data below it to be inverted.  
Overlay Plane  
The overlay engine provides a method of merging either video capture data (from an external  
Video Capture device) or data delivered by the processor, with the graphics data on the screen.  
The source data can be mirrored horizontally or vertically or both.  
Source/Destination Color Keying/ChromaKeying  
Overlay source/destination ChromaKeying enables blending of the overlay with the underlying  
graphics background. Destination color keying/ChromaKeying can be used to handle occluded  
portions of the overlay window on a pixel by pixel basis that is actually an underlay. Destination  
ChromaKeying would only be used for YUV passthrough to TV. Destination color keying  
supports a specific color (8- or 15-bit) mode as well as 32-bit alpha blending.  
Source color keying/ChromaKeying is used to handle transparency based on the overlay window  
on a pixel by pixel basis. This is used when “blue screening” an image to overlay the image on a  
new background later.  
Gamma Correction  
To compensate for overlay color intensity loss due to the non-linear response between display  
devices, the overlay engine supports independent gamma correction. This allows the overlay data  
to be converted to linear data or corrected for the display device when not blending.  
YUV to RGB Conversion  
The format conversion can be bypassed in the case of RGB source data. The format conversion  
assumes that the YUV data is input in the 4:4:4 format and uses the full range scale.  
Maximum Resolution and Frequency  
The maximum frequency supported by the overlay logic is 180 MHz. The maximum resolution is  
dependent on a number of variables (e.g., memory speed, memory latency, port selected, pipe  
selected, mode definition).  
Datasheet  
245  
Functional Description  
R
Deinterlacing Support  
For display on a progressive computer monitor, interlaced data that has been formatted for display  
on interlaced monitors (TV) needs to be de-interlaced. The simple approaches to de-interlacing  
create unwanted display artifacts. More advanced de-interlacing techniques have a large cost  
associated with them. The compromise solution is to provide a low cost but effective solution and  
enable both hardware and software based external solutions. Software based solutions are enabled  
through a high bandwidth transfer to system memory and back.  
12.6.7.3  
Advanced Deinterlacing and Dynamic Bob and Weave  
Interlaced data that originates from a video camera creates two fields that are temporally offset by  
1/60 of a second. There are several schemes to deinterlace the video stream: line replication,  
vertical filtering, field merging, and vertical temporal filtering. Field merging takes lines from the  
previous field and inserts them into the current field to construct the frame; this is known as  
Weaving. This is the best solution for images with little motion however, showing a frame that  
consists of the two fields will have serration or feathering of moving edges when there is motion  
in the scene. Vertical filtering or “Bob” interpolates adjacent lines rather than replicating the  
nearest neighbor. This is the best solution for images with motion; however, it will have reduced  
spatial resolution in areas that have no motion and introduces aliasing. In the absence of any other  
deinterlacing, these form the baseline and are supported by the GMCH.  
Scaling Filter and Control  
The scaling filter has three vertical taps and five horizontal taps. Arbitrary scaling (per pixel  
granularity) for any video source (YUV422 or YUV420) format is supported.  
The overlay logic can scale an input image up to 1600X1200with no major degradation in the  
filter used as long as the maximum frequency limitation is met. Display resolution and refresh rate  
combinations where the dot clock is greater than the maximum frequency require the overlay to  
use pixel replication.  
12.6.8  
Pipes  
The display consists of two pipes. The Pipes can operate in a single-wide or “double-wide” mode  
at 2x graphics core clock though they are effectively limited by the respective display port. The  
display planes and the cursor plane will provide a “double wide” mode to feed the pipe.  
12.6.8.1  
Clock Generator Units (DPLL)  
The clock generator units provide a stable frequency for driving display devices. It operates by  
converting an input reference frequency into an output frequency. The timing generators take  
their input from internal DPLL devices that are programmable to generate pixel clocks in the  
range of 25–400 MHz. Accuracy for VESA timing modes is required to be within ± 0.5%.  
The DPLL can take a reference frequency from the external reference input (DREFCLKINN/P),  
the TV clock input (TVCLKIN).  
246  
Datasheet  
Functional Description  
R
12.7  
Display Interfaces (Intel®  
82915G/82915GV/82915GL/ 82910GL GMCH Only)  
The GMCH has three display ports; one analog and two digital. Each port can transmit data  
according to one or more protocols. The digital ports are connected to an external device that  
converts one protocol to another. Examples of this are TV encoders, external DACs, LVDS  
transmitters, and TMDS transmitters. Each display port has control signals that may be used to  
control, configure and/or determine the capabilities of an external device.  
The analog port is a dedicated port (not multiplexed) on the 82915GV/82915GL/82910GL  
GMCH. For the 82915G GMCH, the SDVO ports B and C are multiplexed with the PCI Express  
graphics interface and are not available if an external PCI Express graphics device is in use. When  
a 915G Express chipset system uses a PCI Express graphics connector, SDVO ports B and C can  
be used via an ADD2 (Advanced Digital Display 2) card. Ports B and C can also operate in dual-  
channel mode, where the data bus is connected to both display ports, allowing a single device to  
take data at twice the pixel rate.  
The GMCH’s analog port uses an integrated 400 MHz RAMDAC that can directly drive a  
standard progressive scan analog monitor up to a resolution of 2048x1536 pixels with 32-bit  
color at 85 Hz.  
The GMCH’s SDVO ports are each capable of driving a 200-MP pixel rate. Each port is  
capable of driving a digital display up to 1600x1200 @ 60Hz. When in dual-channel mode,  
the GMCH can drive a flat panel up to 2048x1536 @ 85 Hz or dCRT/HDTV up to  
1920x1080 @ 85 Hz.  
The GMCH is compliant with DVI Specification 1.0. When combined with a DVI compliant  
external device and connector, the GMCH has a high speed interface to a digital display  
(e.g., flat panel or digital CRT).  
Datasheet  
247  
Functional Description  
R
Table 12-6. Display Port Characteristics  
Interface Protocol  
Analog  
Digital Port B  
DVO 1.0  
Digital Port C  
DVO 1.0  
RGB DAC  
HSYNC  
VSYNC  
Yes Enable/Polarity  
Yes Enable/Polarity  
BLANK  
No  
No  
No  
No  
Yes1  
Yes  
Yes  
Yes1  
Yes  
Yes  
No1  
STALL  
Field  
Display_Enable  
Image Aspect Ratio  
Pixel Aspect Ratio  
Voltage  
Programmable and typically 1.33:1 or 1.78:1  
Square  
RGB 0.7 V p-p  
NA  
PCI Express*  
PCI Express*  
Clock  
Differential  
Max Rate  
400 Mpixel  
Analog RGB  
DDC1/DDC2B  
No  
200/400 Mpixel  
RGB 8:8:8 YUV 4:4:4  
Format  
Control Bus  
External Device  
Connector  
DDC2B  
TMDS/LVDS Transmitter /TV Encoder  
DVI/CVBS/S-Video/Component/SCART  
VGA/DVI-I  
NOTES:  
1. Single signal software selectable between display enable and Blank#.  
248  
Datasheet  
Functional Description  
R
12.7.1  
Analog Display Port Characteristics  
The analog display port provides a RGB signal output along with a HSYNC and VSYNC signal.  
There is an associated DDC signal pair that is implemented using GPIO pins dedicated to the  
analog port. The intended target device is for a CRT based monitor with a VGA connector.  
Display devices (such as LCD panels) with analog inputs may work satisfactory but no  
functionality has been added to the signals to enhance that capability.  
Table 12-7. Analog Port Characteristics  
Signal  
Port Characteristic  
Support  
Voltage Range  
Monitor Sense  
Analog Copy Protection  
Sync on Green  
Voltage  
0.7 V p-p only  
Analog Compare  
RGB  
No  
No  
2.5 V  
Enable/Disable  
Polarity adjust  
Composite Sync Support  
Special Flat Panel Sync  
Stereo Sync  
Port control  
HSYNC  
VSYNC  
VGA or port control  
No  
No  
No  
Voltage  
Externally buffered to 5V  
Through GPIO interface  
DDC  
Control  
12.7.1.1  
12.7.1.2  
Integrated RAMDAC  
The display function contains a RAM-based Digital-to-Analog Converter (RAMDAC) that  
transforms the digital data from the graphics and video subsystems to analog data for the CRT  
monitor. The GMCH’s integrated 400 MHz RAMDAC supports resolutions up to 2048 x 1536 @  
85Hz. Three 8-bit DACs provide the RED, GREEN, and BLUE signals to the monitor.  
Sync Signals  
HSYNC and VSYNC signals are digital and conform to TTL signal levels at the connector. Since  
these levels cannot be generated internal to the device, external level shifting buffers are required.  
These signals can be polarity adjusted and individually disabled in one of the two possible states.  
The sync signals power up disabled in the high state. No composite sync or special flat panel sync  
support is included.  
12.7.1.3  
VESA/VGA Mode  
VESA/VGA mode provides compatibility for pre-existing software that set the display mode  
using the VGA CRTC registers. Timings are generated based on the VGA register values and the  
timing generator registers are not used.  
Datasheet  
249  
Functional Description  
R
12.7.1.4  
DDC (Display Data Channel)  
DDC is a standard defined by VESA. Its purpose is to allow communication between the host  
system and display. Both configuration and control information can be exchanged allowing plug-  
and-play systems to be realized. Support for DDC 1 and 2 is implemented. The GMCH uses the  
DDC_CLK and DDC_DATA signals to communicate with the analog monitor. The GMCH  
generates these signals at 2.5 V. External pull-up resistors and level shifting circuitry should be  
implemented on the board.  
The GMCH implements a hardware GMBus controller that can be used to control these signals  
allowing for transactions speeds up to 400 kHz.  
12.7.2  
Digital Display Interface  
The GMCH has several options for driving digital displays. The GMCH contains two SDVO  
ports that are multiplexed on the PCI Express* x16 Graphics Interface. When an external PCI  
Express* x16 Graphics Interface graphics accelerator is not present, the GMCH can use the  
multiplexed SDVO ports to provide extra digital display options. These additional digital display  
capabilities may be provided through an ADD2 card that is designed to plug in to a PCI Express  
connector.  
12.7.2.1  
Digital Display Channels – SDVOB and SDVOC  
The GMCH has the capability to support digital display devices through two SDVO ports. When  
an external graphics accelerator is used via the PCI Express* x16 Graphics Interface port, these  
SDVO ports are not available.  
The shared SDVO ports each support a pixel clock up to 200 MHz and can support a variety of  
transmission devices. When using a dual-channel external transmitter, it will be possible to pair  
the two SDVO ports in dual-channel mode to support a single digital display with higher  
resolutions and refresh rates. In this mode, GMCH is capable of driving pixel clock up to  
400 MHz.  
SDVO_CTRLDATA is an open-drain signal that will act as a strap during reset to tell the GMCH  
whether the interface is a PCI Express interface or an SDVO interface. When implementing  
SDVO, either via ADD2 cards or with a down device, a pull-up is placed on this line to signal to  
the GMCH to run in SDVO mode and for proper GMBus operation.  
12.7.2.2  
ADD2 Card  
When a 915G Express chipset platform uses a PCI Express* x16 Graphics Interface connector,  
the multiplexed SDVO ports may be used via an ADD2 card. The ADD2 card will be designed to  
fit a standard PCI Express (x16) connector.  
12.7.2.2.1 TMDS Capabilities  
The GMCH is compliant with DVI Specification 1.0. When combined with a DVI compliant  
external device and connector, the GMCH has a high speed interface to a digital display  
(e.g., flat panel or digital CRT). When combining the two multiplexed SDVO ports, the GMCH  
can drive a flat panel up to 2048x1536 or a dCRT/HDTV up to 1920x1080. Flat Panel is a fixed  
resolution display. The GMCH supports panel fitting in the transmitter, receiver or an external  
250  
Datasheet  
Functional Description  
R
device, but has no native panel fitting capabilities. The GMCH will, however, provide unscaled  
mode where the display is centered on the panel.  
12.7.2.2.2 LVDS Capabilities  
The GMCH may use the multiplexed SDVO ports to drive a LVDS transmitter. Flat Panel is a  
fixed resolution display. The GMCH supports panel fitting in the transmitter, receiver or an  
external device, but has no native panel fitting capabilities. The GMCH will, however, provide  
unscaled mode where the display is centered on the panel. The GMCH supports scaling in the  
LVDS transmitter through the SDVO stall input pair.  
12.7.2.2.3 TV-Out Capabilities  
Although traditional TVs are not digital displays, the GMCH uses a digital display channel to  
communicate with a TV-Out transmitter. For that reason, the GMCH considers a TV-Output to be  
a digital display. GMCH supports NTSC and PAL standard definition formats. The GMCH  
generates the proper timing for the external encoder. The external encoder is responsible for  
generation of the proper format signal. Since the multiplexed SDVO interface is a  
NTSC/PAL/SECAM display on the TV-Out port , it can be configured to be the boot device. It is  
necessary to ensure that appropriate BIOS support is provided. If EasyLink is supported in the  
GMCH, then this mechanism could be used to interrogate the display device.  
The TV-Out interface on the GMCH is addressable as a master device. This allows an external  
TV encoder device to drive a pixel clock signal on SDVO_TVClk[+/-] that the GMCH uses as a  
reference frequency. The frequency of this clock is dependent on the output resolution required.  
Flicker Filter and Overscan Compensation  
The overscan compensation scaling and the flicker filter is done in the external TV encoder chip.  
Care must be taken to allow for support of TV sets with high performance de-interlacers and  
progressive scan displays connected to by way of a non-interlaced signal. Timing will be  
generated with pixel granularity to allow more overscan ratios to be supported.  
Direct YUV from Overlay  
When source material is in the YUV format and is destined for a device that can take YUV format  
data in, it is desired to send the data without converting it to RGB. This avoids the truncation  
errors associated with multiple color conversion steps. The common situation will be that the  
overlay source data is in the YUV format and will bypass the conversion to RBG as it is sent to  
the TV port directly.  
Sync Lock Support  
Sync lock to the TV will be done using the external encoders PLL combined with the display  
phase detector mechanism. The availability of this feature will be used to determine which  
external encoder is in use.  
Datasheet  
251  
Functional Description  
R
Analog Content Protection  
Analog content protection is provided through the external encoder using Macrovision 7.01. DVD  
software must verify the presence of a Macrovision TV encoder before playback continues.  
Simple attempts to disable the Macrovision operation must be detected.  
Connectors  
Target TV connectors support includes the CVBS, S-Video, Component, and SCART connectors.  
The external TV encoder in use will determine the method of support.  
12.7.2.2.4 Control Bus  
Communication to SDVO registers and if utilized, ADD2 PROMs and monitor DDCs, are  
accomplished by using the SDVO_CTRLDATA and SDVO_CTRLCLK signals through the  
SDVO device. These signals run up to 1 MHz and connect directly to the SDVO device. The  
SDVO device is then responsible for routing the DDC and PROM data streams to the appropriate  
location. Consult SDVO device datasheets for level shifting requirements of these signals.  
Intel® SDVO Modes  
The port can be dynamically configured in several modes:  
Standard – This mode provides baseline SDVO functionality. The mode supports pixel rates  
between 25 and 200 MP/s. It uses three data pairs to transfer RGB data.  
Extended (82915G only) – This mode adds Alpha support to data stream. Extended mode  
supports pixel rates between 25 MHz and 200 MP/s. The mode uses four data channels and is  
only supported on SDVOB. It leverages channel C (SDVOC) Red pair as the Alpha pair for  
channel B (SDVOB).  
Dual Standard – This mode uses standard data streams across both SDVOB and SDVOC.  
Both channels can only run in Standard mode (3 data pairs) and each channel supports Pixel  
Rates between 25 and 200 MP/s.  
Dual Independent Standard (82915G only) - In Dual Independent Standard mode, each  
SDVO channel will see a different pixel stream. The data stream across SDVOB will not  
be the same as the data stream across SDVOC. This mode is only supported on the  
82915G/82915GV/82915GL/82910GL GMCH.  
Dual Simultaneous Standard - In Dual Simultaneous Standard mode, both SDVO  
channels will see the same pixel stream. The data stream across SDVOB will be the same  
as the data stream across SDVOC. The display timings will be identical, but the transfer  
timings may not be (i.e., SDVOB clocks and data may not be perfectly aligned with  
SDVOC clock and data as seen at the SDVO device(s)). Since this uses just a single data  
stream, it uses a single pixel pipeline within the GMCH.  
12.7.3  
Multiple Display Configurations  
Microsoft Windows* 2000 and Windows* XP operating systems have enabled support for multi-  
monitor display. Since the GMCH has several display ports available for its two pipes, it can  
support up to two different images on different display devices. Timings and resolutions for these  
two images may be different. The GMCH supports Intel Dual Display Clone, Intel Dual Display  
Twin, and Extended Desktop.  
252  
Datasheet  
Functional Description  
R
Intel Dual Display Clone uses both display pipes to drive the same content, at the same resolution  
and color depth to two different displays. This configuration allows for different refresh rates on  
each display.  
Intel Dual Display Twin uses one of the display pipes to drive the same content, at the same  
resolution, color depth, and refresh rates to two different displays.  
Extended Desktop (82915G only) uses both display pipes to drive different content, at potentially  
different resolutions, refresh rates, and color depths to two different displays. This configuration  
allows for a larger Windows Desktop by using both displays as a work surface.  
Note: The GMCH graphics engine is also incapable of operating in parallel with an external PCI  
Express graphics device. The GMCH graphics engine can, however, work in conjunction with a  
PCI graphics adapter.  
12.8  
Power Management  
Power Management capabilities of the (G)MCH include the following:  
ACPI 1.0b support  
ACPI S0, S3, S4, S5, C0, C1, C2, C3, C4  
Enhanced power management state transitions for increasing time the processor spends in  
low power states  
Internal Graphics Display Device Control D0, D1, D2, D3  
(82915G/82915GV/82915GL/82910GL GMCH only)  
Graphics Adapter States: D0, D3.  
PCI Express Link States: L0, L0s, L1, L2/L3 Ready, L3  
Conditional memory Self-Refresh during C2, C3, and C4 states  
12.9  
Clocking  
The (G)MCH has a total of 5 PLLs providing the internal clocks. The PLLs are:  
Host PLL – This PLL generates the main core clocks in the host clock domain. The host PLL  
is used to generate memory and internal graphics core clocks. It uses the Host clock  
(H_CLKIN) as a reference.  
PCI Express PLL (82915G/92915P/82915PL (G)MCH Only) – This PLL generates all PCI  
Express related clocks, including the Direct Media Interface that connects to the ICH6. This  
PLL uses the 100 MHz (G_CLKIN) as a reference.  
Display PLL A PLL (82915G/92915GV/82915GL/82910GL GMCH Only) – This PLL  
generates the internal clocks for Display A. It uses D_REFCLKIN as a reference.  
Display PLL B (82915G/92915GV/82915GL/82910GL GMCH Only) – This PLL generates  
the internal clocks for Display B. It uses D_REFCLKIN as a reference.  
Figure 12-3 illustrates the various clocks in the platform.  
Datasheet  
253  
Functional Description  
R
Figure 12-3. System Clocking Example  
DiffPair  
ITP  
Processor  
CK410  
56PinSSOP  
Memory  
Processor Diff Pair  
Processor Diff Pair  
Processor Diff Pair  
MainPLL  
SSC  
PCIExpress GFX  
HPLL  
MPLL  
x16PCIExp  
PCI Express Diff Pair  
PCI Express Diff Pair  
PCIExpressDif f Pair  
PCIExpressDif f Pair  
PCIExpressDif f Pair  
PCIExpressDif f Pair  
PCIExpressDif f Pair  
SATADiffPair  
DPLL  
PCI  
Express  
PLL  
PCIExpressDev  
DMI  
DPLL  
PCIExpressDev  
PCIExpressDev  
PCIExpressDev  
SATA  
PLL  
SSC  
(G)MCH  
66MHz  
DiffPair  
25MHz  
DiffPair  
PCI  
Express  
PLL  
4 x1PCI Exp  
SATA  
PLL  
96 MHzDOT DiffPair  
CK410  
48PinSSOP  
48 MHzUSB  
REF 14MHz  
USB PLL  
REF 14MHz  
SIO LPC  
LAN  
LCI Bit Clock  
25MHz  
48/14MHz  
PLL  
Intel® ICH6  
HighDef Audio  
BitClock  
REF 14MHz  
PCI 33MHz  
AC97  
TPMLPC  
PCI 33MHz  
PCI 33MHz  
OSC  
PCI 33MHz  
PCI 33MHz  
PCI 33MHz  
PCI 33MHz  
PCI 33MHz  
PCI 33MHz  
PCI 33MHz  
PCI 33MHz  
PCI 33MHz  
FWHLPC  
GlueChip  
Port80PCI  
24MHzBit  
Clock  
32.768KHz  
66/33  
Buffer  
High DefAudio  
66MHz  
66MHz  
66MHz  
25MHz  
Oscillator  
14.000MHz  
§
254  
Datasheet  
Electrical Characteristics  
R
13 Electrical Characteristics  
This chapter contains the (G)MCH absolute maximum electrical ratings, power dissipation values,  
and DC characteristics.  
13.1  
Absolute Maximum Ratings  
Table 13-1 lists the (G)MCH’s maximum environmental stress ratings. Functional operation at the  
absolute maximum and minimum is neither implied nor guaranteed. Functional operating  
parameters are listed in the DC characteristics tables.  
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operating beyond the “operating conditions” is not recommended  
and extended exposure beyond “operating conditions” may affect reliability.  
Table 13-1. Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Uni  
t
Notes  
Tstorage  
Storage Temperature  
-55  
150  
°C  
1
(G)MCH Core  
VCC  
1.5 V Core Supply Voltage with respect to VSS  
-0.3  
1.65  
V
Host Interface (533 MHz/800 MHz)  
VTT  
1.2 V System Bus Input Voltage with respect  
to VSS  
-0.3  
-0.3  
1.65  
1.65  
V
V
VCCA_HPLL  
1.5 V Host PLL Analog Supply Voltage with  
respect to VSS  
DDR Interface (333 MHz/400 MHz)  
VCCSM (DDR)  
2.6 V DDR System Memory Supply Voltage  
with respect to VSS  
-0.3  
-0.3  
4.0  
V
V
VCCA_SMPLL  
(DDR)  
1.5 V System Memory PLL Analog Supply  
Voltage with respect to VSS  
1.65  
DDR2 Interface (400 MHz/533 MHz)  
VCCSM (DDR2)  
1.8 V DDR2 System Memory Supply Voltage  
with Respect to VSS  
-0.3  
-0.3  
4.0  
V
V
VCCA_SMPLL  
(DDR2)  
1.5 V System Memory PLL Analog Supply  
Voltage with respect to VSS  
1.65  
Datasheet  
255  
 
Electrical Characteristics  
R
Symbol  
Parameter  
Min  
Max  
Uni  
t
Notes  
PCI Express*/Intel® SDVO/DMI Interface  
VCC_EXP  
1.5 V PCI Express and DMI Supply Voltage  
with respect to VSS  
-0.3  
-0.3  
1.65  
1.65  
V
V
VCCA_EXPPLL  
1.5 V PCI Express PLL Analog Supply Voltage  
with respect to VSS  
RGB/CRT DAC Display Interface (8 bit) (Intel® 82915G/82915GV/82910GL GMCH only)  
VCCA_DAC  
2.5 V Display DAC Analog Supply Voltage with  
respect to VSS  
-0.3  
-0.3  
-0.3  
2.65  
1.65  
1.65  
V
V
V
VCCA_DPLLA  
VCCA_DPLLB  
1.5 V Display PLL A Analog Supply Voltage  
with respect to VSS  
1.5 V Display PLL B Analog Supply Voltage  
with respect to VSS  
CMOS Interface  
VCC2  
2.5 V CMOS Supply Voltage with respect to  
VSS  
-0.3  
2.65  
V
NOTES:  
1. Possible damage to the (G)MCH may occur if the (G)MCH temperature exceeds 150 °C. Intel does not  
guarantee functionality for parts that have exceeded temperatures above 150 °C due to specification  
violation.  
256  
Datasheet  
Electrical Characteristics  
R
13.2  
Power Characteristics  
Table 13-2. Non-Memory Power Characteristics  
Symbol  
Parameter  
Signal Names  
Min  
Typ  
Max  
Unit  
Notes  
IVTT  
1.2 V System Bus Supply Bus Current  
1.5 V Core Supply Current (Integrated)  
1.5 V Core Supply Current (Discrete)  
VTT  
1.0  
9.7  
7.7  
A
A
A
1, 4  
2,3,4  
2,3,4  
IVCC  
VCC  
IVCC  
VCC  
IVCC_EXP  
1.5 V PCI Express and DMI Supply  
Current  
VCC_EXP  
1.4  
70  
A
IVCCA_DAC  
2.5 V Display DAC Analog Supply  
Current  
VCCA_DAC  
mA  
IVCC2  
2.5 V CMOS Supply Current  
VCC2  
2
mA  
mA  
IVCCA_EXPPLL  
1.5 V PCI Express and DMI PLL  
Analog Supply Current  
VCCA_EXPPL  
L
45  
IVCCA_HPLL  
IVCCA_DPLLA  
IVCCA_DPLLB  
1.5 V Host PLL Supply Current  
VCCA_HPLL  
45  
55  
mA  
mA  
1.5 V Display PLL A and PLL B Supply  
Current  
VCCA_DPLLA  
VCCA_DPLLB  
NOTES:  
1. Estimate is only for max current coming through Chipset’s supply balls  
2. Rail includes PLL current  
3. Includes Worst case Leakage  
4. Calculated for highest frequencies  
Datasheet  
257  
Electrical Characteristics  
R
Table 13-3. DDR Power Characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
IVCCSM  
DDR System Memory Interface (2.6 V) Supply  
Current  
4.1  
A
(DDR)  
ISUS_VCCSM  
(DDR)  
DDR System Memory Interface (2.6 V) Standby  
Supply Current  
25  
10  
mA  
µA  
ISMVREF  
DDR System Memory Interface Reference Voltage  
(1.3 V) Supply Current  
(DDR)  
ISUS_SMVREF  
DDR System Memory Interface Reference Voltage  
(1.3 V) Standby Supply Current  
10  
42  
µA  
ITTRC  
DDR System Memory Interface Resistor  
mA  
Compensation Voltage (2.6 V) Supply Current  
(DDR)  
ISUS_TTRC  
(DDR)  
DDR System Memory Interface Resistor  
Compensation Voltage (2.6 V) Standby Supply  
Current  
0
µA  
IVCCA_SMPLL  
(DDR)  
System Memory PLL Analog (1.5 V) Supply  
Current  
60  
mA  
Table 13-4. DDR2 Power Characteristics  
Symbol  
IVCCSM  
Parameter  
Min  
Max  
Unit  
Notes  
DDR2 System Memory Interface (1.8 V) Supply  
Current  
4.7  
A
(DDR2)  
ISUS_VCCSM  
(DDR2)  
ISMVREF  
DDR2 System Memory Interface (1.8 V) Standby  
Supply Current  
25  
10  
10  
32  
0
mA  
µA  
µA  
mA  
µA  
DDR2 System Memory Interface Reference  
Voltage (0.90 V) Supply Current  
(DDR2)  
ISUS_SMVREF  
(DDR2)  
ITTRC  
DDR2 System Memory Interface Reference  
Voltage (0.90 V) Standby Supply Current  
DDR2 System Memory Interface Resister  
Compensation Voltage (1.8 V) Supply Current  
(DDR2)  
ISUS_TTRC  
(DDR2)  
DDR2 System Memory Interface Resister  
Compensation Voltage (1.8 V) Standby Supply  
Current  
IVCCA_SMPLL  
(DDR2)  
System Memory PLL Analog (1.5 V) Supply  
Current  
60  
mA  
258  
Datasheet  
Electrical Characteristics  
R
13.3  
Signal Groups  
The signal description includes the type of buffer used for the particular signal:  
GTL+  
Open Drain GTL+ interface signal. Refer to the GTL+ I/O Specification  
for complete details. The (G)MCH integrates most GTL+ termination  
resistors.  
DDR  
DDR System memory (2.6 V CMOS buffers)  
DDR2 System memory (1.8 V CMOS buffers)  
DDR2  
PCI Express/SDVO PCI Express interface signals. These signals are compatible with PCI  
Express 1.0a signaling environment AC Specifications. The buffers are  
not 3.3 V tolerant.  
Analog  
Ref  
Analog signal interface  
Voltage reference signal  
HVCMOS  
SSTL-2  
SSTL-1.8  
2.5 V Tolerant High Voltage CMOS buffers  
2.6 V Tolerant Stub Series Termination Logic  
1.8 V Tolerant Stub Series Termination Logic  
Table 13-5. Signal Groups  
Signal  
Group  
Signal Type  
Signals  
Notes  
Host Interface Signal Groups  
(a)  
GTL+  
Input/Outputs  
HADS#, HBNR#, HBREQ0#, HDBSY#, HDRDY#,  
HDINV[3:0]#, HA[31:3]#, HADSTB[1:0]#, HD[63:0],  
HDSTBP[3:0]#, HDSTBN[3:0]#, HHIT#, HHITM#,  
HREQ[4:0]#, HLOCK#  
(b)  
(c)  
(d)  
GTL+  
Common Clock  
Outputs  
HBPRI#, HCPURST#, HDEFER#, HTRDY#, HRS[2:0]#,  
HDPWR#, HEDRDY#  
GTL+  
Asynchronous  
Input  
BSEL[2:0], HPCREQ#  
Analog Host I/F  
Ref & Comp.  
Signals  
HVREF, HSWING HRCOMP, HSCOMP  
PCI-Express Graphics and SDVO Interface Signal Groups  
(e)  
PCI  
PCI Express Interface (82915G/82915P/82915PL  
Express/SDVO  
Input  
(G)MCH only): EXP_RXN[15:0], EXP_RXP[15:0],  
SDVO Interface (82915G/82915GV/82915GL/82910GL  
GMCH only): SDVO_TVCLKIN#, SDVO_TVCLKIN,  
SDVOB_INT#, SDVOB_INT, SDVO_STALL#,  
SDVO_STALL, SDVOC_INT#, SDVOC_INT  
Datasheet  
259  
Electrical Characteristics  
R
Signal  
Group  
Signal Type  
Signals  
Notes  
(f)  
PCI  
PCI Express Interface (82915G/82915P/82915PL  
Express/SDVO  
Output  
(G)MCH only): EXP_TXN(15:0), EXP_TXP(15:0)  
SDVO Interface (82915G/82915GV/82915GL/82910GL  
GMCH only): SDVOB_RED#, SDVOB_RED,  
SDVOB_GREEN#, SDVOB_GREEN, SDVOB_BLUE#,  
SDVOB_BLUE, SDVOB_CLK, SDVOB_CLK#,  
SDVOC_RED#/SDVOB_ALPHA#,  
SDVOC_RED/SDVOB_ALPHA, SDVOC_GREEN#,  
SDVOC_GREEN SDVOC_BLUE#, SDVOC_BLUE,  
SDVOC_CLK, SDVOC_CLK#  
(g)  
Analog  
EXP_COMP0  
EXP_COMPI  
PCI Express /  
SDVO Interface  
Compensation  
Signals  
DDR Interface Signal Groups  
(h)  
SSTL- 2  
SDQ_A[63:0], SDQ_B[63:0], SDQS_A[7:0],  
SDQS_B[7:0]  
DDR CMOS I/O  
SSTL – 2  
(i)  
SDM_A[7:0], SDM_B[7:0], SMA_A[13:0], SMA_B[13:0],  
SBS_A[1:0], SBS_B[1:0], SRAS_A#, SRAS_B#,  
SCAS_A#, SCAS_B#, SWE_A#, SWE_B# SCKE_A[3:0],  
SCKE_B[3:0], SCS_A[3:0]#, SCS_B[3:0]#, SCLK_A[5:0],  
SCLK_A[5:0]#, SCLK_B[5:0], SCLK_B[5:0]#  
DDR CMOS  
Output  
(j)  
DDR Reference  
Voltage  
SMVREF[1:0] (DDR)  
DDR2 Interface Signal Groups (Intel® 82915G/82915GV GMCH and 82915P MCH only)  
(k)  
SSTL – 1.8  
SDQ_A[63:0]#, SDQ_B[63:0]#, SDQS_A[7:0],  
SDQS_A[7:0]#, SDQS_B[7:0]#, SDQS_B[7:0]#  
DDR2 CMOS  
I/O  
(l)  
SSTL – 1.8  
SDM_A[7:0], SDM_B[7:0], SMA[13:0], SMA_B[13:0],  
SBS_A[2:0], SBS_B[2:0], SRAS_A#, SRAS_B#,  
SCAS_A#, SCAS_B#, SWE_A#, SWE_B#,  
DDR2 CMOS  
Output  
SODT_A[3:0], SODT_B[3:0], SCKE_A[3:0],  
SCKE_B[3:0], SCS_A[3:0]#, SCS_B[3:0]#, SCLK_A[5:0],  
SCLK_A[5:0]#, SCLK_B[5:0], SCLK_B[5:0]#  
(m)  
DDR2  
SMVREF[1:0] (DDR2)  
Reference  
Voltage  
260  
Datasheet  
Electrical Characteristics  
R
Signal  
Group  
Signal Type  
Signals  
Notes  
RGB/CRT DAC Display Signal Groups (Intel® 82915G/82915GV/82915GL/82910GL GMCH only)  
Analog Current  
Outputs  
RED, RED#, GREEN, GREEN#, BLUE, BLUE#  
REFSET  
Analog/Ref  
DAC  
Current Mode  
Reference pin.  
DC Spec. not  
required  
Miscellaneous  
CMOS Type  
HSYNC, VSYNC  
Clocks, Reset, and Miscellaneous Signal Groups  
(n)  
HVCMOS Input  
EXTTS#  
(n1)  
Miscellaneous  
Inputs  
RSTIN#, PWROK  
(0)  
(p)  
Low Voltage  
Diff. Clock Input  
HCLKN, HCLKP, DREFCLKP, DREFCLKN, GCLKP,  
GCLKN  
HVCMOS I/O  
SDVO_CRTLCLK, SDVO_CTRLDATA, DDC_CLK,  
DDC_DATA  
I/O Buffer Supply Voltages  
(q)  
1.2 V System  
Bus Input  
VTT  
Supply Voltage  
(r)  
1.5 V SDVO,  
PCI Express  
VCC_EXP  
Supply Voltages  
(s)  
(t)  
2.6 V DDR  
Supply Voltage  
VCCSM (DDR)  
VCCSM (DDR2)  
1.8 V DDR2  
Supply Voltage  
(u)  
(v)  
(w)  
1.5 V DDR PLL  
Analog Supply  
Voltage  
VCCA_SMPLL (DDR)  
VCCA_SMPLL (DDR2)  
VCC  
1.5 V DDR2  
PLL Analog  
Supply Voltage  
1.5 V (G)MCH  
Core Supply  
Voltage  
2.5 V CMOS  
Supply Voltage  
(x)  
(y)  
VCC2  
2.5 V RGB/CRT  
DAC Display  
Analog Supply  
Voltage  
VCCA_DAC  
(z)  
PLL Analog  
Supply Voltages  
VCCA_HPLL, VCCA_EXPPLL, VCCA_DPLLA,  
VCCA_DPLLB  
Datasheet  
261  
Electrical Characteristics  
R
13.4  
DC Characteristics  
13.4.1  
General DC Characteristics  
Table 13-6. DC Characteristics3  
Symbol  
Signal  
Group  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
I/O Buffer Supply Voltage (AC Noise not included)  
VCCSM (DDR)  
VCCSM (DDR2)  
(s)  
(t)  
DDR I/O Supply Voltage  
DDR2 I/O Supply Voltage  
2.5  
1.7  
2.6  
1.8  
1.5  
2.7  
1.9  
V
V
V
VCCA_SMPLL  
(DDR)  
(u)  
DDR I/O PLL Analog Supply  
Voltage  
1.425  
1.575  
VCCA_SMPLL  
(DDR2)  
(v)  
(r)  
DDR2 I/O PLL Analog  
Supply Voltage  
1.425  
1.425  
1.09  
1.5  
1.5  
1.2  
1.5  
1.575  
1.575  
1.26  
V
V
V
V
VCC_EXP  
SDVO, PCI-Express Supply  
Voltage  
VTT  
(q) System Bus Input Supply  
Voltage  
VCC  
(w) (G)MCH Core Supply  
Voltage  
1.425  
1.575  
VCC2  
(x)  
(y)  
CMOS Supply Voltage  
2.375  
2.375  
2.5  
2.5  
2.625  
2.625  
V
V
VCCA_DAC  
CRT Display DAC Supply  
Voltage  
VCCA_HPLL,  
VCCA_EXPPLL,  
VCCA_DPLLA,  
VCCA_DPLLB  
(z)  
Various PLL’S Analog  
Supply Voltages  
1.425  
1.5  
1.575  
V
Reference Voltages  
HVREF  
(d)  
Host Address, Data, and  
Common Clock Signal  
Reference Voltage  
2/3 x VTT1– 2% 2/3 x VTT 2/3 x VTT + 2%  
V
HSWING  
(d)  
(j)  
Host Compensation  
Reference Voltage  
1/4 x VTT – 2% 1/4 x VTT  
1/4 x VTT  
2%  
+
V
V
SMVREF (DDR)  
DDR Reference Voltage  
0.50 x  
VCCSM(DDR)  
– 0.05  
0.50 x  
VCCSM  
(DDR)  
0.50 x  
VCCSM(DDR)  
+ 0.05  
SMVREF  
(DDR2)  
(m) DDR2 Reference Voltage  
0.49 x VCCSM  
(DDR2)  
0.50 x  
VCCSM  
(DDR2)  
0.51 x VCCSM  
(DDR2)  
V
Host Interface  
VIL_H  
(a, c) Host GTL+ Input Low  
Voltage  
-0.10  
0
(2/3 x VTT) –  
0.1  
V
V
VIH_H  
(a, c) Host GTL+ Input High  
Voltage  
(2/3 x VTT) +  
0.1  
VTT  
VTT + 0.1  
262  
Datasheet  
Electrical Characteristics  
R
Symbol  
Signal  
Group  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
VOL_H  
VOH_H  
IOL_H  
ILEAK_H  
CPAD  
(a, b) Host GTL+ Output Low  
Voltage  
VTT – 0.1  
(0.25 x  
V
V
V
TT)+0.1  
(a, b) Host GTL+ Output High  
Voltage  
VTT  
(a, b) Host GTL+ Output Low  
Current  
VTTmax  
/
mA Rttmin = 54Ω  
(1-0.25)Rttmin  
(a, c) Host GTL+ Input Leakage  
Current  
20  
µA VOL<Vpad<Vtt  
(a, c) Host GTL+ Input  
Capacitance  
2
3.5  
2.5  
pF  
pF  
CPCKG  
(a, c) Host GTL+ Input  
0.90  
Capacitance (common clock)  
DDR Interface  
VIL(DC) (DDR)  
(h)  
(h)  
(h)  
(h)  
DDR Input Low Voltage  
DDR Input High Voltage  
DDR Input Low Voltage  
DDR Input High Voltage  
SMVREF  
(DDR) – 0.15  
V
V
V
V
VIH(DC) (DDR)  
VIL(AC) (DDR)  
VIH(AC) (DDR)  
SMVREF  
(DDR) + 0.15  
SMVREF  
(DDR) – 0.31  
SMVREF  
(DDR) + 0.31  
VOL (DDR)  
VOH (DDR)  
ILeak (DDR)  
CI/O (DDR)  
(h, i) DDR Output Low Voltage  
(h, i) DDR Output High Voltage  
2.1  
0.4  
V
V
1
1
(h)  
Input Leakage Current  
±10  
µA  
pF  
(h, i) DDR Input/Output Pin  
Capacitance  
3.0  
6.0  
DDR2 Interface (Intel® 82915G/82915GV GMCH and 82915P MCH only)  
VIL(DC) (DDR2)  
VIH(DC) (DDR2)  
VIL(AC) (DDR2)  
VIH(AC) (DDR2)  
(k)  
(k)  
(k)  
(k)  
DDR2 Input Low Voltage  
DDR2 Input High Voltage  
DDR2 Input Low Voltage  
DDR2 Input High Voltage  
SMVREF  
(DDR2) –  
0.125  
V
V
V
V
SMVREF  
(DDR2) +  
0.125  
SMVREF  
(DDR2) –  
0.250  
SMVREF  
(DDR2) +  
0.250  
VOL (DDR2)  
VOH (DDR2)  
ILeak (DDR2)  
CI/O (DDR2)  
(k, l) DDR2 Output Low Voltage  
(k, l) DDR2 Output High Voltage  
1.5  
0.3  
V
V
1
1
(k)  
Input Leakage Current  
±10  
uA  
pF  
(k, l) DDR2 Input/Output Pin  
Capacitance  
3.0  
6.0  
Datasheet  
263  
Electrical Characteristics  
R
Symbol  
Signal  
Group  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
1.5 V PCI Express Interface 1.0a (includes PCI Express and SDVO)  
VTX-DIFF P-P  
VTX_CM-ACp  
ZTX-DIFF-DC  
VRX-DIFF p-p  
VRX_CM-ACp  
(f)  
(f)  
Differential Peak to Peak  
Output Voltage  
0.400  
0.600  
20  
V
mV  
Ohms  
V
2
AC Peak Common Mode  
Output Voltage  
(f)  
DC Differential TX  
Impedance  
80  
100  
120  
(e)  
(e)  
Differential Peak to Peak  
Input Voltage  
0.175  
0.600  
150  
3
AC peak Common Mode  
Input Voltage  
mV  
Clocks, Reset, and Miscellaneous Signals  
VIL  
(n)  
(n)  
(n)  
(n)  
(o)  
(o)  
(o)  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
Input Capacitance  
Input Low Voltage  
Input High Voltage  
Crossing Voltage  
2.0  
0.8  
V
V
VIH  
ILEAK  
CIN  
±10  
6.0  
µA  
pF  
V
3.0  
VIL  
0
VIH  
0.660  
0.710  
0.850  
V
VCROSS  
0.45 x (VIH  
VIL)  
0.5 x  
(VIH – VIL)  
0.55 x (VIH  
VIL)  
V
VOL  
VOH  
IOL  
(p)  
Output Low Voltage (CMOS  
Outputs)  
2.1  
0.4  
1
V
V
(p) Output High Voltage (CMOS  
Outputs)  
(p) Output Low Current (CMOS  
Outputs)  
mA @VOL_HI max  
mA @VOH_HI min  
IOH  
(p) Output High Current (CMOS  
Outputs)  
-1  
VIL  
(p) Input Low Voltage  
(p) Input High Voltage  
(p) Crossing Voltage  
(p) Input Capacitance  
(n1) Input Low Voltage  
(n1) Input High Voltage  
(n1) Crossing Voltage  
(n1) Input Capacitance  
1.4  
1.1  
V
V
VIH  
ILEAK  
CIN  
VIL  
±10  
6.0  
µA  
pF  
V
3.0  
0.8  
VIH  
2.0  
V
ILEAK  
CIN  
±100  
5.370  
µA  
0<Vin<VCC3_3  
4.690  
pF  
NOTES:  
1. Determined with 2x (G)MCH DDR/DDR2 Buffer Strength Settings into a 50 to 0.5xVCCSM  
(DDR/DDR2) test load.  
2. Specified at the measurement point into a timing and voltage compliance test load as shown in  
Transmitter compliance eye diagram of PCI-E specification and measured over any 250 consecutive TX  
Uls.  
3. Specified at the measurement point and measured over any 250 consecutive Uls. The test load shown  
in Receiver compliance eye diagram of PCI-E specification should be used as the RX device when  
taking measurements.  
264  
Datasheet  
Electrical Characteristics  
R
13.4.2  
RGB/CRT DAC Display DC Characteristics (Intel®  
82915G/82915GV/82915GL/82910GL GMCH Only)  
Table 13-7. RGB/CRT DAC Display DC Characteristics (Functional Operating Range:  
VCCA_DAC = 2.5 V ±5%)  
Parameter  
Min  
Typical  
Max  
Units  
Notes  
DAC Resolution  
8
Bits  
1
Max Luminance (full-scale)  
Min Luminance  
0.665  
0.700  
0.000  
73.2  
0.770  
V
V
1, 2, 4; white video level voltage  
1, 3, 4; black video level voltage  
LSB Current  
µA  
4, 5  
1, 6  
1, 6  
Integral Linearity (INL)  
Differential Linearity (DNL)  
-1.0  
-1.0  
+1.0  
+1.0  
LSB  
LSB  
Video channel-channel  
voltage amplitude mismatch  
6
%
7
Monotonicity  
Guaranteed  
NOTES:  
1. Measured at each R, G, B termination according to the VESA Test Procedure – Evaluation of Analog  
Display Graphics Subsystems Proposal (Version 1, Draft 4, December 1, 2000).  
2. Max steady-state amplitude  
3. Min steady-state amplitude  
4. Defined for a double 75-Ohm termination.  
5. Set by external reference resistor value.  
6. INL and DNL measured and calculated according to VESA Video Signal Standards.  
7. Max full-scale voltage difference among R, G, B outputs (percentage of steady-state full-scale voltage).  
§
Datasheet  
265  
Electrical Characteristics  
R
266  
Datasheet  
Ballout and Package Information  
R
14 Ballout and Package Information  
The (G)MCH ballout supports platforms using DDR2 and DDR system memory. The (G)MCH’s  
system memory interface ballout differs between DDR2 and DDR modes.  
Note: The DDR and DDR2 signals are multiplexed so that they are supported on the same package.  
14.1  
DDR2 Ballout  
Figure 14-1, Figure 14-2, and Figure 14-3 show the 82915G GMCH ballout for platforms using  
DDR2 system memory, as viewed from the top side of the package. Figure 14-1 shows columns  
1–12; Figure 14-2 shows columns 13–24; Figure 14-3 shows columns 25–35.  
The complete DDR2 ballout for the 82915G/82915GV/82910GL GMCH and 82915P MCH are  
listed in Table 14-1 and Table 14-2. Table 14-1 is sorted by ball number. Table 14-2 is sorted  
alphabetically by signal name based on the signal names of the 82915G GMCH. Note that the  
first table has more entries than the second table. The second table does not include unpopulated  
balls whereas the first table does.  
Note: Balls that are listed as RSV are Reserved. Board traces should Not be routed to these balls.  
Note: Balls that are listed as NC are No Connects. Board traces to these balls are permitted as specified.  
Datasheet  
267  
Ballout and Package Information  
R
Figure 14-1. Intel® 82915G GMCH Ballout for DDR2 (Top View: Columns 1–12)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
VCCA_  
DPLLA  
A
NC  
VSS  
VSS  
EXP_TXN3  
EXP_TXP3  
EXP_TXN1  
EXP_TXP1  
VSS  
GCLKP  
B
C
D
E
F
NC  
VSS  
EXP_TXP5  
EXP_TXN5  
VSS  
EXP_RXP4  
VSS  
EXP_RXN4  
VSS  
VSS  
VSS  
EXP_TXP4  
VSS  
VSS  
VSS  
EXP_TXP2  
VSS  
VSS  
EXP_TXN0  
VSS  
VSS  
EXP_TXP0  
VSS  
GCLKN  
VSS  
VSS  
VSS  
EXP_TXN4  
EXP_RXP5  
EXP_RXN5  
VSS  
EXP_TXN2  
VSS  
VSS  
VSS  
VSS  
VSYNC  
HSYNC  
NC  
VSS  
EXP_TXP6  
EXP_TXN6  
EXP_TXP8  
EXP_TXN8  
VSS  
VSS  
EXP_RXN3  
EXP_RXP3  
VSS  
VSS  
EXP_RXN2  
EXP_RXP2  
VSS  
VSS  
EXP_RXP0  
EXP_RXN0  
VSS  
EXP_TXP7  
EXP_TXN7  
EXP_TXP9  
VSS  
VSS  
VSS  
VSS  
VSS  
G
H
VSS  
VSS  
EXP_RXN6  
VSS  
EXP_RXP6  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
EXP_RXN7  
EXP_RXP7  
VSS  
VSS  
EXP_RXN1  
NC  
EXP_  
J
K
L
EXP_TXN9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
EXP_RXN8  
VSS  
EXP_RXP8  
VSS  
VSS  
EXP_RXN9  
VSS  
VSS  
EXP_RXP9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
EXP_RXP1  
VSS  
NC  
NC  
NC  
TXP10  
EXP_  
EXP_  
TXP11  
TXN10  
EXP_  
EXP_  
EXP_  
EXP_  
VSS  
TXN11  
TXP12  
RXN10  
RXP10  
EXP_  
EXP_TXN1  
2
EXP_  
EXP_  
M
N
P
R
VSS  
VSS  
VSS  
DREFCLKN  
TXP13  
RXN12  
RXP12  
EXP_  
EXP_  
EXP_  
EXP_  
VSS  
VSS  
VSS  
NC  
NC  
NC  
TXN13  
TXP14  
RXN13  
RXP13  
EXP_  
EXP_  
EXP_  
EXP_  
EXP_  
VSS  
VSS  
VSS  
TXP15  
TXN14  
RXP14  
RXN14  
RXP11  
EXP_  
EXP_  
EXP_  
EXP_  
DMI_TXP0  
VSS  
VSS  
VSS  
TXN15  
RXN15  
RXP15  
RXN11  
T
U
V
DMI_TXP1  
DMI_TXN1  
VSS  
VSS  
VSS  
VSS  
DMI_TXN0  
DMI_TXP2  
DMI_TXN2  
VSS  
VSS  
VSS  
VSS  
VSS  
DMI_RXN0  
VSS  
VSS  
VSS  
DMI_RXN1  
VSS  
DMI_RXP1  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
DMI_RXP0  
DMI_TXP3  
DMI_RXN3  
DMI_RXP3  
DMI_RXP2  
DMI_RXN2  
VSS  
EXP_  
W
Y
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VSS  
VSS  
NC  
NC  
COMPI  
EXP_  
COMPO  
AA  
AB  
AC  
AD  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
NC  
NC  
RSV  
SDQ_B20  
SM_SLEW  
OUT1  
AE  
AF  
SDQ_A5  
VSS  
SDQ_A4  
SDM_A0  
SDQ_A0  
SDQ_A1  
VSS  
VSS  
SOCOMP1  
SOCOMP0  
VSS  
VSS  
SMVREF0  
RSTIN#  
SMVREF1  
VSS  
VSS  
SDQ_B11  
SDQ_B10  
VSS  
VSS  
SM_  
VSS  
SLEWIN1  
AG  
AH  
SDQS_A0  
VSS  
SDQS_A0#  
SDQ_A7  
SDQ_A6  
SDQ_A2  
SRCOMP0  
SDQ_B0  
VSS  
VSS  
NC  
PWROK  
SDQ_B5  
SRCOMP1  
VSS  
SDQ_B4  
SDM_B1  
SDQ_B14  
SDQ_B15  
VSS  
VSS  
VSS  
SDQS_B1#  
SDQ_B17  
SM_  
AJ  
SDQ_A12  
SDQ_A3  
SDQ_A8  
SDQ_A13  
SDQ_A9  
VSS  
VSS  
SDM_B0  
SDQ_B1  
VSS  
SDQ_B12  
VSS  
SDQ_B8  
VSS  
VSS  
VSS  
SCLK_B4  
VSS  
SLEWIN0  
SM_SLEW  
OUT0  
AK  
VSS  
SDQS_B0  
SCLK_B1  
SDQS_B1  
AL  
AM  
AN  
AP  
AR  
SDM_A1  
SDQS_A1#  
SCLK_A1  
SCLK_A4#  
SDQ_A14  
NC  
SDQS_A1  
SCLK_A1#  
SCLK_A4  
SDQ_A15  
VSS  
SDQS_B0#  
VSS  
SDQ_B6  
SDQ_B7  
SDQ_A20  
SDQ_A21  
SDQ_A16  
5
SDQ_B2  
VSS  
SDQ_B13  
VSS  
SDQ_B9  
VSS  
SCLK_B1#  
SCKE_B3  
SDQ_A19  
SDQ_A18  
SCKE_B2  
9
VSS  
VCCSM  
SCKE_B1  
SCKE_B0  
VCCSM  
10  
SCLK_B4#  
VCCSM  
SBS_B2  
SMA_B11  
SMA_B12  
11  
SMA_B7  
SMA_B5  
VSS  
NC  
NC  
1
SDQ_A10  
SDQ_A11  
SDQ_B3  
SDQ_A17  
VSS  
SDM_A2  
SDQS_A2  
SDQS_A2#  
7
SDQ_A22  
VSS  
VCCSM  
SMA_B9  
12  
SDQ_A23  
8
2
3
4
6
268  
Datasheet  
Ballout and Package Information  
R
Figure 14-2. Intel® 82915G GMCH Ballout for DDR2 (Top View: Columns 13–24)  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VCCA_  
VCCA_  
HPLL  
A
B
VCC2  
REFSET  
EXP_SLR  
VSS  
VTT  
VTT  
VTT  
VTT  
HSWING  
HVREF  
EXPPLL  
VCCA_  
DPLLB  
VCCA_  
SMPLL  
VSS  
RSV  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
HRCOMP  
VSS  
C
D
E
F
VSS  
VCCA_DAC  
VCCA_DAC  
VSSA_DAC  
VSS  
RSV  
GREEN  
GREEN#  
RED  
MTYPE  
VSS  
NC  
VSS  
NC  
VSS  
BSEL2  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
HD40  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
HD37  
HSCOMP  
HD62  
BSEL1  
RSV  
VSS  
VTT  
VSS  
RSV  
BSEL0  
HD47  
VSS  
VSS  
HDSTBN2#  
VSS  
NC  
G
H
RED#  
VSS  
HD45  
HD46  
HCPURST#  
VSS  
VSS  
BLUE  
NC  
NC  
HD41  
SDVO_  
J
BLUE#  
VSS  
VSS  
RSV  
VSS  
VSS  
VSS  
HDSTBP2#  
HDINV2#  
VSS  
VSS  
HD35  
HD39  
HD32  
HD34  
VSS  
HD33  
VSS  
CTRLCLK  
SDVO_  
K
EXTTS#  
HD44  
HD43  
HD31  
CTRLDATA  
L
M
VSS  
DREFCLKP  
VCC  
DDC_DATA  
ICH_SYNC#  
VCC  
VSS  
DDC_CLK  
VCC  
VSS  
RSV  
VSS  
VSS  
VSS  
HD42  
VCC  
NC  
HD38  
VSS  
VSS  
VSS  
VSS  
HD36  
VCC  
VSS  
HCLKN  
NC  
HD30  
HCLKP  
NC  
VSS  
VSS  
N
VCC  
VSS  
VCC  
NC  
P
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
NC  
NC  
R
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
NC  
T
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
U
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
V
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
W
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
Y
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
AM  
AN  
AP  
AR  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
NC  
NC  
VSS  
SDQ_B18  
VSS  
SDQ_B19  
VSS  
VSS  
SDQ_A30  
VSS  
SDQ_B28  
VSS  
VSS  
SDQS_B3  
VSS  
SDQ_B27  
VSS  
VSS  
SDQ_B37  
VSS  
SDM_B6  
VSS  
SDQ_B21  
SDQ_B16  
VSS  
RSV_TP0  
SDQ_A29  
VSS  
SDQ_A31  
SDQ_A26  
VSS  
SDQ_B30  
SDQ_B31  
VSS  
SDQ_B23  
SDQ_B22  
VSS  
VSS  
SDQS_A3  
SDQS_A3#  
VSS  
VSS  
SDQS_B3#  
SDM_B3  
VSS  
VSS  
SDQ_B36  
SCLK_B0#  
VSS  
SDQ_B32  
SDM_B4  
NC  
VSS  
VSS  
VSS  
SDM_B2  
VSS  
RSV_TP1  
VSS  
SDM_A3  
VSS  
SDQ_A27  
RSV  
SDQ_B25  
VSS  
SDQ_B26  
RSV  
SCLK_B0  
VSS  
NC  
SDQ_A25  
VSS  
RSV  
RSV  
RSV  
SDQS_B2  
VSS  
VSS  
RSV_TP3  
SMA_B3  
SMA_B0  
SMA_B2  
SMA_B10  
SDQ_A28  
VSS  
RSV  
SDQ_B24  
VSS  
VSS  
RSV  
SCLK_B3#  
VSS  
VSS  
RSV  
SDQS_B2#  
VCCSM  
RSV_TP2  
SMA_B4  
SDQ_A24  
VCCSM  
SRAS_B#  
SWE_B#  
SDQ_B29  
SCKE_A1  
SCKE_A2  
SCAS_B#  
RSV  
RSV  
SCLK_B3  
VCCSM  
SMA_A6  
SMA_A3  
SMA_A2  
SCLK_A3#  
VCCSM  
SMA_B8  
SMA_B6  
VCCSM  
SBS_B1  
VCCSM  
VCCSM  
NC  
VCCSM  
SBS_A2  
VCCSM  
SMA_A11  
SMA_A9  
SMA_A7  
VCCSM  
SMA_A8  
SMA_A5  
SCKE_A0  
VCCSM  
VSS  
VCCSM  
SMA_B1  
SBS_B0  
VSS  
VCCSM  
SCKE_A3  
SMA_A12  
VSS  
VCCSM  
SMA_A4  
SMA_A1  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Datasheet  
269  
Ballout and Package Information  
R
Figure 14-3. Intel® 82915G GMCH Ballout for DDR2 (Top View: Columns 25–35)  
25  
HD48  
HD63  
HD58  
VSS  
26  
27  
28  
29  
30  
31  
32  
33  
34  
NC  
35  
NC  
VSS  
HD61  
HD57  
HD55  
VSS  
HD53  
VSS  
A
B
HDINV3#  
HD59  
HD54  
VSS  
HDSTBP3#  
HDSTBN3#  
HD18  
HD51  
HD17  
VSS  
HD52  
HD15  
HD14  
VSS  
HD13  
HD11  
NC  
HD49  
HD56  
HD50  
HD9  
HD12  
VSS  
C
VSS  
HD60  
VSS  
VSS  
HD10  
HD8  
D
HD25  
VSS  
VSS  
HD24  
HD16  
VSS  
HBPRI#  
VSS  
HPCREQ#  
HREQ4#  
HREQ3#  
HREQ2#  
HADSTB0#  
VSS  
HREQ1#  
VSS  
HDSTBP0#  
HREQ0#  
HD7  
HDINV0#  
HD6  
HDSTBN0#  
VSS  
E
HDSTBN1#  
VSS  
HD23  
HD22  
VSS  
F
HD26  
VSS  
VSS  
VSS  
HD20  
HA6#  
VSS  
HA7#  
VSS  
HD5  
HD3  
G
HDSTBP1#  
HDINV1#  
VSS  
VSS  
HD19  
HA3#  
HD1  
VSS  
HD4  
H
HD27  
HD28  
HD29  
VSS  
HD21  
HA13#  
VSS  
HA5#  
VSS  
HRS2#  
VSS  
HD0  
HD2  
HDEFER#  
VSS  
J
HA14#  
VSS  
HA4#  
HA8#  
VSS  
HA15#  
HLOCK#  
HRS0#  
HHIT#  
K
HA18#  
HA20#  
HA19#  
HA22#  
VSS  
HA12#  
HA16#  
VSS  
HA9#  
HA11#  
HADS#  
HA21#  
VSS  
VSS  
HDBSY#  
HBNR#  
HHITM#  
VSS  
L
VSS  
VSS  
HA10#  
VSS  
HDRDY#  
VSS  
VSS  
M
VSS  
HADSTB1#  
VSS  
HA23#  
VSS  
HA26#  
HEDRDY#  
HBREQ0#  
SDQ_A62  
SDM_A7  
SDQ_A57  
SDQ_A61  
SDQ_A50  
SDM_A6  
RSV  
HTRDY#  
HRS1#  
SDQ_A59  
VSS  
N
VSS  
HA24#  
HA25#  
VSS  
NC  
VSS  
P
VSS  
VSS  
HA17#  
HA31#  
VSS  
RSV  
RSV  
SDQ_A58  
VSS  
RSV  
R
VSS  
HA30#  
SDQ_B63  
VSS  
HA27#  
VSS  
VSS  
HA28#  
VSS  
SDQ_A63  
SDQS_A7#  
VSS  
T
VSS  
HA29#  
SDQ_B58  
VSS  
RSV  
VSS  
SDQS_A7  
SDQ_A56  
SDQ_A51  
VSS  
U
VSS  
VSS  
SDQ_B59  
SDQ_B57  
VSS  
RSV  
RSV  
RSV  
V
VSS  
SDQ_B62  
SDQ_B60  
VSS  
SDQS_B7  
VSS  
VSS  
SDM_B7  
VSS  
VSS  
SDQ_A60  
SDQ_A55  
SDQS_A6#  
VSS  
W
Y
VSS  
SDQS_B7#  
SDQ_B56  
VSS  
RSV  
VSS  
VSS  
VSS  
SDQ_B61  
RSV  
RSV  
RSV  
SDQ_A54  
VSS  
SDQS_A6  
SCLK_A5#  
SCLK_A2  
VSS  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
AM  
AN  
AP  
AR  
VSS  
SDQ_B51  
SDQ_B50  
VSS  
SDQ_B55  
VSS  
VSS  
SDQS_B6  
VSS  
VSS  
SDQ_B54  
SCLK_B5  
VSS  
VSS  
SDQS_B6#  
NC  
VSS  
SCLK_A5  
SCLK_A2#  
SDQ_A49  
SDQ_A52  
VSS  
VSS  
VSS  
SCLK_B5#  
SDQ_B53  
VSS  
SDQ_A48  
SDQ_B52  
VSS  
RSV  
SCLK_B2#  
SDQ_B33  
VSS  
SCLK_B2  
VSS  
SDQ_B49  
SDQ_B48  
SDQ_B47  
SDQ_A36  
VSS  
VSS  
VSS  
SDQ_A43  
SDQ_A42  
SDQS_A5#  
SDQ_A40  
SDQ_A44  
SDQ_B45  
SMA_B13  
SODT_B0  
SCS_B0#  
SODT_A3  
VCCSM  
SDQ_A53  
SDQ_A47  
SDM_A5  
VSS  
SDQ_B43  
VSS  
VSS  
VSS  
SDQS_B4#  
VSS  
VSS  
SDQ_B46  
SDQS_B5#  
VSS  
SDQ_B42  
SDM_B5  
SDQ_B41  
SDQ_A35  
SDQ_A34  
VSS  
SDQ_A46  
VSS  
SDQS_A5  
SDQ_A41  
VSS  
SDQS_B4  
SDQ_B39  
VSS  
SDQS_B5  
SDQ_A33  
VSS  
VSS  
SDQ_B35  
VSS  
SDQ_B44  
SDM_A4  
SDQS_A4#  
VSS  
VSS  
SDQ_A45  
SODT_B3  
SODT_B1  
SCS_B1#  
SCS_B3#  
SCS_B2#  
NC  
SDQ_A32  
SDQ_A37  
SMA_A10  
SBS_A1  
SRAS_A#  
SBS_A0  
27  
VSS  
SDQ_B40  
VSS  
VCCSM  
SODT_B2  
SDQ_B38  
VCCSM  
SCLK_A3  
SCLK_A0#  
VSS  
SDQ_B34  
VCCSM  
SCLK_A0  
SMA_A0  
VCCSM  
26  
NC  
SDQ_A39  
SDQS_A4  
SDQ_A38  
SODT_A0  
VSS  
VCCSM  
SWE_A#  
VCCSM  
SCS_A2#  
28  
VCCSM  
SODT_A1  
SCS_A1#  
SCAS_A#  
SODT_A2  
SCS_A0#  
29  
SCS_A3#  
SMA_A13  
VCCSM  
31  
VCCSM  
NC  
NC  
25  
30  
32  
33  
34  
35  
270  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
A1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
NC  
A2  
NC  
NC  
A3  
VSS  
VSS  
VSS  
A4  
A5  
VSS  
VSS  
VSS  
A6  
EXP_TXN3  
EXP_TXP3  
EXP_TXN1  
EXP_TXP1  
VSS  
EXP_TXN3  
EXP_TXP3  
EXP_TXN1  
EXP_TXP1  
VSS  
SDVOB_CLK-  
SDVOB_CLK+  
SDVOB_GREEN-  
SDVOB_GREEN+  
VSS  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
B1  
GCLKP  
VCCA_DPLLA  
VCC2  
GCLKP  
VCCA_DPLLA  
VCC2  
GCLKP  
VCCA_DPLLA  
VCC2  
VCCA_EXPPLL  
RSV  
VCCA_EXPPLL  
REFSET  
EXP_SLR  
VCCA_HPLL  
VSS  
VCCA_EXPPLL  
REFSET  
RSV  
EXP_SLR  
VCCA_HPLL  
VSS  
VCCA_HPLL  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
HSWING  
HVREF  
HD48  
HSWING  
HVREF  
HD48  
HSWING  
HVREF  
HD48  
VSS  
VSS  
VSS  
HD61  
HD61  
HD61  
HD57  
HD57  
HD57  
HD55  
HD55  
HD55  
VSS  
VSS  
VSS  
HD53  
HD53  
HD53  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B2  
VSS  
VSS  
VSS  
B3  
EXP_RXP4  
EXP_RXN4  
VSS  
EXP_RXP4  
EXP_RXN4  
VSS  
RSV  
B4  
RSV  
B5  
VSS  
B6  
VSS  
VSS  
VSS  
B7  
VSS  
VSS  
VSS  
B8  
VSS  
VSS  
VSS  
Datasheet  
271  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
B9  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
VSS  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
C1  
VSS  
VSS  
GCLKN  
VSS  
GCLKN  
VSS  
GCLKN  
VSS  
VCCA_DPLLB  
VSS  
VCCA_DPLLB  
VSS  
VCCA_DPLLB  
VSS  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VCCA_SMPLL  
VSS  
VCCA_SMPLL  
VSS  
VCCA_SMPLL  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
HRCOMP  
VSS  
HRCOMP  
VSS  
HRCOMP  
VSS  
HD63  
HD63  
HD63  
HDINV3#  
HD54  
HDINV3#  
HD54  
HDINV3#  
HD54  
VSS  
VSS  
VSS  
HDSTBP3#  
HD51  
HDSTBP3#  
HD51  
HDSTBP3#  
HD51  
HD52  
HD52  
HD52  
HD15  
HD15  
HD15  
HD13  
HD13  
HD13  
HD11  
HD11  
HD11  
NC  
NC  
NC  
VSS  
VSS  
VSS  
C2  
EXP_TXP5  
VSS  
EXP_TXP5  
VSS  
SDVOC_GREEN+  
VSS  
C3  
C4  
VSS  
VSS  
VSS  
SDVOC_RED-/  
SDVOB_ALPHA-  
C5  
C6  
EXP_TXN4  
EXP_TXP4  
EXP_TXN4  
EXP_TXP4  
SDVOC_RED+/  
SDVOB_ALPHA+  
C7  
C8  
EXP_TXN2  
EXP_TXP2  
EXP_TXN0  
EXP_TXP0  
VSS  
EXP_TXN2  
EXP_TXP2  
EXP_TXN0  
EXP_TXP0  
VSS  
SDVOB_BLUE-  
SDVOB_BLUE+  
SDVOB_RED-  
SDVOB_RED+  
VSS  
C9  
C10  
C11  
C12  
C13  
C14  
VSS  
VSS  
VSS  
RSV  
RSV  
RSV  
272  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
D1  
Intel® 82915P MCH1  
MTYPE  
NC  
Intel® 82915G GMCH2  
MTYPE  
NC  
Intel® 82915GV GMCH3  
MTYPE  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
HD58  
HD59  
HD49  
HD56  
HDSTBN3#  
HD17  
HD50  
HD14  
HD9  
HD58  
HD59  
HD49  
HD56  
HDSTBN3#  
HD17  
HD50  
HD14  
HD9  
HD58  
HD59  
HD49  
HD56  
HDSTBN3#  
HD17  
HD50  
HD14  
HD9  
HD12  
VSS  
HD12  
VSS  
HD12  
VSS  
D2  
EXP_TXN5  
VSS  
EXP_TXN5  
VSS  
SDVOC_GREEN-  
VSS  
D3  
D4  
VSS  
VSS  
VSS  
D5  
EXP_RXP5  
VSS  
EXP_RXP5  
VSS  
SDVOC_INT+  
VSS  
D6  
D7  
VSS  
VSS  
VSS  
D8  
VSS  
VSS  
VSS  
D9  
VSS  
VSS  
VSS  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
VSYNC  
VCCA_DAC  
GREEN  
VSS  
VSYNC  
VCCA_DAC  
GREEN  
VSS  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
BSEL2  
VSS  
BSEL2  
VSS  
BSEL2  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
Datasheet  
273  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
D32  
D33  
D34  
D35  
E1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
HSCOMP  
VSS  
HSCOMP  
VSS  
HSCOMP  
VSS  
VSS  
VSS  
VSS  
HD60  
VSS  
HD60  
HD60  
VSS  
VSS  
HD18  
VSS  
HD18  
HD18  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD10  
HD8  
HD10  
HD10  
HD8  
HD8  
VSS  
VSS  
VSS  
E2  
VSS  
VSS  
VSS  
E3  
EXP_TXP6  
VSS  
EXP_TXP6  
VSS  
SDVOC_BLUE+  
VSS  
E4  
E5  
EXP_RXN5  
VSS  
EXP_RXN5  
VSS  
SDVOC_INT-  
VSS  
E6  
E7  
EXP_RXN3  
VSS  
EXP_RXN3  
VSS  
RSV  
E8  
VSS  
E9  
EXP_RXN2  
VSS  
EXP_RXN2  
VSS  
SDVOC_STALL-  
VSS  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
EXP_RXP0  
RSV  
EXP_RXP0  
HSYNC  
VCCA_DAC  
GREEN#  
BSEL1  
NC  
SDVOC_TVCLKIN+  
HSYNC  
VCCA_DAC  
GREEN#  
BSEL1  
NC  
RSV  
RSV  
BSEL1  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
HD62  
HD25  
VSS  
HD62  
HD62  
HD25  
HD25  
VSS  
VSS  
HD24  
HD16  
VSS  
HD24  
HD24  
HD16  
HD16  
VSS  
VSS  
HBPRI#  
HBPRI#  
HBPRI#  
274  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
E31  
E32  
E33  
E34  
E35  
F1  
Intel® 82915P MCH1  
HPCREQ#  
HREQ1#  
HDSTBP0#  
HDINV0#  
HDSTBN0#  
EXP_TXP7  
VSS  
Intel® 82915G GMCH2  
HPCREQ#  
HREQ1#  
HDSTBP0#  
HDINV0#  
HDSTBN0#  
EXP_TXP7  
VSS  
Intel® 82915GV GMCH3  
HPCREQ#  
HREQ1#  
HDSTBP0#  
HDINV0#  
HDSTBN0#  
SDVOC_CLK+  
VSS  
F2  
F3  
EXP_TXN6  
VSS  
EXP_TXN6  
VSS  
SDVOC_BLUE-  
VSS  
F4  
F5  
VSS  
VSS  
VSS  
F6  
VSS  
VSS  
VSS  
F7  
EXP_RXP3  
VSS  
EXP_RXP3  
VSS  
RSV  
F8  
VSS  
F9  
EXP_RXP2  
VSS  
EXP_RXP2  
VSS  
SDVOC_STALL+  
VSS  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
F30  
F31  
F32  
F33  
F34  
F35  
G1  
EXP_RXN0  
NC  
EXP_RXN0  
NC  
SDVOC_TVCLKIN-  
NC  
RSV  
VSSA_DAC  
RED  
VSSA_DAC  
RED  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
HD47  
HD47  
HD47  
VSS  
VSS  
VSS  
HDSTBN2#  
VTT  
HDSTBN2#  
VTT  
HDSTBN2#  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
NC  
NC  
NC  
VSS  
VSS  
VSS  
HDSTBN1#  
HD23  
HDSTBN1#  
HD23  
HDSTBN1#  
HD23  
HD22  
HD22  
HD22  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HREQ4#  
VSS  
HREQ4#  
VSS  
HREQ4#  
VSS  
HREQ0#  
HD6  
HREQ0#  
HD6  
HREQ0#  
HD6  
VSS  
VSS  
VSS  
EXP_TXN7  
VSS  
EXP_TXN7  
VSS  
SDVOC_CLK-  
VSS  
G2  
G3  
EXP_TXP8  
EXP_TXP8  
RSV  
Datasheet  
275  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
G4  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
G5  
EXP_RXN6  
EXP_RXP6  
VSS  
EXP_RXN6  
EXP_RXP6  
VSS  
RSV  
G6  
RSV  
G7  
VSS  
G8  
VSS  
VSS  
VSS  
G9  
VSS  
VSS  
VSS  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
G31  
G32  
G33  
G34  
G35  
H1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
VSS  
VSS  
VSS  
RSV  
RED#  
VSS  
RED#  
VSS  
VSS  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
HD45  
HD45  
HD45  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
HCPURST#  
HD26  
HCPURST#  
HD26  
HCPURST#  
HD26  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD20  
HD20  
HD20  
HA6#  
HREQ3#  
HA7#  
HD7  
HA6#  
HA6#  
HREQ3#  
HA7#  
HREQ3#  
HA7#  
HD7  
HD7  
HD5  
HD5  
HD5  
HD3  
HD3  
HD3  
EXP_TXP9  
VSS  
EXP_TXP9  
VSS  
RSV  
H2  
VSS  
H3  
EXP_TXN8  
VSS  
EXP_TXN8  
VSS  
RSV  
H4  
VSS  
H5  
VSS  
VSS  
VSS  
H6  
VSS  
VSS  
VSS  
H7  
EXP_RXN7  
EXP_RXP7  
VSS  
EXP_RXN7  
EXP_RXP7  
VSS  
RSV  
H8  
RSV  
H9  
VSS  
H10  
H11  
VSS  
VSS  
VSS  
EXP_RXN1  
EXP_RXN1  
SDVOB_INT-  
276  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
H31  
H32  
H33  
H34  
H35  
J1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
NC  
NC  
NC  
VSS  
VSS  
VSS  
RSV  
BLUE  
BLUE  
NC  
NC  
NC  
BSEL0  
NC  
BSEL0  
NC  
BSEL0  
NC  
HD46  
HD41  
HD40  
VSS  
HD46  
HD46  
HD41  
HD40  
VSS  
HD41  
HD40  
VSS  
VTT  
VTT  
VTT  
HD37  
VSS  
HD37  
HD37  
VSS  
VSS  
VSS  
VSS  
VSS  
HDSTBP1#  
VSS  
HDSTBP1#  
VSS  
HDSTBP1#  
VSS  
HD19  
HA3#  
HD19  
HD19  
HA3#  
VSS  
HA3#  
VSS  
VSS  
HREQ2#  
VSS  
HREQ2#  
VSS  
HREQ2#  
VSS  
HD1  
HD1  
HD1  
VSS  
VSS  
VSS  
HD4  
HD4  
HD4  
EXP_TXN9  
VSS  
EXP_TXN9  
VSS  
RSV  
J2  
VSS  
J3  
EXP_TXP10  
VSS  
EXP_TXP10  
VSS  
RSV  
J4  
VSS  
J5  
EXP_RXN8  
EXP_RXP8  
VSS  
EXP_RXN8  
EXP_RXP8  
VSS  
RSV  
J6  
RSV  
J7  
VSS  
J8  
VSS  
VSS  
VSS  
J9  
VSS  
VSS  
VSS  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
VSS  
VSS  
VSS  
EXP_RXP1  
NC  
EXP_RXP1  
NC  
SDVOB_INT+  
NC  
RSV  
SDVO_CTRLCLK  
BLUE#  
VSS  
SDVO_CTRLCLK  
BLUE#  
VSS  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HDSTBP2#  
HDSTBP2#  
HDSTBP2#  
Datasheet  
277  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J31  
J32  
J33  
J34  
J35  
K1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
HD35  
HD35  
HD35  
HD32  
HD32  
HD32  
VSS  
VSS  
VSS  
HD33  
HD33  
HD33  
HD27  
HD27  
HD27  
HDINV1#  
HD21  
HDINV1#  
HD21  
HDINV1#  
HD21  
HA13#  
HA5#  
HA13#  
HA5#  
HA13#  
HA5#  
VSS  
VSS  
VSS  
HADSTB0#  
HRS2#  
HD0  
HADSTB0#  
HRS2#  
HD0  
HADSTB0#  
HRS2#  
HD0  
HD2  
HD2  
HD2  
HDEFER#  
EXP_TXP11  
VSS  
HDEFER#  
EXP_TXP11  
VSS  
HDEFER#  
RSV  
K2  
VSS  
K3  
EXP_TXN10  
VSS  
EXP_TXN10  
VSS  
RSV  
K4  
VSS  
K5  
VSS  
VSS  
VSS  
K6  
VSS  
VSS  
VSS  
K7  
EXP_RXN9  
EXP_RXP9  
VSS  
EXP_RXN9  
EXP_RXP9  
VSS  
RSV  
K8  
RSV  
K9  
VSS  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
RSV  
SDVO_CTRLDATA  
VSS  
SDVO_CTRLDATA  
VSS  
VSS  
RSV  
RSV  
RSV  
EXTTS#  
HD44  
EXTTS#  
HD44  
EXTTS#  
HD44  
HD43  
HD43  
HD43  
HDINV2#  
VSS  
HDINV2#  
VSS  
HDINV2#  
VSS  
HD39  
HD39  
HD39  
HD34  
HD34  
HD34  
HD31  
HD31  
HD31  
VSS  
VSS  
VSS  
HD28  
HD28  
HD28  
VSS  
VSS  
VSS  
HA14#  
HA14#  
HA14#  
278  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
K28  
K29  
K30  
K31  
K32  
K33  
K34  
K35  
L1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
HA4#  
HA4#  
HA4#  
HA8#  
VSS  
HA8#  
HA8#  
VSS  
VSS  
VSS  
VSS  
VSS  
HA15#  
HRS0#  
VSS  
HA15#  
HRS0#  
VSS  
HA15#  
HRS0#  
VSS  
EXP_TXN11  
VSS  
EXP_TXN11  
VSS  
RSV  
L2  
VSS  
L3  
EXP_TXP12  
VSS  
EXP_TXP12  
VSS  
RSV  
L4  
VSS  
L5  
EXP_RXN10  
EXP_RXP10  
VSS  
EXP_RXN10  
EXP_RXP10  
VSS  
RSV  
L6  
RSV  
L7  
VSS  
L8  
VSS  
VSS  
VSS  
L9  
VSS  
VSS  
VSS  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
L31  
L32  
L33  
L34  
L35  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
NC  
NC  
NC  
VSS  
VSS  
VSS  
RSV  
DDC_DATA  
VSS  
DDC_DATA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD30  
VSS  
HD30  
HD30  
VSS  
VSS  
HD29  
HA18#  
VSS  
HD29  
HD29  
HA18#  
VSS  
HA18#  
VSS  
HA12#  
HA9#  
HA12#  
HA9#  
HA12#  
HA9#  
VSS  
VSS  
VSS  
HA11#  
VSS  
HA11#  
VSS  
HA11#  
VSS  
HLOCK#  
HHIT#  
HDBSY#  
HLOCK#  
HHIT#  
HDBSY#  
HLOCK#  
HHIT#  
HDBSY#  
Datasheet  
279  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
M1  
Intel® 82915P MCH1  
EXP_TXP13  
VSS  
Intel® 82915G GMCH2  
EXP_TXP13  
VSS  
Intel® 82915GV GMCH3  
RSV  
M2  
VSS  
M3  
EXP_TXN12  
VSS  
EXP_TXN12  
VSS  
RSV  
M4  
VSS  
M5  
VSS  
VSS  
VSS  
M6  
VSS  
VSS  
VSS  
M7  
EXP_RXN12  
EXP_RXP12  
VSS  
EXP_RXN12  
EXP_RXP12  
VSS  
RSV  
M8  
RSV  
M9  
VSS  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
M31  
M32  
M33  
M34  
M35  
N1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DREFCLKN  
DREFCLKP  
ICH_SYNC#  
RSV  
DREFCLKN  
DREFCLKP  
ICH_SYNC#  
DDC_CLK  
RSV  
DREFCLKN  
DREFCLKP  
ICH_SYNC#  
DDC_CLK  
RSV  
RSV  
VSS  
VSS  
VSS  
HD42  
HD42  
HD42  
HD38  
VSS  
HD38  
HD38  
VSS  
VSS  
HD36  
HD36  
HD36  
HCLKN  
HCLKP  
VSS  
HCLKN  
HCLKP  
VSS  
HCLKN  
HCLKP  
VSS  
VSS  
VSS  
VSS  
HA20#  
VSS  
HA20#  
HA20#  
VSS  
VSS  
HA16#  
VSS  
HA16#  
HA16#  
VSS  
VSS  
HA10#  
HADS#  
HDRDY#  
HA10#  
HA10#  
HADS#  
HDRDY#  
HADS#  
HDRDY#  
VSS  
VSS  
VSS  
HBNR#  
EXP_TXN13  
VSS  
HBNR#  
EXP_TXN13  
VSS  
HBNR#  
RSV  
N2  
VSS  
N3  
EXP_TXP14  
VSS  
EXP_TXP14  
VSS  
RSV  
N4  
VSS  
N5  
EXP_RXN13  
EXP_RXP13  
VSS  
EXP_RXN13  
EXP_RXP13  
VSS  
RSV  
N6  
RSV  
N7  
VSS  
N8  
VSS  
VSS  
VSS  
280  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
N9  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N31  
N32  
N33  
N34  
N35  
P1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
HA19#  
HADSTB1#  
VSS  
HA19#  
HADSTB1#  
VSS  
HA19#  
HADSTB1#  
VSS  
HA23#  
VSS  
HA23#  
VSS  
HA23#  
VSS  
HA21#  
VSS  
HA21#  
VSS  
HA21#  
VSS  
HA26#  
HTRDY#  
HHITM#  
EXP_TXP15  
VSS  
HA26#  
HTRDY#  
HHITM#  
EXP_TXP15  
VSS  
HA26#  
HTRDY#  
HHITM#  
RSV  
P2  
VSS  
P3  
EXP_TXN14  
VSS  
EXP_TXN14  
VSS  
RSV  
P4  
VSS  
P5  
VSS  
VSS  
VSS  
P6  
VSS  
VSS  
VSS  
P7  
EXP_RXP14  
EXP_RXN14  
VSS  
EXP_RXP14  
EXP_RXN14  
VSS  
RSV  
P8  
RSV  
P9  
VSS  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
EXP_RXP11  
VSS  
EXP_RXP11  
VSS  
RSV  
VSS  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
Datasheet  
281  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
P33  
P34  
P35  
R1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
HA22#  
VSS  
HA22#  
VSS  
HA22#  
VSS  
HA24#  
VSS  
HA24#  
VSS  
HA24#  
VSS  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HEDRDY#  
HRS1#  
VSS  
HEDRDY#  
HRS1#  
VSS  
HEDRDY#  
HRS1#  
VSS  
EXP_TXN15  
VSS  
EXP_TXN15  
VSS  
RSV  
R2  
VSS  
R3  
DMI_TXP0  
VSS  
DMI_TXP0  
VSS  
DMI_TXP0  
VSS  
R4  
R5  
EXP_RXN15  
EXP_RXP15  
VSS  
EXP_RXN15  
EXP_RXP15  
VSS  
RSV  
R6  
RSV  
R7  
VSS  
R8  
VSS  
VSS  
VSS  
R9  
VSS  
VSS  
VSS  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
EXP_RXN11  
VSS  
EXP_RXN11  
VSS  
RSV  
VSS  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
NC  
NC  
282  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
T1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HA25#  
HA17#  
RSV  
HA25#  
HA17#  
RSV  
HA25#  
HA17#  
RSV  
RSV  
RSV  
RSV  
SDQ_A58  
HBREQ0#  
SDQ_A59  
RSV  
SDQ_A58  
HBREQ0#  
SDQ_A59  
RSV  
SDQ_A58  
HBREQ0#  
SDQ_A59  
RSV  
DMI_TXP1  
VSS  
DMI_TXP1  
VSS  
DMI_TXP1  
VSS  
T2  
T3  
DMI_TXN0  
VSS  
DMI_TXN0  
VSS  
DMI_TXN0  
VSS  
T4  
T5  
VSS  
VSS  
VSS  
T6  
VSS  
VSS  
VSS  
T7  
VSS  
VSS  
VSS  
T8  
DMI_RXN1  
DMI_RXP1  
VSS  
DMI_RXN1  
DMI_RXP1  
VSS  
DMI_RXN1  
DMI_RXP1  
VSS  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T31  
T32  
VSS  
VSS  
VSS  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
HA30#  
HA27#  
VSS  
HA30#  
HA27#  
VSS  
HA30#  
HA27#  
VSS  
HA31#  
VSS  
HA31#  
VSS  
HA31#  
VSS  
HA28#  
VSS  
HA28#  
VSS  
HA28#  
VSS  
Datasheet  
283  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
T33  
T34  
T35  
U1  
Intel® 82915P MCH1  
SDQ_A62  
VSS  
Intel® 82915G GMCH2  
SDQ_A62  
VSS  
Intel® 82915GV GMCH3  
SDQ_A62  
VSS  
SDQ_A63  
DMI_TXN1  
VSS  
SDQ_A63  
DMI_TXN1  
VSS  
SDQ_A63  
DMI_TXN1  
VSS  
U2  
U3  
DMI_TXP2  
VSS  
DMI_TXP2  
VSS  
DMI_TXP2  
VSS  
U4  
U5  
DMI_RXP0  
DMI_RXN0  
VSS  
DMI_RXP0  
DMI_RXN0  
VSS  
DMI_RXP0  
DMI_RXN0  
VSS  
U6  
U7  
U8  
VSS  
VSS  
VSS  
U9  
VSS  
VSS  
VSS  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U31  
U32  
U33  
U34  
U35  
V1  
DMI_RXN3  
VSS  
DMI_RXN3  
VSS  
DMI_RXN3  
VSS  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
SDQ_B63  
VSS  
SDQ_B63  
VSS  
SDQ_B63  
VSS  
HA29#  
VSS  
HA29#  
VSS  
HA29#  
VSS  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDM_A7  
SDQS_A7  
SDQS_A7#  
VSS  
SDM_A7  
SDQS_A7  
SDQS_A7#  
VSS  
SDM_A7  
SDQS_A7  
SDQS_A7#  
VSS  
V2  
VSS  
VSS  
VSS  
V3  
DMI_TXN2  
VSS  
DMI_TXN2  
VSS  
DMI_TXN2  
VSS  
V4  
V5  
DMI_TXP3  
DMI_TXP3  
DMI_TXP3  
284  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
V6  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
V7  
DMI_RXP2  
DMI_RXN2  
VSS  
DMI_RXP2  
DMI_RXN2  
VSS  
DMI_RXP2  
DMI_RXN2  
VSS  
V8  
V9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
V31  
V32  
V33  
V34  
V35  
W1  
DMI_RXP3  
VSS  
DMI_RXP3  
VSS  
DMI_RXP3  
VSS  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B58  
SDQ_B59  
RSV  
SDQ_B58  
SDQ_B59  
RSV  
SDQ_B58  
SDQ_B59  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_A57  
SDQ_A56  
VSS  
SDQ_A57  
SDQ_A56  
VSS  
SDQ_A57  
SDQ_A56  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPI  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPI  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
RSV  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
VSS  
NC  
NC  
NC  
VCC  
VCC  
VCC  
Datasheet  
285  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W31  
W32  
W33  
W34  
W35  
Y1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
SDQ_B62  
SDQS_B7  
VSS  
SDQ_B62  
SDQS_B7  
VSS  
SDQ_B62  
SDQS_B7  
VSS  
SDQ_B57  
VSS  
SDQ_B57  
VSS  
SDQ_B57  
VSS  
SDM_B7  
VSS  
SDM_B7  
VSS  
SDM_B7  
VSS  
SDQ_A61  
SDQ_A51  
SDQ_A60  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPO  
VSS  
SDQ_A61  
SDQ_A51  
SDQ_A60  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPO  
VSS  
SDQ_A61  
SDQ_A51  
SDQ_A60  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
RSV  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
VSS  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
286  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
Y22  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
Y23  
VCC  
VCC  
VCC  
Y24  
VCC  
VCC  
VCC  
Y25  
VSS  
VSS  
VSS  
Y26  
SDQ_B60  
VSS  
SDQ_B60  
VSS  
SDQ_B60  
VSS  
Y27  
Y28  
SDQS_B7#  
VSS  
SDQS_B7#  
VSS  
SDQS_B7#  
VSS  
Y29  
Y30  
RSV  
RSV  
RSV  
Y31  
VSS  
VSS  
VSS  
Y32  
VSS  
VSS  
VSS  
Y33  
SDQ_A50  
VSS  
SDQ_A50  
VSS  
SDQ_A50  
VSS  
Y34  
Y35  
SDQ_A55  
VSS  
SDQ_A55  
VSS  
SDQ_A55  
VSS  
AA1  
AA2  
VSS  
VSS  
VSS  
AA3  
VSS  
VSS  
VSS  
AA4  
VSS  
VSS  
VSS  
AA5  
VSS  
VSS  
VSS  
AA6  
VSS  
VSS  
VSS  
AA7  
VSS  
VSS  
VSS  
AA8  
VSS  
VSS  
VSS  
AA9  
VSS  
VSS  
VSS  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B56  
SDQ_B61  
SDQ_B56  
SDQ_B61  
SDQ_B56  
SDQ_B61  
Datasheet  
287  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AA30  
AA31  
AA32  
AA33  
AA34  
AA35  
AB1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_A54  
SDM_A6  
SDQS_A6  
SDQS_A6#  
VCC  
SDQ_A54  
SDM_A6  
SDQS_A6  
SDQS_A6#  
VCC  
SDQ_A54  
SDM_A6  
SDQS_A6  
SDQS_A6#  
VCC  
AB2  
VCC  
VCC  
VCC  
AB3  
VCC  
VCC  
VCC  
AB4  
VCC  
VCC  
VCC  
AB5  
VCC  
VCC  
VCC  
AB6  
VCC  
VCC  
VCC  
AB7  
VCC  
VCC  
VCC  
AB8  
VCC  
VCC  
VCC  
AB9  
VCC  
VCC  
VCC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB31  
AB32  
AB33  
AB34  
AB35  
AC1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
SDQ_B51  
SDQ_B55  
VSS  
SDQ_B51  
SDQ_B55  
VSS  
SDQ_B51  
SDQ_B55  
VSS  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
SDQS_B6  
VSS  
SDQS_B6  
VSS  
SDQS_B6  
VSS  
RSV  
RSV  
RSV  
SCLK_A5#  
VSS  
SCLK_A5#  
VSS  
SCLK_A5#  
VSS  
VCC  
VCC  
VCC  
AC2  
VCC  
VCC  
VCC  
288  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AC3  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VCC  
VCC  
VCC  
AC4  
VCC  
VCC  
VCC  
AC5  
VCC  
VCC  
VCC  
AC6  
VCC  
VCC  
VCC  
AC7  
VCC  
VCC  
VCC  
AC8  
VCC  
VCC  
VCC  
AC9  
VCC  
VCC  
VCC  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC31  
AC32  
AC33  
AC34  
AC35  
AD1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
SDQ_B50  
VSS  
SDQ_B50  
VSS  
SDQ_B50  
VSS  
SDQ_B54  
VSS  
SDQ_B54  
VSS  
SDQ_B54  
VSS  
SDQS_B6#  
VSS  
SDQS_B6#  
VSS  
SDQS_B6#  
VSS  
VSS  
VSS  
VSS  
SCLK_A5  
SCLK_A2  
SCLK_A2#  
VCC  
SCLK_A5  
SCLK_A2  
SCLK_A2#  
VCC  
SCLK_A5  
SCLK_A2  
SCLK_A2#  
VCC  
AD2  
VCC  
VCC  
VCC  
AD3  
VCC  
VCC  
VCC  
AD4  
VCC  
VCC  
VCC  
AD5  
VCC  
VCC  
VCC  
AD6  
VCC  
VCC  
VCC  
AD7  
VCC  
VCC  
VCC  
AD8  
VCC  
VCC  
VCC  
AD9  
VCC  
VCC  
VCC  
AD10  
VCC  
VCC  
VCC  
Datasheet  
289  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
AD32  
AD33  
AD34  
AD35  
AE1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
SDQ_B20  
VSS  
SDQ_B20  
VSS  
SDQ_B20  
VSS  
SDQ_B18  
SDQ_B19  
VSS  
SDQ_B18  
SDQ_B19  
VSS  
SDQ_B18  
SDQ_B19  
VSS  
SDQ_A30  
SDQ_B28  
VSS  
SDQ_A30  
SDQ_B28  
VSS  
SDQ_A30  
SDQ_B28  
VSS  
SDQS_B3  
SDQ_B27  
VSS  
SDQS_B3  
SDQ_B27  
VSS  
SDQS_B3  
SDQ_B27  
VSS  
SDQ_B37  
SDM_B6  
VSS  
SDQ_B37  
SDM_B6  
VSS  
SDQ_B37  
SDM_B6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SCLK_B5  
SCLK_B5#  
NC  
SCLK_B5  
SCLK_B5#  
NC  
SCLK_B5  
SCLK_B5#  
NC  
SDQ_A48  
RSV  
SDQ_A48  
RSV  
SDQ_A48  
RSV  
VSS  
VSS  
VSS  
SDQ_A49  
SDQ_A5  
SDQ_A4  
SDQ_A0  
VSS  
SDQ_A49  
SDQ_A5  
SDQ_A4  
SDQ_A0  
VSS  
SDQ_A49  
SDQ_A5  
SDQ_A4  
SDQ_A0  
VSS  
AE2  
AE3  
AE4  
AE5  
SOCOMP1  
VSS  
SOCOMP1  
VSS  
SOCOMP1  
VSS  
AE6  
AE7  
SVREF0  
SVREF1  
VSS  
SVREF0  
SVREF1  
VSS  
SVREF0  
SVREF1  
VSS  
AE8  
AE9  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
SM_SLEWOUT1  
SDQ_B11  
VSS  
SM_SLEWOUT1  
SDQ_B11  
VSS  
SM_SLEWOUT1  
SDQ_B11  
VSS  
SDQ_B21  
VSS  
SDQ_B21  
VSS  
SDQ_B21  
VSS  
VSS  
VSS  
VSS  
RSV_TP0  
VSS  
RSV_TP0  
VSS  
RSV_TP0  
VSS  
VSS  
VSS  
VSS  
290  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE31  
AE32  
AE33  
AE34  
AE35  
AF1  
Intel® 82915P MCH1  
SDQ_A31  
VSS  
Intel® 82915G GMCH2  
SDQ_A31  
VSS  
Intel® 82915GV GMCH3  
SDQ_A31  
VSS  
VSS  
VSS  
VSS  
SDQ_B30  
VSS  
SDQ_B30  
VSS  
SDQ_B30  
VSS  
VSS  
VSS  
VSS  
SCLK_B2#  
SCLK_B2  
SDQ_B49  
VSS  
SCLK_B2#  
SCLK_B2  
SDQ_B49  
VSS  
SCLK_B2#  
SCLK_B2  
SDQ_B49  
VSS  
SDQ_B53  
VSS  
SDQ_B53  
VSS  
SDQ_B53  
VSS  
SDQ_B52  
VSS  
SDQ_B52  
VSS  
SDQ_B52  
VSS  
SDQ_A43  
SDQ_A53  
SDQ_A52  
VSS  
SDQ_A43  
SDQ_A53  
SDQ_A52  
VSS  
SDQ_A43  
SDQ_A53  
SDQ_A52  
VSS  
AF2  
SDM_A0  
SDQ_A1  
VSS  
SDM_A0  
SDQ_A1  
VSS  
SDM_A0  
SDQ_A1  
VSS  
AF3  
AF4  
AF5  
SOCOMP0  
VSS  
SOCOMP0  
VSS  
SOCOMP0  
VSS  
AF6  
AF7  
RSTIN#  
VSS  
RSTIN#  
VSS  
RSTIN#  
VSS  
AF8  
AF9  
SM_SLEWIN1  
VSS  
SM_SLEWIN1  
VSS  
SM_SLEWIN1  
VSS  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
SDQ_B10  
VSS  
SDQ_B10  
VSS  
SDQ_B10  
VSS  
SDQ_B16  
SDQ_B23  
VSS  
SDQ_B16  
SDQ_B23  
VSS  
SDQ_B16  
SDQ_B23  
VSS  
SDQ_A29  
SDQS_A3  
VSS  
SDQ_A29  
SDQS_A3  
VSS  
SDQ_A29  
SDQS_A3  
VSS  
SDQ_A26  
SDQS_B3#  
VSS  
SDQ_A26  
SDQS_B3#  
VSS  
SDQ_A26  
SDQS_B3#  
VSS  
SDQ_B31  
SDQ_B36  
SDQ_B32  
SDQ_B33  
VSS  
SDQ_B31  
SDQ_B36  
SDQ_B32  
SDQ_B33  
VSS  
SDQ_B31  
SDQ_B36  
SDQ_B32  
SDQ_B33  
VSS  
Datasheet  
291  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AF27  
AF28  
AF29  
AF30  
AF31  
AF32  
AF33  
AF34  
AF35  
AG1  
Intel® 82915P MCH1  
SDQ_B48  
SDQ_B43  
VSS  
Intel® 82915G GMCH2  
SDQ_B48  
SDQ_B43  
VSS  
Intel® 82915GV GMCH3  
SDQ_B48  
SDQ_B43  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_A42  
SDQ_A47  
VSS  
SDQ_A42  
SDQ_A47  
VSS  
SDQ_A42  
SDQ_A47  
VSS  
SDQS_A0  
SDQS_A0#  
SDQ_A6  
SRCOMP0  
VSS  
SDQS_A0  
SDQS_A0#  
SDQ_A6  
SRCOMP0  
VSS  
SDQS_A0  
SDQS_A0#  
SDQ_A6  
SRCOMP0  
VSS  
AG2  
AG3  
AG4  
AG5  
AG6  
NC  
NC  
NC  
AG7  
PWROK  
SRCOMP1  
SDQ_B4  
SDQ_B14  
SDQ_B15  
VSS  
PWROK  
SRCOMP1  
SDQ_B4  
SDQ_B14  
SDQ_B15  
VSS  
PWROK  
SRCOMP1  
SDQ_B4  
SDQ_B14  
SDQ_B15  
VSS  
AG8  
AG9  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AG31  
AG32  
AG33  
AG34  
VSS  
VSS  
VSS  
SDQ_B22  
VSS  
SDQ_B22  
VSS  
SDQ_B22  
VSS  
VSS  
VSS  
VSS  
SDQS_A3#  
VSS  
SDQS_A3#  
VSS  
SDQS_A3#  
VSS  
VSS  
VSS  
VSS  
SDM_B3  
VSS  
SDM_B3  
VSS  
SDM_B3  
VSS  
VSS  
VSS  
VSS  
SCLK_B0#  
SDM_B4  
VSS  
SCLK_B0#  
SDM_B4  
VSS  
SCLK_B0#  
SDM_B4  
VSS  
SDQS_B4#  
SDQ_B47  
VSS  
SDQS_B4#  
SDQ_B47  
VSS  
SDQS_B4#  
SDQ_B47  
VSS  
VSS  
VSS  
VSS  
SDQ_B46  
SDQ_B42  
SDQ_A46  
SDQS_A5#  
SDM_A5  
SDQ_B46  
SDQ_B42  
SDQ_A46  
SDQS_A5#  
SDM_A5  
SDQ_B46  
SDQ_B42  
SDQ_A46  
SDQS_A5#  
SDM_A5  
292  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AG35  
AH1  
Intel® 82915P MCH1  
SDQS_A5  
VSS  
Intel® 82915G GMCH2  
SDQS_A5  
VSS  
Intel® 82915GV GMCH3  
SDQS_A5  
VSS  
AH2  
SDQ_A7  
SDQ_A2  
SDQ_B0  
VSS  
SDQ_A7  
SDQ_A2  
SDQ_B0  
VSS  
SDQ_A7  
SDQ_A2  
SDQ_B0  
VSS  
AH3  
AH4  
AH5  
AH6  
VSS  
VSS  
VSS  
AH7  
SDQ_B5  
VSS  
SDQ_B5  
VSS  
SDQ_B5  
VSS  
AH8  
AH9  
SDM_B1  
SDQS_B1#  
VSS  
SDM_B1  
SDQS_B1#  
VSS  
SDM_B1  
SDQS_B1#  
VSS  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AH31  
AH32  
AH33  
AH34  
AH35  
AJ1  
SDQ_B17  
SDM_B2  
VSS  
SDQ_B17  
SDM_B2  
VSS  
SDQ_B17  
SDM_B2  
VSS  
RSV_TP1  
SDM_A3  
VSS  
RSV_TP1  
SDM_A3  
VSS  
RSV_TP1  
SDM_A3  
VSS  
SDQ_A27  
SDQ_B25  
VSS  
SDQ_A27  
SDQ_B25  
VSS  
SDQ_A27  
SDQ_B25  
VSS  
SDQ_B26  
SCLK_B0  
VSS  
SDQ_B26  
SCLK_B0  
VSS  
SDQ_B26  
SCLK_B0  
VSS  
NC  
NC  
NC  
SDQS_B4  
VSS  
SDQS_B4  
VSS  
SDQS_B4  
VSS  
SDQ_A36  
SDQS_B5  
VSS  
SDQ_A36  
SDQS_B5  
VSS  
SDQ_A36  
SDQS_B5  
VSS  
SDQS_B5#  
SDM_B5  
VSS  
SDQS_B5#  
SDM_B5  
VSS  
SDQS_B5#  
SDM_B5  
VSS  
SDQ_A40  
VSS  
SDQ_A40  
VSS  
SDQ_A40  
VSS  
SDQ_A41  
SDQ_A12  
SDQ_A3  
SDQ_A13  
VSS  
SDQ_A41  
SDQ_A12  
SDQ_A3  
SDQ_A13  
VSS  
SDQ_A41  
SDQ_A12  
SDQ_A3  
SDQ_A13  
VSS  
AJ2  
AJ3  
AJ4  
AJ5  
SDM_B0  
SDQ_B1  
SDQ_B12  
SDM_B0  
SDQ_B1  
SDQ_B12  
SDM_B0  
SDQ_B1  
SDQ_B12  
AJ6  
AJ7  
Datasheet  
293  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AJ8  
Intel® 82915P MCH1  
SDQ_B8  
VSS  
Intel® 82915G GMCH2  
SDQ_B8  
VSS  
Intel® 82915GV GMCH3  
SDQ_B8  
VSS  
AJ9  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AJ31  
AJ32  
AJ33  
AJ34  
AJ35  
AK1  
VSS  
VSS  
VSS  
SCLK_B4  
SM_SLEWIN0  
VSS  
SCLK_B4  
SM_SLEWIN0  
VSS  
SCLK_B4  
SM_SLEWIN0  
VSS  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_A25  
RSV  
SDQ_A25  
RSV  
SDQ_A25  
RSV  
VSS  
VSS  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_B39  
SDQ_B35  
VSS  
SDQ_B39  
SDQ_B35  
VSS  
SDQ_B39  
SDQ_B35  
VSS  
SDQ_A33  
SDQ_B44  
VSS  
SDQ_A33  
SDQ_B44  
VSS  
SDQ_A33  
SDQ_B44  
VSS  
SDQ_B41  
VSS  
SDQ_B41  
VSS  
SDQ_B41  
VSS  
SDQ_A44  
SDQ_A45  
VSS  
SDQ_A44  
SDQ_A45  
VSS  
SDQ_A44  
SDQ_A45  
VSS  
VSS  
VSS  
VSS  
AK2  
SDQ_A8  
SDQ_A9  
VSS  
SDQ_A8  
SDQ_A9  
VSS  
SDQ_A8  
SDQ_A9  
VSS  
AK3  
AK4  
AK5  
SDQS_B0  
VSS  
SDQS_B0  
VSS  
SDQS_B0  
VSS  
AK6  
AK7  
VSS  
VSS  
VSS  
AK8  
VSS  
VSS  
VSS  
AK9  
SCLK_B1  
SDQS_B1  
VSS  
SCLK_B1  
SDQS_B1  
VSS  
SCLK_B1  
SDQS_B1  
VSS  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
SM_SLEWOUT0  
SDQS_B2  
VSS  
SM_SLEWOUT0  
SDQS_B2  
VSS  
SM_SLEWOUT0  
SDQS_B2  
VSS  
RSV_TP3  
RSV_TP3  
RSV_TP3  
294  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AK31  
AK32  
AK33  
AK34  
AK35  
AL1  
Intel® 82915P MCH1  
SDQ_A28  
VSS  
Intel® 82915G GMCH2  
SDQ_A28  
VSS  
Intel® 82915GV GMCH3  
SDQ_A28  
VSS  
RSV  
RSV  
RSV  
SDQ_B24  
VSS  
SDQ_B24  
VSS  
SDQ_B24  
VSS  
RSV  
RSV  
RSV  
SCLK_B3#  
VSS  
SCLK_B3#  
VSS  
SCLK_B3#  
VSS  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_A32  
VSS  
SDQ_A32  
VSS  
SDQ_A32  
VSS  
SDM_A4  
VSS  
SDM_A4  
VSS  
SDM_A4  
VSS  
SDQ_A35  
SDQ_B40  
SDQ_B45  
SODT_B3  
VCCSM  
SDM_A1  
SDQS_A1#  
SDQS_A1  
SDQS_B0#  
SDQ_B6  
SDQ_B2  
SDQ_B13  
SDQ_B9  
SCLK_B1#  
VSS  
SDQ_A35  
SDQ_B40  
SDQ_B45  
SODT_B3  
VCCSM  
SDM_A1  
SDQS_A1#  
SDQS_A1  
SDQS_B0#  
SDQ_B6  
SDQ_B2  
SDQ_B13  
SDQ_B9  
SCLK_B1#  
VSS  
SDQ_A35  
SDQ_B40  
SDQ_B45  
SODT_B3  
VCCSM  
SDM_A1  
SDQS_A1#  
SDQS_A1  
SDQS_B0#  
SDQ_B6  
SDQ_B2  
SDQ_B13  
SDQ_B9  
SCLK_B1#  
VSS  
AL2  
AL3  
AL4  
AL5  
AL6  
AL7  
AL8  
AL9  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
SCLK_B4#  
SMA_B7  
VSS  
SCLK_B4#  
SMA_B7  
VSS  
SCLK_B4#  
SMA_B7  
VSS  
SDQS_B2#  
SMA_B3  
VSS  
SDQS_B2#  
SMA_B3  
VSS  
SDQS_B2#  
SMA_B3  
VSS  
SDQ_A24  
SDQ_B29  
VSS  
SDQ_A24  
SDQ_B29  
VSS  
SDQ_A24  
SDQ_B29  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
SCLK_B3  
SCLK_B3  
SCLK_B3  
Datasheet  
295  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AL31  
AL32  
AL33  
AL34  
AL35  
AM1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
SMA_A2  
SMA_A2  
SMA_A2  
SDQ_B38  
SDQ_B34  
SDQ_A37  
NC  
SDQ_B38  
SDQ_B34  
SDQ_A37  
NC  
SDQ_B38  
SDQ_B34  
SDQ_A37  
NC  
SDQS_A4#  
SDQ_A39  
SDQ_A34  
VSS  
SDQS_A4#  
SDQ_A39  
SDQ_A34  
VSS  
SDQS_A4#  
SDQ_A39  
SDQ_A34  
VSS  
SMA_B13  
SODT_B1  
SODT_B2  
SMA_B13  
SODT_B1  
SODT_B2  
SMA_B13  
SODT_B1  
SODT_B2  
AM2  
SCLK_A1  
SCLK_A1#  
VSS  
SCLK_A1  
SCLK_A1#  
VSS  
SCLK_A1  
SCLK_A1#  
VSS  
AM3  
AM4  
AM5  
SDQ_B7  
VSS  
SDQ_B7  
VSS  
SDQ_B7  
VSS  
AM6  
AM7  
VSS  
VSS  
VSS  
AM8  
VSS  
VSS  
VSS  
AM9  
SCKE_B3  
VCCSM  
VCCSM  
SMA_B5  
VCCSM  
VCCSM  
SMA_B0  
VCCSM  
VCCSM  
SCKE_A1  
VCCSM  
VCCSM  
SMA_A11  
VCCSM  
VCCSM  
SCLK_A3#  
VCCSM  
VCCSM  
SMA_A10  
VCCSM  
VSS  
SCKE_B3  
VCCSM  
VCCSM  
SMA_B5  
VCCSM  
VCCSM  
SMA_B0  
VCCSM  
VCCSM  
SCKE_A1  
VCCSM  
VCCSM  
SMA_A11  
VCCSM  
VCCSM  
SCLK_A3#  
VCCSM  
VCCSM  
SMA_A10  
VCCSM  
VSS  
SCKE_B3  
VCCSM  
VCCSM  
SMA_B5  
VCCSM  
VCCSM  
SMA_B0  
VCCSM  
VCCSM  
SCKE_A1  
VCCSM  
VCCSM  
SMA_A11  
VCCSM  
VCCSM  
SCLK_A3#  
VCCSM  
VCCSM  
SMA_A10  
VCCSM  
VSS  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
AM31  
SDQS_A4  
VSS  
SDQS_A4  
VSS  
SDQS_A4  
VSS  
296  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AM32  
AM33  
AM34  
AM35  
AN1  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VCCSM  
VCCSM  
VCCSM  
SODT_B0  
SCS_B1#  
SODT_B0  
SCS_B1#  
SODT_B0  
SCS_B1#  
VSS  
VSS  
VSS  
AN2  
SCLK_A4#  
SCLK_A4  
SDQ_A10  
SDQ_A20  
SDQ_B3  
SDM_A2  
SDQ_A22  
SDQ_A19  
SCKE_B1  
SBS_B2  
SCLK_A4#  
SCLK_A4  
SDQ_A10  
SDQ_A20  
SDQ_B3  
SDM_A2  
SDQ_A22  
SDQ_A19  
SCKE_B1  
SBS_B2  
SCLK_A4#  
SCLK_A4  
SDQ_A10  
SDQ_A20  
SDQ_B3  
AN3  
AN4  
AN5  
AN6  
AN7  
SDM_A2  
SDQ_A22  
SDQ_A19  
SCKE_B1  
SBS_B2  
AN8  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AP1  
SMA_B8  
RSV_TP2  
SMA_B2  
SBS_B1  
SRAS_B#  
SCKE_A2  
NC  
SMA_B8  
RSV_TP2  
SMA_B2  
SBS_B1  
SRAS_B#  
SCKE_A2  
NC  
SMA_B8  
RSV_TP2  
SMA_B2  
SBS_B1  
SRAS_B#  
SCKE_A2  
NC  
SBS_A2  
SMA_A9  
SMA_A8  
SMA_A6  
SBS_A2  
SMA_A9  
SMA_A8  
SMA_A6  
SBS_A2  
SMA_A9  
SMA_A8  
SMA_A6  
SCLK_A3  
SCLK_A0  
SBS_A1  
SWE_A#  
SCAS_A#  
SDQ_A38  
SCS_A3#  
SODT_A1  
SCS_B0#  
SCS_B3#  
VCCSM  
NC  
SCLK_A3  
SCLK_A0  
SBS_A1  
SWE_A#  
SCAS_A#  
SDQ_A38  
SCS_A3#  
SODT_A1  
SCS_B0#  
SCS_B3#  
VCCSM  
NC  
SCLK_A3  
SCLK_A0  
SBS_A1  
SWE_A#  
SCAS_A#  
SDQ_A38  
SCS_A3#  
SODT_A1  
SCS_B0#  
SCS_B3#  
VCCSM  
NC  
AP2  
SDQ_A14  
SDQ_A15  
SDQ_A11  
SDQ_A14  
SDQ_A15  
SDQ_A11  
SDQ_A14  
SDQ_A15  
SDQ_A11  
AP3  
AP4  
Datasheet  
297  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AP5  
Intel® 82915P MCH1  
SDQ_A21  
SDQ_A17  
SDQS_A2  
VSS  
Intel® 82915G GMCH2  
SDQ_A21  
SDQ_A17  
SDQS_A2  
VSS  
Intel® 82915GV GMCH3  
SDQ_A21  
SDQ_A17  
SDQS_A2  
VSS  
AP6  
AP7  
AP8  
AP9  
SDQ_A18  
SCKE_B0  
SMA_B11  
VCCSM  
SDQ_A18  
SCKE_B0  
SMA_B11  
VCCSM  
SDQ_A18  
SCKE_B0  
SMA_B11  
VCCSM  
AP10  
AP11  
AP12  
AP13  
AP14  
AP15  
AP16  
AP17  
AP18  
AP19  
AP20  
AP21  
AP22  
AP23  
AP24  
AP25  
AP26  
AP27  
AP28  
AP29  
AP30  
AP31  
AP32  
AP33  
AP34  
AP35  
AR1  
SMA_B6  
SMA_B4  
SMA_B10  
VCCSM  
SMA_B6  
SMA_B4  
SMA_B10  
VCCSM  
SMA_B6  
SMA_B4  
SMA_B10  
VCCSM  
SWE_B#  
SCAS_B#  
SCKE_A0  
VCCSM  
SWE_B#  
SCAS_B#  
SCKE_A0  
VCCSM  
SWE_B#  
SCAS_B#  
SCKE_A0  
VCCSM  
SMA_A7  
SMA_A5  
SMA_A3  
VCCSM  
SMA_A7  
SMA_A5  
SMA_A3  
VCCSM  
SMA_A7  
SMA_A5  
SMA_A3  
VCCSM  
SCLK_A0#  
SMA_A0  
SRAS_A#  
VCCSM  
SCLK_A0#  
SMA_A0  
SRAS_A#  
VCCSM  
SCLK_A0#  
SMA_A0  
SRAS_A#  
VCCSM  
SODT_A2  
SODT_A0  
SMA_A13  
SCS_A1#  
SODT_A3  
SCS_B2#  
NC  
SODT_A2  
SODT_A0  
SMA_A13  
SCS_A1#  
SODT_A3  
SCS_B2#  
NC  
SODT_A2  
SODT_A0  
SMA_A13  
SCS_A1#  
SODT_A3  
SCS_B2#  
NC  
NC  
NC  
NC  
AR2  
NC  
NC  
NC  
AR3  
VSS  
VSS  
VSS  
AR4  
AR5  
SDQ_A16  
VSS  
SDQ_A16  
VSS  
SDQ_A16  
VSS  
AR6  
AR7  
SDQS_A2#  
SDQ_A23  
SCKE_B2  
VCCSM  
SDQS_A2#  
SDQ_A23  
SCKE_B2  
VCCSM  
SDQS_A2#  
SDQ_A23  
SCKE_B2  
VCCSM  
AR8  
AR9  
AR10  
AR11  
AR12  
SMA_B12  
SMA_B9  
SMA_B12  
SMA_B9  
SMA_B12  
SMA_B9  
298  
Datasheet  
Ballout and Package Information  
R
Table 14-1. GMCH/MCH Ballout for DDR2 Systems (Sorted by Ball Number)  
Ball #  
AR13  
AR14  
AR15  
AR16  
AR17  
AR18  
AR19  
AR20  
AR21  
AR22  
AR23  
AR24  
AR25  
AR26  
AR27  
AR28  
AR29  
AR30  
AR31  
AR32  
AR33  
AR34  
AR35  
Intel® 82915P MCH1  
Intel® 82915G GMCH2  
Intel® 82915GV GMCH3  
VSS  
VSS  
VSS  
VCCSM  
SMA_B1  
SBS_B0  
VSS  
VCCSM  
SMA_B1  
SBS_B0  
VSS  
VCCSM  
SMA_B1  
SBS_B0  
VSS  
VCCSM  
SCKE_A3  
SMA_A12  
VSS  
VCCSM  
SCKE_A3  
SMA_A12  
VSS  
VCCSM  
SCKE_A3  
SMA_A12  
VSS  
VCCSM  
SMA_A4  
SMA_A1  
VSS  
VCCSM  
SMA_A4  
SMA_A1  
VSS  
VCCSM  
SMA_A4  
SMA_A1  
VSS  
VCCSM  
SBS_A0  
SCS_A2#  
SCS_A0#  
VSS  
VCCSM  
SBS_A0  
SCS_A2#  
SCS_A0#  
VSS  
VCCSM  
SBS_A0  
SCS_A2#  
SCS_A0#  
VSS  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
NC  
VCCSM  
NC  
VCCSM  
NC  
NC  
NC  
NC  
NOTES:  
1. DDR2, PCI Express* x16 Graphics Interface, No DAC, No Intel® SDVO  
2. DDR2, PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
3. DDR2, No PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
Datasheet  
299  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
Intel® 82915G GMCH 2  
Intel® 82915GV GMCH 3  
Ball #  
H14  
J14  
H16  
E15  
D17  
M15  
L14  
U6  
RSV  
BLUE  
BLUE  
RSV  
BLUE#  
BLUE#  
BSEL0  
BSEL0  
BSEL0  
BSEL1  
BSEL1  
BSEL1  
BSEL2  
BSEL2  
BSEL2  
RSV  
DDC_CLK  
DDC_DATA  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
DREFCLKN  
DREFCLKP  
EXP_COMPI  
EXP_COMPO  
EXP_RXN0  
EXP_RXN1  
EXP_RXN10  
EXP_RXN11  
EXP_RXN12  
EXP_RXN13  
EXP_RXN14  
EXP_RXN15  
EXP_RXN2  
EXP_RXN3  
EXP_RXN4  
EXP_RXN5  
EXP_RXN6  
EXP_RXN7  
EXP_RXN8  
EXP_RXN9  
DDC_CLK  
DDC_DATA  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
DREFCLKN  
DREFCLKP  
EXP_COMPI  
EXP_COMPO  
SDVOC_TVCLKIN-  
SDVOB_INT-  
RSV  
RSV  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
DREFCLKN  
DREFCLKP  
EXP_COMPI  
EXP_COMPO  
EXP_RXN0  
EXP_RXN1  
EXP_RXN10  
EXP_RXN11  
EXP_RXN12  
EXP_RXN13  
EXP_RXN14  
EXP_RXN15  
EXP_RXN2  
EXP_RXN3  
EXP_RXN4  
EXP_RXN5  
EXP_RXN6  
EXP_RXN7  
EXP_RXN8  
EXP_RXN9  
T8  
V8  
U10  
U5  
T9  
V7  
V10  
T3  
U1  
V3  
W5  
R3  
T1  
U3  
V5  
M12  
M13  
W10  
Y10  
F11  
H11  
L5  
RSV  
R10  
M7  
N5  
RSV  
RSV  
RSV  
P8  
RSV  
R5  
SDVOC_STALL-  
RSV  
E9  
E7  
RSV  
B4  
SDVOC_INT-  
RSV  
E5  
G5  
RSV  
H7  
RSV  
J5  
RSV  
K7  
300  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
EXP_RXP0  
EXP_RXP1  
EXP_RXP10  
EXP_RXP11  
EXP_RXP12  
EXP_RXP13  
EXP_RXP14  
EXP_RXP15  
EXP_RXP2  
EXP_RXP3  
EXP_RXP4  
EXP_RXP5  
EXP_RXP6  
EXP_RXP7  
EXP_RXP8  
EXP_RXP9  
EXP_SLR  
Intel® 82915G GMCH 2  
EXP_RXP0  
EXP_RXP1  
EXP_RXP10  
EXP_RXP11  
EXP_RXP12  
EXP_RXP13  
EXP_RXP14  
EXP_RXP15  
EXP_RXP2  
EXP_RXP3  
EXP_RXP4  
EXP_RXP5  
EXP_RXP6  
EXP_RXP7  
EXP_RXP8  
EXP_RXP9  
EXP_SLR  
Intel® 82915GV GMCH 3  
Ball #  
E11  
J11  
L6  
SDVOC_TVCLKIN+  
SDVOB_INT+  
RSV  
RSV  
P10  
M8  
N6  
P7  
RSV  
RSV  
RSV  
RSV  
R6  
F9  
SDVOC_STALL+  
RSV  
F7  
RSV  
B3  
SDVOC_INT+  
RSV  
D5  
G6  
H8  
J6  
RSV  
RSV  
RSV  
K8  
RSV  
A16  
C9  
A8  
EXP_TXN0  
EXP_TXN1  
EXP_TXN10  
EXP_TXN11  
EXP_TXN12  
EXP_TXN13  
EXP_TXN14  
EXP_TXN15  
EXP_TXN2  
EXP_TXN3  
EXP_TXN0  
EXP_TXN1  
EXP_TXN10  
EXP_TXN11  
EXP_TXN12  
EXP_TXN13  
EXP_TXN14  
EXP_TXN15  
EXP_TXN2  
EXP_TXN3  
SDVOB_RED-  
SDVOB_GREEN-  
RSV  
K3  
RSV  
L1  
RSV  
M3  
N1  
P3  
RSV  
RSV  
RSV  
R1  
C7  
A6  
SDVOB_BLUE-  
SDVOB_CLK-  
SDVOC_RED-/  
SDVOB_ALPHA-  
EXP_TXN4  
EXP_TXN4  
C5  
EXP_TXN5  
EXP_TXN6  
EXP_TXN7  
EXP_TXN8  
EXP_TXN9  
EXP_TXP0  
EXP_TXP1  
EXP_TXP10  
EXP_TXP11  
EXP_TXP12  
EXP_TXP13  
EXP_TXP14  
EXP_TXP15  
EXP_TXP2  
EXP_TXN5  
EXP_TXN6  
EXP_TXN7  
EXP_TXN8  
EXP_TXN9  
EXP_TXP0  
EXP_TXP1  
EXP_TXP10  
EXP_TXP11  
EXP_TXP12  
EXP_TXP13  
EXP_TXP14  
EXP_TXP15  
EXP_TXP2  
SDVOC_GREEN-  
SDVOC_BLUE-  
SDVOC_CLK-  
RSV  
D2  
F3  
G1  
H3  
J1  
RSV  
SDVOB_RED+  
SDVOB_GREEN+  
RSV  
C10  
A9  
J3  
RSV  
K1  
L3  
RSV  
RSV  
M1  
N3  
P1  
C8  
RSV  
RSV  
SDVOB_BLUE+  
Datasheet  
301  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
Intel® 82915G GMCH 2  
Intel® 82915GV GMCH 3  
Ball #  
EXP_TXP3  
EXP_TXP3  
SDVOB_CLK+  
A7  
SDVOC_RED+/  
SDVOB_ALPHA+  
EXP_TXP4  
EXP_TXP4  
C6  
EXP_TXP5  
EXP_TXP6  
EXP_TXP7  
EXP_TXP8  
EXP_TXP9  
EXTTS#  
GCLKN  
GCLKP  
RSV  
EXP_TXP5  
EXP_TXP6  
EXP_TXP7  
EXP_TXP8  
EXP_TXP9  
EXTTS#  
GCLKN  
GCLKP  
GREEN  
GREEN#  
HA3#  
SDVOC_GREEN+  
SDVOC_BLUE+  
SDVOC_CLK+  
RSV  
C2  
E3  
F1  
G3  
RSV  
H1  
EXTTS#  
GCLKN  
GCLKP  
GREEN  
GREEN#  
HA3#  
K16  
B11  
A11  
D14  
E14  
H29  
K29  
J29  
G30  
G32  
K30  
L29  
M30  
L31  
L28  
J28  
K27  
K33  
M28  
R29  
L26  
N26  
M26  
N31  
P26  
N29  
P28  
R28  
N33  
T27  
T31  
U28  
T26  
T29  
M31  
RSV  
HA3#  
HA4#  
HA4#  
HA4#  
HA5#  
HA5#  
HA5#  
HA6#  
HA6#  
HA6#  
HA7#  
HA7#  
HA7#  
HA8#  
HA8#  
HA8#  
HA9#  
HA9#  
HA9#  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
HA15#  
HA16#  
HA17#  
HA18#  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADS#  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
HA15#  
HA16#  
HA17#  
HA18#  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADS#  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
HA15#  
HA16#  
HA17#  
HA18#  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADS#  
302  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HD0  
Intel® 82915G GMCH 2  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HD0  
Intel® 82915GV GMCH 3  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HD0  
Ball #  
J31  
N27  
M35  
E30  
R33  
M22  
M23  
G24  
J33  
HD1  
HD1  
HD1  
H33  
J34  
HD2  
HD2  
HD2  
HD3  
HD3  
HD3  
G35  
H35  
G34  
F34  
G33  
D34  
C33  
D33  
B34  
C34  
B33  
C32  
B32  
E28  
C30  
D29  
H28  
G29  
J27  
HD4  
HD4  
HD4  
HD5  
HD5  
HD5  
HD6  
HD6  
HD6  
HD7  
HD7  
HD7  
HD8  
HD8  
HD8  
HD9  
HD9  
HD9  
HD10  
HD10  
HD10  
HD11  
HD11  
HD11  
HD12  
HD12  
HD12  
HD13  
HD13  
HD13  
HD14  
HD14  
HD14  
HD15  
HD15  
HD15  
HD16  
HD16  
HD16  
HD17  
HD17  
HD17  
HD18  
HD18  
HD18  
HD19  
HD19  
HD19  
HD20  
HD20  
HD20  
HD21  
HD21  
HD21  
HD22  
HD22  
HD22  
F28  
F27  
E27  
E25  
G25  
J25  
HD23  
HD23  
HD23  
HD24  
HD24  
HD24  
HD25  
HD25  
HD25  
HD26  
HD26  
HD26  
HD27  
HD27  
HD27  
HD28  
HD28  
HD28  
K25  
L25  
L23  
K23  
J22  
HD29  
HD29  
HD29  
HD30  
HD30  
HD30  
HD31  
HD31  
HD31  
HD32  
HD32  
HD32  
HD33  
HD33  
HD33  
J24  
HD34  
HD34  
HD34  
K22  
Datasheet  
303  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
Intel® 82915G GMCH 2  
Intel® 82915GV GMCH 3  
Ball #  
J21  
HD35  
HD35  
HD35  
HD36  
HD36  
HD36  
M21  
H23  
M19  
K21  
H20  
H19  
M18  
K18  
K17  
G18  
H18  
F17  
A25  
C27  
C31  
B30  
B31  
A31  
B27  
A29  
C28  
A28  
C25  
C26  
D27  
A27  
E24  
B25  
L35  
J35  
HD37  
HD37  
HD37  
HD38  
HD38  
HD38  
HD39  
HD39  
HD39  
HD40  
HD40  
HD40  
HD41  
HD41  
HD41  
HD42  
HD42  
HD42  
HD43  
HD43  
HD43  
HD44  
HD44  
HD44  
HD45  
HD45  
HD45  
HD46  
HD46  
HD46  
HD47  
HD47  
HD47  
HD48  
HD48  
HD48  
HD49  
HD49  
HD49  
HD50  
HD50  
HD50  
HD51  
HD51  
HD51  
HD52  
HD52  
HD52  
HD53  
HD53  
HD53  
HD54  
HD54  
HD54  
HD55  
HD55  
HD55  
HD56  
HD56  
HD56  
HD57  
HD57  
HD57  
HD58  
HD58  
HD58  
HD59  
HD59  
HD59  
HD60  
HD60  
HD60  
HD61  
HD61  
HD61  
HD62  
HD62  
HD62  
HD63  
HD63  
HD63  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
E34  
J26  
K19  
B26  
M32  
E35  
F26  
F19  
C29  
E33  
H26  
J19  
304  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
HDSTBP3#  
HEDRDY#  
HHIT#  
HHITM#  
HLOCK#  
HPCREQ#  
HRCOMP  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HRS1#  
HRS2#  
HSCOMP  
HSWING  
RSV  
Intel® 82915G GMCH 2  
HDSTBP3#  
HEDRDY#  
HHIT#  
HHITM#  
HLOCK#  
HPCREQ#  
HRCOMP  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HRS1#  
HRS2#  
HSCOMP  
HSWING  
HSYNC  
HTRDY#  
HVREF  
ICH_SYNC#  
MTYPE  
NC  
Intel® 82915GV GMCH 3  
HDSTBP3#  
HEDRDY#  
HHIT#  
HHITM#  
HLOCK#  
HPCREQ#  
HRCOMP  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HRS1#  
HRS2#  
HSCOMP  
HSWING  
HSYNC  
HTRDY#  
HVREF  
ICH_SYNC#  
MTYPE  
NC  
Ball #  
B29  
P33  
L34  
N35  
L33  
E31  
B23  
F33  
E32  
H31  
G31  
F31  
K34  
P34  
J32  
D24  
A23  
E12  
HTRDY#  
HVREF  
ICH_SYNC#  
MTYPE  
NC  
N34  
A24  
M14  
C15  
A2  
NC  
NC  
NC  
A34  
NC  
NC  
NC  
A35  
NC  
NC  
NC  
AA12  
AB12  
AC23  
AC24  
AD30  
AG6  
AH24  
AJ14  
AL28  
AN19  
AP1  
AP35  
AR1  
AR2  
AR34  
AR35  
B1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B35  
Datasheet  
305  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
Intel® 82915G GMCH 2  
Intel® 82915GV GMCH 3  
Ball #  
C16  
E16  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
F12  
NC  
NC  
NC  
F24  
NC  
NC  
NC  
G12  
H12  
H15  
H17  
J12  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
K12  
NC  
NC  
NC  
L12  
NC  
NC  
NC  
L19  
NC  
NC  
NC  
N12  
N22  
N23  
N24  
P12  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
P23  
NC  
NC  
NC  
P24  
NC  
NC  
NC  
P30  
NC  
NC  
NC  
R12  
R24  
T12  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
U12  
V12  
NC  
NC  
NC  
NC  
NC  
NC  
W12  
Y12  
NC  
NC  
NC  
PWROK  
RSV  
RSV  
RSV  
RSTIN#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PWROK  
RED  
RED#  
REFSET  
RSTIN#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PWROK  
RED  
RED#  
REFSET  
RSTIN#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
AG7  
F14  
G14  
A15  
AF7  
AA30  
AA31  
AB29  
AB33  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
306  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
Intel® 82915G GMCH 2  
Intel® 82915GV GMCH 3  
Ball #  
AC19  
AC20  
AC21  
AC22  
AD32  
AJ18  
AJ20  
AJ21  
AJ23  
AJ24  
AK18  
AK21  
AK24  
AL20  
AL21  
B15  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
C14  
RSV  
RSV  
RSV  
F15  
RSV  
RSV  
RSV  
G16  
RSV  
RSV  
RSV  
K15  
RSV  
RSV  
RSV  
M16  
RSV  
RSV  
RSV  
R30  
RSV  
RSV  
RSV  
R31  
RSV  
RSV  
RSV  
R35  
RSV  
RSV  
RSV  
U30  
RSV  
RSV  
RSV  
V30  
RSV  
RSV  
RSV  
V31  
RSV  
RSV  
RSV  
V32  
RSV  
RSV  
RSV  
Y30  
RSV_TP0  
RSV_TP1  
RSV_TP2  
RSV_TP3  
SBS_A0  
SBS_A1  
SBS_A2  
SBS_B0  
SBS_B1  
SBS_B2  
SCAS_A#  
SCAS_B#  
SCKE_A0  
SCKE_A1  
RSV_TP0  
RSV_TP1  
RSV_TP2  
RSV_TP3  
SBS_A0  
SBS_A1  
SBS_A2  
SBS_B0  
SBS_B1  
SBS_B2  
SCAS_A#  
SCAS_B#  
SCKE_A0  
SCKE_A1  
RSV_TP0  
RSV_TP1  
RSV_TP2  
RSV_TP3  
SBS_A0  
SBS_A1  
SBS_A2  
SBS_B0  
SBS_B1  
SBS_B2  
SCAS_A#  
SCAS_B#  
SCKE_A0  
SCKE_A1  
AE16  
AH15  
AN14  
AK15  
AR27  
AN27  
AN20  
AR16  
AN16  
AN11  
AN29  
AP18  
AP19  
AM18  
Datasheet  
307  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
SCKE_A2  
SCKE_A3  
SCKE_B0  
SCKE_B1  
SCKE_B2  
SCKE_B3  
SCLK_A0  
SCLK_A0#  
SCLK_A1  
SCLK_A1#  
SCLK_A2  
SCLK_A2#  
SCLK_A3  
SCLK_A3#  
SCLK_A4  
SCLK_A4#  
SCLK_A5  
SCLK_A5#  
SCLK_B0  
SCLK_B0#  
SCLK_B1  
SCLK_B1#  
SCLK_B2  
SCLK_B2#  
SCLK_B3  
SCLK_B3#  
SCLK_B4  
SCLK_B4#  
SCLK_B5  
SCLK_B5#  
SCS_A0#  
SCS_A1#  
SCS_A2#  
SCS_A3#  
SCS_B0#  
SCS_B1#  
SCS_B2#  
SCS_B3#  
SDM_A0  
Intel® 82915G GMCH 2  
SCKE_A2  
SCKE_A3  
SCKE_B0  
SCKE_B1  
SCKE_B2  
SCKE_B3  
SCLK_A0  
SCLK_A0#  
SCLK_A1  
SCLK_A1#  
SCLK_A2  
SCLK_A2#  
SCLK_A3  
SCLK_A3#  
SCLK_A4  
SCLK_A4#  
SCLK_A5  
SCLK_A5#  
SCLK_B0  
SCLK_B0#  
SCLK_B1  
SCLK_B1#  
SCLK_B2  
SCLK_B2#  
SCLK_B3  
SCLK_B3#  
SCLK_B4  
SCLK_B4#  
SCLK_B5  
SCLK_B5#  
SCS_A0#  
SCS_A1#  
SCS_A2#  
SCS_A3#  
SCS_B0#  
SCS_B1#  
SCS_B2#  
SCS_B3#  
SDM_A0  
Intel® 82915GV GMCH 3  
SCKE_A2  
SCKE_A3  
SCKE_B0  
SCKE_B1  
SCKE_B2  
SCKE_B3  
SCLK_A0  
SCLK_A0#  
SCLK_A1  
SCLK_A1#  
SCLK_A2  
SCLK_A2#  
SCLK_A3  
SCLK_A3#  
SCLK_A4  
SCLK_A4#  
SCLK_A5  
SCLK_A5#  
SCLK_B0  
SCLK_B0#  
SCLK_B1  
SCLK_B1#  
SCLK_B2  
SCLK_B2#  
SCLK_B3  
SCLK_B3#  
SCLK_B4  
SCLK_B4#  
SCLK_B5  
SCLK_B5#  
SCS_A0#  
SCS_A1#  
SCS_A2#  
SCS_A3#  
SCS_B0#  
SCS_B1#  
SCS_B2#  
SCS_B3#  
SDM_A0  
Ball #  
AN18  
AR19  
AP10  
AN10  
AR9  
AM9  
AN26  
AP25  
AM2  
AM3  
AC34  
AC35  
AN25  
AM24  
AN3  
AN2  
AC33  
AB34  
AH22  
AG23  
AK9  
AL9  
AE26  
AE25  
AL23  
AK22  
AJ11  
AL11  
AD28  
AD29  
AR29  
AP32  
AR28  
AN31  
AN33  
AM34  
AP34  
AN34  
AF2  
SDM_A1  
SDM_A1  
SDM_A1  
AL1  
SDM_A2  
SDM_A2  
SDM_A2  
AN7  
SDM_A3  
SDM_A3  
SDM_A3  
AH16  
AK29  
SDM_A4  
SDM_A4  
SDM_A4  
308  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
SDM_A5  
SDM_A6  
SDM_A7  
SDM_B0  
SDM_B1  
SDM_B2  
SDM_B3  
SDM_B4  
SDM_B5  
SDM_B6  
SDM_B7  
SDQ_A0  
Intel® 82915G GMCH 2  
SDM_A5  
SDM_A6  
SDM_A7  
SDM_B0  
SDM_B1  
SDM_B2  
SDM_B3  
SDM_B4  
SDM_B5  
SDM_B6  
SDM_B7  
SDQ_A0  
Intel® 82915GV GMCH 3  
SDM_A5  
SDM_A6  
SDM_A7  
SDM_B0  
SDM_B1  
SDM_B2  
SDM_B3  
SDM_B4  
SDM_B5  
SDM_B6  
SDM_B7  
SDQ_A0  
Ball #  
AG34  
AA33  
U33  
AJ5  
AH9  
AH13  
AG20  
AG24  
AH31  
AD24  
W31  
AE3  
SDQ_A1  
SDQ_A1  
SDQ_A1  
AF3  
SDQ_A2  
SDQ_A2  
SDQ_A2  
AH3  
AJ2  
SDQ_A3  
SDQ_A3  
SDQ_A3  
SDQ_A4  
SDQ_A4  
SDQ_A4  
AE2  
SDQ_A5  
SDQ_A5  
SDQ_A5  
AE1  
SDQ_A6  
SDQ_A6  
SDQ_A6  
AG3  
AH2  
AK2  
SDQ_A7  
SDQ_A7  
SDQ_A7  
SDQ_A8  
SDQ_A8  
SDQ_A8  
SDQ_A9  
SDQ_A9  
SDQ_A9  
AK3  
SDQ_A10  
SDQ_A11  
SDQ_A12  
SDQ_A13  
SDQ_A14  
SDQ_A15  
SDQ_A16  
SDQ_A17  
SDQ_A18  
SDQ_A19  
SDQ_A20  
SDQ_A21  
SDQ_A22  
SDQ_A23  
SDQ_A24  
SDQ_A25  
SDQ_A26  
SDQ_A27  
SDQ_A28  
SDQ_A29  
SDQ_A30  
SDQ_A31  
SDQ_A10  
SDQ_A11  
SDQ_A12  
SDQ_A13  
SDQ_A14  
SDQ_A15  
SDQ_A16  
SDQ_A17  
SDQ_A18  
SDQ_A19  
SDQ_A20  
SDQ_A21  
SDQ_A22  
SDQ_A23  
SDQ_A24  
SDQ_A25  
SDQ_A26  
SDQ_A27  
SDQ_A28  
SDQ_A29  
SDQ_A30  
SDQ_A31  
SDQ_A10  
SDQ_A11  
SDQ_A12  
SDQ_A13  
SDQ_A14  
SDQ_A15  
SDQ_A16  
SDQ_A17  
SDQ_A18  
SDQ_A19  
SDQ_A20  
SDQ_A21  
SDQ_A22  
SDQ_A23  
SDQ_A24  
SDQ_A25  
SDQ_A26  
SDQ_A27  
SDQ_A28  
SDQ_A29  
SDQ_A30  
SDQ_A31  
AN4  
AP4  
AJ1  
AJ3  
AP2  
AP3  
AR5  
AP6  
AP9  
AN9  
AN5  
AP5  
AN8  
AR8  
AL17  
AJ17  
AF19  
AH18  
AK16  
AF16  
AD17  
AE19  
Datasheet  
309  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
SDQ_A32  
SDQ_A33  
SDQ_A34  
SDQ_A35  
SDQ_A36  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A40  
SDQ_A41  
SDQ_A42  
SDQ_A43  
SDQ_A44  
SDQ_A45  
SDQ_A46  
SDQ_A47  
SDQ_A48  
SDQ_A49  
SDQ_A50  
SDQ_A51  
SDQ_A52  
SDQ_A53  
SDQ_A54  
SDQ_A55  
SDQ_A56  
SDQ_A57  
SDQ_A58  
SDQ_A59  
SDQ_A60  
SDQ_A61  
SDQ_A62  
SDQ_A63  
SDQ_B0  
Intel® 82915G GMCH 2  
SDQ_A32  
SDQ_A33  
SDQ_A34  
SDQ_A35  
SDQ_A36  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A40  
SDQ_A41  
SDQ_A42  
SDQ_A43  
SDQ_A44  
SDQ_A45  
SDQ_A46  
SDQ_A47  
SDQ_A48  
SDQ_A49  
SDQ_A50  
SDQ_A51  
SDQ_A52  
SDQ_A53  
SDQ_A54  
SDQ_A55  
SDQ_A56  
SDQ_A57  
SDQ_A58  
SDQ_A59  
SDQ_A60  
SDQ_A61  
SDQ_A62  
SDQ_A63  
SDQ_B0  
Intel® 82915GV GMCH 3  
SDQ_A32  
SDQ_A33  
SDQ_A34  
SDQ_A35  
SDQ_A36  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A40  
SDQ_A41  
SDQ_A42  
SDQ_A43  
SDQ_A44  
SDQ_A45  
SDQ_A46  
SDQ_A47  
SDQ_A48  
SDQ_A49  
SDQ_A50  
SDQ_A51  
SDQ_A52  
SDQ_A53  
SDQ_A54  
SDQ_A55  
SDQ_A56  
SDQ_A57  
SDQ_A58  
SDQ_A59  
SDQ_A60  
SDQ_A61  
SDQ_A62  
SDQ_A63  
SDQ_B0  
Ball #  
AK27  
AJ28  
AL31  
AK31  
AH27  
AL27  
AN30  
AL30  
AH33  
AH35  
AF33  
AE33  
AJ33  
AJ34  
AG32  
AF34  
AD31  
AD35  
Y33  
W34  
AE35  
AE34  
AA32  
Y35  
V34  
V33  
R32  
R34  
W35  
W33  
T33  
T35  
AH4  
SDQ_B1  
SDQ_B1  
SDQ_B1  
AJ6  
SDQ_B2  
SDQ_B2  
SDQ_B2  
AL6  
SDQ_B3  
SDQ_B3  
SDQ_B3  
AN6  
SDQ_B4  
SDQ_B4  
SDQ_B4  
AG9  
AH7  
SDQ_B5  
SDQ_B5  
SDQ_B5  
SDQ_B6  
SDQ_B6  
SDQ_B6  
AL5  
SDQ_B7  
SDQ_B7  
SDQ_B7  
AM5  
AJ8  
SDQ_B8  
SDQ_B8  
SDQ_B8  
SDQ_B9  
SDQ_B9  
SDQ_B9  
AL8  
SDQ_B10  
SDQ_B10  
SDQ_B10  
AF11  
310  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
SDQ_B11  
SDQ_B12  
SDQ_B13  
SDQ_B14  
SDQ_B15  
SDQ_B16  
SDQ_B17  
SDQ_B18  
SDQ_B19  
SDQ_B20  
SDQ_B21  
SDQ_B22  
SDQ_B23  
SDQ_B24  
SDQ_B25  
SDQ_B26  
SDQ_B27  
SDQ_B28  
SDQ_B29  
SDQ_B30  
SDQ_B31  
SDQ_B32  
SDQ_B33  
SDQ_B34  
SDQ_B35  
SDQ_B36  
SDQ_B37  
SDQ_B38  
SDQ_B39  
SDQ_B40  
SDQ_B41  
SDQ_B42  
SDQ_B43  
SDQ_B44  
SDQ_B45  
SDQ_B46  
SDQ_B47  
SDQ_B48  
SDQ_B49  
SDQ_B50  
SDQ_B51  
SDQ_B52  
SDQ_B53  
Intel® 82915G GMCH 2  
SDQ_B11  
SDQ_B12  
SDQ_B13  
SDQ_B14  
SDQ_B15  
SDQ_B16  
SDQ_B17  
SDQ_B18  
SDQ_B19  
SDQ_B20  
SDQ_B21  
SDQ_B22  
SDQ_B23  
SDQ_B24  
SDQ_B25  
SDQ_B26  
SDQ_B27  
SDQ_B28  
SDQ_B29  
SDQ_B30  
SDQ_B31  
SDQ_B32  
SDQ_B33  
SDQ_B34  
SDQ_B35  
SDQ_B36  
SDQ_B37  
SDQ_B38  
SDQ_B39  
SDQ_B40  
SDQ_B41  
SDQ_B42  
SDQ_B43  
SDQ_B44  
SDQ_B45  
SDQ_B46  
SDQ_B47  
SDQ_B48  
SDQ_B49  
SDQ_B50  
SDQ_B51  
SDQ_B52  
SDQ_B53  
Intel® 82915GV GMCH 3  
SDQ_B11  
SDQ_B12  
SDQ_B13  
SDQ_B14  
SDQ_B15  
SDQ_B16  
SDQ_B17  
SDQ_B18  
SDQ_B19  
SDQ_B20  
SDQ_B21  
SDQ_B22  
SDQ_B23  
SDQ_B24  
SDQ_B25  
SDQ_B26  
SDQ_B27  
SDQ_B28  
SDQ_B29  
SDQ_B30  
SDQ_B31  
SDQ_B32  
SDQ_B33  
SDQ_B34  
SDQ_B35  
SDQ_B36  
SDQ_B37  
SDQ_B38  
SDQ_B39  
SDQ_B40  
SDQ_B41  
SDQ_B42  
SDQ_B43  
SDQ_B44  
SDQ_B45  
SDQ_B46  
SDQ_B47  
SDQ_B48  
SDQ_B49  
SDQ_B50  
SDQ_B51  
SDQ_B52  
SDQ_B53  
Ball #  
AE11  
AJ7  
AL7  
AG10  
AG11  
AF13  
AH12  
AD14  
AD15  
AD12  
AE13  
AG14  
AF14  
AK19  
AH19  
AH21  
AD21  
AD18  
AL18  
AE22  
AF22  
AF24  
AF25  
AL26  
AJ26  
AF23  
AD23  
AL25  
AJ25  
AK32  
AJ31  
AG31  
AF28  
AJ29  
AK33  
AG30  
AG27  
AF27  
AE27  
AC26  
AB26  
AE31  
AE29  
Datasheet  
311  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
SDQ_B54  
SDQ_B55  
SDQ_B56  
SDQ_B57  
SDQ_B58  
SDQ_B59  
SDQ_B60  
SDQ_B61  
SDQ_B62  
SDQ_B63  
SDQS_A0  
SDQS_A0#  
SDQS_A1  
SDQS_A1#  
SDQS_A2  
SDQS_A2#  
SDQS_A3  
SDQS_A3#  
SDQS_A4  
SDQS_A4#  
SDQS_A5  
SDQS_A5#  
SDQS_A6  
SDQS_A6#  
SDQS_A7  
SDQS_A7#  
SDQS_B0  
SDQS_B0#  
SDQS_B1  
SDQS_B1#  
SDQS_B2  
SDQS_B2#  
SDQS_B3  
SDQS_B3#  
SDQS_B4  
SDQS_B4#  
SDQS_B5  
SDQS_B5#  
SDQS_B6  
SDQS_B6#  
SDQS_B7  
SDQS_B7#  
RSV  
Intel® 82915G GMCH 2  
Intel® 82915GV GMCH 3  
Ball #  
AC28  
AB27  
AA28  
W29  
V28  
SDQ_B54  
SDQ_B54  
SDQ_B55  
SDQ_B55  
SDQ_B56  
SDQ_B56  
SDQ_B57  
SDQ_B57  
SDQ_B58  
SDQ_B58  
SDQ_B59  
SDQ_B59  
V29  
SDQ_B60  
SDQ_B60  
Y26  
SDQ_B61  
SDQ_B61  
AA29  
W26  
U26  
SDQ_B62  
SDQ_B62  
SDQ_B63  
SDQ_B63  
SDQS_A0  
SDQS_A0#  
SDQS_A1  
SDQS_A1#  
SDQS_A2  
SDQS_A2#  
SDQS_A3  
SDQS_A3#  
SDQS_A4  
SDQS_A4#  
SDQS_A5  
SDQS_A5#  
SDQS_A6  
SDQS_A6#  
SDQS_A7  
SDQS_A7#  
SDQS_B0  
SDQS_B0#  
SDQS_B1  
SDQS_B1#  
SDQS_B2  
SDQS_B2#  
SDQS_B3  
SDQS_B3#  
SDQS_B4  
SDQS_B4#  
SDQS_B5  
SDQS_B5#  
SDQS_B6  
SDQS_B6#  
SDQS_B7  
SDQS_B7#  
SDVO_CTRLCLK  
SDQS_A0  
SDQS_A0#  
SDQS_A1  
SDQS_A1#  
SDQS_A2  
SDQS_A2#  
SDQS_A3  
SDQS_A3#  
SDQS_A4  
SDQS_A4#  
SDQS_A5  
SDQS_A5#  
SDQS_A6  
SDQS_A6#  
SDQS_A7  
SDQS_A7#  
SDQS_B0  
SDQS_B0#  
SDQS_B1  
SDQS_B1#  
SDQS_B2  
SDQS_B2#  
SDQS_B3  
SDQS_B3#  
SDQS_B4  
SDQS_B4#  
SDQS_B5  
SDQS_B5#  
SDQS_B6  
SDQS_B6#  
SDQS_B7  
SDQS_B7#  
SDVO_CTRLCLK  
AG1  
AG2  
AL3  
AL2  
AP7  
AR7  
AF17  
AG17  
AM30  
AL29  
AG35  
AG33  
AA34  
AA35  
U34  
U35  
AK5  
AL4  
AK10  
AH10  
AK13  
AL14  
AD20  
AF20  
AH25  
AG26  
AH28  
AH30  
AB31  
AC30  
W27  
Y28  
J13  
312  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
Intel® 82915G GMCH 2  
SDVO_CTRLDATA  
SM_SLEWIN0  
SM_SLEWIN1  
SM_SLEWOUT0  
SM_SLEWOUT1  
SMA_A0  
Intel® 82915GV GMCH 3  
SDVO_CTRLDATA  
SM_SLEWIN0  
SM_SLEWIN1  
SM_SLEWOUT0  
SM_SLEWOUT1  
SMA_A0  
Ball #  
K13  
RSV  
SM_SLEWIN0  
SM_SLEWIN1  
SM_SLEWOUT0  
SM_SLEWOUT1  
SMA_A0  
AJ12  
AF9  
AK12  
AE10  
AP26  
AR24  
AL24  
AP23  
AR23  
AP22  
AN23  
AP21  
AN22  
AN21  
AM27  
AM21  
AR20  
AP31  
AM15  
AR15  
AN15  
AL15  
AP14  
AM12  
AP13  
AL12  
AN13  
AR12  
AP15  
AP11  
AR11  
AL33  
AF5  
SMA_A1  
SMA_A1  
SMA_A1  
SMA_A2  
SMA_A2  
SMA_A2  
SMA_A3  
SMA_A3  
SMA_A3  
SMA_A4  
SMA_A4  
SMA_A4  
SMA_A5  
SMA_A5  
SMA_A5  
SMA_A6  
SMA_A6  
SMA_A6  
SMA_A7  
SMA_A7  
SMA_A7  
SMA_A8  
SMA_A8  
SMA_A8  
SMA_A9  
SMA_A9  
SMA_A9  
SMA_A10  
SMA_A11  
SMA_A12  
SMA_A13  
SMA_B0  
SMA_A10  
SMA_A11  
SMA_A12  
SMA_A13  
SMA_B0  
SMA_A10  
SMA_A11  
SMA_A12  
SMA_A13  
SMA_B0  
SMA_B1  
SMA_B1  
SMA_B1  
SMA_B2  
SMA_B2  
SMA_B2  
SMA_B3  
SMA_B3  
SMA_B3  
SMA_B4  
SMA_B4  
SMA_B4  
SMA_B5  
SMA_B5  
SMA_B5  
SMA_B6  
SMA_B6  
SMA_B6  
SMA_B7  
SMA_B7  
SMA_B7  
SMA_B8  
SMA_B8  
SMA_B8  
SMA_B9  
SMA_B9  
SMA_B9  
SMA_B10  
SMA_B11  
SMA_B12  
SMA_B13  
SOCOMP0  
SOCOMP1  
SODT_A0  
SODT_A1  
SODT_A2  
SODT_A3  
SODT_B0  
SODT_B1  
SODT_B2  
SODT_B3  
SMA_B10  
SMA_B11  
SMA_B12  
SMA_B13  
SOCOMP0  
SOCOMP1  
SODT_A0  
SODT_A1  
SODT_A2  
SODT_A3  
SODT_B0  
SODT_B1  
SODT_B2  
SODT_B3  
SMA_B10  
SMA_B11  
SMA_B12  
SMA_B13  
SOCOMP0  
SOCOMP1  
SODT_A0  
SODT_A1  
SODT_A2  
SODT_A3  
SODT_B0  
SODT_B1  
SODT_B2  
SODT_B3  
AE5  
AP30  
AN32  
AP29  
AP33  
AM33  
AL34  
AL35  
AK34  
Datasheet  
313  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
SRAS_A#  
SRAS_B#  
SRCOMP0  
SRCOMP1  
SVREF0  
SVREF1  
SWE_A#  
SWE_B#  
VCC  
Intel® 82915G GMCH 2  
SRAS_A#  
SRAS_B#  
SRCOMP0  
SRCOMP1  
SVREF0  
SVREF1  
SWE_A#  
SWE_B#  
VCC  
Intel® 82915GV GMCH 3  
SRAS_A#  
SRAS_B#  
SRCOMP0  
SRCOMP1  
SVREF0  
SVREF1  
SWE_A#  
SWE_B#  
VCC  
Ball #  
AP27  
AN17  
AG4  
AG8  
AE7  
AE8  
AN28  
AP17  
AA13  
AA14  
AA16  
AA18  
AA20  
AA21  
AA22  
AA23  
AA24  
AB1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB10  
AB11  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB2  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB20  
AB21  
AB22  
AB23  
AB24  
AB3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB4  
VCC  
VCC  
VCC  
AB5  
VCC  
VCC  
VCC  
AB6  
VCC  
VCC  
VCC  
AB7  
VCC  
VCC  
VCC  
AB8  
VCC  
VCC  
VCC  
AB9  
VCC  
VCC  
VCC  
AC1  
VCC  
VCC  
VCC  
AC10  
AC11  
VCC  
VCC  
VCC  
314  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Intel® 82915G GMCH 2  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Intel® 82915GV GMCH 3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Ball #  
AC2  
AC3  
AC4  
AC5  
AC6  
AC7  
AC8  
AC9  
AD1  
AD10  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
L10  
N13  
N14  
N15  
N16  
N18  
N20  
N21  
P13  
P14  
P15  
P17  
P19  
P21  
P22  
R13  
R14  
R15  
R16  
R18  
R20  
R22  
R23  
T13  
T14  
Datasheet  
315  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
Intel® 82915G GMCH 2  
Intel® 82915GV GMCH 3  
Ball #  
T15  
T16  
T17  
T19  
T20  
T21  
T23  
T24  
U13  
U14  
U16  
U18  
U20  
U22  
U24  
V13  
V14  
V15  
V17  
V19  
V21  
V23  
V24  
W13  
W14  
W16  
W18  
W20  
W22  
W24  
Y13  
Y14  
Y15  
Y16  
Y17  
Y19  
Y20  
Y21  
Y23  
Y24  
W1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
W2  
W3  
316  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC2  
Intel® 82915G GMCH 2  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC2  
Intel® 82915GV GMCH 3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC2  
Ball #  
W4  
W6  
W7  
W8  
W9  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
A13  
RSV  
VCCA_DAC  
VCCA_DAC  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_EXPPLL  
VCCA_HPLL  
VCCA_SMPLL  
VCCSM  
VCCA_DAC  
VCCA_DAC  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_EXPPLL  
VCCA_HPLL  
VCCA_SMPLL  
VCCSM  
D13  
RSV  
E13  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_EXPPLL  
VCCA_HPLL  
VCCA_SMPLL  
VCCSM  
A12  
B13  
A14  
A17  
B17  
AK35  
AM10  
AM11  
AM13  
AM14  
AM16  
AM17  
AM19  
AM20  
AM22  
AM23  
AM25  
AM26  
AM28  
AM32  
AN35  
AP12  
AP16  
AP20  
AP24  
AP28  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
Datasheet  
317  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VSS  
Intel® 82915G GMCH 2  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VSS  
Intel® 82915GV GMCH 3  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VSS  
Ball #  
AR10  
AR14  
AR18  
AR22  
AR26  
AR31  
AR33  
A10  
VSS  
VSS  
VSS  
A18  
VSS  
VSS  
VSS  
A26  
VSS  
VSS  
VSS  
A3  
VSS  
VSS  
VSS  
A30  
VSS  
VSS  
VSS  
A33  
VSS  
VSS  
VSS  
A5  
VSS  
VSS  
VSS  
AA1  
VSS  
VSS  
VSS  
AA10  
AA11  
AA15  
AA17  
AA19  
AA2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA25  
AA26  
AA27  
AA3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA4  
VSS  
VSS  
VSS  
AA5  
VSS  
VSS  
VSS  
AA6  
VSS  
VSS  
VSS  
AA7  
VSS  
VSS  
VSS  
AA8  
VSS  
VSS  
VSS  
AA9  
VSS  
VSS  
VSS  
AB25  
AB28  
AB30  
AB32  
AB35  
AC25  
AC27  
AC29  
AC31  
AC32  
AD11  
AD13  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
318  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915G GMCH 2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915GV GMCH 3  
Ball #  
AD16  
AD19  
AD22  
AD25  
AD26  
AD27  
AD34  
AE12  
AE14  
AE15  
AE17  
AE18  
AE20  
AE21  
AE23  
AE24  
AE28  
AE30  
AE32  
AE4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE6  
VSS  
AE9  
VSS  
AF1  
VSS  
AF10  
AF12  
AF15  
AF18  
AF21  
AF26  
AF29  
AF30  
AF31  
AF32  
AF35  
AF4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF6  
VSS  
AF8  
VSS  
AG12  
AG13  
AG15  
AG16  
AG18  
AG19  
VSS  
VSS  
VSS  
VSS  
VSS  
Datasheet  
319  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915G GMCH 2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915GV GMCH 3  
Ball #  
AG21  
AG22  
AG25  
AG28  
AG29  
AG5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AH1  
VSS  
AH11  
AH14  
AH17  
AH20  
AH23  
AH26  
AH29  
AH32  
AH34  
AH5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AH6  
VSS  
AH8  
VSS  
AJ10  
AJ13  
AJ15  
AJ16  
AJ19  
AJ22  
AJ27  
AJ30  
AJ32  
AJ35  
AJ4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AJ9  
VSS  
AK1  
VSS  
AK11  
AK14  
AK17  
AK20  
AK23  
AK25  
AK26  
AK28  
AK30  
AK4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK6  
320  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915G GMCH 2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915GV GMCH 3  
Ball #  
AK7  
AK8  
AL10  
AL13  
AL16  
AL19  
AL22  
AL32  
AM29  
AM31  
AM4  
AM6  
AM7  
AM8  
AN1  
AP8  
AR13  
AR17  
AR21  
AR25  
AR3  
AR30  
AR6  
B10  
B12  
B14  
B16  
B18  
B2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
B24  
B28  
B5  
VSS  
VSS  
VSS  
B6  
VSS  
B7  
VSS  
B8  
VSS  
B9  
VSS  
C1  
VSS  
C11  
C13  
C17  
C18  
C23  
C3  
VSS  
VSS  
VSS  
VSS  
VSS  
Datasheet  
321  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915G GMCH 2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915GV GMCH 3  
Ball #  
C35  
C4  
VSS  
VSS  
VSS  
D10  
D11  
D15  
D16  
D18  
D23  
D25  
D26  
D28  
D3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D30  
D31  
D32  
D4  
VSS  
VSS  
VSS  
VSS  
D6  
VSS  
D7  
VSS  
D8  
VSS  
D9  
VSS  
E1  
VSS  
E10  
E17  
E18  
E2  
VSS  
VSS  
VSS  
VSS  
E23  
E26  
E29  
E4  
VSS  
VSS  
VSS  
VSS  
E6  
VSS  
E8  
VSS  
F10  
F16  
F18  
F2  
VSS  
VSS  
VSS  
VSS  
F23  
F25  
F29  
F30  
F32  
F35  
F4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F5  
322  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915G GMCH 2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915GV GMCH 3  
Ball #  
F6  
VSS  
VSS  
F8  
VSS  
G10  
G11  
G13  
G15  
G17  
G19  
G2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G20  
G23  
G26  
G27  
G28  
G4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G7  
VSS  
G8  
VSS  
G9  
VSS  
H10  
H13  
H2  
VSS  
VSS  
VSS  
H21  
H24  
H25  
H27  
H30  
H32  
H34  
H4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H5  
VSS  
H6  
VSS  
H9  
VSS  
J10  
J15  
J16  
J17  
J18  
J2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J20  
J23  
J30  
J4  
VSS  
VSS  
VSS  
VSS  
J7  
Datasheet  
323  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915G GMCH 2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915GV GMCH 3  
Ball #  
J8  
VSS  
VSS  
J9  
VSS  
K10  
K11  
K14  
K2  
VSS  
VSS  
VSS  
VSS  
K20  
K24  
K26  
K28  
K31  
K32  
K35  
K4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K5  
VSS  
K6  
VSS  
K9  
VSS  
L11  
L13  
L15  
L16  
L17  
L18  
L2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L20  
L21  
L22  
L24  
L27  
L30  
L32  
L4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L7  
VSS  
L8  
VSS  
L9  
VSS  
M10  
M11  
M17  
M2  
VSS  
VSS  
VSS  
VSS  
M20  
M24  
M25  
M27  
VSS  
VSS  
VSS  
324  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915G GMCH 2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915GV GMCH 3  
Ball #  
M29  
M34  
M4  
VSS  
VSS  
VSS  
VSS  
M5  
VSS  
M6  
VSS  
M9  
VSS  
N10  
N11  
N17  
N19  
N2  
VSS  
VSS  
VSS  
VSS  
VSS  
N25  
N28  
N30  
N32  
N4  
VSS  
VSS  
VSS  
VSS  
VSS  
N7  
VSS  
N8  
VSS  
N9  
VSS  
P11  
P16  
P18  
P2  
VSS  
VSS  
VSS  
VSS  
P20  
P25  
P27  
P29  
P31  
P32  
P35  
P4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P5  
VSS  
P6  
VSS  
P9  
VSS  
R11  
R17  
R19  
R2  
VSS  
VSS  
VSS  
VSS  
R21  
R25  
R26  
R27  
R4  
VSS  
VSS  
VSS  
VSS  
Datasheet  
325  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915G GMCH 2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Intel® 82915GV GMCH 3  
Ball #  
R7  
VSS  
VSS  
R8  
VSS  
R9  
VSS  
T10  
T11  
T18  
T2  
VSS  
VSS  
VSS  
VSS  
T22  
T25  
T28  
T30  
T32  
T34  
T4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
T5  
VSS  
T6  
VSS  
T7  
VSS  
U11  
U15  
U17  
U19  
U2  
VSS  
VSS  
VSS  
VSS  
VSS  
U21  
U23  
U25  
U27  
U29  
U31  
U32  
U4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
U7  
VSS  
U8  
VSS  
U9  
VSS  
V1  
VSS  
V11  
V16  
V18  
V2  
VSS  
VSS  
VSS  
VSS  
V20  
V22  
V25  
V26  
V27  
VSS  
VSS  
VSS  
VSS  
326  
Datasheet  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
RSV  
VTT  
Intel® 82915G GMCH 2  
Intel® 82915GV GMCH 3  
Ball #  
V35  
V4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V6  
VSS  
VSS  
V9  
VSS  
VSS  
W11  
W15  
W17  
W19  
W21  
W23  
W25  
W28  
W30  
W32  
Y11  
Y18  
Y22  
Y25  
Y27  
Y29  
Y31  
Y32  
Y34  
F13  
D12  
A19  
A20  
A21  
A22  
B19  
B20  
B21  
B22  
C19  
C20  
C21  
C22  
D19  
D20  
D21  
D22  
E19  
E20  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA_DAC  
VSYNC  
VTT  
VSSA_DAC  
VSYNC  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
Datasheet  
327  
Ballout and Package Information  
R
Table 14-2. GMCH/MCH Ballout for DDR2 Systems (Sorted by Signal Name)  
Intel® 82915P MCH 1  
Intel® 82915G GMCH 2  
Intel® 82915GV GMCH 3  
Ball #  
E21  
E22  
F20  
F21  
F22  
G21  
G22  
H22  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
NOTES:  
1. DDR2, PCI Express* x16 Graphics Interface, No DAC, No Intel® SDVO  
2. DDR2, PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
3. DDR2, No PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
328  
Datasheet  
Ballout and Package Information  
R
14.2  
DDR Ballout  
Figure 14-4, Figure 14-5, and Figure 14-6 show the 82915G GMCH ballout for platforms using  
DDR system memory, as viewed from the top side of the package. Figure 14-4 shows columns  
1–12; Figure 14-5 shows columns 13–24; Figure 14-6 shows columns 25–35.  
The complete DDR ballout for both the 82915G/82915GV/82915GL GMCH and  
82915P/82915PL MCH are listed in Table 2-1and Table 14-4  
is sorted by ball number. Table 14-4 is sorted alphabetically by signal name based on the signal  
names of the 82915G GMCH. Note that the first table has more entries than the second table. The  
second table does not include unpopulated balls whereas the first table does.  
Note: Balls that are listed as RSV are Reserved. Board traces should Not be routed to these balls.  
Note: Balls that are listed as NC are No Connects. Board traces to these balls are permitted as specified.  
Datasheet  
329  
Ballout and Package Information  
R
Figure 14-4. Intel® 82915G GMCH Ballout for DDR (Top View: Columns 1–12 )  
1
2
3
4
5
6
7
8
9
10  
11  
12  
VCCA_  
DPLLA  
A
NC  
VSS  
VSS  
EXP_TXN3  
EXP_TXP3  
EXP_TXN1  
EXP_TXP1  
VSS  
GCLKP  
B
C
D
E
F
NC  
VSS  
EXP_TXP5  
EXP_TXN5  
VSS  
EXP_RXP4  
VSS  
EXP_RXN4  
VSS  
VSS  
VSS  
EXP_TXP4  
VSS  
VSS  
VSS  
EXP_TXP2  
VSS  
VSS  
EXP_TXN0  
VSS  
VSS  
EXP_TXP0  
VSS  
GCLKN  
VSS  
VSS  
VSS  
EXP_TXN4  
EXP_RXP5  
EXP_RXN5  
VSS  
EXP_TXN2  
VSS  
VSS  
VSS  
VSS  
VSYNC  
HSYNC  
NC  
VSS  
EXP_TXP6  
EXP_TXN6  
EXP_TXP8  
EXP_TXN8  
VSS  
VSS  
EXP_RXN3  
EXP_RXP3  
VSS  
VSS  
EXP_RXN2  
EXP_RXP2  
VSS  
VSS  
EXP_RXP0  
EXP_RXN0  
VSS  
EXP_TXP7  
EXP_TXN7  
EXP_TXP9  
VSS  
VSS  
VSS  
VSS  
VSS  
G
H
VSS  
VSS  
EXP_RXN6  
VSS  
EXP_RXP6  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
EXP_RXN7  
EXP_RXP7  
VSS  
VSS  
EXP_RXN1  
NC  
EXP_  
TXN9  
EXP_  
J
K
L
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
EXP_RXN8  
VSS  
EXP_RXP8  
VSS  
VSS  
EXP_RXN9  
VSS  
VSS  
EXP_RXP9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
EXP_RXP1  
VSS  
NC  
NC  
NC  
TXP10  
EXP_  
EXP_  
TXP11  
TXN10  
EXP_  
EXP_  
EXP_  
EXP_  
VSS  
TXN11  
TXP12  
RXN10  
RXP10  
EXP_  
EXP_  
EXP_  
EXP_  
DREF  
CLKN  
M
N
P
R
VSS  
VSS  
VSS  
TXP13  
TXN12  
RXN12  
RXP12  
EXP_  
EXP_  
EXP_  
EXP_  
VSS  
VSS  
VSS  
NC  
NC  
NC  
TXN13  
TXP14  
RXN13  
RXP13  
EXP_  
EXP_  
EXP_  
EXP_  
EXP_  
VSS  
VSS  
VSS  
TXP15  
TXN14  
RXP14  
RXN14  
RXP11  
EXP_  
EXP_RXN1  
5
EXP_  
EXP_  
DMI_TXP0  
VSS  
VSS  
VSS  
TXN15  
RXP15  
RXN11  
T
U
V
DMI_TXP1  
DMI_TXN1  
VSS  
VSS  
VSS  
VSS  
DMI_TXN0  
DMI_TXP2  
DMI_TXN2  
VSS  
VSS  
VSS  
VSS  
VSS  
DMI_RXN0  
VSS  
VSS  
VSS  
DMI_RXN1  
VSS  
DMI_RXP1  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
DMI_RXP0  
DMI_TXP3  
DMI_RXN3  
DMI_RXP3  
DMI_RXP2  
DMI_RXN2  
VSS  
EXP_  
W
Y
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VSS  
VSS  
NC  
NC  
COMPI  
EXP_  
COMPO  
AA  
AB  
AC  
AD  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
NC  
NC  
RSV  
SDQ_B20  
SM_SLEW  
OUT1  
AE  
AF  
SDQ_A5  
VSS  
SDQ_A4  
SDM_A0  
SDQ_A0  
SDQ_A1  
VSS  
VSS  
RSV  
RSV  
VSS  
VSS  
SMVREF0  
RSTIN#  
SMVREF1  
VSS  
VSS  
SDQ_B11  
SDQ_B10  
VSS  
VSS  
SM_SLEWI  
N1  
VSS  
AG  
AH  
SDQS_A0  
VSS  
RSV  
SDQ_A6  
SDQ_A7  
SRCOMP0  
SDQ_B5  
VSS  
VSS  
NC  
PWROK  
SDQ_B0  
SRCOMP1  
VSS  
SDQ_B4  
SDM_B1  
SDQ_B14  
RSV  
SDQ_B15  
VSS  
VSS  
SDQ_A2  
VSS  
SDQ_B21  
SM_  
AJ  
SDQ_A8  
SDQ_A3  
SDQ_A9  
SDQ_A12  
SDQ_A13  
VSS  
VSS  
SDM_B0  
SDQ_B1  
VSS  
SDQ_B8  
VSS  
SDQ_B12  
VSS  
VSS  
VSS  
SCLK_B1#  
VSS  
SLEWIN0  
SM_SLE  
WOUT0  
AK  
VSS  
SDQS_B0  
SCLK_B4  
SDQS_B1  
AL  
AM  
AN  
AP  
AR  
SDM_A1  
RSV  
SCLK_A4  
SCLK_A1  
SDQ_A14  
NC  
SDQS_A1  
SCLK_A4#  
SCLK_A1#  
SDQ_A15  
VSS  
RSV  
VSS  
SDQ_B2  
SDQ_B6  
SDQ_A20  
SDQ_A16  
SDQ_A17  
5
SDQ_B7  
VSS  
SDQ_B9  
VSS  
SDQ_B13  
VSS  
SCLK_B4#  
SCKE_B1  
SDQ_A23  
SDQ_A19  
SCKE_B3  
9
VSS  
VCCSM  
SCKE_B0  
SCKE_B2  
VCCSM  
10  
SCLK_B1  
VCCSM  
SCKE_A1  
SCKE_A2  
SCKE_A3  
11  
SCKE_A0  
SMA_B12  
VSS  
NC  
NC  
1
SDQ_A10  
SDQ_A11  
SDQ_B3  
SDQ_A21  
VSS  
SDM_A2  
SDQS_A2  
RSV  
SDQ_A18  
VSS  
VCCSM  
SMA_B11  
12  
SDQ_A22  
8
2
3
4
6
7
330  
Datasheet  
Ballout and Package Information  
R
Figure 14-5. Intel® 82915G GMCH Ballout for DDR (Top View: Columns 13–24 )  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VCCA_  
VCCA_  
HPLL  
A
VCC2  
REFSET  
EXP_SLR  
VSS  
VTT  
VTT  
VTT  
VTT  
HSWING  
HVREF  
EXPPLL  
VCCA_  
DPLLB  
VCCA_  
SMPLL  
B
C
D
VSS  
RSV  
RSV  
MTYPE  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
HRCOMP  
VSS  
VSS  
VSS  
VSS  
VCCA_  
DAC  
GREEN  
VSS  
BSEL2  
VSS  
HSCOMP  
E
F
VCCA_DAC  
VSSA_DAC  
GREEN#  
RED  
BSEL1  
RSV  
NC  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
HD62  
NC  
VSS  
HD47  
HDSTBN2#  
HCPURST  
#
G
H
J
VSS  
VSS  
RED#  
BLUE  
VSS  
NC  
RSV  
BSEL0  
VSS  
VSS  
NC  
HD45  
HD46  
VSS  
VSS  
HD41  
VSS  
HD40  
VSS  
VTT  
VSS  
VTT  
VTT  
VSS  
HD37  
VSS  
VSS  
SDVO_CTR  
LCLK  
BLUE#  
VSS  
VSS  
HDSTBP2#  
HD35  
HD32  
HD33  
SDVO_  
K
VSS  
RSV  
EXTTS#  
HD44  
HD43  
HDINV2#  
VSS  
HD39  
HD34  
HD31  
VSS  
CTRLDATA  
L
M
VSS  
DREFCLKP  
VCC  
DDC_DATA  
ICH_SYNC#  
VCC  
VSS  
DDC_CLK  
VCC  
VSS  
RSV  
VSS  
VSS  
VSS  
HD42  
VCC  
NC  
HD38  
VSS  
VSS  
VSS  
VSS  
HD36  
VCC  
VSS  
HCLKN  
NC  
HD30  
HCLKP  
NC  
VSS  
VSS  
N
VCC  
VSS  
VCC  
NC  
P
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
NC  
NC  
R
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
NC  
T
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
U
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
V
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
W
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
Y
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
AM  
AN  
AP  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
NC  
NC  
VSS  
SDQ_B19  
VSS  
SDQ_B23  
VSS  
VSS  
SDQ_A26  
VSS  
SDQ_B24  
VSS  
VSS  
SDQS_B3  
VSS  
SDQ_B31  
VSS  
VSS  
SDQ_B36  
VSS  
SDM_B6  
VSS  
SDQ_B16  
SDQ_B17  
VSS  
RSV_TP0  
SDQ_A28  
VSS  
SDQ_A30  
SDQ_A27  
VSS  
SDQ_B26  
SDQ_B30  
VSS  
SDQ_B22  
SDQ_B18  
VSS  
VSS  
SDQS_A3  
RSV  
VSS  
RSV  
VSS  
SDQ_B32  
SCLK_B0#  
VSS  
SDQ_B37  
SDM_B4  
NC  
VSS  
VSS  
SDM_B3  
VSS  
VSS  
SDM_B2  
VSS  
RSV_TP1  
VSS  
SDM_A3  
VSS  
VSS  
SDQ_A31  
RSV  
SDQ_B29  
VSS  
SDQ_B27  
RSV  
SCLK_B0  
VSS  
NC  
SDQ_A29  
VSS  
RSV  
RSV  
RSV  
SDQS_B2  
VSS  
VSS  
RSV_TP3  
SMA_B7  
SMA_A9  
SMA_B5  
SMA_A11  
SDQ_A24  
VSS  
RSV  
SDQ_B25  
VSS  
VSS  
RSV  
SCLK_B3#  
VSS  
VSS  
RSV  
RSV  
SDQ_A25  
VCCSM  
SMA_B2  
SMA_B6  
SDQ_B28  
SMA_B0  
SMA_A8  
SMA_B1  
RSV  
RSV  
SCLK_B3  
VCCSM  
SMA_A10  
RSV  
RSV  
VCCSM  
SMA_B9  
SMA_A12  
VCCSM  
RSV_TP2  
SMA_B8  
VCCSM  
SMA_A7  
VCCSM  
VCCSM  
NC  
VCCSM  
SMA_B10  
VCCSM  
SMA_A4  
SMA_A2  
SMA_A3  
VCCSM  
SMA_A0  
SMA_A1  
SCLK_A0  
SMA_A5  
VCCSM  
RSV  
24  
AR  
VSS  
VCCSM  
SMA_B4  
SMA_B3  
VSS  
VCCSM  
SBS_B1  
SMA_A6  
VSS  
VCCSM  
RSV  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Datasheet  
331  
Ballout and Package Information  
R
Figure 14-6. Intel® 82915G GMCH Ballout for DDR (Top View: Columns 25–35 )  
25  
HD48  
HD63  
HD58  
VSS  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
NC  
VSS  
HD61  
HD57  
HD55  
VSS  
HD53  
VSS  
NC  
A
B
HDINV3#  
HD59  
HD54  
VSS  
HDSTBP3#  
HDSTBN3#  
HD18  
HD51  
HD17  
VSS  
HD52  
HD15  
HD14  
VSS  
HD13  
HD11  
NC  
HD49  
HD56  
HD50  
HD9  
HD12  
VSS  
C
VSS  
HD60  
VSS  
VSS  
HD10  
HD8  
D
HD25  
VSS  
VSS  
HD24  
HD16  
VSS  
HBPRI#  
VSS  
HPCREQ#  
HREQ4#  
HREQ3#  
HREQ2#  
HADSTB0#  
VSS  
HREQ1#  
VSS  
HDSTBP0#  
HREQ0#  
HD7  
HDINV0#  
HD6  
HDSTBN0#  
VSS  
E
HDSTBN1#  
VSS  
HD23  
HD22  
VSS  
F
HD26  
VSS  
VSS  
VSS  
HD20  
HA6#  
VSS  
HA7#  
VSS  
HD5  
HD3  
G
HDSTBP1#  
HDINV1#  
VSS  
VSS  
HD19  
HA3#  
HD1  
VSS  
HD4  
H
HD27  
HD28  
HD29  
VSS  
HD21  
HA13#  
VSS  
HA5#  
VSS  
HRS2#  
VSS  
HD0  
HD2  
HDEFER#  
VSS  
J
HA14#  
VSS  
HA4#  
HA8#  
VSS  
HA15#  
HLOCK#  
HRS0#  
HHIT#  
K
HA18#  
HA20#  
HA19#  
HA22#  
VSS  
HA12#  
HA16#  
VSS  
HA9#  
HA11#  
HADS#  
HA21#  
VSS  
VSS  
HDBSY#  
HBNR#  
HHITM#  
VSS  
L
VSS  
VSS  
HA10#  
VSS  
HDRDY#  
VSS  
VSS  
M
VSS  
HADSTB1#  
VSS  
HA23#  
VSS  
HA26#  
HTRDY#  
HRS1#  
SDQ_A59  
VSS  
N
VSS  
HA24#  
HA25#  
VSS  
NC  
VSS  
HEDRDY#  
HBREQ0#  
SDQ_A62  
SDM_A7  
P
VSS  
VSS  
HA17#  
HA31#  
VSS  
RSV  
RSV  
SDQ_A58  
VSS  
RSV  
R
VSS  
HA30#  
SDQ_B58  
VSS  
HA27#  
VSS  
VSS  
HA28#  
VSS  
SDQ_A63  
RSV  
T
VSS  
HA29#  
SDQ_B63  
VSS  
RSV  
VSS  
SDQS_A7  
SDQ_A56  
SDQ_A51  
VSS  
U
VSS  
VSS  
SDQ_B59  
SDQ_B57  
VSS  
RSV  
RSV  
RSV  
SDQ_A57  
SDQ_A61  
SDQ_A50  
SDM_A6  
VSS  
V
VSS  
SDQ_B62  
SDQ_B60  
VSS  
SDQS_B7  
VSS  
VSS  
SDM_B7  
VSS  
VSS  
SDQ_A60  
SDQ_A55  
RSV  
W
Y
VSS  
RSV  
RSV  
VSS  
VSS  
VSS  
SDQ_B61  
VSS  
SDQ_B56  
RSV  
RSV  
RSV  
SDQ_A54  
VSS  
SDQS_A6  
SCLK_A2  
SCLK_A5#  
VSS  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
AM  
AN  
AP  
AR  
VSS  
SDQ_B51  
SDQ_B55  
VSS  
SDQ_B50  
VSS  
VSS  
SDQS_B6  
VSS  
SMA_A13  
SCLK_A2#  
VSS  
VSS  
SDQ_B54  
SCLK_B5#  
VSS  
VSS  
RSV  
VSS  
SCLK_A5  
SDQ_A53  
SDQ_A48  
VSS  
VSS  
VSS  
SCLK_B5  
SDQ_B52  
VSS  
NC  
SDQ_A52  
SDQ_B48  
VSS  
SMA_B13  
VSS  
SCLK_B2#  
SDQ_B33  
VSS  
SCLK_B2  
VSS  
SDQ_B53  
SDQ_B49  
SDQ_B46  
SDQ_A32  
VSS  
VSS  
SDQ_A47  
SDQ_A46  
RSV  
SDQ_A49  
SDQ_A43  
SDM_A5  
VSS  
SDQ_B47  
VSS  
VSS  
VSS  
RSV  
VSS  
SDQ_B42  
RSV  
SDQ_B43  
SDM_B5  
SDQ_B41  
SDQ_A35  
SDQ_A39  
VSS  
SDQ_A42  
VSS  
SDQS_A5  
SDQ_A41  
VSS  
SDQS_B4  
SDQ_B38  
VSS  
VSS  
SDQS_B5  
SDQ_A37  
VSS  
VSS  
SDQ_A45  
SDQ_A44  
SDQ_B44  
SCS_A3#  
SCS_B3#  
SCS_B2#  
RSV  
SDQ_B35  
VSS  
SDQ_B40  
SDM_A4  
RSV  
VSS  
VSS  
SDQ_A40  
SCS_A2#  
SCAS_A#  
SCS_A0#  
SCS_B1#  
SCS_B0#  
NC  
SDQ_A33  
SDQ_A36  
SBS_B0  
SCAS_B#  
SRAS_B#  
SWE_B#  
27  
VSS  
SDQ_B45  
VSS  
VCCSM  
SCS_A1#  
SDQ_B34  
VCCSM  
SCLK_A0#  
SCLK_A3  
VSS  
SDQ_B39  
VCCSM  
SCLK_A3#  
SBS_A1  
VCCSM  
26  
NC  
SDQ_A38  
SDQS_A4  
SDQ_A34  
RSV  
VCCSM  
SBS_A0  
VCCSM  
RSV  
VSS  
VCCSM  
RSV  
SRAS_A#  
RSV  
RSV  
VCCSM  
NC  
SWE_A#  
VCCSM  
31  
RSV  
RSV  
VSS  
VCCSM  
33  
NC  
25  
28  
29  
30  
32  
34  
35  
332  
Datasheet  
Ballout and Package Information  
R
Table 14-3. GMCH/MCH Ballout for DDR Systems (Sorted by Ball Number)  
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
A1  
A2  
A3  
A4  
A5  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDVOB_CLK  
-
A6  
A7  
A8  
A9  
EXP_TXN3  
EXP_TXP3  
EXP_TXN1  
EXP_TXP1  
EXP_TXN3  
EXP_TXP3  
EXP_TXN1  
EXP_TXP1  
EXP_TXN3  
EXP_TXP3  
EXP_TXN1  
EXP_TXP1  
SDVOB_CLK-  
SDVOB_CLK+  
SDVOB_CLK-  
SDVOB_CLK+  
SDVOB_CLK  
+
SDVOB_GRE  
EN-  
SDVOB_GREE  
N-  
SDVOB_GREEN-  
SDVOB_GREEN+  
SDVOB_GRE  
EN+  
SDVOB_GREE  
N+  
A10  
A11  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GCLKP  
GCLKP  
GCLKP  
GCLKP  
GCLKP  
GCLKP  
VCCA_DPLL  
A
A12  
A13  
A14  
VCCA_DPLLA  
VCC2  
VCCA_DPLLA  
VCC2  
VCCA_DPLLA  
VCC2  
VCCA_DPLLA  
VCC2  
VCCA_DPLLA  
VCC2  
VCC2  
VCCA_EXPP  
LL  
VCCA_EXPPL  
L
VCCA_EXPPLL  
VCCA_EXPPLL  
VCCA_EXPPLL  
VCCA_EXPPLL  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
REFSET  
RSV  
RSV  
EXP_SLR  
VCCA_HPLL  
VSS  
RSV  
EXP_SLR  
VCCA_HPLL  
VSS  
REFSET  
EXP_SLR  
VCCA_HPLL  
VSS  
REFSET  
RSV  
REFSET  
RSV  
VCCA_HPLL  
VSS  
VCCA_HPLL  
VSS  
VCCA_HPLL  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
HSWING  
HVREF  
HD48  
VSS  
HSWING  
HVREF  
HD48  
VSS  
HSWING  
HVREF  
HD48  
VSS  
HSWING  
HVREF  
HD48  
VSS  
HSWING  
HVREF  
HD48  
VSS  
HSWING  
HVREF  
HD48  
VSS  
HD61  
HD57  
HD55  
VSS  
HD61  
HD57  
HD55  
VSS  
HD61  
HD57  
HD55  
VSS  
HD61  
HD57  
HD55  
VSS  
HD61  
HD57  
HD55  
VSS  
HD61  
HD57  
HD55  
VSS  
HD53  
HD53  
HD53  
HD53  
HD53  
HD53  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
Datasheet  
333  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
A35  
B1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B2  
VSS  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GCLKN  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GCLKN  
VSS  
VSS  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GCLKN  
VSS  
B3  
EXP_RXP4  
EXP_RXN4  
VSS  
EXP_RXP4  
EXP_RXN4  
VSS  
EXP_RXP4  
EXP_RXN4  
VSS  
B4  
B5  
B6  
VSS  
VSS  
VSS  
B7  
VSS  
VSS  
VSS  
B8  
VSS  
VSS  
VSS  
B9  
VSS  
VSS  
VSS  
B10  
B11  
B12  
VSS  
VSS  
VSS  
GCLKN  
VSS  
GCLKN  
VSS  
GCLKN  
VSS  
VCCA_DPLL  
B
B13  
VCCA_DPLLB  
VCCA_DPLLB  
VCCA_DPLLB  
VCCA_DPLLB  
VCCA_DPLLB  
B14  
B15  
B16  
VSS  
RSV  
VSS  
VSS  
RSV  
VSS  
VSS  
RSV  
VSS  
VSS  
RSV  
VSS  
VSS  
RSV  
VSS  
VSS  
RSV  
VSS  
VCCA_SMPL  
L
B17  
VCCA_SMPLL  
VCCA_SMPLL  
VCCA_SMPLL  
VCCA_SMPLL  
VCCA_SMPLL  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
C1  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
HRCOMP  
VSS  
HRCOMP  
VSS  
HRCOMP  
VSS  
HRCOMP  
VSS  
HRCOMP  
VSS  
HRCOMP  
VSS  
HD63  
HDINV3#  
HD54  
VSS  
HD63  
HDINV3#  
HD54  
VSS  
HD63  
HDINV3#  
HD54  
VSS  
HD63  
HDINV3#  
HD54  
VSS  
HD63  
HDINV3#  
HD54  
VSS  
HD63  
HDINV3#  
HD54  
VSS  
HDSTBP3#  
HD51  
HD52  
HD15  
HD13  
HD11  
NC  
HDSTBP3#  
HD51  
HD52  
HD15  
HD13  
HD11  
NC  
HDSTBP3#  
HD51  
HD52  
HD15  
HD13  
HD11  
NC  
HDSTBP3#  
HD51  
HD52  
HD15  
HD13  
HD11  
NC  
HDSTBP3#  
HD51  
HD52  
HD15  
HD13  
HD11  
NC  
HDSTBP3#  
HD51  
HD52  
HD15  
HD13  
HD11  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
334  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
SDVOC_GRE  
EN+  
SDVOC_GREE  
N+  
C2  
EXP_TXP5  
EXP_TXP5  
EXP_TXP5  
SDVOC_GREEN+  
C3  
C4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDVOC_RED  
SDVOC_RED-/  
SDVOB_ALPHA  
-
-/  
SDVOC_RED-/  
SDVOB_ALPHA-  
C5  
C6  
EXP_TXN4  
EXP_TXP4  
EXP_TXN4  
EXP_TXP4  
EXP_TXN4  
EXP_TXP4  
SDVOB_ALP  
HA-  
SDVOC_RED  
+/  
SDVOB_ALP  
HA+  
SDVOC_RED+/  
SDVOB_ALPHA  
+
SDVOC_RED+/  
SDVOB_ALPHA+  
SDVOB_BLU  
E-  
C7  
C8  
EXP_TXN2  
EXP_TXP2  
EXP_TXN0  
EXP_TXP0  
EXP_TXN2  
EXP_TXP2  
EXP_TXN0  
EXP_TXP0  
EXP_TXN2  
EXP_TXP2  
EXP_TXN0  
EXP_TXP0  
SDVOB_BLUE-  
SDVOB_BLUE+  
SDVOB_RED-  
SDVOB_RED+  
SDVOB_BLUE-  
SDVOB_BLUE+  
SDVOB_RED-  
SDVOB_RED+  
SDVOB_BLU  
E+  
SDVOB_RED  
-
C9  
SDVOB_RED  
+
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
MTYPE  
NC  
MTYPE  
NC  
MTYPE  
NC  
MTYPE  
NC  
MTYPE  
NC  
MTYPE  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD58  
HD59  
HD49  
HD56  
HDSTBN3#  
HD17  
HD50  
HD14  
HD9  
HD58  
HD59  
HD49  
HD56  
HDSTBN3#  
HD17  
HD50  
HD14  
HD9  
HD58  
HD59  
HD49  
HD56  
HDSTBN3#  
HD17  
HD50  
HD14  
HD9  
HD58  
HD59  
HD49  
HD56  
HDSTBN3#  
HD17  
HD50  
HD14  
HD9  
HD58  
HD59  
HD49  
HD56  
HDSTBN3#  
HD17  
HD50  
HD14  
HD9  
HD58  
HD59  
HD49  
HD56  
HDSTBN3#  
HD17  
HD50  
HD14  
HD9  
Datasheet  
335  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
C34  
C35  
D1  
HD12  
VSS  
HD12  
VSS  
HD12  
VSS  
HD12  
VSS  
HD12  
VSS  
HD12  
VSS  
SDVOC_GRE  
EN-  
SDVOC_GREE  
N-  
D2  
EXP_TXN5  
EXP_TXN5  
EXP_TXN5  
SDVOC_GREEN-  
D3  
D4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDVOC_INT  
+
D5  
EXP_RXP5  
EXP_RXP5  
EXP_RXP5  
SDVOC_INT+  
SDVOC_INT+  
D6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
RSV  
RSV  
VSS  
VSS  
BSEL2  
VSS  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
RSV  
RSV  
VSS  
VSS  
BSEL2  
VSS  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D7  
D8  
VSS  
VSS  
VSS  
VSS  
D9  
VSS  
VSS  
VSS  
VSS  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
D32  
D33  
D34  
D35  
E1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSYNC  
VCCA_DAC  
GREEN  
VSS  
VSYNC  
VCCA_DAC  
GREEN  
VSS  
VSYNC  
VCCA_DAC  
GREEN  
VSS  
VSYNC  
VCCA_DAC  
GREEN  
VSS  
VSS  
VSS  
VSS  
VSS  
BSEL2  
VSS  
BSEL2  
VSS  
BSEL2  
VSS  
BSEL2  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
HSCOMP  
VSS  
VSS  
HD60  
VSS  
HD18  
VSS  
VSS  
VSS  
HD10  
HD8  
VSS  
HSCOMP  
VSS  
VSS  
HD60  
VSS  
HD18  
VSS  
VSS  
VSS  
HD10  
HD8  
VSS  
VSS  
VSS  
HSCOMP  
VSS  
HSCOMP  
VSS  
HSCOMP  
VSS  
HSCOMP  
VSS  
VSS  
VSS  
VSS  
VSS  
HD60  
VSS  
HD60  
VSS  
HD60  
VSS  
HD60  
VSS  
HD18  
VSS  
HD18  
VSS  
HD18  
VSS  
HD18  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD10  
HD8  
HD10  
HD8  
HD10  
HD8  
HD10  
HD8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
336  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
E2  
E3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDVOC_BLU  
E+  
EXP_TXP6  
EXP_TXP6  
EXP_TXP6  
SDVOC_BLUE+  
SDVOC_BLUE+  
E4  
E5  
E6  
E7  
E8  
VSS  
SDVOC_INT-  
VSS  
VSS  
EXP_RXN5  
VSS  
VSS  
EXP_RXN5  
VSS  
VSS  
EXP_RXN5  
VSS  
VSS  
SDVOC_INT-  
VSS  
VSS  
SDVOC_INT-  
VSS  
RSV  
EXP_RXN3  
VSS  
EXP_RXN3  
VSS  
EXP_RXN3  
VSS  
RSV  
RSV  
VSS  
VSS  
VSS  
SDVOC_STA  
LL-  
SDVOC_STALL  
-
E9  
EXP_RXN2  
VSS  
EXP_RXN2  
VSS  
EXP_RXN2  
VSS  
SDVOC_STALL-  
VSS  
E10  
E11  
VSS  
VSS  
SDVOC_TVC  
LKIN+  
SDVOC_TVCLK  
IN+  
EXP_RXP0  
EXP_RXP0  
EXP_RXP0  
SDVOC_TVCLKIN+  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
E31  
E32  
E33  
E34  
E35  
F1  
HSYNC  
VCCA_DAC  
GREEN#  
BSEL1  
NC  
RSV  
RSV  
RSV  
RSV  
HSYNC  
VCCA_DAC  
GREEN#  
BSEL1  
NC  
HSYNC  
VCCA_DAC  
GREEN#  
BSEL1  
NC  
HSYNC  
VCCA_DAC  
GREEN#  
BSEL1  
NC  
RSV  
RSV  
BSEL1  
NC  
BSEL1  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD62  
HD62  
HD62  
HD62  
HD62  
HD62  
HD25  
HD25  
HD25  
HD25  
HD25  
HD25  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD24  
HD24  
HD24  
HD24  
HD24  
HD24  
HD16  
HD16  
HD16  
HD16  
HD16  
HD16  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HBPRI#  
HPCREQ#  
HREQ1#  
HDSTBP0#  
HDINV0#  
HDSTBN0#  
EXP_TXP7  
VSS  
HBPRI#  
HPCREQ#  
HREQ1#  
HDSTBP0#  
HDINV0#  
HDSTBN0#  
EXP_TXP7  
VSS  
HBPRI#  
HPCREQ#  
HREQ1#  
HDSTBP0#  
HDINV0#  
HDSTBN0#  
EXP_TXP7  
VSS  
HBPRI#  
HPCREQ#  
HREQ1#  
HDSTBP0#  
HDINV0#  
HDSTBN0#  
EXP_TXP7  
VSS  
HBPRI#  
HPCREQ#  
HREQ1#  
HDSTBP0#  
HDINV0#  
HDSTBN0#  
EXP_TXP7  
VSS  
HBPRI#  
HPCREQ#  
HREQ1#  
HDSTBP0#  
HDINV0#  
HDSTBN0#  
EXP_TXP7  
VSS  
F2  
SDVOC_BLU  
E-  
F3  
EXP_TXN6  
EXP_TXN6  
EXP_TXN6  
SDVOC_BLUE-  
SDVOC_BLUE-  
Datasheet  
337  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
F4  
F5  
F6  
F7  
F8  
VSS  
VSS  
VSS  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
VSS  
VSS  
VSS  
VSS  
RSV  
VSS  
VSS  
VSS  
VSS  
EXP_RXP3  
VSS  
EXP_RXP3  
VSS  
EXP_RXP3  
VSS  
SDVOC_STA  
LL+  
SDVOC_STALL  
+
F9  
EXP_RXP2  
VSS  
EXP_RXP2  
VSS  
EXP_RXP2  
VSS  
SDVOC_STALL+  
VSS  
F10  
F11  
VSS  
VSS  
SDVOC_TVC  
LKIN-  
SDVOC_TVCLK  
IN-  
EXP_RXN0  
EXP_RXN0  
EXP_RXN0  
SDVOC_TVCLKIN-  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F27  
F28  
F29  
F30  
F31  
F32  
F33  
F34  
F35  
NC  
VSSA_DAC  
RED  
NC  
RSV  
NC  
RSV  
NC  
VSSA_DAC  
RED  
NC  
VSSA_DAC  
RED  
NC  
VSSA_DAC  
RED  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD47  
VSS  
HD47  
VSS  
HD47  
VSS  
HD47  
VSS  
HD47  
VSS  
HD47  
VSS  
HDSTBN2#  
VTT  
HDSTBN2#  
VTT  
HDSTBN2#  
VTT  
HDSTBN2#  
VTT  
HDSTBN2#  
VTT  
HDSTBN2#  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HDSTBN1#  
HD23  
HD22  
VSS  
HDSTBN1#  
HD23  
HD22  
VSS  
HDSTBN1#  
HD23  
HD22  
VSS  
HDSTBN1#  
HD23  
HD22  
VSS  
HDSTBN1#  
HD23  
HD22  
VSS  
HDSTBN1#  
HD23  
HD22  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HREQ4#  
VSS  
HREQ4#  
VSS  
HREQ4#  
VSS  
HREQ4#  
VSS  
HREQ4#  
VSS  
HREQ4#  
VSS  
HREQ0#  
HD6  
HREQ0#  
HD6  
HREQ0#  
HD6  
HREQ0#  
HD6  
HREQ0#  
HD6  
HREQ0#  
HD6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDVOC_CLK  
-
G1  
EXP_TXN7  
EXP_TXN7  
EXP_TXN7  
SDVOC_CLK-  
SDVOC_CLK-  
G2  
G3  
G4  
G5  
VSS  
RSV  
VSS  
RSV  
VSS  
EXP_TXP8  
VSS  
VSS  
VSS  
VSS  
RSV  
VSS  
RSV  
VSS  
RSV  
VSS  
RSV  
EXP_TXP8  
VSS  
EXP_TXP8  
VSS  
EXP_RXN6  
EXP_RXN6  
EXP_RXN6  
338  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
G6  
G7  
RSV  
VSS  
EXP_RXP6  
VSS  
EXP_RXP6  
VSS  
EXP_RXP6  
VSS  
RSV  
VSS  
RSV  
VSS  
G8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
G31  
G32  
G33  
G34  
G35  
H1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RED#  
VSS  
RSV  
RSV  
RED#  
VSS  
RED#  
VSS  
RED#  
VSS  
VSS  
VSS  
RSV  
VSS  
RSV  
RSV  
RSV  
RSV  
VSS  
RSV  
VSS  
VSS  
VSS  
VSS  
HD45  
VSS  
HD45  
VSS  
HD45  
VSS  
HD45  
VSS  
HD45  
VSS  
HD45  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HCPURST#  
HD26  
VSS  
HCPURST#  
HD26  
VSS  
HCPURST#  
HD26  
VSS  
HCPURST#  
HD26  
VSS  
HCPURST#  
HD26  
VSS  
HCPURST#  
HD26  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD20  
HA6#  
HREQ3#  
HA7#  
HD7  
HD20  
HA6#  
HREQ3#  
HA7#  
HD7  
HD20  
HA6#  
HREQ3#  
HA7#  
HD7  
HD20  
HA6#  
HREQ3#  
HA7#  
HD7  
HD20  
HA6#  
HREQ3#  
HA7#  
HD7  
HD20  
HA6#  
HREQ3#  
HA7#  
HD7  
HD5  
HD5  
HD5  
HD5  
HD5  
HD5  
HD3  
HD3  
HD3  
HD3  
HD3  
HD3  
RSV  
VSS  
EXP_TXP9  
VSS  
EXP_TXP9  
VSS  
EXP_TXP9  
VSS  
RSV  
VSS  
RSV  
VSS  
H2  
H3  
RSV  
VSS  
EXP_TXN8  
VSS  
EXP_TXN8  
VSS  
EXP_TXN8  
VSS  
RSV  
VSS  
RSV  
VSS  
H4  
H5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H7  
RSV  
RSV  
VSS  
EXP_RXN7  
EXP_RXP7  
VSS  
EXP_RXN7  
EXP_RXP7  
VSS  
EXP_RXN7  
EXP_RXP7  
VSS  
RSV  
RSV  
VSS  
RSV  
RSV  
VSS  
H8  
H9  
H10  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Datasheet  
339  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
H31  
H32  
H33  
H34  
H35  
J1  
SDVOB_INT-  
NC  
EXP_RXN1  
NC  
EXP_RXN1  
NC  
EXP_RXN1  
NC  
SDVOB_INT-  
NC  
SDVOB_INT-  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
BLUE  
NC  
RSV  
RSV  
BLUE  
NC  
BLUE  
NC  
BLUE  
NC  
NC  
NC  
BSEL0  
NC  
BSEL0  
NC  
BSEL0  
NC  
BSEL0  
NC  
BSEL0  
NC  
BSEL0  
NC  
HD46  
HD41  
HD40  
VSS  
HD46  
HD41  
HD40  
VSS  
HD46  
HD41  
HD40  
VSS  
HD46  
HD41  
HD40  
VSS  
HD46  
HD41  
HD40  
VSS  
HD46  
HD41  
HD40  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
HD37  
VSS  
HD37  
VSS  
HD37  
VSS  
HD37  
VSS  
HD37  
VSS  
HD37  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HDSTBP1#  
VSS  
HDSTBP1#  
VSS  
HDSTBP1#  
VSS  
HDSTBP1#  
VSS  
HDSTBP1#  
VSS  
HDSTBP1#  
VSS  
HD19  
HA3#  
VSS  
HD19  
HA3#  
VSS  
HD19  
HA3#  
VSS  
HD19  
HA3#  
VSS  
HD19  
HA3#  
VSS  
HD19  
HA3#  
VSS  
HREQ2#  
VSS  
HREQ2#  
VSS  
HREQ2#  
VSS  
HREQ2#  
VSS  
HREQ2#  
VSS  
HREQ2#  
VSS  
HD1  
HD1  
HD1  
HD1  
HD1  
HD1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD4  
HD4  
HD4  
HD4  
HD4  
HD4  
RSV  
EXP_TXN9  
VSS  
EXP_TXN9  
VSS  
EXP_TXN9  
VSS  
RSV  
RSV  
J2  
VSS  
VSS  
VSS  
J3  
RSV  
EXP_TXP10  
VSS  
EXP_TXP10  
VSS  
EXP_TXP10  
VSS  
RSV  
RSV  
J4  
VSS  
VSS  
VSS  
J5  
RSV  
EXP_RXN8  
EXP_RXP8  
VSS  
EXP_RXN8  
EXP_RXP8  
VSS  
EXP_RXN8  
EXP_RXP8  
VSS  
RSV  
RSV  
J6  
RSV  
RSV  
RSV  
J7  
VSS  
VSS  
VSS  
J8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J10  
J11  
J12  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDVOB_INT+  
NC  
EXP_RXP1  
NC  
EXP_RXP1  
NC  
EXP_RXP1  
NC  
SDVOB_INT+  
NC  
SDVOB_INT+  
NC  
SDVO_CTRL  
CLK  
SDVO_CTRLCL  
K
J13  
J14  
RSV  
RSV  
RSV  
RSV  
SDVO_CTRLCLK  
BLUE#  
SDVO_CTRLCLK  
BLUE#  
BLUE#  
BLUE#  
340  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J31  
J32  
J33  
J34  
J35  
K1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HDSTBP2#  
VSS  
HDSTBP2#  
VSS  
HDSTBP2#  
VSS  
HDSTBP2#  
VSS  
HDSTBP2#  
VSS  
HDSTBP2#  
VSS  
HD35  
HD32  
VSS  
HD35  
HD35  
HD35  
HD35  
HD32  
VSS  
HD35  
HD32  
VSS  
HD32  
HD32  
HD32  
VSS  
VSS  
VSS  
HD33  
HD27  
HDINV1#  
HD21  
HA13#  
HA5#  
VSS  
HD33  
HD33  
HD33  
HD33  
HD27  
HDINV1#  
HD21  
HA13#  
HA5#  
VSS  
HD33  
HD27  
HDINV1#  
HD21  
HA13#  
HA5#  
VSS  
HD27  
HD27  
HD27  
HDINV1#  
HD21  
HDINV1#  
HD21  
HDINV1#  
HD21  
HA13#  
HA5#  
HA13#  
HA5#  
HA13#  
HA5#  
VSS  
VSS  
VSS  
HADSTB0#  
HRS2#  
HD0  
HADSTB0#  
HRS2#  
HD0  
HADSTB0#  
HRS2#  
HD0  
HADSTB0#  
HRS2#  
HD0  
HADSTB0#  
HRS2#  
HD0  
HADSTB0#  
HRS2#  
HD0  
HD2  
HD2  
HD2  
HD2  
HD2  
HD2  
HDEFER#  
RSV  
HDEFER#  
EXP_TXP11  
VSS  
HDEFER#  
EXP_TXP11  
VSS  
HDEFER#  
EXP_TXP11  
VSS  
HDEFER#  
RSV  
HDEFER#  
RSV  
K2  
VSS  
VSS  
VSS  
K3  
RSV  
EXP_TXN10  
VSS  
EXP_TXN10  
VSS  
EXP_TXN10  
VSS  
RSV  
RSV  
K4  
VSS  
VSS  
VSS  
K5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K7  
RSV  
EXP_RXN9  
EXP_RXP9  
VSS  
EXP_RXN9  
EXP_RXP9  
VSS  
EXP_RXN9  
EXP_RXP9  
VSS  
RSV  
RSV  
K8  
RSV  
RSV  
RSV  
K9  
VSS  
VSS  
VSS  
K10  
K11  
K12  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
SDVO_CTRL  
DATA  
SDVO_CTRLDA  
TA  
K13  
RSV  
RSV  
SDVO_CTRLDATA  
SDVO_CTRLDATA  
K14  
K15  
K16  
K17  
K18  
VSS  
RSV  
VSS  
RSV  
VSS  
RSV  
VSS  
RSV  
VSS  
RSV  
VSS  
RSV  
EXTTS#  
HD44  
HD43  
EXTTS#  
HD44  
HD43  
EXTTS#  
HD44  
HD43  
EXTTS#  
HD44  
HD43  
EXTTS#  
HD44  
HD43  
EXTTS#  
HD44  
HD43  
Datasheet  
341  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K31  
K32  
K33  
K34  
K35  
L1  
HDINV2#  
VSS  
HDINV2#  
VSS  
HDINV2#  
VSS  
HDINV2#  
VSS  
HDINV2#  
VSS  
HDINV2#  
VSS  
HD39  
HD34  
HD31  
VSS  
HD39  
HD34  
HD31  
VSS  
HD39  
HD34  
HD31  
VSS  
HD39  
HD34  
HD31  
VSS  
HD39  
HD34  
HD31  
VSS  
HD39  
HD34  
HD31  
VSS  
HD28  
VSS  
HD28  
VSS  
HD28  
VSS  
HD28  
VSS  
HD28  
VSS  
HD28  
VSS  
HA14#  
VSS  
HA14#  
VSS  
HA14#  
VSS  
HA14#  
VSS  
HA14#  
VSS  
HA14#  
VSS  
HA4#  
HA8#  
VSS  
HA4#  
HA8#  
VSS  
HA4#  
HA8#  
VSS  
HA4#  
HA8#  
VSS  
HA4#  
HA8#  
VSS  
HA4#  
HA8#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HA15#  
HRS0#  
VSS  
HA15#  
HRS0#  
VSS  
HA15#  
HRS0#  
VSS  
HA15#  
HRS0#  
VSS  
HA15#  
HRS0#  
VSS  
HA15#  
HRS0#  
VSS  
RSV  
EXP_TXN11  
VSS  
EXP_TXN11  
VSS  
EXP_TXN11  
VSS  
RSV  
RSV  
L2  
VSS  
VSS  
VSS  
L3  
RSV  
EXP_TXP12  
VSS  
EXP_TXP12  
VSS  
EXP_TXP12  
VSS  
RSV  
RSV  
L4  
VSS  
VSS  
VSS  
L5  
RSV  
EXP_RXN10  
EXP_RXP10  
VSS  
EXP_RXN10  
EXP_RXP10  
VSS  
EXP_RXN10  
EXP_RXP10  
VSS  
RSV  
RSV  
L6  
RSV  
RSV  
RSV  
L7  
VSS  
VSS  
VSS  
L8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DDC_DATA  
VSS  
RSV  
RSV  
DDC_DATA  
VSS  
DDC_DATA  
VSS  
DDC_DATA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD30  
HD30  
HD30  
HD30  
HD30  
HD30  
342  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
L31  
L32  
L33  
L34  
L35  
M1  
VSS  
HD29  
HA18#  
VSS  
VSS  
HD29  
VSS  
HD29  
VSS  
HD29  
VSS  
HD29  
HA18#  
VSS  
VSS  
HD29  
HA18#  
VSS  
HA18#  
VSS  
HA18#  
VSS  
HA18#  
VSS  
HA12#  
HA9#  
HA12#  
HA9#  
HA12#  
HA9#  
HA12#  
HA9#  
HA12#  
HA9#  
HA12#  
HA9#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HA11#  
VSS  
HA11#  
VSS  
HA11#  
VSS  
HA11#  
VSS  
HA11#  
VSS  
HA11#  
VSS  
HLOCK#  
HHIT#  
HDBSY#  
RSV  
HLOCK#  
HHIT#  
HDBSY#  
EXP_TXP13  
VSS  
HLOCK#  
HHIT#  
HDBSY#  
EXP_TXP13  
VSS  
HLOCK#  
HHIT#  
HDBSY#  
EXP_TXP13  
VSS  
HLOCK#  
HHIT#  
HDBSY#  
RSV  
HLOCK#  
HHIT#  
HDBSY#  
RSV  
M2  
VSS  
VSS  
VSS  
M3  
RSV  
EXP_TXN12  
VSS  
EXP_TXN12  
VSS  
EXP_TXN12  
VSS  
RSV  
RSV  
M4  
VSS  
VSS  
VSS  
M5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
M6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
M7  
RSV  
EXP_RXN12  
EXP_RXP12  
VSS  
EXP_RXN12  
EXP_RXP12  
VSS  
EXP_RXN12  
EXP_RXP12  
VSS  
RSV  
RSV  
M8  
RSV  
RSV  
RSV  
M9  
VSS  
VSS  
VSS  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
M27  
M28  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DREFCLKN  
DREFCLKP  
ICH_SYNC#  
DDC_CLK  
RSV  
DREFCLKN  
DREFCLKP  
ICH_SYNC#  
RSV  
DREFCLKN  
DREFCLKP  
ICH_SYNC#  
RSV  
DREFCLKN  
DREFCLKP  
ICH_SYNC#  
DDC_CLK  
RSV  
DREFCLKN  
DREFCLKP  
ICH_SYNC#  
DDC_CLK  
RSV  
DREFCLKN  
DREFCLKP  
ICH_SYNC#  
DDC_CLK  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HD42  
HD38  
VSS  
HD42  
HD42  
HD42  
HD42  
HD38  
VSS  
HD42  
HD38  
VSS  
HD38  
HD38  
HD38  
VSS  
VSS  
VSS  
HD36  
HCLKN  
HCLKP  
VSS  
HD36  
HD36  
HD36  
HD36  
HCLKN  
HCLKP  
VSS  
HD36  
HCLKN  
HCLKP  
VSS  
HCLKN  
HCLKP  
VSS  
HCLKN  
HCLKP  
VSS  
HCLKN  
HCLKP  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HA20#  
VSS  
HA20#  
VSS  
HA20#  
VSS  
HA20#  
VSS  
HA20#  
VSS  
HA20#  
VSS  
HA16#  
HA16#  
HA16#  
HA16#  
HA16#  
HA16#  
Datasheet  
343  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
M29  
M30  
M31  
M32  
M33  
M34  
M35  
N1  
VSS  
HA10#  
HADS#  
HDRDY#  
VSS  
HA10#  
HADS#  
HDRDY#  
VSS  
HA10#  
HADS#  
HDRDY#  
VSS  
HA10#  
HADS#  
HDRDY#  
VSS  
HA10#  
HADS#  
HDRDY#  
VSS  
HA10#  
HADS#  
HDRDY#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HBNR#  
RSV  
HBNR#  
EXP_TXN13  
VSS  
HBNR#  
EXP_TXN13  
VSS  
HBNR#  
EXP_TXN13  
VSS  
HBNR#  
RSV  
HBNR#  
RSV  
N2  
VSS  
VSS  
VSS  
N3  
RSV  
EXP_TXP14  
VSS  
EXP_TXP14  
VSS  
EXP_TXP14  
VSS  
RSV  
RSV  
N4  
VSS  
VSS  
VSS  
N5  
RSV  
EXP_RXN13  
EXP_RXP13  
VSS  
EXP_RXN13  
EXP_RXP13  
VSS  
EXP_RXN13  
EXP_RXP13  
VSS  
RSV  
RSV  
N6  
RSV  
RSV  
RSV  
N7  
VSS  
VSS  
VSS  
N8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
N9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N31  
N32  
N33  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
VCC  
VCC  
NC  
VCC  
VCC  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HA19#  
HADSTB1#  
VSS  
HA19#  
HADSTB1#  
VSS  
HA19#  
HADSTB1#  
VSS  
HA19#  
HADSTB1#  
VSS  
HA19#  
HADSTB1#  
VSS  
HA19#  
HADSTB1#  
VSS  
HA23#  
VSS  
HA23#  
VSS  
HA23#  
VSS  
HA23#  
VSS  
HA23#  
VSS  
HA23#  
VSS  
HA21#  
VSS  
HA21#  
VSS  
HA21#  
VSS  
HA21#  
VSS  
HA21#  
VSS  
HA21#  
VSS  
HA26#  
HA26#  
HA26#  
HA26#  
HA26#  
HA26#  
344  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
N34  
N35  
P1  
HTRDY#  
HHITM#  
RSV  
HTRDY#  
HHITM#  
EXP_TXP15  
VSS  
HTRDY#  
HHITM#  
EXP_TXP15  
VSS  
HTRDY#  
HHITM#  
EXP_TXP15  
VSS  
HTRDY#  
HHITM#  
RSV  
HTRDY#  
HHITM#  
RSV  
P2  
VSS  
VSS  
VSS  
P3  
RSV  
EXP_TXN14  
VSS  
EXP_TXN14  
VSS  
EXP_TXN14  
VSS  
RSV  
RSV  
P4  
VSS  
VSS  
VSS  
P5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P7  
RSV  
EXP_RXP14  
EXP_RXN14  
VSS  
EXP_RXP14  
EXP_RXN14  
VSS  
EXP_RXP14  
EXP_RXN14  
VSS  
RSV  
RSV  
P8  
RSV  
RSV  
RSV  
P9  
VSS  
VSS  
VSS  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
P33  
P34  
P35  
R1  
RSV  
EXP_RXP11  
VSS  
EXP_RXP11  
VSS  
EXP_RXP11  
VSS  
RSV  
RSV  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
VCC  
VCC  
NC  
VCC  
VCC  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HA22#  
VSS  
HA22#  
VSS  
HA22#  
VSS  
HA22#  
VSS  
HA22#  
VSS  
HA22#  
VSS  
HA24#  
VSS  
HA24#  
VSS  
HA24#  
VSS  
HA24#  
VSS  
HA24#  
VSS  
HA24#  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HEDRDY#  
HRS1#  
VSS  
HEDRDY#  
HRS1#  
VSS  
HEDRDY#  
HRS1#  
VSS  
HEDRDY#  
HRS1#  
VSS  
HEDRDY#  
HRS1#  
VSS  
HEDRDY#  
HRS1#  
VSS  
RSV  
EXP_TXN15  
VSS  
EXP_TXN15  
VSS  
EXP_TXN15  
VSS  
RSV  
RSV  
R2  
VSS  
VSS  
VSS  
R3  
DMI_TXP0  
DMI_TXP0  
DMI_TXP0  
DMI_TXP0  
DMI_TXP0  
DMI_TXP0  
Datasheet  
345  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
R4  
R5  
VSS  
RSV  
VSS  
EXP_RXN15  
EXP_RXP15  
VSS  
VSS  
EXP_RXN15  
EXP_RXP15  
VSS  
VSS  
EXP_RXN15  
EXP_RXP15  
VSS  
VSS  
RSV  
VSS  
RSV  
R6  
RSV  
RSV  
RSV  
R7  
VSS  
VSS  
VSS  
R8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
T1  
RSV  
EXP_RXN11  
VSS  
EXP_RXN11  
VSS  
EXP_RXN11  
VSS  
RSV  
RSV  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HA25#  
HA17#  
RSV  
HA25#  
HA17#  
RSV  
HA25#  
HA17#  
RSV  
HA25#  
HA17#  
RSV  
HA25#  
HA17#  
RSV  
HA25#  
HA17#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_A58  
HBREQ0#  
SDQ_A59  
RSV  
SDQ_A58  
HBREQ0#  
SDQ_A59  
RSV  
SDQ_A58  
HBREQ0#  
SDQ_A59  
RSV  
SDQ_A58  
HBREQ0#  
SDQ_A59  
RSV  
SDQ_A58  
HBREQ0#  
SDQ_A59  
RSV  
SDQ_A58  
HBREQ0#  
SDQ_A59  
RSV  
DMI_TXP1  
VSS  
DMI_TXP1  
VSS  
DMI_TXP1  
VSS  
DMI_TXP1  
VSS  
DMI_TXP1  
VSS  
DMI_TXP1  
VSS  
T2  
T3  
DMI_TXN0  
VSS  
DMI_TXN0  
VSS  
DMI_TXN0  
VSS  
DMI_TXN0  
VSS  
DMI_TXN0  
VSS  
DMI_TXN0  
VSS  
T4  
T5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
T6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
T7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
T8  
DMI_RXN1  
DMI_RXN1  
DMI_RXN1  
DMI_RXN1  
DMI_RXN1  
DMI_RXN1  
346  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T31  
T32  
T33  
T34  
T35  
U1  
DMI_RXP1  
VSS  
DMI_RXP1  
VSS  
DMI_RXP1  
VSS  
DMI_RXP1  
VSS  
DMI_RXP1  
VSS  
DMI_RXP1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
HA30#  
HA27#  
VSS  
HA30#  
HA27#  
VSS  
HA30#  
HA27#  
VSS  
HA30#  
HA27#  
VSS  
HA30#  
HA27#  
VSS  
HA30#  
HA27#  
VSS  
HA31#  
VSS  
HA31#  
VSS  
HA31#  
VSS  
HA31#  
VSS  
HA31#  
VSS  
HA31#  
VSS  
HA28#  
VSS  
HA28#  
VSS  
HA28#  
VSS  
HA28#  
VSS  
HA28#  
VSS  
HA28#  
VSS  
SDQ_A62  
VSS  
SDQ_A62  
VSS  
SDQ_A62  
VSS  
SDQ_A62  
VSS  
SDQ_A62  
VSS  
SDQ_A62  
VSS  
SDQ_A63  
DMI_TXN1  
VSS  
SDQ_A63  
DMI_TXN1  
VSS  
SDQ_A63  
DMI_TXN1  
VSS  
SDQ_A63  
DMI_TXN1  
VSS  
SDQ_A63  
DMI_TXN1  
VSS  
SDQ_A63  
DMI_TXN1  
VSS  
U2  
U3  
DMI_TXP2  
VSS  
DMI_TXP2  
VSS  
DMI_TXP2  
VSS  
DMI_TXP2  
VSS  
DMI_TXP2  
VSS  
DMI_TXP2  
VSS  
U4  
U5  
DMI_RXP0  
DMI_RXN0  
VSS  
DMI_RXP0  
DMI_RXN0  
VSS  
DMI_RXP0  
DMI_RXN0  
VSS  
DMI_RXP0  
DMI_RXN0  
VSS  
DMI_RXP0  
DMI_RXN0  
VSS  
DMI_RXP0  
DMI_RXN0  
VSS  
U6  
U7  
U8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
U9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
U10  
U11  
U12  
U13  
DMI_RXN3  
VSS  
DMI_RXN3  
VSS  
DMI_RXN3  
VSS  
DMI_RXN3  
VSS  
DMI_RXN3  
VSS  
DMI_RXN3  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Datasheet  
347  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U31  
U32  
U33  
U34  
U35  
V1  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B58  
VSS  
SDQ_B58  
VSS  
SDQ_B58  
VSS  
SDQ_B58  
VSS  
SDQ_B58  
VSS  
SDQ_B58  
VSS  
HA29#  
VSS  
HA29#  
VSS  
HA29#  
VSS  
HA29#  
VSS  
HA29#  
VSS  
HA29#  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDM_A7  
SDQS_A7  
RSV  
SDM_A7  
SDQS_A7  
RSV  
SDM_A7  
SDQS_A7  
RSV  
SDM_A7  
SDQS_A7  
RSV  
SDM_A7  
SDQS_A7  
RSV  
SDM_A7  
SDQS_A7  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V3  
DMI_TXN2  
VSS  
DMI_TXN2  
VSS  
DMI_TXN2  
VSS  
DMI_TXN2  
VSS  
DMI_TXN2  
VSS  
DMI_TXN2  
VSS  
V4  
V5  
DMI_TXP3  
VSS  
DMI_TXP3  
VSS  
DMI_TXP3  
VSS  
DMI_TXP3  
VSS  
DMI_TXP3  
VSS  
DMI_TXP3  
VSS  
V6  
V7  
DMI_RXP2  
DMI_RXN2  
VSS  
DMI_RXP2  
DMI_RXN2  
VSS  
DMI_RXP2  
DMI_RXN2  
VSS  
DMI_RXP2  
DMI_RXN2  
VSS  
DMI_RXP2  
DMI_RXN2  
VSS  
DMI_RXP2  
DMI_RXN2  
VSS  
V8  
V9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
DMI_RXP3  
VSS  
DMI_RXP3  
VSS  
DMI_RXP3  
VSS  
DMI_RXP3  
VSS  
DMI_RXP3  
VSS  
DMI_RXP3  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
348  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
V31  
V32  
V33  
V34  
V35  
W1  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B63  
SDQ_B59  
RSV  
SDQ_B63  
SDQ_B59  
RSV  
SDQ_B63  
SDQ_B59  
RSV  
SDQ_B63  
SDQ_B59  
RSV  
SDQ_B63  
SDQ_B59  
RSV  
SDQ_B63  
SDQ_B59  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_A57  
SDQ_A56  
VSS  
SDQ_A57  
SDQ_A56  
VSS  
SDQ_A57  
SDQ_A56  
VSS  
SDQ_A57  
SDQ_A56  
VSS  
SDQ_A57  
SDQ_A56  
VSS  
SDQ_A57  
SDQ_A56  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPI  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPI  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPI  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPI  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPI  
VSS  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
DMI_TXN3  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
EXP_COMPI  
VSS  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Datasheet  
349  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W31  
W32  
W33  
W34  
W35  
Y1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B62  
SDQS_B7  
VSS  
SDQ_B62  
SDQS_B7  
VSS  
SDQ_B62  
SDQS_B7  
VSS  
SDQ_B62  
SDQS_B7  
VSS  
SDQ_B62  
SDQS_B7  
VSS  
SDQ_B62  
SDQS_B7  
VSS  
SDQ_B57  
VSS  
SDQ_B57  
VSS  
SDQ_B57  
VSS  
SDQ_B57  
VSS  
SDQ_B57  
VSS  
SDQ_B57  
VSS  
SDM_B7  
VSS  
SDM_B7  
VSS  
SDM_B7  
VSS  
SDM_B7  
VSS  
SDM_B7  
VSS  
SDM_B7  
VSS  
SDQ_A61  
SDQ_A51  
SDQ_A60  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
SDQ_A61  
SDQ_A51  
SDQ_A60  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
SDQ_A61  
SDQ_A51  
SDQ_A60  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
SDQ_A61  
SDQ_A51  
SDQ_A60  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
SDQ_A61  
SDQ_A51  
SDQ_A60  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
SDQ_A61  
SDQ_A51  
SDQ_A60  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
EXP_COMP  
O
Y10  
EXP_COMPO  
EXP_COMPO  
EXP_COMPO  
EXP_COMPO  
EXP_COMPO  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Y27  
VSS  
NC  
VSS  
NC  
VSS  
NC  
VSS  
NC  
VSS  
NC  
VSS  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
SDQ_B60  
VSS  
SDQ_B60  
VSS  
SDQ_B60  
VSS  
SDQ_B60  
VSS  
SDQ_B60  
VSS  
SDQ_B60  
VSS  
350  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
Y28  
Y29  
RSV  
VSS  
RSV  
VSS  
RSV  
VSS  
RSV  
VSS  
RSV  
VSS  
RSV  
VSS  
Y30  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Y31  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Y32  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Y33  
SDQ_A50  
VSS  
SDQ_A50  
VSS  
SDQ_A50  
VSS  
SDQ_A50  
VSS  
SDQ_A50  
VSS  
SDQ_A50  
VSS  
Y34  
Y35  
SDQ_A55  
VSS  
SDQ_A55  
VSS  
SDQ_A55  
VSS  
SDQ_A55  
VSS  
SDQ_A55  
VSS  
SDQ_A55  
VSS  
AA1  
AA2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AA31  
AA32  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B61  
SDQ_B56  
RSV  
SDQ_B61  
SDQ_B56  
RSV  
SDQ_B61  
SDQ_B56  
RSV  
SDQ_B61  
SDQ_B56  
RSV  
SDQ_B61  
SDQ_B56  
RSV  
SDQ_B61  
SDQ_B56  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_A54  
SDQ_A54  
SDQ_A54  
SDQ_A54  
SDQ_A54  
SDQ_A54  
Datasheet  
351  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
AA33  
AA34  
AA35  
AB1  
SDM_A6  
SDQS_A6  
RSV  
SDM_A6  
SDQS_A6  
RSV  
SDM_A6  
SDQS_A6  
RSV  
SDM_A6  
SDQS_A6  
RSV  
SDM_A6  
SDQS_A6  
RSV  
SDM_A6  
SDQS_A6  
RSV  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB2  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB4  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB5  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB6  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB7  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB9  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB31  
AB32  
AB33  
AB34  
AB35  
AC1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B51  
SDQ_B50  
VSS  
SDQ_B51  
SDQ_B50  
VSS  
SDQ_B51  
SDQ_B50  
VSS  
SDQ_B51  
SDQ_B50  
VSS  
SDQ_B51  
SDQ_B50  
VSS  
SDQ_B51  
SDQ_B50  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQS_B6  
VSS  
SDQS_B6  
VSS  
SDQS_B6  
VSS  
SDQS_B6  
VSS  
SDQS_B6  
VSS  
SDQS_B6  
VSS  
SMA_A13  
SCLK_A2  
VSS  
SMA_A13  
SCLK_A2  
VSS  
SMA_A13  
SCLK_A2  
VSS  
SMA_A13  
SCLK_A2  
VSS  
SMA_A13  
SCLK_A2  
VSS  
SMA_A13  
SCLK_A2  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AC2  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
352  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
AC3  
AC4  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RSV  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RSV  
AC5  
VCC  
VCC  
VCC  
VCC  
AC6  
VCC  
VCC  
VCC  
VCC  
AC7  
VCC  
VCC  
VCC  
VCC  
AC8  
VCC  
VCC  
VCC  
VCC  
AC9  
VCC  
VCC  
VCC  
VCC  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC31  
AC32  
AC33  
AC34  
AC35  
AD1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B55  
VSS  
SDQ_B55  
VSS  
SDQ_B55  
VSS  
SDQ_B55  
VSS  
SDQ_B55  
VSS  
SDQ_B55  
VSS  
SDQ_B54  
VSS  
SDQ_B54  
VSS  
SDQ_B54  
VSS  
SDQ_B54  
VSS  
SDQ_B54  
VSS  
SDQ_B54  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SCLK_A2#  
SCLK_A5#  
SCLK_A5  
VCC  
SCLK_A2#  
RSV  
SCLK_A2#  
SCLK_A5#  
SCLK_A5  
VCC  
SCLK_A2#  
SCLK_A5#  
SCLK_A5  
VCC  
SCLK_A2#  
SCLK_A5#  
SCLK_A5  
VCC  
SCLK_A2#  
RSV  
RSV  
RSV  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AD2  
VCC  
VCC  
VCC  
VCC  
AD3  
VCC  
VCC  
VCC  
VCC  
AD4  
VCC  
VCC  
VCC  
VCC  
AD5  
VCC  
VCC  
VCC  
VCC  
AD6  
VCC  
VCC  
VCC  
VCC  
AD7  
VCC  
VCC  
VCC  
VCC  
Datasheet  
353  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
AD8  
AD9  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
AD32  
AD33  
AD34  
AD35  
AE1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B20  
VSS  
SDQ_B20  
VSS  
SDQ_B20  
VSS  
SDQ_B20  
VSS  
SDQ_B20  
VSS  
SDQ_B20  
VSS  
SDQ_B19  
SDQ_B23  
VSS  
SDQ_B19  
SDQ_B23  
VSS  
SDQ_B19  
SDQ_B23  
VSS  
SDQ_B19  
SDQ_B23  
VSS  
SDQ_B19  
SDQ_B23  
VSS  
SDQ_B19  
SDQ_B23  
VSS  
SDQ_A26  
SDQ_B24  
VSS  
SDQ_A26  
SDQ_B24  
VSS  
SDQ_A26  
SDQ_B24  
VSS  
SDQ_A26  
SDQ_B24  
VSS  
SDQ_A26  
SDQ_B24  
VSS  
SDQ_A26  
SDQ_B24  
VSS  
SDQS_B3  
SDQ_B31  
VSS  
SDQS_B3  
SDQ_B31  
VSS  
SDQS_B3  
SDQ_B31  
VSS  
SDQS_B3  
SDQ_B31  
VSS  
SDQS_B3  
SDQ_B31  
VSS  
SDQS_B3  
SDQ_B31  
VSS  
SDQ_B36  
SDM_B6  
VSS  
SDQ_B36  
SDM_B6  
VSS  
SDQ_B36  
SDM_B6  
VSS  
SDQ_B36  
SDM_B6  
VSS  
SDQ_B36  
SDM_B6  
VSS  
SDQ_B36  
SDM_B6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SCLK_B5#  
SCLK_B5  
NC  
RSV  
SCLK_B5#  
SCLK_B5  
NC  
SCLK_B5#  
SCLK_B5  
NC  
SCLK_B5#  
SCLK_B5  
NC  
RSV  
RSV  
RSV  
NC  
NC  
SDQ_A52  
SMA_B13  
SDQ_A52  
SMA_B13  
SDQ_A52  
SMA_B13  
SDQ_A52  
SMA_B13  
SDQ_A52  
SMA_B13  
SDQ_A52  
SMA_B13  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_A53  
SDQ_A5  
SDQ_A4  
SDQ_A0  
VSS  
SDQ_A53  
SDQ_A5  
SDQ_A4  
SDQ_A0  
VSS  
SDQ_A53  
SDQ_A5  
SDQ_A4  
SDQ_A0  
VSS  
SDQ_A53  
SDQ_A5  
SDQ_A4  
SDQ_A0  
VSS  
SDQ_A53  
SDQ_A5  
SDQ_A4  
SDQ_A0  
VSS  
SDQ_A53  
SDQ_A5  
SDQ_A4  
SDQ_A0  
VSS  
AE2  
AE3  
AE4  
AE5  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
AE6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE7  
SVREF0  
SVREF1  
VSS  
SVREF0  
SVREF1  
VSS  
SVREF0  
SVREF1  
VSS  
SVREF0  
SVREF1  
VSS  
SVREF0  
SVREF1  
VSS  
SVREF0  
SVREF1  
VSS  
AE8  
AE9  
SM_SLEWO  
UT1  
SM_SLEWOU  
T1  
SM_SLEWOUT  
1
AE10  
AE11  
SM_SLEWOUT1  
SDQ_B11  
SM_SLEWOUT1  
SDQ_B11  
SM_SLEWOUT1  
SDQ_B11  
SDQ_B11  
SDQ_B11  
SDQ_B11  
354  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE31  
AE32  
AE33  
AE34  
AE35  
AF1  
VSS  
SDQ_B16  
VSS  
VSS  
SDQ_B16  
VSS  
VSS  
SDQ_B16  
VSS  
VSS  
SDQ_B16  
VSS  
VSS  
SDQ_B16  
VSS  
VSS  
SDQ_B16  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV_TP0  
VSS  
RSV_TP0  
VSS  
RSV_TP0  
VSS  
RSV_TP0  
VSS  
RSV_TP0  
VSS  
RSV_TP0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_A30  
VSS  
SDQ_A30  
VSS  
SDQ_A30  
VSS  
SDQ_A30  
VSS  
SDQ_A30  
VSS  
SDQ_A30  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B26  
VSS  
SDQ_B26  
VSS  
SDQ_B26  
VSS  
SDQ_B26  
VSS  
SDQ_B26  
VSS  
SDQ_B26  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SCLK_B2#  
SCLK_B2  
SDQ_B53  
VSS  
SCLK_B2#  
SCLK_B2  
SDQ_B53  
VSS  
SCLK_B2#  
SCLK_B2  
SDQ_B53  
VSS  
SCLK_B2#  
SCLK_B2  
SDQ_B53  
VSS  
SCLK_B2#  
SCLK_B2  
SDQ_B53  
VSS  
SCLK_B2#  
SCLK_B2  
SDQ_B53  
VSS  
SDQ_B52  
VSS  
SDQ_B52  
VSS  
SDQ_B52  
VSS  
SDQ_B52  
VSS  
SDQ_B52  
VSS  
SDQ_B52  
VSS  
SDQ_B48  
VSS  
SDQ_B48  
VSS  
SDQ_B48  
VSS  
SDQ_B48  
VSS  
SDQ_B48  
VSS  
SDQ_B48  
VSS  
SDQ_A47  
SDQ_A49  
SDQ_A48  
VSS  
SDQ_A47  
SDQ_A49  
SDQ_A48  
VSS  
SDQ_A47  
SDQ_A49  
SDQ_A48  
VSS  
SDQ_A47  
SDQ_A49  
SDQ_A48  
VSS  
SDQ_A47  
SDQ_A49  
SDQ_A48  
VSS  
SDQ_A47  
SDQ_A49  
SDQ_A48  
VSS  
AF2  
SDM_A0  
SDQ_A1  
VSS  
SDM_A0  
SDQ_A1  
VSS  
SDM_A0  
SDQ_A1  
VSS  
SDM_A0  
SDQ_A1  
VSS  
SDM_A0  
SDQ_A1  
VSS  
SDM_A0  
SDQ_A1  
VSS  
AF3  
AF4  
AF5  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
AF6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AF7  
RSTIN#  
VSS  
RSTIN#  
VSS  
RSTIN#  
VSS  
RSTIN#  
VSS  
RSTIN#  
VSS  
RSTIN#  
VSS  
AF8  
SM_SLEWIN  
1
AF9  
SM_SLEWIN1  
SM_SLEWIN1  
SM_SLEWIN1  
SM_SLEWIN1  
SM_SLEWIN1  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
VSS  
SDQ_B10  
VSS  
VSS  
SDQ_B10  
VSS  
VSS  
SDQ_B10  
VSS  
VSS  
SDQ_B10  
VSS  
VSS  
SDQ_B10  
VSS  
VSS  
SDQ_B10  
VSS  
SDQ_B17  
SDQ_B22  
VSS  
SDQ_B17  
SDQ_B22  
VSS  
SDQ_B17  
SDQ_B22  
VSS  
SDQ_B17  
SDQ_B22  
VSS  
SDQ_B17  
SDQ_B22  
VSS  
SDQ_B17  
SDQ_B22  
VSS  
Datasheet  
355  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AF31  
AF32  
AF33  
AF34  
AF35  
AG1  
SDQ_A28  
SDQS_A3  
VSS  
SDQ_A28  
SDQS_A3  
VSS  
SDQ_A28  
SDQS_A3  
VSS  
SDQ_A28  
SDQS_A3  
VSS  
SDQ_A28  
SDQS_A3  
VSS  
SDQ_A28  
SDQS_A3  
VSS  
SDQ_A27  
RSV  
SDQ_A27  
RSV  
SDQ_A27  
RSV  
SDQ_A27  
RSV  
SDQ_A27  
RSV  
SDQ_A27  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B30  
SDQ_B32  
SDQ_B37  
SDQ_B33  
VSS  
SDQ_B30  
SDQ_B32  
SDQ_B37  
SDQ_B33  
VSS  
SDQ_B30  
SDQ_B32  
SDQ_B37  
SDQ_B33  
VSS  
SDQ_B30  
SDQ_B32  
SDQ_B37  
SDQ_B33  
VSS  
SDQ_B30  
SDQ_B32  
SDQ_B37  
SDQ_B33  
VSS  
SDQ_B30  
SDQ_B32  
SDQ_B37  
SDQ_B33  
VSS  
SDQ_B49  
SDQ_B47  
VSS  
SDQ_B49  
SDQ_B47  
VSS  
SDQ_B49  
SDQ_B47  
VSS  
SDQ_B49  
SDQ_B47  
VSS  
SDQ_B49  
SDQ_B47  
VSS  
SDQ_B49  
SDQ_B47  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_A46  
SDQ_A43  
VSS  
SDQ_A46  
SDQ_A43  
VSS  
SDQ_A46  
SDQ_A43  
VSS  
SDQ_A46  
SDQ_A43  
VSS  
SDQ_A46  
SDQ_A43  
VSS  
SDQ_A46  
SDQ_A43  
VSS  
SDQS_A0  
RSV  
SDQS_A0  
RSV  
SDQS_A0  
RSV  
SDQS_A0  
RSV  
SDQS_A0  
RSV  
SDQS_A0  
RSV  
AG2  
AG3  
SDQ_A6  
SRCOMP0  
VSS  
SDQ_A6  
SRCOMP0  
VSS  
SDQ_A6  
SRCOMP0  
VSS  
SDQ_A6  
SRCOMP0  
VSS  
SDQ_A6  
SRCOMP0  
VSS  
SDQ_A6  
SRCOMP0  
VSS  
AG4  
AG5  
AG6  
NC  
NC  
NC  
NC  
NC  
NC  
AG7  
PWROK  
SRCOMP1  
SDQ_B4  
SDQ_B14  
SDQ_B15  
VSS  
PWROK  
SRCOMP1  
SDQ_B4  
SDQ_B14  
SDQ_B15  
VSS  
PWROK  
SRCOMP1  
SDQ_B4  
SDQ_B14  
SDQ_B15  
VSS  
PWROK  
SRCOMP1  
SDQ_B4  
SDQ_B14  
SDQ_B15  
VSS  
PWROK  
SRCOMP1  
SDQ_B4  
SDQ_B14  
SDQ_B15  
VSS  
PWROK  
SRCOMP1  
SDQ_B4  
SDQ_B14  
SDQ_B15  
VSS  
AG8  
AG9  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B18  
VSS  
SDQ_B18  
VSS  
SDQ_B18  
VSS  
SDQ_B18  
VSS  
SDQ_B18  
VSS  
SDQ_B18  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDM_B3  
SDM_B3  
SDM_B3  
SDM_B3  
SDM_B3  
SDM_B3  
356  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AG31  
AG32  
AG33  
AG34  
AG35  
AH1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SCLK_B0#  
SDM_B4  
VSS  
SCLK_B0#  
SDM_B4  
VSS  
SCLK_B0#  
SDM_B4  
VSS  
SCLK_B0#  
SDM_B4  
VSS  
SCLK_B0#  
SDM_B4  
VSS  
SCLK_B0#  
SDM_B4  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_B46  
VSS  
SDQ_B46  
VSS  
SDQ_B46  
VSS  
SDQ_B46  
VSS  
SDQ_B46  
VSS  
SDQ_B46  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B42  
SDQ_B43  
SDQ_A42  
RSV  
SDQ_B42  
SDQ_B43  
SDQ_A42  
RSV  
SDQ_B42  
SDQ_B43  
SDQ_A42  
RSV  
SDQ_B42  
SDQ_B43  
SDQ_A42  
RSV  
SDQ_B42  
SDQ_B43  
SDQ_A42  
RSV  
SDQ_B42  
SDQ_B43  
SDQ_A42  
RSV  
SDM_A5  
SDQS_A5  
VSS  
SDM_A5  
SDQS_A5  
VSS  
SDM_A5  
SDQS_A5  
VSS  
SDM_A5  
SDQS_A5  
VSS  
SDM_A5  
SDQS_A5  
VSS  
SDM_A5  
SDQS_A5  
VSS  
AH2  
SDQ_A2  
SDQ_A7  
SDQ_B5  
VSS  
SDQ_A2  
SDQ_A7  
SDQ_B5  
VSS  
SDQ_A2  
SDQ_A7  
SDQ_B5  
VSS  
SDQ_A2  
SDQ_A7  
SDQ_B5  
VSS  
SDQ_A2  
SDQ_A7  
SDQ_B5  
VSS  
SDQ_A2  
SDQ_A7  
SDQ_B5  
VSS  
AH3  
AH4  
AH5  
AH6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AH7  
SDQ_B0  
VSS  
SDQ_B0  
VSS  
SDQ_B0  
VSS  
SDQ_B0  
VSS  
SDQ_B0  
VSS  
SDQ_B0  
VSS  
AH8  
AH9  
SDM_B1  
RSV  
SDM_B1  
RSV  
SDM_B1  
RSV  
SDM_B1  
RSV  
SDM_B1  
RSV  
SDM_B1  
RSV  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_B21  
SDM_B2  
VSS  
SDQ_B21  
SDM_B2  
VSS  
SDQ_B21  
SDM_B2  
VSS  
SDQ_B21  
SDM_B2  
VSS  
SDQ_B21  
SDM_B2  
VSS  
SDQ_B21  
SDM_B2  
VSS  
RSV_TP1  
SDM_A3  
VSS  
RSV_TP1  
SDM_A3  
VSS  
RSV_TP1  
SDM_A3  
VSS  
RSV_TP1  
SDM_A3  
VSS  
RSV_TP1  
SDM_A3  
VSS  
RSV_TP1  
SDM_A3  
VSS  
SDQ_A31  
SDQ_B29  
VSS  
SDQ_A31  
SDQ_B29  
VSS  
SDQ_A31  
SDQ_B29  
VSS  
SDQ_A31  
SDQ_B29  
VSS  
SDQ_A31  
SDQ_B29  
VSS  
SDQ_A31  
SDQ_B29  
VSS  
SDQ_B27  
SCLK_B0  
VSS  
SDQ_B27  
SCLK_B0  
VSS  
SDQ_B27  
SCLK_B0  
VSS  
SDQ_B27  
SCLK_B0  
VSS  
SDQ_B27  
SCLK_B0  
VSS  
SDQ_B27  
SCLK_B0  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
SDQS_B4  
SDQS_B4  
SDQS_B4  
SDQS_B4  
SDQS_B4  
SDQS_B4  
Datasheet  
357  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
AH26  
AH27  
AH28  
AH29  
AH30  
AH31  
AH32  
AH33  
AH34  
AH35  
AJ1  
VSS  
SDQ_A32  
SDQS_B5  
VSS  
VSS  
SDQ_A32  
SDQS_B5  
VSS  
VSS  
SDQ_A32  
SDQS_B5  
VSS  
VSS  
SDQ_A32  
SDQS_B5  
VSS  
VSS  
SDQ_A32  
SDQS_B5  
VSS  
VSS  
SDQ_A32  
SDQS_B5  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDM_B5  
VSS  
SDM_B5  
VSS  
SDM_B5  
VSS  
SDM_B5  
VSS  
SDM_B5  
VSS  
SDM_B5  
VSS  
SDQ_A45  
VSS  
SDQ_A45  
VSS  
SDQ_A45  
VSS  
SDQ_A45  
VSS  
SDQ_A45  
VSS  
SDQ_A45  
VSS  
SDQ_A41  
SDQ_A8  
SDQ_A3  
SDQ_A12  
VSS  
SDQ_A41  
SDQ_A8  
SDQ_A3  
SDQ_A12  
VSS  
SDQ_A41  
SDQ_A8  
SDQ_A3  
SDQ_A12  
VSS  
SDQ_A41  
SDQ_A8  
SDQ_A3  
SDQ_A12  
VSS  
SDQ_A41  
SDQ_A8  
SDQ_A3  
SDQ_A12  
VSS  
SDQ_A41  
SDQ_A8  
SDQ_A3  
SDQ_A12  
VSS  
AJ2  
AJ3  
AJ4  
AJ5  
SDM_B0  
SDQ_B1  
SDQ_B8  
SDQ_B12  
VSS  
SDM_B0  
SDQ_B1  
SDQ_B8  
SDQ_B12  
VSS  
SDM_B0  
SDQ_B1  
SDQ_B8  
SDQ_B12  
VSS  
SDM_B0  
SDQ_B1  
SDQ_B8  
SDQ_B12  
VSS  
SDM_B0  
SDQ_B1  
SDQ_B8  
SDQ_B12  
VSS  
SDM_B0  
SDQ_B1  
SDQ_B8  
SDQ_B12  
VSS  
AJ6  
AJ7  
AJ8  
AJ9  
AJ10  
AJ11  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SCLK_B1#  
SCLK_B1#  
SCLK_B1#  
SCLK_B1#  
SCLK_B1#  
SCLK_B1#  
SM_SLEWIN  
0
AJ12  
SM_SLEWIN0  
SM_SLEWIN0  
SM_SLEWIN0  
SM_SLEWIN0  
SM_SLEWIN0  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
VSS  
NC  
VSS  
NC  
VSS  
NC  
VSS  
NC  
VSS  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_A29  
RSV  
SDQ_A29  
RSV  
SDQ_A29  
RSV  
SDQ_A29  
RSV  
SDQ_A29  
RSV  
SDQ_A29  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_B38  
SDQ_B35  
VSS  
SDQ_B38  
SDQ_B35  
VSS  
SDQ_B38  
SDQ_B35  
VSS  
SDQ_B38  
SDQ_B35  
VSS  
SDQ_B38  
SDQ_B35  
VSS  
SDQ_B38  
SDQ_B35  
VSS  
SDQ_A37  
SDQ_B40  
SDQ_A37  
SDQ_B40  
SDQ_A37  
SDQ_B40  
SDQ_A37  
SDQ_B40  
SDQ_A37  
SDQ_B40  
SDQ_A37  
SDQ_B40  
358  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
AJ30  
AJ31  
AJ32  
AJ33  
AJ34  
AJ35  
AK1  
VSS  
SDQ_B41  
VSS  
VSS  
SDQ_B41  
VSS  
VSS  
SDQ_B41  
VSS  
VSS  
SDQ_B41  
VSS  
VSS  
SDQ_B41  
VSS  
VSS  
SDQ_B41  
VSS  
SDQ_A44  
SDQ_A40  
VSS  
SDQ_A44  
SDQ_A40  
VSS  
SDQ_A44  
SDQ_A40  
VSS  
SDQ_A44  
SDQ_A40  
VSS  
SDQ_A44  
SDQ_A40  
VSS  
SDQ_A44  
SDQ_A40  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK2  
SDQ_A9  
SDQ_A13  
VSS  
SDQ_A9  
SDQ_A13  
VSS  
SDQ_A9  
SDQ_A13  
VSS  
SDQ_A9  
SDQ_A13  
VSS  
SDQ_A9  
SDQ_A13  
VSS  
SDQ_A9  
SDQ_A13  
VSS  
AK3  
AK4  
AK5  
SDQS_B0  
VSS  
SDQS_B0  
VSS  
SDQS_B0  
VSS  
SDQS_B0  
VSS  
SDQS_B0  
VSS  
SDQS_B0  
VSS  
AK6  
AK7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AK9  
SCLK_B4  
SDQS_B1  
VSS  
SCLK_B4  
SDQS_B1  
VSS  
SCLK_B4  
SDQS_B1  
VSS  
SCLK_B4  
SDQS_B1  
VSS  
SCLK_B4  
SDQS_B1  
VSS  
RSV  
AK10  
AK11  
SDQS_B1  
VSS  
SM_SLEWO  
UT0  
SM_SLEWOU  
T0  
SM_SLEWOUT  
0
AK12  
SM_SLEWOUT0  
SM_SLEWOUT0  
SM_SLEWOUT0  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AK31  
AK32  
AK33  
SDQS_B2  
VSS  
SDQS_B2  
VSS  
SDQS_B2  
VSS  
SDQS_B2  
VSS  
SDQS_B2  
VSS  
SDQS_B2  
VSS  
RSV_TP3  
SDQ_A24  
VSS  
RSV_TP3  
SDQ_A24  
VSS  
RSV_TP3  
SDQ_A24  
VSS  
RSV_TP3  
SDQ_A24  
VSS  
RSV_TP3  
SDQ_A24  
VSS  
RSV_TP3  
SDQ_A24  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_B25  
VSS  
SDQ_B25  
VSS  
SDQ_B25  
VSS  
SDQ_B25  
VSS  
SDQ_B25  
VSS  
SDQ_B25  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SCLK_B3#  
VSS  
RSV  
SCLK_B3#  
VSS  
SCLK_B3#  
VSS  
SCLK_B3#  
VSS  
RSV  
RSV  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SDQ_A33  
VSS  
SDQ_A33  
VSS  
SDQ_A33  
VSS  
SDQ_A33  
VSS  
SDQ_A33  
VSS  
SDQ_A33  
VSS  
SDM_A4  
VSS  
SDM_A4  
VSS  
SDM_A4  
VSS  
SDM_A4  
VSS  
SDM_A4  
VSS  
SDM_A4  
VSS  
SDQ_A35  
SDQ_B45  
SDQ_B44  
SDQ_A35  
SDQ_B45  
SDQ_B44  
SDQ_A35  
SDQ_B45  
SDQ_B44  
SDQ_A35  
SDQ_B45  
SDQ_B44  
SDQ_A35  
SDQ_B45  
SDQ_B44  
SDQ_A35  
SDQ_B45  
SDQ_B44  
Datasheet  
359  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
AK34  
AK35  
AL1  
SCS_A2#  
VCCSM  
SDM_A1  
RSV  
SCS_A2#  
VCCSM  
SDM_A1  
RSV  
SCS_A2#  
VCCSM  
SDM_A1  
RSV  
SCS_A2#  
VCCSM  
SDM_A1  
RSV  
SCS_A2#  
VCCSM  
SDM_A1  
RSV  
RSV  
VCCSM  
SDM_A1  
RSV  
AL2  
AL3  
SDQS_A1  
RSV  
SDQS_A1  
RSV  
SDQS_A1  
RSV  
SDQS_A1  
RSV  
SDQS_A1  
RSV  
SDQS_A1  
RSV  
AL4  
AL5  
SDQ_B2  
SDQ_B7  
SDQ_B9  
SDQ_B13  
SCLK_B4#  
VSS  
SDQ_B2  
SDQ_B7  
SDQ_B9  
SDQ_B13  
RSV  
SDQ_B2  
SDQ_B7  
SDQ_B9  
SDQ_B13  
SCLK_B4#  
VSS  
SDQ_B2  
SDQ_B7  
SDQ_B9  
SDQ_B13  
SCLK_B4#  
VSS  
SDQ_B2  
SDQ_B7  
SDQ_B9  
SDQ_B13  
SCLK_B4#  
VSS  
SDQ_B2  
SDQ_B7  
SDQ_B9  
SDQ_B13  
RSV  
AL6  
AL7  
AL8  
AL9  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AL31  
AL32  
AL33  
AL34  
AL35  
AM1  
AM2  
AM3  
VSS  
VSS  
SCLK_B1  
SCKE_A0  
VSS  
SCLK_B1  
SCKE_A0  
VSS  
SCLK_B1  
SCKE_A0  
VSS  
SCLK_B1  
SCKE_A0  
VSS  
SCLK_B1  
SCKE_A0  
VSS  
SCLK_B1  
SCKE_A0  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SMA_B7  
VSS  
SMA_B7  
VSS  
SMA_B7  
VSS  
SMA_B7  
VSS  
SMA_B7  
VSS  
SMA_B7  
VSS  
SDQ_A25  
SDQ_B28  
VSS  
SDQ_A25  
SDQ_B28  
VSS  
SDQ_A25  
SDQ_B28  
VSS  
SDQ_A25  
SDQ_B28  
VSS  
SDQ_A25  
SDQ_B28  
VSS  
SDQ_A25  
SDQ_B28  
VSS  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SCLK_B3  
RSV  
RSV  
SCLK_B3  
RSV  
SCLK_B3  
RSV  
SCLK_B3  
RSV  
RSV  
RSV  
RSV  
SDQ_B34  
SDQ_B39  
SDQ_A36  
NC  
SDQ_B34  
SDQ_B39  
SDQ_A36  
NC  
SDQ_B34  
SDQ_B39  
SDQ_A36  
NC  
SDQ_B34  
SDQ_B39  
SDQ_A36  
NC  
SDQ_B34  
SDQ_B39  
SDQ_A36  
NC  
SDQ_B34  
SDQ_B39  
SDQ_A36  
NC  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDQ_A38  
SDQ_A39  
VSS  
SDQ_A38  
SDQ_A39  
VSS  
SDQ_A38  
SDQ_A39  
VSS  
SDQ_A38  
SDQ_A39  
VSS  
SDQ_A38  
SDQ_A39  
VSS  
SDQ_A38  
SDQ_A39  
VSS  
SCS_A3#  
SCAS_A#  
SCS_A1#  
RSV  
SCS_A3#  
SCAS_A#  
SCS_A1#  
SCS_A3#  
SCAS_A#  
SCS_A1#  
SCS_A3#  
SCAS_A#  
SCS_A1#  
RSV  
SCAS_A#  
SCS_A1#  
SCAS_A#  
SCS_A1#  
SCLK_A4  
SCLK_A4#  
RSV  
SCLK_A4  
SCLK_A4#  
SCLK_A4  
SCLK_A4#  
SCLK_A4  
SCLK_A4#  
RSV  
RSV  
RSV  
360  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
AM4  
AM5  
VSS  
SDQ_B6  
VSS  
VSS  
SDQ_B6  
VSS  
VSS  
SDQ_B6  
VSS  
VSS  
SDQ_B6  
VSS  
VSS  
SDQ_B6  
VSS  
VSS  
SDQ_B6  
VSS  
AM6  
AM7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM9  
SCKE_B1  
VCCSM  
VCCSM  
SMA_B12  
VCCSM  
VCCSM  
SMA_A9  
VCCSM  
VCCSM  
SMA_B0  
VCCSM  
VCCSM  
SMA_A4  
VCCSM  
VCCSM  
SCLK_A0  
VCCSM  
VCCSM  
SBS_B0  
VCCSM  
VSS  
SCKE_B1  
VCCSM  
VCCSM  
SMA_B12  
VCCSM  
VCCSM  
SMA_A9  
VCCSM  
VCCSM  
SMA_B0  
VCCSM  
VCCSM  
SMA_A4  
VCCSM  
VCCSM  
SCLK_A0  
VCCSM  
VCCSM  
SBS_B0  
VCCSM  
VSS  
SCKE_B1  
VCCSM  
VCCSM  
SMA_B12  
VCCSM  
VCCSM  
SMA_A9  
VCCSM  
VCCSM  
SMA_B0  
VCCSM  
VCCSM  
SMA_A4  
VCCSM  
VCCSM  
SCLK_A0  
VCCSM  
VCCSM  
SBS_B0  
VCCSM  
VSS  
SCKE_B1  
VCCSM  
VCCSM  
SMA_B12  
VCCSM  
VCCSM  
SMA_A9  
VCCSM  
VCCSM  
SMA_B0  
VCCSM  
VCCSM  
SMA_A4  
VCCSM  
VCCSM  
SCLK_A0  
VCCSM  
VCCSM  
SBS_B0  
VCCSM  
VSS  
SCKE_B1  
VCCSM  
VCCSM  
SMA_B12  
VCCSM  
VCCSM  
SMA_A9  
VCCSM  
VCCSM  
SMA_B0  
VCCSM  
VCCSM  
SMA_A4  
VCCSM  
VCCSM  
SCLK_A0  
VCCSM  
VCCSM  
SBS_B0  
VCCSM  
VSS  
SCKE_B1  
VCCSM  
VCCSM  
SMA_B12  
VCCSM  
VCCSM  
SMA_A9  
VCCSM  
VCCSM  
SMA_B0  
VCCSM  
VCCSM  
SMA_A4  
VCCSM  
VCCSM  
SCLK_A0  
VCCSM  
VCCSM  
SBS_B0  
VCCSM  
VSS  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
AM31  
AM32  
AM33  
AM34  
AM35  
AN1  
SDQS_A4  
VSS  
SDQS_A4  
VSS  
SDQS_A4  
VSS  
SDQS_A4  
VSS  
SDQS_A4  
VSS  
SDQS_A4  
VSS  
VCCSM  
SCS_B3#  
SCS_A0#  
VCCSM  
RSV  
VCCSM  
SCS_B3#  
SCS_A0#  
VCCSM  
SCS_B3#  
SCS_A0#  
VCCSM  
SCS_B3#  
SCS_A0#  
VCCSM  
RSV  
SCS_A0#  
SCS_A0#  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AN2  
SCLK_A1  
SCLK_A1#  
SDQ_A10  
SDQ_A20  
SDQ_B3  
SDM_A2  
SDQ_A18  
SCLK_A1  
SCLK_A1#  
SDQ_A10  
SDQ_A20  
SDQ_B3  
SDM_A2  
SDQ_A18  
SCLK_A1  
SCLK_A1#  
SDQ_A10  
SDQ_A20  
SDQ_B3  
SDM_A2  
SDQ_A18  
SCLK_A1  
SCLK_A1#  
SDQ_A10  
SDQ_A20  
SDQ_B3  
SDM_A2  
SDQ_A18  
SCLK_A1  
SCLK_A1#  
SDQ_A10  
SDQ_A20  
SDQ_B3  
SDM_A2  
SDQ_A18  
SCLK_A1  
SCLK_A1#  
SDQ_A10  
SDQ_A20  
SDQ_B3  
SDM_A2  
SDQ_A18  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
Datasheet  
361  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AP1  
SDQ_A23  
SCKE_B0  
SCKE_A1  
SDQ_A23  
SCKE_B0  
SCKE_A1  
SDQ_A23  
SCKE_B0  
SCKE_A1  
SDQ_A23  
SCKE_B0  
SCKE_A1  
SDQ_A23  
SCKE_B0  
SCKE_A1  
SDQ_A23  
SCKE_B0  
SCKE_A1  
SMA_B9  
RSV_TP2  
SMA_B5  
SMA_A7  
SMA_B2  
SMA_A8  
NC  
SMA_B9  
RSV_TP2  
SMA_B5  
SMA_A7  
SMA_B2  
SMA_A8  
NC  
SMA_B9  
RSV_TP2  
SMA_B5  
SMA_A7  
SMA_B2  
SMA_A8  
NC  
SMA_B9  
RSV_TP2  
SMA_B5  
SMA_A7  
SMA_B2  
SMA_A8  
NC  
SMA_B9  
RSV_TP2  
SMA_B5  
SMA_A7  
SMA_B2  
SMA_A8  
NC  
SMA_B9  
RSV_TP2  
SMA_B5  
SMA_A7  
SMA_B2  
SMA_A8  
NC  
SMA_B10  
SMA_A2  
SMA_A0  
SMA_A10  
SMA_B10  
SMA_A2  
SMA_A0  
SMA_A10  
SMA_B10  
SMA_A2  
SMA_A0  
SMA_A10  
SMA_B10  
SMA_A2  
SMA_A0  
SMA_A10  
SMA_B10  
SMA_A2  
SMA_A0  
SMA_A10  
SMA_B10  
SMA_A2  
SMA_A0  
SMA_A10  
SCLK_A0#  
SCLK_A3#  
SCAS_B#  
SBS_A0  
SRAS_A#  
SDQ_A34  
RSV  
SCLK_A0#  
SCLK_A3#  
SCAS_B#  
SBS_A0  
SRAS_A#  
SDQ_A34  
RSV  
SCLK_A0#  
SCLK_A3#  
SCAS_B#  
SBS_A0  
SRAS_A#  
SDQ_A34  
RSV  
SCLK_A0#  
SCLK_A3#  
SCAS_B#  
SBS_A0  
SRAS_A#  
SDQ_A34  
RSV  
SCLK_A0#  
SCLK_A3#  
SCAS_B#  
SBS_A0  
SRAS_A#  
SDQ_A34  
RSV  
SCLK_A0#  
RSV  
SCAS_B#  
SBS_A0  
SRAS_A#  
SDQ_A34  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SCS_B2#  
SCS_B1#  
VCCSM  
NC  
RSV  
SCS_B2#  
SCS_B1#  
VCCSM  
NC  
SCS_B2#  
SCS_B1#  
VCCSM  
NC  
SCS_B2#  
SCS_B1#  
VCCSM  
NC  
RSV  
SCS_B1#  
VCCSM  
NC  
SCS_B1#  
VCCSM  
NC  
AP2  
SDQ_A14  
SDQ_A15  
SDQ_A11  
SDQ_A16  
SDQ_A21  
SDQS_A2  
VSS  
SDQ_A14  
SDQ_A15  
SDQ_A11  
SDQ_A16  
SDQ_A21  
SDQS_A2  
VSS  
SDQ_A14  
SDQ_A15  
SDQ_A11  
SDQ_A16  
SDQ_A21  
SDQS_A2  
VSS  
SDQ_A14  
SDQ_A15  
SDQ_A11  
SDQ_A16  
SDQ_A21  
SDQS_A2  
VSS  
SDQ_A14  
SDQ_A15  
SDQ_A11  
SDQ_A16  
SDQ_A21  
SDQS_A2  
VSS  
SDQ_A14  
SDQ_A15  
SDQ_A11  
SDQ_A16  
SDQ_A21  
SDQS_A2  
VSS  
AP3  
AP4  
AP5  
AP6  
AP7  
AP8  
AP9  
SDQ_A19  
SCKE_B2  
SCKE_A2  
VCCSM  
SMA_A12  
SDQ_A19  
RSV  
SDQ_A19  
SCKE_B2  
SCKE_A2  
VCCSM  
SMA_A12  
SDQ_A19  
SCKE_B2  
SCKE_A2  
VCCSM  
SMA_A12  
SDQ_A19  
SCKE_B2  
SCKE_A2  
VCCSM  
SMA_A12  
SDQ_A19  
RSV  
AP10  
AP11  
AP12  
AP13  
RSV  
RSV  
VCCSM  
SMA_A12  
VCCSM  
SMA_A12  
362  
Datasheet  
Ballout and Package Information  
R
Intel®  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
82915GL  
GMCH6  
AP14  
AP15  
AP16  
AP17  
AP18  
AP19  
AP20  
AP21  
AP22  
AP23  
AP24  
AP25  
AP26  
AP27  
AP28  
AP29  
AP30  
AP31  
AP32  
AP33  
AP34  
AP35  
AR1  
SMA_B8  
SMA_A11  
VCCSM  
SMA_B6  
SMA_B1  
SMA_A5  
VCCSM  
SMA_A3  
SMA_A1  
RSV  
SMA_B8  
SMA_A11  
VCCSM  
SMA_B6  
SMA_B1  
SMA_A5  
VCCSM  
SMA_A3  
SMA_A1  
RSV  
SMA_B8  
SMA_A11  
VCCSM  
SMA_B6  
SMA_B1  
SMA_A5  
VCCSM  
SMA_A3  
SMA_A1  
RSV  
SMA_B8  
SMA_A11  
VCCSM  
SMA_B6  
SMA_B1  
SMA_A5  
VCCSM  
SMA_A3  
SMA_A1  
RSV  
SMA_B8  
SMA_A11  
VCCSM  
SMA_B6  
SMA_B1  
SMA_A5  
VCCSM  
SMA_A3  
SMA_A1  
RSV  
SMA_B8  
SMA_A11  
VCCSM  
SMA_B6  
SMA_B1  
SMA_A5  
VCCSM  
SMA_A3  
SMA_A1  
RSV  
VCCSM  
SCLK_A3  
SBS_A1  
SRAS_B#  
VCCSM  
RSV  
VCCSM  
RSV  
VCCSM  
SCLK_A3  
SBS_A1  
SRAS_B#  
VCCSM  
RSV  
VCCSM  
SCLK_A3  
SBS_A1  
SRAS_B#  
VCCSM  
RSV  
VCCSM  
SCLK_A3  
SBS_A1  
SRAS_B#  
VCCSM  
RSV  
VCCSM  
RSV  
SBS_A1  
SRAS_B#  
VCCSM  
RSV  
SBS_A1  
SRAS_B#  
VCCSM  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SWE_A#  
RSV  
SWE_A#  
RSV  
SWE_A#  
RSV  
SWE_A#  
RSV  
SWE_A#  
RSV  
SWE_A#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SCS_B0#  
NC  
SCS_B0#  
NC  
SCS_B0#  
NC  
SCS_B0#  
NC  
SCS_B0#  
NC  
SCS_B0#  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AR2  
NC  
NC  
NC  
NC  
NC  
NC  
AR3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AR4  
AR5  
SDQ_A17  
VSS  
SDQ_A17  
VSS  
SDQ_A17  
VSS  
SDQ_A17  
VSS  
SDQ_A17  
VSS  
SDQ_A17  
VSS  
AR6  
AR7  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
AR8  
SDQ_A22  
SCKE_B3  
VCCSM  
SCKE_A3  
SMA_B11  
VSS  
SDQ_A22  
RSV  
SDQ_A22  
SCKE_B3  
VCCSM  
SCKE_A3  
SMA_B11  
VSS  
SDQ_A22  
SCKE_B3  
VCCSM  
SCKE_A3  
SMA_B11  
VSS  
SDQ_A22  
SCKE_B3  
VCCSM  
SCKE_A3  
SMA_B11  
VSS  
SDQ_A22  
RSV  
AR9  
AR10  
AR11  
AR12  
AR13  
AR14  
AR15  
AR16  
AR17  
AR18  
VCCSM  
RSV  
VCCSM  
RSV  
SMA_B11  
VSS  
SMA_B11  
VSS  
VCCSM  
SMA_B4  
SMA_B3  
VSS  
VCCSM  
SMA_B4  
SMA_B3  
VSS  
VCCSM  
SMA_B4  
SMA_B3  
VSS  
VCCSM  
SMA_B4  
SMA_B3  
VSS  
VCCSM  
SMA_B4  
SMA_B3  
VSS  
VCCSM  
SMA_B4  
SMA_B3  
VSS  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
Datasheet  
363  
Ballout and Package Information  
R
Intel®  
82915GL  
GMCH6  
Intel®  
82915PL  
MCH5  
Ball  
#
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH 2  
Intel® 82915GV  
GMCH 3  
Intel® 82910GL  
GMCH 4  
AR19  
AR20  
AR21  
AR22  
AR23  
AR24  
AR25  
AR26  
AR27  
AR28  
AR29  
AR30  
AR31  
AR32  
AR33  
AR34  
AR35  
SBS_B1  
SMA_A6  
VSS  
SBS_B1  
SMA_A6  
VSS  
SBS_B1  
SMA_A6  
VSS  
SBS_B1  
SMA_A6  
VSS  
SBS_B1  
SMA_A6  
VSS  
SBS_B1  
SMA_A6  
VSS  
VCCSM  
RSV  
VCCSM  
RSV  
VCCSM  
RSV  
VCCSM  
RSV  
VCCSM  
RSV  
VCCSM  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCCSM  
SWE_B#  
RSV  
VCCSM  
SWE_B#  
RSV  
VCCSM  
SWE_B#  
RSV  
VCCSM  
SWE_B#  
RSV  
VCCSM  
SWE_B#  
RSV  
VCCSM  
SWE_B#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
NC  
VCCSM  
NC  
VCCSM  
NC  
VCCSM  
NC  
VCCSM  
NC  
VCCSM  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NOTES:  
1. DDR, PCI Express* x16 Graphics Interface, No DAC, No Intel® SDVO  
2. DDR, PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
3. DDR, No PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
4. DDR (One DIMM per Channel), No PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
5. DDR (One DIMM per Channel), PCI Express* x16 Graphics Interface, No DAC, No Intel® SDVO  
6. DDR, No PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
364  
Datasheet  
Ballout and Package Information  
R
Table 14-4. GMCH/MCH Ballout for DDR Systems (Sorted by Signal Name)  
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
H14  
BLUE  
RSV  
RSV  
RSV  
RSV  
BLUE  
BLUE#  
BLUE  
BLUE  
BLUE#  
BLUE#  
BLUE#  
J14  
H16  
E15  
D17  
M15  
L14  
U6  
BSEL0  
BSEL0  
BSEL0  
BSEL0  
BSEL0  
BSEL0  
BSEL1  
BSEL1  
BSEL1  
BSEL1  
BSEL1  
BSEL1  
BSEL2  
BSEL2  
BSEL2  
BSEL2  
BSEL2  
BSEL2  
DDC_CLK  
DDC_DATA  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
DREFCLKN  
DREFCLKP  
RSV  
RSV  
RSV  
DDC_CLK  
DDC_DATA  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
DREFCLKN  
DREFCLKP  
EXP_COMPI  
EXP_COMPO  
DDC_CLK  
DDC_DATA  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
DREFCLKN  
DREFCLKP  
RSV  
DDC_CLK  
DDC_DATA  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
DREFCLKN  
DREFCLKP  
RSV  
RSV  
RSV  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
DREFCLKN  
DREFCLKP  
EXP_COMPI  
EXP_COMPO  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
DREFCLKN  
DREFCLKP  
EXP_COMPI  
EXP_COMPO  
T8  
V8  
U10  
U5  
T9  
V7  
V10  
T3  
U1  
V3  
W5  
R3  
T1  
U3  
V5  
M12  
M13  
W10  
Y10  
RSV  
RSV  
RSV  
SDVOC_  
TVCLKIN-  
SDVOC_  
TVCLKIN-  
SDVOC_TVCLKIN-  
EXP_RXN0  
EXP_RXN0  
EXP_RXN0  
F11  
SDVOB_INT-  
SDVOC_STALL-  
RSV  
EXP_RXN1  
EXP_RXN2  
EXP_RXN3  
EXP_RXN4  
EXP_RXN5  
EXP_RXN6  
EXP_RXN7  
EXP_RXN8  
EXP_RXN9  
EXP_RXN1  
EXP_RXN2  
EXP_RXN3  
EXP_RXN4  
EXP_RXN5  
EXP_RXN6  
EXP_RXN7  
EXP_RXN8  
EXP_RXN9  
EXP_RXN1  
EXP_RXN2  
EXP_RXN3  
EXP_RXN4  
EXP_RXN5  
EXP_RXN6  
EXP_RXN7  
EXP_RXN8  
EXP_RXN9  
SDVOB_INT-  
SDVOC_STALL-  
RSV  
SDVOB_INT-  
SDVOC_STALL-  
RSV  
H11  
E9  
E7  
B4  
E5  
G5  
H7  
J5  
RSV  
RSV  
RSV  
SDVOC_INT-  
RSV  
SDVOC_INT-  
RSV  
SDVOC_INT-  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
K7  
Datasheet  
365  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
EXP_RXN10  
EXP_RXN11  
EXP_RXN12  
EXP_RXN13  
EXP_RXN14  
EXP_RXN15  
EXP_RXN10  
EXP_RXN11  
EXP_RXN12  
EXP_RXN13  
EXP_RXN14  
EXP_RXN15  
EXP_RXN10  
EXP_RXN11  
EXP_RXN12  
EXP_RXN13  
EXP_RXN14  
EXP_RXN15  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
L5  
R10  
M7  
N5  
P8  
R5  
SDVOC_  
TVCLKIN+  
SDVOC_  
TVCLKIN+  
SDVOC_TVCLKIN+  
EXP_RXP0  
EXP_RXP0  
EXP_RXP0  
E11  
SDVOB_INT+  
SDVOC_STALL+  
RSV  
EXP_RXP1  
EXP_RXP2  
EXP_RXP3  
EXP_RXP4  
EXP_RXP5  
EXP_RXP6  
EXP_RXP7  
EXP_RXP8  
EXP_RXP9  
EXP_RXP10  
EXP_RXP11  
EXP_RXP12  
EXP_RXP13  
EXP_RXP14  
EXP_RXP15  
EXP_SLR  
EXP_RXP1  
EXP_RXP2  
EXP_RXP3  
EXP_RXP4  
EXP_RXP5  
EXP_RXP6  
EXP_RXP7  
EXP_RXP8  
EXP_RXP9  
EXP_RXP10  
EXP_RXP11  
EXP_RXP12  
EXP_RXP13  
EXP_RXP14  
EXP_RXP15  
EXP_SLR  
EXP_RXP1  
EXP_RXP2  
EXP_RXP3  
EXP_RXP4  
EXP_RXP5  
EXP_RXP6  
EXP_RXP7  
EXP_RXP8  
EXP_RXP9  
EXP_RXP10  
EXP_RXP11  
EXP_RXP12  
EXP_RXP13  
EXP_RXP14  
EXP_RXP15  
EXP_SLR  
SDVOB_INT+  
SDVOC_STALL+  
RSV  
SDVOB_INT+  
SDVOC_STALL+  
RSV  
J11  
F9  
F7  
RSV  
RSV  
RSV  
B3  
D5  
G6  
H8  
J6  
SDVOC_INT+  
RSV  
SDVOC_INT+  
RSV  
SDVOC_INT+  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
K8  
L6  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
P10  
M8  
N6  
P7  
R6  
A16  
C9  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
SDVOB_RED-  
SDVOB_GREEN-  
SDVOB_BLUE-  
SDVOB_CLK-  
EXP_TXN0  
EXP_TXN1  
EXP_TXN2  
EXP_TXN3  
EXP_TXN0  
EXP_TXN1  
EXP_TXN2  
EXP_TXN3  
EXP_TXN0  
EXP_TXN1  
EXP_TXN2  
EXP_TXN3  
SDVOB_RED-  
SDVOB_RED-  
SDVOB_GREEN- SDVOB_GREEN- A8  
SDVOB_BLUE-  
SDVOB_CLK-  
SDVOB_BLUE-  
SDVOB_CLK-  
C7  
A6  
SDVOC_RED-/  
SDVOB_ALPHA-  
SDVOC_RED-/  
SDVOB_ALPHA-  
SDVOC_RED-/  
SDVOB_ALPHA-  
EXP_TXN4  
EXP_TXN4  
EXP_TXN4  
C5  
SDVOC_GREEN-  
EXP_TXN5  
EXP_TXN6  
EXP_TXN7  
EXP_TXN8  
EXP_TXN9  
EXP_TXN10  
EXP_TXN11  
EXP_TXN12  
EXP_TXN13  
EXP_TXN14  
EXP_TXN15  
EXP_TXN5  
EXP_TXN6  
EXP_TXN7  
EXP_TXN8  
EXP_TXN9  
EXP_TXN10  
EXP_TXN11  
EXP_TXN12  
EXP_TXN13  
EXP_TXN14  
EXP_TXN15  
EXP_TXN5  
EXP_TXN6  
EXP_TXN7  
EXP_TXN8  
EXP_TXN9  
EXP_TXN10  
EXP_TXN11  
EXP_TXN12  
EXP_TXN13  
EXP_TXN14  
EXP_TXN15  
SDVOC_GREEN- SDVOC_GREEN- D2  
SDVOC_BLUE-  
SDVOC_CLK-  
RSV  
SDVOC_BLUE-  
SDVOC_CLK-  
RSV  
SDVOC_BLUE-  
SDVOC_CLK-  
RSV  
F3  
G1  
H3  
J1  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
K3  
L1  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
M3  
N1  
P3  
R1  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
366  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
C10  
GMCH3  
SDVOB_RED+  
EXP_TXP0  
EXP_TXP1  
EXP_TXP0  
EXP_TXP1  
EXP_TXP0  
EXP_TXP1  
SDVOB_RED+  
SDVOB_RED+  
SDVOB_  
GREEN+  
SDVOB_  
GREEN+  
SDVOB_GREEN+  
A9  
SDVOB_BLUE+  
SDVOB_CLK+  
EXP_TXP2  
EXP_TXP3  
EXP_TXP2  
EXP_TXP3  
EXP_TXP2  
EXP_TXP3  
SDVOB_BLUE+  
SDVOB_CLK+  
SDVOB_BLUE+  
SDVOB_CLK+  
C8  
A7  
SDVOC_RED+/  
SDVOB_  
SDVOC_RED+/  
SDVOB_  
SDVOC_RED+/  
SDVOB_ALPHA+  
EXP_TXP4  
EXP_TXP5  
EXP_TXP4  
EXP_TXP5  
EXP_TXP4  
EXP_TXP5  
C6  
C2  
ALPHA+  
ALPHA+  
SDVOC_GREEN  
+
SDVOC_GREEN  
+
SDVOC_GREEN+  
SDVOC_BLUE+  
SDVOC_CLK+  
RSV  
EXP_TXP6  
EXP_TXP7  
EXP_TXP8  
EXP_TXP9  
EXP_TXP10  
EXP_TXP11  
EXP_TXP12  
EXP_TXP13  
EXP_TXP14  
EXP_TXP15  
EXTTS#  
GCLKN  
GCLKP  
RSV  
EXP_TXP6  
EXP_TXP7  
EXP_TXP8  
EXP_TXP9  
EXP_TXP10  
EXP_TXP11  
EXP_TXP12  
EXP_TXP13  
EXP_TXP14  
EXP_TXP15  
EXTTS#  
GCLKN  
GCLKP  
RSV  
EXP_TXP6  
EXP_TXP7  
EXP_TXP8  
EXP_TXP9  
EXP_TXP10  
EXP_TXP11  
EXP_TXP12  
EXP_TXP13  
EXP_TXP14  
EXP_TXP15  
EXTTS#  
GCLKN  
SDVOC_BLUE+  
SDVOC_CLK+  
RSV  
SDVOC_BLUE+  
SDVOC_CLK+  
RSV  
E3  
F1  
G3  
RSV  
RSV  
RSV  
H1  
RSV  
RSV  
RSV  
J3  
RSV  
RSV  
RSV  
K1  
RSV  
RSV  
RSV  
L3  
RSV  
RSV  
RSV  
M1  
RSV  
RSV  
RSV  
N3  
RSV  
RSV  
RSV  
P1  
EXTTS#  
GCLKN  
GCLKP  
GREEN  
GREEN#  
HA3#  
EXTTS#  
GCLKN  
GCLKP  
GREEN  
GREEN#  
HA3#  
EXTTS#  
GCLKN  
GCLKP  
GREEN  
GREEN#  
HA3#  
K16  
B11  
A11  
D14  
E14  
H29  
K29  
J29  
G30  
G32  
K30  
L29  
M30  
L31  
L28  
J28  
K27  
K33  
M28  
R29  
L26  
GCLKP  
GREEN  
GREEN#  
HA3#  
RSV  
RSV  
HA3#  
HA3#  
HA4#  
HA4#  
HA4#  
HA4#  
HA4#  
HA4#  
HA5#  
HA5#  
HA5#  
HA5#  
HA5#  
HA5#  
HA6#  
HA6#  
HA6#  
HA6#  
HA6#  
HA6#  
HA7#  
HA7#  
HA7#  
HA7#  
HA7#  
HA7#  
HA8#  
HA8#  
HA8#  
HA8#  
HA8#  
HA8#  
HA9#  
HA9#  
HA9#  
HA9#  
HA9#  
HA9#  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
HA15#  
HA16#  
HA17#  
HA18#  
HA10#  
HA10#  
HA10#  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
HA15#  
HA16#  
HA17#  
HA18#  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
HA15#  
HA16#  
HA17#  
HA18#  
HA11#  
HA11#  
HA11#  
HA12#  
HA12#  
HA12#  
HA13#  
HA13#  
HA13#  
HA14#  
HA14#  
HA14#  
HA15#  
HA15#  
HA15#  
HA16#  
HA16#  
HA16#  
HA17#  
HA17#  
HA17#  
HA18#  
HA18#  
HA18#  
Datasheet  
367  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADS#  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HD0  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADS#  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HD0  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADS#  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HD0  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADS#  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HD0  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADS#  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HD0  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADS#  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HD0  
N26  
M26  
N31  
P26  
N29  
P28  
R28  
N33  
T27  
T31  
U28  
T26  
T29  
M31  
J31  
N27  
M35  
E30  
R33  
M22  
M23  
G24  
J33  
HD1  
HD1  
HD1  
HD1  
HD1  
HD1  
H33  
J34  
HD2  
HD2  
HD2  
HD2  
HD2  
HD2  
HD3  
HD3  
HD3  
HD3  
HD3  
HD3  
G35  
H35  
G34  
F34  
G33  
D34  
C33  
D33  
B34  
C34  
B33  
C32  
B32  
E28  
C30  
HD4  
HD4  
HD4  
HD4  
HD4  
HD4  
HD5  
HD5  
HD5  
HD5  
HD5  
HD5  
HD6  
HD6  
HD6  
HD6  
HD6  
HD6  
HD7  
HD7  
HD7  
HD7  
HD7  
HD7  
HD8  
HD8  
HD8  
HD8  
HD8  
HD8  
HD9  
HD9  
HD9  
HD9  
HD9  
HD9  
HD10  
HD10  
HD10  
HD10  
HD10  
HD10  
HD11  
HD11  
HD11  
HD11  
HD11  
HD11  
HD12  
HD12  
HD12  
HD12  
HD12  
HD12  
HD13  
HD13  
HD13  
HD13  
HD13  
HD13  
HD14  
HD14  
HD14  
HD14  
HD14  
HD14  
HD15  
HD15  
HD15  
HD15  
HD15  
HD15  
HD16  
HD16  
HD16  
HD16  
HD16  
HD16  
HD17  
HD17  
HD17  
HD17  
HD17  
HD17  
368  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
D29  
GMCH3  
HD18  
HD19  
HD20  
HD21  
HD22  
HD23  
HD24  
HD25  
HD26  
HD27  
HD28  
HD29  
HD30  
HD31  
HD32  
HD33  
HD34  
HD35  
HD36  
HD37  
HD38  
HD39  
HD40  
HD41  
HD42  
HD43  
HD44  
HD45  
HD46  
HD47  
HD48  
HD49  
HD50  
HD51  
HD52  
HD53  
HD54  
HD55  
HD56  
HD57  
HD18  
HD19  
HD20  
HD21  
HD22  
HD23  
HD24  
HD25  
HD26  
HD27  
HD28  
HD29  
HD30  
HD31  
HD32  
HD33  
HD34  
HD35  
HD36  
HD37  
HD38  
HD39  
HD40  
HD41  
HD42  
HD43  
HD44  
HD45  
HD46  
HD47  
HD48  
HD49  
HD50  
HD51  
HD52  
HD53  
HD54  
HD55  
HD56  
HD57  
HD18  
HD19  
HD20  
HD21  
HD22  
HD23  
HD24  
HD25  
HD26  
HD27  
HD28  
HD29  
HD30  
HD31  
HD32  
HD33  
HD34  
HD35  
HD36  
HD37  
HD38  
HD39  
HD40  
HD41  
HD42  
HD43  
HD44  
HD45  
HD46  
HD47  
HD48  
HD49  
HD50  
HD51  
HD52  
HD53  
HD54  
HD55  
HD56  
HD57  
HD18  
HD19  
HD20  
HD21  
HD22  
HD23  
HD24  
HD25  
HD26  
HD27  
HD28  
HD29  
HD30  
HD31  
HD32  
HD33  
HD34  
HD35  
HD36  
HD37  
HD38  
HD39  
HD40  
HD41  
HD42  
HD43  
HD44  
HD45  
HD46  
HD47  
HD48  
HD49  
HD50  
HD51  
HD52  
HD53  
HD54  
HD55  
HD56  
HD57  
HD18  
HD19  
HD20  
HD21  
HD22  
HD23  
HD24  
HD25  
HD26  
HD27  
HD28  
HD29  
HD30  
HD31  
HD32  
HD33  
HD34  
HD35  
HD36  
HD37  
HD38  
HD39  
HD40  
HD41  
HD42  
HD43  
HD44  
HD45  
HD46  
HD47  
HD48  
HD49  
HD50  
HD51  
HD52  
HD53  
HD54  
HD55  
HD56  
HD57  
HD18  
HD19  
HD20  
HD21  
HD22  
HD23  
HD24  
HD25  
HD26  
HD27  
HD28  
HD29  
HD30  
HD31  
HD32  
HD33  
HD34  
HD35  
HD36  
HD37  
HD38  
HD39  
HD40  
HD41  
HD42  
HD43  
HD44  
HD45  
HD46  
HD47  
HD48  
HD49  
HD50  
HD51  
HD52  
HD53  
HD54  
HD55  
HD56  
HD57  
H28  
G29  
J27  
F28  
F27  
E27  
E25  
G25  
J25  
K25  
L25  
L23  
K23  
J22  
J24  
K22  
J21  
M21  
H23  
M19  
K21  
H20  
H19  
M18  
K18  
K17  
G18  
H18  
F17  
A25  
C27  
C31  
B30  
B31  
A31  
B27  
A29  
C28  
A28  
Datasheet  
369  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
HD58  
HD59  
HD58  
HD59  
HD58  
HD59  
HD58  
HD59  
HD58  
HD59  
HD58  
HD59  
C25  
C26  
D27  
A27  
E24  
B25  
L35  
J35  
E34  
J26  
K19  
B26  
M32  
E35  
F26  
F19  
C29  
E33  
H26  
J19  
B29  
P33  
L34  
N35  
L33  
E31  
B23  
F33  
E32  
H31  
G31  
F31  
K34  
P34  
J32  
D24  
A23  
E12  
N34  
A24  
HD60  
HD60  
HD60  
HD60  
HD60  
HD60  
HD61  
HD61  
HD61  
HD61  
HD61  
HD61  
HD62  
HD62  
HD62  
HD62  
HD62  
HD62  
HD63  
HD63  
HD63  
HD63  
HD63  
HD63  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDSTBP3#  
HEDRDY#  
HHIT#  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDSTBP3#  
HEDRDY#  
HHIT#  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDSTBP3#  
HEDRDY#  
HHIT#  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDSTBP3#  
HEDRDY#  
HHIT#  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDSTBP3#  
HEDRDY#  
HHIT#  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDSTBP3#  
HEDRDY#  
HHIT#  
HHITM#  
HLOCK#  
HPCREQ#  
HRCOMP  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HHITM#  
HLOCK#  
HPCREQ#  
HRCOMP  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HHITM#  
HLOCK#  
HPCREQ#  
HRCOMP  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HHITM#  
HLOCK#  
HPCREQ#  
HRCOMP  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HHITM#  
HLOCK#  
HPCREQ#  
HRCOMP  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HHITM#  
HLOCK#  
HPCREQ#  
HRCOMP  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HRS1#  
HRS1#  
HRS1#  
HRS1#  
HRS1#  
HRS1#  
HRS2#  
HRS2#  
HRS2#  
HRS2#  
HRS2#  
HRS2#  
HSCOMP  
HSWING  
HSYNC  
HSCOMP  
HSWING  
RSV  
HSCOMP  
HSWING  
RSV  
HSCOMP  
HSWING  
HSYNC  
HSCOMP  
HSWING  
HSYNC  
HSCOMP  
HSWING  
HSYNC  
HTRDY#  
HVREF  
HTRDY#  
HVREF  
HTRDY#  
HVREF  
HTRDY#  
HVREF  
HTRDY#  
HVREF  
HTRDY#  
HVREF  
370  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
M14  
GMCH3  
ICH_SYNC#  
MTYPE  
NC  
ICH_SYNC#  
MTYPE  
NC  
ICH_SYNC#  
MTYPE  
NC  
ICH_SYNC#  
MTYPE  
NC  
ICH_SYNC#  
MTYPE  
NC  
ICH_SYNC#  
MTYPE  
NC  
C15  
A2  
NC  
NC  
NC  
NC  
NC  
NC  
A34  
NC  
NC  
NC  
NC  
NC  
NC  
A35  
NC  
NC  
NC  
NC  
NC  
NC  
AA12  
AB12  
AC23  
AC24  
AD30  
AG6  
AH24  
AJ14  
AL28  
AN19  
AP1  
AP35  
AR1  
AR2  
AR34  
AR35  
B1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B35  
NC  
NC  
NC  
NC  
NC  
NC  
C16  
E16  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
F12  
NC  
NC  
NC  
NC  
NC  
NC  
F24  
NC  
NC  
NC  
NC  
NC  
NC  
G12  
H12  
H15  
H17  
J12  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
K12  
NC  
NC  
NC  
NC  
NC  
NC  
L12  
NC  
NC  
NC  
NC  
NC  
NC  
L19  
NC  
NC  
NC  
NC  
NC  
NC  
N12  
N22  
N23  
N24  
P12  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Datasheet  
371  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
P23  
P24  
NC  
NC  
NC  
NC  
NC  
NC  
P30  
NC  
NC  
NC  
NC  
NC  
NC  
R12  
NC  
NC  
NC  
NC  
NC  
NC  
R24  
NC  
NC  
NC  
NC  
NC  
NC  
T12  
NC  
NC  
NC  
NC  
NC  
NC  
U12  
NC  
NC  
NC  
NC  
NC  
NC  
V12  
NC  
NC  
NC  
NC  
NC  
NC  
W12  
Y12  
NC  
NC  
NC  
NC  
NC  
NC  
PWROK  
RED  
RED#  
REFSET  
RSTIN#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PWROK  
RSV  
RSV  
RSV  
RSTIN#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PWROK  
RSV  
RSV  
RSV  
RSTIN#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PWROK  
RED  
RED#  
REFSET  
RSTIN#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PWROK  
RED  
RED#  
REFSET  
RSTIN#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PWROK  
RED  
RED#  
REFSET  
RSTIN#  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
AG7  
F14  
G14  
A15  
AF7  
AA30  
AA31  
AA35  
AB29  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC30  
AE5  
AF20  
AF5  
AG17  
AG2  
AG26  
AG33  
AH10  
AH30  
372  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
GMCH3  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
AJ18  
AJ20  
AJ21  
AJ23  
AJ24  
AK18  
AK21  
AK24  
AL14  
AL2  
AL20  
AL21  
AL24  
AL29  
AL4  
AN31  
AN32  
AP23  
AP29  
AP30  
AP32  
AP33  
AR23  
AR24  
AR28  
AR29  
AR7  
B15  
C14  
F15  
G16  
K15  
M16  
R30  
R31  
R35  
U30  
U35  
V30  
V31  
Datasheet  
373  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
V32  
RSV  
RSV  
RSV  
RSV  
Y28  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Y30  
RSV_TP0  
RSV_TP1  
RSV_TP2  
RSV_TP3  
SBS_A0  
RSV_TP0  
RSV_TP1  
RSV_TP2  
RSV_TP3  
SBS_A0  
SBS_A1  
SBS_B0  
SBS_B1  
SCAS_A#  
SCAS_B#  
SCKE_A0  
SCKE_A1  
RSV  
RSV_TP0  
RSV_TP1  
RSV_TP2  
RSV_TP3  
SBS_A0  
RSV_TP0  
RSV_TP1  
RSV_TP2  
RSV_TP3  
SBS_A0  
RSV_TP0  
RSV_TP1  
RSV_TP2  
RSV_TP3  
SBS_A0  
RSV_TP0  
RSV_TP1  
RSV_TP2  
RSV_TP3  
SBS_A0  
SBS_A1  
SBS_B0  
SBS_B1  
SCAS_A#  
SCAS_B#  
SCKE_A0  
SCKE_A1  
RSV  
AE16  
AH15  
AN14  
AK15  
AN28  
AP26  
AM27  
AR19  
AL34  
AN27  
AL12  
AN11  
AP11  
AR11  
AN10  
AM9  
SBS_A1  
SBS_A1  
SBS_A1  
SBS_A1  
SBS_B0  
SBS_B0  
SBS_B0  
SBS_B0  
SBS_B1  
SBS_B1  
SBS_B1  
SBS_B1  
SCAS_A#  
SCAS_B#  
SCKE_A0  
SCKE_A1  
SCKE_A2  
SCKE_A3  
SCKE_B0  
SCKE_B1  
SCKE_B2  
SCKE_B3  
SCLK_A0  
SCLK_A0#  
SCLK_A1  
SCLK_A1#  
SCLK_A2  
SCLK_A2#  
SCLK_A3  
SCLK_A3#  
SCLK_A4  
SCLK_A4#  
SCLK_A5  
SCLK_A5#  
SCLK_B0  
SCLK_B0#  
SCLK_B1  
SCLK_B1#  
SCLK_B2  
SCLK_B2#  
SCLK_B3  
SCAS_A#  
SCAS_B#  
SCKE_A0  
SCKE_A1  
SCKE_A2  
SCKE_A3  
SCKE_B0  
SCKE_B1  
SCKE_B2  
SCKE_B3  
SCLK_A0  
SCLK_A0#  
SCLK_A1  
SCLK_A1#  
SCLK_A2  
SCLK_A2#  
SCLK_A3  
SCLK_A3#  
SCLK_A4  
SCLK_A4#  
SCLK_A5  
SCLK_A5#  
SCLK_B0  
SCLK_B0#  
SCLK_B1  
SCLK_B1#  
SCLK_B2  
SCLK_B2#  
SCLK_B3  
SCAS_A#  
SCAS_B#  
SCKE_A0  
SCKE_A1  
SCKE_A2  
SCKE_A3  
SCKE_B0  
SCKE_B1  
SCKE_B2  
SCKE_B3  
SCLK_A0  
SCLK_A0#  
SCLK_A1  
SCLK_A1#  
SCLK_A2  
SCLK_A2#  
SCLK_A3  
SCLK_A3#  
SCLK_A4  
SCLK_A4#  
SCLK_A5  
SCLK_A5#  
SCLK_B0  
SCLK_B0#  
SCLK_B1  
SCLK_B1#  
SCLK_B2  
SCLK_B2#  
SCLK_B3  
SCAS_A#  
SCAS_B#  
SCKE_A0  
SCKE_A1  
SCKE_A2  
SCKE_A3  
SCKE_B0  
SCKE_B1  
SCKE_B2  
SCKE_B3  
SCLK_A0  
SCLK_A0#  
SCLK_A1  
SCLK_A1#  
SCLK_A2  
SCLK_A2#  
SCLK_A3  
SCLK_A3#  
SCLK_A4  
SCLK_A4#  
SCLK_A5  
SCLK_A5#  
SCLK_B0  
SCLK_B0#  
SCLK_B1  
SCLK_B1#  
SCLK_B2  
SCLK_B2#  
SCLK_B3  
RSV  
RSV  
SCKE_B0  
SCKE_B1  
RSV  
SCKE_B0  
SCKE_B1  
RSV  
AP10  
AR9  
RSV  
RSV  
SCLK_A0  
SCLK_A0#  
SCLK_A1  
SCLK_A1#  
SCLK_A2  
SCLK_A2#  
RSV  
SCLK_A0  
SCLK_A0#  
SCLK_A1  
SCLK_A1#  
SCLK_A2  
SCLK_A2#  
RSV  
AM24  
AN25  
AN2  
AN3  
AB34  
AC33  
AP25  
AN26  
AM2  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
AM3  
RSV  
RSV  
AC35  
AC34  
AH22  
AG23  
AL11  
AJ11  
AE26  
AE25  
AL23  
RSV  
RSV  
SCLK_B0  
SCLK_B0#  
SCLK_B1  
SCLK_B1#  
SCLK_B2  
SCLK_B2#  
RSV  
SCLK_B0  
SCLK_B0#  
SCLK_B1  
SCLK_B1#  
SCLK_B2  
SCLK_B2#  
RSV  
374  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
GMCH3  
SCLK_B3#  
SCLK_B4  
SCLK_B4#  
SCLK_B5  
SCLK_B5#  
SCS_A0#  
SCS_A1#  
SCS_A2#  
SCS_A3#  
SCS_B0#  
SCS_B1#  
SCS_B2#  
SCS_B3#  
SDM_A0  
SDM_A1  
SDM_A2  
SDM_A3  
SDM_A4  
SDM_A5  
SDM_A6  
SDM_A7  
SDM_B0  
SDM_B1  
SDM_B2  
SDM_B3  
SDM_B4  
SDM_B5  
SDM_B6  
SDM_B7  
SDQ_A0  
SDQ_A1  
SDQ_A2  
SDQ_A3  
SDQ_A4  
SDQ_A5  
SDQ_A6  
SDQ_A7  
SDQ_A8  
SDQ_A9  
SDQ_A10  
RSV  
SCLK_B3#  
SCLK_B4  
SCLK_B4#  
SCLK_B5  
SCLK_B5#  
SCS_A0#  
SCS_A1#  
SCS_A2#  
SCS_A3#  
SCS_B0#  
SCS_B1#  
SCS_B2#  
SCS_B3#  
SDM_A0  
SDM_A1  
SDM_A2  
SDM_A3  
SDM_A4  
SDM_A5  
SDM_A6  
SDM_A7  
SDM_B0  
SDM_B1  
SDM_B2  
SDM_B3  
SDM_B4  
SDM_B5  
SDM_B6  
SDM_B7  
SDQ_A0  
SDQ_A1  
SDQ_A2  
SDQ_A3  
SDQ_A4  
SDQ_A5  
SDQ_A6  
SDQ_A7  
SDQ_A8  
SDQ_A9  
SDQ_A10  
SCLK_B3#  
SCLK_B4  
SCLK_B4#  
SCLK_B5  
SCLK_B5#  
SCS_A0#  
SCS_A1#  
SCS_A2#  
SCS_A3#  
SCS_B0#  
SCS_B1#  
SCS_B2#  
SCS_B3#  
SDM_A0  
SDM_A1  
SDM_A2  
SDM_A3  
SDM_A4  
SDM_A5  
SDM_A6  
SDM_A7  
SDM_B0  
SDM_B1  
SDM_B2  
SDM_B3  
SDM_B4  
SDM_B5  
SDM_B6  
SDM_B7  
SDQ_A0  
SDQ_A1  
SDQ_A2  
SDQ_A3  
SDQ_A4  
SDQ_A5  
SDQ_A6  
SDQ_A7  
SDQ_A8  
SDQ_A9  
SDQ_A10  
SCLK_B3#  
SCLK_B4  
SCLK_B4#  
SCLK_B5  
SCLK_B5#  
SCS_A0#  
SCS_A1#  
SCS_A2#  
SCS_A3#  
SCS_B0#  
SCS_B1#  
SCS_B2#  
SCS_B3#  
SDM_A0  
SDM_A1  
SDM_A2  
SDM_A3  
SDM_A4  
SDM_A5  
SDM_A6  
SDM_A7  
SDM_B0  
SDM_B1  
SDM_B2  
SDM_B3  
SDM_B4  
SDM_B5  
SDM_B6  
SDM_B7  
SDQ_A0  
SDQ_A1  
SDQ_A2  
SDQ_A3  
SDQ_A4  
SDQ_A5  
SDQ_A6  
SDQ_A7  
SDQ_A8  
SDQ_A9  
SDQ_A10  
RSV  
AK22  
AK9  
RSV  
RSV  
RSV  
RSV  
AL9  
RSV  
RSV  
AD29  
AD28  
AM34  
AL35  
AK34  
AL33  
AP34  
AN34  
AN33  
AM33  
AF2  
RSV  
RSV  
SCS_A0#  
SCS_A1#  
RSV  
SCS_A0#  
SCS_A1#  
RSV  
RSV  
RSV  
SCS_B0#  
SCS_B1#  
RSV  
SCS_B0#  
SCS_B1#  
RSV  
RSV  
RSV  
SDM_A0  
SDM_A1  
SDM_A2  
SDM_A3  
SDM_A4  
SDM_A5  
SDM_A6  
SDM_A7  
SDM_B0  
SDM_B1  
SDM_B2  
SDM_B3  
SDM_B4  
SDM_B5  
SDM_B6  
SDM_B7  
SDQ_A0  
SDQ_A1  
SDQ_A2  
SDQ_A3  
SDQ_A4  
SDQ_A5  
SDQ_A6  
SDQ_A7  
SDQ_A8  
SDQ_A9  
SDQ_A10  
SDM_A0  
SDM_A1  
SDM_A2  
SDM_A3  
SDM_A4  
SDM_A5  
SDM_A6  
SDM_A7  
SDM_B0  
SDM_B1  
SDM_B2  
SDM_B3  
SDM_B4  
SDM_B5  
SDM_B6  
SDM_B7  
SDQ_A0  
SDQ_A1  
SDQ_A2  
SDQ_A3  
SDQ_A4  
SDQ_A5  
SDQ_A6  
SDQ_A7  
SDQ_A8  
SDQ_A9  
SDQ_A10  
AL1  
AN7  
AH16  
AK29  
AG34  
AA33  
U33  
AJ5  
AH9  
AH13  
AG20  
AG24  
AH31  
AD24  
W31  
AE3  
AF3  
AH2  
AJ2  
AE2  
AE1  
AG3  
AH3  
AJ1  
AK2  
AN4  
Datasheet  
375  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
SDQ_A11  
SDQ_A12  
SDQ_A13  
SDQ_A14  
SDQ_A15  
SDQ_A16  
SDQ_A17  
SDQ_A18  
SDQ_A19  
SDQ_A20  
SDQ_A21  
SDQ_A22  
SDQ_A23  
SDQ_A24  
SDQ_A25  
SDQ_A26  
SDQ_A27  
SDQ_A28  
SDQ_A29  
SDQ_A30  
SDQ_A31  
SDQ_A32  
SDQ_A33  
SDQ_A34  
SDQ_A35  
SDQ_A36  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A40  
SDQ_A41  
SDQ_A42  
SDQ_A43  
SDQ_A44  
SDQ_A45  
SDQ_A46  
SDQ_A47  
SDQ_A48  
SDQ_A49  
SDQ_A50  
SDQ_A11  
SDQ_A12  
SDQ_A13  
SDQ_A14  
SDQ_A15  
SDQ_A16  
SDQ_A17  
SDQ_A18  
SDQ_A19  
SDQ_A20  
SDQ_A21  
SDQ_A22  
SDQ_A23  
SDQ_A24  
SDQ_A25  
SDQ_A26  
SDQ_A27  
SDQ_A28  
SDQ_A29  
SDQ_A30  
SDQ_A31  
SDQ_A32  
SDQ_A33  
SDQ_A34  
SDQ_A35  
SDQ_A36  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A40  
SDQ_A41  
SDQ_A42  
SDQ_A43  
SDQ_A44  
SDQ_A45  
SDQ_A46  
SDQ_A47  
SDQ_A48  
SDQ_A49  
SDQ_A50  
SDQ_A11  
SDQ_A12  
SDQ_A13  
SDQ_A14  
SDQ_A15  
SDQ_A16  
SDQ_A17  
SDQ_A18  
SDQ_A19  
SDQ_A20  
SDQ_A21  
SDQ_A22  
SDQ_A23  
SDQ_A24  
SDQ_A25  
SDQ_A26  
SDQ_A27  
SDQ_A28  
SDQ_A29  
SDQ_A30  
SDQ_A31  
SDQ_A32  
SDQ_A33  
SDQ_A34  
SDQ_A35  
SDQ_A36  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A40  
SDQ_A41  
SDQ_A42  
SDQ_A43  
SDQ_A44  
SDQ_A45  
SDQ_A46  
SDQ_A47  
SDQ_A48  
SDQ_A49  
SDQ_A50  
SDQ_A11  
SDQ_A12  
SDQ_A13  
SDQ_A14  
SDQ_A15  
SDQ_A16  
SDQ_A17  
SDQ_A18  
SDQ_A19  
SDQ_A20  
SDQ_A21  
SDQ_A22  
SDQ_A23  
SDQ_A24  
SDQ_A25  
SDQ_A26  
SDQ_A27  
SDQ_A28  
SDQ_A29  
SDQ_A30  
SDQ_A31  
SDQ_A32  
SDQ_A33  
SDQ_A34  
SDQ_A35  
SDQ_A36  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A40  
SDQ_A41  
SDQ_A42  
SDQ_A43  
SDQ_A44  
SDQ_A45  
SDQ_A46  
SDQ_A47  
SDQ_A48  
SDQ_A49  
SDQ_A50  
SDQ_A11  
SDQ_A12  
SDQ_A13  
SDQ_A14  
SDQ_A15  
SDQ_A16  
SDQ_A17  
SDQ_A18  
SDQ_A19  
SDQ_A20  
SDQ_A21  
SDQ_A22  
SDQ_A23  
SDQ_A24  
SDQ_A25  
SDQ_A26  
SDQ_A27  
SDQ_A28  
SDQ_A29  
SDQ_A30  
SDQ_A31  
SDQ_A32  
SDQ_A33  
SDQ_A34  
SDQ_A35  
SDQ_A36  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A40  
SDQ_A41  
SDQ_A42  
SDQ_A43  
SDQ_A44  
SDQ_A45  
SDQ_A46  
SDQ_A47  
SDQ_A48  
SDQ_A49  
SDQ_A50  
SDQ_A11  
SDQ_A12  
SDQ_A13  
SDQ_A14  
SDQ_A15  
SDQ_A16  
SDQ_A17  
SDQ_A18  
SDQ_A19  
SDQ_A20  
SDQ_A21  
SDQ_A22  
SDQ_A23  
SDQ_A24  
SDQ_A25  
SDQ_A26  
SDQ_A27  
SDQ_A28  
SDQ_A29  
SDQ_A30  
SDQ_A31  
SDQ_A32  
SDQ_A33  
SDQ_A34  
SDQ_A35  
SDQ_A36  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A40  
SDQ_A41  
SDQ_A42  
SDQ_A43  
SDQ_A44  
SDQ_A45  
SDQ_A46  
SDQ_A47  
SDQ_A48  
SDQ_A49  
SDQ_A50  
AP4  
AJ3  
AK3  
AP2  
AP3  
AP5  
AR5  
AN8  
AP9  
AN5  
AP6  
AR8  
AN9  
AK16  
AL17  
AD17  
AF19  
AF16  
AJ17  
AE19  
AH18  
AH27  
AK27  
AN30  
AK31  
AL27  
AJ28  
AL30  
AL31  
AJ34  
AH35  
AG32  
AF34  
AJ33  
AH33  
AF33  
AE33  
AE35  
AE34  
Y33  
376  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
W34  
GMCH3  
SDQ_A51  
SDQ_A52  
SDQ_A53  
SDQ_A54  
SDQ_A55  
SDQ_A56  
SDQ_A57  
SDQ_A58  
SDQ_A59  
SDQ_A60  
SDQ_A61  
SDQ_A62  
SDQ_A63  
SDQ_B0  
SDQ_A51  
SDQ_A52  
SDQ_A53  
SDQ_A54  
SDQ_A55  
SDQ_A56  
SDQ_A57  
SDQ_A58  
SDQ_A59  
SDQ_A60  
SDQ_A61  
SDQ_A62  
SDQ_A63  
SDQ_B0  
SDQ_A51  
SDQ_A52  
SDQ_A53  
SDQ_A54  
SDQ_A55  
SDQ_A56  
SDQ_A57  
SDQ_A58  
SDQ_A59  
SDQ_A60  
SDQ_A61  
SDQ_A62  
SDQ_A63  
SDQ_B0  
SDQ_A51  
SDQ_A52  
SDQ_A53  
SDQ_A54  
SDQ_A55  
SDQ_A56  
SDQ_A57  
SDQ_A58  
SDQ_A59  
SDQ_A60  
SDQ_A61  
SDQ_A62  
SDQ_A63  
SDQ_B0  
SDQ_A51  
SDQ_A52  
SDQ_A53  
SDQ_A54  
SDQ_A55  
SDQ_A56  
SDQ_A57  
SDQ_A58  
SDQ_A59  
SDQ_A60  
SDQ_A61  
SDQ_A62  
SDQ_A63  
SDQ_B0  
SDQ_A51  
SDQ_A52  
SDQ_A53  
SDQ_A54  
SDQ_A55  
SDQ_A56  
SDQ_A57  
SDQ_A58  
SDQ_A59  
SDQ_A60  
SDQ_A61  
SDQ_A62  
SDQ_A63  
SDQ_B0  
AD31  
AD35  
AA32  
Y35  
V34  
V33  
R32  
R34  
W35  
W33  
T33  
T35  
AH7  
AJ6  
SDQ_B1  
SDQ_B1  
SDQ_B1  
SDQ_B1  
SDQ_B1  
SDQ_B1  
SDQ_B2  
SDQ_B2  
SDQ_B2  
SDQ_B2  
SDQ_B2  
SDQ_B2  
AL5  
SDQ_B3  
SDQ_B3  
SDQ_B3  
SDQ_B3  
SDQ_B3  
SDQ_B3  
AN6  
AG9  
AH4  
AM5  
AL6  
SDQ_B4  
SDQ_B4  
SDQ_B4  
SDQ_B4  
SDQ_B4  
SDQ_B4  
SDQ_B5  
SDQ_B5  
SDQ_B5  
SDQ_B5  
SDQ_B5  
SDQ_B5  
SDQ_B6  
SDQ_B6  
SDQ_B6  
SDQ_B6  
SDQ_B6  
SDQ_B6  
SDQ_B7  
SDQ_B7  
SDQ_B7  
SDQ_B7  
SDQ_B7  
SDQ_B7  
SDQ_B8  
SDQ_B8  
SDQ_B8  
SDQ_B8  
SDQ_B8  
SDQ_B8  
AJ7  
SDQ_B9  
SDQ_B9  
SDQ_B9  
SDQ_B9  
SDQ_B9  
SDQ_B9  
AL7  
SDQ_B10  
SDQ_B11  
SDQ_B12  
SDQ_B13  
SDQ_B14  
SDQ_B15  
SDQ_B16  
SDQ_B17  
SDQ_B18  
SDQ_B19  
SDQ_B20  
SDQ_B21  
SDQ_B22  
SDQ_B23  
SDQ_B24  
SDQ_B25  
SDQ_B26  
SDQ_B10  
SDQ_B11  
SDQ_B12  
SDQ_B13  
SDQ_B14  
SDQ_B15  
SDQ_B16  
SDQ_B17  
SDQ_B18  
SDQ_B19  
SDQ_B20  
SDQ_B21  
SDQ_B22  
SDQ_B23  
SDQ_B24  
SDQ_B25  
SDQ_B26  
SDQ_B10  
SDQ_B11  
SDQ_B12  
SDQ_B13  
SDQ_B14  
SDQ_B15  
SDQ_B16  
SDQ_B17  
SDQ_B18  
SDQ_B19  
SDQ_B20  
SDQ_B21  
SDQ_B22  
SDQ_B23  
SDQ_B24  
SDQ_B25  
SDQ_B26  
SDQ_B10  
SDQ_B11  
SDQ_B12  
SDQ_B13  
SDQ_B14  
SDQ_B15  
SDQ_B16  
SDQ_B17  
SDQ_B18  
SDQ_B19  
SDQ_B20  
SDQ_B21  
SDQ_B22  
SDQ_B23  
SDQ_B24  
SDQ_B25  
SDQ_B26  
SDQ_B10  
SDQ_B11  
SDQ_B12  
SDQ_B13  
SDQ_B14  
SDQ_B15  
SDQ_B16  
SDQ_B17  
SDQ_B18  
SDQ_B19  
SDQ_B20  
SDQ_B21  
SDQ_B22  
SDQ_B23  
SDQ_B24  
SDQ_B25  
SDQ_B26  
SDQ_B10  
SDQ_B11  
SDQ_B12  
SDQ_B13  
SDQ_B14  
SDQ_B15  
SDQ_B16  
SDQ_B17  
SDQ_B18  
SDQ_B19  
SDQ_B20  
SDQ_B21  
SDQ_B22  
SDQ_B23  
SDQ_B24  
SDQ_B25  
SDQ_B26  
AF11  
AE11  
AJ8  
AL8  
AG10  
AG11  
AE13  
AF13  
AG14  
AD14  
AD12  
AH12  
AF14  
AD15  
AD18  
AK19  
AE22  
Datasheet  
377  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
SDQ_B27  
SDQ_B28  
SDQ_B29  
SDQ_B30  
SDQ_B31  
SDQ_B32  
SDQ_B33  
SDQ_B34  
SDQ_B35  
SDQ_B36  
SDQ_B37  
SDQ_B38  
SDQ_B39  
SDQ_B40  
SDQ_B41  
SDQ_B42  
SDQ_B43  
SDQ_B44  
SDQ_B45  
SDQ_B46  
SDQ_B47  
SDQ_B48  
SDQ_B49  
SDQ_B50  
SDQ_B51  
SDQ_B52  
SDQ_B53  
SDQ_B54  
SDQ_B55  
SDQ_B56  
SDQ_B57  
SDQ_B58  
SDQ_B59  
SDQ_B60  
SDQ_B61  
SDQ_B62  
SDQ_B63  
SDQS_A0  
SDQS_A1  
SDQS_A2  
SDQ_B27  
SDQ_B28  
SDQ_B29  
SDQ_B30  
SDQ_B31  
SDQ_B32  
SDQ_B33  
SDQ_B34  
SDQ_B35  
SDQ_B36  
SDQ_B37  
SDQ_B38  
SDQ_B39  
SDQ_B40  
SDQ_B41  
SDQ_B42  
SDQ_B43  
SDQ_B44  
SDQ_B45  
SDQ_B46  
SDQ_B47  
SDQ_B48  
SDQ_B49  
SDQ_B50  
SDQ_B51  
SDQ_B52  
SDQ_B53  
SDQ_B54  
SDQ_B55  
SDQ_B56  
SDQ_B57  
SDQ_B58  
SDQ_B59  
SDQ_B60  
SDQ_B61  
SDQ_B62  
SDQ_B63  
SDQS_A0  
SDQS_A1  
SDQS_A2  
SDQ_B27  
SDQ_B28  
SDQ_B29  
SDQ_B30  
SDQ_B31  
SDQ_B32  
SDQ_B33  
SDQ_B34  
SDQ_B35  
SDQ_B36  
SDQ_B37  
SDQ_B38  
SDQ_B39  
SDQ_B40  
SDQ_B41  
SDQ_B42  
SDQ_B43  
SDQ_B44  
SDQ_B45  
SDQ_B46  
SDQ_B47  
SDQ_B48  
SDQ_B49  
SDQ_B50  
SDQ_B51  
SDQ_B52  
SDQ_B53  
SDQ_B54  
SDQ_B55  
SDQ_B56  
SDQ_B57  
SDQ_B58  
SDQ_B59  
SDQ_B60  
SDQ_B61  
SDQ_B62  
SDQ_B63  
SDQS_A0  
SDQS_A1  
SDQS_A2  
SDQ_B27  
SDQ_B28  
SDQ_B29  
SDQ_B30  
SDQ_B31  
SDQ_B32  
SDQ_B33  
SDQ_B34  
SDQ_B35  
SDQ_B36  
SDQ_B37  
SDQ_B38  
SDQ_B39  
SDQ_B40  
SDQ_B41  
SDQ_B42  
SDQ_B43  
SDQ_B44  
SDQ_B45  
SDQ_B46  
SDQ_B47  
SDQ_B48  
SDQ_B49  
SDQ_B50  
SDQ_B51  
SDQ_B52  
SDQ_B53  
SDQ_B54  
SDQ_B55  
SDQ_B56  
SDQ_B57  
SDQ_B58  
SDQ_B59  
SDQ_B60  
SDQ_B61  
SDQ_B62  
SDQ_B63  
SDQS_A0  
SDQS_A1  
SDQS_A2  
SDQ_B27  
SDQ_B28  
SDQ_B29  
SDQ_B30  
SDQ_B31  
SDQ_B32  
SDQ_B33  
SDQ_B34  
SDQ_B35  
SDQ_B36  
SDQ_B37  
SDQ_B38  
SDQ_B39  
SDQ_B40  
SDQ_B41  
SDQ_B42  
SDQ_B43  
SDQ_B44  
SDQ_B45  
SDQ_B46  
SDQ_B47  
SDQ_B48  
SDQ_B49  
SDQ_B50  
SDQ_B51  
SDQ_B52  
SDQ_B53  
SDQ_B54  
SDQ_B55  
SDQ_B56  
SDQ_B57  
SDQ_B58  
SDQ_B59  
SDQ_B60  
SDQ_B61  
SDQ_B62  
SDQ_B63  
SDQS_A0  
SDQS_A1  
SDQS_A2  
SDQ_B27  
SDQ_B28  
SDQ_B29  
SDQ_B30  
SDQ_B31  
SDQ_B32  
SDQ_B33  
SDQ_B34  
SDQ_B35  
SDQ_B36  
SDQ_B37  
SDQ_B38  
SDQ_B39  
SDQ_B40  
SDQ_B41  
SDQ_B42  
SDQ_B43  
SDQ_B44  
SDQ_B45  
SDQ_B46  
SDQ_B47  
SDQ_B48  
SDQ_B49  
SDQ_B50  
SDQ_B51  
SDQ_B52  
SDQ_B53  
SDQ_B54  
SDQ_B55  
SDQ_B56  
SDQ_B57  
SDQ_B58  
SDQ_B59  
SDQ_B60  
SDQ_B61  
SDQ_B62  
SDQ_B63  
SDQS_A0  
SDQS_A1  
SDQS_A2  
AH21  
AL18  
AH19  
AF22  
AD21  
AF23  
AF25  
AL25  
AJ26  
AD23  
AF24  
AJ25  
AL26  
AJ29  
AJ31  
AG30  
AG31  
AK33  
AK32  
AG27  
AF28  
AE31  
AF27  
AB27  
AB26  
AE29  
AE27  
AC28  
AC26  
AA29  
W29  
U26  
V29  
Y26  
AA28  
W26  
V28  
AG1  
AL3  
AP7  
378  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
GMCH3  
SDQS_A3  
SDQS_A4  
SDQS_A5  
SDQS_A6  
SDQS_A7  
SDQS_B0  
SDQS_B1  
SDQS_B2  
SDQS_B3  
SDQS_B4  
SDQS_B5  
SDQS_B6  
SDQS_B7  
SDQS_A3  
SDQS_A4  
SDQS_A5  
SDQS_A6  
SDQS_A7  
SDQS_B0  
SDQS_B1  
SDQS_B2  
SDQS_B3  
SDQS_B4  
SDQS_B5  
SDQS_B6  
SDQS_B7  
SDQS_A3  
SDQS_A4  
SDQS_A5  
SDQS_A6  
SDQS_A7  
SDQS_B0  
SDQS_B1  
SDQS_B2  
SDQS_B3  
SDQS_B4  
SDQS_B5  
SDQS_B6  
SDQS_B7  
SDQS_A3  
SDQS_A4  
SDQS_A5  
SDQS_A6  
SDQS_A7  
SDQS_B0  
SDQS_B1  
SDQS_B2  
SDQS_B3  
SDQS_B4  
SDQS_B5  
SDQS_B6  
SDQS_B7  
SDQS_A3  
SDQS_A4  
SDQS_A5  
SDQS_A6  
SDQS_A7  
SDQS_B0  
SDQS_B1  
SDQS_B2  
SDQS_B3  
SDQS_B4  
SDQS_B5  
SDQS_B6  
SDQS_B7  
SDQS_A3  
SDQS_A4  
SDQS_A5  
SDQS_A6  
SDQS_A7  
SDQS_B0  
SDQS_B1  
SDQS_B2  
SDQS_B3  
SDQS_B4  
SDQS_B5  
SDQS_B6  
SDQS_B7  
AF17  
AM30  
AG35  
AA34  
U34  
AK5  
AK10  
AK13  
AD20  
AH25  
AH28  
AB31  
W27  
SDVO_CTRLC  
LK  
SDVO_CTRLCLK  
SDVO_CTRLDATA  
RSV  
RSV  
RSV  
RSV  
SDVO_CTRLCLK SDVO_CTRLCLK J13  
SDVO_CTRLD SDVO_CTRLDAT SDVO_CTRLDAT  
K13  
ATA  
A
A
SM_SLEWIN0  
SM_SLEWIN1  
SM_SLEWIN0  
SM_SLEWIN1  
SM_SLEWIN0  
SM_SLEWIN1  
SM_SLEWIN0  
SM_SLEWIN1  
SM_SLEWIN0  
SM_SLEWIN1  
SM_SLEWIN0  
SM_SLEWIN1  
AJ12  
AF9  
SM_SLEWOU  
T0  
SM_SLEWOU  
T0  
SM_SLEWOU  
T0  
SM_SLEWOUT0  
SM_SLEWOUT1  
SM_SLEWOUT0  
SM_SLEWOUT1  
SM_SLEWOUT0  
SM_SLEWOUT1  
AK12  
AE10  
SM_SLEWOU  
T1  
SM_SLEWOU  
T1  
SM_SLEWOU  
T1  
SMA_A0  
SMA_A1  
SMA_A2  
SMA_A3  
SMA_A4  
SMA_A5  
SMA_A6  
SMA_A7  
SMA_A8  
SMA_A9  
SMA_A10  
SMA_A11  
SMA_A12  
SMA_A13  
SMA_B0  
SMA_B1  
SMA_B2  
SMA_B3  
SMA_A0  
SMA_A1  
SMA_A2  
SMA_A3  
SMA_A4  
SMA_A5  
SMA_A6  
SMA_A7  
SMA_A8  
SMA_A9  
SMA_A10  
SMA_A11  
SMA_A12  
SMA_A13  
SMA_B0  
SMA_B1  
SMA_B2  
SMA_B3  
SMA_A0  
SMA_A1  
SMA_A2  
SMA_A3  
SMA_A4  
SMA_A5  
SMA_A6  
SMA_A7  
SMA_A8  
SMA_A9  
SMA_A10  
SMA_A11  
SMA_A12  
SMA_A13  
SMA_B0  
SMA_B1  
SMA_B2  
SMA_B3  
SMA_A0  
SMA_A1  
SMA_A2  
SMA_A3  
SMA_A4  
SMA_A5  
SMA_A6  
SMA_A7  
SMA_A8  
SMA_A9  
SMA_A10  
SMA_A11  
SMA_A12  
SMA_A13  
SMA_B0  
SMA_B1  
SMA_B2  
SMA_B3  
SMA_A0  
SMA_A1  
SMA_A2  
SMA_A3  
SMA_A4  
SMA_A5  
SMA_A6  
SMA_A7  
SMA_A8  
SMA_A9  
SMA_A10  
SMA_A11  
SMA_A12  
SMA_A13  
SMA_B0  
SMA_B1  
SMA_B2  
SMA_B3  
SMA_A0  
SMA_A1  
SMA_A2  
SMA_A3  
SMA_A4  
SMA_A5  
SMA_A6  
SMA_A7  
SMA_A8  
SMA_A9  
SMA_A10  
SMA_A11  
SMA_A12  
SMA_A13  
SMA_B0  
SMA_B1  
SMA_B2  
SMA_B3  
AN22  
AP22  
AN21  
AP21  
AM21  
AP19  
AR20  
AN16  
AN18  
AM15  
AN23  
AP15  
AP13  
AB33  
AM18  
AP18  
AN17  
AR16  
Datasheet  
379  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
SMA_B4  
SMA_B5  
SMA_B6  
SMA_B7  
SMA_B8  
SMA_B9  
SMA_B10  
SMA_B11  
SMA_B12  
SMA_B13  
SRAS_A#  
SRAS_B#  
SRCOMP0  
SRCOMP1  
SVREF0  
SVREF1  
SWE_A#  
SWE_B#  
VCC  
SMA_B4  
SMA_B5  
SMA_B6  
SMA_B7  
SMA_B8  
SMA_B9  
SMA_B10  
SMA_B11  
SMA_B12  
SMA_B13  
SRAS_A#  
SRAS_B#  
SRCOMP0  
SRCOMP1  
SVREF0  
SVREF1  
SWE_A#  
SWE_B#  
VCC  
SMA_B4  
SMA_B5  
SMA_B6  
SMA_B7  
SMA_B8  
SMA_B9  
SMA_B10  
SMA_B11  
SMA_B12  
SMA_B13  
SRAS_A#  
SRAS_B#  
SRCOMP0  
SRCOMP1  
SVREF0  
SVREF1  
SWE_A#  
SWE_B#  
VCC  
SMA_B4  
SMA_B5  
SMA_B6  
SMA_B7  
SMA_B8  
SMA_B9  
SMA_B10  
SMA_B11  
SMA_B12  
SMA_B13  
SRAS_A#  
SRAS_B#  
SRCOMP0  
SRCOMP1  
SVREF0  
SVREF1  
SWE_A#  
SWE_B#  
VCC  
SMA_B4  
SMA_B5  
SMA_B6  
SMA_B7  
SMA_B8  
SMA_B9  
SMA_B10  
SMA_B11  
SMA_B12  
SMA_B13  
SRAS_A#  
SRAS_B#  
SRCOMP0  
SRCOMP1  
SVREF0  
SVREF1  
SWE_A#  
SWE_B#  
VCC  
SMA_B4  
SMA_B5  
SMA_B6  
SMA_B7  
SMA_B8  
SMA_B9  
SMA_B10  
SMA_B11  
SMA_B12  
SMA_B13  
SRAS_A#  
SRAS_B#  
SRCOMP0  
SRCOMP1  
SVREF0  
SVREF1  
SWE_A#  
SWE_B#  
VCC  
AR15  
AN15  
AP17  
AL15  
AP14  
AN13  
AN20  
AR12  
AM12  
AD32  
AN29  
AP27  
AG4  
AG8  
AE7  
AE8  
AP31  
AR27  
AA13  
AA14  
AA16  
AA18  
AA20  
AA21  
AA22  
AA23  
AA24  
AB1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB10  
AB11  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB2  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB20  
AB21  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
380  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
GMCH3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB22  
AB23  
AB24  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
AB9  
AC1  
AC10  
AC11  
AC2  
AC3  
AC4  
AC5  
AC6  
AC7  
AC8  
AC9  
AD1  
AD10  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
L10  
N13  
N14  
N15  
N16  
N18  
N20  
N21  
P13  
Datasheet  
381  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
P14  
P15  
P17  
P19  
P21  
P22  
R13  
R14  
R15  
R16  
R18  
R20  
R22  
R23  
T13  
T14  
T15  
T16  
T17  
T19  
T20  
T21  
T23  
T24  
U13  
U14  
U16  
U18  
U20  
U22  
U24  
V13  
V14  
V15  
V17  
V19  
V21  
V23  
V24  
W13  
382  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
W14  
GMCH3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
W16  
W18  
W20  
W22  
W24  
Y13  
Y14  
Y15  
Y16  
Y17  
Y19  
Y20  
Y21  
Y23  
Y24  
W1  
W2  
W3  
W4  
W6  
W7  
W8  
W9  
Y1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC2  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC2  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC2  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC2  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC2  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC_EXP  
VCC2  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
A13  
D13  
E13  
A12  
B13  
VCCA_DAC  
VCCA_DAC  
VCCA_DPLLA  
VCCA_DPLLB  
RSV  
RSV  
VCCA_DAC  
VCCA_DAC  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_DAC  
VCCA_DAC  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_DAC  
VCCA_DAC  
VCCA_DPLLA  
VCCA_DPLLB  
RSV  
RSV  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_EXPPL  
L
VCCA_EXPPL  
L
VCCA_EXPPL  
L
VCCA_EXPPLL  
VCCA_EXPPLL  
VCCA_EXPPLL  
A14  
Datasheet  
383  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
VCCA_HPLL  
VCCA_SMPLL  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VSS  
VCCA_HPLL  
VCCA_SMPLL  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VSS  
VCCA_HPLL  
VCCA_SMPLL  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VSS  
VCCA_HPLL  
VCCA_SMPLL  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VSS  
VCCA_HPLL  
VCCA_SMPLL  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VSS  
VCCA_HPLL  
VCCA_SMPLL  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VSS  
A17  
B17  
AK35  
AM10  
AM11  
AM13  
AM14  
AM16  
AM17  
AM19  
AM20  
AM22  
AM23  
AM25  
AM26  
AM28  
AM32  
AN35  
AP12  
AP16  
AP20  
AP24  
AP28  
AR10  
AR14  
AR18  
AR22  
AR26  
AR31  
AR33  
A10  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A18  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A26  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A30  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A33  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA10  
AA11  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
384  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
GMCH3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA15  
AA17  
AA19  
AA2  
AA25  
AA26  
AA27  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AB25  
AB28  
AB30  
AB32  
AB35  
AC25  
AC27  
AC29  
AC31  
AC32  
AD11  
AD13  
AD16  
AD19  
AD22  
AD25  
AD26  
AD27  
AD34  
AE12  
AE14  
AE15  
AE17  
AE18  
AE20  
AE21  
Datasheet  
385  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE23  
AE24  
AE28  
AE30  
AE32  
AE4  
AE6  
AE9  
AF1  
AF10  
AF12  
AF15  
AF18  
AF21  
AF26  
AF29  
AF30  
AF31  
AF32  
AF35  
AF4  
AF6  
AF8  
AG12  
AG13  
AG15  
AG16  
AG18  
AG19  
AG21  
AG22  
AG25  
AG28  
AG29  
AG5  
AH1  
AH11  
AH14  
AH17  
AH20  
386  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
GMCH3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AH23  
AH26  
AH29  
AH32  
AH34  
AH5  
AH6  
AH8  
AJ10  
AJ13  
AJ15  
AJ16  
AJ19  
AJ22  
AJ27  
AJ30  
AJ32  
AJ35  
AJ4  
AJ9  
AK1  
AK11  
AK14  
AK17  
AK20  
AK23  
AK25  
AK26  
AK28  
AK30  
AK4  
AK6  
AK7  
AK8  
AL10  
AL13  
AL16  
AL19  
AL22  
AL32  
Datasheet  
387  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AM29  
AM31  
AM4  
AM6  
AM7  
AM8  
AN1  
AP8  
AR13  
AR17  
AR21  
AR25  
AR3  
AR30  
AR6  
B10  
B12  
B14  
B16  
B18  
B2  
B24  
B28  
B5  
B6  
B7  
B8  
B9  
C1  
C11  
C13  
C17  
C18  
C23  
C3  
C35  
C4  
D10  
D11  
D15  
388  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
D16  
GMCH3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D18  
D23  
D25  
D26  
D28  
D3  
D30  
D31  
D32  
D4  
D6  
D7  
D8  
D9  
E1  
E10  
E17  
E18  
E2  
E23  
E26  
E29  
E4  
E6  
E8  
F10  
F16  
F18  
F2  
F23  
F25  
F29  
F30  
F32  
F35  
F4  
F5  
F6  
F8  
Datasheet  
389  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G10  
G11  
G13  
G15  
G17  
G19  
G2  
G20  
G23  
G26  
G27  
G28  
G4  
G7  
G8  
G9  
H10  
H13  
H2  
H21  
H24  
H25  
H27  
H30  
H32  
H34  
H4  
H5  
H6  
H9  
J10  
J15  
J16  
J17  
J18  
J2  
J20  
J23  
J30  
J4  
390  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
J7  
GMCH3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J8  
J9  
K10  
K11  
K14  
K2  
K20  
K24  
K26  
K28  
K31  
K32  
K35  
K4  
K5  
K6  
K9  
L11  
L13  
L15  
L16  
L17  
L18  
L2  
L20  
L21  
L22  
L24  
L27  
L30  
L32  
L4  
L7  
L8  
L9  
M10  
M11  
M17  
M2  
Datasheet  
391  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
M20  
M24  
M25  
M27  
M29  
M34  
M4  
M5  
M6  
M9  
N10  
N11  
N17  
N19  
N2  
N25  
N28  
N30  
N32  
N4  
N7  
N8  
N9  
P11  
P16  
P18  
P2  
P20  
P25  
P27  
P29  
P31  
P32  
P35  
P4  
P5  
P6  
P9  
R11  
R17  
392  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
R19  
GMCH3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R2  
R21  
R25  
R26  
R27  
R4  
R7  
R8  
R9  
T10  
T11  
T18  
T2  
T22  
T25  
T28  
T30  
T32  
T34  
T4  
T5  
T6  
T7  
U11  
U15  
U17  
U19  
U2  
U21  
U23  
U25  
U27  
U29  
U31  
U32  
U4  
U7  
U8  
U9  
Datasheet  
393  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
GMCH3  
Intel® 82910GL  
GMCH4  
Ball #  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA_DAC  
VSYNC  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
VSYNC  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RSV  
VSYNC  
VTT  
VTT  
VTT  
VTT  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA_DAC  
VSYNC  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA_DAC  
VSYNC  
VTT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA_DAC  
VSYNC  
VTT  
V1  
V11  
V16  
V18  
V2  
V20  
V22  
V25  
V26  
V27  
V35  
V4  
V6  
V9  
W11  
W15  
W17  
W19  
W21  
W23  
W25  
W28  
W30  
W32  
Y11  
Y18  
Y22  
Y25  
Y27  
Y29  
Y31  
Y32  
Y34  
F13  
D12  
A19  
A20  
A21  
A22  
B19  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
394  
Datasheet  
Ballout and Package Information  
R
Intel® 82915GL  
GMCH6  
Intel® 82915PL  
MCH5  
Intel® 82915P  
MCH1  
Intel® 82915G  
GMCH2  
Intel® 82915GV  
Intel® 82910GL  
GMCH4  
Ball #  
B20  
GMCH3  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
B21  
B22  
C19  
C20  
C21  
C22  
D19  
D20  
D21  
D22  
E19  
E20  
E21  
E22  
F20  
F21  
F22  
G21  
G22  
H22  
NOTES:  
1. DDR, PCI Express* x16 Graphics Interface, No DAC, No Intel® SDVO  
2. DDR, PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
3. DDR, No PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
4. DDR (One DIMM per Channel), No PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
5. DDR (One DIMM per Channel), PCI Express* x16 Graphics Interface, No DAC, No Intel® SDVO  
6. DDR, No PCI Express* x16 Graphics Interface, DAC, Intel® SDVO  
14.3  
Package Information  
The (G)MCH package measures 37.5 mm × 37.5 mm. The 1210 balls are located in a non-grid  
pattern. For example, the ball pitch varies from 31.8 mils to 43.0 mils, depending upon the  
X-axis or Y-axis direction. Figure 14-7 shows the physical dimensions of the package and  
Figure 14-8 shows the (G)MCH keep-out regions.  
Datasheet  
395  
Ballout and Package Information  
R
Figure 14-7. (G)MCH Package Dimensions  
(G)MCH  
396  
Datasheet  
Ballout and Package Information  
R
Figure 14-8. (G)MCH Component Keep-Out Restrictions  
§
Datasheet  
397  
Ballout and Package Information  
R
398  
Datasheet  
Testability  
R
15 Testability  
In the (G)MCH, testability for Automated Test Equipment (ATE) board level testing has been  
implemented as an XOR chain. An XOR-tree is a chain of XOR gates each with one input pin  
connected to it.  
15.1  
Complimentary Pins  
Table 15-1 contains pins which must remain complimentary while performing XOR testing. The  
first and third columns contain the pin and its compliment. The second and fourth columns  
specify which chain the associated pins are on.  
Note: The SDQSx# pins are only used in DDR2 mode. In DDR it is not necessary to drive  
SDQS_A[7:0]# or SDQS_B[7:0]#.  
Table 15-1. Complimentary Pins to Drive  
Complimentary Pin  
XOR Chain  
Complimentary Pin  
XOR Chain  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDSTBP3#  
SDQS_A0  
SDQS_A1  
SDQS_A2  
SDQS_A3  
SDQS_A4  
SDQS_A5  
SDQS_A6  
SDQS_A7  
SDQS_A8  
SDQS_B0  
SDQS_B1  
SDQS_B2  
SDQS_B3  
SDQS_B4  
SDQS_B5  
SDQS_B6  
SDQS_B7  
SDQS_B8  
FSB XOR 1  
FSB XOR 0  
FSB XOR 0  
FSB XOR 0  
SM XOR 6  
SM XOR 6  
SM XOR 6  
SM XOR 4  
SM XOR 4  
SM XOR 2  
SM XOR 2  
SM XOR 2  
SM XOR 2  
SM XOR 7  
SM XOR 7  
SM XOR 7  
SM XOR 7  
SM XOR 7  
SM XOR 3  
SM XOR 3  
SM XOR 3  
SM XOR 7  
H_DSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
SDQS_A0#  
SDQS_A1#  
SDQS_A2#  
SDQS_A3#  
SDQS_A4  
FSB XOR 1  
FSB XOR 0  
FSB XOR 0  
FSB XOR 0  
SM XOR 4  
SM XOR 4  
SM XOR 4  
SM XOR 6  
SM XOR 2  
SM XOR 4  
SM XOR 4  
SM XOR 4  
SM XOR 4  
SM XOR 5  
SM XOR 5  
SM XOR 5  
SM XOR 5  
SM XOR 5  
SM XOR 5  
SM XOR 5  
SM XOR 5  
SM XOR 5  
SDQS_A5#  
SDQS_A6#  
SDQS_A7#  
SDQS_A8#  
SDQS_B0#  
SDQS_B1#  
SDQS_B2#  
SDQS_B3#  
SDQS_B4#  
SDQS_B5#  
SDQS_B6#  
SDQS_B7#  
SDQS_B8#  
Datasheet  
399  
 
Testability  
R
15.2  
XOR Test Mode Initialization for DDR  
XOR test mode (DDR) can be entered by pulling the reserved ballout RSV (located at F15) low  
through the de-assertion of external reset (RSTIN#). It was intended that no clocks should be  
required to enter this test mode; however, it is recommended that customers used the following  
sequence.  
On power up, hold PWROK, PCIRST#, and reserved ballout RSV (located at F15) low and start  
external clocks, refer to the timing diagram below. After a few clock cycles, pull PWROK high.  
After ~3–4 clocks, de-assert PCIRST# (pull it high). Release reserved ballout RSV (located at  
F15). No external drive. Allow the clocks to run for an additional 32 clocks. Begin testing the  
XOR chains. Refer to timing diagram in below.  
15.3  
XOR Test Mode Initialization for DDR2  
XOR test mode (DDR2) can be entered by pulling reserved ballout RSV(located at F15) and  
MTYPE low through the de-assertion of external reset (RSTIN#). It was intended that no clocks  
should be required to enter this test mode; however, it is recommended that customers use the  
following sequence.  
On power up, hold PWROK, PCIRST#, and reserved ballout RSV (located at F15) low and start  
external clocks. After a few clock cycles, pull PWROK high. After ~3-4 clocks, de-assert  
PCIRST# (pull it high). Release reserved ballout RSV (located at F15) and MTYPE. No external  
drive. Allow the clocks to run for an additional 32 clocks. Begin testing the XOR chains. Refer to  
Figure 15-1.  
Figure 15-1. XOR Test Mode Initialization Cycles  
32 clocks  
PWROK  
~3-4 Clocks  
RSV_F15  
Don’t Care  
MTYPE  
1 if DDR1; 0 if DDR2  
Don’t Care  
RSTIN#  
Start XOR testing  
XOR_Chain_Tim  
400  
Datasheet  
 
Testability  
R
15.4  
XOR Chain Definition  
The 82915G/82915GV/82915GL/82910GL GMCH, and the 82915P/ 82915PL MCH each have  
10 XOR chains. The XOR chain outputs are driven out on the following output pins. During full-  
width testing, XOR chain outputs are visible on both pins. For example, xor_out0 is visible on  
BSEL2.  
Table 15-2. XOR Chain Outputs for both DDR and DDR2  
XOR Chain  
Output Pins  
Coordinate Location  
xor_out0  
xor_out1  
xor_out2  
xor_out3  
xor_out4  
xor_out5  
xor_out6  
xor_out7  
xor_out8  
xor_out9  
BSEL2  
RSV  
D17  
M16  
F15  
C15  
A16  
B15  
C14  
K15  
H16  
E15  
RSV  
MTYPE  
EXP_SLR  
RSV  
RSV  
RSV  
BSEL0  
BSEL1  
15.5  
DDR XOR Chains  
The tables in this section show the DDR XOR chains. The last section in this chapter has a pin  
exclusion list. The chain files are golden, if there is a pin missing from the chain files and  
exclusion list, it should be added to the exclusion list.  
Note: The DDR XOR Chain information is based on the 82915G GMCH. Differences for the  
82915GV/82915GL/82910GL GMCH and 82915P/82915PL MCH are indicated in the  
“Comments” column.  
Datasheet  
401  
Testability  
R
Table 15-3. DDR XOR Chain #0  
Comments  
Pin Count  
Ball #  
DDR Signal Name  
1
M15  
M14  
K16  
L14  
K13  
J13  
DDC_CLK  
ICH_SYNC#  
EXTTS#  
DDC_DATA  
SDVO_CTRLDATA  
SDVO_CTRLCLK  
RSV  
RSV on the 82915P/82915PL MCH  
2
3
4
RSV on the 82915P/82915PL MCH  
RSV on the 82915P/82915PL MCH  
RSV on the 82915P/82915PL MCH  
5
6
7
G16  
G24  
K17  
M18  
K18  
F17  
M19  
K21  
K19  
H18  
J19  
8
HCPURST#  
HD44  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
HD42  
HD43  
HD47  
HD38  
HD39  
HDINV2#  
HD46  
HDSTBP2#  
HDSTBN2#  
HD45  
F19  
G18  
K22  
M21  
J21  
HD34  
HD36  
HD35  
H20  
H19  
J24  
HD40  
HD41  
HD33  
J22  
HD32  
H23  
A25  
A29  
D27  
B26  
B29  
C29  
C25  
B30  
E27  
C30  
E25  
H28  
F27  
F28  
H26  
HD37  
HD48  
HD55  
HD60  
HDINV3#  
HDSTBP3#  
HDSTBN3#  
HD58  
HD51  
HD24  
HD17  
HD25  
HD19  
HD23  
HD22  
HDSTBP1#  
402  
Datasheet  
Testability  
R
Comments  
Pin Count  
Ball #  
DDR Signal Name  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
F26  
J27  
J25  
K25  
K23  
L23  
J26  
G25  
L25  
B32  
G33  
H33  
H35  
J34  
G30  
H29  
J28  
J29  
K33  
F31  
K29  
L31  
K27  
M30  
F33  
E30  
J35  
P33  
HDSTBN1#  
HD21  
HD27  
HD28  
HD31  
HD30  
HDINV1#  
HD26  
HD29  
HD15  
HD7  
HD1  
HD4  
HD2  
HA6#  
HA3#  
HA13#  
HA5#  
HA15#  
HREQ4#  
HA4#  
HA11#  
HA14#  
HA10#  
HREQ0#  
HBPRI#  
HDEFER#  
HEDRDY#  
D17  
BSEL2  
XOR Chain #0 Output  
Datasheet  
403  
Testability  
R
Table 15-4. DDR XOR Chain #1  
Comments  
Pin Count  
Ball #  
DDR Signal Name  
1
A28  
A27  
B27  
B25  
E24  
C26  
C27  
C28  
A31  
C31  
B31  
D29  
E28  
G29  
B34  
B33  
C32  
C33  
C34  
D34  
D33  
E34  
E33  
E35  
F34  
G34  
G35  
J33  
HD57  
HD61  
2
3
HD54  
4
HD63  
5
HD62  
6
HD59  
7
HD49  
8
HD56  
9
HD53  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
HD50  
HD52  
HD18  
HD16  
HD20  
HD11  
HD13  
HD14  
HD9  
HD12  
HD8  
HD10  
HDINV0#  
HDSTBP0#  
HDSTBN0#  
HD6  
HD5  
HD3  
HD0  
G32  
H31  
K30  
J31  
HA7#  
HREQ2#  
HA8#  
HADSTB0#  
HREQ3#  
HPCREQ#  
HA9#  
G31  
E31  
L29  
L28  
J32  
HA12#  
HRS2#  
HRS0#  
HLOCK#  
HDRDY#  
HADS#  
HHIT#  
HBNR#  
HDBSY#  
HHITM#  
K34  
L33  
M32  
M31  
L34  
M35  
L35  
N35  
404  
Datasheet  
Testability  
R
Comments  
Pin Count  
Ball #  
DDR Signal Name  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
P34  
N34  
R33  
N31  
N33  
T31  
E32  
T27  
M26  
N26  
P28  
U28  
N27  
L26  
M28  
T29  
R28  
N29  
T26  
P26  
R29  
HRS1#  
HTRDY#  
HBREQ0#  
HA21#  
HA26#  
HA28#  
HREQ1#  
HA27#  
HA20#  
HA19#  
HA24#  
HA29#  
HADSTB1#  
HA18#  
HA16#  
HA31#  
HA25#  
HA23#  
HA30#  
HA22#  
HA17#  
M16  
RSV  
XOR Chain #1 Output  
Datasheet  
405  
Testability  
R
Table 15-5. DDR XOR Chain #2  
Pin Count  
Ball #  
DDR Signal Name  
Comments  
1
R32  
R34  
SDQ_A58  
SDQ_A59  
SDQ_A63  
SDQ_A60  
SDQ_A62  
SDQ_A56  
SDQ_A57  
SDM_A7  
SDQ_A61  
SDQS_A7  
SDQS_A6  
SDQ_A51  
SDQ_A55  
SDQ_A50  
SDQ_A53  
SDQ_A48  
SDQ_A49  
SDM_A6  
SDQ_A54  
SDQ_A52  
SMA_A13  
SCLK_A5  
SCLK_A2  
SCLK_A2#  
SDQ_A43  
SDQ_A41  
SDQ_A40  
SDM_A5  
SDQ_A47  
SDQ_A46  
SDQ_A42  
SDQ_A45  
SDQ_A44  
SDQS_A5  
RSV  
2
3
T35  
4
W35  
5
T33  
6
V34  
7
V33  
8
U33  
9
W33  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
U34  
AA34  
W34  
Y35  
Y33  
AD35  
AE35  
AE34  
AA33  
AA32  
AD31  
AB33  
AC35  
AB34  
AC33  
AF34  
AH35  
AJ34  
AG34  
AE33  
AF33  
AG32  
AH33  
AJ33  
AG35  
AR29  
AP33  
AP29  
AN32  
AP30  
AL29  
RSV  
RSV  
RSV  
RSV  
RSV  
F15  
RSV  
XOR Chain #2 Output  
406  
Datasheet  
Testability  
R
Table 15-6. DDR XOR Chain #3  
Pin Count  
Ball #  
DDR Signal Name  
Comments  
1
W26  
U26  
SDQ_B62  
SDQ_B58  
SDQ_B63  
SDQ_B59  
SDQ_B57  
SDM_B7  
2
3
V28  
4
V29  
5
W29  
6
W31  
7
AA29  
AA28  
Y26  
SDQ_B56  
SDQ_B61  
SDQ_B60  
SDQS_B7  
SMA_B13  
SDQS_B6  
SDQ_B50  
SDQ_B48  
SDQ_B55  
SDQ_B53  
SDQ_B52  
SDQ_B49  
SDQ_B51  
SDQ_B54  
SDM_B6  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
W27  
AD32  
AB31  
AB27  
AE31  
AC26  
AE27  
AE29  
AF27  
AB26  
AC28  
AD24  
AP34  
AD29  
AE25  
AE26  
AN34  
AN33  
AM34  
AK34  
AL34  
AL35  
AM33  
AF28  
AK32  
AH31  
AK33  
AJ31  
AG27  
AJ29  
AG31  
AH28  
AL33  
AJ25  
AL25  
AJ26  
AL26  
AF23  
AF25  
SCS_B0#  
SCLK_B5  
SCLK_B2#  
SCLK_B2  
SCS_B1#  
SCS_B2#  
SCS_A0#  
SCS_A2#  
SCAS_A#  
SCS_A1#  
SCS_B3#  
SDQ_B47  
SDQ_B45  
SDM_B5  
SDQ_B44  
SDQ_B41  
SDQ_B46  
SDQ_B40  
SDQ_B43  
SDQS_B5  
SCS_A3#  
SDQ_B38  
SDQ_B34  
SDQ_B35  
SDQ_B39  
SDQ_B32  
SDQ_B33  
C15  
MTYPE  
XOR Chain #3 Output  
Datasheet  
407  
Testability  
R
Table 15-7. DDR XOR Chain #4  
Pin Count  
Ball #  
DDR Signal Name  
Comments  
1
U35  
AA35  
AC34  
AG33  
AP32  
AN31  
AM30  
AK31  
AH27  
AK29  
AJ28  
AL30  
AL31  
AN30  
AL27  
AK27  
AN29  
AN28  
AR28  
AN27  
AP27  
AR27  
AP25  
AN26  
AN25  
AM24  
AL24  
AM27  
AP26  
AP31  
AR24  
AR23  
AP23  
AN23  
AN22  
AF17  
AH18  
AF19  
AJ17  
AL17  
AF16  
AN18  
AR7  
RSV  
RSV  
2
3
SCLK_A5#  
RSV  
4
5
RSV  
6
RSV  
7
SDQS_A4  
SDQ_A35  
SDQ_A32  
SDM_A4  
SDQ_A37  
SDQ_A38  
SDQ_A39  
SDQ_A34  
SDQ_A36  
SDQ_A33  
SRAS_A#  
SBS_A0  
RSV  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
SCAS_B#  
SRAS_B#  
SWE_B#  
SCLK_A3  
SCLK_A3#  
SCLK_A0#  
SCLK_A0  
RSV  
SBS_B0  
SBS_A1  
SWE_A#  
RSV  
RSV  
RSV  
SMA_A10  
SMA_A0  
SDQS_A3  
SDQ_A31  
SDQ_A27  
SDQ_A29  
SDQ_A25  
SDQ_A28  
SMA_A8  
RSV  
AM3  
SCLK_A4#  
RSV  
AL2  
AG2  
RSV  
A16  
EXP_SLR  
XOR Chain #4 Output  
408  
Datasheet  
Testability  
R
Table 15-8. DDR XOR Chain #5  
Pin Count  
Ball #  
DDR Signal Name  
Comments  
1
Y28  
RSV  
2
AC30  
AD28  
AG30  
AH30  
AG24  
AD23  
AF24  
AG26  
AF20  
AE22  
AL18  
AK19  
AG20  
AD21  
AF22  
AH21  
AD18  
AH19  
AK22  
AG23  
AH22  
AN17  
AP18  
AP17  
AR16  
AN16  
AN15  
AM15  
AP15  
AR15  
AL15  
AP14  
AP10  
AL14  
AL9  
RSV  
3
SCLK_B5#  
SDQ_B42  
RSV  
4
5
6
SDM_B4  
SDQ_B36  
SDQ_B37  
RSV  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
RSV  
SDQ_B26  
SDQ_B28  
SDQ_B25  
SDM_B3  
SDQ_B31  
SDQ_B30  
SDQ_B27  
SDQ_B24  
SDQ_B29  
SCLK_B3#  
SCLK_B0#  
SCLK_B0  
SMA_B2  
SMA_B1  
SMA_B6  
SMA_B3  
SMA_A7  
SMA_B5  
SMA_A9  
SMA_A11  
SMA_B4  
SMA_B7  
SMA_B8  
SCKE_B2  
RSV  
SCLK_B4#  
RSV  
AH10  
AL4  
RSV  
B15  
RSV  
XOR Chain #5 Output  
Datasheet  
409  
Testability  
R
Table 15-9. DDR XOR Chain #6  
Pin Count  
Ball #  
DDR Signal Name  
Comments  
1
AG17  
AH16  
AE19  
AD17  
AK16  
AM18  
AM21  
AN21  
AP22  
AN20  
AP21  
AR20  
AP19  
AR19  
AP7  
AP9  
AN9  
AR8  
AN8  
AN7  
AP6  
AR5  
AP5  
AN5  
AN2  
AN3  
AM2  
AP4  
AP3  
AP2  
AN4  
AK3  
AK2  
AJ3  
RSV  
2
SDM_A3  
SDQ_A30  
SDQ_A26  
SDQ_A24  
SMA_B0  
SMA_A4  
SMA_A2  
SMA_A1  
SMA_B10  
SMA_A3  
SMA_A6  
SMA_A5  
SBS_B1  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
SDQS_A2  
SDQ_A19  
SDQ_A23  
SDQ_A22  
SDQ_A18  
SDM_A2  
SDQ_A21  
SDQ_A17  
SDQ_A16  
SDQ_A20  
SCLK_A1  
SCLK_A1#  
SCLK_A4  
SDQ_A11  
SDQ_A15  
SDQ_A14  
SDQ_A10  
SDQ_A13  
SDQ_A9  
SDQ_A12  
SDQ_A8  
SDM_A1  
SDQS_A1  
SDQS_A0  
SDQ_A6  
SDM_A0  
SDQ_A2  
SDQ_A7  
SDQ_A3  
SDQ_A1  
SDQ_A0  
SDQ_A4  
SDQ_A5  
AJ1  
AL1  
AL3  
AG1  
AG3  
AF2  
AH2  
AH3  
AJ2  
AF3  
AE3  
AE2  
AE1  
C14  
RSV  
XOR Chain #6 Output  
410  
Datasheet  
Testability  
R
Table 15-10. DDR XOR Chain #7  
Pin Count  
Ball #  
DDR Signal Name  
Comments  
1
AH25  
AD20  
AL23  
AP13  
AR12  
AN13  
AL12  
AR11  
AP11  
AN11  
AM12  
AR9  
SDQS_B4  
SDQS_B3  
SCLK_B3  
SMA_A12  
SMA_B11  
SMA_B9  
2
3
4
5
6
7
SCKE_A0  
SCKE_A3  
SCKE_A2  
SCKE_A1  
SMA_B12  
SCKE_B3  
SCKE_B0  
SCKE_B1  
SDQ_B23  
SDQ_B19  
SDQ_B18  
SDM_B2  
SDQ_B21  
SDQ_B22  
SDQ_B20  
SDQ_B17  
SDQ_B16  
SDQS_B2  
SCLK_B1  
SCLK_B1#  
SCLK_B4  
SDQ_B13  
SDQ_B9  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
AN10  
AM9  
AD15  
AD14  
AG14  
AH13  
AH12  
AF14  
AD12  
AF13  
AE13  
AK13  
AL11  
AJ11  
AK9  
AL8  
AL7  
AJ7  
SDQ_B8  
AJ8  
SDQ_B12  
SDQ_B10  
SDQ_B15  
SDQ_B14  
SDM_B1  
SDQ_B11  
SDQS_B1  
SDQS_B0  
SDQ_B4  
AF11  
AG11  
AG10  
AH9  
AE11  
AK10  
AK5  
AG9  
AH7  
SDQ_B0  
AJ6  
SDQ_B1  
AL6  
SDQ_B7  
AN6  
SDQ_B3  
AL5  
SDQ_B2  
AJ5  
SDM_B0  
SDQ_B5  
AH4  
AM5  
SDQ_B6  
K15  
RSV  
XOR Chain #7 Output  
Datasheet  
411  
Testability  
R
Table 15-11. DDR XOR Chain #8  
Pin Count  
Ball #  
DDR Signal Name  
Comments  
1
F11  
C9  
H11  
A8  
E9  
C7  
E7  
A6  
B4  
C5  
E5  
D2  
G5  
F3  
EXP_RXN0  
EXP_TXN0  
EXP_RXN1  
EXP_TXN1  
EXP_RXN2  
EXP_TXN2  
EXP_RXN3  
EXP_TXN3  
EXP_RXN4  
EXP_TXN4  
EXP_RXN5  
EXP_TXN5  
EXP_RXN6  
EXP_TXN6  
EXP_RXN7  
EXP_TXN7  
EXP_RXN8  
EXP_TXN8  
EXP_RXN9  
EXP_TXN9  
EXP_RXN10  
EXP_TXN10  
EXP_RXN11  
EXP_TXN11  
EXP_RXN12  
EXP_TXN12  
EXP_RXN13  
EXP_TXN13  
EXP_RXN14  
EXP_TXN14  
EXP_RXN15  
EXP_TXN15  
EXP_RXP0  
EXP_TXP0  
EXP_RXP1  
EXP_TXP1  
EXP_RXP2  
EXP_TXP2  
EXP_RXP3  
EXP_TXP3  
EXP_RXP4  
EXP_TXP4  
EXP_RXP5  
EXP_TXP5  
EXP_RXP6  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
H7  
G1  
J5  
H3  
K7  
J1  
L5  
K3  
R10  
L1  
M7  
M3  
N5  
N1  
P8  
P3  
R5  
R1  
E11  
C10  
J11  
A9  
F9  
C8  
F7  
A7  
B3  
C6  
D5  
C2  
G6  
412  
Datasheet  
Testability  
R
Pin Count  
Ball #  
DDR Signal Name  
Comments  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
E3  
H8  
F1  
J6  
EXP_TXP6  
EXP_RXP7  
EXP_TXP7  
EXP_RXP8  
EXP_TXP8  
EXP_RXP9  
EXP_TXP9  
EXP_RXP10  
EXP_TXP10  
EXP_RXP11  
EXP_TXP11  
EXP_RXP12  
EXP_TXP12  
EXP_RXP13  
EXP_TXP13  
EXP_RXP14  
EXP_TXP14  
EXP_RXP15  
EXP_TXP15  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
G3  
K8  
H1  
L6  
J3  
P10  
K1  
M8  
L3  
N6  
M1  
P7  
N3  
R6  
P1  
H16  
BSEL0  
XOR Chain #8 Output  
Table 15-12. DDR XOR Chain #9  
Pin Count  
Ball #  
DDR Signal Name  
Comments  
1
2
U6  
U5  
T3  
DMI_RXN0  
DMI_RXP0  
DMI_TXN0  
DMI_TXP0  
DMI_RXN1  
DMI_RXP1  
DMI_TXN1  
DMI_TXP1  
DMI_RXN2  
DMI_RXP2  
DMI_TXN2  
DMI_TXP2  
DMI_RXN3  
DMI_RXP3  
DMI_TXN3  
DMI_TXP3  
3
4
R3  
T8  
5
6
T9  
7
U1  
T1  
8
9
V8  
V7  
V3  
U3  
U10  
V10  
W5  
V5  
10  
11  
12  
13  
14  
15  
16  
E15  
BSEL1  
XOR Chain #9 Output  
Datasheet  
413  
Testability  
R
15.6  
DDR2 XOR Chains  
The tables in this section list all of the pads used in DDR2 XOR testing. Any pads not listed in the  
table can be considered part of the exclude list.  
Note: The DDR2 XOR Chain information is based on the 82915G GMCH. Differences for the  
82915GV GMCH and 82915P MCH are indicated in the “Comments” column.  
Table 15-13. DDR2 XOR Chain #0  
Comments  
Pin Count  
Ball #  
DDR2 Signal Name  
1
M15  
M14  
K16  
L14  
K13  
J13  
DDC_CLK  
ICH_SYNC#  
EXTTS#  
DDC_DATA  
SDVO_CTRLDATA  
SDVO_CTRLCLK  
RSV  
RSV on the 82915P  
2
3
4
RSV on the 82915P  
RSV on the 82915P  
RSV on the 82915P  
5
6
7
G16  
G24  
K17  
M18  
K18  
F17  
M19  
K21  
K19  
H18  
J19  
8
HCPURST#  
HD44  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
HD42  
HD43  
HD47  
HD38  
HD39  
HDINV2#  
HD46  
HDSTBP2#  
HDSTBN2#  
HD45  
F19  
G18  
K22  
M21  
J21  
HD34  
HD36  
HD35  
H20  
H19  
J24  
HD40  
HD41  
HD33  
J22  
HD32  
H23  
A25  
A29  
D27  
B26  
B29  
C29  
C25  
B30  
E27  
HD37  
HD48  
HD55  
HD60  
HDINV3#  
HDSTBP3#  
HDSTBN3#  
HD58  
HD51  
HD24  
414  
Datasheet  
Testability  
R
Comments  
Pin Count  
Ball #  
DDR2 Signal Name  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
C30  
E25  
H28  
F27  
F28  
H26  
F26  
J27  
J25  
K25  
K23  
L23  
J26  
G25  
L25  
B32  
G33  
H33  
H35  
J34  
G30  
H29  
J28  
J29  
K33  
F31  
K29  
L31  
K27  
M30  
F33  
E30  
J35  
P33  
HD17  
HD25  
HD19  
HD23  
HD22  
HDSTBP1#  
HDSTBN1#  
HD21  
HD27  
HD28  
HD31  
HD30  
HDINV1#  
HD26  
HD29  
HD15  
HD7  
HD1  
HD4  
HD2  
HA6#  
HA3#  
HA13#  
HA5#  
HA15#  
HREQ4#  
HA4#  
HA11#  
HA14#  
HA10#  
HREQ0#  
HBPRI#  
HDEFER#  
HEDRDY#  
D17  
BSEL2  
XOR Chain #0 Output  
Datasheet  
415  
Testability  
R
Table 15-14. DDR2 XOR Chain #1  
Comments  
Pin Count  
Ball #  
DDR2 Signal Name  
1
A28  
A27  
B27  
B25  
E24  
C26  
C27  
C28  
A31  
C31  
B31  
D29  
E28  
G29  
B34  
B33  
C32  
C33  
C34  
D34  
D33  
E34  
E33  
E35  
F34  
G34  
G35  
J33  
HD57  
HD61  
2
3
HD54  
4
HD63  
5
HD62  
6
HD59  
7
HD49  
8
HD56  
9
HD53  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
HD50  
HD52  
HD18  
HD16  
HD20  
HD11  
HD13  
HD14  
HD9  
HD12  
HD8  
HD10  
HDINV0#  
HDSTBP0#  
HDSTBN0#  
HD6  
HD5  
HD3  
HD0  
G32  
H31  
K30  
J31  
HA7#  
HREQ2#  
HA8#  
HADSTB0#  
HREQ3#  
HPCREQ#  
HA9#  
G31  
E31  
L29  
L28  
J32  
HA12#  
HRS2#  
HRS0#  
HLOCK#  
HDRDY#  
HADS#  
HHIT#  
HBNR#  
HDBSY#  
HHITM#  
K34  
L33  
M32  
M31  
L34  
M35  
L35  
N35  
416  
Datasheet  
Testability  
R
Comments  
Pin Count  
Ball #  
DDR2 Signal Name  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
P34  
N34  
R33  
N31  
N33  
T31  
E32  
T27  
M26  
N26  
P28  
U28  
N27  
L26  
M28  
T29  
R28  
N29  
T26  
P26  
R29  
HRS1#  
HTRDY#  
HBREQ0#  
HA21#  
HA26#  
HA28#  
HREQ1#  
HA27#  
HA20#  
HA19#  
HA24#  
HA29#  
HADSTB1#  
HA18#  
HA16#  
HA31#  
HA25#  
HA23#  
HA30#  
HA22#  
HA17#  
M16  
RSV  
XOR Chain #1 Output  
Datasheet  
417  
Testability  
R
Table 15-15. DDR2 XOR Chain #2  
Pin Count  
Ball #  
DDR2 Signal Name  
Comments  
1
R32  
R34  
SDQ_A58  
SDQ_A59  
SDQ_A63  
SDQ_A60  
SDQ_A62  
SDQ_A56  
SDQ_A57  
SDM_A7  
2
3
T35  
4
W35  
5
T33  
6
V34  
7
V33  
8
U33  
9
W33  
SDQ_A61  
SDQS_A7  
SDQS_A6  
SDQ_A51  
SDQ_A55  
SDQ_A50  
SDQ_A49  
SDQ_A52  
SDQ_A53  
SDM_A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
U34  
AA34  
W34  
Y35  
Y33  
AD35  
AE35  
AE34  
AA33  
AA32  
AD31  
AB33  
AC35  
AB34  
AC33  
AF34  
AH35  
AJ34  
AG34  
AE33  
AF33  
AG32  
AH33  
AJ33  
AG35  
AR29  
AP33  
AP29  
AN32  
AP30  
AL29  
SDQ_A54  
SDQ_A48  
RSV  
SCLK_A2#  
SCLK_A5#  
SCLK_A5  
SDQ_A47  
SDQ_A41  
SDQ_A45  
SDM_A5  
SDQ_A43  
SDQ_A42  
SDQ_A46  
SDQ_A40  
SDQ_A44  
SDQS_A5  
SCS_A0#  
SODT_A3  
SODT_A2  
SODT_A1  
SODT_A0  
SDQS_A4#  
F15  
RSV  
XOR Chain #2 Output  
418  
Datasheet  
Testability  
R
Table 15-16. DDR2 XOR Chain #3  
Pin Count  
Ball #  
DDR2 Signal Name  
Comments  
1
W26  
U26  
SDQ_B62  
SDQ_B63  
SDQ_B58  
SDQ_B59  
SDQ_B57  
SDM_B7  
2
3
V28  
4
V29  
5
W29  
6
W31  
7
AA29  
AA28  
Y26  
SDQ_B61  
SDQ_B56  
SDQ_B60  
SDQS_B7  
RSV  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
W27  
AD32  
AB31  
AB27  
AE31  
AC26  
AE27  
AE29  
AF27  
AB26  
AC28  
AD24  
AP34  
AD29  
AE25  
AE26  
AN34  
AN33  
AM34  
AK34  
AL34  
AL35  
AM33  
AF28  
AK32  
AH31  
AK33  
AJ31  
AG27  
AJ29  
AG31  
AH28  
AL33  
AJ25  
AL25  
AJ26  
AL26  
AF23  
AF25  
SDQS_B6  
SDQ_B55  
SDQ_B52  
SDQ_B50  
SDQ_B49  
SDQ_B53  
SDQ_B48  
SDQ_B51  
SDQ_B54  
SDM_B6  
SCS_B2#  
SCLK_B5#  
SCLK_B2#  
SCLK_B2  
SCS_B3#  
SCS_B0#  
SCS_B1#  
SODT_B3  
SODT_B1  
SODT_B2  
SODT_B0  
SDQ_B43  
SDQ_B40  
SDM_B5  
SDQ_B45  
SDQ_B41  
SDQ_B47  
SDQ_B44  
SDQ_B42  
SDQS_B5  
SMA_B13  
SDQ_B39  
SDQ_B38  
SDQ_B35  
SDQ_B34  
SDQ_B36  
SDQ_B33  
C15  
MTYPE  
XOR Chain #3 Output  
Datasheet  
419  
Testability  
R
Table 15-17. DDR2 XOR Chain #4  
Pin Count  
Ball #  
DDR2 Signal Name  
Comments  
1
U35  
AA35  
AC34  
AG33  
AP32  
AN31  
AM30  
AK31  
AH27  
AK29  
AJ28  
AL30  
AL31  
AN30  
AL27  
AK27  
AN29  
AN28  
AR28  
AN27  
AP27  
AR27  
AP25  
AN26  
AN25  
AM24  
AL24  
AM27  
AP26  
AP31  
AR24  
AR23  
AP23  
AN23  
AN22  
AF17  
AH18  
AF19  
AJ17  
AL17  
AF16  
AN18  
AR7  
SDQS_A7#  
SDQS_A6#  
SCLK_A2  
SDQS_A5#  
SCS_A1#  
SCS_A3#  
SDQS_A4  
SDQ_A35  
SDQ_A36  
SDM_A4  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
SDQ_A33  
SDQ_A39  
SDQ_A34  
SDQ_A38  
SDQ_A37  
SDQ_A32  
SCAS_A#  
SWE_A#  
SCS_A2#  
SBS_A1  
SRAS_A#  
SBS_A0  
SCLK_A0#  
SCLK_A0  
SCLK_A3  
SCLK_A3#  
SMA_A2  
SMA_A10  
SMA_A0  
SMA_A13  
SMA_A1  
SMA_A4  
SMA_A3  
SMA_A6  
SMA_A8  
SDQS_A3  
SDQ_A27  
SDQ_A26  
SDQ_A25  
SDQ_A24  
SDQ_A29  
SCKE_A2  
SDQS_A2#  
SCLK_A1#  
SDQS_A1#  
SDQS_A0#  
AM3  
AL2  
AG2  
A16  
EXP_SLR  
XOR Chain #4 Output  
420  
Datasheet  
Testability  
R
Table 15-18. DDR2 XOR Chain #5  
Pin Count  
Ball #  
DDR2 Signal Name  
Comments  
1
Y28  
SDQS_B7#  
SDQS_B6#  
SCLK_B5  
SDQ_B46  
SDQS_B5#  
SDM_B4  
2
AC30  
AD28  
AG30  
AH30  
AG24  
AD23  
AF24  
AG26  
AF20  
AE22  
AL18  
AK19  
AG20  
AD21  
AF22  
AH21  
AD18  
AH19  
AK22  
AG23  
AH22  
AN17  
AP18  
AP17  
AR16  
AN16  
AN15  
AM15  
AP15  
AR15  
AL15  
AP14  
AP10  
AL14  
AL9  
3
4
5
6
7
SDQ_B37  
SDQ_B32  
SDQS_B4#  
SDQS_B3#  
SDQ_B30  
SDQ_B29  
SDQ_B24  
SDM_B3  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
SDQ_B27  
SDQ_B31  
SDQ_B26  
SDQ_B28  
SDQ_B25  
SCLK_B3#  
SCLK_B0#  
SCLK_B0  
SRAS_B#  
SCAS_B#  
SWE_B#  
SBS_B0  
SBS_B1  
SMA_B2  
SMA_B0  
SMA_B10  
SMA_B1  
SMA_B3  
SMA_B4  
SCKE_B0  
SDQS_B2#  
SCLK_B1#  
SDQS_B1#  
SDQS_B0#  
AH10  
AL4  
B15  
RSV  
XOR Chain #5 Output  
Datasheet  
421  
Testability  
R
Table 15-19. DDR2 XOR Chain #6  
Pin Count  
Ball #  
DDR2 Signal Name  
Comments  
1
AG17  
AH16  
AE19  
AD17  
AK16  
AM18  
AM21  
AN21  
AP22  
AN20  
AP21  
AR20  
AP19  
AR19  
AP7  
AP9  
AN9  
AR8  
AN8  
AN7  
AP6  
AR5  
AP5  
AN5  
AN2  
AN3  
AM2  
AP4  
AP3  
AP2  
AN4  
AK3  
AK2  
AJ3  
SDQS_A3#  
SDM_A3  
SDQ_A31  
SDQ_A30  
SDQ_A28  
SCKE_A1  
SMA_A11  
SMA_A9  
SMA_A5  
SBS_A2  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
SMA_A7  
SMA_A12  
SCKE_A0  
SCKE_A3  
SDQS_A2  
SDQ_A18  
SDQ_A19  
SDQ_A23  
SDQ_A22  
SDM_A2  
SDQ_A17  
SDQ_A16  
SDQ_A21  
SDQ_A20  
SCLK_A4#  
SCLK_A4  
SCLK_A1  
SDQ_A11  
SDQ_A15  
SDQ_A14  
SDQ_A10  
SDQ_A9  
SDQ_A8  
SDQ_A13  
SDQ_A12  
SDM_A1  
SDQS_A1  
SDQS_A0  
SDQ_A6  
SDM_A0  
SDQ_A7  
SDQ_A2  
SDQ_A3  
SDQ_A1  
SDQ_A0  
SDQ_A4  
SDQ_A5  
AJ1  
AL1  
AL3  
AG1  
AG3  
AF2  
AH2  
AH3  
AJ2  
AF3  
AE3  
AE2  
AE1  
C14  
RSV  
XOR Chain #6 Output  
422  
Datasheet  
Testability  
R
Table 15-20. DDR2 XOR Chain #7  
Pin Count  
Ball #  
DDR2 Signal Name  
Comments  
1
AH25  
AD20  
AL23  
AP13  
AR12  
AN13  
AL12  
AR11  
AP11  
AN11  
AM12  
AR9  
SDQS_B4  
SDQS_B3  
SCLK_B3  
SMA_B6  
SMA_B9  
SMA_B8  
SMA_B7  
SMA_B12  
SMA_B11  
SBS_B2  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
SMA_B5  
SCKE_B2  
SCKE_B1  
SCKE_B3  
SDQ_B19  
SDQ_B18  
SDQ_B22  
SDM_B2  
SDQ_B17  
SDQ_B23  
SDQ_B20  
SDQ_B16  
SDQ_B21  
SDQS_B2  
SCLK_B4#  
SCLK_B4  
SCLK_B1  
SDQ_B9  
SDQ_B13  
SDQ_B12  
SDQ_B8  
SDQ_B10  
SDQ_B15  
SDQ_B14  
SDM_B1  
SDQ_B11  
SDQS_B1  
SDQS_B0  
SDQ_B4  
SDQ_B5  
SDQ_B1  
SDQ_B2  
SDQ_B3  
SDQ_B6  
SDM_B0  
SDQ_B0  
SDQ_B7  
AN10  
AM9  
AD15  
AD14  
AG14  
AH13  
AH12  
AF14  
AD12  
AF13  
AE13  
AK13  
AL11  
AJ11  
AK9  
AL8  
AL7  
AJ7  
AJ8  
AF11  
AG11  
AG10  
AH9  
AE11  
AK10  
AK5  
AG9  
AH7  
AJ6  
AL6  
AN6  
AL5  
AJ5  
AH4  
AM5  
K15  
RSV  
XOR Chain #7 Output  
Datasheet  
423  
Testability  
R
Table 15-21. DDR2 XOR Chain #8  
Pin Count  
Ball #  
DDR2 Signal Name  
Comments  
1
F11  
C9  
H11  
A8  
E9  
C7  
E7  
A6  
B4  
C5  
E5  
D2  
G5  
F3  
EXP_RXN0  
EXP_TXN0  
EXP_RXN1  
EXP_TXN1  
EXP_RXN2  
EXP_TXN2  
EXP_RXN3  
EXP_TXN3  
EXP_RXN4  
EXP_TXN4  
EXP_RXN5  
EXP_TXN5  
EXP_RXN6  
EXP_TXN6  
EXP_RXN7  
EXP_TXN7  
EXP_RXN8  
EXP_TXN8  
EXP_RXN9  
EXP_TXN9  
EXP_RXN10  
EXP_TXN10  
EXP_RXN11  
EXP_TXN11  
EXP_RXN12  
EXP_TXN12  
EXP_RXN13  
EXP_TXN13  
EXP_RXN14  
EXP_TXN14  
EXP_RXN15  
EXP_TXN15  
EXP_RXP0  
EXP_TXP0  
EXP_RXP1  
EXP_TXP1  
EXP_RXP2  
EXP_TXP2  
EXP_RXP3  
EXP_TXP3  
EXP_RXP4  
EXP_TXP4  
EXP_RXP5  
EXP_TXP5  
EXP_RXP6  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
H7  
G1  
J5  
H3  
K7  
J1  
L5  
K3  
R10  
L1  
M7  
M3  
N5  
N1  
P8  
P3  
R5  
R1  
E11  
C10  
J11  
A9  
F9  
C8  
F7  
A7  
B3  
C6  
D5  
C2  
G6  
424  
Datasheet  
Testability  
R
Pin Count  
Ball #  
DDR2 Signal Name  
Comments  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
E3  
H8  
F1  
J6  
EXP_TXP6  
EXP_RXP7  
EXP_TXP7  
EXP_RXP8  
EXP_TXP8  
EXP_RXP9  
EXP_TXP9  
EXP_RXP10  
EXP_TXP10  
EXP_RXP11  
EXP_TXP11  
EXP_RXP12  
EXP_TXP12  
EXP_RXP13  
EXP_TXP13  
EXP_RXP14  
EXP_TXP14  
EXP_RXP15  
EXP_TXP15  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
For SDVO interface signal name, see ballout table.  
G3  
K8  
H1  
L6  
J3  
P10  
K1  
M8  
L3  
N6  
M1  
P7  
N3  
R6  
P1  
H16  
BSEL0  
XOR Chain #8 Output  
Table 15-22. DDR2 XOR Chain #9  
Pin Count  
Ball #  
DDR2 Signal Name  
Comments  
1
2
U6  
U5  
T3  
DMI_RXN0  
DMI_RXP0  
DMI_TXN0  
DMI_TXP0  
DMI_RXN1  
DMI_RXP1  
DMI_TXN1  
DMI_TXP1  
DMI_RXN2  
DMI_RXP2  
DMI_TXN2  
DMI_TXP2  
DMI_RXN3  
DMI_RXP3  
DMI_TXN3  
DMI_TXP3  
3
4
R3  
T8  
5
6
T9  
7
U1  
T1  
8
9
V8  
V7  
V3  
U3  
U10  
V10  
W5  
V5  
10  
11  
12  
13  
14  
15  
16  
E15  
BSEL1  
XOR Chain #9 Output  
Datasheet  
425  
Testability  
R
15.7  
PADs Excluded from XOR Mode(s)  
A large number of pads do not support XOR testing. The majority of the pads that fall into this  
category are analog related pins (see Table 15-23).  
Table 15-23. XOR Pad Exclusion List  
PCI Express*  
GCLKN  
Host Interface  
HCLKN  
System Memory  
Misc  
SRCOMP1  
SRCOMP0  
DREFCLKN  
DREFCLKP  
BLUE  
GCLKP  
HCLKP  
HRCOMP  
HSCOMP  
HVREF  
EXP_COMPO  
EXP_COMPI  
SMVREF1  
SMVREF0  
BLUE#  
SOCOMP1  
GREEN  
GREEN#  
RED  
HSWING  
SOCOMP0  
SM_SLEWOUT1  
SM_SLEWOUT0  
SM_SLEWIN1  
SM_SLEWIN0  
RED#  
RSTIN#  
HSYNC  
VSYNC  
REFSET  
§
426  
Datasheet  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY